Interdomain Twists of Human Thymidine Phosphorylase and its Active-Inactive Conformations: Binding of 5-FU and its Analogues to hTP vs. DPD

Tiffany Tozer¹, Kali Heale¹, Caroline Manto Chagas¹, Andre de Barros², Laleh Alisaraie^{1, 3,*}

SUPPLEMENTARY INFOMATION

Figure S1: Root Mean Square Deviation (RMSD) plots of the backbone atoms of unliganded monomer (black), unliganded dimer (red), monomer complexed with neutral 5-FU (green) and monomer complexed with protonated 5-FU MD simulations over 100 ns.

MAALMTPGTGAPPAPGDFSGEGSQGLPDPSPEPKQLPELIRMKRDGGRLSEADIRGFVAA ------MRMVDLIAKKRDGKALTKEEIEWIVRG -----LFLAQEIIRKKRDGHALSDEEIRFFING ::* **** *:. :*. :: . VVNGSAQGAQIGAMLMAIRLRGMDLEETSVLTQALAQSGQQLEWPEA-WRQQLVDKHSTG YTNGDIPDYOMSALAMAIYFRGMTEEETAALTMAMVOSGEMLDLSS - - IRGVKVDKHSTG IRDNTISEGQIAALAMTIFFHDMTMPERVSLTMAMRDSGTVLDWKSLHLNGPIVDKHSTG *:.*: *:* :: * * ** *: :** *: . . ****** : GVGDKVSLVLAPALAACGCKVPMISGRGLGHTGGTLDKLESIPGFNVIOSPEOMOVLLDO GVGDTTTLVLGPLVASVGVPVAKMSGRGLGHTGGTIDKLESVPGFHVEISKDEFIRLVNE GVGDVTSLMLGPMVAACGGYIPMISGRGLGHTGGTLDKLESIPGFDIFPDDNRFREIIKD **** **** AGCCIVGQSEQLVPADGILYAARDVTATVDSLPLITASILSKKLVEGLSALVVDVKFGGA NGIAIIGOTGDLTPADKKLYALRDVTATVNSIPLIASSIMSKKIAAGADAIVLDVKTGAG VGVAIIGOTSSLAPADKRFYATRDITATVDSIPLITASILAKKLAEGLDALVMDVKVGSG * .*:*** .* .**** :****:*:**:*:**::**:. * .*:*:*** AVFPN0E0ARELAKTLVGVGASLGLRVAAALTAMDKPLGRCVGHALEVEEALLCMDGAGP AFMKKLDEARRLARVMVDIGKRVGRRTMAVISDMSQPLGYAVGNALEVKEAIETLKGNGP AFMPTYELSEALAEAIVGVANGAGVRTTALLTDMNQVLASSAGNAVEVREAVQFLTGEYR *.: . : : **..:* :. * *. * :: *.: *. ..*.*:**.**: PD-LRDLVTTLGGALLWLSGHAGT0A0GAARVAAALDDGSALGRFERMLAA0GVDPGLAR HD-LTELCLTLGSHMVYLAEKAPSLDEARRLLEEAIRSGAAIAAFKTFLAAOGGDASVVD NPRLFDVTMALCVEMLISGKLAKDDAEARAKLQAVLDNGKAAEVFGRMVAAQKGPTDFVE * :: :* :: . * :. : .: .* * * ::*** ALCSGSPAERROLLPRAREQEELLAPADGTVELVRALPLALVLHELGAGRSRAGEPLRLG DLD-----KLPKAAYTSTVTAAADGYVAEMAADDIGTAAMWLGAGRAKKEDVIDLA NYA-----KYLPTAMLTKAVYADTEGFVSEMDTRALGMAVVAMGGGRRQASDTIDYS ** * . : * ::* * : : :. . :*.** : : : . VGAELLVDVGORLRRGTPWLRVHRDGPALSGPOSRALOEALVLSDRAPFAAPSPFAELVL VGIVLHKKIGDRVOKGEALATIHSNRPDVLD-VKEKIEAAIRLSPOPVARPPLIYETIV-VGFTDMARLGDOVDGORPLAVIHAKDENNWOEAAKAVKAAIKLADKAPESTPTVYRRISE ** :*::: :* . . :: *: *: : * : : PPQQ - - - -- - - -

Figure S3: Number of hydrogen bonds between 5-FU and water in the monomer complex with protonated 5-FU. Number of hydrogen bonds is shown in cyan and number of pairs within 0.35 nm is shown in magenta; running averages of each are in black. Each running average single point was generated by averaging 100 frames.

Figure S4: RMSF of the dimer bound to neutral ligands (green) and unliganded dimer (red)

Figure S5: Plots of distance between the centre of mass of α -domain part A and α/β -domain part A of the unliganded monomer. Distance in x direction (red), y direction (green), z direction (purple) and absolute distance (orange) with running average (black). Each running average single point was generated by averaging 100 frames.

Figure S6: Helicity of A) a new small helix in hinge 1 and B) helix 5 in the unliganded monomer after convergence to 100 ns.

Figure S7: Angle between two planes of α -domain part A and α/β -domain part A (brown) with running average (black) in the unliganded monomer. Each running average single point was generated by averaging 100 frames.

Figure S8: The running average angle between two planes (blue) and average distance between two centres of mass (green) of α -domain part A and α/β -domain part A of the unliganded monomer. Each running average single point was generated by averaging 100 frames.

Figure S9: Residues with increased fluctuation of A) α -domain part A and B) α/β -domain part A (in red and purple respectively) in the unliganded monomer.

Figure S10: Plots of distance between the centre of mass of α -domain part B and α/β -domain part B of the unliganded monomer. Distance in x direction (red), y direction (green), z direction (purple) and absolute distance (orange) with running average (black). Each running average single point was generated by averaging 100 frames.

Figure S11: The running average distance between centres of mass plots of α -domain and α/β -domain (panel A) and angle between two planes of α -domain part A and α/β -domain part A (panel B) of unliganded monomer (black), unliganded dimer (red), monomer complexed with neutral 5-FU (green) and monomer complexed with protonated 5-FU (blue). Each running average single point was generated by averaging 100 frames.

Figure S12: The running average distance between centres of mass plots of α -domain and α/β -domain (A) and angle between two planes of α -domain part A and α/β -domain part A (panel B) of unliganded monomer (black), unliganded dimer (red), monomer complexed with neutral 5-FU (green) and monomer complexed with protonated 5-FU (blue). Each running average single point was generated by averaging 100 frames.

B

Figure S13: The Uracil fragment (magenta) in the binding site of (A) DPD and (B) in the hTP. The positive electrostatic surface (blue) and the negative (red).

Figure S14: Superposition shows the slight displacement of the protonated 5-FU (yellow stick) compared to the position of the neutral (unprotonated) ligand (gray stick), (A) in the hTP, Tyr 199 (magenta); (B) in the DPD, Asn 609 (cyan), hydrogen bond (dashed line).