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Abstract 

Climate variability and warming are directly, indirectly and irrefutably driving 

widespread changes in global aquatic and terrestrial ecosystems, with disproportionate 

poleward impacts. Across Arctic treeline and tundra, understanding how current and 

future changes will negatively affect subsistence resources is critical to mitigating 

climate change impacts on Indigenous peoples and northern flora and fauna.  

In this study, I looked to Inuit knowledge and western scientific approaches at 

local and regional scales across Inuit Nunangat (Inuit regions of Canada, including 

Nunavut, Nunavik, and Nunatsiavut) to explore and test the impacts of climate variability 

and warming on treeline and tundra berry species, which are critical resources in Arctic 

ecological and cultural systems. My central hypothesis, which is rooted in local, 

traditional and scientific knowledge, is that climate-driven expansion of tall-shrub 

canopies will negatively impact fruit production of dwarf berry shrubs.  

Through mixed methods approaches, including participatory interviews, climate 

analyses, ecological surveys, and experimental warming at different spatial and 

temporal scales, this study identifies the fundamental role of local processes in driving 

and explaining changes in dwarf berry shrub growth (abundance and height) and fruit 

production (occurrence and abundance of fruit) in eastern Low Arctic and Sub-Arctic 

Canada. The results consistently demonstrate that growth and fruit production of truly 

prostrate berry shrubs (i.e. Vaccinium vitis-idaea and Empetrum nigrum) with limited 

phenotypic plasticity in height growth are most at risk from warming and tundra 

shrubification in comparison to berry shrubs with greater height growth plasticity (V. 

uliginosum) due to canopy impacts on local resources. With this knowledge, I anticipate 
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that the boundaries between low and tall shrub tundra plant communities will be zones 

of significant change in berry resources. Local resource mapping, with a specific focus 

on these transition zones will be critical to identifying priority areas for berry resource 

conservation and active management to ensure future access to a sustainable source of 

these culturally important resources.  

 

Keywords: dwarf berry shrubs, climate variability and warming, shrubification, treeline, 

tundra, eastern Low and Sub-Arctic Canada, Inuit Nunangat 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

 

 

 

For my village  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgments 

 

When I first considered pursuing a doctoral degree, I believed that I could not "go 

the distance" if my project wasn't meaningful and impactful. What I didn't realize, was 

that the people who guided and supported me - my supervisory committee, family, and 

community members - made all the difference in producing meaningful and impactful 

research. These people were my source of motivation, and their support carried me 

through times of unanticipated adversity when I began this journey in May 2009.   

I'll tell anyone willing to listen that I won the jackpot in supervisory committee 

members. First and foremost, I am so grateful and proud to have been supervised by 

Dr. Luise Hermanutz. Luise created an environment that expanded my world view more 

than I could ever have imagined. She leads by example and has shown me time and 

time again that we can't allow fear or adversity to stand in the way of making positive 

change. I'm equally thankful for Dr. Alain Cuerrier, who has been on my committee 

since the beginning. Alain introduced me to the world of community-based participatory 

research, and his support was critical in completing the first chapter of my thesis. 

Together, Luise and Alain also provided excellent field support, collecting as much data 

as any field assistant when we needed to get the job done! Special thanks to Drs. 

Esther Lévesque and Paul Marino for your support and guidance, especially during the 

early development of my thesis questions and methodologies, and to Dr. Erica 

Oberndorfer for stepping in and completing the supervisory team. Thank you to my 

examiners Drs. André Arsenault, Dawn Bazely, and Trevor Lantz. I would also like to 

acknowledge my Hermanutz lab mates! Thank you for your comradery, support and 

guidance.  



v 
 

My research would not have been possible without the consent, support, 

knowledge sharing and welcoming spirit of the people of Nunatsiavut, Labrador. It was 

an honour to study your land, to hear the stories of your people and to learn about 

changes in the environment from your perspective. This project was greatly supported 

by the Western Newfoundland Field Unit and Torngat Mountains National Park Staff, 

and the Research, Natural Resources and Language Divisions within the Nunatsiavut 

Government. Special mention to Dr. John Jacobs, Angus Simpson, Judy Rowell, Dr. 

Darroch Whitaker, Wilson Jararuse, Tom Sheldon, Dr. Andrew Trant and Rodd Laing for 

your field and logistical support throughout the years.  

I was fortunate to be part of a very well-funded research program supported by 

NCE ArcticNet, IPY-CICAT, NCE CANPOLIN, Northern Scientific Training Program, 

Memorial University, Parks Canada Agency, Centre D’Étude Nordique, Montreal 

Botanical Gardens, Université du Quèbec à Trois Rivières, and University of British 

Columbia. I am also grateful for being awarded an NSERC-CGSD.  

For Chapter 2, I would like to thank each participant, community member and 

community that supported this study by welcoming our research teams and sharing with 

us their knowledge and expertise. Thank you to the interpreters for their essential role in 

communicating Inuit traditional ecological knowledge. Collectively, their willingness to 

share, teach and guide our research team has made a marked impression on us all, 

and continues to guide our current and future research in the north. For Chapters 3 and 

5, many thanks to the following for their assistance in collecting and entering data: 

Daniel Myers, Anita Kora, Elias Obed, James Wall, and Allison Ford. For Chapter 4, I 

would like to thank all graduate students and field assistants for their contributions in 



vi 
 

establishing and surveying warming experiments across our network of sites. For 

Nunavik, I thank: Annie Jacob, Vincent Lamarre, Philip Roy, Julien Drouin-Bouffard, 

Geneviève Dufour-Tremblay, Sylvie Ferland , Kathleen Chan , Naïm Perreault, Nathalie 

Griller. For Nunatsiavut, I thank: Daniel Myers, Anita Kora, Elias Obed, James Wall, and 

many youth interns from the Kangidluasuk Student Intern Program.  

And finally, thank you to my husband Ross Collier, my parents Eric and 

Catherine Siegwart, and three wonderful childcare providers Rosalind Matchim, 

Samantha O’Grady and Michelle Vatcher for supporting me through it all. I never 

envisioned getting married, buying a house, getting a dog, raising three children and 

acquiring a full-time job during the life of my thesis. You are my village, and I never 

could have completed this without you.  

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Table of Contents 
Abstract ........................................................................................................................... i 
Acknowledgments.........................................................................................................iv 
List of Tables .................................................................................................................ix 
List of Figures ...............................................................................................................xi 
List of Appendices ...................................................................................................... xiii 
List of Abbreviations and Symbols ............................................................................xv 

Chapter 1: General Introduction ..................................................................................... 1 
1.1 Introduction and Thesis Outline ............................................................................. 1 

1.2 Co-authorship Statement ....................................................................................... 3 
1.3 Funding .................................................................................................................. 4 
1.4 Permits and Licences ............................................................................................. 5 

1.5 Literature Cited ...................................................................................................... 5 

Chapter 2: Local assessments of environmental change in Arctic Canada: an integrated 
approach to analyzing Inuit observations and climate data ............................................. 7 

Abstract ........................................................................................................................ 7 
2.1 Introduction ............................................................................................................ 9 
2.2 Methods ............................................................................................................... 12 

2.2.1 Study Sites ..................................................................................................... 12 

2.2.2 Study design .................................................................................................. 13 

2.2.3 Data summary and analysis ........................................................................... 15 

2.3 Results ................................................................................................................. 20 

2.3.1 Local climate trends ....................................................................................... 20 

2.3.2 Variation in Inuit observations and their correlation with climate trends ......... 21 

2.4 Discussion ............................................................................................................ 26 
2.4.1 Climate trends, Inuit TEK, and patterns in their relationship across the 

Canadian Arctic ...................................................................................................... 26 

2.4.2 Ordination – benefits and risks ...................................................................... 31 

2.4.3 Conclusions ................................................................................................... 31 

2.5 Literature Cited .................................................................................................... 32 

Chapter 3: Strong canopy-understory feedbacks on fruit production at treeline ........... 75 
Abstract ...................................................................................................................... 75 
3.1 Introduction .......................................................................................................... 77 
3.2 Methods ............................................................................................................... 82 

3.2.1 Study site ....................................................................................................... 82 

3.2.2 Sampling design ............................................................................................ 83 

3.2.3 Data summary ............................................................................................... 84 

3.2.4 Data analysis ................................................................................................. 86 

3.3 Results ................................................................................................................. 89 
3.3.1 Stand structure and community composition ................................................. 89 

3.3.2 Fruit production .............................................................................................. 91 

3.4 Discussion ............................................................................................................ 93 
3.4.1 Trends in dwarf berry shrub performance across the forest-tundra ecotone . 94 



viii 
 

3.4.2 Factors affecting fruit production across the forest-tundra ecotone ............... 95 

3.4.3 Conclusions ................................................................................................... 99 

3.5 Literature Cited .................................................................................................. 100 

Chapter 4:  Experimental warming effects on performance of culturally significant dwarf 
berry shrubs in eastern Low- and Sub-Arctic Canada. ................................................ 128 

Abstract .................................................................................................................... 128 
4.1 Introduction ........................................................................................................ 130 
4.2 Methods ............................................................................................................. 134 

4.2.1 Study Sites ................................................................................................... 134 

4.2.2 Sample Design and Data Summary ............................................................. 135 

4.2.3 Data Analysis ............................................................................................... 137 

4.3 Results ............................................................................................................... 140 
4.3.1 Growth traits ................................................................................................ 140 

4.3.2 Fruit production ............................................................................................ 141 

4.4 Discussion .......................................................................................................... 143 

4.4.1 Growth traits ................................................................................................ 143 

4.4.2 Fruit production ............................................................................................ 145 

4.4.3 Other considerations and next steps ........................................................... 147 

4.6 Literature Cited .................................................................................................. 148 

Chapter 5: Fruit production decreases among culturally important prostrate berry 
shrubs following seven years of experimental warming in Sub-Arctic Labrador, Canada
 .................................................................................................................................... 178 

Abstract .................................................................................................................... 178 

5.1 Introduction ........................................................................................................ 180 
5.2 Methods ............................................................................................................. 185 

5.2.1 Study Sites ................................................................................................... 185 

5.2.2 Sample Design and Data Summary ............................................................. 186 

5.2.3 Data analysis ............................................................................................... 187 

5.3 Results ............................................................................................................... 190 
5.3.1. Growth traits and microclimatic variables ................................................... 190 

5.3.2 Fruit production ............................................................................................ 192 

5.4 Discussion .......................................................................................................... 193 

5.4.1. Growth Traits and Local Microclimate ......................................................... 194 

5.4.2. Fruit Production .......................................................................................... 195 

5.4.3 Implications and next steps.......................................................................... 197 

5.6 Literature Cited .................................................................................................. 199 

Chapter 6: Summary and conclusions ........................................................................ 230 

 

 

 



ix 
 

List of Tables 

 

Table 2.1 Locations and characteristics of the eight Canadian Arctic communities in this 

study. ............................................................................................................................. 43 

Table 2.2 Summary statistics from 30-year climate trend analysis based on high-

resultion gridded data. ................................................................................................... 44 

Table 2.3 Comparison of participant responses among communities and between men 

and women for eight Canadian Arctic communities………………………………………..46 

Table 2.4 Pairwise comparisons of participant responses between eight Canadian 

Arctic communities. ....................................................................................................... 47 

Table 2.5 Correlation coefficients of environmental change variables with NMDS 

ordination axes for eight Canadian Arctic communities. ................................................ 49 

Table 2.6  Correlation coefficients of climate trends and age of participant with NMDS 

ordination axes for eight Canadian Arctic communities. ................................................ 51 

Table 2.7 Summary of geographic patterns in environmental change for eight Canadian 

Arctic communities ........................................................................................................ 52 

Table 3.1 Life history profile of focal berry shrubs in this study ................................... 110 

Table 3.2 Generalized linear models for the probability of fruit production in three dwarf 

berry shrubs across the forest-tundra ecotone……………………………………………111 

Table 3.3 Generalized linear models of fruit abundance in three dwarf berry shrubs 

across the forest-tundra ecotone ................................................................................. 112 

Table 4.1 Locations and characteristics of experimental warming sites in Nunavik and 

Nunatsiavut, Canada………………………………………………………………………...162 



x 
 

Table 4.2 Generalized linear mixed effect models of vegetation community response to 

short-term experimental warming ................................................................................ 164 

Table 4.3 Generalized linear mixed effect hurdle models of experimental warming, 

vegetation community attributes and local climate effects on fruit production of three 

dwarf berry shrubs……………………………………………………………………………165 

Table 5.1 Climate summary for experimental warming sites in Nain and Torr Bay, 

Nunatsiavut, Canada………………………………………………………………………...213 

Table 5.2 Generalized linear mixed-effects models of vegetation community and 

microclimatic response to seven years of experimental warming in Nunatsiavut, 

Canada. ....................................................................................................................... 214 

Table 5.3 Generalized linear mixed effect hurdle model of experimental warming and 

vegetation community attribute effects on fruit production of three dwarf berry shrubs

 .................................................................................................................................... 216 

 

 

 

 
 
 
 

 

 

 

 

 



xi 
 

List of Figures 

 

Fig. 2.1 Map of Canada highlighting the locations of participating communities across 

Inuit Nunangat. .............................................................................................................. 54 

Fig. 2.2 Relative frequency of observed change (%) in A) Weather/physical factors B) 

Vegetation/berries and C) Animals based on Inuit observations in this study…………..56 

Fig. 2.3 Distribution of participant responses regarding changes in a) Weather/physical 

factors, b) Vegetation/berries and c) Animals from eight Canadian Arctic communities in 

this study ....................................................................................................................... 57 

Fig. 3.1 Morphological diagram of three dwarf berry shrubs along a growth flexibility 

gradient. ...................................................................................................................... 113 

Fig. 3.2 A) Map photographs and schematic diagram indicating sample location and 

design across the forest-tundra ecotone in in Nain, Nunatsiavut, Canada. ................. 114 

Fig. 3.3 Ordination scatterplots of vegetation abundance (A), vegetation height (B) and 

environmental correlations across the forest-tundra ecotone. ..................................... 116 

Fig. 3.4 Variation in fruit production of three dwarf berry shrubs within each Zone-

Aspect combination across the forest-tundra ecotone................................................. 117 

Fig. 3.5 Parameter effect plot for the probability of fruit production in three dwarf berry 

shrubs across the forest-tundra ecotone ..................................................................... 118 

Fig. 3.6 Parameter effect plot for the extent of fruit production in three dwarf berry 

shrubs across the forest-tundra ecotone…………………………………………………..119 

Fig. 4.1 Map of experimental warming study sites in Nunavik and Nunatsiavut, 

Canada………………………………………………………………………………………..167 



xii 
 

Fig. 4.2 Interaction effect between ‘Treatment’ and ‘Time’ on ‘Maximum birch height’ 

(cm)…………………………………………………………………………………………….168 

Fig. 4.3 Comparison of fruit production in three dwarf berry shrubs by treatment, site 

and time as shown by median and interquartile range…………………………………..169 

Fig. 4.4 Parameter effect plot for the probability and extent of fruit production in 

Vaccinium uliginosum………………………………………………………………………..170 

Fig. 4.5 Parameter effect plot for the probability and extent of fruit production in 

Empetrum nigrum…………………………………………………………………………….171 

Fig. 4.6 Parameter effect plot for the probability and extent of fruit production in 

Vaccinium vitis-idaea………………………………………………………………………...174 

Fig. 5.1 Map of experimental warming sites in Nain and Torr Bay, Nunatsiavut, 

Canada………………………………………………………………………………………..218 

Fig. 5.2 Comparion of fruit production in three dwarf berry shrubs by treatment, site and 

over three sample periods as shown by median and interquartile range………………219 

Fig. 5.3 Parameter effects on the probability and extent of fruit production in Vaccinium 

uliginosum…………………………………………………………………………………….220 

Fig. 5.4 Parameter effects on the probability and extent of fruit production in Empetrum 

nigrum…………………………………………………………………………………………221 

Fig. 5.5 Parameter effects on the probability and extent of fruit production in Vaccinium 

vitis-idaea glandulosa……………………………………………………………………….222 

 

 

 



xiii 
 

List of Appendices 

 

Appendix 2.1 Sample poster used for Snowball Sampling in Nain, Nunatsiavut, April 

2009. ............................................................................................................................. 59 

Appendix 2.2 Interview questionnaire used throughout this study. .............................. 60 

Appendix 2.3 Sample summary report used to share within-community results to 

participants in Nain, Nunatsiavut. .................................................................................. 63 

Appendix 2.4 Pearson correlation coefficients between climate variables derived from 

high-resolution gridded and local climate station data ................................................... 65 

Appendix 2.5 R code for trend analyses presented in Chapter 2. ................................ 66 

Appendix 2.6 Ordination scatterplots of first and second axes ordination scores for 

individual environmental variables that met the critical cut-off value of r = |0.450| ........ 67 

Appendix 3.1 Pearson product moment p-values indicating significant correlations 

between vegetation response predictor variables ....................................................... 121 

Appendix 3.2 Mean and standard error of all canopy, understory and microclimatic 

predictor variables of fruit production measured across the forest-tundra ecotone ..... 122 

Appendix 3.3 R code for generalized linear hurdle models presented in Chapter 3 .. 123 

Appendix 3.4 MRPP statistics for pairwise comparisons of vegetation abundance and 

height between zones, aspects, and all zone-aspect combinations ............................ 124 

Appendix 3.5 Pearson correlation coefficients of vegetation abundance and 

environmental variables across the forest-tundra ecotone, with ordination axes.. ...... 125 

Appendix 3.6 Pearson correlation coefficients  of vegetation height and environmental 

variables, sampled across the forest-tundra ecotone, with ordination axes.. .............. 127 



xiv 
 

Appendix 4.1 Summary of experimental warming set-up and sample methodologies 

across four locations and five sites in this study. ......................................................... 175 

Appendix 4.2 Pearson product moment p-values indicating significant correlations 

between seasonal temperature and degree day predictor variables. .......................... 176 

Appendix 4.3 R-code for generalized linear mixed hurdle models presented in Chapter 

4 .................................................................................................................................. 177 

Appendix 5.1 R-code for generalized linear mixed hurdle models presented in Chapter 

5 .................................................................................................................................. 223 

Appendix 5.2a Means and standard error of lifeform cover from 2009-2016 between 

controls (CTL) and experimental warming (OTC) treatments…………………………...224 

Appendix 5.2b Summary of generalized linear mixed effect hurdle model for the effects 

of experimental warming, vegetation community attributes and plot-level microclimate 

on fruit production of three dwarf berry shrubs ............................................................ 226 

Appendix 5.2c Means and standard error of Soil temperature (°C), % Moisture and 

%PAR from 2009-2016 between controls (CTL) and experimental warming (OTC) 

treatments……………………………………………………………………………………..227 

Appendix 5.3 Summary of generalized linear mixed effect hurdle model for the effects 

of experimental warming, vegetation community attributes and plot-level microclimate 

on fruit production of three dwarf berry shrubs ............................................................ 228 

 

 

 

 
 



xv 
 

List of Abbreviations and Symbols  

Symbol/Abbreviation Meaning 

°C  Degrees Celsius  
Δ  Change in  
±  Plus or minus  
%  Percentage  
=  Equal  
<  Less than  
>  Greater than  
α  Alpha  
Begl Betula glandulosa 
CI  Confidence Interval  
cm  Centimetre  
CRU-T3  Climate Research Unit temperature data  
CTL Control 
D  D-statistic  
DJF December, January, February 
df  Degrees of freedom  
e.g.  For example  
Emni Empetrum nigrum 
F  F-statistic  
FDF Frost day frequency 
ha  Hectare  
i.e.  Which means  
JJA  June, July, August  
km  Kilometre  
LAI  Effective leaf area index  
m  Metre  
m2  Metre squared  
Max.  Maximum  
Min.  Minimum  
mm  Millimetre  
MRPP Multi-response permutation procedure 
n  Sample size  
NMDS Non-metric multi-dimensional scaling 
OTC Open-top warming chamber 
P  Probability  
PRE Precipitation 
r  Pearson’s correlation value  
SD  Standard deviation  
SE  Standard error  
sp.  Unknown species  
spp.  More than one species  
T  T-statistic  
TEK Traditional ecological knowledge 
TMP Temperature 
Vaul Vaccinium uliginosum  
Vavi Vaccinium vitis-idaea 
WDF Wet day frequency 



1 
 

Chapter 1: General Introduction 

 

1.1 Introduction and Thesis Outline 

Indigenous peoples of the Arctic, along with western scientists, share a common 

need to understand the mechanisms driving the extraordinary changes and impacts 

being observed and experienced throughout the circumpolar Arctic (Merculieff et al. 

2017). Predicting and mitigating negative ecosystem and human health outcomes will 

require a collaborative approach with insights and solutions from Indigenous and 

western scientific knowledge systems (Makondo and Thomas 2018).    

Across the coastal Canadian Arctic, Inuit are observing and experiencing 

environmental changes linked to climate variability and warming that span all taxa and 

ecosystems, with profound effects on subsistence resources (Watt-Cloutier 2015; Gerin-

Lajoie et al. 2016; Tyson et al. 2016). Within treeline and tundra plant communities, Inuit 

knowledge identifies increasing constraints on the access, availability and quality of 

plant-based resources such as berries (Downing and Cuerrier 2011, Cuerrier et al. 

2015), which are believed to be threatened by increasingly warmer and drier weather, 

and competition from rapidly expanding upright deciduous shrubs (Boulanger-Lapointe 

et al. 2019). As Elder Verona Ittulak (Nain) reported, “Those shrubs, avaalaKiak (Arctic 

dwarf birch), are affecting berries quite a bit because you know the berry leaves, they 

are being covered by those things. [...] less berries now maybe because of those 

avaalaKiak” (Chapter 2). However, not all berry species perform equally in response to 

changing climate; predicting how individual berry species will respond to climate 

variability, fluctuating resource availability, and shifting species’ interactions will require 
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a well-rounded understanding of tundra resource gradients, variations in species’ traits, 

and their responsiveness or resilience to shifting ecological pressures (Wookey 2008).   

My objective throughout this thesis was to advance our understanding of how 

tundra berry plants respond to climate variability and warming at different spatial and 

temporal scales, to better support land-use planning and climate change adaptation 

initiatives across Inuit Nunangat (Inuit regions of Canada). Recognizing the complexity 

in predicting changes in tundra berry resources, I utilized a mixed-method approach 

based on Inuit knowledge, climatological records, ecological surveys and in-situ field 

experiments. This study makes an important contribution to the climate change 

literature by incorporating multi-region, -site, -species, and -year approaches that fill an 

existing knowledge gap on the future availability and viability of tundra berry resources.   

 In Chapter 2, Local assessments of environmental change in Arctic Canada: an 

integrated approach to analyzing Inuit observations and climate data, we explore 

geographic patterns in Inuit observations of environmental changes from eight 

Canadian Arctic communities spanning three Inuit regions of Canada and compare 

these patterns to 30-year trends in local climate variability. Given the geographic 

coverage of Inuit knowledge in this study and the use of a new analytical approach, we 

were able to generate important insights on the scope and extent of climate change 

impacts (including berries) and potential drivers of change.   

 Chapter 3, Strong canopy-understory feedbacks on fruit production at treeline, 

returns to classical ecological surveys across abiotic and biotic gradients to determine 

canopy-understory feedbacks on the performance of three dwarf berry shrubs. This 
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paper validates the prediction that expansion of tree and tall-shrub canopies can reduce 

fruit production and availability among low shrub tundra ecosystems.  

 Chapters 4 and 5 test the relationship between three dwarf berry shrubs and 

upright deciduous shrubs using experimental warming, over a 2- and 3-year period in 

eastern Sub- and Low-Arctic Canada, and over a six-year period in eastern Sub-Arctic 

Labrador. In Chapter 4, Experimental warming effects on performance of culturally 

significant dwarf berry shrubs in eastern Low- and Sub-Arctic Canada, our multi-

species, multi-site approach demonstrated the widespread responsiveness of upright 

deciduous shrubs to warming and is among the first to identify divergent responses 

among prostrate or low-growing berry shrubs. Chapter 5, Fruit production decreases 

among culturally important prostrate berry shrubs following seven years of experimental 

warming in Sub-Arctic Labrador, Canada, builds on our understanding from Chapter 4 

by demonstrating phenotypic responses to changing resource availability among berry 

shrubs over a longer time period, a gradient in impacts on prostrate vs. upright berry 

shrubs, and that truly prostrate berry shrubs are most vulnerable to tundra 

shrubification.  

1.2 Co-authorship Statement  

This research was conducted independently under the supervision of Dr. Luise 

Hermanutz. For Chapters 3 and 5, I was responsible for experimental design, collection 

of data and sample processing, statistical analysis and writing the manuscripts. Data 

collection in the field was assisted by Daniel Myers, Anita Kora, Elias Obed, James 

Wall, Allison Ford, Darroch Whitaker, Rodd Laing, Alain Cuerrier and Luise Hermanutz. 
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Chapter 3 is co-authored by Luise Hermanutz, and Chapter 5 by Luise Hermanutz and 

Alain Cuerrier.  

Chapters 2 and 4 are syntheses chapters whereby co-authors contributed data 

from different regions across the Canadian Arctic. In Chapter 2, co-authors contributed 

qualitative data based on interviews from Nunavut and Nunavik. For Nunatsiavut, I 

developed, conducted and transcribed interviews. Co-author Alain Cuerrier was present 

to oversee my interview process in Nain, Nunatsiavut. I was then responsible for 

harvesting quantitative data for all regions, data collation, building multi-site datasets, 

statistical analysis and writing the manuscript. This chapter is co-authored by Jose 

Gérin-Lajoie, Alain Cuerrier, Luise Hermanutz, Esther Lévesque, Carmen Spiech and 

Greg Henry. In Chapter 4 I was responsible for experimental design and data collection 

at two experimental warming sites in Nunatsiavut. Co-authors contributed data from 

three sites in Nunavik. I was responsible for data collation and standardization, building 

quantitative datasets, analysing the data and writing the manuscript. Co-authors on this 

chapter include Luise Hermanutz, Alain Cuerrier, Charlene Lavalée and Esther 

Lévesque.  

1.3 Funding 

Funding for Chapter 2 was provided by IPY-CiCAT awarded to Greg Henry and 

NSERC-NCE ArcticNet awarded to Luise Hermanutz. Financial and in-kind support for 

Chapter 3 and 5 was provided by NSERC-NCE ArcticNet and NSERC-NCE CANPOLIN 

awarded to Luise Hermanutz, Memorial University, Northern Scientific Training 

Program, NSERC-CGSD and NSERC-NCE CANPOLIN training grant awarded to Laura 

Siegwart Collier. Chapter 5 was supported by the above-mentioned funding agencies, 
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as well as Centre D’Étude Nordique, Montreal Botanical Gardens, Université du Québec 

à Trois Rivières, and University of British Columbia.  

1.4. Permits and Licences 

The interview protocol and semi-structured questionnaire utilized in Chapter 2 

followed the ethical guidelines with full permission from participants under ethics permits 

obtained by Université du Québec  à Trois-Rivières for Nunavik (#CER-07-124-07.18), 

Memorial University of Newfoundland (ICEHR2008/09-131-SC), Nunavut Research 

Institute (Permit #05 070 11R-M), and Nunatsiavut Government Research Advisory 

Committee (June 2009).  
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Chapter 2: Local assessments of environmental change in Arctic Canada: an integrated 

approach to analyzing Inuit observations and climate data 

 

Siegwart Collier, L., J. Gérin-Lajoie, A. Cuerrier, L. Hermanutz, E. Lévesque, C. Spiech, 

and G. Henry 

 

Abstract 

 The Arctic is experiencing unprecedented environmental changes linked to 

increased temperatures, climate variability, population growth and development. 

Understanding how these changes compare across northern communities and regions 

is essential for effective resource management, mitigation and adaptation response. 

Here, we explore geographic patterns in Inuit observations of environmental changes 

from eight Canadian Arctic communities spanning three Inuit regions of Canada and 

compare these patterns to 30-year trends in local climate variability. Qualitative and 

quantitative data were combined using multivariate ordination [non-metric 

multidimensional scaling (NMDS)] to 1) generate new insights on climate change 

impacts across the Canadian Arctic, their scope, and potential change drivers, and 2) to 

test a new methodology for evaluating such change. Our trend analysis supported 

strong local controls on climate variability among communities. Ordination combined 

Inuit observations on multiple environmental variables with climate trend analyses over 

a large geographic area. Using this approach, we detected pan-Canadian Arctic 

patterns of change in the timing of seasons, snowfall abundance, timing of sea-ice 

formation/break-up, and shrub abundance, and several regional patterns in weather and 
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animal abundance. Several regional-scale patterns correlated with increasing 

precipitation over the 30-year period, including rainfall and animal abundance and 

changing sea-ice conditions. We also detected strong local patterns in tree and berry 

abundance. Greater inference on potential drivers of observed patterns could be 

realized through inclusion of local ecological and social factors, which may vary 

substantially among communities.  

 

Keywords: Inuit observations of environmental change, Inuit regions of Canada, 30-

year climate trends, multivariate ordination 
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2.1 Introduction 

 The combined effects of increased climate variability and warming, population 

growth and modernization have resulted in widespread environmental changes 

throughout the global Arctic. Ecosystem-level impacts include changes in plant species 

composition, abundance and distribution (Pouliot et al. 2008, Elmendorf et al. 2011, 

Henry et al. 2012, Pearson et al. 2013), widespread permafrost thaw (Hinzman et al. 

2005, Lawrence et al. 2008, Way and Lewkowicz 2018), and shifts in terrestrial and 

marine mammal distribution (Kovacs et al. 2011, Côté et al. 2012). The speed and 

extent of these environmental changes is having a disproportionate and net-negative 

effect on northern Indigenous communities by changing access and availability to key 

natural resources that support local livelihoods, culture and traditions (Trainor et al. 

2007, Buijs 2010, Downing and Cuerrier 2011, Mustonen 2013).  

 In response to the widespread changes occurring across terrestrial ecosystems 

and across Inuit Nunangat, a major research effort was undertaken as part of 

International Polar Year (2007-2008), and further supported through ArcticNet (2009-

2019+), to understand the local and regional impacts of climate variability and warming 

on tundra vegetation, and how changes in tundra resources are affecting Inuit 

communities across Inuit regions of Canada (Henry et al. 2012). An overarching 

strategy within this research program was to collaborate with Inuit communities and 

governments to conduct community-based participatory (community-based monitoring, 

consultations and interviews), and standard scientific research (remote sensing, climate 

monitoring, vegetation surveys and in-situ experiments), to understand the complexity of 

terrestrial climate change impacts, and support appropriate and relevant adaptation 
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response strategies that meet the needs and priorities of Canadian Arctic communities 

(Riedlinger and Berkes 2001, Berkes et al. 2007). In this chapter, we present one sub-

project within this broader research program, which draws on local Inuit traditional 

ecological knowledge (TEK) documented through community interviews to 1) explore 

geographic patterns in Inuit observations of environmental changes from eight 

Canadian Arctic communities spanning three Inuit regions of Canada, and to 2) 

compare patterns in Inuit observations alongside 30-year trends in instrumental climate 

records. Here, Inuit TEK is presented as first-hand or lived observations of 

environmental change (Houde 2007). Inuit have an intimate connection with the 

environment developed through generations of living off the land and sea (Gearheard et 

al. 2010). This relationship, which is based on continual observation, intimate interaction 

with the environment and inter-generational knowledge transfer, gives rise to Inuit 

traditional ecological knowledge (TEK) (Huntington 1998). Lived observations, which 

represent only one of many facets of TEK (Houde 2007), are generated through the 

lens of Inuit culture and values [Inuit Qaujimajatuqangit – see  Wenzel (2004)], and are 

an essential part of Inuit TEK as a whole.  

 Efforts to link northern Indigenous and scientific knowledge in the context of 

climate change generally fall into four broad groupings, often based on research from 

one or few communities within a region. Areas of research include: 

• Identifying complementarities and differences between knowledge systems 

(Alexander et al. 2011, Evering 2012) 
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• Improving understanding of primarily community-specific changes in weather, 

wildlife and the physical environment (Krupnik and Jolly (editors) 2002, Laidler 

2006, Gearheard et al. 2010, Weatherhead et al. 2010, Royer et al. 2013) 

• Assessing implications of climate variability on community health, security and 

vulnerability (Ford et al. 2006, Furgal and Seguin 2006, Laidler et al. 2009, 

Cunsolo Willox et al. 2012) 

• Building policy and strategies for adaptation response planning (Ford et al. 2010, 

Ford and Pearce 2012).  

We make an important contribution to this body of literature in several key areas. First, 

this study is uniquely broad in geographic scope, incorporating and sharing Inuit TEK 

from eight Canadian Arctic communities across three Inuit regions of Canada. It also 

incorporates observations on multiple environmental variables that are inclusive of but 

not limited to subsistence harvesting. Lastly, this study explores a mixed-method 

approach to linking Inuit knowledge with climatological records using an analysis 

procedure (multivariate ordination) rooted in community and ecosystem ecology, to 

explore geographic patterns in assemblages of observations among Inuit communities. 

Collectively, this study aligns with the National Inuit Climate Change Strategy (Inuit 

Tapiriit Kanatami 2019) by conducting collaborative research in priority areas with 

potential contributions to policy at multiple jurisdictional scales. 

  Quantitative analysis of traditional knowledge is paradoxical in that grouping, 

coding or enumerating knowledge (a western scientific approach) can detach local and 

Indigenous knowledge from the rich and complex context in which it is situated (GNWT 

2005, ITK and NRI 2006). In this study, a semi-structured approach was adopted to 
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facilitate quantitative analysis; however, for each response the interviews also 

generated detailed narratives that placed participant responses within their lived 

context. These narratives were compiled to produce a multi-dialect book entitled “The 

caribou taste different now” Inuit Elders Observe Climate Change (Gerin-Lajoie et al. 

2016), which documents the depth and richness of Inuit knowledge shared in this study 

while providing a means for communities across the Canadian Arctic to share their 

experiences with climate change, and to pass that knowledge on to future generations. 

We directly draw on narratives from this book to contextualize our quantitative results 

and frame our discussion. The mixed method approach presented in this study does not 

attempt to corroborate Inuit observations with instrumental climate records. Rather, we 

bring both knowledge sources together to: 

1. Generate new insights on climate change impacts, their scope and potential 

drivers of change based on Inuit observations and climate trend analyses across 

the Canadian Arctic 

2. Evaluate the spatial scale and consistency of climate change impacts 

3. Test a new analysis procedure for exploring patterns among assemblages of Inuit 

observations and instrumental climate data, while examining the benefits and 

risks of this analytical approach 

   

2.2 Methods 

2.2.1 Study Sites 

From 2007-2010, we conducted 144 interviews in eight communities spanning 

three Inuit regions of Canada (Fig. 2.1), including:  
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• Nunavut: Kugluktuk (17), Baker Lake (24), Pangnirtung (19), and Pond 

Inlet (15) 

• Nunavik: Umiujaq (20), Kangiqsujuaq (17), and Kangiqsualujjuaq (9) 

• Nunatsiavut: Nain (23) 

Communities span approximately 16° latitude, with representatives from Sub- (Umiujaq, 

Kangiqsualujjuaq and Nain), Low- (Kugluktuk, Baker Lake and Kangiqsujuaq), Mid- 

(Pangnirtung) and High Arctic (Pond Inlet) Canada. As latitude increases, permafrost 

shifts from discontinuous to continuous, and vegetation from forest-tundra to tundra 

(Table 2.1). Local climate also varies with topography and proximity to marine 

environments. All communities apart from Baker Lake are coastal.  

2.2.2 Study design 

 To investigate geographic patterns of change for multiple environmental 

variables, interviews were open to all community members with historic and current 

knowledge of the local environment. We used snowball sampling (Goodman 1961) 

initiated through local information sessions and advertising (radio and poster) (Appendix 

2.1) in conjunction with purposive sampling (Tongco 2007), based on the 

recommendations of local governments, agencies, and interpreters. Collectively, this 

resulted in 144 core interviews with 88 women and 56 men, who ranged in age from 44-

92 years. Core interviews ranged from 1-2 hours in duration, and in many cases, 

complementary mapping interviews were conducted to identify site-specific changes in 

natural and cultural resources throughout the respective regions. Participants self-

identified as having spent considerable time on the land; either ongoing or in the past as 

in the case of some Elders. Many participants lived through government amalgamation 
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and centralization of their ancestral communities, which generally occurred from 1930-

1970 across Canada (Billson 2001). Therefore, we only included observations specific 

to their current community of residence. Most participants shared observations in the 

context of personal/family subsistence and cultural practices; however, some shared 

knowledge and observations acquired through their occupation, such as harvesters and 

environmental monitors.   

Prior to interviews, individuals were informed of the project goals and research 

process, and their right to withdraw from the interview and/or research process either by 

notifying the interviewer or interpreter. Although participants had the option to withdraw 

at any point throughout the process, opportunities to personally connect with the 

research group and/or interpreter became fewer at the point of statistical analyses and 

writing. Participants were also made aware that they were free to respond to any/all 

questions for which they felt comfortable, or those of interest to them. Oral and/or 

written consent was obtained from each participant, in which they also specified how 

they wanted the interview to be documented (audio, video and/or manual recording of 

responses). Our interview protocol and semi-structured questionnaire followed the 

ethical guidelines with full permission from participants under ethics permits obtained by 

Université du Québec à Trois-Rivières for Nunavik (#CER-07-124-07.18), Memorial 

University of Newfoundland (ICEHR2008/09-131-SC), Nunavut Research Institute 

(Permit #05 070 11R-M), and Nunatsiavut Government Research Advisory Committee 

(June 2009).  

Working with local interpreters, members of our research team interviewed 

participants primarily in the local Inuktut dialect, and occasionally in English. During a 
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typical interview, the interviewer(s) would begin by requesting information on location 

and date of birth, and would use a semi-structured questionnaire (Appendix 2.2) 

accompanied by photographs and maps of each region (Huntington 1998) to cover the  

following themes: 1) berries and berry picking activities, 2) abundance, distribution, and 

use of plants, 3) influence of climate on plants, 4) changes related to animals and 5) 

human factors related to climate change (see Cuerrier et al. 2015 for details). Following 

the interviews, topics were broadly re-categorized, and included the following variables:  

1) Weather/physical factors: timing of seasons, way of life (traditional practices), 

lake/sea-ice freeze and break-up; abundance of snow and rain; changes in 

snowmelt, temperature, permafrost, erosion, hydrology, lake/sea-ice thickness; 

variability in weather (total variables = 30) 

2) Vegetation and berries: timing of bloom, abundance of all plants, trees, 

shrubs, grasses, mosses, lichens and berry plants; timing of berry ripening and 

taste; berry species included: Rubus chamemorus L. (cloudberry), Empetrum 

nigrum L. (crowberry/blackberry), Vaccinium uliginosum L. (blueberry), and V. 

vitis-idaea L. (mountain cranberry/redberry/lingonberry) (total variables = 35) 

3) Animals: abundance and phenology of insects, mammals, fish and birds (total 

variables = 12) 

 

2.2.3 Data summary and analysis 

Community Interviews 

We asked participants close-ended questions to objectively obtain quantitative 

responses on observed environmental changes. For example, "Have you observed 
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changes in plant abundance?” Participants responded, “Yes or No”, and where 

appropriate, indicated the direction of change with context and examples (e.g. 

more/less). Participants understood “change” to be environmentally driven rather than 

anthropogenic (e.g. development, harvesting, pollution) and outside the natural rhythm 

of what is normal or expected for that area. Participants had the time and space to 

speak freely providing as much detail and context as they wished regarding their 

observations and experiences. This approach simultaneously generated detailed 

narratives relating to many aspects of Inuit TEK. For all communities, the temporal scale 

of observations occurred over the past 5-25 years with a median value of 10 years.  

Following transcription of interview audio and notes, we quantified participant 

responses using binary (1=change; 0=no change) and ordinal (e.g. -1=less; 0=no 

change; 1=more) classification. Ordinal responses were separated into two binary 

variables [e.g. plant less (1=yes; 0=no), plants more (1=yes; 0=no)] to achieve a uniform 

binary response matrix. In the uncommon occurrences where a person did not know or 

chose not to answer, we attributed a 0-value, as for no observation of change. The 

proportion of observed change to no observed change (1’s to 0’s) was calculated for all 

variables within each community. Proportions were then pooled by interview category 

and presented as boxplots to summarize the frequency of observed change within 

communities for each interview category.  

Results of our work were brought back to all communities for vetting through 

personal contact with participants and local governments. In many communities, results 

were shared at community open houses and through community-based publications 

such as bulletins and posters (Appendix 2.3).   
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Local climate analysis 

We conducted trend analyses on a series of climate variables to investigate 

recent and local environmental changes for each community. As participants ranged 

from 44-92 years of age, we chose a 30-year period (1977-2007) in which participants 

were adults that overlapped with the general time frame of observed environmental 

changes (10-year median). Our intention was to use local climate station data available 

through Environment Canada’s local weather station network 

(http://climate.weather.gc.ca/index_e.html); however data archives for each community 

varied greatly in length and completeness. This is especially pronounced among 

Nunavik communities, which have incomplete/missing data before 1992. As an 

alternative, we extracted monthly mean high resolution (0.5 x 0.5 degree) gridded 

climate data available for our period of interest for each community [Climatic Research 

Unit Time-Series 3.1 (CRU TS3.1), University of East Anglia CRU, 2011]. Monthly 

temperature (TMP) and precipitation (PRE) data were used to calculate mean annual 

temperature, total annual precipitation and mean temperature/total precipitation for the 

following seasonal periods: spring (April-May), summer (June-September), fall 

(October-November) and winter (December-March). We also calculated mean annual 

wet day frequency (WDF; days with precipitation) and frost day frequency (FDF; days 

with air temperatures <0ºC) for the period of 1977-2007 for each community. To 

investigate how accurately the gridded data represent local climate conditions for each 

community, we derived the same suite of climate variables using local station data for 

available time periods, and calculated the correlation coefficients between gridded and 

locally-derived variables (Appendix 2.4). We found strong and significant correlations 

http://climate.weather.gc.ca/index_e.html
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between local and gridded data, supporting the use of gridded data in this study. 

Missing local station values contributed to weak correlation coefficients for mid and high 

Arctic communities. 

To investigate the magnitude and significance of linear trends in climate variables 

for the period of 1977-2007, we estimated Theil-Sen slopes and 95% confidence 

intervals described by Yue et al. (2002) and implemented in Royer et al. (2013). This 

approach is suitable for time series without distributional assumptions, and accounts for 

lag-1 serial autocorrelation, which is common with climate data. We tested for 

significance (p < 0.05) using the non-parametric Mann-Kendall test (Helsel and Hirsch 

2002). Trend analyses were performed in R (v2.15.3; R Development Core Team 2009) 

using the ‘zyp’ package (Bronaugh and Werner 2013).  Analysis code can be found in 

Appendix 2.5.  

Combining analysis of community interviews with local climate trends 

We conducted multi-response permutation (randomization) procedures (MRPP) 

to test for statistical differences in participant observations among communities and 

between men and women, and we explored patterns and differences in assemblages of 

Inuit observations using non-metric multidimensional scaling (NMDS) ordination. Both 

procedures are highly suitable to community-based data, as neither relies on a random 

sample of the population (McCune and Grace 2002). NMDS is an indirect, non-

parametric ordination technique that uses an iterative procedure to group similar data 

points or observations from large complex datasets to visualize and interpret patterns 

(McCune and Grace 2002). The approach makes few assumptions about the data 
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distributions, which makes it highly flexible and an important distinction from traditional 

hypothesis-testing procedures (Legendre and Legendre 1998).  

 Ordinations were performed on untransformed data matrices (no significant 

outliers detected or removed), and we followed procedures outlined in Peck (2010) to 

specify initial analysis criteria (max. # axes = 4, max. # of iterations = 200, random 

starting coordinates, step length = 0.20, time = random # seed, 50 runs with real and 

randomized data) and to determine a final ordination solution. We chose Euclidean 

distance to calculate axes scores for MRPP and NMDS because our binary characters 

(0=absence of change; 1=presence of change) convey equal meaning for all categories 

of our questionnaire (Peck 2010). The MRPP and NMDS analyses were run individually 

for each questionnaire category using PC-ORD version 6 (PCORD v.6; McCune and 

Grace 2002).  

Since the test statistics from our trend analyses (Kendall’s tau) represent 

normalized values of the magnitude and direction of change for each time series, we 

overlaid these values as climate vectors in each NMDS ordination. This approach 

enabled us to equally explore relationships between interview responses and climate 

variables across sites. Pearson product moment correlation coefficients (r-values) were 

then used to interpret the strength and direction of relationships between interview 

responses/climate variables and ordination axes. With a large sample size, statistical 

significance is achieved with considerably low critical r-values (i.e. n=100, p<0.05 at 

r=0.197; Upton and Cook (2008). Therefore we chose a conservative cut-off value of “r” 

(|0.400|) to interpret statistically important relationships as suggested by McCune and 

Grace (2002).  
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To explore the context and implications of our ordination results, we draw on 

participant narratives and present select quotations alongside NMDS results. Many of 

these quotations are compiled and published in Gerin-Lajoie et al. (2016). 

2.3 Results 

2.3.1 Local climate trends 

 We found 30% of climate variables analysed from the gridded climate data 

showed significant changes over the 30-year period (Table 2.2). Apart from 

Pangnirtung, all communities showed general trends towards increasing annual 

temperatures. The magnitude of change for each community over the 30-year period 

was relatively small (<0.1°C/year), however, 4 of 8 time series demonstrated significant 

increases in annual warming with cumulative values ranging from ~1.5 to 2.5 °C over 

the 30-year period. Warming was most pronounced at Baker Lake, where we found 

significant warming trends annually and within each season. We detected a similarly 

widespread trend towards increasing fall temperatures across communities, apart from 

Kugluktuk and Pangnirtung. All communities, except Pangnirtung and Nain, showed 

general trends towards decreasing annual frost day frequency, however only half of 

these trends were significant. Kugluktuk, Pangnirtung and Kangiqsujuaq showed 

significant declines in annual wet day frequency. For most of the eastern communities 

(excluding Pangnirtung and Kangiqsujuaq), we found a general trend towards increased 

annual precipitation (1.16-4.79 mm/year), but only Kangiqsualujjuaq was significant. 

Pangnirtung was the only community with decreasing 30-year trends in temperature and 

precipitation; however, we also found small yet significant increases in winter 

precipitation (0.14 mm/year). While there was no apparent north-south or west-east 
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gradient in rates of change, the direction of change for nearly all climate variables was 

consistent between western and mid-Arctic communities, and among all eastern 

communities.    

2.3.2 Variation in Inuit observations and their correlation with climate trends 

 Higher median values in Panel A of Fig 2.2. indicate that environmental change 

was most frequently observed for variables regarding weather/physical factors, followed 

by animals (Panel C) and vegetation/berries (Panel B). Although more change was 

observed for weather/physical factors, tighter limits on the upper and lower ranges 

around the median indicate that response consistency was highest for variables 

regarding vegetation/berries (Panel B), followed by animals and weather/physical 

factors (Panel C, A). Responses within Pangnirtung, Pond Inlet and Kangiqsujuaq 

appeared to be the most consistent across all interview categories (Fig. 2.2).   

Inuit observations were significantly different among communities for all 

questionnaire categories (Weather/physical factors: T = -28.405, p < 0.001; 

Vegetation/berries: T = -31.245, p < 0.001; Animals: T = -13.730, p< 0.001; Table 2.3), 

and for nearly all pairwise community comparisons across interview categories (Table 

2.4), indicating the importance of local context in observations of change. Observations 

also differed significantly between men and women, but only regarding 

Weather/physical factors (T = -2.777, p = 0.015; Table 2.3).  

All ordinations resulted in 3-dimensional solutions, however only the strongest 

two axes, environmental variables and climate vectors with r-values that met the critical 

cut-off (r = |0.400|) were plotted in Fig. 2.3a-c.  A complete list of r-values for all 

environmental variables and climate vectors is provided in Table 2.5 and Table 2.6 
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respectively. To substantiate our interpretation of Fig. 2.3a-c, we provide scatterplots of 

interview responses against first and second ordination axes for each environmental 

variable that met our critical cut-off value (Peck 2010) (Appendix 2.6).  

Weather and physical factors 

 The first two axes of the ordination for weather/physical factors (Fig. 2.3a) 

accounted for 31.9% and 24.4% of the variance explained (VE), respectively. Although 

consistency varied within communities (Fig. 2.2), there were strong relationships 

between “season” variables and axis 1, suggesting that the timing of seasons has 

changed for some communities (Winter: r = -0.658; Summer: r = -0.577; Fall: r = -0.514; 

Spring: r = -0.470). As one participant from Pangnirtung described, “Winter doesn’t 

usually come in until December. Back then it was November” – Evee Anilniliak, (pg. 

170). Other important correlations along axis 1 included less snow (r = 0.563) and 

changes to wind (r = -0.409), which was reported by most participants from nearly all 

communities. Later sea-ice freeze up (r = -0.522) was also observed by all coastal 

communities, but to a lesser extent in Umiujaq and Pond Inlet. We observed an 

important relationship with axis 1 that traditional travel routes have changed (r = -0.538), 

influenced by strong agreement among eastern Sub/Low and High Arctic communities 

(especially Nain and Kangiqsujuaq). Some participants also indicated that temperature 

is colder now (r = -0.487). This correlation was strongly influenced by responses from 

Nain. An important contrast along axis 2 was that nearly all participants from Kugluktuk 

and the majority from Baker Lake were observing less rain throughout the year (r = -

0.578), whereas communities in eastern Sub/Low Arctic (especially Nain and 

Kangiqsujuaq) were observing more rain (r = 0.469), in particular greater intensity of 
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rainfall but similar frequency. From Kugluktuk, one Elder explained that “The rivers and 

lakes are drying up. Hardly any water left. Even Bloody Falls, where the river flows, we 

noticed the flow getting weaker. It’s getting less and less every year” – Lena Allukpik 

(pg. 59).  

 Correlations with axis 2, which were strongly influenced by responses from High 

Arctic and eastern Sub-Arctic communities, showed participants were observing earlier 

sea-ice break-up (r = 0.622) and thinner sea-ice conditions (r = 0.636; exceptions are 

Pangnirtung and Umiujaq). Participants from Nain and Kangiqsujuaq were also 

observing thinner lake ice conditions (r = 0.423). Participant responses on traditional 

practices or “Way of Life” from eastern communities were significant along both 

ordination axes (axis 1, r = -0.437; axis 2, r = 0.426). From Pangnirtung, one Elder 

explains that “As Inuit, our way of thinking has a lot to do with our environment. For 

people in the North, you know how the seasons work and your body has to be in sync 

with the land all the time. It’s true that your mind and body are not so much in sync with 

the land anymore.” – Jaco Ishulutaq (pg. 185). Correlations with axis 2 for rainfall and 

sea-ice conditions are similar to those for climatic vectors indicating increasing fall (r = 

0.528) and annual (r = 0.449) precipitation (Fig. 2.3a).  

 Although the MRPP indicated that responses differed based on gender for 

weather/physical factors, when ordinations and individual scatterplots were grouped by 

gender (data not presented) there were no discernable patterns between males and 

females for individual variables.   

Vegetation and berries 
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 Ordination results regarding vegetation and berries (Fig. 2.3b) showed that axes 

1 and 2 accounted for 53.7% and 22.3% of VE, respectively. Overall high VE was 

attributed to the observation (along axis 1) that berry abundance has declined (r = -

0.800), especially for cloudberry (r= 0.604), blueberry/bilberry (r = 0.654), and black 

crowberry (r = 0.631). Participants also reported that berries appeared smaller (r = 

0.660) and ripening occurred later (r = 0.500). A small portion of observations from 

eastern Sub and Low Arctic communities indicated earlier ripening times (axis 2: r = 

0.402). Patterns towards decreased berry quantity and quality were primarily driven by 

participant responses from Nain. Participant responses from Nain and Kugluktuk 

indicated decreases in cranberry abundance (axis 1: r = 0.419). Alternatively, 

participants from Kangiqsualujjuaq noted that cloudberry abundance had increased (r = 

0.579) and that these berries ripened earlier than in the past (axis 2: r = 0.470). 

Significant increases in blueberry abundance were attributed to participant responses 

from Pond Inlet (axis 1: r = -0.417).  

 The increase in abundance of tree seedlings and saplings along axis 1 (r = 

0.567) is mainly due to responses from Nain and Kangiqsualujjuaq. Correlations with 

axis 2 indicate that primarily eastern communities have generally observed increased 

plant abundance (r = 0.638), yet this was infrequently noted in Umiujaq. Furthermore, 

participants from all communities have observed significant increases in shrub 

abundance (axis 2: r = 0.628). As one participant from Kangiqsujuaq explains, 

“Avaalaqiaq (Betula glandulosa Michx. [Arctic dwarf birch]) used to grow along the 

ground, now they are more upright growing like the uqaujaq (Salix sp. [willow])” – Alasie 

Koneak (unpublished). This pattern was largely influenced by responses from eastern 
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Sub/Mid Arctic communities. One Elder from Nain linked changes in berries to 

increased shrub expansion, explaining that “Those shrubs, avaalaKiak (Arctic dwarf 

birch), are affecting berries quite a bit because you know the berry leaves, they are 

being covered by those things. [...] less berries now maybe because of those 

avaalaKiak” – Verona Ittulak (unpublished). Relatively few participants from Pangnirtung 

and Baker Lake observed significant decreases in shrub abundance (axis 2: r = -0.427). 

Observations of vegetation change did not correlate strongly with 30-year trends in 

climate variables (Fig. 2.3b). 

Animals 

 Many participants, irrespective of community, observed changes in animal 

populations (Fig. 2.3c). Along axis 1 (30.3% of VE), there were strong correlations 

driven by primarily eastern communities that mammal (r = 0.760), fish (r = 0.610) and 

bird (r = 0.586) abundance has changed. Participants from eastern communities 

described declines in seal and caribou abundance. From the High Arctic, one Elder 

explains that “There used to be seal swimming by Pond Inlet […] There is less seal 

every year now. Where are they going? There’s no more caribou herd anymore. Very 

few on Baffin” – Abraham Kunnuk (pg.129). These observations correlated with 

increased spring precipitation (axis 1: r = 0.471), especially for Pond Inlet, Nain and 

Kangiqsujuaq (Fig. 3). Correlations along axis 2 (30.1% of VE) depict strong similarity 

among all communities that insect abundance has changed (r = -0.833). A relatively 

small number of participants from all communities observed a decrease in mosquito 

abundance (r = -0.723), while participants from mainly Kugluktuk observed a decrease 
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in black fly abundance (r= -0.448). Increases in the same species were observed along 

axis 3 (not shown), however agreement was very low within communities.  

 The age of participants did not correlate strongly with ordination axes and/or 

interview responses for any environmental variables considered (Table 2.6). 

2.4 Discussion  

 Using ordination to combine Inuit TEK and climate trends helped to reveal multi-

level patters (pan-Canadian Arctic, regional and local) in observed environmental 

change (Table 2.7), with some regional patterns (travel routes, rainfall, sea-ice 

conditions and animal abundance) correlating strongly with changing precipitation 

regimes. Results suggest that global, regional and local factors influence how impacts 

are observed within communities, supporting the need for locally informed climate 

change policy and adaptation strategies. This general finding is consistent with other 

new, mixed-method approaches to presenting and interpreting Inuit TEK on climate 

change (Cuerrier et al. 2015, Rapinski et al. 2017). Greater attention to local factors 

(ecological and social) alongside regional climate trends will be essential to identify 

patterns and drivers of observed change.    

2.4.1 Climate trends, Inuit TEK, and patterns in their relationship across the 

Canadian Arctic 

 Two important findings emerged from our climate trend analyses. Firstly, the 

direction of trends was largely consistent among communities, suggesting that 

communities are similarly affected by large-scale climate patterns. Our results support 

general findings from other studies that Canada’s North, on average, has become 

warmer in recent decades, with some regions becoming wetter while others are 
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experiencing less precipitation (Furgal and Prowse 2008; Bush and Lemmen 2019). 

Secondly, there was considerable variation in the magnitude of change for each 

community, indicating local controls on climate. This pattern was reflected in participant 

observations, and is well documented in the literature (Rapaić et al. 2015). Overall lack 

of significant trends across all climate variables may be partly explained by differences 

in rates of warming between western and eastern regions of northern Canada. While 

western Canada experienced rapid warming from 1970-1990’s, eastern Canada 

experienced a cooling trend (Morgan et al. 1993), warming only since the mid-1990’s 

(Finnis and Bell 2015). Weak trends may also be attributed to use of high-resolution 

gridded data, which rely on local stations to generate monthly means, but interpolates 

missing values (which are more frequent with historic data) from the nearest station. 

These results underscore the importance of continued local climate monitoring, as 

interpolated averages may not meaningfully relate to observed impacts at local scales 

(Rapaić et al. 2015). The distinct cooling trends we detected for Pangnirtung are 

consistent with climate trends reported in LeBlanc et al. (2010), although the authors 

also reported a recent warming trend from 1996-2009.   

 Inuit observations revealed Canadian Arctic-wide changes in primarily winter 

conditions, including the timing of seasons, decreased snowfall, later sea-ice freeze-up 

and earlier break-up, the latter of which correlated with increasing fall and annual 

precipitation. These patterns are consistent with Inuit TEK of change in snow and ice 

conditions reported from 12 communities across the Canadian Arctic (Nickels et al. 

2005) and fit with the effects of climate warming on winter snow and ice regimes noted 

in remote sensing and modeling studies (ACIA 2005, Bhatt et al. 2010). Inuit 
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observations that were similar in the east included altered travel routes, thinning sea-

ice, and increased rainfall versus observations of decreased rainfall in western and 

central Canada; these local observations strongly correlated with fall and annual 

precipitation patterns for respective communities. Thus, precipitation appears to be an 

important local factor in driving large-scale patterns of observed change in weather and 

physical factors. We also identified a significant regional pattern among eastern 

communities (axis 1: r = -0.437; axis 2: r = 0.426) that “Way of life” is being affected by 

changes in the environment. Inuit identity and attachment to the land is essential to 

community mental health and well-being (Cunsolo Willox et al. 2012) and facilitates 

opportunities for transmission of TEK to youth (Cuerrier et al. 2012). Widespread effects 

on “Way of Life” point to the broader and intergenerational implications of climate 

change impacts across the Canadian Arctic. 

 Inuit TEK indicating pan-Canadian increases in shrub abundance, and an 

increase in plant abundance among eastern communities is an important and new 

contribution to tundra vegetation research (Sturm et al. 2001, Tape et al. 2006, Myers-

Smith et al. 2011, Elmendorf et al. 2012). Inuit TEK from Nain and Kangiqsualujjaq was 

also consistent with dendrochronology studies that trees are more abundant now 

(Dufour-Tremblay et al. 2012, Lemus-Lauzon et al. 2012, Tremblay et al. 2012). 

General observations of vegetation change did not correlate strongly with climate trend 

variables (Table 2.6); however, they coincided with increasing annual and summer 

temperatures for nearly all communities (less in Pangnirtung). Higher temperatures 

result in higher degree day units, which among other factors such as winter snow cover, 

soil disturbances and herbivory, have all been linked to tree and shrub expansion in 
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tundra ecosystems (Hallinger et al. 2010, Myers-Smith et al. 2011, Elmendorf et al. 

2012). Other locally driven patterns include strong agreement among Nain residents 

that berry quantity and quality has declined. This local pattern was divergent from 

nearby Kangiqsualujjaq, which observed more cloudberries and earlier ripening times. 

Although significant relationships were not observed between Nain observations of 

declining berry crops and frost day frequency in the ordination, Nain stands out as the 

only community with an increase (albeit non-significant) in frost day frequency from 

1977-2007. The timing and frequency of freeze-thaw events can directly influence the 

survival and productivity of tundra berry plants (Bokhorst et al. 2011), and could be an 

important local factor contributing to strong agreement among Nain residents. In 

general, fruit production was affected more by microclimate than macroclimate, and 

other local factors such as soil properties and the presence of sufficient pollinators 

(Shevtsova et al. 1995, Jacquemart and Thompson 1996, Krebs et al. 2009). Therefore, 

greater emphasis on the variation in local geography and microclimate could be used to 

explain and further explore observed changes in vegetation across communities.  

 Inuit have experienced pan-Canadian Arctic increases and decreases in 

abundance of northern insects, and this result contributes to a growing literature on the 

climate-driven changes in abundance and phenology of biting and pollinating insects 

(Olesen et al. 2008, Høye et al. 2013). There was strong similarity in observations 

among eastern communities (particularly Pond Inlet, Kangiqsujuaq and Nain) that 

mammal abundance has changed, which correlated with increasing spring precipitation. 

Because locally important fauna varied among communities, we were unable to make 

consistent species-specific comparisons across communities. However, participant 
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narratives from eastern communities described declines in seal and caribou abundance. 

The association between mammal abundance and spring precipitation is potentially very 

important, since the timing and onset of spring are determining factors in migration and 

reproduction of Arctic fauna. For example, Stirling and Smith (2004) observed that early 

spring rainfall events compromise ringed seal survival on the coast of Baffin Island by 

melting subnivean layers necessary for thermoregulation and protection of seal pups. 

Sharma et al. (2009) predicted that continued increases in temperature and precipitation 

could alter caribou herd dynamics by shifting forage availability, and hence foraging 

behaviour, migration patterns, and demography. A more thorough species-specific 

approach to the interview questionnaire would be required to further explore trends in 

specific animal populations and climate variables across communities. Although 

participants described the change, they did not speculate or provide climate-based or 

otherwise explanations for the observed change in animal abundance. Widespread 

patterns were also observed for changes in bird and fish abundance; however, 

agreement within communities was low. 

 MRPP results indicated that gender may play a role in observations of 

weather/physical factors, yet high within-community variability in responses for this 

interview category made it difficult to detect clear patterns. Although it was outside the 

scope of this study, examining community-gender interactions and other socio-

economic factors, such as employment, education, climate change awareness and 

land-use history may help clarify the variability observed for all ordinations, and better 

explain patterns of observed change across communities.  
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2.4.2 Ordination – benefits and risks 

 From a western scientific perspective, ordination was successful in presenting 

patterns in assemblages of Inuit observations across a broad geographic and culturally 

rich area that would otherwise be challenging to accomplish with traditional qualitative 

analysis approaches. Ordination created important visual tools and metrics for 

identifying patterns within the depth and spatial complexity of Inuit TEK, which can 

inform existing conservation and management systems (Cuerrier et al. 2015). While this 

result does not address the more fundamental issue that colonial systems still dominate 

global conservation and land management regimes (Dominguez and Luoma 2020), this 

analysis helps bring Inuit TEK to the forefront of decision makers for wider integration 

into existing policy, management and adaptation planning frameworks.  

 The patterns in Inuit observations described in this study closely align and build 

upon the consensus-based community summaries presented in Gerin-Lajoie et al. 

(2016). Whereas the qualitative approach presented in Gerin-Lajoie et al. (2016) can 

stand alone, this study relies on the narratives presented in Gerin-Lajoie et al. (2016) to 

provide context and deeper meaning to the observed patterns. This analytical approach 

could be further strengthened by including Inuit explanations for observed change and 

incorporating them into the analysis as environmental variables.  

2.4.3 Conclusions 

 Overall, ordination was a useful analytical tool for aggregating Inuit TEK on 

multiple environmental variables with climate trend analyses over a broad geographic 

area. Inuit knowledge revealed national, regional and local-scale controls on how 

environmental change is experienced, and coupled with climate analyses, annual, fall 
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and spring precipitation were identified as potential drivers of observed change. Inuit 

TEK brought to light new insights on changes in shrub, plant and insect abundance, and 

identified shrub expansion as a potential mechanism for declining berry quantity and 

quality in Nain.    

 Given the geographic scope of this study, and the extent of topics covered in the 

interviews, we were unable to expand our discussion with participants to seek out Inuit 

explanations for why certain changes are occurring, climate-driven or otherwise. This is 

an important next step for this research and would better extend the application of this 

study to climate change adaptation planning frameworks. The utility of ordination in 

collaborative and/or mixed methods research could be further realized by including local 

ecological and social factors to better account for variability within communities. Overall, 

this study highlights and supports the need for inclusion of local perspectives in climate 

change adaptation policy and adaptation response initiatives. 
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Table 2.1 Locations and characteristics of the eight Canadian Arctic communities in this study.  

Region                      Latitude/ 
Longitude 

Location Vegetation 
 Type1 

Permafrost 
type2 

Population3 Number of 
participants 

Year(s) 
interviewed Community 

Nunavut        

 Kugluktuk 67.82 N             
155.10 W 

Western low 
Arctic 

Tussock-sedge, dwarf-
shrub, moss tundra 

C 1450 17 2010 

 Baker Lake 67.31 N              
96.02 W 

Central low 
Arctic 

Erect dwarf-shrub tundra C 1872 24 2009 

 Pangnirtung 66.14 N            
65.70 W 

Eastern mid 
Arctic 

Prostrate/hemiprostrate 
dwarf-shrub tundra 

C 1425 19 2008/2009 

 Pond Inlet 72.70 N                
77.96 W 

Eastern high 
Arctic 

Prostrate dwarf-shrub, 
herb tundra 

C 1549 15 2008/2009 

Nunavik        

 Umiujaq 56.55 N             
76.54 W 

Eastern sub-
arctic 

Forest-tundra D 445 20 2009 

 Kangiqsualujjuaq 58.71 N            
65.99 W 

Eastern sub-
arctic 

Forest-tundra C/D 874 17 2007/2008 

 Kangiqsujuaq 61.59 N            
71.95 W 

Eastern low 
Arctic 

Forest tundra, 
erect/dwarf-shrub tundra 

C 696 9 2007/2008 

Nunatsiavut        

 Nain 56.54 N             
61.69 W 

Eastern sub-
arctic 

Forest-tundra D 1188 23 2009/2010 

1Vegetation type interpreted from Circumpolar Arctic Vegetation Map (CAVM Team 2003); 
2C = continuous, D = discontinuous (CAVM Team 2003);  
3Population estimates obtained from Statistics Canada Census 2011 (http://www12.statcan.gc.ca/census-recensement/index-
eng.cfm) 

http://www12.statcan.gc.ca/census-recensement/index-eng.cfm
http://www12.statcan.gc.ca/census-recensement/index-eng.cfm
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Table 2.2 Theil-Sen slopes, Kendall’s tau of 30-year (1977-2007) trends in climate variables, and 95% confidence 

intervals (respectively) calculated from monthly mean high-resolution gridded climate data (CRU TS3.11). Bold values 

indicate significance at p <0.05. 

 Kugluktuk Baker Lake Pond Inlet Pangnirtung Umiujaq Kangiqsujuaq Kangiqsualujjuaq Nain 

Annual  
TMP* 

  0.07; 0.366 
 (0.03, 0.11) 

  0.08; 0.416 
 (0.02, 0.13) 

 0.05; 0.315 
(0.0, 0.09) 

 -0.09; 0.310 
(-0.15, -0.03) 

 0.07; 0.297 
(0.01, 0.12) 

  0.05; 0.246 
(-0.02,0.11) 

  0.04; 0.209 
 (0.01, 0.09) 

  0.01; 0.113 
(-0.03, 0.07) 

Spring  
TMP 

  0.07; 0.232 
(-0.02, 0.15) 

  0.06; 0.301 
(-0.01, 0.15) 

 0.05; 0.191 
(-0.03, 0.12) 

 -0.13; -0.269 
(-0.24, -0.01) 

 0.06; 0.103 
(-0.04,0.14) 

  0.05; 0.177 
(-0.03, 0.12) 

  0.03; 0.085 
(-0.04, 0.1) 

 -0.01; -0.021 
(-0.07, 0.07) 

Summer  
TMP 

  0.05; 0.352 
 (0.01, 0.10) 

  0.06; 0.398 
 (0.03, 0.11) 

 0.03; 0.209 
(-0.01,0.05) 

 -0.08; -0.320 
(-0.15, -0.01) 

 0.07; 0.480 
(0.03, 0.11) 

  0.03; 0.168 
(-0.01, 0.06) 

  0.02; 0.186 
 (0.00, 0.04) 

  0.01; 0.076 
(-0.01,0.04) 

Fall  
TMP 

  0.08; 0.209 
(-0.01, 0.20) 

  0.09; 0.306 
(-0.02, 0.19) 

 0.10; 0.283 
 (0.0, 0.18) 

 -0.07; -0.159 
(-0.13, 0.02) 

 0.08; 0.508 
(0.03, 0.14) 

  0.07; 0.320 
(-0.02, 0.14) 

  0.06; 0.347 
 (0.00, 0.12) 

  0.04; 0.260 
(-0.02, 0.09) 

Winter  
TMP 

  0.09; 0.218 
 (0.00, 0.17) 

  0.07; 0.264 
(-0.02, 0.15) 

  0.00; 0.062 
(-0.07,0.11) 

 -0.04; -0.090 
(-0.13, 0.02) 

 0.06; 0.255 
(0.0, 0.15) 

  0.04; 0.182 
(-0.06, 0.14) 

  0.04; 0.177 
(-0.07,0.14) 

  0.02; 0.099 
(-0.08, 0.11) 

         

Annual  
PRE* 

 -1.50; -0.255 
(-3.51, 0.08) 

 -0.58; -0.060 
(-2.91, 0.7) 

  1.73; 0.143 
(-0.49, 3.47) 

 -3.62; -0.306 
(-8.54, -1.13) 

  1.16; 0.149 
(-1.10, 3.41) 

 -0.54; 0.025 
(-3.58,1.65) 

  4.79; 0.356 
 (2.85, 6.81) 

  3.20; 0.237 
 (0.99, 5.45) 

Spring  
PRE 

 -0.45; -0.103 
(-1.30, 0.20) 

 -0.16; -0.088 
(-0.69, 0.11) 

  0.14; 0.134 
(-0.11, 0.58) 

 -0.46; -0.228 
(-1.30, 0.03) 

 -0.12; -0.094 
(-0.72, 0.60) 

 -0.30; -0.113 
(-0.99, 0.38) 

  0.20; 0.048 
(-0.62,0.9) 

  0.20; 0.117 
(-0.67,1.07) 

Summer  
PRE 

  0.60; 0.009 
(-1.63, 2.08) 

  0.00; -0.018 
(-1.39, 1.85) 

  0.63; 0.125 
(-0.33, 1.63) 

 -2.83; -0.375 
(-5.48, -0.44) 

 -0.73; -0.090 
(-2.65, 0.97) 

  0.06; -0.016 
(-1.69, 1.84) 

  3.76; 0.411 
 (1.91, 5.42) 

  2.07; 0.264 
 (1.09, 3.27) 

Fall  
PRE 

 -0.30; -0.157 
(-0.83, 0.10) 

 -0.25; -0.102 
(-1.2, 0.25) 

  0.19; 0.123 
(-0.39, 0.92) 

 -0.77; -0.048 
(-2.54, 0.59) 

  0.04; 0.080 
(-0.66, 0.70) 

 -0.16; 0.011 
(-0.95, 0.51) 

  0.25; 0.080 
(-0.72,1.12) 

  0.31; 0.062 
(-0.58,1.24) 

Winter  
PRE 

 -0.58; -0.126 
(-1.25, 0.07) 

 -0.03; 0.046 
(-0.46, 0.41) 

  0.55; 0.258 
 (-0.1, 1.13) 

  0.14; 0.099 
(-0.52, 0.74) 

  1.28; 0.324 
 (0.05, 2.71) 

  0.08; 0.094 
(-0.76, 1.4) 

  0.63; 0.159 
(-0.73, 2.18) 

 -0.02; 0.044 
(-1.96, 2.62) 

         

Annual  
WDF* 

 -0.70; -0.494 
(-0.92, -0.46) 

 -0.08; -0.053 
(-0.23, 0.08) 

  0.05; 0.125 
(-0.04, 0.12) 

 -1.36; -0.536 
(-1.76, -0.97) 

  0.06; 0.034 
(-0.30, 0.42) 

 -0.48; -0.315 
(-0.76, -0.17) 

  0.02; 0.030 
(-0.27, 0.33) 

  0.12; 0.011 
(-0.22, 0.45) 

Annual  
FDF* 

 -0.22; -0.297 
(-0.52, 0.00) 

 -0.28; -0.321 
(-0.44, -0.08) 

 -0.07; -0.110 
(-0.24, 0.11) 

  0.00; 0.097 
 (0.00, 0.00) 

 -0.47; -0.465 
(-0.72, -0.22) 

 -0.28; -0.377 
(-0.42, -0.11) 

 -0.14; -0.161 
(-0.33, 0.0) 

  0.03; 0.080 
(-0.20, 0.23) 
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1CRU TS3.1 – Climatic Research Unit Time Series 3.1, University of East Anglia CRU, 2011 
(http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts/cru_ts_3.10/data); TMP = temperature; PRE = precipitation; WDF = wet day 
frequency; FDF = frost day frequency 

 

http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts/cru_ts_3.10/data
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Table 2.3 Multi-response permutation procedure (MRPP) statistics for comparison of 

participant responses among communities and between men and women for eight 

Canadian Arctic communities. Bold values indicate significance at p <0.05*. 

 Community Gender 

       T A p T A p 

Weather/Physical Factors -28.405 0.107 0.000 -2.777  0.004 0.015 

Vegetation/Berries -31.245 0.149 0.000  0.379 -0.001 0.576 

Animals -13.730 0.101 0.000  0.116  0.000 0.453 

* T=Test statistic; A = Chance-corrected within-group agreement [1- (observed 

delta/expected delta)]; p = probability of smaller or equal delta. 
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Table 2.4 Multi-response permutation procedure (MRPP) statistics for pairwise comparisons of participant responses 

between communities. Bold values indicate significance at p <0.05*. Pairwise community comparisons are ordered from 

west to east for eight Canadian Arctic communities. 

   Weather/Physical Factors Vegetation/Berries Animals 

Pairwise Community Comparisons T A p T A p T A p 

Kugluktuk vs. Baker Lake -11.871 0.068 0.000 -  4.715 0.033 0.001 -  6.537 0.075 0.000 
Kugluktuk vs. Pond Inlet -12.379 0.097 0.000 -  7.033 0.062 0.000 -  6.716 0.087 0.000 
Kugluktuk vs. Pangnirtung -11.460 0.079 0.000 -  5.353 0.048 0.000 -  8.505 0.121 0.000 
Kugluktuk vs. Umiujaq -12.391 0.086 0.000 -  8.493 0.074 0.000 -  5.461 0.069 0.001 
Kugluktuk vs. Kangiqsujuaq -14.816 0.101 0.000 -  5.012 0.035 0.000 - 6.713 0.073 0.000 
Kugluktuk vs. Kangiqsualujjuaq -10.135 0.097 0.000 -  8.709 0.092 0.000 - 0.829 0.014 0.173 
Kugluktuk vs. Nain -16.542 0.111 0.000 -17.047 0.152 0.000 -  9.427 0.096 0.000 
Baker Lake vs. Pond Inlet -  9.400 0.050 0.000 -  4.496 0.029 0.001 -  8.432 0.092 0.000 
Baker Lake vs. Pangnirtung -   9.633 0.046 0.000 -  3.093 0.023 0.011 -  2.414 0.032 0.033 
Baker Lake vs. Umiujaq -  7.760 0.038 0.000 -10.201 0.076 0.000 -  1.205 0.014 0.111 
Baker Lake vs. Kangiqsujuaq -14.459 0.075 0.000 -  6.665 0.038 0.000 - 7.070 0.072 0.000 
Baker Lake vs. Kangiqsualujjuaq -10.330 0.066 0.000 -10.776 0.084 0.000 - 3.123 0.043 0.013 
Baker Lake vs. Nain -20.092 0.117 0.000 -19.073 0.135 0.000 -11.989 0.108 0.000 
Pond Inlet vs. Pangnirtung     0.068 0.000 0.448 -  4.661 0.042 0.001 -  5.070 0.066 0.001 
Pond Inlet vs. Umiujaq -  1.812 0.012 0.057 -11.358 0.110 0.000 - 5.399 0.061 0.001 
Pond Inlet vs. Kangiqsujuaq -  4.447 0.026 0.001 -  3.846 0.026 0.003 - 0.405 0.004 0.291 
Pond Inlet vs. Kangiqsualujjuaq -  1.731 0.015 0.060 -  7.439 0.077 0.000   0.482 -0.007 0.635 
Pond Inlet vs. Nain -  9.885 0.070 0.000 -18.390 0.165 0.000 -  1.163 0.012 0.124 
Pangnirtung vs. Umiujaq -  3.188 0.018 0.009 -  4.818 0.047 0.002   0.387 -0.005 0.557 
Pangnirtung vs. Kangiqsujuaq -  9.809 0.053 0.000 -  4.340 0.032 0.003 - 6.860 0.085 0.000 
Pangnirtung vs. Kangiqsualujjuaq -  2.635 0.018 0.016 -  8.676 0.098 0.000 - 3.020 0.049 0.015 
Pangnirtung vs. Nain -15.302 0.100 0.000 -18.440 0.167 0.000 -11.049 0.119 0.000 
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Umiujaq vs. Kangiqsujuaq -10.606 0.061 0.000 -  9.725 0.070 0.000 - 5.918 0.063 0.000 
Umiujaq vs. Kangiqsualujjuaq -  6.391 0.048 0.000 -12.363 0.155 0.000 - 2.034 0.029 0.046 
Umiujaq vs. Nain -14.484 0.093 0.000 -21.093 0.212 0.000 -10.531 0.102 0.000 
Kangiqsujuaq vs. Kangiqsualujjuaq -  3.683 0.024 0.002 -  4.177 0.030 0.001   0.064 -0.001 0.462 
Kangiqsujuaq vs. Nain -  7.441 0.041 0.000 -15.993 0.116 0.000 - 2.126 0.018 0.035 
Kangiqsualujjuaq vs. Nain -  8.472 0.067 0.000 -10.910 0.103 0.000 - 1.163 0.014 0.124 

*T=Test statistic; A = Chance-corrected within-group agreement (1- (observed delta/expected delta)); p = probability of 

smaller or equal delta. 
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Table 2.5 Pearson correlation coefficients (r-values)1 of environmental change variables with ordination axes from three 

separate ordinations on interview responses in three general categories: Weather/Physical factors, Vegetation/Berries 

and Animals for eight Canadian Arctic communities*. 

Weather/Physical factors Vegetation/Berries Animals 

 Axis 1 Axis 2  Axis 1 Axis 2  Axis 1 Axis 2 

Winter2 -0.658 -0.137 Plants more  0.300  0.638 Insects  0.322 -0.833 

Spring2 -0.470 -0.088 Plants less  0.048 -0.299 Mammals  0.760  0.228 

Summer2 -0.577 -0.286 Bloom later  0.233 -0.026 Birds  0.586  0.033 

Fall2 -0.514 -0.341 Bloom earlier -0.353  0.364 Fish  0.610  0.255 

Weather (variability) -0.379  0.070 Trees more  0.567  0.431 Black flies more -0.078 -0.396 

Wind -0.409  0.125 Trees less  0.191 -0.003 Black flies less  0.233 -0.448 

Snowmelt  0.086  0.161 Shrubs more  0.303  0.628 Black flies later  0.088 -0.207 

Hydrology -0.197 -0.085 Shrubs less  0.013 -0.427 Black flies sooner -0.151  0.240 

Permafrost -0.38 -0.27 Grass more -0.203  0.260 Mosquitoes more -0.020 -0.094 

Erosion -0.369 -0.147 Grass less  0.023 -0.168 Mosquitoes less  0.374 -0.723 

Travel routes -0.538  0.523 Lichens more  0.237  0.068 Mosquitoes later  0.227  0.017 

Way of life -0.437  0.426 Lichens less  0.215 -0.072 Mosquitoes sooner -0.258  0.074 

Sunlight -0.006  0.319 Berries more -0.291  0.000    

Temp. warmer  0.019  0.213 Berries less  0.800 -0.048    

Temp. colder -0.487  0.128 Ripen later  0.500  0.006    

Rain more -0.317  0.469 Ripen earlier  0.135  0.402    

Rain less -0.082 -0.578 Berry taste    NA    NA    

Snow more  0.175 -0.006 Berries bigger -0.390  0.248    

Snow less -0.563 -0.095 Berries smaller  0.660 -0.165    

Sea-ice freeze-up later -0.522  0.064 Cloudberry3 more -0.202  0.579    

Sea-ice freeze-up earlier  0.039 -0.268 Cloudberry less  0.604  0.018    

Sea-ice break-up later  0.000 -0.398 Cloudberry later -0.075 -0.045    
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Sea-ice break-up earlier -0.282  0.662 Cloudberry earlier -0.055  0.470    

Sea-ice thicker -0.092 -0.117 Blueberry3 more -0.417  0.047    

Sea-ice thinner -0.341  0.636 Blueberry less  0.654  0.134    

Lake-ice freeze-up later -0.337  0.154 Blueberry later -0.051  0.129    

Lake-ice break-up later  0.007  0.001 Blueberry earlier -0.309  0.066    

Lake-ice break-up 
earlier 

-0.221  0.217 Crowberry3 more -0.366  0.033    

Lake-ice thicker -0.128  0.158 Crowberry less  0.631  0.051    

Lake-ice thinner -0.392  0.423 Crowberry later -0.004  0.236    

   Crowberry earlier -0.250  0.039    

   Cranberry3 more -0.127  0.324    

   Cranberry less  0.419 -0.113    

   Cranberry later  0.104 -0.141    

   Cranberry earlier -0.003  0.134    
1Interview responses with r-values ≥ |0.400| were considered statistically significant and therefore plotted in Fig. 

2.3 (see text for details) 

2Refers to changes observed in timing and duration of seasons 

3Cloudberry = Rubus chamaemorus L.; Blueberry = Vaccinium uliginosum L.; Crowberry = Empetrum nigrum 

L.; Cranberry = V. vitis-idaea L. 

* All ordinations resulted in a 3-dimensional solution, however only the first two dimensions were retained. Final 

stress and instability values for each ordination were: a) Weather/Physical factors = 18.93; <0.0001, b) 

Vegetation/Berries = 13.07; <0.0001, and c) Animals = 13.34; <0.0001 
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Table 2.6  Pearson correlation coefficients (r-values)1 of climate trends and age of 

participant with NMDS ordination axes from three separate ordinations on interview 

responses in three general categories: Weather/Physical factors, Vegetation/Berries 

and Animals for eight Canadian Arctic communities. 

 

 Weather/Physical factors Vegetation/Berries Animals 

 Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2 

Age  0.191 -0.016  0.025 -0.062  0.027 -0.060 

       

Annual TMP* -0.058 -0.170 -0.131 -0.149 -0.013 -0.205 

Spring TMP -0.016 -0.178 -0.219 -0.198 -0.035 -0.215 

Summer TMP  0.019 -0.241 -0.101 -0.147 -0.150 -0.198 

Fall TMP -0.072  0.090 -0.014  0.090  0.047 -0.084 

Winter TMP -0.045 -0.200 -0.029 -0.076 -0.158 -0.250 

       

Annual PRE* -0.191  0.449  0.212  0.369  0.346  0.107 

Spring PRE -0.320  0.279  0.275  0.191  0.471  0.072 

Summer PRE -0.372  0.270  0.273  0.314  0.437 -0.035 

Fall PRE -0.014  0.528  0.014  0.326  0.325  0.277 

Winter PRE  0.349  0.287 -0.269  0.095 -0.062  0.256 

       

Annual WDF* -0.024  0.216  0.140  0.092  0.157  0.075 

Annual FDF* -0.187  0.159  0.370  0.126  0.267  0.158 
1Climate variables with r-values ≥ |0.400| were considered statistically significant and 

therefore plotted in Fig. 2 (see text for details); TMP = temperature; PRE = 

precipitation; WDF = wet day frequency; FDF = frost day frequency 
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Table 2.7 Summary of geographic patterns in environmental change based on interpretation of NMDS ordination of Inuit 

knowledge and climate variables across eight Canadian Arctic communities. Presentation of variables follows that of 

Table 2.5. 

  Geographic extent of observed change* 

Interview 
category 

Observations Pan-Canadian 
Arctic 

Regional Local 

Weather/ 
physical 
factors 

Timing of seasons All   

Wind All   
Travel routes  Eastern Sub/Low, High Arctic  
Way of Life  Eastern  
Temperature colder   Nain 
Rain more  Eastern   
Rain less  Western/central  
Snow less All   
Sea-ice freeze-up later Coastal   
Sea-ice break-up 
earlier 

Coastal   

Sea-ice thinner  Eastern Sub/Low, High Arctic  
 Lake-ice thinner   Nain, Kangiqsujuaq 

Vegetation/ 
berries 

Plants more  Eastern   
Trees more   Nain; Kangiqsualujjuaq 
Shrubs more All   
Shrubs less   Pangnirtung↓, Baker Lake↓ 
Berries less   Nain 
Ripen later   Nain 
Ripen earlier  Eastern Sub/Low↓  
Berries smaller    Nain 
Cloudberry more   Kangiqsualujjuaq 
Cloudberry less   Nain 
Cloudberry earlier   Kangiqsualujjuaq 
Blueberry more   Pond Inlet 
Blueberry less   Nain 
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Crowberry less   Nain 

 Cranberry less   Nain↓, Kugluktuk↓ 

Animals Insect abundance All   
Mammal abundance  Eastern  
Bird abundance  Eastern  
Fish abundance  Eastern  
Black flies less   Kugluktuk 
Mosquitoes less All↓   

*All = all communities; Coastal = All communities but Baker Lake; Western/Central Arctic = Kugluktuk and 

Baker Lake; Eastern = All but Kugluktuk and Baker Lake; High Arctic = Pond Inlet; Mid Arctic = Pangnirtung; 

Eastern Sub-Arctic = Umiujaq, Kangisualujjuaq, Nain; Eastern Low Arctic = Kangiqsuajuaq; ↓ indicates 

significant variables driven by few participant observations; Cloudberry = Rubus chamaemorus L.; Crowberry 

= Empetrum nigrum L.; Blueberry = Vaccinium uliginosum L. (blueberry); Cranberry = V. vitis-idaea L. 

 

 



54 
 

 

Fig. 2.1 Map of Canada highlighting the locations of participating communities across 

the Inuit regions of Canada. White stars indicate participating communities. White dots 

indicate all other Inuit communities within each region (Modified from: Maps of Inuit 

Nunangat (Inuit Regions of Canada), 2008, Inuit Tapiriit Kanatami; 

https://www.itk.ca/publication/maps-inuit-nunangat-inuit-regions-canada). 

 

 

 

 

 

 

https://www.itk.ca/publication/maps-inuit-nunangat-inuit-regions-canada
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Fig. 2.2 Boxplots showing the distribution of values (median, interquartile range, 

min/max and outliers) for the relative frequency of observed change (%) within A) 

Weather/physical factors B) Vegetation/berries and C) Animals across communities. 

Communities are ordered from west to east. Comparatively short boxes indicate a high 

level of consistency of observed change vs. long boxes which indicate greater variability 

in observed change within individual communities. 
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Fig. 2.3 Ordination diagram (NMS with Euclidean distance) showing separation of 

responses regarding a) Weather/physical factors, b) Vegetation/berries and c) Animals 

from 144 interview participants, within and among eight Canadian Arctic communities. 

Responses for each community are shown by unique symbols, colours and convex 
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hulls, which enclose points from a community. Environmental variables are shown with 

labels as closed black circles. Blue vectors represent interview response correlations 

with climate time series over a 30-year period (1977-2007). The direction and length of 

climate vectors indicate strength of the correlation. PRE = precipitation. 
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Appendix 2.1 Sample poster used for Snowball Sampling in Nain, Nunatsiavut, April 

2009. 
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Appendix 2.2 Interview questionnaire used throughout this study.  

Date of interview: Name of interviewee/elder: 

Place of interview: Date of birth: 

Name of interpreter: Place of birth: 

Name of interviewer: Heritage (Cultural Group): 

Start Time:  CODE: 

End Time:  

 

Consent form signature:                        Payment Claim Form Attached:     

 

NOTE: Before the interview, make sure participant knows that there is no right or wrong answer 

for any of the questions.  Any knowledge that they share with us is helpful and valuable for both 

scientific and cultural reference.  All interviews will be documented and archived for consultation 

and future generations to learn from. 

 

A. QUESTIONS ABOUT BERRIES:  

1. Do you go berry picking?  

2. What berries do you pick? Do you have a favourite berry? Why? 

3. Do you have local names for these berries? For stages of ripening? 

4. How do you pick the berries? The same or different techniques? 

5. Who do you pick berries with? Was it always this way? 

a. Do you have rules when berry picking? 

6. How do you choose your berry picking spots?   

a. Do you go to the same spots every year or rotate? 

b. Do you use patterns in the landscape (hills, bogs, fields, dry, wet)? 

c. The presence of other plant species that grow with particular berry plants?   

7. What leads to a good berry crop? 

8. What leads to a poor berry crop? 

9. Have you detected differences in the recent past in timing of when berry plants: 

a. Flower? Visited by insects? 

b. Set fruit? Ripening? 

c. Other differences in look, taste, quality of berries? 
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10. Are the conditions different now from when you picked berries in the past (e.g. bug 

nets)?  

11. Where do you go berry picking for (indicate it on the map? – will remain confidential): 

a. Aqpiq/Arpiq/Okpik/ A'kpiq (Rubus chamaemorus) 

b. Paurngaq/Paurngaq/XX/ Paugnatwi'nuk (Empetrum nigrum) 

c. Kegotangenak/Kigutangirnaq/ XX/XX (Vaccinium uliginosum) 

d. Kimminaq/ Kimminaq/ XX/Kimimino'k, kiminu'k (Vaccinium vitis-idaea) 

e. Kallaq/XX/XX/XX (Arctostaphylos alpina) 

12.  Are there places you used to go berry picking where you no longer go? 

a. Why?  

b. Where are these places located?   

 

Note:  Ask how the participant is doing (if he/she is still interested in answering 

questions).  If not, we can take a break, or come back at another time, or terminate the 

interview here. 

B. QUESTIONS ABOUT CHANGE AND BERRIES 

1. Have you/not seen changes in the vegetation throughout your life? 

a. New plants not seen before? If so, can you describe and/or name them? 

b. Plants becoming more common?  Or less common?  Rare? 

c. Plants becoming taller? Bigger? 

2. Have you noticed changes in the distribution and abundance of: 

a. Trees? 

b. Shrubs? 

c. Berry producing plants? 

d. Lichens 

3. If so, why do you think these changes are occurring? 

4. Have these changes influenced your way of: 

a. Hunting? 

b. Fishing? 

c. Traveling on the tundra? 

5. Have you seen any changes in the emergence, distribution or number of: 

a. Miluqiaq (black flies)?  

b. Kitturiaq (mosquitoes)? 

c. Igutsak (bumblebees)? 

d. Saralikitaq (butterflies)? 

6. Do you know if animals (caribou, geese, ptarmigan, lemming, mice etc.) eat: 

a. Berries  

b. Shrubs 

c. Lichens 
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7. Have you ever seen animals eating berries? Found berries in the stomachs of animals 

(bears, birds, caribou)? 

8. Have you observed landscape modifications (disturbance, erosion, avalanche)? 

a. If so, where?  

b. Do you/not have an explanation? 

9. Have you seen changes in snow cover? In snow quality? 

a. If so, can you explain it? 

b. Did it affect plants? 

c. Did it affect humans and animals? 

10. Have you/not seen any changes concerning lakes (tasiq) and rivers (kuutjuaq)? 

11. Have you/not seen any changes concerning rain (surujuk)? 

12. Have you/not seen any changes concerning wind (anuri)? 

13. Have you/not seen any changes concerning permafrost (frozen ground) and active layer 

(e.g.: softer ground)?  

Note:  Ask how the participant is doing (if he/she is still interested in answering 

questions).  If not, we can take a break, or come back at another time, or terminate the 

interview here. 

C. TRADITIONAL USE OF BERRIES 

1. How do you use the berries you have collected? Do you preserve them? How? 

2. How did your mother and grandmother preserve their berries? 

3. Do you have any concerns about the future of berry producing plants?  

4. Are you/not concerned with possible changes affecting: 

a. Shrub abundance? 

b. Distribution of berry producing plants? 

c. Yield of berry producing plants? 

d. The taste of the berries?  

e. Their juiciness? 

f. Insects in berries? 

5. Is there something else you would like to talk about? 
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Appendix 2.3 Sample summary report used to share within-community results to 

participants in Nain, Nunatsiavut. 
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Appendix 2.4 Pearson correlation coefficients between climate variables derived from high-resolution gridded (CRU-

TS3.11) and local climate station data (Environment Canada2) for time periods of local station data availability. Bold values 

indicate significance at p <0.05. 

Site Kugluktuk 
Baker 
Lake Pond Inlet Pangnirtung Umiujaq Kangiqsujuaq Kangiqsualujjuaq Nain 

Data availability  1978-2007 1977-2007 1977-2007 1995-2007 1993-2007 1993-2007 1993-2007 1985-2007 

Annual TMP* 0.969 0.980 0.567 -0.160 0.964 0.664 0.864 0.858 

Spring TMP 0.995 0.942 0.941  0.402 0.960 0.630 0.796 0.837 

Summer TMP 0.970 0.974 0.460 -0.073 0.943 0.130 0.545 0.427 

Fall TMP 0.980 0.970 0.874  0.732 0.942 0.758 0.830 0.869 

Winter TMP 0.958 0.982 0.969  0.307 0.957 0.874 0.954 0.939 

         

Annual PRE* 0.868 0.832 0.262 -0.550 NLD* NLD NLD 0.491 

Spring PRE 0.986 0.723 0.451  0.492 NLD NLD NLD 0.674 

Summer PRE 0.850 0.914 0.308 -0.450 NLD NLD NLD 0.315 

Fall PRE 0.992 0.808 0.392  0.241 NLD NLD NLD 0.692 

Winter PRE 0.967 0.858 0.490  0.093 NLD NLD NLD 0.498 
1CRU TS3.1 – Climatic Research Unit Time Series 3.1, University of East Anglia CRU, 2011 
(http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts/cru_ts_3.10/data) 
2Environment Canada Historical Climate Data (http://climate.weather.gc.ca/index_e.html; Accessed September, 2012) 
* TMP = temperature; PRE = precipitation; NLD = no local data 

http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts/cru_ts_3.10/data
http://climate.weather.gc.ca/index_e.html
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Appendix 2.5 R code for trend analyses performed in R v 2.15.3 using the ‘zyp’ 

package (Bronaugh and Werner 2013).   

>zyp.trend.vector 

(Site$Variable,method=c("yuepilon"),conf.intervals=TRUE,preserve.range.for.sig.test=T

RUE) 

Site = communities listed in Table 2.1. 

Variable = climate trend variables listed in Table 2.2.  
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Appendix 2.6 Ordination plots representing scatterplots of first and second axes 

ordination scores for individual environmental variables that met the critical cut-off value 

of r = |0.450| (as presented in text and summarized in Table 2.5).  

 
Notes on interpretation: 

For each ordination scatterplot, the size of the sample units directly reflects the 

participants’ response, such that large icons indicate a “1” for observed change, and 

small icons indicate a “0” for no change. The response variable presented is indicated in 

the upper left corner of each plot, and the r-values corresponding to Table 2.5 are 

provided in parentheses for each axis. These plots enabled us to look at patterns in 

interview responses across communities individually and support our interpretation of 

patterns in Fig. 2.3 (a-c).  
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Individual scatterplots for Fig. 2.3a – Weather/physical factors
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Individual scatterplots for Fig. 2.3b – Vegetation/berries  
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Individual scatterplots for Fig. 2.3c – Animals 
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Chapter 3: Strong canopy-understory feedbacks on fruit production at treeline 

 

Siegwart Collier, L. and L. Hermanutz.  

Abstract 

 Evidence from multiple syntheses has shown that foundation species such as 

trees and tall shrubs are responding positively to warming climate throughout the tundra 

biome, yet the response is spatially heterogeneous. Whilst the advancement of these 

canopy formers into tundra ecosystems are predicted to change the structure and 

dynamics of lower stature plant communities, there is no consensus on community-level 

impacts. Canopy formation could have significant impacts on the performance (growth 

and fruit production) of dwarf berry shrubs, which are globally ubiquitous at treeline and 

throughout low-shrub tundra ecosystems. Many northern berry shrubs are culturally 

significant, and their berries serve as an essential summer and winter food source for 

northern peoples and wildlife. We anticipate that climate-induced changes to canopy 

structure will initiate a height-fruit production trade-off by increasing light competition 

between short, low-growing berry shrubs and their tall, upright neighbours. However, we 

predict that responses will vary, such that berry plants with truly prostrate growth forms 

will exhibit the greatest declines in fruit production, whereas those that can compete 

vertically for available light will be less affected. In this study, we investigate factors 

affecting the fruit production of three culturally important dwarf berry shrubs with varying 

capacities for upright growth (Vaccinium vitis-idaea < Empetrum nigrum <V. uliginosum) 

near Nain (Nunatsiavut, Labrador). We evaluated berry shrub performance across the 

forest-tundra ecotone by measuring performance traits (abundance, height and fruit 
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production) in relation to canopy and understory characteristics of the broader plant 

community at four elevational zones (forest, lower forest-tundra transition, upper forest-

tundra transition, and low shrub tundra). Using a combination of ordination and hurdle 

models, we found that berry shrub performance differentiated most strongly among 

species at the interface between the lower and upper forest-tundra transition zone, 

where boreal and tundra communities diverge, corresponding to an increase in 

available light and other aboveground resources. Although we did not observe growth-

reproduction trade-offs among species, characteristics of a closed canopy forest had 

consistent negative effects on the extent of fruit production for all berry species. Positive 

growth-reproduction relationships were exhibited for both Vaccinium species, indicating 

the importance of plant abundance in reproduction allocation among these species. The 

relative importance of abiotic versus biotic factors did not relate to prostrate vs. upright 

growth forms; however, we determined that different factors are important in explaining 

the presence vs. extent of fruit production for all species. This distinction could not have 

been made without the application of hurdle models. By documenting strong canopy-

understory feedbacks on fruit production at treeline, this study substantiates the 

prediction that expansion of tree and tall-shrub canopy could reduce fruit production and 

thus availability of fruit throughout low shrub tundra ecosystems.  
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3.1 Introduction 

 Decades of research from an array of forest ecosystems demonstrate that 

canopy-forming species directly and indirectly influence understory vegetation dynamics 

through modification of light, soil moisture and resource availability (Riegel et al. 1992, 

Barbier et al. 2008, Halpern and Lutz 2013). At the forest-tundra ecotone (or treeline), 

where climatic factors have historically constrained species´ range limits (Smith et al. 

2009), it is expected that climate warming will increase and extend canopy formation 

through upslope and northward advance of trees into tundra and tall shrubs into low-

shrub tundra ecosystems (Callaghan et al. 2002, Myers-Smith et al. 2011). Whether 

treelines and shrublines advance (Hofgaard et al. 2009) or retreat (Harsch et al. 2009), 

global tundra greening and shifting canopy boundaries will have measurable impacts on 

understory plant community dynamics (Wookey et al. 2009, Pajunen et al. 2011). An 

increasing number of studies are exploring the potential for canopy formation (i.e. via 

shrubification) to either mitigate or exacerbate tundra warming through changes in 

abiotic conditions of the understory environment, such as changes in snow and 

permafrost depth, nutrient availability, soil moisture and soil temperature (Sturm et al. 

2001, Myers-Smith et al. 2011, Myers-Smith and Hik 2013, Zamin et al. 2014). However 

fewer studies have explored the effects of increased canopy formation on the 

performance of their dwarf shrub neighbours (Bråthen and Lortie 2015), and there is no 

consensus on anticipated responses. If predictions hold true that climate-growth 

sensitivity will be highest at the interface between tall and low-shrub tundra plant 

communities (Myers-Smith et al. 2015) where dwarf shrubs are ubiquitous (Grace et al. 

2002), then a taller and more dense tree and tall-shrub canopy could result in a 



78 
 

widespread reduction in understory light availability and/or soil resources for dwarf 

shrubs at these transition zones. For important northern ecosystem components such 

as dwarf berry-producing shrubs, increased competition for light and/or other resources 

could lead to allocation trade-offs, such as a less fruit production in favour of increased 

stem height or other growth traits (Weiner 2004), potentially changing the distribution 

and/or decreasing the availability and abundance of treeline and tundra fruit.  

 The berries produced by dwarf shrubs such as Vaccinium and Empetrum species 

serve as essential resources for wildlife and Indigenous people in the North, and their 

cultural, ecological and economic value has been well documented for circumboreal 

regions northward (Parlee et al. 2005, Poppel and Kruse 2009, Karst 2010). Declining 

access and availability of northern land-based foods such as berries is a matter of Arctic 

food security (Wheeler and von Braun 2013), and Indigenous knowledge holders and 

land managers from across the North American North have indicated widespread 

changes in dwarf berry shrub growth, fruit production and fruit quality, which they in part 

attribute to increased climate variability (Kellogg et al. 2010, Downing and Cuerrier 

2011, Hupp et al. 2015). While we know that dwarf berry shrubs have an inherent 

rhythm to fruit production broadly attributed to plant neighbour effects, weather regimes 

and soil conditions (Shevtsova et al. 1995, Krebs et al. 2009, Holden et al. 2012), 

insight from gradient studies (Jentsch et al. 2009, Trant and Hermanutz 2014) and 

experimental warming studies (Anadon-Rosell et al. 2014) at treeline indicate that plant 

growth and reproductive responses are likely to be species- and context-specific. 

Therefore, a multi-species approach will be necessary to 1) distinguish which abiotic 



79 
 

and biotic factors are important in driving circumpolar berry species response, and 2) 

support northern climate change adaptation response initiatives.  

 The ubiquity and persistence of dwarf berry shrubs across global treeline and 

tundra ecosystems is due in part to their propensity for clonal growth, longevity and 

phenotypic plasticity in growth form (De Kroon and Hutchings 1995). These persistence 

traits, which are often used as key predictors of climate-driven range shifts in canopy 

species (Estrada et al. 2016), will likely play an important role in determining the future 

impacts of warming on fruit production at treeline. For example, Parsons et al. (1994) 

showed that varying sensitivity of growth (biomass allocation) to environmental change 

(temperature, water and fertilizer) in four dwarf berry shrubs was attributed to 

differences in mode of lateral spread. Similarly, Shevtsova et al. (1995) showed that 

growth and reproduction of dwarf berry shrubs differentially respond to manipulated 

resource availability and neighbour presence, with negative growth responses in 

constrained prostrate growth habits. Although facilitation is thought to outweigh 

competition in northern ecosystems where species are under significant climate and 

resource stress (Brooker and Callaghan 1998, Wipf et al. 2006), alpine plant 

communities exhibit a gradient in stress, with competition often prevailing at lower 

elevations where conditions are less harsh, preventing upslope species from moving 

down the gradient (Choler et al. 2001). With that in mind, we anticipate that truly 

prostrate (i.e. without the physiological flexibility to grow upright) berry shrubs will exhibit 

higher trade-offs in fruit production under abiotic constraints of canopy than those with 

more flexible growth strategies who can better compete for aboveground resources at 

the leading edge of treeline.  
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In this study, we examine understory dynamics in treeline ecosystems by 

investigating the species-specific relationships between tree and shrub canopy structure 

(biotic) and near-ground microclimate (abiotic) on growth and fruit production of three 

circumpolar dwarf berry shrubs across the forest-tundra ecotone in Nain, Nunatsiavut, 

Labrador. Terrestrial ecosystems are undergoing significant environmental changes in 

Nain and other communities of eastern Sub-Arctic Canada associated with climate 

warming. These include but are not limited to tundra greening (Lévesque et al. 2012, 

Ropars et al. 2015), shifting species’ (plant and animal) distributions and declining berry 

abundance and quality (Gerin-Lajoie et al. 2016), with significant impacts on 

subsistence resources (Downing and Cuerrier 2011, Cunsolo Willox et al. 2012).   

 The forest-tundra ecotone is an ideal location to study dwarf berry shrub 

performance as it allows us to capture phenotypic expression of each berry species 

along a natural gradient in plant distribution, and across a range of abiotic and biotic 

conditions (Pato and Ramón Obeso 2012). Our focal berry species include two 

evergreen [Empetrum nigrum L. (black crowberry) and Vaccinium vitis-idaea L. 

(mountain cranberry/lingonberry)] and one deciduous [V. uliginosum L. (alpine bilberry)] 

dwarf berry shrub common to treeline ecosystems globally. In Nain, Nunatsiavut, E. 

nigrum (paungaKutik [whole plant]; paungak [berry]), V. vitis-idaea (kimminaKutik [whole 

plant], kimminak [berry]) and V. uliginosum (kigutanginnaKutik [whole plant], 

kigutanginnak [berry]) are staple plants within the Nainimiut traditional food system with 

a variety of historic and current uses including using stems, leaves and fruit for food, 

medicine, and as combustibles (Clarke 2012).   
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These three species share many general life history characteristics common to 

clonal dwarf shrubs, yet they fundamentally differ in their mode and capacity for upright 

stem growth (Table 3.1; Figure 3.1). Vaccinium uliginosum grows both prostrate and 

upright due to its sympodial growth habit. Terminal buds produce flowers in the spring, 

while branching occurs from lateral buds (Jacquemart 1996). This results in a highly 

branched architecture with the ability to accrue significant height. The stems of E. 

nigrum, which have a creeping growth habit, elongate monopodially. However, the 

leading stems are densely branched and leafy, allowing intermediate levels of upright 

growth. This species is also known to be allelopathic (Bell and Tallis 1973). Although 

stem elongation occurs mono- and sympodially in V. vitis-idaea, its creeping growth 

form is highly prostrate with very limited capacity for upright growth (Ritchie 1955). All 

species can tolerate at least moderate amounts of shade; however, the species-specific 

trade-offs in growth and fruit production have not been explicitly explored at treeline in 

the context of food security for wildlife and Indigenous peoples of the North. Based on 

species’ gradients in phenotypic plasticity, we predict that:  

1. There will be a general increasing gradient in fruit production (FP) that 

corresponds to decreasing canopy structure and increasing light availability 

across the forest-tundra ecotone (Forest/low light/low FP< Forest-tundra 

transition/intermediate light/intermediate FP < Tundra/high light/high FP).  

2. We will observe a growth-fruit production trade-off that will be stronger for truly 

prostrate berry shrubs with less capacity to compete for aboveground resources 

(Vaccinium vitis-idaea > Empetrum nigrum > Vaccinium uliginosum). 
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3. Microclimatic conditions (abiotic constraints) will have a stronger effect on the 

presence of fruit and extent of fruit production in truly prostrate growth forms vs. 

canopy structure (biotic interactions) for growth forms with greater capacity to 

compete for aboveground resources (Vaccinium uliginosum ~ Biotic > Abiotic; 

Empetrum nigrum ~ Biotic = Abiotic; Vaccinium vitis-idaea ~ Abiotic > Biotic).  

 

3.2 Methods 

3.2.1 Study site 

Our study site is in Nain, Nunatsiavut (Labrador) (56°33 N, 61°41 W), which is 

the northeastern-most community in Sub-Arctic Canada representative of alpine treeline 

ecosystems (Fig. 3.2A). Nain has a distinctly maritime climate, with an average of 517.7 

growing degree days above 5°C, and rainfall and snowfall amounts averaging 450.2 

mm/year and 475.3 cm/year respectively. The mean annual temperature is -2.5°C with 

average daily maximums and minimums of 1.7 and -6.6°C respectively. In northern 

Labrador, the most recent decade (2001-2010) has warmed almost 1°C compared to 

the 1981-2010 Climate Normals period (Environment Canada 2015).  

 In Nain, the forest and treeline canopy are largely dominated by white spruce 

[Picea glauca Moench (Voss)], black spruce [P. mariana (Mill.) Britton, Sterns & 

Poggenb.], and eastern larch [Larix laricina (DuRoi) K. Koch], with balsam fir (Abies 

balsamea (L.) Mill) scattered throughout. Canopy-forming shrubs also persist 

throughout the forest-tundra ecotone, including dwarf birch (Betula glandulosa Michx.), 

green/mountain alder [Alnus viridis (Chaix) DC. ssp. crispa (Aiton) Turrill] and upright 

willows (Salix spp. L.).   
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3.2.2 Sampling design 

 To compare growth and productivity across the forest-tundra ecotone, we 

delineated four vegetation zones within the forest-tundra ecotone along an altitudinal 

gradient: forest (F), lower forest-tundra transition (FTL), upper forest-tundra transition 

(FTU) and low-shrub tundra (LST). These zones are classified by canopy structure 

(erect vs. prostrate growth form), composition (primarily tree vs. shrub species) and 

density (closed canopy vs. patchy and open), and loosely follow subzone definitions put 

forward by Scott (1995) (Fig. 3.2B). To quantify characteristics of the canopy, 

understory and near-ground microclimate across the forest-tundra ecotone, we 

established three 5 m x 50 m belt transects at north and south facing aspects for each 

of the four ecotonal zones (F, FTL, FTU and LST). LST was not represented on the 

north-facing slope, therefore N = 21 transects rather than 24 for all zone-aspect 

combinations. At each belt transect, quadrat locations were alternated upslope and 

downslope at 5m intervals (e.g. n=10 quadrats/transect). Canopy-forming species were 

sampled within 5 m x 5 m quadrats, and all understory species/microclimate within 1 m 

x 1 m quadrats, which were nested within the former. A complete schematic of our 

sampling design is depicted in Fig. 3.2B. Sampling took place from mid-July to mid 

August 2010.  

 Canopy structure was quantified by measuring the density (total number of 

trees/quadrat), height (m) and clonal area (where appropriate) of all trees and tall 

(canopy-forming) shrubs (alder, willow and dwarf birch). Clonal area was estimated by 

measuring the longest axis (length) and the associated perpendicular axis (width) of 

each clone. Clonal boundaries of tall shrubs were defined based on breaks in 
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continuous cover. Understory plant community composition and structure was quantified 

by one individual visually estimating the percent cover of all vegetation (vascular and 

non-vascular) to the nearest percent (exceeding 100% based on multiple layers), and 

randomly selecting stems to measure height (cm) of all upright shrubs (n=3 

stems/species). In the southwest quadrant of each 1m2 quadrat (25 x 25 cm subplots), 

we counted the total number of flowers and fruits and flowers for each of our focal berry 

shrubs. Within the same 1m2 quadrats, we quantified near-ground microclimate 

conditions by measuring ground and shrub level photosynthetically active radiation 

(PAR) (µmol/s/m2; LI-COR 190 Quantum sensor and LI-250A Light meter, LI-COR, 

Lincoln, Nebraska, USA), soil temperature (⁰C) and percent soil moisture of the organic 

soil horizon (Delta-T W.E.T. Sensor, Hoskin Scientific, Burlington, ON). Variability in 

daytime microclimate measures was reduced by sampling only during overcast 

conditions or days with clear sky, and between 10:00am and 2:00 pm.  

We observed minimal and scattered evidence of herbivory from insect, small 

and/or large mammalian herbivores (such as rodents, moose and caribou) throughout 

our vegetation sampling. Therefore, herbivory was deemed an insignificant stressor on 

growth and fruit production across our forest-tundra ecotone. Salinity from ocean spray 

was also an insignificant factor, since transects were established approximately 2.3 km 

from the nearest shoreline.  

3.2.3 Data summary 

 Tree and shrub canopy structure data (5m x 5m quadrats) were averaged at the 

plot level to estimate mean canopy height (m), total density (25m-2) and mean clonal 

area (m2/25m2). From percent cover estimates in the understory (1m x 1m quadrats), 
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we calculated plot-level total vegetation cover, canopy cover (total cover of all trees and 

upright shrubs), and total tree/shrub cover (total cover of all trees, upright and ground-

surface shrubs). Average stem height (n=3 stems/species) and total cover was 

estimated for our three focal berry shrubs, and their upright neighbours (including dwarf 

birch). Preliminary measurements indicated that dwarf birch was the tallest and had the 

highest relative cover of all upright shrubs in the understory; therefore, we used average 

dwarf birch height (n=3 stems) as a surrogate for maximum shrub canopy height (cm) in 

the understory. Mean percent available PAR (relative PAR) was estimated by 

calculating the percentage between PAR measured at ground-level, and PAR measured 

at the level of the maximum shrub canopy layer (n=3 proportions/quadrat). Mean soil 

temperature (⁰C) and mean soil moisture (%) were also calculated for each plot 

(n=3/quadrat/variable). 

 Given the remote nature of our study site, and the fact that our focal species 

have different flowering periods (Table 3.1), we were logistically constrained from 

obtaining fruit to flower ratios to determine fruit set for each species. Therefore, we 

estimated species-specific maximum potential fruit production (herein referred to as fruit 

production) by summing the total number of fruits and flowers present on each species 

during field work in July/Aug 2010 (mid-late summer in Nain). Counts were scaled up 

from 0.0625m2 to estimate maximum fruit production/1m2. This approach overestimates 

fruit production in favour of later flowering V. vitis-idaea (68.2% flowers), followed by V. 

uliginosum (43.0% flowers) and E. nigrum (0% flowers). Although we have no way of 

knowing whether flowers would in fact produce fruit, flower formation is a critical 

expression of reproductive effort, potential and output (Amasino et al. 2017). Since we 
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are evaluating performance of each species individually, we propose that maximum fruit 

production is an acceptable response parameter to estimate abiotic and biotic 

constraints on reproductive output and interpret our results with this bias in mind.   

3.2.4 Data analysis 

Stand structure and community composition 

 To estimate the importance of microclimate in treeline plant community 

composition, abundance, and height, we tested the association between vegetation 

abundance, height and microclimate data using the Mantel test (Mantel and Valand 

1970). We also explored the importance of zone and aspect in vegetation abundance 

and height by performing a multi-response permutation procedure (MRPP). To 

investigate patterns in growth of treeline vegetation in association with microclimatic 

conditions, we performed two ordinations (vegetation abundance and vegetation height) 

using non-metric multidimensional scaling (NMDS). Monte Carlo randomizations were 

used to test significance of variance explained in each dimension. We followed the 

iterative protocol outlined in Peck (2010) to specify initial analysis criteria (max. # axes = 

4, max. # of iterations = 200, random starting coordinates, step length = 0.20, time = 

random # seed, 50 runs with real and randomized data) and to determine a final 

ordination solution.  

 We used Pearson product moment correlation coefficients (r-values) to interpret 

the strength and direction of relationships between vegetation/microclimatic conditions 

and ordination axes. Because of our large sample size (N=210), statistical significance 

was met with considerably low critical r-values (i.e. n=100, p<0.05 at r=0.197; Upton 

and Cook (2008)). Therefore we chose a conservative cut-off value of “r” (|0.400|) to 
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interpret statistically significant relationships as suggested by McCune and Grace 

(2002). All multivariate procedures were run on untransformed data matrices (no 

significant outliers detected or removed) using Sorensen’s distance measure in PC-

ORD version 6 (PCORD v.6; McCune and Grace 2002).  

Fruit production 

Unlike the plant growth traits measured as continuous variables in this study, the 

reproductive trait fruit production requires special attention. Fruit production data are 

discrete and naturally inflated by numerous but information rich zeros that represent 

biologically meaningful information about the presence vs. absence of flowers and fruit. 

As expected, we had a high frequency of true zero values in our estimates of fruit 

production for each species in this study (E. nigrum = 90%; V. vitis-idaea = 78%; Fig. 3). 

While generalized linear models are often used to model zero-inflated data (Zuur et al. 

2007), traditional error families are not always suitable to overcome cases of high over-

dispersion (Martin et al. 2005). As different biological processes may be driving the 

presence vs abundance of fruit in this study, we tested our predictions using a step-

wise, two-part conditional generalized linear hurdle model, which utilizes different error 

distributions at each hurdle to investigate the effects of canopy structure (biotic 

interactions) and microclimate (abiotic conditions) on 1) the presence/absence of fruit 

(Binomial error and logit link), and 2) the extent of fruit production (Negative binomial 

error and log link) for each species (Martin et al. 2005, Zuur et al. 2012).  

When we explored the variance of our growth and fruit production data within 

each zone-aspect combination, we found transect location to have minimal confounding 

effects on the distribution of our response and predictor variables within each zone. 
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Therefore, we treated quadrats (n=30) rather than transects (n=3) as replicates for each 

zone-aspect combination for all analyses (N=210). However, we noted that transect 

elevation, particularly at the south-facing aspect varied within some zones. Recognizing 

that elevation can drive differences in performance traits, we included elevation as a 

model term to account for this local variability. 

 Prior to model construction, collinearities between predictor variables were 

investigated by calculating Pearson product moment correlation coefficients (r-values) 

(Appendix 3.1). We observed significant (p-values < 0.001) collinearities among derived 

cover variables (total vegetation cover, canopy cover and total tree/shrub cover) and 

birch cover; therefore, we retained only total canopy cover to characterize the 

abundance of tree and tall shrub canopy. All global models of fruit production were 

specified using Type I sum of squares error structure. Predictor variables were ordered 

as follows: factors ‘zone’ and ‘aspect’ were entered first, followed by canopy structure 

[‘canopy cover’ (%), ‘canopy density’, ‘mean canopy height’ (m) and ‘mean clonal area’), 

understory structure (‘berry species cover (%)’ and ‘height (cm)’, ‘birch height (cm)’), 

and abiotic (‘%PAR’, ‘% Soil Moisture’, ‘Soil Temperature (°C)’, and “Elevation (m)’] 

variables respectively. Interaction terms among covariates, growth traits and between 

biotic and abiotic parameters (i.e. ‘height*PAR’) were considered during the initial 

stages of model specification, however they were not included in final global models 

because our sample size, particularly among count models (zeros removed), could not 

support model convergence. A summary of all quantitative predictor variables with their 

means ± standard error is reported in Appendix 3.2. We fit fruit production models for 

each dwarf berry shrub using manual backwards selection by sequentially removing 
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unimportant terms at p > 0.05. Models were run on unstandardized and standardized 

predictor variables. Our decision on alpha (5%) was unchanged between models, 

therefore we present only unstandardized versions of our final models. Variance 

inflation factors, residual and fitted values were examined at each step to evaluate 

influential points, error structure and independence. Goodness of fit was assessed by 

performing a chi-squared test based on the residual deviance and degrees of freedom. 

Models were run using package ‘MASS’ (Venables and Ripley 2002) and effects 

displays constructed in package ‘effects’ (Fox 2003) in R version 3.1.0 (R Core Team 

2014). R-code is provided in Appendix 3.3.  

3.3 Results 

3.3.1 Stand structure and community composition 

 The results of the Mantel test indicate a highly significant positive correlation 

between vegetation abundance (r = 0.227; t = 0.975; p < 0.001),  height (r = 0.402; t = 

0.252; p = 0.001), and microclimatic factors, confirming that our abiotic parameters 

(PAR, soil moisture, temperature and elevation) are biologically meaningful correlates of 

plant community composition and structure across our study location. Pairwise 

comparisons indicate significant differences in vegetation abundance and height 

between zones, aspects and nearly all zone-aspect combinations (Appendix 3.4), 

suggesting that our data match the zonal delineations we set out to quantity across the 

forest-tundra transition, and that aspect should be considered as an important 

topographic variable in our models.  

 Our NMDS ordinations resulted in 2-dimensional solutions (Vegetation 

abundance: Stress=20.67; Final instability = 0.002 (Fig. 3.3A); Vegetation height: Stress 
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= 9.08; Final instability = < 0.001 (Fig. 3.3 B) with cumulative variance explained of 

74.4% and 89.6% respectively. Both scatterplots (Fig. 3.3A,B) and associated species 

scores (Appendix 3.5, Appendix 3.6) indicate that the greatest differences in plots and 

species scores exist between the lower and upper forest-tundra transition zones along 

axis 1 (Fig. 3.3), and also between north and south facing aspects, but only for 

vegetation abundance along axis 2 (Fig. 3.3A). We also observed strong positive 

correlations between nearly all abiotic parameters (Elevation > PAR> Soil temperature) 

and plots above the lower forest-tundra transition zone for both ordinations, indicating 

that differences in vegetation abundance and height between the lower and upper 

forest-tundra transition are consistent with a gradient in increasing elevation, light and 

soil temperature from forest to tundra.  

 When we examine the abundance of dwarf berry shrubs (Fig. 3.3A; Appendix 

3.5), only Empetrum nigrum exhibited a strong affinity to “zone” through significant 

correlations with forest and lower forest-tundra transition plots (axis 1; r = -0.726). Other 

significant forest and lower forest-tundra affiliates along axis 1 included typically boreal 

understory shrubs (Rhododendron groenlandicum, Linnaea borealis, Cornus 

canadensis), forbs (Lycopodium spp.), mosses (Pleurozium schreberi, Dicranum spp.) 

and lichens. The lack of significant correlation for Vaccinium uliginosum and V. vitis-

idaea indicates that these species are not limited by environmental differences across 

the treeline ecotone. In the upper forest-tundra transition and low shrub tundra plots, 

positive correlations with axis 1 were observed for species with tundra affinity such as 

northern Labrador tea (R. tomentosum), sedges (Carex spp.) and lichens (Cladina 

stellaris, C. rangiferina, Cetraria/Flavocetraria spp, Alectoria ochroleuca). Although the 
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variance explained was much weaker for axis 2 (15.9%), we observed a north-south 

gradient between B. glandulosa (r = -0.611) in south-facing plots and Picea mariana (r = 

0.612) in north-facing plots, particularly among lower forest-tundra transition plots. 

These patterns indicate that aspect may be an important factor in growth response of 

canopy-forming species.   

 In contrast to berry species’ abundances, all berry species’ heights were 

significantly correlated with axis 1 (Fig. 3.3B; Appendix 3.6), with taller E. nigrum (r = -

0.770) most strongly associated with tall canopy species (r = -0.871) and Rhododendron 

groenlandicum (r = -0.658) at the interface between forest and lower forest-tundra 

transition plots. Vaccinium uliginosum (r = -0.422) and V. vitis-idaea (r = -0.403) heights 

were most strongly associated with the tall-shrub Betula glandulosa (r = -0.540) and 

were tallest within lower forest-tundra transition plots. Heights of R. tomentosum (r = 

0.473), a true tundra affiliate, exhibited the strongest correlations with upper forest-

tundra transition plots. This observed gradient in height corresponds to a significant 

gradient in available light between the lower and upper forest-tundra transition, which is 

consistent with our predictions.  

3.3.2 Fruit production 

 Our predicted trend of an increasing (upslope) gradient in fruit production was 

largely consistent with our results; however we observed the highest fruit production in 

the upper forest-tundra transition rather than the low shrub tundra, followed by lower 

forest-tundra transition, and almost a complete absence of fruit production in the forest 

zone (Fig. 3.4). Fruit production was generally highest for V. uliginosum, followed by V. 

vitis-idaea and E. nigrum, however these values were highly variable, owing in part to 
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the high frequency of zero-values among berry species throughout the treeline (Fig. 

3.5).  

 For E. nigrum, we found that the probability of fruit presence was higher on north 

vs south-facing aspects and under canopy <2m in height, however the maximum 

probability of fruit presence was less than 20% between predictor variables. Simply 

stated, there is a low probability of observing E. nigrum fruit across the forest-tundra 

ecotone across our study site (Table 3.2; Fig. 3.5a). In contrast, when we compare the 

significant factors affecting the probability of fruit production among Vaccinium species 

(Table 3.2; Fig. 3.5b-c), maximum probability of fruit presence is much higher (>80%) 

than for E. nigrum, and the same three factors are significant predictors of fruit presence 

for both Vaccinium species: “Zone” (FTL, FTU and LST), berry species “Cover (%)”, and 

“PAR (%)”. For V. uliginosum, there was a > 50% probability of fruit presence in the low 

shrub tundra and upper forest-tundra transition zones, whereas the maximum 

probability was slightly less than 30% for V. vitis-idaea in the upper forest-tundra 

transition. We observed a more gradual increase in probability of fruit presence for V. 

uliginosum cover values >20% vs. a more abrupt increase in fruit presence for V. vitis-

idaea cover values >10%. This suggests that V. uliginosum has a more plastic growth-

reproduction relationship than V. vitis-idaea, as predicted. Lastly, we observed a > 40% 

and > 20 % probability of V. uliginosum and V. vitis-idaea fruit presence respectively at 

PAR values ≥ 100% (Table 3.2; Figure 3.5b-c). Collectively, these results indicate that 

positive growth-reproduction relationships rather than trade-offs and available light are 

important predictors of fruit presence for Vaccinium species. Biotic interactions were 

less important than expected in predicting V. uliginosum fruit presence.   
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 In contrast to the probability of fruit production, neither aspect nor zone were 

significant predictors of fruit production among berry species (Table 3.3; Fig. 3.6a-c). 

For E. nigrum, maximum fruit production (~125 fruit/m2) was similarly predicted by low 

clonal area in canopy species, and under drier soil moisture conditions. Factors 

affecting extent of production were again consistent among Vaccinium spp. For V. 

uliginosum, the strongest positive predictors of fruit production included canopy cover 

>50%, V. uliginosum cover >40% and soil temperatures > 10°C respectively. For V. 

vitis-idaea, cover > 30%, soil temperatures > 10°C, and canopy density < 1 tree/tall-

shrub/25m2 were the strongest positive predictors of fruit production respectively (Table 

3.3; Figure 3.6). These results emphasize positive growth-reproduction relationships 

over trade-offs, but this only appears to apply to Vaccinium spp. Unlike the trends we 

observed for probability of fruit presence, a combination of abiotic conditions and biotic 

interactions were significant predictors of fruit production for all berry species. This does 

not support our third prediction that abiotic constraints will have stronger effects on fruit 

production in prostrate growth forms vs. biotic interactions for growth forms with the 

capacity to compete for aboveground resources, such as light.  

3.4 Discussion 

 Multi-species berry shrub performance (abundance, height and fruit production) 

differs among species at the interface between the lower and upper forest-tundra 

transition zone, with increasing elevation, light availability and soil temperature. 

Although we did not observe growth-reproduction trade-offs among species, 

characteristics of a closed canopy forest had consistent negative effects on the extent of 

fruit production for all berry species. Positive abundance-reproduction relationships 
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were exhibited for both Vaccinium spp. across treeline, indicating the potential 

importance of plant abundance in reproduction allocation of these species. The relative 

importance of abiotic constraints vs. biotic interactions did not correlate to prostrate vs. 

upright growth forms in this study, however we identified that different abiotic and biotic 

factors are important in explaining the presence vs. extent of fruit production within and 

between species. This distinction could not have been made without the application of 

hurdle models. This study documents strong feedbacks between canopy structure and 

microclimate on fruit production at treeline, substantiating the claim that climate-induced 

canopy expansion, could reduce fruit production and availability throughout dwarf shrub 

tundra plant communities.  

3.4.1 Trends in dwarf berry shrub performance across the forest-tundra ecotone 

 Our study confirms that dwarf berry shrubs and their tall-shrub neighbours exhibit 

plastic growth responses in abundance (E. nigrum and B. glandulosa) and height (all 

species) at treeline, with peak values being expressed between the forest (E. nigrum) 

and within the lower forest-tundra transition zone (Vaccinium spp. and B. glandulosa) 

(Fig 3.3). Our results are consistent with other ecotonal studies in eastern alpine 

Canada that found that community structure differs most prominently between the forest 

and forest-tundra zones (Harper et al. 2011, Trant et al. 2015) where canopy density is 

patchy and trees exhibit clonal growth to enable persistence. This shift in canopy 

architecture and distribution creates a heterogeneous light environment (Gratani 2014), 

which our dwarf berry shrubs responded to by increasing in height. The fact that we 

detected an abrupt aboveground resource shift in light and soil temperature between 

the lower and upper forest-tundra transition (Fig. 3.3) coinciding with a marked increase 
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in fruit production (Fig. 3.4), indicates that the ecological constraints on fruit production 

are strongest between the forest and lower-forest tundra transition zones.  

 

3.4.2 Factors affecting fruit production across the forest-tundra ecotone  

 Our models verified the observed trends that available light in the upper forest 

tundra transition zone (Fig. 3.5b-c) and warmer soil temperatures associated with 

canopy breakup (Fig. 3.6b-c) are strong positive predictors of fruit presence and 

abundance, respectively, in Vaccinium spp. We suspect this may be linked to habitat 

conditions in the upper ecotone that 1) support pollination of Vaccinium spp., and 2) 

protect plant reproductive structures from extreme climatic conditions. During field data 

collection we observed numerous bumblebees (Bombus spp.), which are efficient 

``buzz`` pollinators of Vaccinium spp., foraging and returning to ground nests dispersed 

throughout the upper-forest tundra transition zone. This habitat is consistent with 

bumble bee nesting sites described by Packer et al. (2007). While Jacobs et al. (2014) 

documented relatively constant soil temperatures at alpine treeline in the Mealy 

Mountains, Labrador (Canada), soil temperatures in this study were nearly 1°C warmer 

in the upper versus the lower forest tundra transition zone, particularly at south facing 

aspects (Appendix 3.2).  We propose that bee colonies benefit from direct sunlight and 

warmer soil surface temperatures in this zone, which is indirectly increasing foraging 

behaviour, pollinator attraction, and thus pollen transfer to Vaccinium spp. Pollinator 

activity is also supported by other co-occurring flowering species in this zone, such as 

R. tomentosum, which was a strong tundra affiliate both in abundance and height in the 

upper forest-tundra transition (Fig. 3.3). Rhododendron spp. are known to be pollinated 



96 
 

by bumblebees (Kudo 1993), and provide important floral resources throughout the 

flowering period of tundra berry plants. These findings emphasize the importance of 

microclimate and exogenous factors on fruit production at treeline. Also, by virtue of 

lower elevation, dwarf shrubs in the upper forest-tundra are less exposed to wind and 

climatic stress than those in the low shrub tundra. Here, shrub architecture is low 

stature but still erect, which allows the shrub canopy to trap snow, thereby protecting 

perennating structures from potentially damaging disturbances such as wind, icing and 

winter warming events (Bokhorst et al. 2009, Bokhorst et al. 2011, Preece et al. 2012).   

 Fruit production in E. nigrum was much lower in comparison to Vaccinium spp.; 

however, fruit was more likely to occur on north vs. south facing slopes, and more 

abundant under drier soil conditions. At our treeline site, the north-facing aspect has a 

much steeper slope than the south-facing aspect, suggesting that fruit production in E. 

nigrum may benefit from well-drained soil conditions. Although fruit production and 

maximum shrub canopy (B. glandulosa) height were negatively correlated among 

species, this variable was not a significant predictor of fruit production across the forest-

tundra ecotone.  

 Contrary to our prediction, we did not detect any significantly negative growth-

fruit production relationships that would suggest allocation trade-offs within berry 

species. However, our lack of response does not mean that reproductive costs do not 

exist at treeline. While it`s true that light is a key abiotic constraint on plant growth at 

treeline, the relationship between light and reproductive structures is not well known 

(Xie et al. 2014). Similarly, more than one abiotic or biotic constraint can lead to 

reproductive costs. To overcome these complex in-situ interactions, Obeso (2002) 
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explains that trade-offs in plants are best verified by manipulative experiments, where 

limiting conditions can be controlled, since many factors such as recent history, size and 

age differences will introduce variance in life history traits. If light is the most important 

constraint on fruit production, then it`s possible that other growth traits that relate more 

directly to plant survival and persistence under shade, such as specific leaf area or 

proportion of sun vs. shade leaves (Gratani 2014), may be more suitable to explore 

such trade-offs in nature.  

 Berry species cover exhibited a strong positive effect on both the presence and 

abundance of fruit for both Vaccinium spp., indicating there may be important thresholds 

between biomass, clonal size and reproduction at treeline. In a recent review of 

vegetative-reproductive relationships among herbaceous plants, Weiner et al. (2009) 

concluded that reproductive output of an individual is largely driven by its size, and that 

larger, long-lived plants often exhibit non-linear relationships in growth and 

reproduction, which is consistent with what we observed in this study, albeit among 

woody species. To better understand this relationship among dwarf berry shrubs, 

growth traits should reflect the plant’s investment into prostrate vs upright growth, since 

persistence in the upper treeline is achieved by growing out rather than up. Future 

studies should also link clone size to pollinator visitation, since abundance-reproduction 

relationships could be linked to pollinator attraction (Dauber et al. 2010).  

 Our results did not support the prediction that fruit production in prostrate berry 

growth forms will be more constrained by abiotic conditions (microclimate) than biotic 

interactions (canopy structure) with upright growth forms such as B. glandulosa. While 

canopy structure variables had a stronger overall effect on fruit presence and extent of 
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fruit production among berry species, all species were significantly influenced by 

microclimate, albeit different variables. Perhaps a more important finding was that the 

canopy and understory environment exhibited different constrains on when vs. how 

much flowers/fruit a berry plant produces. This distinction was made possible through 

hurdle models and emphasizes the importance of data rich zero-values in ecological 

datasets. Collectively, these finding confirm that canopy effects on fruit production are 

both direct and indirect; more study is required to establish the links between canopy 

effects, understory growth response, and sexual reproduction in various fruit producing 

species in the forest-tundra ecotone.  

 Other abiotic gradients in physical and chemical properties of soil not measured 

in this study could also be influencing observed trends in growth and fruit production 

among focal berry species. In the context of northern tree species, Lafleur et al. (2010) 

describes a variety of local soil properties (i.e. texture, porosity, moisture, nutrient 

availability (especially nitrogen and phosphorus) and permafrost dynamics) that 

individualistically constrain tree distribution at treeline. Coupled with variation in canopy 

litter input across treeline, direct and indirect effects of soil properties on dwarf berry 

shrub growth and fruit production are likely and require further investigation.  

 We did not consider the role of interspecific interactions among dwarf berry 

species on fruit production in the study. However, we know through neighbour removal 

and site manipulation experiments of our focal species (Shevtsova et al. 1995, 

Shevtsova et al. 1997) that growth and reproduction of prostrate growth-forms benefits 

from removal of upright neighbours, albeit with variable results under different site 

conditions. Therefore, it`s possible that interactions among berry species may vary from 
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competitive to facilitative across the forest-tundra ecotone as biomass allocation shifts 

form upright to prostrate, with benefits to fruit production. This area requires further 

study, as facilitative interactions among berry shrubs could mediate, if only in the short 

term, the potential negative effects on fruit production of tall-shrub expansion into dwarf 

and low shrub tundra ecosystems.   

3.4.3 Conclusions  

 Fruit production is a complex process to predict, particularly across resource 

gradients in a stressed environment. Our study has shown that canopy exerts significant 

effects on growth and fruit production in the understory at treeline. For dwarf berry 

shrubs, the effects of tall-shrub expansion into dwarf shrub ecosystems are perhaps 

more imminent than treeline expansion. Firstly, vegetative expansion of trees is slow, 

and expansion through seedling establishment can be mediated by poor seedbed 

suitability in the upper treeline (Wheeler et al. 2011, Dufour-Tremblay et al. 2012). 

Secondly, many tall-shrubs already persist within dwarf and low shrub tundra 

communities at low density and in prostrate form, therefore canopy formation can occur 

through infilling of existing individuals (Myers-Smith et al. 2011). For northern 

communities to mediate or adapt to changes in berry resources with future warming, 

subsequent studies should focus on the growth-reproduction relationships between 

dwarf berry shrubs and their tall-shrub neighbours (under experimental warming 

conditions) and explore possible strategies to actively managing shrub expansion to 

maintain or increase fruit production. These results will support adaptation response to 

changing berry resource availability under increasing climate stress.  
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Table 3.1 Life history profile of three globally distributed dwarf berry shrubs among 

treeline and tundra ecosystems*. 

Life history 
category 

Traits Empetrum 
nigrum 

Vaccinium 
uliginosum 

Vaccinium vitis-
idaea 

Growth Stem growth Monopodial - 
clonal 

Sympodial -clonal Monopodial and 
Sympodial - clonal 

Stem  
length (cm) 

0-50 20-100 5-30 

Foliage Evergreen Deciduous Evergreen 
Form Prostrate Erect or prostrate Low dwarf-

prostrate 
Branching Creeping; Highly 

branched; 
densely leafy 

shoots 

Low to high; 
annual shoots 

Creeping 

Root system Rhizomatous- 
extensive 

Rhizomatous - 
extensive 

Rhizomatous-
extensive 

Reproduction 
 

1° 
Propagation 

Vegetative Vegetative Vegetative 

Propagation 
method 

Adventitious 
rooting of 

procumbent 
branches 

Sprout or layer 
from rhizomes 

Sprout or layer 
from rhizomes 

Flowering 
phenology 

Early spring Late spring-
early/mid 
summer 

Late spring-early 
summer 

Pollination Wind/Insect 
(beetles) 

Wind/Insect 
(bees, flies) 

Insect/Wind (bees, 
flies) 

Habitat Shade 
tolerance 

Moderate Moderate-high Moderate-high 

Soil Moisture Well to poorly  
drained 

Well to poorly 
drained 

Well to poorly 
drained 

Mycorrhizal Ericoid Ericoid Ericoid 

 
*USDA, NRCS. 2015. The PLANTS Database (http://plants.usda.gov, 4 February 2015). 

National Plant Data Team, Greensboro, NC 27401-4901 USA. 

USDA, NRCS. 2015. Fire Effects Information System 

(http://www.fs.fed.us/database/feis/HowToCite.html, 5 February 2015). U.S. Department 

of Agriculture, Forest Service, Rocky Mountains Research Station, Missoula Fire 

Sciences Laboratory  

http://plants.usda.gov/
http://www.fs.fed.us/database/feis/HowToCite.html
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Table 3.2 Summary of statistics for binary (binomial error, logit link) generalized linear 

models predicting presence/absence of fruit production (total # fruits and flowers/m2) of 

berry species across the forest-tundra ecotone. Coefficients are significant at p < 0.05. 

Species Coefficients Estimate Std. 
Error 

Z-
Value 

P-
Value 

Residual 
deviance/df 

AIC Chi-sq 
GOF 

Emni Intercept -0.79 0.34 -2.34   0.019 111.27/207 117.27 1.00 
 Aspect[S] -2.41 0.65 -3.71 <0.001    
 Canopy 

height 
-0.30 0.13 -2.25   0.024    

Vaul Intercept -6.47 1.12 -5.78 <0.001 148.73/201 160.73 0.997 
 Zone[FTL]  1.81 0.85  2.12   0.033    
 Zone[FTU]  3.22 0.83  3.86 <0.001    
 Zone[LST]  3.60 0.89  4.02 <0.001    
 Vaul cover  0.05 0.01  4.89 <0.001    
 PAR  0.03 0.01  2.87   0.004    

Vavi Intercept -5.71 1.07 -5.29 <0.001 136.31/201 148.31 0.999 
 Zone[FTL]  1.22 0.88  1.39   0.164    
 Zone[FTU]  2.06 0.83  2.47   0.013    
 Zone[LST]  0.97 0.94  1.03   0.300    
 Vavi cover  0.15 0.04  4.07 <0.001    
 PAR  0.03 0.01  2.41   0.016    

Emni = Empetrum nigrum, Vaul = Vaccinium uliginosum, Vavi = Vaccinium vitis-idaea;  

F = Forest, FTL = Forest-tundra lower, FTU = Forest-tundra upper, LST = Lower shrub 

tundra; N = north, S = South. 
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Table 3.3 Summary of statistics for count (negative-binomial error, log link) generalized 

linear models predicting abundance of fruit (total # fruits and flowers/m2) of berry 

species across the forest-tundra ecotone. Coefficients are significant at p < 0.05. Emni 

= Empetrum nigrum, Vaul = Vaccinium uliginosum, Vavi = Vaccinium vitis-idaea; F = 

forest, FTL = forest-tundra lower, FTU = forest-tundra upper, LST = lower shrub tundra; 

N = north, S = South. 

Species Coefficients Estimate Std. 
Error 

Z-
Value 

P-
Value 

Residual 
deviance/df 

AIC Chi-sq 
GOF 

Emni Intercept  5.84 0.50 11.69 <0.001 22.07/18 227.43 0.228 
 Clonal area -0.01 0.00  -3.11   0.001    
 Soil moisture -0.03 0.01  -2.21   0.027    

Vaul Intercept  3.37 0.97   3.90 <0.001 87.41/72 1038.6 0.104 
 Canopy 

cover 
 -0.01 0.00 -4.49   0.001    

 Vaul cover  0.02 0.00   3.37   0.001    
 Soil temp.  0.28 0.09   3.00   0.003    

Vavi Intercept -0.78 1.11 -0.70   0.480 49.22/41 517.07 0.177 
 Canopy 

density  
 0.15 0.06 -2.41   0.015    

 Vavi cover  0.04 0.01  5.68 <0.001    
  Soil temp.  0.55 0.11  4.97 <0.001    
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Fig. 3.1 Morphological diagram of dwarf berry shrubs studied in northern Labrador 

along a growth flexibility gradient. Left to right = Vaccinium vitis-idaea, Empetrum 

nigrum and V. uliginosum. Sketches are modified from Shevtsova et al. (1995). 

 

 

 

 

 

 

 

 

 

 



114 
 

 

Fig. 3.2 A) Map indicating location of study site in Nain, Newfoundland and Labrador (NL), Canada; Nain is indicated by 

yellow star; white shading indicates Canadian boundaries; red shading indicates province of NL; map modified from 

www.wikipedia.org; B) Photographs and schematic illustrating sample location and design across the forest-tundra 

ecotone. The forest (i) is characterized by erect and dense tree growth, forming a closed canopy environment. In the 

lower forest-tundra transition (ii), canopy structure is open but with trees still growing in erect form. The upper forest-

tundra transition (iii) has patchy tree cover with mostly prostrate growth form. The low shrub tundra (iv) is treeless with 

dwarf birch (Betula glandulosa), alder (Alnus spp.) and willow (Salix spp.) growing densely in prostrate form.
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Fig. 3.3 Ordination scatterplots (NMDS with Sorensen’s Distance) of vegetation 

abundance (A), vegetation height (B) and environmental correlations with axes 1 and 2. 

Sample zones across the forest-tundra ecotone are represented by unique symbols, 

aspect by colours and convex hulls by solid lines (which enclose points within a sample 

zone). Species are represented by ● symbol. All species with significant correlation 

coefficients are labelled (codes provided in Appendix S3). The direction and length of 

vectors indicate strength of correlations between environmental variables and ordination 

axes. NMDS ordination resulted in a 2-dimensional solutions (A) Stress=20.67; Final 

instability = 0.002; B) Stress = 9.08; Final instability = < 0.001) with cumulative variance 

explained of 74.4% and 89.6% respectively. F=forest, FTL=lower forest-tundra 

transition, FTU= upper forest-tundra transition, LST=low shrub tundra; N=North, 

S=South; PAR = Photosynthetic active radiation (%), Soil temp. = Soil temperature (°C); 

VE = Variance explained. 
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Fig. 3.4 Boxplots showing median, interquartile range, min/max and outliers for 

estimates of fruit production (total # fruits and flowers/m2) for the three berry species 

studied within each Zone-Aspect combination. Emni = Empetrum nigrum, Vaul = 

Vaccinium uliginosum, Vavi = Vaccinium vitis-idaea; F = forest, FTL = forest-tundra 

lower, FTU = forest-tundra upper, LST = lower shrub tundra; N = north, S = South.  
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Fig. 3.5 Effects plots from binary logistic regression (logit link) indicating the magnitude 

and strength of significant parameter effects on the probability of fruit production in a) 

Empetrum nigrum (Emni), b) Vaccinium uliginosum (Vaul) and c) Vaccinium vitis-idaea 

(Vavi). Shaded areas represent 95% confidence intervals. F = forest, FTL = forest-

tundra lower, FTU = forest-tundra upper, LST = lower shrub tundra; PAR = 

photosynthetically active radiation. Black lines along x-axis represent predictor 

observations and their raw values. 
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Fig. 3.6 Effects plots from generalized linear regression (negative binomial error, log 

link) indicating the magnitude and strength of significant parameter effects on extent of 

fruit production (total # fruits and flowers/m2) in a) Empetrum nigrum (Emni), b) 

Vaccinium uliginosum (Vaul) and c) Vaccinium vitis-idaea (Vavi). Shaded areas 

represent 95% confidence intervals. F = forest, FTL = forest-tundra lower, FTU = forest-
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tundra upper, LST = lower shrub tundra. Black lines along x-axis represent predictor 

observations and their raw values. Black lines along x-axis represent predictor 

observations and their raw values.
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Appendix 3.1 Pearson product moment p-values (adjusted Holm’s method) indicating significant correlations between vegetation 

response predictor variables at p < 0.05. Significant p-values of interest are in bold. x = Average, C = Cover, A=Area, Ht = Height, D = 

Density; Begl = Betula glandulosa, Emni = Empetrum nigrum, Vaul = Vaccinium uliginosum, Vavi = Vaccinium vitis-idaea.  

 
Canopy 
Cover 

Tree/ 
ShrubC 

Veg. 
Cover 

X Clonal 
Area 

XCanopy 
Height 

Canopy 
Density 

Begl 
Cover 

Begl 
Height 

Emni 
Cover 

Emni 
Height 

Vaul 
Cover 

Vaul 
Height 

Vavi 
Cover 

Vavi 
Height 

Canopy 
Cover 

0.100 <0.001 <0.001   1.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001   1.000 <0.001 1.000 <0.001 

Tree/ 
ShrubC 

<0.001   1.000 <0.001   1.000 <0.001 <0.001   0.013 <0.001 <0.001 <0.001 <0.001   1.000 1.000 <0.001 

Veg. 
Cover 

<0.001 <0.001   1.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001   0.144   0.002 1.000 <0.001 

xClonal 
Area 

  1.000   1.000   1.000   0.910   0.910 <0.001   0.238   1.000   1.000   0.134   1.000   1.000 1.000   1.000 

xCanopy 
Height 

<0.001 <0.001 <0.001   0.910   1.000 <0.001   1.000 <0.001 <0.001 <0.001   0.144 <0.001 0.010 <0.001 

Canopy 
Density 

  0.100 <0.001  <0.001 <0.001 <0.001 <0.001   1.000   0.115 <0.001 <0.001   1.000   1.000 1.000   0.005 

Begl 
Cover 

  1.000   0.013   1.000   0.238   1.000   1.000 <0.001 <0.001   1.000   1.000   1.000   0.290 1.000   1.000 

Begl 
Height 

  0.115 <0.001 <0.001   1.000 <0.001   0.011 <0.001 <0.001 <0.001 <0.001   1.000 <0.001 1.000   0.010 

Emni 
Cover 

<0.001 <0.001 <0.001   1.000 <0.001   0.010   1.000   0.005 <0.001 <0.001   0.120   0.002 1.000 <0.001 

Emni 
Height 

<0.001 <0.001 <0.001   0.134 <0.001 <0.001   1.000 <0.001 <0.001   1.000 <0.001 <0.001 0.238 <0.001 

Vaul 
Cover 

  1.000   1.000   0.144   1.000   0.144   1.000   1.000   1.000   0.119 <0.001 <0.001   1.000 1.000   1.000 

Vaul 
Height 

<0.001 <0.001   0.002    1.000 <0.001   1.000   0.290 <0.001   0.002 <0.001 <0.001   1.000 1.000   0.021 

Vavi 
Cover 

  1.000   1.000   1.000   1.000   0.010   1.000   1.000   1.000   1.000   0.238   1.000   1.000 1.000   1.000 

Vavi 
Height 

<0.001 <0.001   1.000 <0.001 <0.001  0.005    1.000   0.010 <0.001 <0.001   1.000   0.021 1.000 <0.001 
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Appendix 3.2 Mean and standard error of all canopy, understory and microclimatic predictor variables of fruit production measured 

across the forest-tundra ecotone. Fruit production estimates are presented in Fig. 3. Emni = Empetrum nigrum, Vaul = Vaccinium 

uliginosum, Vavi = Vaccinium vitis-idaea, Begl = Betula glandulosa; F=forest, FTL=forest-tundra lower, FTU=forest-tundra upper, 

LST=low shrub tundra.  

  Aspect North South 

 Category Zone F FTL FTU F FTL FTU LST 

 Canopy Canopy height (m) 5.8 ± 0.3 1.5 ± 0.2 0.3 ± 0.0 5.6 ± 0.4 2.7 ± 0.3 0.4 ± 0.0 0.2 ± 0.0 

 
 

Canopy density 
(#/25m2) 

9.2 ± 0.7 4.0 ± 0.5 3.1 ± 0.4 4.8 ± 0.6 3.7 ± 0.3 3.7 ± 0.2 3.4 ± 0.2 

 
 

Clonal area 
(cm2/25m2) 

0 ± 0 49.1 ± 8.1 20.9 ± 3.1 0 ± 0 86.9 ± 13.1 51.8 ± 11.0 9.4 ± 1.0 

 
 

Canopy cover (%) 161.6 ± 6.7 153.5 ± 6.5 86.1 ± 8.7 145.9 ± 7.5 161.5 ± 6.5 90.0 ± 8.4 84.6 ± 6.3 

 Understory Max. shrub canopy 
(Begl) height (cm) 

46.2 ± 5.0 6.5 ± 3.0 10.9 ± 2.0 48.9 ± 5.6 41.3 ± 6.8 25.2 ± 3.2 3.6 ± 1.1 

 
 

Vaul cover (%) 19.1 ± 3.6 15.6 ± 3.3 23.0 ± 3.3 13.8 ± 3.2 38.1 ± 4.9 37.5 ± 3.8 38.3 ± 3.3 

 
 

Vaul height (cm) 12.7 ± 1.5 7.1 ± 1.1 4.6 ± 0.3 13.3 ± 1.6 16.4 ± 1.5 9.0 ± 0.9 6.2 ± 0.5 

 
 

Vavi cover (%) 4.9 ± 0.8 8.2 ± 1.2 7.0 ± 0.9 2.5 ± 0.4 4.1 ± 0.6 18.4 ± 3.7 4.4 ± 1.0 

 
 

Vavi height (cm) 7.5 ± 0.9 4.9 ± 0.2 3.2 ± 0.2 4.8 ± 0.7 4.7 ± 0.4 4.4 ± 0.4 2.0 ± 0.4 

 
 

Emni cover (%) 50.5 ± 4.2 43.7 ± 3.8 15.0 ± 3.5 47.7 ± 4.6 31.3 ± 4.5 2.9 ± 2.3 0.7 ± 0.4 

 
 

Emni height (cm) 22.6 ± 0.7 11.5 ± 0.9 3.8 ± 0.6 18.5 ± 1.5 10.9 ± 1.5 0.5 ± 0.3 0.1 ± 0.1 

 Microclimate PAR (%) 61.7 ± 2.8 44.8 ± 3.5 83.2 ± 3.5 39.5 ± 3.6 35.9 ± 3.3 79.0 ± 4.2 77.2 ± 4.3 

  Soil moisture (%) 28.3 ± 1.6 30.7 ± 1.6 36.1 ± 3.0 32.3 ± 3.5 34.0 ± 2.3 26.0 ± 0.8 29.6 ± 1.6 

  Soil temperature (°C) 8.1 ± 0.1 8.6 ± 0.3 8.9 ± 0.2 8.2 ± 0.1 9.0 ± 0.2 10.2 ± 0.2 10.4 ± 0.1 

  Elevation (m) 42.7 ± 5.0  86.3 ± 11.0 114.7 ± 3.7 89.3 ± 16.2 136 ± 21.0 175 ± 19.4 231.7 ± 14.1 
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Appendix 3.3 R code for generalized linear hurdle models using packages ‘MASS’ 

(Venables and Ripley 2002) and ‘effects’ (Fox 2003) in R version 3.1.0. 

 
 
Hurdle Model: Step 1 
 
>library(MASS) 
>ModelName<glm(Y~X, family=binomial(logit), na.action=na.exclude, data=) 
> summary(Modelname) 
 
Hurdle Model: Step 2 
 
>library(MASS) 
> ModelName< glm.nb(Y~X, na.action=na.exclude, data=subset(, Y>0)) 
 
Effects displays: 
>library(effects) 
> plot(allEffects(model),rescale.axis=FALSE) 
 
Goodness of Fit: 
> 1 -pchisq(summary(model)$deviance,summary(model)$df.residual) 
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Appendix 3.4 MRPP statistics for pairwise comparisons of vegetation abundance and 

height between zones, aspects, and all zone-aspect combinations. All comparisons 

indicate significance at p <0.05. T=Test statistic; A = Chance-corrected within-group 

agreement [1- (observed delta/expected delta)]; p = probability of smaller or equal delta. 

F=forest, FTL=forest-tundra lower, FTU=forest-tundra upper, LST=lower shrub tundra. 

Groups Pairwise 
Comparisons 

Vegetation Abundance Vegetation Height 

T A p T A p 

Aspect N vs. S -20.430 0.030 <0.001 -3.72 0.010 0.010 

Zone F vs. FTL -30.734 0.069 <0.001 -44.893 0.212 <0.001  
F vs. FTU -67.013 0.207 <0.001 -77.257 0.459 <0.001  
F vs. LST -50.826 0.199 <0.001 -58.416 0.480 <0.001  
FTL vs. FTU -47.136 0.121 <0.001 -57.503 0.250 <0.001  
FTL vs. LST -35.814 0.119 <0.001 -46.373 0.281 <0.001  
FTU vs. LST -16.043 0.045 <0.001 -15.355 0.070 <0.001 

Zone-Aspect F-N vs. F-S -11.504 0.053 <0.001   -1.421 0.012   0.090  
F-N vs. FTL-N -25.010 0.132 <0.001 -31.010 0.315 <0.001  
F-N vs. FTL-S -25.454 0.130 <0.001 -19.888 0.207 <0.001  
F-N vs. FTU-N -34.366 0.245 <0.001 -39.377 0.497 <0.001  
F-N vs. FTU-S -35.858 0.260 <0.001 -39.568 0.534 <0.001  
F-N vs. LST -36.530 0.250 <0.001 -39.705 0.522 <0.001  
F-S vs. FTL-N -20.560 0.097 <0.001 -27.453 0.256 <0.001  
F-S vs. FTL-S -13.176 0.060 <0.001 -14.518 0.141 <0.001  
F-S vs. FTU-N -32.693 0.212 <0.001 -37.442 0.435 <0.001  
F-S vs. FTU-S -34.041 0.223 <0.001 -37.203 0.462 <0.001  
F-S vs. LST -35.297 0.214 <0.001 -38.307 0.462 <0.001  
FTL-N vs. FTL-S -16.133 0.079 <0.001   -7.9743 0.064 <0.001  
FTL-N vs. FTU-N -26.419 0.160 <0.001 -25.756 0.229 <0.001  
FTL-N vs. FTU-S -31.159 0.195 <0.001 -27.602 0.253 <0.001  
FTL-N vs. LST -30.942 0.187 <0.001 -30.622 0.282 <0.001  
FTL-S vs. FTU-N -25.877 0.142 <0.001 -34.104 0.328 <0.001  
FTL-S vs. FTU-S -23.790 0.127 <0.001 -32.167 0.326 <0.001  
FTL-S vs. LST -26.719 0.127 <0.001 -36.277 0.368 <0.001  
FTU-N vs. FTU-S -11.745 0.054 <0.001 -10.327 0.071 <0.001  
FTU-N vs. LST -16.726 0.073 <0.001   -7.859 0.053 <0.001  
FTU-S vs. LST -13.651 0.057 <0.001 -19.311 0.140 <0.001 
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Appendix 3.5 Pearson correlation coefficients (r-values)1 of vegetation abundance and 

environmental variables, sampled across the forest-tundra ecotone, with ordination 

axes. R-values indicate strength and direction of linear correlations between variables 

and ordination axes. Bold values indicate significance at p<0.05. Species codes are 

provided for those with significant correlation coefficients plotted on Fig. 3.3A. 

Species  Axis 1 Axis 2 Species (cont’d) Axis 1 Axis 2 

Abies balsamea -0.080 0.121 Peltigera spp. -0.185  0.224 

Alnus crispa -0.057 -0.124 Petasites spp. -0.085 -0.110 

Alectoria nigricans   0.396 0.032 Phyllodoce caerulea -0.287  0.144 

Alectoria ochroleuca 
(Aloc) 

 0.519 0.054 Picea glauca  -0.370 -0.202 

Arctous alpina  0.312 0.035 Picea mariana (Pima) -0.240  0.612 

Aulacomnium palustre  0.058 -0.084 Pinguicula vulgaris -0.024  0.084 

Bare ground  0.086 -0.083 Pleurozium schreberi (Plsc) -0.665  0.139 

Betula glandulosa 
(Begl) 

-0.108 -0.611 Poa spp. -0.076 -0.199 

Carex bigelowii (Cabi)  0.474 -0.042 Ptilium crista-castrensis -0.102 -0.036 

Cetraria/Flavocetraria 
spp.(Cesp) 

 0.517 0.107 Racomitrium lanuginosum  0.153 -0.083 

Chamaenerion 
angustifolium 

-0.070  0.154 Rhododendron groenlandicum 
(Rhgr) 

-0.466  0.113 

Chamaenerion latifolium -0.147  0.030 Rhododendron lapponicum  0.130 -0.167 

Cladonia spp.  0.169 0.171 Rhododendron tomentosum 
(Rhto) 

 0.623  0.052 

Cladina mitis  0.008 0.070 Rock  0.200  0.286 

Cladina rangiferina 
(Clra) 

 0.557 0.148 Rubus chamaemorus -0.120  0.145 

Cladina stellaris (Clst)  0.574 0.113 Salix planifolia/spp. -0.155 -0.178 

Cornus canadensis  -0.378 -0.090 Salix uva-ursi  0.207 -0.137 

Coptis trifolia  -0.303 -0.146 Sedge  0.092  0.000 

Crust (lichen)  0.141 0.130 Soil  0.240  0.017 

Diapensia lapponica  0.276 -0.032 Solidago spp. -0.245 -0.244 

Dicranum spp. (Disp) -0.435 -0.062 Sphagnum spp. -0.212  0.037 

Empetrum nigrum 
(Emni) 

-0.726  0.140 Stereocaulon spp.  0.180 -0.017 

Equisetum spp. -0.111 -0.171 Lysimachia borealis -0.284 -0.138 

Eriophorum spp.  0.125 -0.004 Unknown moss  0.003  0.073 

Grass spp.  -0.330 -0.169 Unknown lichen  0.129 -0.066  

Hylocomium splendens -0.212  0.167 Vaccinium caespitosum -0.280 -0.130 

Kalmia polifolia -0.113 -0.049 Vaccinium uliginosum   0.370 -0.168  

Larix laricina  -0.313  0.013 Vaccinium vitis-idaea   0.206 -0.029 
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Linnaea borealis (Libo) -0.431 -0.259 Environmental Variables Axis 1 Axis 2 

Litter -0.346 -0.365 PAR (%) 0.602  0.072 

Leafy liverwort -0.054  0.309 Moisture (%) 0.113  0.039 

Lycopodium spp.  -0.366 -0.216 TempGr (°C) 0.444 -0.013 

Pedicularis spp.  0.037 -0.095 Elevation (m) 0.683 -0.202 
1Critical r-value for significance at 5% (N=120) = 0.179 [Appendix III, Upton and Cook (2008)]. 
Therefore we chose a conservative r-value =|0.400| to estimate significance at 5% (N=210).   
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Appendix 3.6 Pearson correlation coefficients (r-values)1 of vegetation height and 

environmental variables, sampled across the forest-tundra ecotone, with ordination 

axes. R-values indicate strength and direction of linear correlations between variables 

and ordination axes. Bold values indicate significance at p<0.05. Species codes are 

provided for those with significant correlation coefficients plotted on Fig. 3.3B. 

Species  Axis 1 Axis 2 Environmental 
Variables 

Axis 1 Axis 2 

Vaccinium uliginosum 
(Vaul) 

-0.422 -0.116 PAR (%) 0.575 0.036 

Vaccinium vitis-idaea 
(Vavi) 

-0.403 -0.167 Moisture (%) 0.115 0.025 

Empetrum nigrum 
(Emni) 

-0.770 -0.075 TempGr (°C) 0.413 0.120 

Betula glandulosa 
(Begl) 

-0.540 -0.378 Elevation (m) 0.692 0.107 

Rhododendron 
groenlandicum (Rhgr) 

-0.658 -0.100    

Rhododendron 
tomentosum (Rhto) 

 0.473  0.003    

Canopy (tree and tall 
shrub) 

-0.871  0.026    

1Critical r-value for significance at 5% (N=120) = 0.179 (Appendix III, Upton and Cook (2008)). 
Therefore we chose a conservative r-value =|0.400| to estimate significance at 5% (N=210).   
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Chapter 4:  Experimental warming effects on performance of culturally significant dwarf 

berry shrubs in eastern Low- and Sub-Arctic Canada.  

 

Siegwart Collier, L., L. Hermanutz, A. Cuerrier C. Lavallée, and E. Lévesque 

 

Abstract 

Inuit Elders from across the Canadian Arctic have observed recent changes in the 

quantity and quality of berries, which is concerning given the high natural and cultural 

resource value of dwarf berry shrubs and their importance in tundra trophic dynamics. 

These observations concur with traditional and scientific knowledge that upright 

deciduous shrubs, especially Betula spp. in eastern Sub-Arctic regions are responding 

positively to climate warming by increasing in abundance and distribution (aka 

“shrubification”). Globally, greater dominance and distribution of upright deciduous 

shrubs could reduce the abundance, distribution and fruit availability of dwarf berry 

shrubs through shading effects on flower production/pollination success, resource 

competition, or changing abiotic conditions. Here, we examine the relationship between 

dwarf birch (Betula glandulosa Michx.) and three ericaceous culturally important dwarf 

berry shrubs [Empetrum nigrum L. (black crowberry), Vaccinium vitis-idaea L. (mountain 

cranberry/lingonberry) and V. uliginosum L. (alpine bilberry)] under short-term 

(2008/2009 to 2011) experimental warming conditions to determine the potential 

impacts on plant community attributes and fruit production. In two and three years of 

experimental warming, we demonstrated the responsiveness of B. glandulosa height to 

warming and showed that fruit production in prostrate berry shrubs (V. vitis-idaea and E. 
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nigrum) is more sensitive to warming and deciduous shrub height than berry species (V. 

uliginosum) with height plasticity. Warming reduced reproductive effort and success in 

E. nigrum, but mainly reproductive success in V. vitis-idaea. Divergent responses 

among prostrate berry shrubs to B. glandulosa height suggest a gradient in competitive 

and facilitative interactions among species. Fruit production varied greatly at the site 

and/or plot level, suggesting strong local drivers on fruit production across the eastern 

Low- and Sub-Arctic region. Future research and monitoring are required to determine 

the persistence of species-specific responses to warming and B. glandulosa growth 

traits over time. 

 

Keywords: Eastern Low/Sub-Arctic Canada, experimental warming, dwarf berry 

shrubs, fruit production, shrubification, Betula glandulosa, Vaccinium uliginosum, 

Vaccinium vitis-idaea, Empetrum nigrum 
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4.1 Introduction 

In polar regions where climate variability and warming is changing at an 

unprecedented rate (Holland and Bitz 2003), the structure and function of tundra 

ecosystems is changing rapidly (Post et al. 2009). These changes are threatening 

global food security (Wheeler and von Braun 2013) primarily by limiting access and 

availability of animal and plant country foods (Ford 2009, Larsen et al. 2014). In the 

Canadian Arctic and Alaska, Inuit Elders and northerners have linked climate variability 

to changes in berry resources, such as decreases (and in some cases increases) in the 

growth, quantity and quality of culturally important dwarf berry species (Hupp et al. 

2015, Gerin-Lajoie et al. 2016, Boulanger-Lapointe 2017). Berries are a staple country 

food among Inuit (Zutter 2009), and the process of picking, preparing and consuming 

tundra berries is vital to living Inuit culture (Zutter 2009, Downing and Cuerrier 2011, 

Cuerrier et al. 2015, Boulanger-Lapointe 2017). Dwarf berry shrubs also contribute to 

tundra ecosystem health and function by providing forage (Richardson et al. 2002, 

Cadieux et al. 2005, Christie et al. 2015) and habitat (Marcot et al. 2015) for vertebrate 

and invertebrate herbivores, supplying nutrients and storing carbon in above/below 

ground biomass and litter (Shaver et al. 1992, Grafius and Malanson 2015), and by 

retaining soil moisture and insulating winter soils through snow trapping (Myers-Smith et 

al. 2011), with direct links to permafrost and freeze-thaw cycles (Blok et al. 2010). 

Therefore, understanding how climate variability is driving changes in berry resources is 

critical to mitigating negative human health outcomes, and for anticipating feedbacks in 

tundra ecosystem processes that will inevitably influence tundra food-web dynamics. 



131 
 

Local observations from Inuit and First Nations communities in Canada 

demonstrate local changes in berry resources and climate (Cuerrier et al. 2015, 

Rapinski et al. 2017), yet the ecological mechanisms behind local drivers of fruit 

production have not been fully explored. Direct links between climate variables and 

dwarf berry shrub performance are more commonly explored in the literature. For 

example, extensive monitoring and manipulation of winter precipitation and temperature 

variables at tundra has shown that changes in snow depth and snowmelt timing (Wipf et 

al. 2009, Wipf 2010), and the occurrence of extreme winter warming, thawing and icing 

events (Bokhorst et al. 2009, Bokhorst et al. 2012, Preece et al. 2012, Preece and 

Phoenix 2014) can influence timing of leafout, extent of shoot elongation, bud 

develoment and fruit production in dwarf berry shrubs. However the direction of 

responses vary greatly among species. Simulated enhanced UV-B radiation and 

elevated CO2 has also been shown to alter species-specific berry quality, abundance 

and seed germination (Gwynn-Jones et al. 2012). 

Dwarf berry shrub performance may also be influenced by secondary effects of 

climate change, such as changing neighbour interactions with tundra canopy species. 

Since the 1980’s there has been documented increases in the growth (cover, 

abundance and/or biomass) and distribution of upright deciduous shrubs at multiple 

spatial scales throughout the treeline/tundra biome (Sturm et al. 2001, Tape et al. 2006, 

Tremblay et al. 2012, Myers-Smith et al. 2015). This response to climate warming is 

collectively referred to as “shrubification”, enabled through increased recruitment, 

vertical growth and asexual horizontal infilling (Myers-Smith et al. 2011). It is predicted 

that climate-growth sensitivity of upright deciduous shrubs will be highest at the 
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interface between tall and low-shrub tundra plant communities (Myers-Smith et al. 

2015). Dwarf berry shrubs are ubiquitous at this interface (Grace et al. 2002), 

emphasizing the importance of understanding tall shrub effects on dwarf berry shrub 

performance. 

 One obvious potential mechanism of change resulting from taller and more 

widespread deciduous shrub canopies at tundra is increased light competition with the 

understory. Lower light generally shifts resource allocation in plants from sexual 

reproduction (flower production) to asexual reproduction or persistence in the form of 

vertical/lateral growth and increased leaf area (Yang and Kim 2016). Fewer flowers can 

decrease pollination success, since fewer flowers will be less effective in attracting 

visitation from pollinators (Scaven and Rafferty 2013). Alternatively, tall-shrub canopies 

may ameliorate periods of temperature and moisture stress (Rixen et al. 2010, Bråthen 

and Lortie 2015), which is expected to increase with climate variability. In an 

assessment of factors driving Betula glandulosa Michx. densification in the eastern Sub- 

Arctic, Ropars et al. (2015) demonstrated that increased cover of B. glandulosa directly 

reduces the cover of neighbouring species, potentially through competitive interactions 

and/or changing local abiotic conditions. Given that cover (%) is a strong positive 

predictor of fruit production in dwarf berry shrubs at treeline (Chapter 3), significant 

increases in cover of neighbouring upright deciduous shrubs could displace or decrease 

berry shrub abundance and therefore fruit production. 

In this study, we present a multi-species, multi-site analysis on the relationship 

between B. glandulosa cover and height and three culturally significant dwarf berry 

shrubs [Vaccinium uliginosum L. (bog bilberry/alpine blueberry), V. vitis-idaea L. 
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(redberry/lingonberry) and Empetrum nigrum L. (black crowberry)] under experimental 

warming conditions in Nunavik and Nunatsiavut, Canada. These regions are 

experiencing significant recent warming (Brown et al. 2012, Candlish et al. 2015) with 

well-documented positive influences on height and abundance of upright deciduous 

shrubs, especially B. glandulosa (Ropars and Boudreau 2012, Tremblay et al. 2012), 

and significant Inuit knowledge and observations of changes in plant and berry 

resources (Cuerrier et al. 2015, Gerin-Lajoie et al. 2016). Our goal is to improve our 

understanding of how warming and shrubification might influence growth and fruit 

production of dwarf berry shrubs to better inform natural/cultural resource management 

across the eastern Sub-Arctic region. We predict that: 

1) Experimental warming will have positive effects on growth (cover and height) of 

B. glandulosa and other upright deciduous and tall shrubs, and negative effects 

on growth of ground dwelling vegetation. Dwarf berry shrubs, having varying life 

history strategies, will respond along a continuum, with less negative effects on 

growth of V. uliginosum followed by E. nigrum and V. vitis-idaea respectively; 

2) Experimental warming and upright deciduous shrub growth (cover and height) 

will have negative effects on fruit production of dwarf berry shrubs; Fruit 

production in prostrate berry shrubs (V. vitis-idaea and E. nigrum) will be more 

affected than V. uliginosum given the latter species plasticity and capacity for 

upright growth. 
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4.2 Methods 

4.2.1 Study Sites 

 Paired experimental warming and control plots were established in four locations 

and five sites across similar mesic site conditions in eastern Low and Sub-Arctic 

Canada, including: Kangiqsujuaq (Wakeham Bay; N=12) and Kangiqsualujjuaq (George 

River; N=14 and N=12), Nunavik, and Torr Bay (N=30) and Nain (N=9), Nunatsiavut 

(Fig. 4.1). Climate data from the most recent decade (2000-2009) indicates that mean 

annual temperature and mean total annual precipitation range from -1.8°C to -5.7°C and 

449.4 mm to 882.5 mm across sites, with 318.3-684.1 growing degree above 5°C 

respectively (Table 4.1). Local climate station data near these locations indicate that the 

climate has experienced significant recent warming and increased precipitation, 

beginning in 1993 for Nunavik and Nunatsiavut (Brown et al. 2012, Ju and Masek 

2016). Projected changes over these regions for the 2041-2070 period indicate that 

these climate trends are expected to continue, resulting in increased growing season 

length and growing degree days, a shortening of the snow and ice-cover season, as 

well as greater precipitation in the form of rain (Brown et al. 2012). These conditions are 

important drivers of tundra greening, suggesting continued shrub expansion throughout 

this region. 

 Four of five study sites are classified as Sub-Arctic, characterized by forest-

tundra vegetation. However, experiments at these locations were established within 

mesic alpine tundra, where erect-dwarf shrub tundra vegetation dominates (Table 4.1).  

Across our study region, berry shrubs such as Vaccinium and Empetrum spp. are 

ubiquitous throughout the erect-dwarf shrub tundra plant community type, and they 
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coexist at different densities and distributions with upright deciduous shrubs, primarily B. 

glandulosa but also Salix spp. (willow) and Alnus spp. (alder). Study sites were 

established in relatively homogeneous areas where shrub species coexist, and where 

treatment and control plots could be appropriately matched in terms of species 

composition, abundance and structure. 

 As presented in Chapter 3, our focal berry shrubs share many common life 

history traits characteristic of clonal dwarf shrubs, yet they differ greatly in their ability to 

accrue height based on their mode and capacity for stem growth. In terms of a structural 

hierarchy, V. uliginosum exhibits the greatest height capacity, with a sympodial (multiple 

lateral meristem) branching system where erect shoots can reach maximum heights of 

70-100 cm (Jacquemart 1996). In contrast, V. vitis-idaea has the least height capacity. 

Although its stems elongate mono- (from a single terminal bud) and sympodially, this 

species is highly prostrate and reach maximum heights of 30 cm (Ritchie 1955). 

Empetrum nigrum falls between the two Vaccinium spp. As it elongates monopodially, it 

is densely branched and can reach maximum heights of up to 50 cm (Bell and Tallis 

1973). Unlike the dwarf berry shrubs, B. glandulosa exhibits significant growth plasticity. 

In its prostrate form, erect stems range from 10-40 cm (Aiken et al. 2003), yet in treeline 

ecosystems or relief areas it can reach up to 2.5 m in height (Hermanutz et al. 1989). 

4.2.2 Sample Design and Data Summary 

 The in situ warming experiments included in this study are part of the 

International Tundra Experiment (http://ibis.geog.ubc.ca/itex/), which uses a 

standardized passive warming design. Open-top warming chambers (herein referred to 

as OTC’s) are constructed by fastening angled polycarbonate panels in a hexagonal 

http://ibis.geog.ubc.ca/itex/
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design, which shelter vegetation from the wind and moderate diurnal heat loss, 

effectively raising the mean daily summer air temperature by 1-3°C (Molau 1997). 

 The standard ITEX plot size is 1m x 1m, and it is intended to monitor ecosystem-

level change. We reduced our plot size to 70 cm x 70 cm to specifically track berry 

shrub performance at the plant community level. Experiments were established in 2008 

(Nunavik) and 2009 (Nunatsiavut) and resampled after 2 and 3 years of passive 

warming in 2011. The technique used to quantify species composition, abundance and 

height in this study was through point-framing following the CANTTEX protocol 

(http://ipytundra.ca/sites/default/files/CiCAT%20point-framing%20protocol.pdf). 

However, there was some variation in sample intensity, which is summarized for all 

sites in Appendix 4.1. To account for different point frame sample intensities (# hits/plot) 

among sites and between years, we standardized point frame data by calculating the % 

cover (C) of individual species k (Ck) as: 

 

 

Where y  represents the total number of hits for species k, and Y represents the total 

number of hits for all species (K) in a plot. Species-level data were pooled by vegetation 

lifeforms to obtain plot-level estimates of cover for the following plant functional groups: 

shrubs (all, deciduous and evergreen), forbs, graminoids, mosses and lichens. Height of 

all species (to the nearest 0.5 cm) was recorded at each point frame hit, and individual 

estimates were averaged to obtain a mean height (cm) for all species in each plot. We 

used B. glandulosa as a proxy for the upright deciduous shrub canopy layer across sites 

Ck = (yk /YK)*100  

http://ipytundra.ca/sites/default/files/CiCAT%20point-framing%20protocol.pdf
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because it was the tallest, most dominant and frequently occurring upright deciduous 

shrub among sites. 

 We harvested the berries of our three target species at the end of each growing 

season across sites to quantify the effects of passive warming, year sampled and 

vegetation change on dwarf shrub fruit production within our plots. We standardized 

these data by scaling up our estimates of fruit production to total #fruit/species/m2 

(where necessary) because fruit were also harvested at different sample intensities 

among sites and between years (Appendix 4.1). 

 The nature and duration of plot-level climate monitoring (air/soil temperature, soil 

moisture, photosynthetically active radiation (PAR)) varied greatly among sites in this 

study, therefore we utilized local climate station data available through the Environment 

Canada Weather Archive to examine local variation in climate variables and their effects 

on vegetation (http://climate.weather.gc.ca/historical_data/search_historic_data_e.html). 

We summarized daily and monthly temperature data to calculate temperature-based 

variables that are important for growth and flower production as local and gridded 

precipitation records were absent for Nunavik communities over the sample period in 

this study (2008-2011). Data included mean annual, summer (June-July-August) and 

winter (December-January-February) temperature (°C), and the annual sum of growing 

(>5°C), freezing (<0°C) and thawing (>0°C) degree days. 

4.2.3 Data Analysis 

Community and dwarf berry shrub performance 

 Our primary response variable, fruit production (#fruit/m2), contains many 

biologically meaningful zero values that “count” the occurrences of when fruit is present 

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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vs. absent for a given species. These zero values strongly skew the distribution of 

observations, making it difficult to model the data using traditional approaches (i.e. 

general linear models) based on the normal error distribution (Zuur et al. 2007). Zero-

inflation can also occur with positive continuous data when attributes of a species are 

either very low or not present, as is often the case with abundance data (Warton 2005). 

In this study, a value of zero or very low cover (%) reflects meaningful plot-level 

variation on the presence/absence of certain vegetation lifeforms, particularly across 

sites. To account for these important characteristics in fruit production and functional 

group cover estimates, we use a two-part conditional hurdle model, which addresses 

the high occurrence of zeros by first estimating the probability that fruit and/or a 

functional group is present (Bernoulli distribution), and then if/when present, estimating 

the extent of fruit production and/or functional group cover using a different error 

distribution (fruit production =  negative-binomial; functional group cover = gamma or 

Gaussian) (Martin et al. 2005, Zuur et al. 2012). To account for repeated measurements 

of the same sites and plots at multiple time-points, we used generalized linear mixed-

effects models, with random intercept and fixed slopes for plots nested across our sites. 

This approach assumes similar baseline conditions across sites, such that our fixed 

effects will respond the same across our random subject groupings in the following 

form: 

Y~ (1|Site/PlotID) + X1 + X2 + Xx + (X1*Xx) 

Where ‘Y’ = response, ‘1| Site/PlotID’ = random effect term for PlotID nested within 

Sites, ‘X1-x’ = fixed effect predictors variables, and ‘(X1*Xx)’ = fixed effect interaction 

terms (Bates et al. 2015). 
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Prior to model selection, collinearities between predictor variables were 

investigated by calculating Pearson product moment correlation coefficients (r-values). 

We found strong correlations between seasonal temperature and degree day variables, 

and therefore included only summer (JJA) and winter (DJF) temperature (°C) as climate 

predictors (Appendix 4.2). We used a backwards selection strategy starting with a 

saturated mixed-effect model that included all possible random and fixed effects, and 

sequentially removed random and then fixed effects terms at p >0.1 until we arrived at 

our final model (Zuur 2009, Elmendorf et al. 2011). Random effect terms were only 

removed when their variance approximated zero. Our decision on alpha (p >0.1) was 

unchanged for standardized predictor variables; therefore, we present only 

unstandardized versions of our final models. Interaction terms among random/fixed 

factors, growth traits and climate variables (i.e., ‘height*JJATemp’) were considered 

during the initial stages of model specification, however we found that our sample size, 

particularly among count models (zeros removed), could not support inclusion of 

multiple interaction terms. Therefore, only fixed effect (i.e. ‘Treatment*Year’ and ‘berry 

species cover*height’) interactions were considered during model selection. Variance 

inflation factors, residual and fitted values were examined at each step to evaluate 

influential points, error structure and independence. Outliers were removed in only a few 

cases (response = fruit production; count models) where it dramatically improved model 

fit and enabled model convergence. Predictor variables were ordered as follows: 

random (‘Site/PlotID’) then fixed factors (‘Treatment’ and ‘Year’) followed by fixed factor 

interactions (‘Treatment*Year’). All global models were specified using Type I sum of 

squares error structure. 
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Our modelling approach was to first examine the effects of our random and fixed 

factors on plant functional group cover and focal species’ growth traits independently. 

Functional groups included shrubs (all), deciduous and evergreen shrubs, forbs, 

graminoids, mosses and lichens. Growth traits included cover and height of dwarf birch 

and our three focal berry species. Fruit production models were then specified to 

include random and fixed factors (as described above), plus fixed-effect terms for 

understory structure (‘berry species cover (%) and height (cm)’, ‘B. glandulosa cover 

and height (cm)’), within-species height-cover interactions, and local climate (‘JJA’ and 

‘DJF’ temperature (°C)). In the first round of model selection, the factor ‘Time’ contained 

two baseline levels (2008 and 2009) to account for the difference in when experiments 

were established compared to the resample period (2011). In all candidate models, we 

found no significant difference between the baseline factor levels, and therefore 

proceeded with model selection based on pooled baseline data (2008/2009). 

All generalized linear mixed hurdle models were analyzed in R version 3.3.0 (R 

Core Team 2016) using packages ‘MASS’ (Venables and Ripley 2002), lme4 (Bates et 

al. 2015) and glmmADMB (Bolker et al. 2013). Effects displays were constructed using 

package ‘effects’ (Fox 2003). R-code is provided in Appendix 4.3. 

4.3 Results 

4.3.1 Growth traits 

 Nearly all plant functional groups (5/7) exhibited significant changes in cover (%) 

over time in this study, but no change was detected due to experimental warming. 

Significant changes included increases in cover (%) of deciduous shrubs and forbs, and 

decreases in evergreen shrubs, graminoids and mosses (Table 4.2). Betula glandulosa, 



141 
 

the dominant upright deciduous shrub across sites, exhibited a positive and significant 

increase in cover (%) over time, and a positive and significant increase in height (cm) 

with experimental warming over time (Table 4.2; Fig. 4.2). All focal berry shrubs 

exhibited significant changes in growth traits over time, but not due to experimental 

warming. While height significantly increased for all species, cover (%) response varied. 

Vaccinium uliginosum cover (%) increased with time, whereas V. vitis-idaea decreased. 

Changes in E. nigrum cover (%) were not significant (Table 4.2). 

4.3.2 Fruit production 

The distribution of raw fruit production data shows that the occurrence and extent 

of fruit was highly variable between years and treatments for all species (Fig. 4.3). 

Among our focal berry shrubs, V. uliginosum was the only species to demonstrate an 

increase in probability of fruit presence over time, irrespective of experimental warming 

(Table 4.3a; Fig 4.4-1d). Fruit presence in V. uliginosum was also positively predicted 

by its growth traits, with an 80 % probability of fruit presence when cover and height 

were > than 30 % and 12 cm respectively (Table 4.3a; Fig 4.4-1a-b).  Vaccinium 

uliginosum cover (%) was the only significant predictor of fruit extent, with maximum 

fruit production values when cover was greater than 40-50 % (Table 4.3a; Fig 4.4-2a). 

We found no significant effect of experimental warming on this species. Colder rather 

than warmer mean summer temperatures were better predictors of fruit presence in this 

species, with 75 % probability of fruit production achieved at mean summer 

temperatures < 6 °C. Variance estimates > 0 for random effects terms (especially ‘Plot 

ID’) in both models indicate that fruit production varies at the local level for this species 

(Table 4.3a). 
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 In E. nigrum (Table 4.3b), we observed a significant negative effect of 

experimental warming on the presence of fruit (Fig. 4.5-1f), and to a lesser extent on the 

amount of fruit produced (Fig. 4.5-2b). The extent of fruit production also decreased with 

time (Fig. 4.5-2c), with a decrease in more than 150 fruit/m2 in 2011 compared to 

2008/2009. Maximum B. glandulosa height was also an important negative predictor of 

fruit presence, with < 20 % probability of E. nigrum fruit presence when B. glandulosa 

was ≥ 20 cm tall (Fig. 4.5-1c). Like V. uliginosum, E. nigrum biomass was a positive 

predictor of fruit presence, with 80 % probability of fruit presence when cover and height 

were > than 40 % and 10 cm respectively (Fig. 4.5-1a-b). Cover was also a weak 

positive predictor of fruit extent (Fig. 4.5-2b). In contrast to V. uliginosum, warmer mean 

summer and winter temperatures improved the probability of fruit presence in E. nigrum 

(Fig. 4.5-1d-e). Variance estimates approximated zero for all but one random effect term 

(Step 2, ‘Plot ID’, Table 4.3b), indicating that E. nigrum fruit production is robust to site 

and plot level variation. 

 In both steps of hurdle modelling for V. vitis-idaea, high variance estimates for 

‘Site’ and ‘Plot ID’ indicate that fruit production in this species was strongly influenced by 

local effects (Table 4.3c). Even though fruit occurrence was higher in experimental 

warming plots and in 2011, we observed a significant negative interaction effect 

between time and experimental warming. Therefore, among experimental warming plots 

only, the occurrence of V. vitis-idaea fruit decreased over time (Fig. 4.6-1b). Unlike fruit 

occurrence, the extent of fruit production significantly declined over time (Fig. 4.6-2d) 

and to a lesser extent with experimental warming (Fig. 4.6-2c). Consistent with the other 

berry species, V. vitis-idaea cover was a significant positive predictor of fruit occurrence 
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(90 % probability at ≥ 25 % cover) and fruit extent (> 150 fruit/m2 at ≥ 32 % cover) (Fig. 

4.6-1a,2a). We also observed a weak yet significant positive effect of maximum B. 

glandulosa height on V. vitis-idaea fruit extent (Fig. 4.6-2b). 

4.4 Discussion 

 In just two and three years of experimental warming, we demonstrated the 

responsiveness of B. glandulosa height to warming and showed that fruit production in 

primarily prostrate berry shrubs (V. vitis-idaea and E. nigrum) is more sensitive to 

warming and deciduous shrub height than berry species (V. uliginosum) with the 

capacity for upright growth. Fruit production varied greatly at the site and/or plot level, 

suggesting strong local drivers on fruit production across the eastern Low and Sub-

Arctic region, especially for V. vitis-idaea. Collectively, our study demonstrates the 

potential for future warming and shrubification to constrain fruit production of some 

culturally important prostrate berry shrubs at the regional scale. 

4.4.1 Growth traits 

Contrary to our first prediction, growth traits in plant functional groups (cover) and 

of our focal berry species (cover and height) were weakly affected by experimental 

warming in this study. We suggest a few possible reasons for this result. Although our 

experiments were established in relatively homogeneous mesic low shrub tundra 

communities, we observed significant variation in growth traits at the site and plot level 

(Table 4.2), indicating proportions of species may have differed at OTC establishment. 

Thus, two and three years of experimental warming may have been insufficient to 

overcome initial differences in plot characteristics. Inclusion of local topo-edaphic 

variables to account for plot and site level variation may have improved our detection of 
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warming effects, as we know that functional group responses to warming are strongly 

influenced by plot and site-level moisture and productivity (Elmendorf et al. 2012). 

Nevertheless, B. glandulosa height responded positively to experimental warming in this 

study. This result is consistent with recent global syntheses efforts showing that plant 

height, especially among upright deciduous shrubs, is highly responsive to short and 

long-term warming across the tundra biome (Myers-Smith et al. 2015, Bjorkman et al. 

2018). 

The rate of background warming and climate variability across Nunavik and 

Nunatsiavut is reaching unprecedented levels (Brown et al. 2012, Finnis and Bell 2015, 

Bush and Lemmen 2019), which could be driving the significant growth signals we 

observed over two and three years for nearly all functional groups and focal species 

(Table 4.2). If we assume this to be true, our results on functional group cover, upright 

deciduous shrubs and berry species growth traits (especially height) closely align with 

ITEX syntheses studies, demonstrating that vascular plants increase, and non-vascular 

plants decrease with experimental warming (Elmendorf et al. 2011). One notable 

exception is that evergreen shrub cover decreased (albeit marginally) rather than 

increased in this study. The guild of species that constitutes “evergreen cover” matters 

greatly in this context. In this study, we deliberately selected sites and plots 

representative of dwarf berry shrubs, two of which (E. nigrum and V. vitis-idaea) are 

prostrate evergreen shrubs. Our results show that V. vitis-idaea cover decreased 

significantly over time, which may be influencing growth trends for this functional group. 

Evergreen plant response to warming also depends heavily on soil fertility, moisture and 

the presence of permafrost (Hudson and Henry 2010, Elmendorf et al. 2012, Zamin et 
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al. 2014), indicating there may have been some unaccounted for topo-edaphic gradients 

within our network of mesic sites. 

4.4.2 Fruit production 

Our results on fruit production generally align with our predictions that berry 

shrubs with height plasticity are less affected by experimental warming and upright 

deciduous shrub growth than their prostrate berry shrub neighbours. In fact, we 

identified mainly positive predictors of V. uliginosum fruit presence, including ‘Time’ and 

V. uliginosum growth traits (cover and height). This result suggests that V. uliginosum 

may be benefitting from warming by increased flower production (Aerts et al. 2006), 

and/or has yet to reach a growth-reproduction trade-off, which is widely anticipated with 

future warming and shrubification (Lévesque et al. 2012). If cover and height of V. 

uliginosum and B. glandulosa continue to increase throughout the eastern Sub-Arctic 

region, as demonstrated in this study (Table 4.2), canopy overlapping, and crowding will 

likely increase the importance of interspecific competition (Kudo and Suzuki 2003), with 

the potential to drive growth-reproduction trade-offs among neighbours. 

Collectively, fruit production in prostrate berry shrubs responded negatively to 

treatment effects in this study. However, our two-part conditional hurdle models 

revealed that the mechanisms driving changes in fruit production may be different 

between E. nigrum and V. vitis-idaea. For E. nigrum, B. glandulosa height (> 15-20 cm) 

and warming had a negative effect on the occurrence of fruit, indicating constraints on 

reproductive effort (flower production). Canopy constraints on reproductive effort of E. 

nigrum have been attributed to light limitation among other factors in boreal (Zvereva 

and Kozlov 2004), treeline (Lussier 2016) and tundra (Pajunen et al. 2011) ecosystems. 
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However, this interaction can shift from competition to facilitation in stressful and/or 

disturbed habitats (Zvereva and Kozlov 2004). The amount of E. nigrum fruit also 

decreased with time and experimental warming, indicating additional constraints on 

reproductive success. Empetrum nigrum thrives in nutrient-poor environments, and its 

largely intolerant of light and moisture stress (Bell and Tallis 1973). Therefore, near-

ground warming could be increasing soil productivity, reducing moisture and light 

availability, leading to increased interspecific competition (Kudo and Suzuki 2003). 

For V. vitis-idaea, we observed a higher likelihood of fruit over time and among 

warming plots, yet the amount of fruit declined over time and with warming of this 

species. We also observed a positive effect of B. glandulosa height (up to 20 cm) on the 

amount of V. vitis-idaea fruit, suggesting B. glandulosa may be ameliorating or nursing 

fruit development in V. vitis-idaea. Collectively, these results suggest greater constraints 

on reproductive success (pollination and fruit development), rather than reproductive 

effort (flower production) in this species. Also, V. vitis-idaea was the only species to 

exhibit a negative time-warming interaction on fruit presence, suggesting there may be 

increasing climatic constraints on flower development in this species. Although V. vitis-

idaea can perform better among companion species like E. nigrum (Shevtsova et al. 

1997), growth and fruit production of V. vitis-idaea in Sub-Arctic ecosystems is limited 

by interspecific competition (Shevtsova et al. 1995). Having very limited height plasticity, 

differences in winter and the following spring conditions will likely play an important role 

in predicting annual variation in V. vitis-idaea fruit production, since later snowmelt 

timing and longer duration of snow cover directly improve reproductive performance of 

this species (Krab et al. 2018). 
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For V. uliginosum and E. nigrum, climate variables helped to explain some 

variation in the occurrence of fruit, however the effect is ambiguous and could be due to 

location effects and potentially imprecise tracking of local climate. 

The positive predictive power of individual berry species’ growth traits (mainly 

cover) on fruit production (reproductive effort and success; Table 4.3) reinforces the 

importance of abundance/cover as a coarse proxy metric for fruit production (Lashley et 

al. 2014). As long-lived, predominantly clonal species, greater abundance/cover of 

dwarf berry species ensures persistence across the tundra landscape by increasing 

pollinator attraction, pollination success, and seed dispersal via tundra frugivores. If B. 

glandulosa continues to reduce cover of neighbouring dwarf tundra species across the 

eastern Low and Sub-Arctic (Ropars et al. 2015b), we can anticipate impacts 

throughout the pollinator network (Kettenbach et al. 2017), which could have large-scale 

impacts on dwarf berry shrub fruit production. As we continue to track the movement of 

tall shrub tundra ecosystems across treeline and tundra, it is possible that remote 

sensing of dwarf shrub tundra cover could be used as a surrogate to predict changes in 

tundra fruit availability across the landscape. 

4.4.3 Other considerations and next steps 

  Biotic interactions, especially in the form of ungulate herbivory, have the 

potential to mediate climate-induced shrub expansion throughout the tundra biome 

(Olofsson et al. 2009, Christie et al. 2015). However, in eastern Low and Sub-Arctic 

Canada, migratory caribou populations such as the George River herd are rapidly 

declining (Côté et al. 2012), suggesting that caribou grazing is not an important 

constraint on growth or reproductive trait responses throughout this study. That said, 
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our estimates of growth traits and fruit production were undoubtedly affected by other 

tundra herbivores and frugivores (Barrio et al. 2016), including black (Ursus americanus 

Pallas) and polar bears (U. maratimus Phipps.), lemmings (Dicrostonyx hudsonius 

Pallas) and other tundra rodents, arctic hare (Lepus arcticus Ross), insects and birds 

such as partridge (Lagopus spp.) and Canada geese (Branta canadensis L.). 

Collectively, herbivory could be contributing to high plot and site level variation in plant 

performance throughout this study. 

Although we have identified that experimental warming constrains fruit production 

of prostrate berry species in the short-term, longer-term monitoring is required to track 

species-specific responses through time. This is especially relevant for V. uliginosum, 

which was resilient to warming and B. glandulosa height throughout this study. Plot-

level monitoring of topo-edaphic characteristics is also required to tease apart the local 

mechanisms driving divergent responses in growth and reproductive traits among dwarf 

berry species. Future monitoring should track upright deciduous-dwarf berry shrub 

interactions across tundra ecotonal boundaries to better estimate anticipated feedbacks 

into broader tundra ecosystem function. 
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Table 4.1 Locations and characteristics of experimental warming sites included in this study1. 

 
Inuit Region                      Latitude/ 

Longitude 
Bioclimatic  

Zone1 

Vegetation 
 Type1 

Permafrost 
Type2 

Decadal climate summaries (2000-2009)3  

Location  
(Year established) 

Mean total 
annual 

precipitation 
(mm)  

Mean     
annual/max./min. 
temperature (°C) 

Degree 
days > 
5° C 

Nunavik        

 Kangiqsualujjuaq 
(2 sites; 2008) 

58.71 N            
65.99 W 

Eastern 
Sub-Arctic 

Forest-tundra C/D 697.4* -3.6 -1.4* -9.6* 684.1 

 Kangiqsujuaq 
(2008) 

61.59 N            
71.95 W 

Eastern 
Low Arctic 

Forest tundra, 
erect/dwarf-
shrub tundra 

C 449.4* -5.7 -4.6* -11.4* 369.4 

Nunatsiavut        

 Nain (2009) 56.54 N             
61.69 W 

Eastern 
Sub-Arctic 

Forest-tundra D 882.5 -1.8 2.4 -6.0 578.6 

 Torr Bay (2009) 58.46 N 
62.82 W 

Eastern 
Sub-Arctic 

Erect/dwarf-
shrub tundra 

D 791.11* -5.0* -0.9* -9.2* 318.3 

 

 

1Bioclimatic zone, vegetation type and permafrost interpreted from Circumpolar Arctic Vegetation Map (CAVM Team 

2003); 2C = Continuous, D = Discontinuous; 3Canadian Climate Normals 

(http://climate.weather.gc.ca/climate_normals/index_e.html) were only available for Nain, therefore we calculated a 

decadal climate summary based on the most recent decadal data available for all locations (2000-2009). Where possible, 

climate summaries were derived from local station data available through Environment Canada’s historical data archive 

(http://climate.weather.gc.ca/historical_data/search_historic_data_e.html); data accessed Feb, 2014.; When local data 

http://climate.weather.gc.ca/climate_normals/index_e.html
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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were absent (*), summaries were based on gridded monthly mean high resolution (0.5 x 0.5 degree) climate data 

available from the Climatic Research Unit, Time-Series 3.1 (CRU TS3.1), University of East Anglia CRU, 2011.
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Table 4.2 Summary of vegetation community response to short-term experimental warming based on 

random intercept only linear mixed-effect models. Global response parameters included: lifeform 

cover (%) for all major functional groups, upright shrub (Begl = Betula glandulosa) and berry shrub 

(Emni = Empetrum nigrum; Vaul = Vaccinium uliginosum; Vavi = V. vitis-idaea) cover (%) and height 

(cm). Random factors included ‘Site’ and nested ‘Plot ID’; Fixed factors included ‘Treatment’ (OTC vs. 

CTL), ‘Time’ (2008/2009 vs. 2011), and ‘Treatment’*’Time’. Models were specified using 

unstandardized, zero truncated data (Gaussian/gamma error family and identity/log link) and 

coefficients retained at p < 0.1.  

 Random factors Fixed factors Model    
performance 

Community 
response 

Site Plot ID Treatment 
(CTL vs 

OTC) 

Time Treatment x 
Time 

Log  
likelihood 

ΔAIC 

        
Lifeform  
Cover (%) 

       

Shrubs (all) X X ̶ ̶ ̶ -1234.35 4.9 
Deciduous X X ̶ ↑ ̶ -1010.92 3.5 
Evergreen X X ̶   ↓ * 

 
̶ -1246.74 3.1 

Forbs  X ̶ ̶ ↑  ̶ - 594.32 3.0 
Graminoids ̶ X ̶ ↓  ̶ - 616.03 3.4 
Lichens X X ̶ ̶ ̶ -1031.28 4.7 
Mosses X X ̶ ↓  

 
̶ - 732.31 1.4 

Upright shrub         
Begl Cover (%) X X ̶ ↑ ̶ - 741.53 0.9 
Begl Height (cm) X X X X ↑ - 537.97 11.6** 
        
Berry shrub        
Vaul Cover (%) X X ̶ ↑  ̶ -897.67 3.3 
Vaul Height (cm) X X ̶ ↑  ̶ -487.23 2.7 
Emni Cover (%) X X ̶ ̶ ̶ -691.80 4.9 
Emni Height (cm) X X ̶ ↑  ̶ -278.23 3.9 
Vavi Cover (%) X X ̶ ↓  ̶ -927.71 3.7 
Vavi Height (cm) X X ̶ ↑ ̶ -474.67 2.8 

 
* X denotes when a term was retained in the model; ↑ and ↓ indicate significant direction of change 
across fixed factors at p <0.05; ‘**’ indicates significance at p <0.1; ‘–‘ indicates insignificant factors 
removed during model selection; ‘CTL’ = control and ‘OTC’ = open-top warming chamber; ΔAIC 
indicates AICglobal - AICmin; NA when indicates AICglobal =  AICmin
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Table 4.3 Fitted hurdle model summary for the effects of short-term experimental warming, vegetation community 

attributes and local climate on fruit production of a) Vaccinium uliginosum (Vaul), b) Empetrum nigrum (Emni) and c) V. 

vitis-idaea (Vavi) based on random intercept only mixed-effects hurdle models. Random factors included ‘Site’ and nested 

‘Plot ID’; Fixed factors included ‘Treatment’ (OTC vs. CTL), ‘Time’ (2008/2009 vs. 2011), and ‘Treatment’*’Time’; Fixed 

effects included cover and height of each focal berry species and Betula glandulosa (Begl), and local climate variables 

(JJA/DJF air temperature). Step 1 models the probability of fruit production (presence/absence fruit/m2; binomial error, 

logit link), and Step 2 the extent of fruit production (total # fruit/m2; negative-binomial error, log link). Model statistics were 

derived from unstandardized data; Coefficients were retained at p <0.10 (bold). OTC = open-top warming chamber; CTL = 

control; JJA = June, July August, and DJF = December, January, February. Δ AIC represents the difference in Akaike 

Information Criteria (AIC) between the best-fit model and the global model. 

Berry 
Shrub 

Hurdle Effects Coefficients/ 
Intercepts 

Estimate/ 
Variance* 

Std. Error/ 
Std.Dev* 

Z-Value P-Value ΔAIC Log 
Likelihood 

a. Vaul Step 1 Random Plot ID  2.01 1.42   1.6 -125.30 
  Fixed Intercept -0.58 0.95 -0.61   0.541 
   Vaul cover (%)  0.09 0.02  3.86 <0.001 
   Vaul height (cm)  0.22 0.08  2.67   0.007 
   JJA Temp (°C) -0.31 0.11 -2.68   0.007 
   Time  1.36 0.44  3.06   0.002 
 Step 2 Random Site   0.31 0.55      9.6 -796.3 
   Plot ID   0.27 0.51      
  Fixed Intercept  3.72 0.35 10.46  <0.001 
   Vaul cover (%)  0.03 0.01   3.87  <0.001 

b. Emni  Step 1 Random      5.9 NA 
  Fixed Intercept  0.25 1.62  0.15   0.875 
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   Emni cover (%)  0.13 0.02  5.62 <0.001 
   Emni height (cm)  0.32 0.09  3.33 <0.001 
   Begl height (cm) -0.10 0.05 -2.16   0.030 
   JJA Temp. (°C)  0.21 0.10  2.04   0.041 
   DJF Temp. (°C)  0.26 0.11  2.37   0.020 
   Treatment (OTC) -0.77 0.41 -1.85   0.064 
 Step 2 Random Plot ID  0.11 0.33   9.4 -671.2 
  Fixed Intercept  4.89 0.24 20.07 <0.001 
   Emni cover (%)  0.03 0.00   5.20 <0.001 
   Treatment (OTC) -0.43 0.22  -1.96   0.050 
   Time -0.90 0.22  -4.10 <0.001 

c. Vavi Step 1 Random Site  6.64 2.57       9.9 -126.90 
   Plot ID  1.49 1.22       
  Fixed Intercept -1.84 1.37 -1.34   0.178 
   Vavi cover (%)  0.12 0.03  3.92 <0.001 
   Time  2.71 0.70  3.84 <0.001 
   Treatment (OTC)  0.29 0.60  0.49   0.622 
   Treatment*Time -1.37   0.77 -1.74   0.076 
 Step 2 Random Site   0.92 0.96   1.2* 

 
-760.3 
    Plot ID   0.26 0.51   

  Fixed Intercept  3.72 0.54   6.84 <0.001 
   Vavi cover (%)  0.06 0.01   4.60 <0.001 
   Begl height (cm)  0.05 0.02   2.87   0.004 
   Treatment (OTC) -0.35 0.20  -1.76   0.080 
   Time -0.77 0.20  -3.74 <0.001 

*ΔAIC after collinear interaction terms were removed from global model 
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Fig. 4.1 Map of experimental warming studies established in 2008 (Kangiqsujuaq and Kangiqsualujjuaq, Nunavik) and 

2009 (Torr Bay and Nain, Nunatsiavut). Map depicts regional (Inuit Regions of Canada) and vegetation boundaries 

between the boreal/taiga (green) and tundra (grey) zones (Map prepared through ArcGIS - ESRI online, 2018). 

 

 



168 
 

 

Fig. 4.2 Fixed effect plot indicating the magnitude and strength of interaction effects 

(Treatment*Time) on ‘Maximum birch height’ (cm), as determined by random intercept 

only linear mixed-effect models summarized in Table 4.2. Error bars = standard error; 

CTL = control and OTC = open-top warming chamber.  
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Fig. 4.3 Boxplots showing fruit production (total # fruit/m2) (median, interquartile range, min/max and 

outliers) of Vaccinium uliginosum (Vaul), Empetrum nigrum (Emni) and V. vitis-idaea (Vavi) between 

controls (CTL) and open-top warming chambers (OTC) across five sites over time. Nunavik sites 

(Kangiksualujjuaq-1,2 and Kangiqsujuaq) were established in 2008 and Nunatsiavut (Nain and Torr 

Bay) in 2009.  
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Fig. 4.4 Fixed effect plots indicating the magnitude and strength of significant parameter effects on the probability (1a-d) and extent (2a) 

of fruit production in Vaccinium uliginosum (Vaul), as determined by generalized linear mixed-effects hurdle models summarized in 

Table 4.3. Shaded areas represent 95% confidence intervals; Error bars = standard error; CTL = control and OTC = open-top warming 

chamber; JJA = June, July, August; Black lines along x-axis represent predictor observations and their raw values.  
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Fig. 4.5 Fixed effect plots indicating the magnitude and strength of significant parameter effects on 

the probability (1a-f) and extent (2a-c) of fruit production in Empetrum nigrum (Emni), as determined 

by generalized linear mixed-effects hurdle models summarized in Table 4.3. Shaded areas represent 

95% confidence intervals; Error bars = standard error; CTL = control and OTC = open-top warming 
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chamber; JJA = June, July and August; DJF = December, January and February; Black lines along x-

axis represent predictor observations and their raw values. 
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Fig. 4.6 Fixed effect plots indicating the magnitude and strength of significant parameter effects on the probability (1a-b) and extent (2a-

d) of fruit production in Vaccinium vitis-idaea (Vavi), as determined by generalized linear mixed-effects hurdle models summarized in 

Table 4.3. Shaded areas represent 95% confidence intervals; Error bars = standard error; CTL = control and OTC = open-top warming 

chamber; Black lines along x-axis represent predictor observations and their raw values.
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Appendix 4.1 Summary of experimental warming set-up and sample methodologies across four locations and five sites in 

this study.  

Inuit Region Sample size 
(OTC/CTL 

pairs) 

Year 
established 

Survey 
method 

Plot size 
(cm) 

Sample 
intensity 

(# grid points) 

Fruit harvest area 
(cm) 

Location Year resampled 

Nunavik  

 Kangiqsualujjuaq 
 

N=14 (Site 1) 
N=12 (Site 2) 

2008 Point frame 70 x 70 50 25 x 25 
(Site 2 =ND*) 

2011 Point frame 70 x 70 100 70 x 70 

 Kangiqsujuaq N=12 2008 Point frame 70 x 70 50 25 x 25 

2011 Point frame 70 x 70 50 70 x 70 

Nunatsiavut  

 Nain N=9 2009 Point frame 70 x 70 49 ND* 

2011 Point frame 70 x 70 49 70 x 70 

 Torr Bay N=30 2009 Point frame 70 x 70 49 35 x 35 

2011 Point frame 70 x 70 49 70 x 70 

*ND = no data. 
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Appendix 4.2 Pearson product moment p-values (adjusted Holm’s method) indicating significant correlations between 

seasonal temperature and degree day predictor variables at p <0.05*. 

 

DJFTemp FDD GDD JJATemp TDD xATemp xSumTemp xWintTemp 

DJFTemp 1 <.0001 <.0001 <.0001 <.0001 <.0001 0.0002 <.0001 

FDD <.0001 1 0.7491 1 0.2051 <.0001 0.0014 <.0001 

GDD <.0001 0.7491 1 <.0001 <.0001 <.0001 <.0001 0.9942 

JJATemp <.0001 1 <.0001 1 <.0001 <.0001 <.0001 1 

TDD <.0001 0.2051 <.0001 <.0001 1 <.0001 <.0001 0.3893 

xATemp <.0001 <.0001 <.0001 <.0001 <.0001 1 <.0001 <.0001 

xSumTemp 0.0002 0.0014 <.0001 <.0001 <.0001 <.0001 1 0.0076 

xWintTemp <.0001 <.0001 0.9942 1 0.3893 <.0001 0.0076 1 

*DJF = December, January, February;  JJA = June, July, August; FDD/GDD/TDD = Freezing, Growing and Thawing 

degree days; xA = Mean annual; xATemp = Mean annual temperature; xSumTemp = Mean summer temperature, 

xWintTemp = Mean winter temperature.
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Appendix 4.3 R-code for generalized linear mixed hurdle models using packages 

‘MASS’ (Venables and Ripley 2002), lme4 (Bates et al. 2015), glmmADMB (Bolker et al. 

2013), and ‘effects’ (Fox 2003).  

 

Hurdle Step 1: 

>library(lme4) 
>ModelName<glmer(Y~(1|Site/PlotID) + X1 +Xx +…..Xz + (X1*Xx), na.action=na.omit, 
data = , family="binomial") 
 

Hurdle Step 2: 

>library(glmmADMB) 
>ModelName<glmmadmb(Y~(1|Site/PlotID)+ X1 +Xx +…..Xz + (X1*Xx), family="nbinom", 
data = subset(, Y > 0)) 
 

Effects Displays: 

>library(effects) 
> plot(allEffects(model),rescale.axis=FALSE) 
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Chapter 5: Fruit production decreases among culturally important prostrate berry 

shrubs following seven years of experimental warming in Sub-Arctic Labrador, Canada 

 

Siegwart Collier, L., L. Hermanutz, A. Cuerrier 

 

Abstract 

Understanding how climate variability and warming contributes to recently 

observed changes in berry resources is necessary to mitigate negative impacts on 

Indigenous subsistence practices and cultural systems, and to determine broader 

feedbacks into tundra ecosystem processes and food webs. In this study, we focus on 

the role of local topo-edaphic conditions and shrubification as important drivers of 

change in tundra berry resources in the Nunatsiavut region of eastern Sub-Arctic 

Canada. Eastern Sub-Arctic Canada is experiencing pronounced recent warming 

(Brown et al. 2012, Candlish et al. 2015, Ju and Masek 2016, Bush and Lemmen 2019) 

with well-documented positive influences on height, abundance and distribution of 

upright deciduous shrubs (Fraser et al. 2011, Ropars and Boudreau 2012, Tremblay et 

al. 2012). These changes are consistent with Inuit knowledge and observations of 

changes in plant and berry resources. We examined the relationship between dwarf 

birch (Betula glandulosa Michx) and three culturally important dwarf berry shrubs 

[Empetrum nigrum L. (black crowberry), Vaccinium vitis-idaea L. (mountain 

cranberry/lingonberry) and Vaccinium uliginosum L. (alpine blueberry)] after seven 

years of experimental warming (2009 to 2016) to determine the potential impacts on 

plant community attributes and fruit production. All focal berry species grew taller over 



179 
 

time within experimental warming plots; however, Vaccinium spp. also became less 

abundant, suggesting a phenotypic response to changing resource availability. Changes 

in the occurrence and abundance of fruit were species-specific, but we detected a 

gradient in response to experimental warming whereby fruit production in truly prostrate 

berry shrubs, V. vitis-idaea and E. nigrum, was more sensitive to experimental warming 

than V. uliginosum, which is capable of upright growth. Inclusion of local topo-edaphic 

variables from 2011 to 2016 enabled us to identify that conditions are becoming warmer 

and drier in our warming experiments; however, effects of these changes on fruit 

production were marginal. Vaccinium vitis-idaea was the only species to demonstrate a 

negative response in fruit occurrence and abundance with increasing B. glandulosa 

abundance, suggesting that fruit production in V. vitis-idaea is most vulnerable to tundra 

shrubification. 

 

Keywords: Fruit production, dwarf berry shrubs, shrub expansion, eastern Sub-Arctic 

Canada, Nunatsiavut Labrador, experimental warming, Vaccinium uliginosum, 

Vaccinium vitis-idaea, Empetrum nigrum, Betula glandulosa 
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5.1 Introduction 

 The tundra biome is rapidly changing due to contemporary climate variability and 

warming (Post et al. 2009, IPCC 2014). Across Inuit Nunangat and Sub-Arctic 

Indigenous regions in Canada, the impacts of climate change are already being 

experienced across a variety of socio-economic and food systems (Downing and 

Cuerrier 2011, Ford et al. 2015, Gerin-Lajoie et al. 2016). Within plant-food systems, 

Indigenous knowledge holders have identified important changes in berry resources 

linked to climate warming and variability, including both decreases and increases in 

berry growth, quantity, quality, ripening times, access and availability (Chapter 2, 

Cuerrier et al. 2015, Gerin-Lajoie et al. 2016, Anderson et al. 2018, Boulanger-Lapointe 

et al. 2019a). Berries are a staple food within Inuit diets (Zutter 2009, Clarke 2012, 

Boulanger-Lapointe et al. 2019a). Harvesting, preparation and consumption of berries 

contributes to maintaining cultural heritage, while supporting community health and well-

being (Cunsolo Willox et al. 2012). Dwarf berry shrubs also play an important role in 

tundra ecosystem structure and function by providing forage (Richardson et al. 2002, 

Cadieux et al. 2005, Christie et al. 2015) and habitat (Marcot et al. 2015) for vertebrate 

and invertebrate herbivores, supplying nutrients and storing carbon in above-

/belowground biomass and litter (Shaver et al. 1992, Grafius and Malanson 2015), and 

by mediating local climate through impacts on snow abundance and distribution (Myers-

Smith et al. 2011), and permafrost freeze-thaw cycles (Blok et al. 2010). Understanding 

how climate variability and warming contributes to recent changes in berry resources is 

necessary to mitigate negative impacts on Indigenous subsistence practices and 

cultural systems, and to determine broader feedbacks into tundra ecosystem processes. 
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 Wild berries are a naturally variable resource that is challenging to predict due to 

a complex interplay of exogenous and endogenous factors contributing to flower and 

fruit production (Krebs et al. 2009). In the context of climate change and tundra berry 

shrub performance, mechanisms of climate-driven changes fall into two broad 

categories: 1) changes in climate variables (extreme and gradual) that influence plant 

phenology (timing of leaf out, shoot elongation, bud development, flowering and 

ripening, and flower production), and 2) ecological factors, abiotic and biotic, that 

influence plant growth and distribution (Parmesan and Hanley 2015). Monitoring and 

manipulation of winter climate variables (i.e. precipitation and temperature) has shown 

that changes in snow depth and snowmelt timing (Wipf et al. 2009, Wipf 2010), and the 

occurrence of extreme winter warming, thawing and icing events (Bokhorst et al. 2009, 

Bokhorst et al. 2012, Preece et al. 2012, Preece and Phoenix 2014) can profoundly 

affect plant phenology, with species-specific consequence on fruit production. 

Ecological research throughout the forest-tundra ecotone points to climate-driven tall-

shrub expansion (aka shrubification) (Myers-Smith et al. 2011, Ropars et al. 2015b), 

changing snow and permfrost distribution (Myers-Smith et al. 2015, Anderson et al. 

2018), and herbivory (Barrio et al. 2016, Boulanger-Lapointe et al. 2017) as important 

ecological mechanism of change in berry resources. Climate-driven changes in fruit 

production are most likely a combination of direct (climatic) and indirect (ecological) 

factors, but community-based evidence stresses that local factors, such as topo-

edaphic variation, play a critical role in predicting changes in berry resources 

(Boulanger-Lapointe 2017, Rapinski et al. 2017). 
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Climate-driven expansion (upright and spatial) of tall shrubs has the potential to 

influence climate and resource availability across several spatial scales (Vowles and 

Björk 2019). Locally, taller and denser patches of deciduous shrubs can increase 

understory shading (Juszak et al. 2014), and alter soil moisture and temperature 

through the insulative effect of snow trapping (Sturm et al. 2005), which in turn causes 

increased soil nutrient (N) mineralization and decomposition rates (DeMarco et al. 

2014). How tundra berry species respond in terms of growth, flower and fruit production 

will depend on their life history strategies. For example, although lessening the climatic 

constraints on soil physical properties is generally beneficial to tundra plant growth, 

conditions of lower light tend to shift resource allocation away from sexual reproduction 

(such as flower production) in favour of asexual reproduction in the form of 

vertical/lateral growth and increased leaf area (Yang and Kim 2016). Less investment in 

flower production can decrease pollination success and therefore fruit production for 

shrub species, since fewer flowers will be less effective in attracting visitation from 

pollinators (Scaven and Rafferty 2013). 

 In this study, we focus on the role of local topo-edaphic conditions and 

shrubification as important drivers of change in tundra berry resources in the 

Nunatsiavut region of eastern Sub-Arctic Canada. Eastern Sub-Arctic Canada, which 

includes the Inuit regions of Nunavik and Nunatsiavut, is experiencing pronounced 

recent warming (Brown et al. 2012, Candlish et al. 2015, Bush and Lemmen 2019) with 

well-documented positive influences on height, abundance and distribution of upright 

deciduous shrubs (Fraser et al. 2011, Ropars and Boudreau 2012, Tremblay et al. 

2012), and Inuit knowledge of changes in plant and berry resources (Cuerrier et al. 
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2015, Gerin-Lajoie et al. 2016, Boulanger-Lapointe et al. 2019a). Within this context, 

proximity to the Labrador Sea and mountainous topography create a unique coastal 

mountain climate across Nunatsiavut, which is characterized by abundant precipitation, 

cold summer air temperatures, and the prevalence of coastal summer fog (Brown et al. 

2012). In Nunatsiavut, air temperatures have increased by almost 2°C since the 1990’s 

(Brown et al. 2012, Way and Viau 2015). Projected changes over Nunatsiavut for the 

2041-2070 period indicate average air temperature increases of 2-4°C, increased daily 

temperatures in fall and winter months, lengthening of the growing season and growing 

degree days, a shortening of the snow and ice-cover season, as well as more 

precipitation in the form of rain (Brown et al. 2012, Finnis and Daraio 2018). If realized, 

predicted conditions will inevitably alter local climate, and would continue to support 

treeline and tundra shrubification, suggesting strong potential for accelerated effects on 

Nunatsiavut berry resources. Identifying which berry species are most susceptible to 

climate impacts will be important to distinguish for local and regional land-use planning. 

Here, we present a multi-species, multi-year analysis on the relationship between 

the expanding tall shrub Betula glandulosa Michx. (arctic dwarf birch, AvâlaKiak) and 

three culturally significant dwarf berry shrubs [Vaccinium uliginosum L. (northern 

bilberry, alpine blueberry, kigutanginnak), Empetrum nigrum (blackberry, black 

crowberry, Paungak), and Vaccinium vitis-idaea L. (redberry, mountain cranberry, 

lingonberry, kimminak)] under experimental warming conditions in Nunatsiavut, 

Labrador, Canada. These berry species are ubiquitous throughout the forest-tundra 

ecotone in Nunatsiavut, and they share many life history traits characteristic of clonal 

dwarf shrubs. However, focal shrubs differ greatly in their ability to accrue height based 
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on their mode and capacity for stem growth (Chapters 3 and 4). Among the prostrate 

berry shrubs, V. uliginosum exhibits the greatest phenotypic plasticity in maximum 

height (70-100 cm) (Jacquemart 1996), followed by E. nigrum (50 cm) (Bell and Tallis 

1973) and V. vitis-idaea (30cm) (Ritchie 1955). In contrast, B. glandulosa is an upright 

canopy-forming deciduous shrub with significant growth plasticity. In its prostrate form, 

erect stems range from 10-40 cm (Aiken et al. 2003), yet in elevational areas it can 

reach up to 2.5 m in height (Hermanutz et al. 1989). Based on the differences in their 

growth plasticity, we predict that: 

1) Experimental warming will have positive effects on growth (cover and height) of 

B. glandulosa and other upright deciduous and tall shrubs, and negative effects 

on growth of ground dwelling vegetation. Dwarf berry shrubs, having varying life 

history strategies and growth plasticity, will respond along a gradient, with more 

positive effects on cover and height of V. uliginosum followed by E. nigrum and 

V. vitis-idaea respectively. These changes will coincide with a shift in near 

ground microclimate towards less available light, on average warmer soil 

temperatures and less soil moisture in experimental warming plots versus control 

plots. 

2) Experimental warming and upright deciduous shrub growth (cover and height) 

will have negative effects on fruit production of dwarf berry shrubs. Fruit 

production in prostrate berry shrubs (V. vitis-idaea and E. nigrum) will be more 

negatively affected than fruit production in V. uliginosum given the latter species’ 

plasticity in upright growth. Available light will constrain fruit production in 
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prostrate berry shrubs (V. vitis-idaea and E. nigrum) between experimental 

warming plots and controls. 

5.2 Methods 

5.2.1 Study Sites 

Study sites were established in 2009 in Nain (56°33 N, 61°41 W) and Torr Bay 

(58°46 N 62°82 W) Nunatsiavut (northern Labrador), Canada (Fig. 5.1), which are 

coastal sites representative of the Eastern Sub-Arctic Tundra Bioclimatic Subzone 

(CAVM Team 2003). Vegetation ranges from forest-tundra in Nain to erect/dwarf shrub 

tundra in Torr Bay (CAVM Team 2003), with the latitudinal treeline existing 

approximately 200km north of Nain in Napaktok Bay (Roberts et al. 2006). Sites were 

established in mesic, low-shrub tundra plant communities, where the shrub canopy is 

dominated by mainly upright deciduous species (primarily B. glandulosa but also Alnus 

viridis (Chaix) DC. ssp crispa (Aiton) Turrill [green/mountain alder] and upright Salix sp. 

L. [willow]) and in the ground layer by dwarf ericaceous shrubs (V. uliginosum, E. 

nigrum L., V. vitis-idaea L., Rhododendron tomentosum L./R. groenlandicum Oeder 

[northern/Labrador tea]). The composition of non-woody and non-vascular ground 

vegetation was similar between sites, however boreal species persist in Nain due to the 

presence of boreal forest.  

Nain and Torr Bay are underlain with extensive discontinuous permafrost, which 

is greatly influenced by the abundance and distribution of snow throughout this region 

(Way and Lewkowicz 2018). Decadal climate summaries for the period of 2000-2009 

show that total precipitation is similar between sites, however Torr Bay is generally 
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cooler than Nain throughout the year, with 318.3 growing degree days above 5°C as 

compared to 578.6 in Nain (Table 5.1). 

5.2.2 Sample Design and Data Summary 

In July/August 2009, we established paired experimental warming and control 

plots (Nain, N=9; Torr Bay, N=30) in homogeneous mesic, low-shrub tundra following 

the International Tundra Experiment protocol (ITEX; http://ibis.geog.ubc.ca/itex/). Plots 

were resampled in 2011 and 2016 to track control and treatment effects through time. 

The ITEX approach creates passive tundra warming by utilizing open-top warming 

chambers (OTCs), which are constructed by fastening angled polycarbonate panels in a 

hexagonal design. These transparent panels shelter vegetation from the wind and 

moderate diurnal heat loss, effectively raising the mean daily summer air temperature 

by 1-3°C (Molau 1997). The standard ITEX plot size is 1m x 1m, and it’s intended to 

monitor ecosystem-level change. In this study, we reduced our plot size to 70 cm x 70 

cm to specifically track berry shrub performance (growth and fruit production) at the 

plant community level. At each plot, point-frame sampling was used to quantify species 

composition, abundance and height following the CANTTEX protocol 

(http://ipytundra.ca/sites/default/files/CiCAT%20point-framing%20protocol.pdf).  

For each plot, species-level abundance was estimated as the total number of 

point frame hits/plot, and data were pooled by vegetation lifeforms to obtain plot-level 

estimates of cover for the following (broad) plant functional groups and attributes 

(Elmendorf et al. 2011): shrubs (all, deciduous [upright and prostrate] and evergreen), 

forbs, graminoids, mosses, lichens, litter and dead plant biomass. Height of all species 

(to the nearest 0.5 cm) was recorded at each point frame hit, and individual estimates 

http://ibis.geog.ubc.ca/itex/
http://ipytundra.ca/sites/default/files/CiCAT%20point-framing%20protocol.pdf
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were averaged to obtain a mean height (cm) for each species in each plot. We used B. 

glandulosa as a proxy for the upright deciduous shrub canopy layer because this 

species is the tallest, most dominant and frequently occurring upright deciduous shrub 

among sites. Given that B. glandulosa can exhibit significant variation in upright 

architecture, we used maximum rather than mean height as a response trait for the 

upright deciduous shrub canopy layer. 

In 2011 and 2016, we quantified near-ground microclimatic conditions at the plot 

level by averaging three readings per plot for the following variables: ground and shrub-

canopy level photosynthetic active radiation (PAR) (µmol/s/m2; LI-COR 190 Quantum 

sensor and LI-250A Light meter, LI-COR, Lincoln, Nebraska, USA), soil temperature 

(⁰C) and soil moisture (%) of the organic soil horizon (Delta-T W.E.T. Sensor, Hoskin 

Scientific, Burlington, ON). Available PAR (%) was calculated as the proportion of 

available PAR to reach the ground surface. Diurnal sampling variability was reduced by 

sampling only during overcast conditions or days with clear sky, and between 10:00am 

and 2:00 pm. Measures were taken over a 1-day period in Nain and 2 days in Torr Bay.  

 At the end of each field season when nearly all fruit had been set (mid-August), 

we harvested all the berries of our focal berry species within each 70 cm x 70 cm plot. 

Due to time constraints in 2009, berries were harvested in a subset of the plot (25 cm x 

25 cm); because of this difference in harvest intensity between 2009 and subsequent 

years, we estimated fruit production for all years as total # fruit/species/m2. 

5.2.3 Data analysis 

Community and dwarf berry shrub performance 
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 Zero-inflation is an important characteristic among our fruit production (count) 

and vegetation abundance (positive continuous) datasets in this study. Although zeros 

are difficult to model using traditional approaches (i.e. general linear models) based on 

the normal error distribution (Zuur et al. 2007), they are common in ecological datasets 

(Warton 2005). Here, zeros represent important observations to retain because they 

reflect meaningful plot-level variation on the presence/absence of fruit and certain 

vegetation lifeforms. To better incorporate this variability, we used a two-part conditional 

hurdle model, which addresses the high occurrence of zeros by first estimating the 

probability that fruit and/or a functional group is present (Bernoulli distribution), and then 

if/when present, estimating the extent of fruit production and/or functional group cover 

using a different error distribution (fruit production = negative-binomial; functional group 

cover = gamma or Gaussian) (Martin et al. 2005, Zuur et al. 2012). To account for 

repeated measurements of the same sites and plots at multiple time-points, we used 

generalized linear mixed-effects models, with random intercept and fixed slopes for 

plots nested across our sites. This approach assumes similar baseline conditions 

across sites, such that our fixed effects will respond the same across our random 

subject groupings in the following form: 

Y~ (1|Site/PlotID) + X1 + X2 + Xx + (X1*Xx) 

Where ‘Y’ = response, ‘1| Site/PlotID’ = random effect term for PlotID nested within 

Sites, ‘X1-x’ = fixed effect predictors variables, and ‘(X1*Xx)’ = fixed effect interaction 

terms. 

Mixed-effect hurdle models were applied for two purposes in this study. First, 

global models with random effects (‘Site’, ‘PlotID’), fixed factors (‘Treatment’, ‘Year) and 
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fixed factor interactions (‘Treatment’ x ‘Year’) were constructed to evaluate changes in 

plant functional group cover, focal species’ growth traits and microclimatic variables 

independently. Functional groups included shrubs (all), deciduous (upright and 

prostrate) and evergreen shrubs, forbs, graminoids, mosses, lichens, litter and dead 

plant biomass. Growth traits included cover and height of B. glandulosa and our three 

focal berry species. Secondly, mixed-effect hurdle models were constructed to predict 

changes in fruit production. Because microclimatic data were not available for the initial 

sample year (2009), we ran two sets of fruit production models, with (2011-2016) and 

without (2009-2016) the inclusion of microclimatic data. Global fruit production models 

included: random, fixed factors, and fixed-factor interactions (as described above), 

fixed-effect terms for understory structure (‘berry species cover (%) and height (cm)’, ‘B. 

glandulosa cover and height (cm)’), within-species height-cover interactions, and 

microclimatic (‘Soil temperature (°C)’, ‘%PAR’ and ‘Soil moisture (%)’) parameters. 

Prior to model selection, collinearities among predictor variables were 

investigated by calculating Pearson product moment correlation coefficients (r-values). 

We used a backwards selection strategy starting with a saturated mixed-effect model 

that included all possible random and fixed effects, and sequentially removed random 

and then fixed effects terms at p >0.1 until we arrived at our final model (Zuur 2009, 

Elmendorf et al. 2011). Model selection was conducted on standardized (scaled to z-

scores) and unstandardized predictor variables. Although our decision on alpha was 

unchanged with/without standardization, we present standardized coefficients for count 

models (zeros removed), as they enabled model convergence. Interaction terms among 

random/fixed factors, growth traits and microclimate variables were considered during 
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the initial stages of model specification, however we found that our sample size, 

particularly among count models, could not support inclusion of multiple interaction 

terms. Therefore, only fixed effect (i.e. ‘Treatment*Year’ and ‘berry species 

cover*height’) interactions were considered during model selection. Change in Akaike 

Information Criterion (ΔAIC) was calculated to compare global and candidate models 

(Burnham and Anderson 2002) and  we relied on inspection of variance inflation factors, 

and residual vs. fitted values at each step to determine the model of best fit. All global 

models were specified using Type I sum of squares error structure and predictor 

variables were ordered as follows: random (‘Site/PlotID’) then fixed factors (‘Treatment’ 

and ‘Year’) followed by fixed factor interactions (‘Treatment*Year’). 

All generalized linear mixed hurdle models were analyzed in R version 3.3.0 (R 

Core Team 2016) using packages ‘MASS’ (Venables and Ripley 2002), lme4 (Bates et 

al. 2015) and glmmADMB (Bolker et al. 2013). Effects displays were constructed using 

package ‘effects’ (Fox 2003). R-code is provided in Appendix 5.1. 

5.3 Results 

5.3.1. Growth traits and microclimatic variables 

 The abundance of all plant functional groups and community attributes changed 

significantly over time in this study, and we observed many important interactions 

between time and OTC’s (Table 5.2; Appendix 5.2a). Irrespective of treatment, upright 

and prostrate deciduous shrubs increased in cover over time. However, interaction 

terms illustrate that upright deciduous shrubs (i.e. B. glandulosa) increased in OTC’s 

from 2009-2016, and prostrate deciduous shrubs (i.e. Salix herbacea L.) decreased in 

OTCs from 2009-2011, and 2009-2016. Evergreen shrub cover increased from 2009-
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2011 but decreased overall from 2009-2016. Among non-woody plant lifeforms, forb 

and graminoid cover decreased from 2009-2016, however graminoid cover increased 

significantly in OTC’s over time. Moss abundance decreased significantly over time and 

more so within OTC’s over the length of this experiment. Although lichen cover 

increased over time, it decreased in OTC’s from 2009-2016. We observed a significant 

increase in cover of dead plant biomass over time, and a decrease in litter cover from 

2009-2016 (Table 5.2). 

 Trends in growth traits (cover and height) were not always consistent within or 

among focal species (Appendix 5.2b), however all species exhibited a significant 

increase in height (cm) within OTCs over time. Betula glandulosa cover (%) increased 

overall from 2009-2016 and within OTC’s from 2009-2016. Maximum height (cm) of B. 

glandulosa also increased significantly within OTC’s throughout this study. For V. 

uliginosum, we detected a significant increase in cover (%) over time but a decrease 

within OTCs from 2009-2016. Height (cm) of V. uliginosum decreased from 2009-2016 

in controls yet increased within OTCs from 2009-2016. We observed significant 

decreases in E. nigrum cover (2009-2011), and height (cm) (2009-2016), however 

height (cm) increased within OTCs from 2009-2011 and 2016. For V. vitis-idaea, cover 

(%) increased significantly from 2009-2016 yet decreased within OTCs from 2009-2016. 

Height (cm) of this species increased over the short-term (2009-2011) and within OTCs 

from 2009-2016 (Table 5.2). 

Soil temperature increased significantly from 2011 to 2016 and was higher in 

OTC’s than CTLs. Soil moisture also increased from 2011 to 2016 but was significantly 

lower in OTC’s than CTLs. We found less PAR (%) in OTC’s than CTLs, but no change 
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in this parameter over time (Appendix 5.2c). Interaction effects were not significant for 

any of the microclimate variables in this study (Table 5.2). 

5.3.2 Fruit production 

 The distribution of raw fruit production data (Fig. 5.2) illustrates that the 

occurrence and abundance of fruit varied greatly among species and between years. 

Variation was also detected at the site and nested plot levels, as demonstrated by 

retention of random effects terms for ‘Site’ and ‘PlotID’ for all species (Table 5.3). 

Regarding focal species growth traits, berry species cover (%) was a significant positive 

predictor of fruit occurrence and abundance for all species in this study (Table 5.3). 

For V. uliginosum, we observed no significant effect of experimental warming on 

fruit occurrence or abundance. The occurrence of fruit increased in the short-term 

(2009-2011) but decreased by more than 30% from 2009-2016. Cover (%) of this 

species was a significant positive predictor of fruit occurrence, with greater than 90% 

probability of fruit when cover values exceeded 40% (Table 5.3; Fig. 5.3, 1a-b). The 

abundance of V. uliginosum fruit declined significantly from 2009-2011, and we found a 

negative effect of B. glandulosa cover on fruit production in this species. Alternatively, 

cover (%) and height (cm) had a positive effect on fruit abundance in V. uliginosum 

(Table 5.3; Fig. 5.3, 2a-d). When model selection was performed to include 

microclimatic parameters, soil moisture had a significant negative effect on the 

abundance of fruit in this species (Appendix 5.3). 

 The overall occurrence of E. nigrum fruit was low in this study (<40%), and it was 

15 % lower in controls compared to OTCs. Cover and height were both significant 

predictors of fruit occurrence in this species, with 60% probability of fruit occurrence 
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when cover and height were > 30% and > 7 cm respectively (Table 5.3; Fig. 5.4, 1a-c). 

Fruit production declined from 2009-2016 for E. nigrum, and cover (%) was the only 

positive and significant predictor of fruit abundance for this species (Table 5.3; Fig 5.4, 

2a-b). When microclimatic parameters were included in model selection, we found a 

significant and negative effect of experimental warming and soil moisture on E. nigrum 

fruit production (Appendix 5.3). 

 For V. vitis-idaea, we found a short-term (2009-2011) increase in the occurrence 

of fruit but no significant change in occurrence or abundance over the long term (2009-

2016) (Table 5.3; Fig. 5.5, 1e). Fruit production was lower in OTC’s than controls; this 

effect was stronger for this species than E. nigrum. We found a negative effect of B. 

glandulosa cover (%) on the occurrence and abundance of V. vitis-idaea (Fig. 5.5, 1d, 

2b-c). Cover (%) of V. vitis-idaea was also detected as positive significant predictor of 

fruit occurrence and abundance for this species (Table 5.3; Fig. 5.5, 1a, 2a). Unlike V. 

uliginosum and E. nigrum, we found no significant effect of soil moisture or other 

microclimatic parameters on fruit production in this species. However, V. vitis-idaea 

height (cm) was detected as having a significant and positive effect on the occurrence 

and abundance of fruit in our subset models (Appendix 5.3). 

5.4 Discussion 

 After seven years of experimental warming, we demonstrated a shift towards B. 

glandulosa dominance in the shrub-canopy layer, a loss of bryophyte and lichen cover, 

and an increase in graminoids at the ground surface layer. All focal berry species grew 

taller over time within experimental warming plots, but both Vaccinium spp. became less 

abundant, suggesting a phenotypic response to changing resource availability. Although 
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changes in the occurrence and abundance of fruit were species-specific throughout this 

experiment, we detected a gradient in response to experimental warming whereby fruit 

production in truly prostrate berry shrubs, V. vitis-idaea and E. nigrum, was more 

sensitive to experimental warming than V. uliginosum, which is capable of upright 

growth. Vaccinium vitis-idaea was the only species to demonstrate a negative response 

in fruit occurrence and abundance with increasing B. glandulosa abundance, suggesting 

that fruit production in V. vitis-idaea is most vulnerable to tundra shrubification. 

5.4.1. Growth Traits and Local Microclimate 

 Consistent increases in height and cover of B. glandulosa over time, and with 

experimental warming, confirm our prediction that B. glandulosa is highly responsive to 

ambient and experimental warming in Nunatsiavut, Labrador. This result is consistent 

with our short-term findings from Chapter 4 and with studies tracking deciduous-shrub 

response to ambient warming throughout eastern Sub-Arctic Canada (Fraser et al. 

2011, Tremblay et al. 2012, Ropars et al. 2015b). Negative effects of experimental 

warming on the ground layer were also as predicted and are consistent with global and 

regional plot-based studies showing that bryophytes and lichens are most likely to 

decrease, and graminoids most likely to increase in abundance with experimental 

warming (Bjorkman et al. 2019, Chagnon and Boudreau 2019). At the current rate of 

tundra shrubification in Nunatsiavut, positive feedbacks that promote further warming 

and effects on the ground layer are likely to occur (Vowles and Björk 2019), however 

there is potential for effects to be mitigated to some extent by ungulate herbivory 

(Løkken et al. 2019). Although the Eastern Migratory and Torngats caribou populations 

are at an all-time low throughout Nunavik and Nunatsiavut (COSEWIC 2017), moose 
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are increasing in abundance and distribution along the north coast of Labrador, and are 

likely to browse on B. glandulosa in the absence of more widespread hardwoods and 

other preferred browse species.  

 Contrary to our prediction, there was no evidence of a gradient in growth trait 

response related to phenotypic plasticity with experimental warming among our focal 

berry species. Plant height is highly responsive to warming across taxa, but it is also 

strongly affected by moisture availability across sites (Bjorkman et al. 2018). In this 

study, all focal berry species increased in height with warming from 2009-2016, 

however both Vaccinium spp. decreased in cover in OTC’s between 2009-2016. 

Divergent growth responses within the Vaccinium spp. suggest a shift in resource 

allocation in favour of size over resource economy, potentially in response to increased 

competition from B. glandulosa and/or changing resource availability. Although 

experimental warming plots were warmer, drier and had less light than controls (as 

predicted), soil moisture was not limiting (increased from 2011-2016), suggesting that 

growth traits were more likely affected by interspecific interactions than constrained by 

abiotic conditions alone. 

5.4.2. Fruit Production 

Although fruit production was highly variable throughout this study, fruit 

production declined for all focal berry species from 2009 to 2016 in Nain and Torr Bay, 

Nunatsiavut (Table 5.3). While this can be explained in part by inter-annual variability 

(Hupp et al. 2015a, Boulanger-Lapointe et al. 2019b), our models strongly suggest that 

ambient and experimental warming and B. glandulosa cover is constraining fruit 

production, especially for V. vitis-idaea, which has the least phenotypic plasticity in size 
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traits. Taller and more abundant berry shrubs resulted in higher probability and 

abundance of fruit for all species (especially among those with capacity for upright 

growth), suggesting that the patterns we observed in growth traits (increased height) did 

not divert resources away from fruit production in favour of vegetative growth. Although 

OTC’s were warmer, drier, and had less light than control plots, these local (summer) 

topo-edaphic conditions were not significant predictors of fruit production throughout this 

study.  

Changes in berry resources associated with a taller and denser deciduous shrub 

canopy may be occurring outside the sample window of this study. For example, tall 

shrubs are known to trap snow, which can delay snowmelt timing and therefore timing 

of annual flower production (Anadon-Rosell et al. 2014). In Nunatsiavut where 

deciduous shrubs are increasing at an accelerated rate, trends in annual snowfall, 

snowpack persistence and spring warming will be critical in predicting annual berry 

crops. A taller and denser deciduous shrub canopy will also influence detection and 

visitation by pollinators which directly affects fruit set in the understory (Scaven and 

Rafferty 2013).  

By mid-century, winter temperatures are expected to increase by more than 7°C 

in some areas of northern Labrador, accompanied by increased precipitation in the form 

of rain (especially during winter months) and extensive permafrost thaw (Way et al. 

2018, Bush and Lemmen 2019, Government of Newfoundland and Labrador 2019). 

These projected changes in climate will drive changes in berry resources differently 

depending on the biophysical and local context. With accelerated warming, flowering 

times are likely to contract in favour of later-flowering (i.e. Vaccinium spp.) over early-
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flowering (i.e. E. nigrum) species (Prevéy et al. 2019). Further warming may continue to 

drive tundra shrubification in Nunatsiavut (Ju and Masek 2016); however, extreme and 

winter warming events could also cause shoot mortality and shoot stress throughout the 

tundra plant communities, leading to “tundra browning” (Phoenix and Bjerke 2016, 

Treharne et al. 2019). Both processes are likely to result in negative impacts on dwarf 

berry shrubs, either through a shift in resource allocation from sexual to vegetative 

regeneration, or though direct damage on shoots and buds.  

There is a great deal of uncertainly as to how cryospheric and hydrological 

change will impact tundra plant communities (Wrona et al. 2016) and therefore berry 

resources; we suspect impacts on dwarf berry shrubs will range from minor to severe 

depending on the local context and individual species’ capacity to tolerate and/or resist 

moisture stress (too much or too little). Ecological monitoring and research are required 

to determine hydrological-driven constraints on flower and fruit production, particularly in 

the unique coastal and mountainous climate of Nunatsiavut.  

 

5.4.3 Implications and next steps 

Given the consistent negative effect of warming and B. glandulosa cover on fruit 

occurrence and abundance in V. vitis-idaea, we suggest that this species, a prostate 

berry shrub, is (currently) most vulnerable to warming and tundra shrubification in 

Nunatsiavut. Depending on the geographic scope of tundra shrubification and V. vitis-

idaea, a decline in this species’ fruit production is likely to have direct and indirect socio-

economic implications throughout Nunatsiavut.  
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Across Inuit Nunangat, berry picking, harvesting and consumption remain 

culturally and nutritionally relevant for Inuit (Boulanger-Lapointe 2017), and contribute to 

improved physical and mental wellbeing (Cunsolo Willox et al. 2011, Boulanger-

Lapointe et al. 2019b). In Nunatsiavut, berry patches support the food security of 

residents (Goldhar et al. 2012), while providing small-scale economic benefit for those 

who harvest to sell throughout the community. Several culturally important wildlife also 

relies on V. vitis-idaea for forage throughout Nunatsiavut. For example, spruce grouse 

(Falcipennis canadenis) and willow ptarmigan (Lagopus lagopus) rely on the fruit, buds 

and leaves of V. vitis-idaea (among other ericaceous berry shrubs) to support their 

spring and summer diet (Johnsgard 2016). This is also the case for Canada geese 

(Branta canadensis) and other migratory birds (Cadieux et al. 2005). Thus, a decline in 

V. vitis-idaea or other dwarf berry shrubs will be felt at multiple levels throughout the 

regions’ food systems. 

 With this knowledge, there are opportunities and challenges in protecting, 

managing and potentially restoring berry grounds to maintain availability of this 

important resource. As a starting point, traditional and scientific knowledge of berry 

grounds should be mapped throughout Nunatsiavut to determine the geographic scope 

of the resource, including areas close to communities that are at risk from community 

expansion and industrial development. Within this scope, areas at risk or already 

undergoing shrubification could be ranked and prioritized based on their current 

resource level (annual fruit production and availability) and potential for change. Local 

and regional governments could use this information to develop an integrated land-use 

plan, which designates areas for local harvesting only and management. Community-
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based monitoring of these areas could help track changes in these resources through 

time. Active management and restoration of shrubified areas is possible yet challenging 

and not without risk. Restoration options could include exclusion, introduced herbivores, 

or manual removal among others. Given the extent of global and regional shrubification, 

these methods are only likely to be feasible at the local scale and for culturally key berry 

grounds.   
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Table 5.1 Climate summary for experimental warming sites located in Nain and Torr 

Bay, Labrador, Canada 

  Decadal climate summaries (2000-2009)* 

Site Latitude/ 
Longitude 

Mean total annual 
precipitation (mm) 

Mean annual/max./min. 
temperature (°C) 

Degree 
days > 5° C 

Nain 56.54 N 
61.69 W 

882.5 -1.8 2.4 -6.0 578.6 

Torr Bay 58.46 N 
62.82 W 

791.11* -5.0* -0.9* -9.2* 318.3 

*Canadian Climate Normals were only available for our Nain site 

(http://climate.weather.gc.ca/climate_normals/index_e.html), therefore we calculated 

decadal climate summaries for each site based on the most recent local data available 

for both locations (2000-2009). Nain climate summaries were calculated from local 

station data available through Environment Canada’s historical data archive; accessed 

Feb, 2014 (http://climate.weather.gc.ca/historical_data/search_historic_data_e.html). 

Torr Bay summaries were derived from gridded monthly mean high resolution (0.5 x 0.5 

degree) climate data available from the Climatic Research Unit, Time-Series 3.1 (CRU 

TS3.1), University of East Anglia CRU, 2011. 

 
 

http://climate.weather.gc.ca/climate_normals/index_e.html
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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Table 5.2 Summary of generalized linear mixed-effects models indicating significant random (‘Site’, ‘PlotID’), fixed 

(‘Treatment’, ‘Year’) and fixed interaction effects on plant community response and microclimatic conditions. Community 

response parameters include lifeform cover (%), upright shrub (Begl = Betula glandulosa) and berry shrub (Emni = 

Empetrum nigrum; Vaul = Vaccinium uliginosum; Vavi = V. vitis-idaea) cover (%) and height (cm). Microclimatic response 

parameters include soil moisture (%), soil temperature (°C), and PAR (%); PAR = photosynthetic active radiation. 

Coefficients were retained at p <0.10. Model statistics represent unstandardized, random intercept only mixed-effects 

models (Zero truncated; Gamma/Gaussian; identity/log link) with OTC/control pairs (PlotID) nested within Sites 

(1|Site/PlotID) as random effects terms 

  
 Random 

factors 
Fixed factors Model 

performance/selection 

Community 
response 

Site Plot ID: 
Site 

Treatment 
(CTL vs 

OTC) 

Time  
(2009, 2011, 

2016) 

Treatment x Time Log  
likelihood 

ΔAIC 

Lifeform cover (%)        
Shrubs (all) X X ̶ ↑ (2016) ̶ -1049.43 2.7 

Deciduous  X ̶ ↑ (2011; 2016) ̶ -977.80 4.5 
Upright  X X ↑ (2016) ↑ (OTC*2016) -774.18 2.0 
Prostrate  X X ↑ (2011; 2016) ↓ (OTC*2011; OTC*2016) -893.49 2.0 

Evergreen X X ̶ ↓ 2011; ↑ 2016 ̶ -924.75 2.0 
Forbs   X ̶ ↓ (2016)  ̶ -259.91 4.0 
Graminoids ̶ X X ↓ (2016) ↑ (OTC*2011; OTC*2016) -430.46 2.0 
Lichens X X X ↑ (2011; 2016) ↓ (OTC*2016) -655.56  NA 
Mosses    X X ↓ (2011; 2016) ↓ (OTC*2011; OTC*2016) -342.78 2.0 
Dead plant biomass X X ̶ ↑ (2011; 2016) ̶ -589.66 4.9 
Litter  X X ̶ ↓ (2011) ̶ -864.64 1.9 
Upright shrub         
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Begl Cover (%)  X X ↑ (2016) ↑ (OTC*2016) -779.68 2.0 
Max. Begl Height (cm) X X X X ↑ (OTC*2011; OTC*2016) -606.85 NA 
Berry shrub        
Vaul Cover (%)  X X ↑ (2011; 2016) ↓ (OTC*2011; OTC*2016) -890.05 2.0 
Vaul Height (cm) X X X ↑ 2011; ↓ 2016 ↑ (OTC*2016) -419.40 NA 
Emni Cover (%)  X ̶ ↓ (2011) ̶ -464.37 3.8 
Emni Height (cm)  X X ↓ (2016) ↑ (OTC*2011; OTC*2016) -163.87 2.0 
Vavi Cover (%)  X X ↑ (2016) ↓ (OTC*2016) -751.66 2.0 
Vavi Height (cm) X X X ↑ (2011) ↑ (OTC*2016) -324.43 NA 
Microclimate        
Soil moisture (%) X X ↓ ↑ (2011-2016) ̶ -473.45 1.2 
Soil temperature (°C) X  ↑ ↑ (2011-2016) ̶ -322.67 3.8 
PAR (%)   ↓ ̶ ̶ -729.8 3.0 

 
* X denotes when a term was retained in the model; ↑ and ↓ indicate significant direction of change across fixed factors at 

p <0.10; ‘–‘ indicates factors removed during model selection; ‘CTL’ = control and ‘OTC’ = open-top warming chamber; 

ΔAIC = AICglobal – AICfinal; NA indicates when the global model  = AICmin 
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Table 5.3 Fitted hurdle model summary for the effects of experimental warming and vegetation community attributes on 

fruit production of a) Vaccinium uliginosum (Vaul), b) Empetrum nigrum (Emni) and c) V. vitis-idaea (Vavi) based on 

random intercept only mixed-effects hurdle models. Random factors included ‘Site’ and nested ‘Plot ID’; Fixed factors 

included ‘Treatment’ (OTC vs. CTL), ‘Time’ (2009, 2011 and 2016), and ‘Treatment’*’Time’; Fixed effects included cover 

and height of each focal berry species and Betula glandulosa (Begl). Step 1 summarizes model selection for the 

probability of fruit production (presence/absence fruit/m2; binomial error, logit link), and step 2 for the extent of fruit 

production (total # fruit/m2; negative-binomial error, log link) for each species. Step 2 coefficients were obtained using 

standardized (z-score) predictor variables. Coefficients were retained at p<0.10 (bold). OTC = open-top warming 

chamber; CTL = control. Δ AIC represents the difference in Akaike Information Criteria (AIC) between the best-fit model 

and the global model 

Berry Shrub Hurdle Effects Coefficients/ 
Intercepts 

Estimate/ 
Variance* 

Std. Error/ 
Std.Dev* 

Z-Value P-Value ΔAIC Log 
Likelihood 

a. Vaul Step 1 Random Site  3.69 1.92   3.4 -104.1 
   Plot ID  0.22 0.47     
  Fixed Intercept  0.92 0.46  0.63 0.529   
   Vaul Cover (%)  0.05 0.01  4.15 <0.001   
   Year (2011)  0.74 0.43  1.68 0.092   
   Year (2016) -1.95 0.49 -3.93 <0.001   
 Step 2 Random Site   0.33 0.58   1.6 -732.2 
   Plot ID   0.51 0.71     
  Fixed Intercept  4.92 0.49  9.97 <0.001   
   Vaul Cover (%)  0.49 0.15  3.09   0.002   
   Vaul Height (cm)  0.36 0.18  1.96   0.049   
   Begl Cover (%) -0.36 0.19 -1.93   0.053   
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   Year (2011) -0.68 0.25 -2.66   0.007   
   Year (2016) -0.41 0.34 -1.23   0.219   

b. Emni Step 1 Random Plot ID  0.62 0.79   6.2 -76.3 
  Fixed Intercept -3.23 0.62 -5.22 <0.001   
   Emni Cover (%)  0.08 0.01  4.56 <0.001   
   Emni Height (cm)  0.38 0.09  4.12 <0.001   
   Treatment (OTC) -1.05 0.51 -2.06   0.040   
 Step 2 Random Plot ID  0.63 0.79   5.1 -387.1 
  Fixed Intercept  4.73 0.30 15.40 <0.001   
   Emni Cover (%)  0.42 0.16  2.60   0.009   
   Year (2011) -1.50 0.35 -4.06 <0.001   
   Year (2016) -1.65 0.29 -5.69 <0.001   

c. Vavi Step 1 Random Site  4.88 2.21   1.5 -93.3 
   Plot ID:Site  0.80 0.89     
  Fixed Intercept  0.93  1.78  0.52   0.601   
   Vavi Cover (%)  1.03 0.27  3.71 <0.001   
   Vavi Height (cm)  0.99 0.40  2.42   0.015   
   Begl Cover (%) -0.61 0.25 -2.40   0.016   
   Treatment (OTC) -0.84 0.48 -1.72   0.084   
   Year (2011)  1.65 0.54  3.02   0.002   
   Year (2016)  0.63 0.53  1.19   0.233   
 Step 2 Random Site   0.24 0.49   0.1 -559.4 
  Fixed Intercept  4.93 0.38 12.79 <0.001   
   Vavi Cover (%)  0.77 0.14   5.33 <0.001   
   Begl Cover (%) -0.32 0.12  -2.72   0.006   
   Treatment OTC -0.60 0.23  -2.62   0.008   
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Fig. 5.1 Map of Newfoundland and Labrador identifying study site locations, Nain and 

Torr Bay, along the north coast of Nunatsiavut, northern Labrador, Canada. Map 

modified from d-maps.com. 

(https://dmaps.com/m/america/canada/newfoundland/newfoundland11.gif) 

 

https://dmaps.com/m/america/canada/newfoundland/newfoundland11.gif
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Fig. 5.2 Boxplots illustrating fruit production (total #fruit/m2) (median, interquartile range, 

min/max and outliers) of Vaccinium uliginosum (Vaul), Empetrum nigrum (Emni) and V. 

vitis-idaea (Vavi) between controls (CTL) and open-top warming chambers (OTC) over 

three sample periods in Nain and Torr Bay, Nunatsiavut Labrador. 

 
 
 
 
 
 
 



220 
 

 
 
 

 
 
Fig. 5.3 Fixed effect plots indicating the magnitude and strength of significant parameter 

effects on the probability (1a-b) and extent (2a-d) of fruit production in Vaccinium 

uliginosum (Vaul), as determined by generalized linear mixed-effects hurdle models 

summarized in Table 5.3. Shaded areas represent 95% confidence intervals; Error bars 

= standard error; CTL = control, OTC = open-top warming chamber, Begl = Betula 

glandulosa; Black lines along x-axis represent raw (1a) and standardized (2a-c) 

observations. 
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Fig. 5.4 Fixed effect plots indicating the magnitude and strength of significant parameter 

effects on the probability (1a-c) and extent (2a-b) of fruit production in Empetrum nigrum 

(Emni), as determined by generalized linear mixed-effects hurdle models summarized in 

Table 5.3. Shaded areas represent 95% confidence intervals; Error bars = standard 

error; CTL = control and OTC = open-top warming chamber; Black lines along x-axis 

represent raw (1a-b) and standardized (2a) observations. 
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Fig. 5.5 Fixed effect plots indicating the magnitude and strength of significant parameter 

effects on the probability (1a-e) and extent (2a-c) of fruit production in Vaccinium vitis-

idaea (Vavi), as determined by generalized linear mixed-effects hurdle models 

summarized in Table 5.3. Shaded areas represent 95% confidence intervals; Error bars 

= standard error; CTL = control, OTC = open-top warming chamber, Begl = Betula 

glandulosa; Black lines along x-axis represent raw (1a-c) and standardized (2a,c) 

observations.  
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Appendix 5.1 R-code for generalized linear mixed hurdle models using packages 

‘MASS’ (Venables and Ripley 2002), lme4 (Bates et al. 2015), glmmADMB (Bolker et al. 

2013), and ‘effects’ (Fox 2003).  

 

Hurdle Step 1: 

>library(lme4) 
>ModelName<glmer(Y~(1|Site/PlotID) + X1 +Xx +…..Xz + (X1*Xx), na.action=na.omit, 
data = , family="binomial") 
 

Hurdle Step 2: 

>library(glmmADMB) 
>ModelName<glmmadmb(Y~(1|Site/PlotID)+ X1 +Xx +…..Xz + (X1*Xx), family="nbinom", 
data = subset(, Y > 0)) 
 

Effects Displays: 

>library(effects) 
> plot(allEffects(model),rescale.axis=FALSE) 
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Appendix 5.2a Means and standard error of lifeform cover from 2009-2016 between controls (CTL) and experimental warming (OTC) 

treatments.  
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226 
 

Appendix 5.2b Means and standard error of focal species cover (%) and height(cm) 

from 2009-2016 between controls (CTL) and experimental warming (OTC) treatments.  

Begl = Betula glandulosa; Emni = Empetrum nigrum; Vaul = Vaccinium uliginosum; Vavi 

= V. vitis-idaea. 
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Appendix 5.2c Means and standard error of Soil temperature (°C), % Moisture and 

%PAR from 2009-2016 between controls (CTL) and experimental warming (OTC) 

treatments.  
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Appendix 5.3 Fitted hurdle model summary for the effects of experimental warming, vegetation community attributes and 

plot-level microclimate on fruit production of a) Vaccinium uliginosum (Vaul), b) Empetrum nigrum (Emni) and c) V. vitis-

idaea (Vavi) based on random intercept only mixed-effects hurdle models. Random factors included ‘Site’ and nested ‘Plot 

ID’; Fixed factors included ‘Treatment’ (OTC vs. CTL), ‘Time’ (2011 and 2016), and ‘Treatment’*’Time’; Fixed effects 

included cover and height of each focal berry species and Betula glandulosa (Begl), and local climate variables (Soil 

moisture (%), Soil temperature (°C), and PAR (%); PAR = photosynthetic active radiation). Step 1 summarizes model 

selection for the probability of fruit production (presence/absence fruit/m2; binomial error, logit link), and step 2 for the 

extent of fruit production (total # fruit/m2; negative-binomial error, log link) for each species. Step 2 coefficients were 

obtained using standardized (z-score) predictor variables. Coefficients were retained at p <0.10. OTC = open-top warming 

chamber; CTL = control. Δ AIC represents the difference in Akaike Information Criteria (AIC) between the best-fit model 

and the global model.  

Berry Shrub Hurdle Effects Coefficients/ 
Intercepts 

Estimate/ 
Variance* 

Std. Error/ 
Std.Dev* 

Z-Value P-Value ΔAIC Log 
Likelihood 

a. Vaul Step 1 Random Site  4.30 2.07   4.5 -60.6 
  Fixed Intercept  1.74 1.60  1.08  0.278   
   Vaul Cover (%)  0.07 0.01  4.41 <0.001   
   Begl Cover (%) -0.02 0.01 -1.81   0.070   
   Year (2016) -2.69 0.53 -5.00 <0.001   
 Step 2 Random PlotID   0.85 0.92   7.2 -536.6 
  Fixed Intercept  3.56 0.22 16.18 <0.001   
   Vaul Cover (%)  0.44 0.18   2.41     0.016   
   Vaul Height (cm)  0.70 0.21   3.34 <0.001   
   Begl Cover (%) -0.65 0.23  -2.79   0.005   



229 
 

   Moisture (%) -0.50 0.19  -2.32   0.020   
   Year (2016)  0.76 0.27    2.82   0.004   

b. Emni Step 1 Random Plot ID  4.54 2.13   5.2 -54.9 
  Fixed Intercept -4.20 1.41  -2.97   0.003   
   Emni Cover (%)  0.10 0.04   2.60    0.009   
   Emni Height (cm)  0.53 0.19   2.83    0.005   
   Treatment (OTC) -2.22 1.10  -2.01   0.044   
 Step 2 Random Plot ID  0.50 0.71     11.1 -214.3 
  Fixed Intercept  3.56 0.36   9.71 <0.001   
   Emni Cover (%)  0.65 0.18  3.54   <0.001   
   Max. Begl Height (cm)  0.58 0.26  2.25   0.024   
   Moisture (%) -0.45 0.23 -1.97   0.049   
   Treatment (OTC) -1.17 0.44 -2.64   0.008   

c. Vavi Step 1 Random Site  3.30 1.82   6.0  -68.7 
   Plot ID:Site  0.62 0.78     
  Fixed Intercept -1.93 1.75 -1.10   0.270   
   Vavi Cover (%)  0.06 0.02  2.92   0.003   
   Vavi Height (cm)  0.59 0.20  2.89   0.003   
   Begl Cover (%) -0.03 0.01 -2.58   0.010   
 Step 2 Random Site   0.02 0.13   5.4  -473.6 
   PlotID  0.10 0.32     
  Fixed Intercept  4.36 0.42 10.48 <0.001   
   Vavi Cover (%)  0.67 0.19   3.54 <0.001   
   Vavi Height (cm)  0.86 0.41   2.14   0.032   
   Begl Cover (%) -0.44 0.16  -2.79    0.005   
   Treatment OTC -0.74 0.32  -2.28   0.023   
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Chapter 6: Summary and conclusions 

 

 Predicting climate-driven changes in tundra berry resources is necessary to 

understand the scale, extent and severity of impacts on this resource, to support 

ongoing and future land-use planning, and to implement climate change adaptation and 

mitigation strategies that are locally relevant across Inuit regions of Canada. In this 

study, we establish multiple lines of evidence to show that although berry resources are 

highly variable, there are important ecological and trait-based relationships that guide 

our understanding of future impacts. 

 By bringing together the richness of Inuit observations of climate change with 30-

year trends in local climate variables across communities (Chapter 2), this study 

identified pan-Canadian Arctic, regional and local-scale patterns in how environmental 

change is experienced across the Canadian Arctic. By using a new and integrated 

approach to visualize patterns in the relationship between participant observations and 

climate records, annual, fall and spring precipitation were identified as potential drivers 

for some of the observed changes. Inuit TEK brought to light new insights on changes in 

shrub, plant and insect abundance, and identified shrub expansion as a potential 

mechanism for declining berry quantity and quality in Nain, Labrador. Collectively, these 

results underscore the necessity for place-based and Indigenous knowledge in climate 

change adaptation response initiatives. 

 In Chapter 3, we utilized the ecological gradients in abiotic resources and 

species relationships across the forest-tundra ecotone in Nain, Labrador to understand 

the role of canopy-understory interactions in dwarf berry shrub growth and fruit 

production. Using a combination of ordination and hurdle models, we found that berry 
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shrub performance differentiated most strongly among species at the interface between 

the lower and upper forest-tundra transition zone, where boreal and tundra elements 

diverge, corresponding to an increase in available light and other aboveground 

resources. Closed-canopy forest had consistent negative effects on the extent of fruit 

production for all berry species. Positive growth-reproduction relationships were 

exhibited for both Vaccinium species, indicating the importance of abundance as a 

growth trait in reproductive allocation of Vaccinium. We identified that different abiotic 

and biotic factors are important in explaining the presence vs. extent of fruit production 

for all species; a distinction realized through the application of hurdle models. By 

documenting strong canopy-understory feedbacks on growth and fruit production of 

dwarf berry shrubs at treeline, this study supports traditional and scientific predictions 

that expansion of tree and tall-shrub canopy could reduce fruit production and therefore 

availability of fruit across low shrub tundra ecosystems. 

 Building on what we learned about the importance of local factors in driving 

changes in tundra resources (Chapter 2), and the role that canopy dynamics play in 

mediating dwarf berry shrub performance, we brought together experimental warming 

studies from five geographic locations in eastern Low and Sub-Arctic Canada to 

examine short-term effects of experimental warming and upright deciduous shrub 

growth (tundra canopy-formers) on the growth and fruit production of three culturally-

relevant tundra berry species (Chapter 4). In two and three years, we demonstrated the 

responsiveness of B. glandulosa height to warming and showed that fruit production in 

prostrate berry shrubs (V. vitis-idaea and E. nigrum) is more sensitive to warming and 

deciduous shrub height than berry species (V. uliginosum) with height plasticity. 
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Warming reduced reproductive effort and success in E. nigrum, but mainly reproductive 

success in V. vitis-idaea. Overall, fruit production varied greatly at the site and/or plot 

level, suggesting strong local drivers on fruit production across the eastern Low and 

Sub-Arctic region, especially for V. vitis-idaea. Divergent responses among prostrate 

berry shrubs to B. glandulosa height suggest a gradient in competitive and facilitative 

interactions among species. This study demonstrates the potential for future warming 

and shrubification to constrain fruit production of culturally important prostrate berry 

shrubs at the regional scale. 

In Chapter 5, we recognize that growth-reproduction relationships may vary 

among species through time and with local topo-edaphic conditions, therefore we follow 

the effects of experimental warming in our eastern Sub-Arctic Labrador sites from 2009 

to 2016; a region with TEK of declines in berry resources and rapid expansion from 

upright deciduous shrubs. All focal berry species grew taller over time within 

experimental warming plots, however Vaccinium spp. also became less abundant, 

suggesting a phenotypic response to changing resource availability. Changes in the 

occurrence and abundance of fruit were species-specific throughout this experiment, 

and we detected a gradient in response to experimental warming whereby fruit 

production in truly prostrate berry shrubs, V. vitis-idaea and E. nigrum, was more 

sensitive to experimental warming than V. uliginosum, which is capable of upright 

growth. Inclusion of local topo-edaphic variables from 2011 to 2016 enabled us to 

identify that conditions are becoming warmer and drier in our warming experiments, 

however effects of these changes on fruit production were marginal in the observed 

timeframe. Vaccinium vitis-idaea was the only species to demonstrate a negative 
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response in fruit occurrence and abundance with increasing B. glandulosa abundance, 

suggesting that fruit production in V. vitis-idaea is most vulnerable to tundra 

shrubification. 

 In this study, we advanced our understanding of climate change impacts on 

tundra berry resources by demonstrating that fruit production in culturally important 

prostrate dwarf berry shrubs, especially V. vitis-idaea, is at greater risk of decline from 

current and future shrubification than berry shrubs with greater phenotypic variation in 

growth traits. Although changes in berry resources are widespread and consistent 

across regions such as eastern Sub-Arctic Canada, traditional and scientific knowledge 

of local conditions is essential to predict meaningful impacts. 

 Berry resources in eastern Sub-Arctic Canada are at risk of decline from 

accelerated warming and deciduous shrub expansion. We recommend that local 

communities and regional governments identify priority berry picking grounds and take 

these areas into consideration when land-use planning for future use of berry resources 

and to ensure food security. Tundra shrubification is neither uniform in space nor time, 

therefore site-based assessments of vulnerability and risk to shrub expansion will be 

required to evaluate appropriate adaptation response strategies that meet the needs of 

communities. 

 

 

 

 


