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ABSTRACT (Italian) 

Il modello di lavoro noto come Multi Cloud sta emergendo come una naturale evoluzione 

del Cloud Computing per rispondere alle nuove esigenze di business delle aziende. Un 

tipico esempio è il modello noto come Cloud Ibrido dove si ha un Cloud Privato connesso 

ad un Cloud Pubblico per consentire alle applicazioni di scalare al bisogno e 

contemporaneamente rispondere ai bisogni di privacy, costi e sicurezza. 

Data la distribuzione dei dati su diverse strutture, quando delle applicazioni in esecuzione 

su un centro di calcolo devono utilizzare dati memorizzati remotamente, diventa necessario 

accedere alla rete che connette le diverse infrastrutture. Questo ha grossi impatti negativi 

su carichi di lavoro che consumano dati in modo intensivo e che di conseguenza vengono 

influenzati da ritardi dovuti alla bassa banda e latenza tipici delle connessioni di rete. 

Applicazioni di Intelligenza Artificiale e Calcolo Scientifico sono esempi di questo tipo di 

carichi di lavoro che, grazie all’uso sempre maggiore di acceleratori come GPU e FPGA, 

diventano capaci di consumare dati ad una velocità maggiore di quella con cui diventano 

disponibili. 

Implementare un livello di cache che fornisce e memorizza i dati di calcolo dal dispositivo 

di memorizzazione lento (remoto) a quello più veloce (ma costoso) dove i calcoli sono 

eseguiti, sembra essere la migliore soluzione per trovare il compromesso ottimale tra il 

costo dei dispositivi di memorizzazione offerti come servizi Cloud e la grande velocità di 

calcolo delle moderne applicazioni. 

Il sistema cache presentato in questo lavoro è stato sviluppato tenendo conto di tutte le 

peculiarità dei servizi di memorizzazione Cloud che fanno uso di API S3 per comunicare 

con i clienti. La soluzione proposta è stata ottenuta lavorando con il sistema di 

memorizzazione distribuito Ceph che implementa molti dei servizi caratterizzanti la 

semantica S3 ed inoltre, essendo pensato per lavorare su ambienti Cloud si inserisce bene 

in scenari Multi Cloud.  
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PREFAX 

Computers are the most relevant innovation of our times. We can find them in different 

forms and we interact with them in almost every situation and aspect of our lives. This 

document for example has been written on a normal laptop and it wouldn’t be surprising if 

in the pocket of the reader we could find a modern smartphone. Computers are the result 

of the combination of many different innovations which have been held by incredible 

minds and visionaries during the past two centuries. 

The birth of modern computers and how our life changed with them is just the last step of 

a process started during the first half of the 19th century when Ada Lovelace spoke for the 

first time about programming and computation. Many other brilliant innovators had an 

important role such as Vannevar Bush, Alan Turing, John von Neuman, J.C.R Licklider, 

Doug Engelbart, Robert Noyce, Bill Gates, Steve Wozniak, Steve Jobs, Tim Berners-Lee 

and Larry Page just to mention some of them. 

The unicity in the invention of computers in my opinion is the fact that they are not the 

result of a single idea but instead the combination of many intuitions of scientists from a 

wide and heterogeneous range of disciplines. They express the continuous seek of human 

kind to go beyond its limits to improve people lives or for the simple please of curiosity. 

Research does not come from the necessity to satisfy specific needs but from the human 

nature of seeking knowledge. It is thanks to this knowledge if we now have what we have 

and we must not forget that many of the technologies we depend on nowadays have been 

possible only thanks to the result of research. 

With this short introduction I want to thank all the academic sector, the scientific 

community and researchers from all around the World for the effort they put on their work 

every day. 

With next sections it is presented the work of my Master Degree Thesis, for the course in 

Computer Engineering taken at University of Bologna, which I had the pleasure to work 

on at the laboratories of IBM Research Ireland.  
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INTRODUCTION 
The Multi Cloud paradigm is emerging as a natural evolution of Cloud Computing to 

respond to the needs of scaling workloads beyond the boundaries of a single Cloud while 

satisfying constraints of cost, performance, security and privacy. In Multi- Clouds two or 

more Cloud data centers are interconnected and their resources used in conjunction for 

storage and computation. A typical case is that of a Public Cloud connecting to private data 

center of an enterprise (Private Cloud) whose applications are running in synergy across 

the two sites: this scenario is commonly referred to as Hybrid Cloud. 

In such scenarios data are stored across the different sites depending on business 

constraints, such as cost of storage and privacy constraints. When workloads from a 

different site need to access remote data, those need to be fetched across the wide-area 

network (WAN) connecting the two Clouds before they can be utilized in the destination 

Cloud. This has a severe negative impact on data-intensive workloads that are remarkably 

affected by poor data access bandwidth and latency but need to access data in distributed 

Multi Cloud storages. 

Artificial intelligence (AI) and Scientific Computing are examples of classes of these kind 

of workloads. With their increasing use of accelerators (such as GPUs and FPGAs), 

applications like training of Deep Learning models or scientific simulations are capable of 

consuming quantities of data at a rate that is an order of magnitude faster than what typical 

WAN links can provide. 

Implementing a cache layer that transparently fetches and caches data from slow (remote) 

cheap storage to fast (but expensive) storage close to the computation represents a solution 

to seek the perfect trade-off between cost of long term data storage versus computational 

performance. However, there are many factors that must be investigated in order to achieve 

an efficient solution such as for example cache write backs in high performance Multi 

Cloud environments. 
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The proposed solution is the result of an in depth study of at the state of the art storage 

technologies and main characteristics and needs of just mentioned types of workloads 

during reading and writing procedures. 

Distributed file systems allow the storage and availability of data across different localities 

thanks to the coordination of computational nodes which efficiency depends therefore on 

the specific implemented policies. Thanks to this kind of storage systems data can be stored 

over different nodes making possible to obtain very good levels of dynamicity, flexibility 

and reliability. Because of these reasons the choice of performing caching operation using 

the distributed storage technology Ceph has been made. 

Data information can be transferred in different ways according to the specific type of the 

adopted storage technology. The POSIX API represents the most diffused file interaction 

as it is the standard for the most modern file systems but it is not the only one. There are 

new emerging prominent storage technologies with different types of interaction such as 

for example those defining the S3 API. They allow data transmission to/from Cloud storage 

services provided as IaaS over the Internet with the HTTP protocol. This is mainly due to 

the new application domains introduced by the Cloud Computing paradigm. 

Ceph, in addition to the previously mentioned characteristics, allows data I/O interactions 

with different semantics such as POSIX and S3 which are standards for the most Cloud 

services subject of this study. 

In the first part an overview of previously mentioned technologies and how they ca be 

implied in the realization of caching solutions in the context of Hybrid- and Multi- Clouds 

will be presented. 

In the second part the design and implementation choices made during the development of 

a cache layer for S3 objects with the Ceph technology will be presented. 

In the last section a detailed analysis of cache’s performance with different workloads will 

be provided.  
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1 THE CLOUD COMPUTING 

1.1  AN INTRODUCTION TO DISTRIBUTED SYSTEMS 

Computers are Hardware and Software components that are able to compute and process 

algorithms. In terms of computational power, every computer has many different 

characteristics which impact performance. Computer Networks are a set of different 

interconnected computers capable of communicating between them. The main example is 

the Internet and the associated World Wide Web [1]. 

Distributed systems are systems in which the components (Hardware and Software) of 

many networked computers can communicate and coordinate their actions via the only 

exchange of messages. They introduce some concerns like concurrency, absence of a 

global clock and single point of failure. There are indeed new challenges that must be faced 

when working with Distributed Systems which can therefore lead to powerful, efficient 

and reliable computation solutions if appropriately deployed. There are many examples of 

these systems with which we interact every day like web search, email services, online 

gaming, social networks, etc. 

These systems are very common in modern technology trends and industrial scenarios. 

During last years the most important innovations on computational technologies are related 

to them and because of this it is very important to understand the theories behind them and 

how they work to have a complete view of modern computational paradigms. 

Examples of the main factors and trends leading nowadays research in Distributed Systems 

are for instance the emergence of pervasive networking technologies, the emergence of 

ubiquitous computing and mobile systems, the increasing demand for multimedia services 

and the view of Distributed Systems as a utility. The last mentioned factor is very important 

and has a central role when we speak about Cloud Computing. 

The modern Internet is a global collection of many different interconnected Computer 

Networks which are distinguished by their locality, type of communication and number of 
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devices. As a result, we have many different kind of networks, including a wide range that 

uses wireless communication such as Wi-Fi, Bluetooth or new generation mobile phone 

networks. The need for an efficient way to address all these systems and devices is just a 

natural consequence of their heterogeneity as shown in the following pictures. 

 

Image 1.1 - Heterogeneous devices interacting with the Internet 

The continuous technology development in electronic engineering has made it possible to 

produce devices of very small dimensions. This, along with the improvements in wireless 

communications, has made it possible to introduce mobile devices into Distributed 

Systems. Examples of these devices are laptops but also smartphones, wearable devices 

like smartwatches and embedded devices that make Mobile Computing possible. 

The term Mobile Computing represents the possibility to perform computational tasks with 

devices which are not constrained to one single physical location but capable of working 

while moving. In such a scenario the user has access to many different Hardware and 

Software resources while fair away from its local intranet. An extension of this paradigm 

is the Ubiquitous Computing where the user interacts with many different devices available 

in a specific environment. These devices are so pervasive in people everyday life that 

become transparent to the users that, stop to focus on the usage of these devices as they 

become a natural extension of what they are doing as much as it can be a pen when they 

want to handwrite. 

Multimedia Systems are very important and of particular interest in Distributed Systems. 

It isn’t the goal of this work to deepen in these particular technologies but it is interesting 
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to see that they are capable of making multimedia resources available to remote devices 

real time and on-demand taking advantage of Distributed Systems properties. 

Thanks to the maturity reached by Distributed Systems companies are now selling 

computing and storage capacities as services in the same way as it is normally done for 

other services like water or electricity. Distributed Systems can therefore be seen as a utility 

offered by companies to clients who do not buy products but rent resources (Software and 

Hardware) of company’s remote data centers. Physical resources like computation, storage 

or network are made available to customers that do not have to buy Hardware on their 

premises anymore to take advantage of their computational power. Users may therefore 

decide to use a remote storage to save their files or backups as well as they now may decide 

to perform workloads tasks on remote computational nodes while accessing sophisticated 

data centers which also allows them to perform Distributed Computation. 

Operating System virtualization techniques have a key role in this kind of services. Clients 

have access to virtual resources rather than physical nodes making Cloud Providers able to 

perform an optimized management of data centers resources and as a consequence to offer 

the best service as possible to customers. 

Following the same approach Software Services can be offered to clients in Distributed 

environments enhancing performance of execution. With applications and infrastructures 

already available to be used, companies may also decide to redirect their effort on the usage 

of these applications rather than to their development, with relevant impacts in 

development times and costs.  
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1.2 CLOUD COMPUTING CONCEPTS 

With the term of Cloud Computing we refer to the possibility to see computation as a 

service that can be offered through the Internet. Cloud systems typically offer sets of 

storage, computing and internet-based applications as services with the aim to go beyond 

clients on premises resources requirements and limitations. Cloud users can now benefit of 

the power of Cloud infrastructures with the only need of a Web interface to access them. 

This is very powerful from the prospective of Operating Systems as the abstraction level 

offered by Web Interfaces makes it possible to access Cloud services independently from 

the specific types of on-premises resources and remote data centers infrastructures. 

Computers Clusters provide High Performance Computing (HPC) capability as they are 

the aggregation of many interconnected computers which cooperate together as a single 

point of computation. They represent the typical implementation of data centers which are 

the physical abstraction of Cloud Computing Systems. The final goal of Computers 

Clusters is to implement these kinds of Cloud Services in order to offer them in the market 

over the Internet. 

There are indeed many technologies involved in the creation of this new computational 

paradigm. Some of the state-of-the-art techniques are [2]: 

 Virtualization technologies: They partition Hardware making computing platforms 

flexible and scalable with the opportunity to share resources between different and 

heterogeneous services. Moreover, many tenants can access Cloud resources 

simultaneously increasing infrastructures usage rate and reducing services costs. 

 Orchestration of service flows and workflows: Clouds should be able to orchestrate 

services from different sources of different types to form services flows and 

workflows transparently for users. 

 Web service and SOA (Service Oriented Architecture): Services are exposed on the 

internet through the usage of web interfaces while the internal orchestration and 

organization can be managed as SOA. 
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 The Web 2.0: It improves interconnectivity and interactivity of Web Applications. 

 The worldwide distribution of storage systems: Network storage services offered on 

the Internet like Google File System or Amazon S3 are typically backed on 

distributed storage providers (data centers for example). The way data is stored and 

managed over data centers’ infrastructures is transparent from the user perspective. 

 Programming models: Some Cloud models should be modified to adapt better to 

Cloud infrastructures. Map Reduce is an example of computational paradigm which 

takes advantage of the distributed characteristic of data centers in order to execute 

Big Data applications. 

It is possible to identify many benefits from the usage of Cloud Computing inside a 

company. The business model change as the effort can be redirected to the usage of already 

available resources rather than to the infrastructure implementation [3]. This also allows 

owners to save on system-administration costs as it is not needed anymore to manage local 

resources. 
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1.3 A GENERAL CLOUD COMPUTING ARCHITECTURE AND THE NEED 
FOR STANDARDS 

During the past years many Distributed Computing technologies have been proposed by 

the scientific community but only Cloud Computing have made it possible to systems-

integrators and mash-up technologies to undertake their business with a minimal 

investment on the infrastructure development [4]. For a new Cloud user, it can be difficult 

to navigate between all the Cloud technologies offered over the Internet but some 

architectural guidelines may help. It is here presented for this reason a possible general 

architectural view of a Cloud System. 

The taxonomy which better helps to describe how the Cloud is composed is the Everything-

as-a-Service (XaaS) which characterizes it as a stack of different kinds of services as shown 

in the following picture. More precisely the principal groups of services are the so called: 

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-

Service (SaaS). 

 

Image 1.2 - Representation of the Cloud Services and Cloud infrastructures Stack 

On the lowest level of this stack we have the IaaS whose services can be characterized into 

two main groups: Physical Resources or Virtual Resources. As mentioned before, 

virtualization technologies offer many benefits to vendors from a management point of 

view but there are also some reasons why clients may decide to rent entire physical 

resources. An example of these scenarios may be the one where clients decide to take 
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advantage of Cloud Services but do not will to pay the overhead introduced by 

virtualization hypervisors or even more because they do not want to share the same 

infrastructures with other tenants for security reasons. On the top of the IaaS layer we can 

instead differentiate three different categories of applications: computational, storage and 

network services, all of them relying on virtualization. 

The term PaaS refers to the middle level of the Cloud Stack and it is used to identify the 

services into Programming Environments and Execution Environments. The latter type 

typically includes services of the former. Examples for these categories are Google’s App 

Engine and Microsoft’s Azure. 

The last layer we mentioned is the highest, the so called SaaS that includes all the 

applications running on the Cloud and that provides a direct real-time service to clients. 

There are also some other possible kinds of services worth of noticing that are not meant 

to directly serve clients needs but to combine different available applications for business 

purposes. They do not find a collocation into the described stack as they are rather set 

beside it. There are some business cases where the solution to a specific problem needs 

resources coming from different layers and not just one. This makes it necessary to provide 

clients with appropriate administrative and business support in terms of resources 

management and costs optimization. 

The scheme presented above in this section shows only a general model we can refer to 

while speaking about Cloud Computing. It can represent the general structure of many 

different Cloud vendors but this does not mean that the models of the many systems 

available in the market will refer to it. There are many efforts going on at the moment to 

makes standards for Cloud Technologies. 

The NIST definition (National Institute of Standards and Technologies) of Cloud 

Computing tries to identify a baseline with the main aspects of Cloud services and 

deployments to make it easier the comparisons between already existing systems and new 

coming technologies. Thanks to these key concepts further discussions will be clearer [5].  
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The essential characteristics of a Cloud System identified by the NIST definition are: 

 On-demand self-service: Clients can take advantage of computing capabilities when 

required without human interaction with the provider. 

 Broad network access: Services are provided by heterogeneous platforms to 

different clients via standard mechanisms. 

 Resource pooling: Resources like storage, processing, memory or network 

bandwidth are pooled and managed in a multi-tenant model to serve customers’ 

needs on-demand. Remote resources are typically offered with such an abstraction 

that hide the real location of physical infrastructures to Cloud clients. 

 Rapid elasticity: Clients can increase or decrease the number of services and rented 

resources at any time. This makes it possible to adjust payments to real-time needs 

without any waste. 

 Measured service: The abstraction layer between users and Cloud infrastructures 

allow services providers to manage their resources doing optimizations. Both clients 

and providers should be in condition to transparently control and monitor resources 

usage.  

The document includes also a service model which contains the IaaS, PaaS and SaaS that 

have been already discussed. 

The deployment models are very important to have a view of possible Cloud applications 

environments. According to the NIST definition there are four main models: 

 Private Cloud: The Cloud infrastructure is of private usage by a single organization, 

possibly composed by many different users. It can be managed by third parts or the 

organization itself. 

 Community Cloud: The Cloud infrastructure is meant to be used by a specific 

community of consumers from organizations with same concerns. It can be 

managed by third parts or the organizations belonging to the specific community. 
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 Public Cloud: The Cloud infrastructure can be used by the general public. It exists 

on the premises of the Cloud provider which is also typically in charge of its 

management. 

 Hybrid Cloud: The Cloud infrastructure is composed by two or more different ones 

that maintain their unicity while being bound together by standardized or proprietary 

technologies which allow application and data portability. 
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1.4 CROSS CLOUD COMPUTING ENVIROMENTS 

Cloud Computing is capable of bringing many benefits from a computational point of view 

and because of this it is becoming more and more central in company’s business even 

though, there are still many concerns about services portability because of the dynamicity 

of the Cloud market. 

There are contracts like SLA (Service Level Agreement) where users and providers agree 

on the quality requirements that must be satisfied by the provisioned services. Despite this, 

one of the principal barriers of the adoption of Cloud solutions is the so called locking from 

long term commitments to a specific vendor. 

This fear comes from the fact that Cloud vendors offer sets of APIs (typically not standard) 

to allow clients applications to interact with their services. During business lifetime it may 

happen that some services become obsolete or that a competitor becomes able to offer the 

same service with markedly differences in performance. Because of these reasons clients 

may opt to change the Cloud Provider to take advantage of different services with therefore 

the need to change the way of interaction as well. These changes have huge impacts on 

customers’ business, especially in terms of costs and time because to adapt applications to 

a different set of API typically results in very expensive refactoring. 

The need for standards in the way of interacting with Cloud services and the bound to 

specific vendors’ solutions are the core of Cross Clouds challenges [6]. The principal 

categories may be summarized in four different groups: 

 Hybrid Clouds: As described by the NIST they are compositions of many Clouds. 

In this scenario system developers aggregate different Cloud parts to build 

appropriate solutions for their applications which will then have to interact with 

various sets of API. This structure implies that it must be defined a logic to 

determine which Cloud part should be used and when. This logic is coupled with 

the application at a certain extent and can be eventually implemented as a proxy 

between the different systems. 
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A typical example is the one where a Private Cloud is connected to a Public Cloud 

to go beyond on premises infrastructure computational limits with the opportunity 

of scaling as needed and satisfying business constraints like privacy and security. 

 Multi Clouds: Such as Hybrid Clouds they are made combining different 

autonomous Cloud systems. But in contrast, this model management can be 

achieved with some abstraction as it introduces a certain level of portability. Usually 

there is a common denominator set of APIs between the different systems which 

reduces the number of specialized services. 

 Meta Clouds: They offer both abstraction and delegation pushing even far away the 

responsibility of application developers for the system management. They are 

typically deployed by third party brokers which offer loosely-coupled interaction as 

a managed service. It is brokers duty to find available resources to serve applications 

needs into the context of the Meta Cloud. 

 Cloud Federations: In contrast to the previously mentioned models, Federated 

Clouds achieve distribution through prior agreements in the form of common 

interfaces or data formats. These efforts have been made to allow customers to work 

with resources and services across different vendors. 
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1.5 EXECUTION OF ARTIFICIAL INTELLIGENCE AND SCIENTIFIC 
COMPUTING WORKLOADS IN HYBRID- AND MULTI- CLOUD 
COMPUTING ENVIRONMENTS 

In the previous chapters Cloud Computing key concepts and aspects have been discussed 

thus, at this point, its models, concerns and benefits should be clear to the reader. With this 

section it is now presented the specific scenario where this Thesis project work has been 

set, with references to Artificial Intelligence and Scientific Computing applications, 

Hybrid- and Multi- Cloud paradigms which are very prominent study areas for the 

scientific community. 

Because of the computational power offered by Cloud vendors, adopting Cloud 

infrastructures to perform heavy workloads of applications such as of Artificial Intelligence 

or Scientific Computing seems a logical solution. Private Clouds are constrained to their 

own resources but still capable of providing efficient solutions with some peculiar benefits 

to companies. Public Clouds are able to serve on-demand clients’ needs but there are many 

concerns about privacy and security as users have no direct control over their information 

that is managed by a third party instead. Thus, while the former allow companies to take 

advantage of Cloud infrastructures while not sharing sensitive information, the latter are 

ideally capable of offering unlimited amounts of resources and services allowing systems 

to scale as needed. Hybrid and Multi Clouds become therefore a natural extensions of 

single Clouds to overcome their limits while taking advantage of the singular benefits 

offered by any of them. 

 

Image 1.3 - Hybrid Cloud scenario where a Private Cloud interacts with a Public one to answer new 

companies’ needs of privacy and elastic scaling 
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As shown in image 1.3 there may be situations where a Private Cloud is connected to a 

Public one and their resources work in conjunction to achieve business goals. In such a 

scenario, which is the one of interest for this study, information is stored across different 

sites on distributed computational nodes. In order to be computed, data needs to be 

transferred using the communication channels of the (WAN) wide-area-network. This has 

a sever negative impacts on data-intensive workloads that are in this way limited by poor 

data access bandwidth and latency but need to access data in distributed Multi Cloud 

storages. 

Artificial Intelligence and Scientific Computing applications are examples of classes of 

this kind of workloads. Many accelerators (like GPUs and FPGAs) make applications such 

as training of Deep Learning models or scientific simulations capable of consuming data 

at a rate which is substantially faster than what WAN links can typically provide. Because 

of these reasons data availability and transfer cost become the prevalent bottleneck of 

computational performance. 

The implementation of a cache layer which transparently fetches data from a remote (slow) 

storage to a faster and more expensive one, closer to computational nodes seems thus to be 

a good solution to achieve the perfect trade-off between cost of long term data storage and 

computational performance. There are many different mechanisms and technologies which 

enable data storage and retrieval as presented in the next section. 
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2 DATA STORAGE SYSTEMS 

In this section it will be given a summary of what data storage means with a particular 

interest for those technologies meant for Distributed Systems, the so called Distributed 

Information Systems. A detailed discussion of specific technologies faced during the 

execution of some experiments that have been performed will be better analyzed in section 

number 3. 

 

2.1 POSIX STANDARD AND PORTABILITY 

To build a cache layer for a Cross Cloud system it is necessary to have a complete and deep 

understanding of what storage technologies are and how they work in order to store and to 

retrieve data. It is very important to keep in mind that any kind of storage system has 

peculiar characteristics with their benefits and drawbacks and may better adapt to some 

cases rather than others. Moreover, the type of communication is not always the same. 

Different technologies typically have different sets of interaction API, especially in Cloud 

environments. 

As it has been already said many times, standards are very important for the 

intercommunication and portability of different systems and applications. To build a cache 

layer, the first thing that must be clear is how the applications of interest are going to 

communicate with the storage support. For this purpose, it is here presented the POSIX 

standard (Portable Operating System Interfaces for Computer Environments) which 

describes how a POSIX compliant application or file system interacts with files. File 

systems which are the basic support for data storage, management and retrieval. 

First computers in the history of Information Technology were characterized by different 

Operating Systems and programming architectures [7]. As a result, one application could 

not be moved from a system to another unless it was rewritten to be compatible with the 

different supporting infrastructure. The first real attempt in the direction of program 
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portability was made by IBM when it started to adopt one single architecture across many 

different machines. In this way programs could be executed over the different 

computational nodes conforming with this structure. Another step forward has been made 

by the Bell Labs when scientists started to work on the creation of the UNIX, an operating 

system capable of running over different machine of different vendors. 

Nowadays there are still many battles on standardization across different operating systems 

but one thing is agreed by the most of them: the POSIX standards which are a set of 

assertions that help developers to make applications compatible between many different 

operating systems and architectures. A POSIX compliant application can move between 

different heterogeneous systems with a very low maintenance. 

It is not the goal of this work to analyze the singular sections of the POSIX standard 

documents but, as commonly accepted by the most prominent tech vendors, to understand 

how it works and what it involves for data storage systems. It describes a contract between 

the application and the operating system. More precisely, it doesn’t give guidelines for the 

production of the application itself or of the lower support but the way they will interact. 

This interaction is represented by the interfaces of the library called by the applications and 

by the interfaces offered to the library by the operating system. Vendors must only adapt 

their architectures to the POSIX library interfaces to be highly compatible and the 

applications thus become automatically portable and easily movable as they can work with 

no knowledge about the lower supports. 

Another important characteristics of POSIX semantics is that it is extensible and not 

locking. It may happen in fact, that for some specific cases one technology will need to go 

beyond the POSIX guidelines. This can be done by simply adding special purposes 

modules, keeping in mind that they will not be compliant with all systems.  
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2.2 OVERVIEW OF FILE SYSTEMS KEY CONCEPTS 

The file systems are the most basic storage technology. They are that part of an operating 

system which provides access and memorization mechanisms for the information 

(programs and data) stored on disk drives, disk partitions and logical volumes. File systems 

are a hierarchical organization of files which is the abstraction of the collection of 

information records residing on the computer memory [8]. It is their goal to provide 

functions, to allow users to work on files, such as creation, deletion, access, permission 

check or modification. They also organize and manage all the data structures that work 

along with files like directories. Directories are containers for storing pointers to maps of 

files and allow the hierarchical and structured view of stored data. 

An important characteristic of file systems as type of storages is that they also hold some 

other records of information, the so called metadata such as (for the UNIX operating system 

as an example) superblocks, i-nodes and lists of free and occupied data blocks on a specific 

system/device. 

A super block contains information about the file system such as its type or layout while 

an i-node maintains information related to any file and directory. A file system block is the 

smallest unit allocated on the physical support to store the data and may deeply influence 

operations’ performance, especially those of reading and writing. There are cases where 

files are stored in many different blocks and others where they cannot be stored at all 

according to specific data blocks’ size and number. 

Some examples of file systems are: 

 FAT 32 (File Allocation Table) – Microsoft Windows 

 NTFS (NT File System) – Microsoft Windows 

 UFS (UNIX File System) – Unix 

 ExtX (Extended File System) – Linux distributions 

An important aspect of file systems (as basic storage systems) worth of noticing is their 

capacity of abstraction between physical and logical memory. Users can think about the 
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files as a continuous chain of logical blocks while the physical ones are managed by 

modules of the operating system. This is done thanks to the evolution of Logical Volumes 

Managers (LVMs) that enabled the extension of file systems capacity and allowed efficient 

client storage management over physical infrastructures. Hard disks can be partitioned or 

concatenated to build a logical volume that is the abstraction of the storage memory with 

which the file system works. In this way once installed, a file system can work on different 

computational nodes at the same time while seen as a single unit of memorization. 

 
Image 2.1 – Example of management of physical storages as virtual units 

To make a certain disk drive, disk partition or logical volume available to the operating 

system and so part of the general file system, the mount operation must be executed. This 

command indicates that the specified file system is ready to be used, associates it an address 

(the mount point) and sets the desired access options. This operation therefore makes the 

file system and its associated information such as files, directories and special files 

available to be accessed by the users. 

It is important to keep in mind that along with the mount operation there is one more 

command which is very important when operating with file systems, the so called unmount 

operation. The managed data is not immediately written to the device when operations are 

called because of efficiency reasons. Files and directories are pooled and then stored all 

together in order to reduce the number of I/O operations with a certain device. Because of 

this it becomes very important to perform the unmount operation that will notify our 
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intentions to the operating system. It will therefore start all those procedures which deal 

with buffered data and metadata and no information will be lost. 

 
Image 2.2 – General file system hierarchy – each triangle represents a different file system which has 

been made available through a call to the operating system mount operation 

As showed, file systems are an important part of operating systems as they represent the 

basement for storing information on physical devices and allowing users to manage and 

work with files. For the purpose of this work it is presented in the next section how POSIX 

standard characterizes file systems making them compliant between different computer 

systems. This is very important to seek systems interconnection. 
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2.3 FILE SYSTEMS INTERACTION AND POSIX 

Whenever a certain application workload is executed there are always files involved as 

they are the representation of the information that is processed. The real computation is 

performed inside the main memory of a computational node thus, needed files (and their 

relative data structures) must be copied into it, on memory areas known as buffers. It is 

noticeable how POSIX defined standards for I/O functions. These functions must be 

executed in order to transfer data from a device to another. 

When building portable POSIX applications, it is important to remember that the only thing 

that really matters is calling POSIX libraries and not knowing libraries implementation. 

How libraries have been implemented is just an operating system matter and may affect 

performances but there is not that much that developers can do about it [7]. 

An important thing that must be kept in mind is that file structures members (containing 

references to files metadata information) should never be directly accessed in portable 

applications. POSIX does not make any assumption about their content indeed. This is of 

course another matter for file systems which are meant to work directly with files and their 

data structures. 

It is possible to work with files at high or low level. Low level functions give more control 

over a file but it is not always desirable to work with them as they may sometimes represent 

an element of possible incompatibilities in contrast to the high level ones. The key 

difference between their approach is the usage of a file stream or a file descriptor. These 

concepts will be clearer after few paragraphs. 

Further discussions will be general but a precision should be made at this point. It is 

possible to speak about POSIX without referring to any programming language but in order 

to build applications it is necessary to reference one in particular. The chosen language to 

explain these theories is C as the main language for the most operating systems and because 

POSIX supports two main programming environments which both work with the C 

language. 
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Some important high level functions are: fopen(), fclose(), fwrite(), fread(), fseek(), 

frewind(), fscanf(), fprintf(), fflush(), setbuf() and fflush(). 

Fopen() is very important because it starts the interaction with a file returning a FILE data 

structure that represents an associated stream. Fclose() on the other side deletes a link 

between a file and a certain stream releasing all associated system resources and forcing 

the execution of all pending requests. Fwrite() and fread() execute basic operations of write 

and read from/to a pointed buffer to/from a certain file pointed by its relative stream. There 

are then functions which allow the user to switch the file position pointed by the stream 

but fseek() typically is the best choice and frewind() set the pointer to the first position. 

Fscanf() and fprintf() are useful to work with formatted data. Setbuf() associate a FILE 

stream to a memory buffer (if does not exist it will create a new one). Fflush() is very 

important because it forces pending output data of streams to be written into files. 

Before to proceed in the discussion and explain the characteristics of low level functions it 

is important to have an overview of those operations which manage and give access to files. 

POSIX defines all the procedures that make the abstractions of files and directories portable 

between systems. These functionalities perform all the operating systems routines that deal 

with data and metadata creation, deletion and modification. 

The POSIX file system is based on the UNIX operating system and defines common 

interfaces to files within the motto “less is better”. UNIX principles are important but it 

must not ever be forgotten that different systems are not constrained to them and it may 

happen sometimes that things are done in different ways (with different set of functions for 

example). These cornerstones are: any I/O is done using files, a file is a sequence of bytes 

and a directory is a list of files. 

The POSIX file systems characteristics are here presented as an overview of the most 

important ones. 
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 Portable file names: no more than 14 characters composed by only letters, numbers, 

under score, hyphen and point with lower and upper case making some file names 

possibly similar but different. 

 Directory tree: any file system starts with a directory called root with file name “/”. 

It is a list of files, some of which may be directories. It is the same for general 

directories apart for the name. A file can be named calling the chain of directories 

starting from “/” with their names separated by a “/” (this is the so called absolute 

path). The chain of directories before a file name is the path prefix. A file can also 

be referenced with a relative name starting from a specific directory known as the 

working directory instead of the root one. The functions to work with directories are 

getcwd() which returns the current working directory while chdir() allows to switch 

it to another one. 

 Making and removing directories: it is possible to create a new directory calling the 

mkdir() function while rmdir() is capable of deleting an existing one. 

 Directory structure: each file in the file system has a unique number (the so called 

i-number which references the file i-node data structure with all its associated 

metadata). Every element inside a directory points a serial number and many 

different path can reference the same files. (NB: memory addresses of data records 

of files are contained into the i-nodes structures). 

 Linking to a file: the function link() associates a certain path with the file specified.  

 Removing a file: the unlink() in contrast does the opposite of link() and when a file 

has no more associated links is simply deleted. 

 Renaming a file: the outcome of a call to the rename() function is the creation of a 

new link for a file and the deletion of the old one. While renaming directories and 

files is portable and safe within the same system, this operation may corrupt files if 

performed between different systems. In these cases a copy() operation and a 

following unlink() or rmdir() would be required. 
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 File characteristics: as said many times a file system maintain information of any 

files. These metadata can be accessed through the call of the stat() function. POSIX 

does not specify the exact implementation of this kind of information but define the 

general structure to allow flexibility. 

 Changing file accessibility and owner: with chmod() it is possible to change file’s 

permissions while with chown() it can be changed its owner in order to implement 

different management policies. 

 Reading directories: to allow different implementations of directories, POSIX 

defines only the functions that allow users to retrieve directories entries. Similarly 

to high level functions for files and streams the opendir() returns a directory stream 

which can be used to access directory information. Readdir() returns a structure 

containing information related to a specified directory and closedir() notify the 

system about the no interest on working anymore with a certain directory. 

Rewinddir() reset the position of the directory stream to its beginning. 

Now that all the file systems structures and its functions are clear it is possible to 

proceed with the description of low level functionalities that, in contrast to what it could 

be thought, are not very well specified between systems in terms of general behavior. 

In previous C language implementations, they were the routines called when high level 

functions executed. Now the POSIX standard (more conformed with the standard C 

libraries definition) defines interfaces also at a low level but because of this it is good 

practice to call high level functions if seeking very high portability and low level 

functions if more control over files is needed. 

Low level primitives work with file descriptors which are integers identifying opened 

files to access their data structures which are loaded into main memory during open() 

calls and saved back during close() ones. 

Read() if called, copies data from an opened file and save it into a buffer similarly as 

for write(). An example of possible incompatibility is the case when an integer saved 

into a system where integers have a 32 bits size is then read on a system where integers 
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are of 16 bits. In this case with only one call to the read() function, the entire file will 

not be read. 

Fcntl() is an interesting multi-purpose function that performs operations over file 

descriptors of opened files. This is another interesting example of possible 

incompatibility as POSIX does not define what it will happen if someone attempts to 

modify the flags that this function work with. 

The lseek() function has a similar behavior of the flseek() mentioned before. The 

substantial difference is that instead of working with a file stream it works with the file 

descriptor. 

Finally, it is worth of noticing that high and low level functions can be mixed. For 

example calling fdopen() a file stream pointing to the file associated with the specified 

file descriptor will be returned while fileno() does the opposite. It is important to keep 

in mind that working simultaneously on the same file with both file descriptors and file 

streams may cause incongruence as the behavior of the formers may vary from system 

to system. 

All the things said in this chapter will be very important when it will be presented the 

implementation of a plug in to make an existing cache, built with POSIX standards, 

capable of storing information on a certain storage as a back-end. It will be shown the 

power of working with standards in the area of Information Systems. 

Now that the concepts of file systems are clear it is possible to go further with the 

discussion introducing Distributed Information Systems as the final goal is the 

implementation of a cache working in Cloud Computing environments. 
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2.4 STORAGE NETWORKING TECHNOLOGIES 

First of all, it is important to have a well understanding of why companies are so interested 

on storing data over Distributed Systems. This will justify the reasons for adopting Cloud 

storage solutions. 

There is a common trend showing an increasingly growth in the amount of data produced 

by companies that however still need to be stored, fast accessible, protected and managed 

efficiently. In order to obtain these properties, it becomes necessary to switch from a 

centralized to a distributed storage system to overcome the limits of single machines. 

To be more precise, a valid information solution should be able to [8]: 

 provide data availability to users when they need it 

 integrate the information infrastructure with business processes 

 provide a flexible and resilient storage infrastructure 

The first interesting system that will be mentioned is the DAS (Direct-Attached-Storage) 

which is nothing else than a storage environment where memorization devices are all 

directly connected. It represents a system where storage devices are isolated on their own 

and because of this it becomes hard to share information between users. 

The natural evolution of DAS is the so called SAN (Storage-Area-Network) that is a 

dedicated network of storage resources. It is not important to deepen in these concepts but 

it is interesting to see how the paradigm is switching from a centralized to an always more 

distributed scenario. The SAN is capable of overcoming the limits of its predecessor 

making sharing files in distributed environments possible and more efficient, with better 

economies of scale and management in terms of data protection and maintenance. 

Moreover, thanks to virtualization techniques, in SAN environments it becomes possible 

to enhance utilization and collaboration among distributed resources over different sites. 

For this reason, the utilization rate of storages is improved compared to the direct-attached-

storage because the information is now sharable. This is very important as it has 

considerable impacts on companies needs of infrastructures. 
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DAS and SAN represent good solutions to interconnect the different resources of storage 

infrastructures to answer the growth of companies’ data but have shown some limits. In 

network-based file sharing systems, file servers use client-server technologies to provide 

required data and this resulted in the appearance of over and lower utilized storage 

resources. 

A step forward has been made with the introduction of NAS, the so called Network 

Attached Storage, a dedicated storage device that can provide high-performance for file-

sharing eliminating the need of many general purpose machines. It enables client to share 

files over an IP network via the introduction of network and file-sharing protocols such as 

TCP/IP for data transfer and NFS (Network File System) for network file services. The 

NAS utilizes a specific operating system that is optimized for I/O operations to serve 

specific file services’ needs, making it better performing than a general purpose machine. 

This results in the number of clients that can be served simultaneously. 

 
Image 2.3 – Examples of NAS and SAN in the internet scenario 

 

The benefits introduced by the NAS are: 

 It enables efficient file sharing 
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 It supports many-to-one and one-to-may configurations 

 It provides better performance and ease of deployment 

 It is flexible as compatible with UNIX and Windows systems 

 It centralizes data storage and simplifies file systems management 

 It provides better scalability and high availability 

 It ensures security and reduces costs 

Network-based file-sharing environments become therefore composed by many general 

purpose servers and NASs that may need to transfer files between them. Because of this, a 

file-level virtualization that enables files mobility across different and heterogeneous 

devices has been implemented. 

As shown there are many reasons to switch to Distributed Information Systems to share 

data. In the next paragraph it will be now presented how these environments effectively 

work with also a deeper explanation of some of the just mentioned key concepts.  
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2.5  NETWORK FILE SHARING AND MAIN FACTORS AFFECTING 
PERFORMANCE USING IP NETWORKS 

In a file-sharing environment users are capable of storing and retrieving information across 

multiple nodes within distributed deployments adopting protocols made for these kind of 

tasks. 

Some interesting examples of the methods utilized for file sharing are: 

 FTP (File Transfer Protocol): It is a client-server protocol that allows the 

transferring of data over the network using TCP. (NB): SFTP (SSH FTP) is its 

secure version. 

 Distributed File System: It is a file system in which data is distributed over many 

computational nodes. It ensures efficient management and security while users can 

access data with a unified view of all its files. 

 NFS file-sharing protocol: It enables files owners to define their specific type of 

access. With its utilization users can mount a remote file system therefore making 

its files locally available. It provides routines for: searching, opening, reading from, 

writing to and closing files, changing file attributes and modifying directories and 

file links. 

 DNS (Domain Name System): It is a service that helps users to identify and access 

resources of a certain network. 

 LDAP (Lightweight Directory Access Protocol): It is an example of service protocol 

that creates a namespace and helps to identify resources of a network. 

 Peer-to-Peer model: It represents a paradigm where machines can share files within 

a network. The discovery of files is done by a software appositely built. Even if it 

will not be further explored, it is important to mention this last model as it represents 

a valid alternative to the more classic client-server one. 

As discussed in the previous section the NAS represents an important element in 

Distributed Information Systems. Its main types of implementation are presented below as 
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they involve concepts that can be generalized as models which are very useful to proceed 

in this study: 

 Unified: It provides data access within a unified storage platform with a central 

management  system. 

 Gateway: Contrary to the unified model it utilizes external storage for data 

memorization and retrieval with a consequent need for separated managements. 

 Scale out: This implementation is very important for Cloud environments as it 

represents the structure of data centers’ clusters organization. 

Models are important because they help us to better understand Distributed Systems 

making the analysis of those elements that have important impacts over performance. In 

chapter 5 the cache developed during this project work will be presented. The cache works 

within an IP network environment since it was meant to work with S3 objects. 

The main factors that impact distributed storages in this kind of networks are presented 

below [8]. It is important to consider these factors even if some of them may appear 

obvious: 

 Number of hops: a large number of hops may considerably increase the data latency 

as each one of them requires IP processing. 

 Authentication service: there must be enough available resources dedicated to this 

tasks in order to avoid congestions and latency increase. 

 Retransmission: it is important to set this parameter appropriately as one of the most 

affecting network traffic jams. It also may bring up unexpected errors. 

 Overutilization of routers and switchers: additional devices should be added if some 

of them become over utilized. 

 File system lookup and metadata requests: The processing required to access files 

or directories at the appropriate locations is typically the main bottleneck in 

Distributed Information Systems. An intricate directories structure may cause 

important delays. Because of this it is typically flattened to favor fast and efficient 
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data retrieval. This concept is very important and must be mastered to understand 

the scenario of this Thesis work. 

 Over utilized devices: The execution of multiple and simultaneous data access 

operations may cause the overutilization of some system’s devices. This would 

negatively affect performance as a result of a bad data distribution. 

 Overutilization of clients: clients can use protocols for network file sharing such as 

the NFS. If a client becomes over utilized the processing of all its relative requests 

and responses may cause delays on data retrievals. 

Distributed storages at this point should be more clear in terms of benefits and performance 

impacting concepts. Even if with some performance limitations during data transfer and 

data retrieval procedures, storage paradigms defined by SAN and NAS have shown 

increasing improvements over data storage techniques with respect to blocks and files 

abstractions. They still represent the base for information systems and this is the reason 

why it is important to keep their model in mind. 

However, there is another kind of storage that is the object based storage. It is a prominent 

storage paradigm with no boundaries in terms of performance enhancing. It has also the 

incredible capacity of making stored information simultaneously accessible within the 

abstractions of blocks, files and objects. For this reason, it can be considered an incredibly 

portable type of storage. 

The object storage technology is presented in the next section. It has a central role in this 

work as the storage back-end of the implemented cache system follows this model. 
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2.6 THE OBJECT STORAGE 

To better describe the object storage model and why it is so powerful it is good to step back 

in order to understand what are the limits of hierarchical file systems and how they can be 

overcome. 

The main ways users have been interacting with data over the years can be summarized in 

the two categories of databases and file systems [9]. The former is capable of efficient 

management of huge amounts of data thanks to the structures that can be defined from the 

characteristics of the information kept in memory. An analysis of the properties of 

databases will not presented here but it is worth mentioning how their paradigm has 

influenced new storage technologies. They are good solutions to process huge amount of 

data but they also become inadequate when more control over data is needed. File systems 

help in this direction giving more management power to users. 

Traditional file systems however present some limitations. Users’ needs are changing and 

new paradigms must be investigated in order to achieve better efficiency in storages 

management. Moreover, people are now working more and more with bigger amounts of 

data. This, with the change in data retrieval paradigm that is now more focused on file 

characteristics rather than data organization, has made the hierarchical structure of 

directories and files useless. 

The problem of the hierarchical namespace, as mentioned in the previous section, may 

impact systems performance introducing overhead as it makes file localization more 

expensive in terms of computational costs. In addition to that, users are now accessing data 

that is typically unstructured which means that it does not only make NAS more inefficient 

but it also becomes useless. 

To overcome these limitations object-based storages represent the perfect choice as they 

are capable of managing files according to their content and characteristics rather than their 

location and organization. Because of this, it is important to understand what are their main 

properties and benefits. 
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The main element in an object storage system is the OSD (Object-Based Storage Device) 

which is a device meant to organize and store unstructured data in the form of objects. 

OSDs do not keep a directories hierarchy but maintain the address space flat. Objects are 

identified through a unique ID number that is generated by appropriate functions (hash 

functions for example) or specific algorithms. Objects are capable of storing information 

such as user data or metadata along with them enhancing the compatibility of 

heterogeneous storage systems. 

An OSD system is typically composed by many servers interconnected within an internal 

network. They run the OSD service environment that provides functionalities to access and 

manage the stored data. The main services are the metadata service and the storage service. 

The former is in charge of providing ID keys to objects while the latter works in contact 

with the disks where users’ information is maintained. 

An important characteristic of OSDs is that they perform very well with many low-cost 

disks that are less expensive than a single powerful one. Finally, the principal benefits 

introduced by object-based storages may be summarized in: 

 Security and Reliability: Data integrity and authenticity are guaranteed by the 

storage that has the responsibility of performing user authentication and encryption 

procedures. 

 Platform independence: As objects are no more than containers of data, metadata 

and attributes it becomes possible to store them over different distributed, 

heterogeneous and remote devices. This property is very important especially for 

Cloud Computing environments which are the subject of this work. 

 Scalability: Thanks to the flat address it becomes possible to store huge amounts of 

data without impacting performance. 

 Manageability: OSDs are capable of coordinating their operation autonomously 

according to user defined policies. This makes them capable of self-management 

that is very important in complex systems environments.  
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2.7 A UNIFIED VIEW: BLOCKS, FILES AND OBJECTS 

To complete this analysis of storage technologies it is vital to discuss another relevant 

paradigm of storage systems that is the unified storage system. It can provide a unified 

view of the data in all the forms of blocks, files and objects at the same time. This is very 

important in Cloud Systems where stored data and devices are typically heterogeneous. At 

the end of this section, to conclude this chapter, an interesting comparison of the different 

types of storage technologies will be presented. 

A unified storage system consists of four main components: 

 The storage controller: Provides block-level access to the application servers and 

manages the back-end storage pool of the storage system. 

 The NAS head: Provides access to NAS clients acting like a file server. It interacts 

with the storage thanks to the virtualization of physical devices offered by the 

storage controller. It is in charge of the configuration of the file systems installed on 

the disks, to undertake the NFS and to share the data with the clients. 

 The OSD: Interacts with the storage via the storage controller and provides web 

communication to application servers with REST, SOAP and dedicated API 

interfaces. 

 The storage: Is the physical storage. It is composed of many different interconnected 

devices which maintain users’ information. 

In the following picture it is shown a scheme of this specific storage system architecture.  
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Image 2.4 – Unified information storage architecture 

Unified storage systems are a prominent solution nowadays because of their incredible 

abstraction power. There are therefore many reasons that justify their adoption and one 

cannot deny that this paradigm appears to be the most suitable for many industrial 

scenarios. 

However, many systems still interact only with the protocols and API defined by blocks, 

files and objects data paradigms. Because of this it is important to keep in mind what are 

their main differences and most suitable scenarios. 

The following table presents a summary of what has been discussed and concludes this 

chapter. 

Block Storages Meant to work closer to the hardware, blocks are able to chop amount 

of data in different part that can be stored on different machines 

independently from the specific operating system. They provide more 

control over the data becoming more efficient eliminating the 

infrastructure around files but becoming therefore less user friendly. 

File Storages Meant to allow users to work with their data they are very suitable for 

high level applications. However, they implement all the 

infrastructure characterizing files that is a penalty for systems 

performance and also a possible problem for compatibility. 
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Object Storages Meant to overcome all the limits of file storages they are very well 

performing in those scenarios where data is unstructured as they 

maintain a flat namespace. They are very good to achieve good 

performance at a high abstraction level and compatibility between 

heterogeneous systems. However, objects cannot be rewritten and in 

system where many write operations are required they are not well 

suited such as it happens with databases. 

Table 2.1 – Storage paradigms’ concepts summary 

The following picture shows a simple model of these distinct paradigms. 

 
Image 2.5 – The storage paradigms of file, block and object memories 

In this chapter a deep overview of storage systems has been presented. Now that these 

fundamental concepts are clear it will be presented in the next section the problem of cache 

memories and a summary of what is the state of the art of some interesting storage 

technologies that have been particularly important for this project work. 
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3 STORAGE TECHNOLOGIES AT THE STATE 
OF THE ART 

At this point it is very important to have clear in mind the final goal of this project work 

that is the development of a cache layer capable of working in Multi Cloud environments 

to serve computational nodes communicating with S3 object-storages to retrieve and store 

data. 

Within this chapter the analysis of storage technologies will become less abstract as some 

important real cases will be briefly presented in order to give a good idea of what is the 

current scenario of this scientific area. Initially the concepts of caching paradigms will be 

given in order to introduce the problems that involves. Then some technologies at the state 

of the art will be summarized to extract the key concepts behind them, introducing in this 

way the first work activity that has been done, that is the development of a plug-in to extend 

an already existing cache program. Finally, the S3 Cloud Object store will be presented as 

the most adopted storage service of Cloud solution. 

 

3.1 THE CACHE MEMORY IN INTELLIGENT STORAGE SYSTEMS 

Storage systems are more complex than what we can think. They are meant to provide data 

access, management and retrieval to users by using simple instructions and APIs. 

Unfortunately, the internal architecture of information systems is not as simple as the user 

interaction process. 

If good management and fast retrieval are characteristic to seek in order to provide a good 

service, some assumptions must be done. Typically, many requests simultaneously reach 

the computational nodes where the information is kept, as a result monolithic structures 

would represent a bottleneck during responses processing. For these reasons the structure 

of modern and well performing systems is broken down into four different main elements: 

the front-end, the cache memory, the back-end and the physical disks [8]. 
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The front-end is defined as that component of an intelligent storage system that specifies 

the interfaces through which the users can communicate. It also interacts on the storage 

side with the cache memory to perform I/O operations. 

The cache layer is very important as it is the component that abstracts the storage making 

it possible to achieve higher performance. It is a volatile memory that stores temporary 

data. It is in charge of providing the information requested by the front-end and of storing 

into the physical memory what the front-end receives from users. 

The back-end instead provides an interface between the cache and the physical memory. It 

performs I/O operations directly communicating with the disks to make data persistent 

and/or available to the cache. It also represents an additional temporary memory as well as 

the cache acts for the front-end. 

Now that the general guidelines of a performing storage architecture have been defined it 

will be better explained what problems and challenges are introduced to developers by the 

cache memory in order to achieve the expected benefits from its adoption. 

Physical disks are adopted because of their high storage capacity and low costs but they 

bring with themselves also an important drawback in terms of I/O speed. Cache memories 

are more expensive and volatile but also capable of providing high rate responses. Caches 

are meant to overcome the time limits presented by disks in order to seek the best solution 

in terms of both performance and costs. However, because of their capacity limitation it is 

important to plan an appropriate memory management in order to enhance read and write 

operations speed without introducing a bottleneck to the system. 

Cache memories communicate in both users and physical memory directions while 

interacting with the storage’s front-end and back-end. 

During read operations, before communicating with the slower disks, it is checked if the 

cache memory already contains the necessary data. If this happens the cache memory 

responses back to the front-end sending the requested information. This case commonly 

known as cache HIT represents the best scenario which makes cache memories particularly 
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advantageous as they bypass the problem of slow communication between front-end and 

physical disks. The opposite situation is the so called cache MISS. In this case the cache 

memory needs first to retrieve the requested data from the disks before being capable of 

answering users’ needs. 

The performance of reading operations is as much better as much higher it is the number 

of HIT compared to MISS that is known as hit ratio. Because of this reason being able to 

predict the data that will be requested may have huge impacts on performance. An 

interesting policy in this sense is the so called “data pre-fetch” that tries to read information 

from the disks before it is actually requested by users. This is particularly helpful to serve 

sequential reads operations. 

Writing operations instead take advantage by the presence of cache memories in two 

distinct scenarios: 

 Write-back cache: Data is written on the cache memory and a commit is 

immediately sent back to the user that can therefore continue with its operations 

without having to wait data to be physically written to disks. This is very useful to 

make write operations faster but it may happen that system failures will cause data 

loss as cache memories store volatile data. 

 Write-through cache: When data is stored on the cache memory it is immediately 

written to the physical support. The commit will be sent back to the user only at the 

end of the write operation. This eliminates the possibility of data loss but has the 

drawback of bounding write operations speed to the physical support’s I/O capacity. 

As previously mentioned an important concern of cache memories is their limited storage 

capacity. They are implemented as fixed size blocks (known as pages) vectors of data. The 

bottleneck of information systems is represented by I/O operations which make it important 

to reduce their number as much as possible. Data is so maintained in cache to enhance 

efficiency but it cannot be kept for long times because otherwise it would introduce 

congestions problems that globally affect the performance of requests processing. 
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Apart from reading in advance or keeping modified information to reduce the number of 

I/O operations it becomes thus important to plan an appropriate management to reduce the 

number of the data maintained by the cache layer. 

Some important policies are: 

 Last Recently Used: Data that has not been accessed by the longest time is removed 

from the cache memory and eventually written to the disk if not updated. 

 Most Recently Used: Based on the assumption that data when accessed has a low 

probability to be accessed in short times, this policy frees cache’s memory from the 

most recently accessed data. 

The operation of writing not aligned data to the disks is called flush. With this operation 

information that has been modified inside the cache memory will be written to the disks 

making so users’ updates persistent. Without entering too much in the details it is 

interesting to see the three main flush operations: 

 Flush idle: Flushing operations are performed during average cache memory usage. 

This is the most desirable situation as it does not have impacts on global request 

processing speed. 

 High watermark flush: Flushing operations enter in execution when cache usage 

reaches a certain threshold. In this situation some parallel I/O operations may be 

affected on performance because of flush operations cost. 

 Forced flushing: Flushing are performed when the cache memory cannot store 

anything else because it has reached its maximum usage. This scenario must be 

avoided because it is the principal cause of bad I/O rates. 

Cache memories thanks to all these measures represent the best choice to achieve good 

performance while adopting inexpensive devices. Moreover, some industrial solutions 

have demonstrated that the adoption of multi-layer cache systems may enhance 

performance even more. Therefore, it is important to keep in mind that there are scenarios 

where these principles can be extended. 
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Finally, in cache architectures the back-end device interacting with the storage memory 

has a central role as its performance will determine how a certain cache solution will 

perform. For this reason, here in the next section it will be presented a summary of some 

prominent technologies that can be adopted as a back-end in the Multi Cloud environments 

caching systems. 

  



43 
 

3.2 FILE SYSTEMS AT THE STATE OF THE ART 

File systems are the basic mechanism involved in data access and retrieval procedures. An 

exhaustive explanation of their key concepts has been presented in sections 2.2 and 2.3. 

Now it is important to understand how they can be introduced in specific scenarios and 

how they are evolving to serve new needs introduced by new computational paradigms 

such as by Cloud Computing environments. 

Many examples of file systems meant to serve different cases are available in literature. 

Some of them have been implemented to test new possible ways of interactions with 

specific storage solutions while some others have just been a natural evolution in data 

access mechanisms to go beyond the limits presented by traditional computational 

paradigms ([12] and [13]). 

For instance, an interesting experiment has been done to provide POSIX interaction to 

databases in the development of a file system with a database as back-end storage [12]. 

Databases are very powerful storage systems for structured data but are also characterized 

by specific interaction paradigms. This is a good example that shows how important the 

POSIX semantic is in allowing program portability over heterogeneous systems. This 

project is worth mentioning because it shows also how for performance matters sometimes, 

POSIX standards must be abandoned even if is very powerful. This is the reason why this 

project was not very successful. 

Another interesting example is represented by the development of a file system capable of 

interacting directly with GPUs and thus allowing programs to bypass CPU support that 

was causing important delays in computation and program development [13]. New 

computational paradigms are becoming more and more prominent. An important case is 

the parallel computation offered by GPUs. Without going into too much detail it is 

interesting to highlight that new paradigms such as GPU computation may be negatively 

affected by the already existing model making therefore programs development more 

intricate and complex in order to overcome these differences. This experiment has been 
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successful and opened new opportunities to enhance the performance of the systems taking 

advantage of GPU’s hardware properties. 

The computational model of Cloud Computing is characterized by Distributed Systems’ 

architectures which are made of many inexpensive and heterogeneous devices. Because of 

this it is important to understand what are the best solutions at the state of the art that can 

be a valid choice as a storage back-end. 

Traditionally many file systems solutions have already been proposed for this type of 

scenarios. Traditional Distributed File Systems [18] such as NFS or NAS had the common 

goal of giving a unified view of a distributed storage environment composed by many 

nodes deployed across multiple sites. They represent a good alternative for this purpose, 

however, because of their characteristics they do not fit very well in Cloud scenarios as 

they do not meet the requirements of performance, reliability and level of automation 

demanded and also they introduce geographical limitations. Moreover, while giving a 

unified view of a set of storage nodes they had many concerns about devices failure which 

could represent a single point of failure for the entire system. 

In order to overcome all these problems a new kind of storage technology for distributed 

scenarios has been developed which is the so called Cloud Distributed File System that is 

instead very suitable for Cloud environments. These new solutions are a new generation of 

Distributed File Systems capable of making users in condition to share data in a simple 

way such as it would be in centralized systems. They are capable of managing the storage 

of several nodes with replication in order to achieve reliability qualities that could not be 

provided by Traditional Distributed File System. This along with better performance and 

an improved level of automation makes this specific type of technology the most suitable 

for this project work. 

In the following picture it is possible to appreciate their typical architecture in Cloud 

Computing environments. 
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Image 3.1 – An architectural view of Cloud Distributed File Systems 

Some successful and famous Cloud Distributed File Systems are here presented with their 

main different characteristics. It is of fundamental importance bearing in mind that even if 

following a common scheme each of these specific solutions are characterized by different 

designs, which affect systems’ overall performance and properties. 

 Hadoop File System (HFS) [10]: It provides a good choice to manage data 

distributed over different nodes storing files’ data and metadata separately. Its 

architecture is composed of one Node Master (Name Node) which interacts with 

many Data Nodes. The communication between the different servers is made with 

the TCP protocol and data replication is executed across different Data Nodes in 

order to increase data locality probability. The HDFS namespace is kept as a 

hierarchy of files and directories which is maintained by the Node Master along 

with the file system’s files metadata. When a client reads or writes with the HDFS 

it first interrogates the Node Master to retrieve the information needed to 

appropriately retrieve and store data over the Data Nodes. Each cluster is composed 

of only one Name Node which must be able to hold the communication with many 

clients simultaneously. The HDFS is also capable of providing advanced services 

like journaling and backup with the deployment of Checkpoint Nodes and Backup 
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Nodes. Finally, even if built as an extension of the UNIX file system paradigm its 

API interface has sacrificed POSIX compatibility to seek better performance. 
 

 Google File System (GFS) [11]: It is a Distributed File System meant to serve large, 

distributed data-intensive applications. Its main goal is the provisioning of good 

performance for many simultaneous sequential read operations and atomic append 

write operations within an environment composed by many inexpensive devices. 

The design has therefore been characterized by the presence of failures, not as an 

occasional event, but as the normality. Because of this, constant monitoring, error 

detection and fault tolerance must be central elements of the system. Also, it has 

been relaxed consistency of write operations to favor performance. The GFS keeps 

a hierarchical structure of files and directories and its interface provides all normal 

file operations such as create, delete, open, close, read and write while however not 

conforming to the POSIX standard. The architectural design is similar to the one of 

HDFS and it is characterized by the presence of a single Master holding metadata 

information and multiple Chunk-Servers where data is effectively stored. Files are 

divided in many different pieces which are then stored across different servers as 

Linux files. 
 

 Lustre [15]: It is a good example of Distributed File System that tries to provide the 

highest portability as possible. In fact, it leverages the power and flexibility of the 

open source Linux operating system in order to provide a modern POSIX compliant 

file system capable of satisfying modern data center’s clusters’ needs. Moreover, 

Lustre’s configuration relies on the XML, LDAP and SNMPS protocols making its 

management and monitoring able to be easily integrated with other third party 

components. It eliminates single point of failure problems and distributes both 

metadata and data across many different nodes. The so called Metadata Servers 

(MDS) are in charge of managing the file system’s metadata while the actual I/O 

operations are performed on the Object Storage Targets (OST) which are also in 

charge of interfacing with physical storage devices. The OST are particularly 
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interesting in this kind of architecture because they abstract the interaction with the 

real storages hardware, the underlying Object-Based Disks (OBD) which can be 

improved and changed and still be compatible with the system. Clients can interact 

with MDSs and OSTs at any time as high availability is granted by LDAP servers 

that are always aware of the system status and deployment. 
 

 Ceph [14]: It follows the same principle of separating data and metadata but also try 

to go beyond. It maximizes the separation thanks to the introduction of the CRUSH 

function which allows random distribution of the information over the nodes of the 

cluster. In this way objects can be assigned and retrieved on specific and dynamic 

locations within the different heterogeneous machines of the system. It also supports 

data replication to enhance overall reliability and failure tolerance. Moreover, 

metadata management becomes more dynamic as metadata can adapt to the 

particular usage statistics and Meta-Data Servers (MDSs) deployment. This is 

possible thanks to the adoption of the Dynamic Subtree Partitioning policy that aims 

to distribute metadata closer to those nodes where users request data or where the 

storage devices are underused in order to favor data locality and load balance. 

Finally, along with these two main characteristics Ceph improves system 

performance utilizing a specific file system specifically designed to store and 

manage objects over the Object Storage Devices (OSDs). Thus, instead of relying 

on different machines’ mounted file systems it adopts the so called Extended and 

B-tree based Object File System (EBOFS) that have shown great performance 

during the experiments. 

Because of its properties that have just been explained, Ceph appeared to be a good choice 

to satisfy all the needs of the Multi Cloud scenario. Moreover, it provides a unified view 

of the main storage paradigms such as it has been presented in section number 2.7. This, 

along with the fact that it is an open source project, makes it the best candidate as the 

storage back-end for the development of a cache layer for S3 objects. This will become 

clearer with the next chapters. 
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3.3 THE S3 CLOUD OBJECT STORAGE 

Now that caches key concepts have been clarified and also storage solutions have been 

deeply discussed, what it remains to explain before starting with the presentation of the 

project work is the Remote Cloud Storage for which the cache has been meant that is the 

S3 (Simple Storage Service) COS (Cloud Object Storage). For this purpose, the AWS 

documentation will be used as reference but it must be clear since the beginning that all the 

reasoning that will be done will not be specifically meant for this vendor but with more 

general implications. 

The S3 is a protocol by which it is possible to interact with a Cloud Object Storage that can 

be provided as a service by many different vendors. Amazon is the company that first 

implemented this type of protocol that has been then adopted by many prominent Cloud 

companies thus making it a standard de facto. This is very important because the adoption 

of a standard solution frees users by their biggest perceived fear that is the long term vendor 

locking as it has been mentioned in section 1.4. 

To give an initial definition, the Amazon Simple Storage Service can be defined as an 

object storage service that offers industry-leading scalability, data availability, security and 

performance [19]. Many type of customers can use it to store and protect any amount of 

data for their specific business tasks. It is capable of providing easy-to-use management 

features so that clients can tune the service in order to meet their specific needs. Finally, it 

is designed to provide nearly 100% durability and to store data for millions of applications 

all around the world. 

Some of the main characteristics of an S3 COS [20] are here presented: 

 They provide durable infrastructures to enable customers to store their data as they 

are designed to satisfy important durability needs. Also, they store data across 

multiple facilities and devices while giving a single and unified view of the entire 

service. 

 They are low costs and enable users to pay only for the usage (on demand charging). 
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 They are high available and designed to make the 99.99999% of objects available 

over an entire year. Amazon defines this as a SLA highlighting its service reliability. 

 They can be optimized across different regions. It is possible to specify specific 

geographical areas in order to define in which facilities data should be effectively 

stored. This allows to reduce latency and costs. 

 They implement the communication protocol over SSL (Secure Socket Layer) to 

meet security needs with also the opportunity of specifying data encryption 

mechanisms to protect the information during transferring procedures. They also 

make it possible to implement access policies to define which users are allowed to 

work with certain categories of data. 

 They allow high performance through the usage of multi-part uploads in order to 

optimize bandwidth usage during upload operations. Also download operations 

performance is enhanced, thanks to the support provided for the access of high 

amount of volumes residing on the storage facilities. 

There are many possible use cases where the S3 service is very well suitable [21]. Some 

few interesting examples are: 

 Backup and archiving: It can be used to store backups of clients’ information or 

just as a storage support for business tasks. 

 Software delivery: It can be used to store programs that can therefore be easily 

downloaded by third parties. This can be done via tools like the bitTorrent 

service. It also grants data access control. 

 Big data analytics: Big Data information can be stored on the S3 COS and then 

analyzed. It is possible also to work directly on Cloud systems without the need 

of downloading huge amounts of data. 

 Media hosting: It is very suitable to store unstructured data such as multimedia 

files as it is implemented as a true object storage. 

 Cloud-native application data: It is compatible with many different Cloud 

solutions as it adopts a standard protocol. This opens the possibility to implement 
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new applications without the need of on premises infrastructures as it has already 

been better explained in section 1.2. 

In order to understand how this kind of services works it is important to deepen over its 

key concepts. Firstly, buckets are containers for the objects that will be stored on the COS. 

They enable the organization of the namespace at high level. They typically refer to one 

owner account and can be accessed by many different users according to the policies that 

the owner has specified. They can so be seen as a unit of aggregation of the information 

that will be stored. 

Objects are the fundamental entities that will be physically stored on the service. They are 

composed of data and metadata where the former is managed by the COS as just a 

collection of information and the latter is a set of name-value pairs associated to each 

specific object. Very important is the fact that objects are identified by a unique name 

within the bucket they are stored in and that each of them has a version ID number. 

Keys are the unique identifier associated to each object within a bucket. Because of this 

each object is uniquely identified by the triple [key, bucket name, version ID]. Typically, 

a bucket is accessed by specifying the string name “S3://bucket_name” while for an object 

it must be specified “S3://bucket_name/object_key” with eventually the version ID. 

As mentioned before regions are very important. It is possible to specify a certain region 

in order to indicate in which specific facility certain data must be stored. In this way it is 

possible to achieve better performance and save on transmission costs. 

Therefore, Amazon S3 is a high available and durable web storage that can be accessed 

through its specific APIs [23] and not a file system. The main ways of interaction with an 

S3 COS are: 

 The AWS (or other Cloud vendor) Management Console: typically has a web 

interface and provides a graphical management tool for common users. 
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 The AWS Command Line Interface (CLI): it is a bit more technical and provides a 

unified tool by which it is possible to manage and interact with many different and 

heterogeneous remote S3 COSs. 

 The AWS Software Development Kit (SDK): it is a set of libraries written in many 

programming languages that allow programmers and developers to build solutions 

for their business tasks and needs. This specific tool had a central role in this project 

work as a good portion of the cache system has been developed with the AWS SDK 

for C++ [24]. 

It is important to keep in mind that it is not a file system because web storages are meant 

for different purposes. More specifically, an S3 Cloud Storage is very suitable for those 

scenarios where the information is written once and read many times. This is due to the 

fact that high availability and durability must be provided. In order to guarantee it, data 

will be written in many copies that will also be distributed across multiple sites. This of 

course enhance services’ qualities but it also makes write operations more expensive 

computationally speaking. 

In addition, the data stored is considered eventually consistent. This means that there is a 

small probability that errors may occur during operations execution. This is a Cloud 

scenario and therefore the service is strictly dependent on the HTTP protocol and the 

infrastructure of the Internet for data transmission. To be more precise: 

 New objects upload: strong consistency as the commit will be returned only after 

the data has been successfully written across multiple facilities. 

 Updates: 

o write then read: could report keys that do not exist 

o write then list: might not include keys in list 

o overwrite then list: old data could be returned 

 Deletes: 

o delete then read: could still get old data 

o delete then list: deleted key could still be added to the list 
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It is not mandatory to deepen on the security techniques offered by this service for the aim 

of this work. However, it is important to understand the basic mechanisms by which it is 

possible to obtain access to certain data. This will have important implications on the 

development of the S3 cache. As mentioned before a user, owner of a certain bucket, may 

specify access policies such as ACLs or IAMs. When the remote COS receives a request it 

first checks user’s credentials that are specified by the Account Access Keys [22]. These 

important keys are: The Access Key ID which uniquely identifies an account within the 

system and the Secret Access Key that is instead meant to specify the access permissions. 

It is also possible to provide temporary security credentials to users in order to limit 

services usage, it can be useful in certain circumstances. Finally, through data encryption 

it is possible to protect the information sent within the body of HTTP packets. 

Versioning is another important concept as it allows users to roll back to prior versions of 

the stored objects. Many versions of the same object can be maintained even if the object 

has been deleted from the bucket. This enhance system persistency and makes client 

operations safer from the eventually consistent characteristic of S3 storage services. 
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3.4 S3 REST API, SERVICES PRICING AND BEST PRACTICES 

The S3 storage service defines a specific set of API. Because of this it is here presented a 

summary of the main operations that can be performed on a remote COS that adopts this 

type of protocol. This is fundamental for proceeding in this study because the S3 cache 

must be capable of interacting with both an S3 client and a remote S3 Clout Object Storage. 

Amazon S3 supports the REST (Representational State Transfer) API [23] which is a 

common and successful interface to allow the interaction with web services [26]. Without 

entering in its architectural details, it is important to note that the REST communication 

relies on the HTTP protocol thus making the service that use it “RESTful”. 

REST API calls to the S3 interface can be authenticated or anonymous. In order to make 

an authenticated access to the remote COS the credential keys are required (as it has been 

presented in the previous chapter) in order to assign an authenticating signature to the 

HTTP request that will be sent. To obtain this signature from the users’ keys some 

computation should be performed. Because of this it is good practice to utilize the AWS 

CLI or the AWS SDK which will calculate the signature to be included with the packet by 

specifying the keys values. Key values can be stored into a file at “/.aws/credentials” or 

just passed to the functions of the SDK in the programming language that is the more 

appropriate for the specific computational needs. 

All the different requests that can be sent with the S3 belong to the same set of API 

however, to better describe them they are divided into two main sets. 

The Simple Storage Service includes all those operations related to buckets and objects: 

AbortMultipartUpload, CompleteMultipartUpload, CopyObject, CreateBucket, CreateMultipartUpload, DeleteBucket, 

DeleteBucketAnalyticsConfiguration, DeleteBucketCors, DeleteBucketEncryption, DeleteBucketInventoryConfiguration, 

DeleteBucketLifecycle, DeleteBucketMetricsConfiguration, DeleteBucketPolicy, DeleteBucketReplication, DeleteBucketTagging, 

DeleteBucketWebsite, DeleteObject, DeleteObjects, DeleteObjectTagging, DeletePublicAccessBlock, 

GetBucketAccelerateConfiguration, GetBucketAcl, GetBucketAnalyticsConfiguration, GetBucketCors, GetBucketEncryption, 

GetBucketInventoryConfiguration, GetBucketLifecycle, GetBucketLifecycleConfiguration, GetBucketLocation, GetBucketLogging, 

GetBucketMetricsConfiguration, GetBucketNotification, GetBucketNotificationConfiguration, GetBucketPolicy, 

GetBucketPolicyStatus, GetBucketReplication, GetBucketRequestPayment, GetBucketTagging, GetBucketVersioning, 
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GetBucketWebsite, GetObject, GetObjectAcl, GetObjectLegalHold, GetObjectLockConfiguration, GetObjectRetention, 

GetObjectTagging, GetObjectTorrent, GetPublicAccessBlock, HeadBucket, HeadObject, ListBucketAnalyticsConfigurations, 

ListBucketInventoryConfigurations, ListBucketMetricsConfigurations, ListBuckets, ListMultipartUploads, ListObjects, 

ListObjectsV2, ListObjectVersions, ListParts, PutBucketAccelerateConfiguration, PutBucketAcl, 

PutBucketAnalyticsConfiguration, PutBucketCors, PutBucketEncryption, PutBucketInventoryConfiguration, PutBucketLifecycle, 

PutBucketLifecycleConfiguration, PutBucketLogging, PutBucketMetricsConfiguration, PutBucketNotification, 

PutBucketNotificationConfiguration, PutBucketPolicy, PutBucketReplication, PutBucketRequestPayment, PutBucketTagging, 

PutBucketVersioning, PutBucketWebsite, PutObject, PutObjectAcl, PutObjectLegalHold, PutObjectLockConfiguration, 

PutObjectRetention, PutObjectTagging, PutPublicAccessBlock, RestoreObject, SelectObjectContent, UploadPart, 

UploadPartCopy. 

The AWS Control Set instead includes all the actions at the account level: 

CreateAccessPoint, CreateJob, DeleteAccessPoint, DeleteAccessPointPolicy, DeletePublicAccessBlock, DescribeJob, 

GetAccessPoint, GetAccessPointPolicy, GetAccessPointPolicyStatus, GetPublicAccessBlock, ListAccessPoints, ListJobs, 

PutAccessPointPolicy, PutPublicAccessBlock, UpdateJobPriority, UpdateJobStatus. 

This work is focused only on a subset of functions defined in the first set. The operations 

of interest are those concerning reading and writing objects as the final goal is to make data 

closer to computational nodes than where actually stored in order to reduce the bottleneck 

presented by WAN connections for intensive computational tasks. 

The HTTP packets that will be sent are all different depending on the specific type of 

operation. They can specify the GET, POST, HEAD, PUT, DELETE or OPTION request 

methods with or without query parameters. However, it is possible to identify some 

common request and response headers that can be used by various types of S3 REST 

commands. Here below it is presented a summary of them. It is very important to 

understand these parameters because they show how this communication mechanism 

effectively works. 

Common request headers: 

 Authorization: Information required for request authentication. 

 Content-Length: Length of the message without the header, useful to check data loss 

during packets transmission. 

 Content-Type: Type of the eventual information contained in the body of the HTTP 

packets. 
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 Content-MD5: Information that can be used to verify that the data is the same as the 

one that has been originally sent. 

 Date: Date and time according to the requester. 

 Expect: Information that can be used to request an acknowledgement before 

effectively send the body containing the data. 

 Host: Specifies the path of a certain resource inside the storage service. 

 x-amz-content-sha256: Hash of the request payload used when signature version 4 

is used for authentication. 

 x-amz-date: Date and time according to the requester, has priority over the Date 

head parameter if both specified. 

 x-amz-security-token: Can be used when paying operations are performed within an 

S3 service or to provide a security token when using temporary credentials. 

Common response headers: 

 Content-Length: Length in bytes of the response body. 

 Content-Type: Type of the information contained in the response body. 

 Connection: Specify if the connection to the server is actually open or closed. 

 Date: Date and time according to the responder. 

 ETag: Hash of an object used to reflect changes that have been made on it. 

 Server: Name of the server that created the response. 

 x-amz-delete-marker: Boolean used to specify if the returned object was true or 

false. 

 x-amz-id-2: Special token specified for troubleshoot problems. 

 x-amz-request-id: Value that uniquely identify the request. 

 x-amz-version-id: Version of the object. 

In addition, it is not the aim of this work to deepen on the HTTP protocol’s architecture 

but it is worth of giving a brief overview of the possible response and error codes. 
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Successful codes are in the range of 200 while error codes 400 refer to request exceptions 

and 500 to internal service errors. 

When an error message is sent back as an S3 HTTP response it typically includes also the 

following parameters that can be used to manage the specific error that occurred: 

 Code: The error code that identify a specific error condition. 

 Error: Container for all error elements. 

 Message: Contains a generic description of the error. 

 RequestId: ID of the request associated with the error. 

 Resource: The bucket or the object involved in the error. 

As it has been discussed in the previous section, S3 storages are offered as a IaaS over the 

Internet and are characterized by a standard communication interface making vendors 

competing on service’s quality and pricing. This is a very interesting aspect that must be 

considered when implementing a cache layer because the approach that will be taken may 

well or badly impact on monetary expenses. In the next table it is possible to see some 

pricing policies offered by two main Cloud companies. It is only presented as an overview 

but more details are available on vendors’ websites. 

S3 pricing policy (EU London) 

S3 Amazon Web Service [27] IBM Cloud Object Storage [28] 

S3 standard COS for active data 

First 50 TB / Month $0.024 per GB 0-499.9 TB / Month $0.0235 per GB 

Next 450 TB / Month $0.023 per GB 500+ TB / Month $0.0214 per GB 

Over 500 TB / Month $0.022 per GB   

PUT, COPY, POST, 

and LIST 

$0.0053 

(per 1.000) 

PUT, COPY, POST, 

and LIST 

$0.005 

(per 1.000) 

GET, SELECT and all 

others 

$0.00042 

(per 1.000) 

GET and all others $0.004 

(per 10.000) 

Data retrieval No charge Data retrieval No charge 
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S3 standard infrequent access COS for less active data 

All Storage / Month $0.0131 per GB 0-499.9 TB / Month $0.0128 per GB 

  500+ TB / Month $0.0107 per GB 

PUT, COPY, POST, 

and LIST 

$0.01 

(per 1.000) 

PUT, COPY, POST, 

and LIST 

$0.01 

(per 1.000) 

GET, SELECT and all 

others 

$0.001 

(per 1.000) 

GET and all others $0.01 

(per 10.000) 

Data retrieval $0.01 per GB Data retrieval $0.01 per GB 

Table 3.1 – S3 AWS and IBM COS pricing policies 

As we can see pricing is affected by two main factors which are the size of the data stored 

and transferred and the number of operations executed. Bearing in mind these concepts 

will make it possible to implement policies that will surely make an application working 

faster with an S3 service but also capable of reducing the number of operations and data 

transferred thus reducing clients’ expenses. 

Finally, Amazon defines some best practices [25] that must be taken into consideration 

while working with an S3 storage service. These guidelines have very important 

implications on the management of the requests by the S3 cache layer that will be 

implemented. 

Applications can easily reach thousands of simultaneous requests of uploading and 

retrieving objects per second as the S3 service is designed to automatically scale in order 

to reach high request rates. It is therefore important to properly manage how these requests 

will be sent in order to optimize performance and data bandwidth usage. Because of this it 

is good practice to scale storage connections horizontally. This can be done by parallelizing 

requests and spreading them over many different connections. Moreover, it is possible to 

take advantage of the header byte-range parameter that can be defined within an HTTP 

request packet. In this way only a certain portion of an object is transferred by the HTTP 
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response reducing latency and incrementing bandwidth usage if many requests of this type 

are sent simultaneously to download an object. 

For latency-sensitive applications it is also good practice to adopt an incremental retry-

policy with timeout and retry parameters. In fact, it may happen that a certain response 

does not choose the best path to reach the destination node because of the distributed nature 

of this kind of service. In the most of these cases it is better to restart the operation 

processing as a bad path may take longer to answer than an operation that started after it. 

Also, it may happen that a packet is lost over the Internet infrastructure and retransmitting 

the request is the only effective way to complete the operation in execution. 

There are some vendor-specific techniques offered in the market like the Amazon S3 

Transfer Acceleration that can improve the service performance but it is not very 

interesting for this work. It is instead important to learn how to optimize an S3 client as the 

cache layer will be communicating in both the directions of clients (as a server) and storage 

back-end (as a client). For this purpose, it is important to adopt the latest available version 

of AWS SDKs that are regularly update to follow best practices of both S3 and REST API 

paradigms. For example, SDKs operations automatically retry requests on 500 errors. 

Moreover, latest packages versions allow developer to perform objects upload and also 

download with the Transfer Manager entity that parallelizes requests to automate 

horizontally scaling. 

In this section all the practical aspects that are useful for proceeding with the development 

of the S3 cache have been presented. However before starting the new chapter it will be 

shown a last technology that has shown a great potential in the implementation of new file 

systems. 
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3.5 THE POWER OF FUSE – AN INTERESTING EXAMPLE WITH S3 

To conclude this study over the state of the art of file systems and storage technologies it 

is now presented a prominent framework that is FUSE. It is worth of noticing because it is 

interesting to see how it enables developers to create new file systems at the user space 

level. This has important implications on ease of development and product performance. 

File systems in history have been typically implemented as part of the Operating System’s 

kernel [16]. This fact is mainly due to the high performance demanded by programs while 

interacting with the information stored on a computing machine. However, many 

developers have started to implement new file systems at the user level as it makes 

production way simpler. Initially this procedure was utilized only for prototyping because 

of the many concerns related to the performance of file systems implemented in this way. 

The FUSE (File system in User space) framework brings many advantages to the 

production: 

 User space code is easier to develop, port and maintain. 

 Kernel bugs can crash the all system while user space bugs only affect the program 

imitating thus the impacts. 

 Many programming languages and libraries are available at this level. 

 New high performance interfaces avoid expensive copies of data between user and 

kernel space. 

The last point, along with the fact that the most of the time the bottleneck of file systems 

is on the program logic and coordination rather than on data movements, has made this 

framework a good alternative for the production of new file systems. There are indeed 

many new products that have been developed with these technologies that have also been 

adopted by many IT vendors. 

FUSE is the most prominent framework for developing file systems at the user space and 

is available for many OSs. Because of this, it has been used as a reference of this new 
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paradigm for the purpose of this study. The following picture shows the structure of its 

architectural design. 

 
Image 3.2 – FUSE architecture 

As we can see for user applications nothing changed as they still interact with the kernel’s 

Virtual File System (VFS) that is in charge to redirect the requests to the appropriate low 

level file system. Therefore, requests are redirected to the FUSE driver that thanks to a 

queue system manages and sends them to the FUSE implemented file system program at 

the user space through the FUSE library. It is not important to go into the details of the 

architecture itself but it must be understood the power and potential offered by such a 

technology. 

The FUSE file system daemon is a program that serves the requests when received. Its 

behavior is defined by the code written using the FUSE library. With this type of 

technology, it becomes even possible to define stacks of file systems where at each level 

one file system interacts with some others. 

Some interesting implementation key points are: 

 User-kernel protocol: It is in charge of enabling the communication between the 

FUSE driver and the daemon. The driver when receives requests from the VFS 

creates a FUSE request structure and sends it to the daemon which will then send 

back a FUSE response according to the logic implemented by the user space level 

file system. 
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 Queues: As previously mentioned the requests sent by the VFS and received by the 

FUSE driver are managed with different queues that define the order they will be 

served. 

 Splicing and FUSE buffers: Many data transfer optimizations have been made in 

order to reduce the number of write and read operation between the user and the 

kernel spaces. 

 Multi-threading: Support to parallelisms to enhance computational performance is 

done by the framework. 

 Write back cache and max writes: FUSE operations are mainly synchronous. A 

write back policy has been implemented in order to improve data transfer 

performance of large files moved between user and kernel spaces. 

The implementation details are not really important for the aim of this work but they are 

worth of mentioning as an interesting example of storage system technology and 

techniques that can be adopted to enhance the system’s performance. 

It is possible to find some related works in literature that have tried to analyze the conduct 

of this new type of file systems [16]. The experiments have shown interesting results. There 

are cases where, independently from the adopted hardware, user space file systems behave 

with close if not better performance than those developed at the kernel level. This is a very 

good manifesto for the adoption of these frameworks in the development of new file 

systems as they make production way easier. However, some workloads have demonstrated 

a performance degradation of the 80%. Because of this, it is important to take into 

consideration the target for which a new file system is meant before making the decision 

of adopting a FUSE-like framework in the development of business products. Also, it must 

always be remembered their impact on CPU usage which is increased of an average of the 

30% during the execution of user space file systems in comparison to OS level ones. 



62 
 

However, thanks to this framework many new paradigms have been prototyped but also 

many new interesting products have been made. An interesting example that shows the 

power of FUSE is represented by the s3fs file system [17]. 

In the sections 2.1 and 2.3 it has been deeply discussed about the importance of POSIX 

standards, especially for file systems. An S3 Cloud storage, even if adopting a standard de-

facto protocol does not show a POSIX interface making it not compatible with a normal 

program-file type of interaction. 

S3fs is a file system that has been developed thanks to the implementation power offered 

by the FUSE framework. It provides a complete POSIX compatible interface to interact 

with it while it uses an S3 storage as a back-end. This makes it possible to interact with an 

S3 COS while using normal file systems interfaces. 

This project is a new study and still in development. Because of this it is not ready to be 

adopted as a tool for industrial tasks. However, it is a very interesting study case to take 

into consideration while working with file systems and S3 Cloud Object Storages. 

In the following image a scheme is presented that summarizes all the concepts that have 

been discussed so far. 

 
Image 3.3 – the FUSE s3fs study case 

Starting with the next chapter the analysis will be principally based on the unified storage 

system Ceph as it has been the central support for the development of this Thesis project 

work. All the concepts that have been discussed are very important and will help to make 

clearer further discussions.  
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4 CEPH AND CACHING 

In section 3.2 a brief overview of some interesting Distributed File Systems has been 

shown. In particular, the Ceph storage system has been introduced at a very high level. 

With the next sections some more details about this technology will be given as it has been 

central for the design and the implementation of caching solutions for the enhancement of 

computing workloads’ performance in Cloud scenarios. 

In order to proceed, Ceph’s architecture will be first summarized. Then, the creation of a 

plug-in that allows an existing FUSE cache program to work with this storage system will 

be presented. Finally, it will be done a detailed analysis of the part of Ceph concerning the 

Cloud Object Storage thus introducing chapter 5 where the S3 cache details will be 

explained. 

 

4.1 CEPH – AN OPEN SOURCE AND DISTRIBUTED UNIFIED STORAGE 
SYSTEM 

In section 2.7 the model of unified storage systems which are capable of providing access 

to stored data in all the forms of blocks, files and objects, has been discussed. In section 

2.6 an overview of object storages has also been given while in section 3.5 the concepts 

related to S3 and more specifically to Cloud Object Storages have been clarified. Now all 

these concepts will be concretized within the Ceph storage technology. 

Ceph is a distributed storage system. This means that it has been meant for data distribution 

across different nodes and that it has been optimized for the management, sharing and 

retrieval of information in distributed and heterogeneous scenarios. An important aspect 

that must be taken into consideration is that it is an open source project which makes it 

particularly suitable to be extended or exploited for innovation purposes. It can run on 

commodity hardware like commodity servers, IP networks, and storage devices such as 

HDDs, SSDs or NVMe [30] making thus a single cluster capable of serving different data 

paradigms (blocks, files and objects) as a unified storage. 
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The first important characteristic to be mentioned is that Ceph is reliable, in the sense that 

it overcomes the single point of failure problem. Data durability is guaranteed through 

replication and erasure coding. In addition, no interruption of the service is needed, even 

in situations of system upgrading or cluster deployment changing thanks to the design 

choice of favoring consistency and correctness over performance. 

Ceph is very interesting because it is a technology designed to seek scalability properties. 

Compared to other solutions like the Hadoop File System or the Google File System it is 

scalable for data bat also for metadata, as mentioned in section 3.2. It is a complete elastic 

storage infrastructure that allows clusters to change without the need of interrupting the 

service in execution. Hardware can be added or removed at any time while the system is 

online and all the main cluster’s management policies can be undertaken, such as: 

 Scaling out: Adding more components to a cluster to improve overall capacity and 

performance. 

 Scaling up: Adding bigger and faster hardware components. 

 Federating: Deploying multiple clusters across different sites with data replication 

in order to be capable of disaster recovering. 

The following picture summarizes the structure of Ceph’s architecture as a unified storage. 

 
Image 4.1 – The architecture of Ceph as a unified storage system. 

The RADOS layer (Reliable Autonomic Distributed Object Storage) represents the main 

component from which all Ceph modules are based. It is the abstraction of the underlying 
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distributed storage layer that is in charge of ensuring data replication. It handles hardware 

components and rebalances data after migrations in order to achieve high reliability and 

availability properties. On top of it there is the librados module that is a set of low-level 

API by which it is possible to communicate with a Ceph cluster. Finally, another step above 

there are the three main modules of Ceph. They create the abstractions of blocks, files and 

objects and provide sets of interfaces by which users can access and manage stored data 

with the most appropriate syntax according to their specific needs. They serve users 

requests while executing I/O operations with RADOS thanks to the API offered by the 

librados module. 

These three main modules are: 

 RGW (Rados GateWay): Is the component that provides S3 and Swift Cloud object 

type of interactions within a Ceph system. 

 RBD (Rados Block Device): Is the component that enables the data block paradigm. 

 CephFS (Ceph File System): Is the component that exposes files and POSIX syntax 

interfaces. 

The RADOS layer therefore is the component that automates data management thus 

providing strong consistency. According to the CAP theorem it implements a CP system 

which means that data Availability is sacrificed to guarantee Consistency and Persistency. 

Ceph and thus RADOS are a software system that is composed of some different elements. 

They can be summarized as: 

 Monitor: It is the principal module. It is in charge of data replication, data placement 

and management policies. Within a cluster there are usually between three and seven 

of them. They are in charge of coordinating all cluster’s components. 

 Manager: It collects real time metrics that are useful to keep monitored system’s 

statistics. It can also contain some pluggable management functions. Typically, 

there is only one manager active and one or more in stand-by. 
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 OSD (Object Storage Daemon): As mentioned in section 3.2, Ceph has improved 

data retrieval and storage performance thanks to the introduction of the EBOFS 

(Extent and B-tree Object File System) which is a file system based on b-tree 

concepts that allows to bypass the Linux VFS and page caching workloads. Along 

with OSDs that mount EBOFS the data is stored within HDDs or SSDs devices. 

They serve users requests while effectively managing stored information. As they 

are the real storage component, it is possible to find a very huge amount of them 

within a single cluster. 

 MDS (MetaData Server): In contrast to previous modules an MDS is not mandatory 

within a RADOS cluster. It is the daemon that manages a file system namespace 

within a Ceph system. Because of this, if a program-file interaction is not demanded 

there is no need for it. However, if the CephFS module is adopted it provides many 

benefits like for example metadata management but also distribution and balancing 

thanks to the Dynamic Subtree Partitioning policy that has been introduced by 

design. It coordinates files access between clients while managing file consistency, 

locks and leases. Finally, it enables all these services by saving files and directories 

metadata over Ceph objects (this will be clearer after next paragraphs). 

In the following picture it is given a representational view of the components that have just 

been mentioned. 

 
Image 4.2 – RADOS software components 

Ceph’s architecture and its main software components should be clear at this point but one 

last important thing still has to be discussed that is how data is effectively stored inside a 
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RADOS cluster. Ceph externally provides a unified view for blocks, files and (Cloud) 

objects while internally data is saved as internal objects over the OSDs components. This 

is where the CRUSH placement function acts and performs all previously mentioned 

distributed procedures. 

In section 2.6 the concepts of object storages have been presented and, as it should be clear 

at this point, in this kind of technologies what happens is that objects are stored within a 

container along with some metadata information. Therefore, Ceph objects are stored and 

retrieved only thanks to their name bypassing heavy lookups procedures by using the 

placement function. Moreover, they are conceptually contained within pools (Ceph 

container abstractions) along with “omaps” which are the objects’ metadata in the form of 

sets of key-value couples. 

The following picture shows how the placement calculation works. 

 

Image 4.3 – CRASH calculated placement procedure 

An application when interacting with a Ceph’s cluster in order to store or retrieve 

information must follow these steps: 

0. Getting cluster’s OSDs map while first interacting with a ceph-mon daemon. 

1. Calculating correct object location based on its name. 

2. Performing I/O operation with the appropriate ceph-osd. 

This specific model is the key for the achievement of high availability. In facts, in case a 

certain OSD that hosts the data of interest got corrupted what it would happen is that the 

application during map retrieval would get an updated map and while recalculating object 
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location the address of the OSD containing the copy of the object and not the original one 

would be returned. This is how replication makes a Ceph system very powerful in terms of 

reliability. 

Without entering in details any further it is just important to mention that pools, which are 

the container abstraction within a Ceph cluster, can be split into many pieces that are the 

so called placement groups. Different placement groups are then spread across different 

OSDs and thanks to erasure coding and replication different data management policies can 

be implemented. Placement groups are fundamental during placement calculation as they 

are one of the CRUSH input parameters. This is exactly what makes Ceph dynamic and 

powerful: it always takes into consideration both cluster’s updated configuration and the 

adopted data replication’s policy [29]. 

 
Image 4.4 – Representation of unstructured multimedia file data distributed over Ceph’s objects, pools, 

placement groups and OSDs 
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4.2 CEPHFS DEPLOYMENT AND LIBCEPHFS OVERVIEW 

The plug-in program that is going to be presented in section 4.3 has been meant for a 

POSIX compliant cache system. In order to implement this module thus making a Ceph 

cluster a possible compatible back-end it has been used the CephFS module. Because of 

this it is here presented a summary of its main concepts as they will make the development 

explanation easier to the reader. 

The next picture shows how clients interacts with RADOS via POSIX semantic thanks to 

the CephFS module. 

 
Image 4.5 – Program-file interaction with CephFS and RADOS 

It should not be surprising at this point that a client must deal with both metadata and data 

in order to interact with the files stored in a distributed environment. As it is shown in the 

Image 4.5 a client program first interacts with a ceph-mds daemon to execute the lookup 

procedure which is meant to retrieve the file location according to the given path. MDSs 

maintain the file hierarchy structure saved on objects within a Ceph pool that is the so 

called metadata pool. Moreover, additional file systems’ advanced services such as 

journaling are implemented. In fact, along with the directory hierarchy’s objects it is 

possible to see also journaling objects which contain log records useful for recovering 

operations in case of files corruption. 

Once the lookup operation has been performed, a MDS service return to the client the 

requested files’ metadata and all the information needed to perform data retrieval. Data is 
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so obtained by a following request to the data pool by which data objects are given back. 

Finally, the file is composed and returned to client as a response for the file request. 

All these procedures are transparent from the client point of view. If clients were forced to 

adopt specific APIs with the HDFS or the GFS, when interacting with a Ceph file system 

they can just interact by using standard POSIX file systems commands. In the following 

picture it is shown how this is made possible by the Ceph’s libraries structure. 

 
Image 4.6 – View of the CephFS module within Ceph’s software hierarchy 

A client can just mount the Distributed File System provided by a Ceph cluster thanks to 

the CephFS Kernel Object or the CephFS FUSE modules [29]. The former allows to mount 

the file system within the kernel driver of the operating system while the latter uses the 

user space file system framework FUSE that has been explained in the previous chapter. 

Once mounted, clients only have to interact with the file system within the mount point 

address that has been provided. These two modules are based on the libcephfs library that 

implements the POSIX functions by which it is possible to interact with RADOS. 

Libcephfs is therefore the layer that is in charge of overcoming differences between 

POSIX-like file systems paradigm and the Ceph’s RADOS storage abstraction while using 

librados to communicate with the cluster’s storage devices.  
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4.3 PLUG IN DEVELOPMENT – THE POWER OF FUSE AND POSIX 

Cloud environments are capable of providing computing infrastructures as a service over 

the internet. An important characteristic that must always be remembered regarding these 

scenarios is that they are based on the hardware and the environment of vendors’ data 

centers. It has been said many times in chapter 1 how virtualization techniques are 

important for providing this kind of service. Moreover, there is a prominent trend nowadays 

that shows an ever-increasing abstraction level of software and hardware virtualization 

techniques. The main example of this is represented by the ever-growing adoption of 

containerization solutions. This new paradigm has introduced new prominent technologies 

in the Cloud scenario such as Docker [31], Kubernetes [32] and OpenShift [33]. This has 

made it more dynamic and easier data centers and on premises infrastructures management 

but has also introduced new concepts that must be taken into consideration while working 

with Cloud systems. 

For instance, it is particularly important for this work, as related to containers and file 

systems, to avoid the usage of mount points as much as possible. This is principally due to 

the fact that in Cloud environments machines are shared between different applications and 

only a small amount of control over the hardware is given to the single programs in 

execution. Because of this reason the solution presented will not use the top level modules 

of CephFS Kernel Object and CephFS FUSE but will work instead directly with the 

functions offered by libcephfs in order to make the application capable of working even if 

the file system provided by a Ceph cluster is not effectively mounted within the OS of a 

data center’s machine. 

The internal caching logic details of the caching system that has been extended are not 

really important for the aim of this discussion. What is instead very interesting is how the 

FUSE framework has been adopted to make the cache POSIX compatible and easy to be 

extended in terms of heterogeneous back-end systems. 
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The cache’s core module follows the normal cache paradigm where the data is maintained 

into the cache memory and managed in the form of fixed-size blocks. When a byte range 

of a certain file is requested by the user, the cache memory reads the blocks that contain 

the requested data which is stored into the persistent memory of the storage device. It may 

happen that more bytes than needed are read during I/O operations according to the blocks’ 

size defined when the cache system has been started. Because of this it is important to 

choose the block size that fits the expected data transfer behavior between users’ 

applications and storage devices. If the size specified is too big it may cause delays and the 

cache memory will become full faster. However, if the block size is too small, it could 

cause a huge increase in the I/O operation number which may cause congestions and high 

delays for big byte range data transfer. 

The cache program allows the user to specify three different mount points addresses: 

 Mount point of the file system to be cached. 

 Mount point of the storage back-end where to store cached data blocks. 

 Mount point of where to mount the cache itself. 

Thanks to this paradigm for example, by specifying the mount point where it has been 

mounted an s3fs [17] file system, it would be possible to perform the caching of an S3 

Cloud Object Storage. It is possible to cache any kind of file system within this system, the 

only thing that really matters, is that they must be POSIX compliant. 

To be more precise, not all these mount points must be specified in order to interact with 

this caching program. If an appropriate plug in has been developed for a certain storage 

technology thus making the cache program compatible with it, the only mount point that 

has to be specified is the one of the cache. Caches are meant to work on the same locality 

of application programs so that it is not really a problem to mount them. 

In order to use a Ceph cluster, as a cache back-end storage system, the mount point of a 

Ceph File system (mounted with the kernel module or the FUSE one) could just be passed 
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to the cache. However, as previously mentioned, it is important to limit the number of 

mount points because of data centers’ machine accessibility permissions. 

When working with the FUSE framework the key concept in developing new products is 

the “fuse_operations” data structure defined by libfuse [37]. Within this structure the 

behavior of the file system during processes execution must be defined by specifying the 

functions that have to be called. In practice, along with the parameters of this structure the 

behavior of the FUSE cache is implemented. 

These functions in addition have been structured in such a way to interact with the back-

end storage by calling the procedures defined in another data structure that specifies the 

functions by which it is possible to interact with a specific technology. During the cache 

startup procedure, along with the previously mentioned parameters, the back-end system 

that should be used must then also be specified along with its specific configuration 

parameters. In this way the structure that is loaded is the one defined within the plug-in of 

the specified back-end solution. 

The implementation of a plug-in that makes a Ceph cluster a possible storage back-end for 

this cache system has simply been a mapping between the functions defined by the 

“libcephfs” module and the back-end procedures data structure, thanks to the FUSE 

paradigm and the standard defined by POSIX. Here below the functions mapping is 

presented: 

FUSE cache back-end procedures structure libcephfs 

 .open 

 .close 

 .mkdir 

 .remove 

 .rename 

 .stat 

 .lseek 

 .read 

 .write 

 ceph_open 

 ceph_close 

 ceph_mkdir 

 ceph_remove 

 ceph_rename 

 ceph_stat 

 ceph_lseek 

 ceph_read 

 ceph_write 
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 .chown 

 .access 

 .opendir 

 .closedir 

 .readdir 

 .setxattr 

 .getxattr 

 .statvfs 

 ceph_chown 

 ceph_access 

 ceph_opendir 

 ceph_closedir 

 ceph_readdir 

 ceph_setxattr 

 ceph_getxattr 

 ceph_statvfs 

Table 4.1 – FUSE cache back-end – libcephfs POSIX mapping 

The reason why this work has been presented is to show how taking advantage of these 

technology paradigms, along with a smart design, makes the work of developers very 

simple. This is very important in industrial cases as it may have important consequences in 

terms of time and costs. In addition, as portability is an important characteristic to seek in 

Distributed Systems scenarios, these concepts may also determine the diffusion rate of a 

product. 

This case shows a practical case where FUSE and POSIX made the file system 

implementation very easy. Thanks to the FUSE framework it has been possible to 

implement the cache as a file system by simply specifying the functions to be called during 

the execution. In addition, the POSIX standard has made the plug-in implementation a 

simply mapping between the functions defined within the cache data structure and the API 

offered by the libcephfs library. If Ceph did not support a POSIX compliant module it 

would have required to manually implement these procedures in order to create this plug-

in which would have been more challenging thus requiring more time. 

Finally, as discussed in section 3.6, when working with FUSE there are performance 

concerns that must always be taken into consideration when developing industrial products.  



75 
 

4.4 CEPH’S RADOSGW IN DETAIL 

The example that has been presented in the previous section is particularly interesting to 

show how FUSE and the POSIX standards are very powerful tools for software 

compatibility and thus software diffusion. Also, it has been important during the work of 

this Master Thesis for getting used with the Ceph technology and all the paradigms related 

to distributed storages. In this section another important part of Ceph is going to be 

explained which is the one concerning Cloud Object Services as the final goal is the 

development of a persistent cache for S3 Cloud objects. 

The RGW (Rados GateWay) is the module of Ceph that provides a complete S3- and Swift-

compatible object storage within Ceph. Swift [33] is another Cloud solution meant for the 

provisioning of storage as an IaaS within the OpenStack Cloud infrastructure. Swift’s 

details are not important for this project but it is important to specify the distinction 

between it and S3 because even if they are both Cloud object solutions they work with 

different sets of API. 

The following picture shows the architectural model of the RGW which follows the same 

guidelines of other Ceph’s high level modules. In fact, the RGW is a daemon process in 

charge of interacting with the underlying RADOS layer in order to compute and to serve 

users’ requests. 

 
Image 4.7 – The RGW architecture 
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These specific protocols are REST/HTTP based therefore they need appropriate support to 

enable the communication with users. Along with a radosgw-daemon it is possible to 

deploy different HTTP frontends that are the support for receiving HTTP requests and 

sending the appropriate HTTP responses back to clients. 

The main front-ends are [29] [36]: 

 FastCGI: It needs Apache or other web servers in order to serve HTTP requests. 

 Civetweb: It uses the Civetweb HTTP library [34] to implement a standalone 

synchronous frontend for the RGW. 

 Beast: It is a standalone frontend that enables asynchronous communication by 

utilizing the Boost.Beast and Boost.Asio libraries [35] that respectively work for 

HTTP parsing and asynchronous network I/O operations. 

When deploying a radosgw-daemon it is important to specify in the configuration file 

“/etc/ceph/ceph.conf” which frontend should be used. Also many other configuration 

parameters can be specified such as for example the connection port number, the path to 

the file containing the permission keys to interact with RADOS or the eventual debug log 

level that is very useful to track the internal operations execution. 

Immediately after the front-end module there is the “rest dialect” abstraction component. 

Its principal goal in the presented model is to highlight the fact that many Cloud object 

paradigms are supported by the radosgw. At this level all their differences are overcome in 

order to pass to lower levels more generalized requests to be processed. 

The execution module is very important for this work because as it will be better explained 

in the next chapter it is the one where the cache logic has been inserted in order to create 

the S3 persistent cache. Within this layer all the logic that implements the procedures to 

process users’ requests is defined and thus to access the appropriate data on RADOS 

clusters. 

Finally, before the librados layer, it is possible to see the so called “rgw-rados” module. 

This component is in charge of computing the differences between S3/Swift Cloud objects 
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and Ceph objects. In section number 4.2, the way by which files are mapped over RADOS 

objects has been discussed. Cloud objects are typically very big while Ceph objects are 

maintained small. Because of this reason, even if they follow the same model of object 

storages a mapping between these two different objects types is needed. 

Along with these modules, which therefore represent the processing flow of an S3/Swift 

request by the radosgw, there are some other components: 

 GC (Garbage Collector): Within Cloud Storage solutions it is possible to define 

expiration policies so that a certain object when expires can be deleted by the 

system. An expiration policy for instance could be expiring those objects that have 

not been accessed for a certain period. It is important to define these policies in order 

to remove useless data from the storage as clients are charged by Cloud vendors by 

the amount of GB that they store on remote COS. This module defines all the 

cleaning up operations of expired objects by deleting their related data from 

RADOS clusters. 

 Quota: Another type of management that can be performed in order to limit costs 

and also to optimize storage usage is the definition of “quotas”. They allow buckets 

owner users to specify limits of the usage of storages as IaaS. For instance, it could 

be defined the maximum number of objects that can be stored into a specific bucket. 

 Auth (Authorization): An important key concept of S3 storages is represented by 

authority permissions. In fact, it is not enough to just send REST commands to a 

remote COS. Authentication keys must be passed along with HTTP requests in order 

to identify users within the service. The RGW’s “auth” module is the one that 

implements the functionalities to manage users’ access permissions and policies. 

The presence of this module is one of the reasons that pushed towards the adoption 

of Ceph’s radosgw for the implementation of the S3 persistent cache because it 

already implements all the needed support for dealing with this important feature of 

S3 services. 
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The following picture summarizes these concepts and shows how the RGW is involved in 

the processing of S3 users’ requests while dialoging with the underlying RADOS layer. 

 
Image 4.8 – Interaction with the RGW as a Cloud Object Service during a PUTOBJECT request 

Such as it happens during the processing of Ceph file system’s operations there are many 

different pools that must be accessed in order to retrieve the needed data but also to serve 

clients requests while performing appropriate authorization checks. 

When the RGW daemon receives an S3 request through the front-end that has been 

deployed, it first access the users’ metadata information stored into the rgw.info pool. The 

retrieved objects contain all the information needed to identify clients within the Ceph 

system as S3 users. If the request has been made by users with appropriate permissions, 

then the rgw.bucket.index pool is accessed in order to retrieve all the names of the Ceph 

objects related to the S3 entity that has been specified by the received HTTP request. 

Finally, all the required data and metadata are accessed within the rgw.data pool. 

While the first two mentioned pools are meant to perform Ceph management procedures, 

it is inside the objects stored into the rgw.data pool that all S3 policies are implemented. 

As previously mentioned, S3 objects are typically of the order of Gigabytes while Ceph 

objects usually do not go beyond the size of few Megabytes. An S3 object can be seen as 

the combination of a head and a tail. The head corresponds to a single RADOS object. It 

maintains the S3 object metadata such as for example acls, user attributes or the manifest 

stored into its xattributes. It may also optionally contain the start of the data. The tail instead 
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is a set of RADOS objects that contain the real data. When an S3 object is stored into 

RADOS, firstly the tail is stored and only afterwards the head so that eventual error 

occurred during the storing process would not become persistent within the system. Finally, 

it is interesting to see that if an S3 object is small enough it is stored and managed as a 

single head object only. 

Finally, the Ceph RGW implements many services that are supported by remote COS such 

as STS, Encryption, Compression, lifecycle management and archiving. For instance, in 

section 3.3 the importance of S3 regions to optimize service’s performance has been 

discussed. It is important to highlight how this kind of support can be easily implemented 

by the geo-replication and the RGW federation of RADOS clusters. Thanks to these types 

of management, it becomes possible to define zones and thus zone groups which therefore 

can be used as S3 regions. 

It is important to keep in mind all these concepts in order to proceed with the discussion in 

the next chapter as they are fundamental for the S3 persistent cache implementation. 
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5 S3 CACHE LAYER FOR HYBRID- AND 
MULTI- CLOUD ENVIRONMENTS 

All the details of the technologies that are involved in this project have been explained in 

the previous sections. In this chapter the S3 cache system that have been designed and 

developed to satisfy the needs and requirements of intensive data consuming workloads in 

Hybrid- and Multi- Cloud environments is presented. 

To summarize, the idea of implementing a cache layer that fetches data to nodes 

characterized by computational workloads capable of consuming data at a very high rate, 

thanks to the introduction of modern computing accelerators such as for example GPUs or 

FPGAs, seems to be the perfect choice for new prominent Cloud paradigms. With the 

introduction of such a caching system it should be possible to reach the best tradeoff 

between the low costs offered by Cloud storage services and the high data rate demanded 

by these workloads such as for instance those related to Artificial intelligence and Scientific 

computing tasks. 

In order to proceed, why and how the Ceph’s RGW has been adopted in the implementation 

of the S3 cache layer will be clarified. In this way, the new model of Hybrid- and Multi- 

Cloud environments obtained with the introduction of this new computational layer, will 

be defined. Finally, an accurate description of the implementation details for the 

provisioning of caching support to S3 operations will be provided. 

 

5.1 RGW FOR S3 CACHING – WHY? HOW? 

The S3 protocol defines a set of REST API that can be used to communicate with a Cloud 

Object Storage in order to take advantage of storage devices offered over the Internet as 

IaaS. As explained in section 3.4 its operations can be grouped into two main categories 

which are the so called Simple Storage Service set and AWS Control set. This 

categorization is due to the fact that S3 storage services offer more functionalities than only 
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read and write operations. For instance, the identification of users within the service and 

the definition of management policies for buckets and stored objects are fundamental and 

cannot be detached from a product that aims to provide a full S3 interface. It is important 

to highlight this aspect because if it is true that the goal of the cache layer will be focused 

on the improvement of the performance of reading and writing operations, it is also true 

that the applications which will interact with it should be able to work without noticing its 

presence or absence. This means that the system will have to provide a full S3 interface to 

be transparent from the point of view of users’ applications. 

After an in-depth study, the unified storage system Ceph has shown good properties that 

make it particularly well suited for Cloud scenarios such as for example its portability over 

the heterogeneous devices that are typically deployed in modern server clusters. This 

makes Ceph very interesting as the environments where it will be introduced are those of 

Multi- and Hybrid- Cloud systems. Moreover, the abstractions made by the RGW, RBD 

and CephFS modules make it possible to optimize the management of distributed resources 

across many computational nodes. Thanks to these software packages the information 

stored within a RADOS system can be handled at a high level in the forms of Cloud 

Objects, Blocks or Files and also at a low level in the form of Ceph objects that are therefore 

stored into the Ceph pools related to the high level data paradigms. For instance, it is 

possible to interact with S3 objects within a Ceph storage system by using the S3 REST 

API at a high level or by using the functions defined by the librados library at a low level. 

If focusing on the Cloud Object part of Ceph, that has been abundantly discussed in section 

4.4, it is possible to notice how many services that support this particular storage paradigm 

have already been made available by the RGW which provides a full S3 and Swift 

compatible interface. In fact, mechanisms such as for example user authorization control, 

data encryption or object garbage collector and also support to ACL or IAM policies can 

already be employed in Cloud solutions created with Ceph. Because of this, inserting the 

cache logic inside the RGW appeared to be the most reasonable choice as it allows the 
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work to focus only on the implementation of those routines needed to support the caching 

of S3 objects during read and write operations. 

Therefore, the decision has been made by design of inserting the cache logic inside the 

RGW’s execution layer that is specified by the model shown in the image 4.7. There are 

many modules involved in the definition of the logic for processing client applications’ 

requests. Because of this, in order to proceed, the main  components that directly affect 

the execution of rgw-daemons within Ceph clusters must be presented and well understood. 

These radosgw key packages can be summarized as [38]: 

 rgw_main: It is the module that contains the “main” of the program that defines the 

behavior of a rgw-daemon. It includes all the functionalities involved during the 

startup and all the configuration procedures that must be performed depending on 

the type of the front-end that has been deployed. 

 rgw_civetweb_frontend: It defines the behavior of the radosgw standalone 

synchronous front-end. When applications communicate with it they must wait for 

requests to be processed before responses can be sent back. In fact, this is the module 

that implements the synchronous communication paradigm for client-radosgw 

interactions. 

 rgw_asio_frontend: It defines the behavior of the radosgw standalone asynchronous 

front-end. Contrary to the previous one, applications are free to continue with their 

normal execution as an answer is sent back independently from the outcome of 

processing a certain request and before its execution has effectively terminated. 

 rgw_process: It is the module that implements the logic for processing users’ 

requests. The final result that is obtained with the computation of the procedures 

characterizing the semantic of the operations specified by users is returned to the 

calling front-end that has received the request. In this way, the HTTP response will 

be finally sent back to the user with the appropriate response code and data. This 

module is very important because it defines the core structure for serving all S3 (and 

Swift) operations. 
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When the front-end receives a request it first parses the parameters that have been included 

within the received HTTP packet and then calls the process_request() function defined by 

the rgw_process module. At this point the differences between S3 and Swift paradigms are 

overcome by calling the appropriate data structures in order to represent the specific 

requests sent by client applications. With this design next procedures are performed 

without any Cloud-object paradigm-specific constraint by following a general execution 

scheme that has been made possible only thanks to the properties offered by the full object-

oriented programming environment of C++. 

The data structures that are of interest for this project work are those related to S3 

operations. In particular, as strictly connected to the execution of operations concerning S3 

requests it is important to mention the rgw_op, rgw_rest and rgw_rest_s3 modules.  

It is not important to enter any further in the details of the RGW source code that can be 

easily consulted on the Ceph’s git-hub page at the path src/rgw. However, the 

computational flow defined by the process_request() function shows a common scheme 

that must be understood well before continuing. 

From now on, all examples and related discussions will refer only to the S3 REST API as 

the cache layer will not include caching support for the Swift paradigm. 

To summarize, when a front-end receives users’ requests, after parsing the parameters that 

have been included within the specific HTTP packet, it calls the process_request() 

function, defined by the rgw_process module, which implements the following common 

computational flow: 

1. A handler data structure is instantiated in accordance to the communication type of 

the received request by the deployed radosgw front-end (REST handler). 

2. Depending on the type of the operation, the handler instantiates a data structure that 

represents the specific service requested by the user (S3 operation). This structure 

also includes all the parameters obtained by parsing the information contained in 

the head and the body of the received HTTP request packet. 
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3. The client user is identified within the Ceph system by checking the information 

maintained in the rgw.info pool in relation to the access keys provided with the 

REST request. 

4. The request is processed with the semantic defined by the specified service 

operation. This is done by calling the rgw_process_authenticated() function that is 

also defined by the rgw_process module. 

These steps are very important because they show how the radosgw manages the 

differences between S3 and Swift and also how it separates the management of users’ 

authentication routines by those concerning the effective execution of operations’ 

semantic. 

The fourth step is particularly important because it is the one where the effectiveness of 

serving the requests once users have been authenticated within the S3-Ceph system is 

defined. Its computational behavior is represented by the rgw_process_authenticated() 

function which in turn can be summarized by the following steps: 

1. operation-specific permission check: verifies that the identified user has the 

permission to execute the requested operation. 

2. operation-specific execution: the operations that undertake the semantic of the 

requested REST operation are executed. 

3. operation-specific complete: in the case of S3 REST operations the HTTP response 

is created and sent back to the front-end. 

The following image provides a graphical view of just mentioned workflow. 
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Image 5.1 – Radosgw-daemon workflow 

The importance of user authentication mechanisms within S3 systems should be clear after 

presenting the computational flow of S3 operations processing. For this reason, in the next 

section a full explanation of the decisions made by design for the management of users 

identification will be provided, along with other important Ceph-S3 related concepts that 

must be taken into consideration.  
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5.2 S3 CACHE AUTHENTICATION MANAGEMENT AND PRE-
IMPLEMENTATION CONSIDERATIONS 

In the previous section the need of hiding the presence of the cache layer to user 

applications, that is the main factor that have pushed for the adoption of Ceph in the 

implementation of the S3 caching system, has been highlighted. Moreover, the importance 

of the user authentication process has been shown as it plays an important role in S3 storage 

systems. For these reasons, how the applications will interact with the cache layer and how 

to manage the problem of authorization and permission controls must be discussed. 

As a choice made by design, the applications that will interact with the cache layer will 

work transparently from the prospective of authentication procedures. The only difference 

is represented by the need of specifying the authorization keys (at ~/.aws/credentials, as 

parameters of the sdk functions or as environment variables) that authenticate the user 

within the Ceph system and not within the remote COS. A file or data structure that 

specifies the mapping between cache and COS users should be passed to a cache rgw-

daemon during its initialization (an XML file for example) so that when a certain user sends 

a request, the cache system knows with which credentials it has to interact with the remote 

storage service in order to provide caching support. 

This implementation of the authentication control is only a possible solution. There are 

other possibilities which may provide even higher security and privacy levels. However, 

this is not central for this project as the work focused more on the enhancement of the 

performance related to the operations of reading and writing S3 objects. 

The next picture shows how the computational model changes with the introduction of the 

persistent cache layer into a Cloud environment that utilizes S3 storage services. 
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Image 5.2 – Model changes with the introduction of the S3 cache layer 

In past scenarios, applications residing on local machines could only take advantage of S3 

services via internet connections. Now, thanks to the introduction of the caching system, 

they can send local S3 requests with important results on reading and writing operations as 

explained in Chapter 6. 

The presented model also shows how the cache layer introduces an intermediate level in 

the authentication process between client applications and remote COS which is the reason 

for the need of an appropriate management technique such as the proposed user mapping. 

It is important to understand that this type of management has been fundamental as it 

allowed the development of such a cache and thus the improvement of Cloud objects I/O 

performance. However, this is only a first proposal and can therefore surely be extended in 

future works. 

In section 3.1 the general key concepts of cache memories have been presented along with 

flushing mechanisms that are meant to reduce memory occupation when data is not needed 

anymore or to manage situations of congestion. Cache devices are typically characterized 

by small memory size and need therefore an appropriate data eviction policy in order to 

limit memory utilization and thus not compromise storage systems’ overall performance 

during I/O procedures. 
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The S3 service shows many mechanisms for the management of stored objects. For 

example, it gives the opportunity of defining “quotas” and “expiration policies”. Quotas 

are meant to optimize storage services usage by limiting the number of objects in certain 

specified buckets. They can be seen as a preventative technique as they do not allow storing 

objects when the defined thresholds are reached. Expiration policies instead allow defining 

when certain objects should be deleted from the storage system. They can therefore be seen 

as an active technique. 

All these mechanisms can surely be adopted in order to optimize the usage of the cache 

memory. However, only the second one is appropriate for the implementation of an 

eviction technique as the problem is deleting objects that have already been stored and not 

denying the memorization of new ones. 

As already mentioned in the previous sections, it is possible to interact with RADOS S3 

objects at low or high levels. Expiration policies defined to free the cache memory when it 

becomes full or when it reaches certain occupation thresholds could be seen as a high level 

implementation of the eviction’s mechanisms. According to the S3 API semantic it is 

possible to define time intervals in the order of days or a specific date time [39] for the 

expiration of stored objects. On the other hand, if interacting with the Ceph storage system 

with the low level interface defined by the librados library and thus interacting directly 

with the RADOS storage, it is possible to eventually delete Ceph objects containing data 

of cached S3 objects in the rgw.data and rgw.index pools. 

At the current state, the persistent cache system that has been developed does not have an 

implemented eviction policy which can therefore be implemented in future. This can be 

done by utilizing the librados functions and thus by working directly with the RADOS 

layer at low level. Another possibility is working at high level by defining expiration 

policies with the S3 bucket lifecycle management API. In any case this has not represented 

a problem during the execution of experiments as the final goal of this project is the 

demonstration of how it becomes possible to enhance I/O operations performance by 
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providing S3 caching support mechanisms to high rate data consuming computational 

workloads. 

Finally, one last aspect regarding the specific S3 operations supported by the RGW should 

be considered in order to proceed with the implementation details. As already explained, 

when the radosgw front-end receives a REST HTPP request it calls the process_request() 

function defined by the rgw_process module which will compute the specified operation. 

In order to add caching support to the execution of S3 objects I/O operations it is important 

to understand how they are managed within the Ceph system. The RGW module defines a 

list of operations which remap the supported S3 ones. These operations are [40]: 

  RGW_OP_UNKNOWN   RGW_OP_DELETE_BUCKET_POLICY 

  RGW_OP_GET_OBJ   RGW_OP_PUT_OBJ_TAGGING 

  RGW_OP_LIST_BUCKETS   RGW_OP_GET_OBJ_TAGGING 

  RGW_OP_STAT_ACCOUNT   RGW_OP_DELETE_OBJ_TAGGING 

  RGW_OP_LIST_BUCKET   RGW_OP_PUT_LC 

  RGW_OP_GET_BUCKET_LOGGING   RGW_OP_GET_LC 

  RGW_OP_GET_BUCKET_LOCATION   RGW_OP_DELETE_LC 

  RGW_OP_GET_BUCKET_VERSIONING   RGW_OP_PUT_USER_POLICY 

  RGW_OP_SET_BUCKET_VERSIONING   RGW_OP_GET_USER_POLICY 

  RGW_OP_GET_BUCKET_WEBSITE   RGW_OP_LIST_USER_POLICIES 

  RGW_OP_SET_BUCKET_WEBSITE   RGW_OP_DELETE_USER_POLICY 

  RGW_OP_STAT_BUCKET   RGW_OP_PUT_BUCKET_OBJ_LOCK 

  RGW_OP_CREATE_BUCKET   RGW_OP_GET_BUCKET_OBJ_LOCK 

  RGW_OP_DELETE_BUCKET   RGW_OP_PUT_OBJ_RETENTION 

  RGW_OP_PUT_OBJ   RGW_OP_GET_OBJ_RETENTION 

  RGW_OP_STAT_OBJ   RGW_OP_PUT_OBJ_LEGAL_HOLD 

  RGW_OP_POST_OBJ   RGW_OP_GET_OBJ_LEGAL_HOLD 

  RGW_OP_PUT_METADATA_ACCOUNT   /* rgw specific */ 
  RGW_OP_PUT_METADATA_BUCKET   RGW_OP_ADMIN_SET_METADATA 

  RGW_OP_PUT_METADATA_OBJECT   RGW_OP_GET_OBJ_LAYOUT 

  RGW_OP_SET_TEMPURL   RGW_OP_BULK_UPLOAD 

  RGW_OP_DELETE_OBJ   RGW_OP_METADATA_SEARCH 

  RGW_OP_COPY_OBJ   RGW_OP_CONFIG_BUCKET_META_SEARCH 

  RGW_OP_GET_ACLS   RGW_OP_GET_BUCKET_META_SEARCH 

  RGW_OP_PUT_ACLS   RGW_OP_DEL_BUCKET_META_SEARCH 

  RGW_OP_GET_CORS   /* sts specific*/ 
  RGW_OP_PUT_CORS   RGW_STS_ASSUME_ROLE 

  RGW_OP_DELETE_CORS   RGW_STS_GET_SESSION_TOKEN 
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  RGW_OP_OPTIONS_CORS   RGW_STS_ASSUME_ROLE_WEB_IDENTITY 

  RGW_OP_GET_REQUEST_PAYMENT   /* pubsub */ 
  RGW_OP_SET_REQUEST_PAYMENT   RGW_OP_PUBSUB_TOPIC_CREATE 

  RGW_OP_INIT_MULTIPART   RGW_OP_PUBSUB_TOPICS_LIST 

  RGW_OP_COMPLETE_MULTIPART   RGW_OP_PUBSUB_TOPIC_GET 

  RGW_OP_ABORT_MULTIPART   RGW_OP_PUBSUB_TOPIC_DELETE 

  RGW_OP_LIST_MULTIPART   RGW_OP_PUBSUB_SUB_CREATE 

  RGW_OP_LIST_BUCKET_MULTIPARTS   RGW_OP_PUBSUB_SUB_GET 

  RGW_OP_DELETE_MULTI_OBJ   RGW_OP_PUBSUB_SUB_DELETE 

  RGW_OP_BULK_DELETE   RGW_OP_PUBSUB_SUB_PULL 

  RGW_OP_SET_ATTRS   RGW_OP_PUBSUB_SUB_ACK 

  RGW_OP_GET_CROSS_DOMAIN_POLICY   RGW_OP_PUBSUB_NOTIF_CREATE 

  RGW_OP_GET_HEALTH_CHECK   RGW_OP_PUBSUB_NOTIF_DELETE 

  RGW_OP_GET_INFO   RGW_OP_PUBSUB_NOTIF_LIST 

  RGW_OP_CREATE_ROLE   RGW_OP_GET_BUCKET_TAGGING 

  RGW_OP_DELETE_ROLE   RGW_OP_PUT_BUCKET_TAGGING 

  RGW_OP_GET_ROLE   RGW_OP_DELETE_BUCKET_TAGGING 

  RGW_OP_MODIFY_ROLE   RGW_OP_GET_BUCKET_REPLICATION 

  RGW_OP_LIST_ROLES   RGW_OP_PUT_BUCKET_REPLICATION 

  RGW_OP_PUT_ROLE_POLICY   RGW_OP_DELETE_BUCKET_REPLICATION 

  RGW_OP_GET_ROLE_POLICY   /* public access */ 
  RGW_OP_LIST_ROLE_POLICIES   RGW_OP_GET_BUCKET_POLICY_STATUS 

  RGW_OP_DELETE_ROLE_POLICY   RGW_OP_PUT_BUCKET_PUBLIC_ACCESS_BLOCK 

  RGW_OP_PUT_BUCKET_POLICY   RGW_OP_GET_BUCKET_PUBLIC_ACCESS_BLOCK 

  RGW_OP_GET_BUCKET_POLICY   RGW_OP_DELETE_BUCKET_PUBLIC_ACCESS_BLOCK 

Table 5.1 – S3 RGW operations 

This list is particularly interesting because it shows what are the specific S3 operations that 

are supported by the RGW but also because it presents some additional operations that 

have been introduced which extend the S3 service such as those here presented in the 

categories “rgw specific”, “sts specific”, “pubsub” and “public access”. There are many 

RGW-specific S3 operations worth of mentioning such as those implementing the pub-sub 

paradigms. However, those of interest for this work are those remapping the S3 GetObject, 

ListObjects and PutObject which are respectively the RGW_OP_GET_OBJ, 

RGW_OP_LIST_BUCKET and RGW_OP_PUT_OBJ. 

In the next sections the details about the caching support provided for these operations will 

be presented.  
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5.3 GETOBJECT 

The S3 GetObject operation defines a specific request for downloading an S3 object 

contained into a bucket of a remote COS. The logic behind the implementation of caching 

support for this operation specifies that, with the introduction of the cache layer, if an object 

is available within the cache memory, the time required to transfer data to the client 

application is way lower as already on the same locality. 

The possible situations that can occur during reading operations with the presence of the 

cache layer are: 

 HIT: the object is already available within the cache 

 MISS: the object has not been cached yet 

HIT cases are expected to be way faster than the MISS ones which have instead to pay the 

additional cost for the caching service. 

The applications should send a request to the persistent cache by specifying the cache 

credentials. These credentials will be automatically remapped to the COS ones when the 

S3 cache interacts with the specific remote Cloud Object Storage related to certain client 

users (the COS address is another parameter that should also be specified within the user 

mapping file because many users may work with different S3 storage services). 

As the authorization management is automatically provided, the user sending the request 

will be identified by the RGW. At this point, when the process_request() function is called, 

the inserted caching logic first checks if the object is already available within the RADOS 

back-end system. This information is maintained inside a C++ object that represents the 

state of the cache which keeps track of the already available objects and buckets. The cache 

state is initialized during the startup of the caching rgw-daemon by the rgw_main module 

that has been appropriately modified. 

If the request is a HIT, the processing of the RGW_OP_GET_OBJ can continue without 

the need of any additional operation. However, in case of a MISS caching support must be 

performed which means providing the required object to the RADOS back-end cluster. 
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The management of a cache MISS can be summarized as: 

1. Downloading the requested object by the remote COS using the credentials and the 

address specified by the user map according to the identity of the user that has been 

authenticated by the cache. 

2. Saving the downloaded object to the RADOS back-end system. 

3. Continuing with the normal processing flow of the RGW as defined in section 5.1. 

In order to implement the first point, it was necessary to create an S3 client with the APIs 

define by the C++ sdk available on the AWS git hub repositories [24]. 

For the implementation of the second point there were two possible solutions: using high 

or low level type of communications. The problem of interacting with the low level 

functions defined by the librados library is that when saving S3 objects they should also be 

translated into Ceph objects for performance and RGW compliant management matters. 

Because of this in order to keep the proposed solution as much simple as possible the 

decision was made by design of saving the S3 objects with the high level S3 API thus 

implementing another dedicated S3 client which will save the downloaded object by 

sending a PutObject request to the local cache layer. 

This solution pays for its simplicity in performance. However, if it is true that 

communicating directly with the RADOS layer would have enhanced the performance 

reducing the time of saving Cloud objects to the cache, it is also true that the overhead 

introduced by the implemented S3 client would affect only the cache’s radosgw front-end. 

Also, it is normal to have worse performance in the presence of MISS cases as the benefit 

provided by the cache is effectively implemented by the HIT so that what really matters is 

increasing the probability of HIT cases in order to increment the HIT rate. 

Finally, once the object has been saved into the cache system, the computation can simply 

continue its natural flow because the object is now available and therefore when the RGW 

arrives at the point of reading the appropriate Ceph objects from the RADOS layer they 

will be found in their appropriate pools. 
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The next image summarizes the execution flow during the processing of 

RGW_OP_READ_OBJ requests with the introduction of the cache layer. 

 
Image 5.3 – Processing flow of RGW_OP_GET_OBJ operations during HIT and MISS scenarios 
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5.4 PUTOBJECT 

The final goal of cache memories is improving the overall I/O operations performance of 

storage systems. In this case, as specifically related to S3 storage services, it means 

reducing the time required to perform write operations and also possibly limiting their 

number in order to reduce clients’ expenses as it has been discussed in section 3.4. 

When developing a cache system, the main policies that can be undertaken to implement 

writing operations are those of write-back and write-through which are distinguished by 

the specific moment when the commit of write operations is sent back to the client. The 

write-back policy seems to be the most well suited to obtain the expected benefits in 

performance and cost reduction. Unfortunately, when working with this type of semantic, 

its lack of reliability must be remembered as possible errors can occur before committing 

the write operations to persistent storage devices, which would cause data inconsistency 

within the entire storage system. However, Ceph provides a reliable environment while 

implementing a CP storage which means that if errors occurred, the system wouldn’t be 

affected by data inconsistency. This is the reason why the implemented technology is 

defined as a persistent cache. 

In the PutObject scenario with the implemented write-back policy, clients only have to 

send the request to the cache which will then have the responsibility of uploading it to the 

remote COS at the most appropriate moment. In this way, users receive a commit and thus 

a HTTP reply for the write operation after writing the object on the local caching support. 

Thanks to this design the overhead introduced by the Internet during communications with 

remote resources is bypassed and the time required to execute write operations is drastically 

reduced. 

In section 3.3 a deep insight of S3 objects related concepts has been provided. The object 

versioning is the main characteristic of this storage paradigm that must be considered when 

implementing write-back policies. As already explained, many versions of the same object 

can reside on a certain Cloud Object Storage. This means that in order to implement a 
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perfect alignment between the data stored on the cache memory and on the remote COS, 

every upload operation should correspond to a PutObject request made by client 

applications to the cache layer. 

The proposed solution has been implemented with the logic of enhancing applications 

performance and of reducing the overall operations number with the assumption that clients 

performing many write operations of the same objects are not interested in maintaining all 

related versions. However, if this wasn’t true, it is always possible to tune the cache in 

order to satisfy this requirement as well while still taking advantage of reduced execution 

times. 

The following picture summarizes the general scheme of the computational flow of S3 

objects write operations with the introduction of the cache layer. 

 
Image 5.4 – Processing flow of RGW_OP_PUT_OBJ operations with the implemented write-back policy 

Thanks to this model, it is possible to appreciate that there is an important difference in the 

provisioning of caching support in comparison to what happens for the GetObject 
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operation. In fact, caching procedures are executed after and not before the 

rgw_process_authenticated() function is computed. 

The write back procedure has been implemented as a daemon thread that constantly waits 

for new write requests. When a client application writes a new object into the cache, the 

daemon reads the object that has been saved from the Ceph system and then writes it to the 

remote COS according to the address and the user credentials that have been specified 

during the initialization of the cache rgw-daemon. Read and write operations have been 

implemented by adopting the same S3 sdk as for the GetObject caching support in order to 

implement appropriate S3 for clients that utilize the GetObject and PutObject operations 

via the HTTP REST API defined by the Simple Storage Service paradigm. 

A reference to the new objects written to the cache which need to be uploaded to the remote 

COS are maintained in a queue. The write-back daemon continuously reads the first 

element from the queue and then aligns the S3 object with the storage service. 

With this implementation there is only one daemon thread and it therefore may happen that 

when it reads the first element from the queue that element has already been uploaded. This 

is due to the response speed provided by the write-back support that can in any case be 

improved by deploying multiple write-back daemon threads. Therefore, it may happen that 

clients write the same object many times before it is uploaded to the remote COS as shown 

by the following picture. 

 
Image 5.5 – S3 objects write-back 

It may happen that more versions of the same objects are written to the cache before the 

object is effectively uploaded to the appropriate COS by the cache write-back daemon 
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thread. This is very powerful for limiting the number of S3 operations which have 

important consequences in clients’ expenses. However as previously mentioned, this 

causes a versioning misalignment in the data stored into the cache and the COS. 

Applications therefore must not be interested in the object versioning. 

This scheme is very interesting because it shows the potential of the caching system in the 

enhancement of write operation performance and also in reducing clients expenses. It 

demonstrates the tradeoff between fast response and data alignment properties that must 

be tuned according to specific applications requirements: 

 From one side, the more the cache write-back procedure waits, the more it is 

possible to reduce the number of I/O operations. 

 From the other side, the more the cache write-back procedure waits, the more the 

data is misaligned with the remote COS. 

However, in any case, independent from the specific policy adopted, this model is capable 

of providing better performance as it succeeds in reducing the time required for write 

operations. 

Additional details will be presented in chapter 6 along with the experiments and the results. 
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5.5 LISTOBJECTS 

The caching support provided for GetObject and PutObject operations has been 

implemented by adding functionalities to the execution flow of the corresponding RGW 

operations respectively before or after the rgw_process_authenticated() function call. In 

order to serve the execution of the ListObjects operation there are different things that must 

be considered in order to provide the appropriate caching support. In contrast to what 

happens with the previously mentioned S3 service functions the normal RGW execution 

flow must be modified, as downloading all the objects that have to be included into the 

objects list in order to take advantage of the already available procedures is not a reasonable 

solution. Also, the final result for this specific request involves objects’ metadata that is 

maintained in different forms within cache and COS supports. 

The HTTP response that has to be built needs to simultaneously take into consideration 

both the information stored locally and remotely. This makes it necessary to change the 

normal execution flow of the RGW as objects that have been written to the cache may not 

have been uploaded yet to the remote COS and many objects stored within the specified 

bucket may not be already available within the cache. 

The Image 5.6 shows the flow for the execution of the RGW_OP_LIST_BUCKET 

operation which remaps the S3 ListObjects one. 

To obtain the list of the objects that are stored by the Cloud Object Service, with also their 

related metadata such as modification time and object size, another S3 client has been 

implemented. 

Firstly, the updated list of the objects stored into the specified bucket must be downloaded 

sending an appropriate request to the remote COS. Then, when the list has been returned it 

is important to include all the information related to those objects stored into the cache that 

have not been uploaded yet. This is important to overcome possible misalignment between 

cached objects and the information maintained by the remote storage service. 
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Image 5.6 – Processing flow of RGW_OP_LIST_BUCKET operation with the introduction of the cache 

The ListObjects operation is very important for providing a full operative S3 cache system 

because it is typically utilized at the beginning of the most business processes that work 

with the S3 storage services. For instance, applications working with objects stored within 

a bucket do not have any more information than the bucket name and authorization 

credentials. This makes the execution of the ListObjects fundamental to acquire the 

information needed to be effectively capable of performing computational tasks as a direct 

access to stored objects is not possible without specifying their names. Finally, thanks to 

this operation it is possible to check the availability of required objects which may avoid 

the computations of tasks that cannot terminate and therefore reduce the costs by not 

unnecessarily occupying computational resources. 
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5.6 POST-IMPLEMENTATION CONSIDERATIONS 

In the previous sections an in-depth description of the implementation details of the caching 

support provided to GetObject, ListObjects and PutObject functions have been given. In 

the next chapter the discussion will proceed by presenting the experiments that have been 

performed to test the performance of the cache while executing computational tasks 

characterized by many read and write procedures as the final goal is the improvement of 

such operations. 

To complete and conclude this chapter it is important to consider how the choices made 

during the cache development have made it possible to achieve the results. For instance, as 

explained in section 3.4, when working with S3 storage systems there are some best 

practices and common guidelines that should be followed in order to obtain the best results 

as possible. 

Significant delays in serving clients requests have been noticed after a first implementation 

of the cache system. If following the guidelines provided by AWS engineers [25] it is 

advised to set short timeout intervals for requests retransmissions. This is due to the fact 

that S3 services are implemented as Distributed Systems and it may happen therefore that 

the path chosen to serve a certain request may not be the best possible one during the first 

attempt which is typically less efficient than sending and staring a new service request. 

This policy is already implemented by the S3 sdk that automatically resends the same 

HTTP request if a reply is not received before a certain time interval. This practice is very 

powerful when interacting with business S3 Cloud Services but it is detrimental when 

working with the developed local cache system. 

As a choice by design, the caching support has been implemented by using the S3 sdk for 

reading and saving the Cloud objects that are stored within the cache. This may become a 

possible bottleneck of the deployed radosgw front-end if not properly managed. If it is true 

that in Distributed Systems, such as the RADOS back-end support, it is good practice to 

set short timeouts to reduce the probability of worst path situations, it is also true that this 



101 
 

possible scenario will never happen when interacting with the cache as its resources are 

implemented to work on the same locality along with client applications. 

For this reason, huge timeout intervals have been set for the S3 clients providing caching 

support. Thanks to this measure the cache system has shown an important improvement of 

performance by 60% which means that the RGW requests management may become a 

possible bottleneck when serving many requests simultaneously. However, as it will be 

shown in the next chapter, this problem may be overcome by introducing more Ceph nodes 

within the RADOS layer. 

An important property of S3 services is represented by the possibility of downloading only 

specific byte-ranges of a stored object. In previous sections a typical implementation of 

cache systems has been presented which are characterized by managing stored information 

within fixed size blocks. However, this is not possible when working with the S3 API 

because during uploading procedure only the entire object can be uploaded and not only 

part of it. Storing objects related information within fixed size blocks will surely improve 

the cache memory management and for this reason some more details regarding the S3 

Ceph implementation are presented. 

One of the S3 Ceph specific operations that are implemented by the RGW module is the 

ObjectAppend which allows the modification of an already existing object by adding the 

new information without the need of rewriting the entire object. At the current state the 

cache system does not provide support for the management of objects within fixed size 

blocks because there are many more assumptions to be considered (for example the 

management of byte-range objects related metadata) and as said before the strategy of 

keeping the solution as simple as possible has been followed. In any case, these concepts 

are worthy of being mentioned because they may be very useful for future extensions of 

this technology. 
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Along with the Append Object operation there are some more interesting radosgw services 

that have not been presented yet. It is not important to master these concepts but it is 

interesting to mention some radosgw study related concepts. 

These services can be summarized as [36]: 

 STS (Security Token Service): It allows the use of external services instead of the 

classic S3 model to perform user authentication procedures. 

 Metadata Elastic Search: It allows the process of query related to stored objects 

metadata. 

 Cloud Sync Module: It allows the backup of a Ceph S3 storage on a remote S3 

service. The sync modules to perform these operations from a remote COS to Ceph 

are currently in development. 

 Archive Sync Module: It allows the creation of an archive zone that can thus be 

used to perform archiving operations on S3 Ceph objects. 

 Pub Sub Module: It allows the subscription of notifications on modification events 

within the S3 Ceph system.  

These services may allow new possible extensions and improvements. The STS service for 

instance could be introduced to extend the user-mapping authentication management of the 

cache. Moreover, as the final goal of the cache system is the provisioning of S3 objects 

stored on a remote storage service, the Cloud Sync module that is currently under 

development may add new functionalities to the RGW which may make it possible to 

undertake new cache implementations. 

These assumptions and studies are very important as they have been central in the 

implementation of such a cache service. Now that all these concepts have been finally 

clarified, it is possible to explain and appreciate the results obtained with the experiments 

that are going to be presented in the next chapter.  
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6 EXPERIMENTS AND RESULTS 

The data transfer speed of the Internet’s infrastructure has become the most prominent 

bottleneck for those computing workloads that rely on Cloud based storage services. The 

objects caching system described in this Thesis work aim at improving the performance, 

from storage perspective of such workloads. For instance, new Cloud environments 

adopting the S3 cache layer will benefit from faster I/O operations on objects stored on 

public Cloud object storage services. 

The experiments performed are presented in the next sections. Firstly, a summary of the 

adopted benchmarks and information about the execution environment will be provided. 

Then, results comparisons and related considerations will be analyzed according to the 

achieved system’s capabilities. 

 

6.1 BENCHMARKS AND EXPERIMENTS’ INFRASTRUCTURE 

To be completely capable of understanding the results that are going to be presented in the 

next sections it is fundamental to have a clear vision of the adopted benchmark’s 

workflows. Read/write of objects was monitored to measure the benefits of the proposed 

caching layer on benchmark’s performance. 

The benchmarks used for this evaluation are: 

 A custom benchmark focused on monitoring the behavior of GetObject operations: 

multiple threads sending simultaneously GetObject requests to the cache. Each 

thread initially obtains a list of 100 objects that are stored into an S3 bucket and 

then, after randomly shuffling the order of the names contained in the list, starts 

issuing a GetObject request for each object. Each Object is 150 MB in size The 

program terminates only when every thread has completed its execution. The goal 

of this benchmark is twofold: i) model the access pattern of multiple concurrent 
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applications; ii) enables evaluating the performance of the cache with multiple cache 

hit values. 

 A custom benchmark focused on monitoring the behavior of PutObject operations: 

multiple threads sending simultaneously PutObject requests to the cache. Each 

thread sends 75 PutObject requests to store 50 different objects into the cache. Each 

object is 100 MB in size. The program terminates after every thread has completed. 

The goal of this benchmark is twofold: i) model the access pattern of multiple 

concurrent applications; ii) evaluate reduction in number of PutObject operations to 

the remote S3 location. 

 A real application likely to be executed on the Cloud: training the resnet deep neural 

model on the ImageNet dataset. The implementation of resnet is available as part of 

the open source TensorFlow official models [41]. This is a good representation of 

Cloud application using object storage where most of the accesses are object reads. 

All the experiments were performed on one IBM Power8 server (20 cores, 1 TB RAM) 

part of the Hermes cluster at IBM Research – Ireland. This server was used to deploy 

multiple virtual machines used to model a distributed infrastructure, helping also in rapidly 

changing the infrastructure template for the experiments. In the specific, each node of the 

Ceph cluster serving as backend for the object caching was running on a dedicated KVM 

[42] virtual machine. The S3 endpoint was exposed via a custom radosgw-daemon. The 

execution model can be referred to the one that has been shown in image 5.2. 

Two system configurations are used in this evaluation: 

 3 VMs 

 100GB virtual disk for each VM 

 8 CPU cores for each VM 

 4 GPUs - NVIDIA Tesla P100 with 16GB memory (resnet training sessions) 

 5 VMs 

 100GB virtual disk for each VM 

 6 CPU cores for each VM 
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Each system configuration is meant for measuring the impact of the cache back-end to the 

overall performance. The actual caching logic remains unchanged in either of the 

configurations. All the benchmarks selected were evaluated with both system 

configurations. 

The experiments’ results will be presented in the following sections along with some 

additional details and related considerations. 
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6.2 CACHE GETOBJECT PERFORMANCE WITH THE S3 CUSTOM 
BENCHMARK 

The improvements that are expected with the introduction of the developed cache layer are 

shorter time intervals to serve GetObject operations and a decrease in the number of the 

requests that are directly sent to the remote S3 service.  

As already anticipated in section 5.3, MISS operations are characterized by worse 

performance than working without the cache layer. However, HIT operations are capable 

of providing very fast responses to client applications. 

For these reasons, in order to see better applications’ performance there are two possible 

scenarios: 

 The cache is capable of prefetching foreseeing future applications’ requested 

objects. 

 Client applications’ workflows are characterized by many read operations over the 

same objects. 

This work focused on the second point during experiments execution and caching 

development but it is not hard to understand how the first one can be easily implemented 

if taking into account specific business tasks’ characteristics. In addition, by adopting 

common cache policies such as those explained in section 3.1 it is possible to generally 

grant some improvements in this sense. The implemented caching system at the current 

state does not support data-prefetching. 

However, if these types of workloads read the same objects more than once, there will 

surely be a reduction in ReadObject requests sent to the COS as they will correspond to 

only one cache MISS and many HITs. This is very important as it makes users interaction 

with S3 services less expensive while adopting the implemented caching storage system. 

The following charts show the results that have been obtained by executing the read objects 

custom benchmark with the COS and the 3 VMs setup persistent S3 cache. The presented 

columns refer to different benchmark’s configurations, respectively with 10, 20 and 50 
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simultaneous threads. Represented results show therefore cache’s behavior depending on 

different applications workloads in serving every single read operation. 

 
Chart 6.1 – GetObject execution time COS – cache 3 VMs 

As expected, the registered average cost of HIT operations is lower than MISS ones. In 

fact, during MISS cases, before being able to return the requested object, the cache must 

perform all needed procedures to download the required data from the remote COS and 

then save it into the Ceph back-end system. HIT cases show a very low average time, thanks 

to the cache infrastructure proximity to workloads’ computational nodes. This 

characteristic if properly exploited will result in performance improvements for 

applications with high cache’s HIT rates as shown in charts 6.2. 

Another important achievement is represented by the difference between the times 

registered when executing GetObject operations with the remote COS or the cache. COS 

operations respectively register a cost of 13, 27 and 70 seconds, cache’s HITs of 7, 9 and 

31 seconds and MISSs of 25, 41 and 97 seconds. COS provides faster responses than cache 

MISSs but way slower than cache HITs. Therefore, cache performs worse during objects’ 

first time reads. However, because of the markedly difference between COS and cache HIT 

average times, the total time required should be lower if interacting with the cache layer. 

This becomes therefore beneficial to this type of workloads as shown in charts 6.2 where 

it is presented the cost of executing all read objects operations by all threads. It is noticeable 

how cache’s overall costs are lower than COS ones. 
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Charts 6.2 – Custom benchmark total time execution with different thread setups: comparison between 

COS and cache results 

Another interesting thing that can be analyzed with this benchmarks is the moment where 

the cache becomes being beneficial. Cache’s behavior in serving single requests during the 

entire execution is shown in the following charts. 

 

 
Charts 6.3 – Custom benchmark behavior with different thread setups: comparison between COS and 

cache results 
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As shown with all three different benchmark’s setups the introduction of the developed 

cache reduces the overall time required. If looking at chart 6.3 it is possible to appreciate 

the time needed to process GetObject operations at every instant during tests’ execution. 

At the beginning, operations execution times are higher for caches scenarios but after a 

first moment they gradually decrease while the HIT rate increases. The COS behavior 

instead can be considered constant in serving requests. It is very interesting to notice how 

cache’s performance shows a constant improvement during tasks computation. 

The HIT rate function has been calculated as the overall percentage of HITs operations 

from the start to every instant in intervals of 50 seconds. If looking at COS and cache 

graphs in chart 6.3 it can be noticed that the performance of workloads implying the cache 

layer becomes better when the HIT rate reaches an approximate 77%, 65% and 60% 

respectively for the 10, 20 and 50 setups. This suggests that according to the data 

consuming rate the cache layer is capable of providing better performance sooner. This is 

a good result because of the data consuming speed characterizing the applications target 

such as those of Artificial Intelligence. 

Finally, experiments with different RADOS configurations have been performed to 

measure how different back-end deployments affect workloads computation. 

 
Chart 6.4 – GetObject execution time cache 3 VMs – cache 5 VMs 
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Cache’s 3 VMs and 5 VMs configurations are characterized by different CPU capabilities 

with respectively 8 and 6 cores for each VM. Therefore, VMs of the former configuration 

are characterized by higher computational power. However, during benchmark’s execution 

it has been noticed that VMs’ CPU usage is very low. This makes the differences in 

computational power not affecting storage’s performance which means that different 

results are due to the different nodes deployments of cache’s back-end system. 

As shown, deploying more nodes seems not affecting cache’s setups of 10 and 20 threads 

while the 50 threads case shows a markedly difference in registered times. This result 

demonstrates an important characteristic of RADOS systems which maintain the stored 

data balanced within the deployed OSDs thanks to the translation from S3 objects to 

smaller Ceph objects. This particular data management is the reason for the performance 

improvement with the 5 VMs setup because data transfer operations are spread over more 

nodes and therefore each OSD workload is less heavy and S3 objects retrieval becomes 

faster. 

This is an interesting example that highlights the power of efficient data management 

policies for optimizing devices usage and thus improving the capabilities offered by 

distributed storage systems such as Ceph. 
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6.3 CACHE PUTOBJECT PERFORMANCE WITH THE S3 CUSTOM 
BENCHMARK 

Continuing on the same line of the discussion of the previous section, the improvement 

that are expected with the introduction of the developed cache layer in serving PutObject 

requests are the same as those of serving GetObject ones: 

 shorter time intervals 

 reduction in the number of those directly sent to the remote S3 service 

As already mentioned in section 5.4 there are many considerations to be done when 

working with this specific operation. For instance, it is important to remember that the 

object versioning should be avoided when interested in limiting the number of requests 

sent to the COS. In addition, data alignment between the COS and the cache depends 

directly on write-back speed. 

Write-back procedures are in charge of uploading to remote Cloud S3 storages the objects 

that have been written to the cache by client applications. A write-back implementation is 

considered slow when the write-back daemon does not immediately start uploading the 

object when written to the cache. However, when computing workloads characterized by 

many write operations over the same objects, a slow reacting write-back daemon will make 

it possible to considerably reduce the number of PutObject operations COS side. 

If implementing more write-back threads, write-back policies would become more reacting 

and better data alignment would be provided. However, this trick may affect cache’s 

overall performance as it would increase cache radosgw-daemon’s workload. These 

considerations must be always taken into account when implementing write-back policies. 

The experiments’ results related to this type of workloads are presented as follows. Firstly, 

data in relation to PutObject performance will be presented and only after that, the 

discussion will proceed with all concerns about limiting the requests to be sent to the 

remote COS. 



112 
 

The following chart shows the results obtained with the execution of the custom benchmark 

of write operations with different thread configurations. These experiments have been 

meant to show how cache’s behavior changes depending on different write workloads. 

 
Chart 6.5 – PutObject execution time COS – cache 3 VMs 

If looking at write_to_cache and write_to_COS columns it is possible to notice that with 

the introduction of the cache layer the time required to serve PutObject operations is lower. 

Response time reduction has been achieved in all three different benchmark’s 

configurations and therefore it can be said that the cache is beneficial for write workloads. 

Thanks to its introduction, client applications are freed by the poor network data bandwidth 

limitation which is the most prominent bottleneck in this type of scenarios. As a 

consequence, the time required to transfer files in the form of Cloud objects over the S3 

service is drastically reduced from the perspective of client applications. 

If now looking at the chart in relation to the different benchmark’s setup, it is interesting 

to notice how the gap between the values of cache and COS PutObject operations is similar 

for the 20 and 30 configurations. The 10 threads configuration instead is characterized by 

a considerable difference in such response times. The reason for this specific behavior is 

that while increasing storages’ workloads the operations’ times do not grow linearly with 

the number of simultaneous requests. Therefore, if over loading the cache layer it may 
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happen that its introduction stops being beneficial to the computation as the performance 

becomes equal than if communicating directly with the COS. 

Following the same scheme of the discussion made in the previous section it is now 

interesting to see how cache’s performance is affected by different RADOS back-end 

system’s deployments. 

 
Chart 6.6 – PutObject execution time cache 3 VMs – cache 5 VMs 

In accordance to what happens for GetObject workloads even during the execution of many 

PutObject operations the cache shows better response times when the number of back-end 

system’s nodes is higher. In fact, the values presented in chart 6.6 show better cache’s 

behavior when working with the 5 VMs RADOS configuration than with the 3 VMs one 

even if with less markedly gaps. This confirms the analysis made in the previous section 

and point out one more time how a good storage management policy is capable of providing 

good I/O performance when working with distributed storage systems. 

Now that all performance related concepts have been clarified the discussion will continue 

by analyzing how it becomes possible to reduce the number of the requests that are sent 

remote S3 Cloud services during write workloads. In the next chart it is presented the 

incredible potential of the implemented S3 caching system in this direction. In fact, as it 

can be seen, the number of write-back operations that are effectively executed is definitely 

lower than those received by the cache. 
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Chart 6.7 – PutObject write back policy potential in reducing operations number 

As already explained, each thread of the custom benchmark executes 75 write operations 

of 50 different objects. As a consequence, the total number of executed operations changes 

depending on the different thread setup. However, the important result that must be pointed 

out is the number of the PutObject requests that are effectively sent to the remote COS. 

According to cache’s implementation it is possible to reduce the operation number while 

aligning local objects to the remote support as shown in the image 5.5. 

As already mentioned the write-back policy has been implemented as a single daemon 

thread which sequentially uploads cache’s Cloud objects to the remote COS in order to 

align the stored data. If following the implementations details presented in section 5.4 it 

easy to understand how it becomes possible to reduce COS requests when renouncing to 

object versioning. However, the marked difference between the requests sent to the cache 

and the upload procedures effectively executed shown by the chart explains the important 

concepts that, the more the cache write-back waits, the more it is possible to reduce the 

requests number. 

In fact, in this specific implementation the write back procedure is way slower than cache’s 

speed in serving PutObject requests. The write-back queue is gradually emptied while write 

intensive workloads are in execution. However, as characterized by slow reacting times, 

when write workloads terminate the queue still has many elements and therefore many 

uploads still need to be executed. Because of this, the following PutObject requests that 
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will be sent to the remote COS will contain last object’s versions of those stored into the 

cache and therefore many future uploads will not be needed and many requests COS side 

can be avoided. 

This discussion aims to demonstrate the very big potential of S3 caches in limiting 

operations number which has important consequences for reducing S3 clients’ expenses.  

The specific workloads implied during the experiments are characterized by writing many 

times the same objects and it is hard to find similar business tasks. However, if 

implementing appropriate policies, these concepts for reducing service’s costs remain 

valid. 
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6.4 CACHE GETOBJECT PERFORMANCE DURING TRAINING SESSIONS 
OF TENSORFLOW’S DNN RESNET OVER THE IMAGENET DATASET 

The results that are going to be presented in this section are related to workloads of deep 

learning which are characterized by intensive read operations. They are very important to 

test if the cache layer is capable of providing benefits also to real case scenarios. 

As already mentioned in previous chapters, Cloud storage services as IaaS are increasingly 

being adopted in industrial scenarios because of their great capacity of offering low costs 

and hypothetically unlimited storage space. As a consequence, modern computational 

platforms such as for example TensorFlow for Artificial Intelligence applications or 

Apache Spark [40] for Big Data computing tasks started providing direct support to 

transparently access these types of Cloud services. For instance, just mentioned 

frameworks are capable of providing full support for I/O operations with S3 services. 

The effect of different deployments over cache’s performance have already been analyzed 

in previous sections for both read and write operations. Because of this, the experiments 

with TensorFlow’s resnet have only focused on how different configurations affect training 

workloads’ performance while interacting with the cache. Following results have been 

obtained by executing just mentioned operations with the 3 VMs setup of cache’s back-

end system. Training procedures have been executed utilizing 4 GPUs as previously 

presented in section 6.1. 

The main difference of executed training sessions is represented by the training batch sizes 

as shown in the following charts. This will have important implications for the ReadObject 

requests sent to the cache. 

The following charts show the time required to perform just mentioned training sessions 

during three training epochs. 
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Charts 6.8 – Resnet training sessions time required depending on different batch sizes 

As it can be seen, training procedures require shorter time intervals when interacting with 

the cache rather than with the COS. Charts show time values near 9600 seconds for each 

epochs related to the COS. First epochs and following ones, related to the cache, register 

respectively values near 6000 and 3500 seconds. As expected, the first training epoch 

related to the cache requires much more time than the others while the trend of the COS 

remains constant. This is due to the fact that during the first epoch the objects containing 

the training dataset are not downloaded yet and therefore there are many MISS. From the 

second epoch instead, the behavior remains constant as all following GetObject requests 

will be cache’s HITs. If computing more than three epochs the behavior would be the same 

and all those after the first one would show same performance as the second one. 

Time needed to entirely perform just mentioned training workloads register approximately 

13000 seconds average with the cache and 28000 average with the COS. 

If looking carefully at the charts there is an important result worth of being discussed. In 

fact, seeing the first column of the cache lower than the COS one is not as expected as   

seeing bigger times to process the first epoch than the others. In the previous sections it has 

been discussed how MISS operations require longer time intervals to be processed than 

when interacting directly with a remote S3 service. Because of this, it would be expected 

to observe lower response times during the first epoch when interacting with the COS than 

when using the cache. 

To understand this particular trend some additional details regarding resnet’s workflow 

must be provided. In order to optimize S3 storage services usage, it is good practice to limit 
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the number of stored objects. For this reason, datasets of Artificial Intelligence tasks such 

as ImageNet are stored as huge blob objects each one containing many files. The 

TensorFlow’s DNN resnet when reading dataset’s files, do not request entire objects but 

only subsets of them by specifying byte-ranges within HTTP packets containing the 

GetObject requests. In this way download times become shorter and many operations can 

be executed simultaneously thus enhancing the parallelization as advised by best practice 

guidelines. In addition, many policies such as data prefetching have been performed by 

resnet application in order to optimize training’s execution as much as possible. 

With all these optimizations observing better performance with the cache during the first 

epoch is quite strange, also because of the worse performance of MISS operations than 

requests directly sent to the COS. However, if focusing on cache’s implementation 

everything becomes clearer and reasonable. 

The implemented cache layer is not capable of serving byte range requests, in the sense 

that when it receives such operations in MISS scenarios, the entire specified Cloud object 

will be downloaded and then only the specific byte-range will be returned to the 

applications client. Because of this, during the execution of the first training epoch with 

resnet it becomes possible to have HITs. In fact, it will be a MISS only the first byte-range 

request but after that, all future byte-requests referring to that object will be cache’s HITs. 

Consequences of this cache’s characteristic over the TensorFlow’s Deep Neural Network 

are presented by the following charts. 

Data presented in charts 6.9 show the time required to execute the training steps 

procedures. It is important to understand that their number is the same independently from 

the specific adopted device. As a consequence, it has been possible to compare COS and 

cache performance in the execution of every steps. Data related to total execution times 

required have already been shown in charts 6.8. 
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Charts 6.9 – Resnet training sessions behavior with different batch sizes: comparison between COS and 

cache results 

During the data prefetching phase there are many objects that must be downloaded in order 

to process all needed information and this is the reason why the first 100 steps require more 

time than others in all four different batch configurations. Once all needed objects for the 
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initial steps have been downloaded, the program keeps downloading those required by 

future steps without stopping. Because of this, if all byte ranges required refers to already 

downloaded objects there are no waiting times. 

There is an interesting difference between first steps time intervals registered with small 

and big batch sizes. In fact, for the 32 and 64 configurations the first value of the cache is 

higher than the one of the COS while for the 256 and 512 ones the trend is the opposite. 

This is due to the fact that when working with small batch sizes, downloading the entire 

objects represents a drawback for initial steps as they are capable of computing faster each 

step. In contrary, when working with big batch sizes such as 256 and 512 it does not 

represent a limitation. Downloading many objects to compute each step in fact, makes files 

needed in future steps already available. Future steps do not have to wait before being in 

condition of working as bigger batch size requires more time to perform steps’ computation 

and therefore more objects can be downloaded. This concept is well explained in charts 

6.10. 

In addition, it is noticeable how all registered times of monitored training steps with the 

cache are lower than those related to the remote COS. There are only few cases where 

cache and COS show similar values which are those related to the first training epoch with 

a batch size of 32. This is due to the fact that when implying small batch sizes, time required 

to compute each step are lower. As a consequence, following steps are ready to compute 

but needed objects are not available yet. Therefore, waiting times during the first epoch are 

longer and may affect steps performance. 

Finally, it is important to highlight how charts show a constant behavior for the COS during 

all different epochs while the cache after the worse performance of the first epoch maintain 

a constant and lower time to process all next steps. If focusing on cache’s data, it is 

interesting to see how at a certain point time required values drastically drop and then 

remain constant until the end of training procedures. 
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The following charts provide specific information about the first training epoch in order to 

give more details of the relation between training step times and cache’s MISS number. 

 

 
Charts 6.10 – Resnet first training epoch behavior with different batch sizes: relation to MISS number 

These graphs are important to highlight the relation between cache MISS and steps time 

depending on the different batch size. If looking at the charts of 32 and 64 it is possible to 
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notice that there are training steps where there are no MISSs at all. However bigger time 

intervals are registered in presence of MISSs during previous steps. As already said, this 

causes steps to wait more before being able to start executing for smaller batch sizes. 

However, small batch sizes make it possible to have training steps with HIT rates of 100% 

even during the first Epoch. This important result can also be appreciated with charts 6.11 

which show HIT rate values during the training steps of the first epoch. When HIT rates 

do not reach the maximum value following steps are characterized by consequently bigger 

times as they must wait for the objects to be downloaded. HIT rates with no 100% are in 

fact characterized by some cache MISSs. 

 
Charts 6.11 – Resnet first training epoch HIT rate with different batch sizes 

While, in charts 6.10 there is a drastic decrease in time values in proximity to the end of 

the first epoch computation, charts 6.11 are characterized by noticeable increase. This is 

due to the fact that from the second epoch, the entire dataset has already been downloaded 

and therefore all future GetObject requests will correspond to cache’s HITs.  



123 
 

CONCLUSIONS 

This Thesis work provided a comprehensive analysis of modern Distributed Systems and 

new prominent Cloud environments (chapter 1). An in-depth analysis of storage systems 

and paradigms have been made. In this way all concepts related to the scenarios of interests 

such as those of the Multi Cloud have been clarified (chapter 2). 

Some prominent technologies at the state of the art have been presented. In this way it has 

been possible to point out the importance of distributed storage systems and how they can 

be adopted to support heterogeneous Cloud environments. Moreover, S3 storage services’ 

key concepts and guidelines have been discussed as they have been the central topic of this 

work (chapter 3). The previous analysis continued by entering in the details of the Ceph 

distributed storage system. Its main components have been introduced to show what 

services it is capable of providing (chapter 4). 

The developed persistent S3 cache system have been presented along with the design and 

implementation choices that have been made. As the Ceph storage system already offers 

many S3 related services it has been adopted in order to implement the S3 caching service. 

This has been very important especially for dealing with the S3 authentication service 

(chapter 5). Finally, its performance in serving high intensive workloads has been 

measured and the results have been discussed (chapter 6). 

Thanks to the custom benchmarks used in the evaluation it can be seen that the impact of 

the cache is, as expected, higher for cache miss cases. An object read (GetObject) is in 

average 35% slower than a regular read from remote storages. While in case of cache hit 

an object read is 57% faster than a regular read from remote storages. Overall we have 

observed that, with the experimental setup used for this work, the caching system proposed 

starts being beneficial for applications with a hit rate higher than 60%. 

Similarly, it has been observed that an object write (PutObject) is in average 30% faster if 

performed with the cache system, thanks to the implementation of a write-back policy. This 

causes a data misalignment with the remote storage service because write-back procedures 
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become slower as interacting with Cloud services. However, if properly exploited, this 

delay allows to drastically reduce the number of the S3 operations sent to remote storages 

of more than 90%. However, client applications must renounce to object versioning. 

Thanks to the experiments performed using TensorFlow’s resnet it has been possible to 

demonstrate cache’s benefits in real case scenarios. Training steps of deep learning tasks 

have been measured. Workloads using the S3 cache layer are in average 40% faster in 

computing first training epochs than when interacting with remote Cloud services. In 

addition, starting from the second epoch, performance increases of 64%. 

Ceph is a good choice for taking advantage of already implemented services such as user 

authentication of S3 requests. It is also a perfect solution to satisfy Multi Cloud 

environments’ needs. In fact, it allows deployments of distributed storage systems over 

heterogeneous devices. 

Finally, when executing benchmark applications, it has been noticed that with more 

intensive workloads cache’s response times tend to increase. However, even in worst cases, 

registered values have shown better performance than those related to COS 

communications. 

Overall, with this Thesis work it has been demonstrated that a caching system may result 

very effective in Hybrid- and Multi- Cloud environments. In addition, preliminary results 

have shown the incredible potential of implementing a good write-back policy. 

To conclude, cache’s capabilities will be extended in future works. Data-prefetching and 

eviction policies will be implemented by using already available S3 services offered by the 

Ceph’s radosgw module. Solutions to store objects as fixed-size blocks within the cache’s 

memory will be analyzed along with the opportunity of specifying byte-ranges of S3 

objects during read operations. The possibility of interacting directly to the RADOS back-

end system at low level will be explored and some prototypes will be implemented. 

Therefore, related effects on cache’s performance will be analyzed. Additional caching 

services at the bucket level will be studied. Finally, other RGW modules will be utilized to 
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enhance cache’s management capabilities. For instance, the “Cloud Sync Module” should 

be studied in relation to cache-COS data alignment concerns. Also, the “Security Token 

Service” will be used in order to improve cache’s user authentication policies and thus 

enhancing cache’s security capabilities. 
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