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Abstract
Key message  Wheat blast resistance in Caninde#1 is controlled by a major QTL on 2NS/2AS translocation and 
multiple minor QTL in an additive mode.
Abstract  Wheat blast (WB) is a devastating disease in South America, and it recently also emerged in Bangladesh. Host 
resistance to WB has relied heavily on the 2NS/2AS translocation, but the responsible QTL has not been mapped and its 
phenotypic effects in different environments have not been reported. In the current study, a recombinant inbred line popula-
tion with 298 progenies was generated, with the female and male parents being Caninde#1 (with 2NS) and Alondra (without 
2NS), respectively. Phenotyping was carried out in two locations in Bolivia, namely Quirusillas and Okinawa, and one loca-
tion in Bangladesh, Jashore, with two sowing dates in each of the two cropping seasons in each location, during the years 
2017–2019. Genotyping was performed with the DArTseq® technology along with five previously reported STS markers 
in the 2NS region. QTL mapping identified a major and consistent QTL on 2NS/2AS region, explaining between 22.4 and 
50.1% of the phenotypic variation in different environments. Additional QTL were detected on chromosomes 1AS, 2BL, 
3AL, 4BS, 4DL and 7BS, all additive to the 2NS QTL and showing phenotypic effects less than 10%. Two codominant STS 
markers, WGGB156 and WGGB159, were linked proximally to the 2NS/2AS QTL with a genetic distance of 0.9 cM, being 
potentially useful in marker-assisted selection.

Introduction

Wheat blast (WB) is an emerging and devastating dis-
ease of wheat, caused by the fungus Magnaporthe oryzae 
pathotype Triticum (MoT), leading to yield losses of up to 
100% and grain quality deterioration, greatly threatening 
food security in the epidemic regions (Kohli et al. 2011; 
Cruz and Valent 2017). This disease first appeared in 1985 
in the Paraná state of Brazil and soon spread throughout 
many of the important wheat-producing areas in Brazil 
(lgarashi et al. 1986; Goulart and Paiva 1990; Picinini and 
Fernandes 1990; Dos Anjos et al. 1996). Afterward, WB 
gradually spread to the neighboring countries of Bolivia, 
Paraguay and Argentina (Barea and Toledo 1996; Viedma 
2005; Perelló et al. 2015) and had been confined to South 
America until recently. In 2016, WB was found in Bang-
ladesh, which was its first outbreak outside South America 
(Malaker et al. 2016), causing yield reduction of up to 51% 
in some epidemic regions (Islam et al. 2016). This con-
firmed the risk identified by Duveiller et al. (2011) based 
on the similarity of agro-climatic conditions in Bangladesh 

Communicated by Lee Hickey.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0012​2-020-03624​-x) contains 
supplementary material, which is available to authorized users.

 *	 Pawan K. Singh 
	 pk.singh@cgiar.org

1	 International Maize and Wheat Improvement Center 
(CIMMYT), Apdo. Postal 6‑641, 06600 Mexico, DF, 
Mexico

2	 Bangladesh Wheat and Maize Research Institute (BWMRI), 
Nashipur, Dinajpur, Bangladesh

3	 Institute of Cotton Research, Chinese Academy 
of Agricultural Sciences, Anyang, Henan, China

4	 Instituto Nacional de Innovación Agropecuaria y Forestal 
(INIAF), La Paz, Bolivia

5	 Department of Plant Breeding, Swedish University 
of Agricultural Sciences, 23053 Alnarp, Sweden

6	 Australian Centre for International Agricultural Research, 38 
Thynne St, Bruce, ACT​ 2617, Australia

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Epsilon Open Archive

https://core.ac.uk/display/335350441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-4610-3120
http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-020-03624-x&domain=pdf
https://doi.org/10.1007/s00122-020-03624-x


2674	 Theoretical and Applied Genetics (2020) 133:2673–2683

1 3

and parts of South America, following the severe epidem-
ics in South America in 2009. Therefore, WB became a 
serious threat to the neighboring countries of Bangla-
desh. WB-vulnerable areas amounting to 7 million ha in 
India, Pakistan and Bangladesh were identified, with an 
estimated potential annual yield loss of about 0.89–1.77 
million tons (Mottaleb et al. 2018). With global warming, 
this disease might further spread to other major wheat pro-
duction regions like USA, Ethiopia or Australia (Cao et al. 
2011; Maciel 2011; Cruz et al. 2016a).

The pathogen has a global distribution and is regarded as 
the most devastating fungal pathogen worldwide (Dean et al. 
2012). M. oryzae is a hemibiotrophic ascomycetous fungal 
species, having a series of pathotypes, among which are the 
widely distributed rice pathotype MoO and the wheat patho-
type MoT (Maciel 2011; Cruz and Valent 2017). Unlike rice 
blast, for which research has been ongoing for many dec-
ades, WB is a relatively new disease and there are large 
knowledge gaps in terms of epidemiology, host–pathogen 
interaction, management, etc. (Duveiller et al. 2016; Cruz 
and Valent 2017). So far, control of WB relies essentially 
on fungicide applications. However, the low effectiveness 
of fungicide application under high disease pressure (Fer-
nandes et al. 2017) and the high risk of development of 
fungal resistance to fungicides (Castroagudín et al. 2015) 
are two major limitations of this approach. Host resistance 
is another major WB management component and is more 
economical and environmentally friendly compared to fun-
gicide application. Since the first WB outbreak in Brazil 
in the 1980s, searches for sources of resistance have been 
carried out, but many the resistant lines identified in the 
early days became susceptible, due to the fast evolution of 
MoT (Duveiller et al. 2016). Nevertheless, varieties showing 
lasting resistance or tolerance to WB in South America have 
been identified: BR 18 and CD 116 in Brazil, Caninde#1 and 
Itapua 75 in Paraguay, and Montacu and Urubo in Bolivia 
(Ha et al. 2012; Buerstmayr et al. 2017). Many of those lines 
were derived from the CIMMYT wheat line Milan and have 
the 2NS/2AS translocation that is further discussed.

So far, most genetic studies for WB resistance were 
performed at the seedling stage, where the host–pathogen 
interaction appeared to follow the gene-for-gene model 
(Anh et al. 2015). The resistance genes identified in such 
experiments are Rmg2, Rmg3, Rmg7, Rmg8, RmgTd(t) and 
RmgGR119 (Zhan et al. 2008; Cumagun et al. 2014; Tagle 
et al. 2015; Cruz et al. 2016b; Wang et al. 2018a) for host 
resistance against MoT, and Rmg1, Rmg4, Rmg5, Rmg6 
(Hau et al. 2007; Nga et al. 2009; Vy et al. 2014) for resist-
ance against non-MoT strains of M. oryzae. Of these genes, 
Rmg7, Rmg8 and RmgGR119 also conferred resistance at 
the adult plant stage against spike infection by MoT, but 
Cruz and Valent (2017) pointed out that the resistance con-
ferred by Rmg7 has been overcome by recent MoT isolates, 

whereas Rmg8 and RmgGR119 remain to be tested with the 
new MoT isolates.

Genetics for field WB resistance is much less researched 
compared to that for seedling resistance, but it is generally 
accepted that quantitative resistance predominates in this 
pathosystem, as a continuous variation was observed among 
the evaluated germplasm (Maciel et al. 2014; Cruz et al. 
2016b). So far, the only known effective field WB resistance 
source is 2NS/2AS translocation. The 2NS chromosomal 
segment was introduced from Aegilops ventricosa (Zhuk.) 
to replace the distal region of 2AS in wheat, in order to 
utilize the rust resistance genes Lr37, Sr38, and Yr17 (Hel-
guera et al. 2003). Later, it was found that other resistance 
genes, including Cre5 for cereal cyst nematode resistance 
(Jahier et al. 2001) and Rkn3 for root-knot nematodes resist-
ance (Williamson et al. 2013), are present in this segment. 
Recently, Cruz et al. (2016b) reported the significant effects 
of 2NS in WB resistance, which conferred 64–81% reduc-
tion in head blast severity in both spring and winter wheat. 
Juliana et al. (2019) further demonstrated the important role 
of 2NS in conferring WB resistance in CIMMYT germ-
plasm, along with an additional finding that the 2NS lines 
have a significant yield advantage.

The main objectives of the current study were to map 
QTL for field WB resistance in a bread wheat recombi-
nant inbred line (RIL) population Caninde#1/Alondra and 
to identify molecular markers linked to the QTL for their 
potential use in marker-assisted selection (MAS).

Materials and methods

Plant material

A RIL population of 298 F2:7 progenies, derived from a 
cross between Caninde#1 and Alondra, was developed by 
single seed descend. The female parent Caninde#1 has a 
pedigree of Milan/Munia, carries the 2NS/2AS transloca-
tion and shows consistently good WB resistance (Kohli et al. 
2011). The male parent Alondra has a pedigree of D-6301/
NAINARI-60//WEIQUE/RED-MACE/3/CIANO-F-67*2/
CHRIS, does not carry the 2NS/2AS translocation and is 
susceptible to WB.

Inoculum preparation

The protocol was modified from Cruz et al. (2016b). A 
fungal plug of 5 mm was taken from a Petri dish culturing 
the MoT isolate and was then transferred onto plates with 
oatmeal agar that was prepared following the below steps. 
Fifty grams of rolled oats was added into 800 ml of distilled 
water, which was boiled for 5 min with a magnetic stirrer, 
filtered through four layers of cheesecloth and adjusted to 
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1 L with distilled water. Finally, 15 g of agar was added 
before autoclave. Agar plates with the MoT isolate were 
incubated under 18–28 °C with 12 h of light/dark photo-
period. Seven days later, mycelium grown on the plates was 
scraped off with a spatula and the plates were cultivated 
for three more days under continuous light to induce sporu-
lation. Upon conidia harvest, the plates were flooded with 
10 ml of autoclaved distilled water and gently scraped with a 
brush. The spore suspension was collected in a test tube and 
was vortexed briefly to separate conidia and mycelia, and 
the latter was discarded via filtering through two layers of 
cheesecloth. The inoculum was adjusted to 80,000 conidia/
ml with a hemocytometer under a microscope, and then, 
Tween-20 was added to make a concentration of 0.02% for 
field application.

Field experiments

Field trials took place in three locations, i.e., Quirusillas and 
Okinawa in Bolivia and Jashore in Bangladesh. Quirusillas 
is in the high land region of the Department of Santa Cruz, 
Bolivia, at an altitude of 1496 m above sea level (masl), 
with a cropping cycle from December to April. Okinawa is 
located in the lowland region of the Department of Santa 
Cruz, Bolivia, at an altitude of 267 masl, where the cropping 
cycle is from May to August. Jashore is in the southwestern 
region of Bangladesh, at an altitude of 7 masl, with a crop-
ping season from December to April. The population was 
evaluated in two cropping cycles in each of the three loca-
tions, i.e., the 2017–2018 and 2018–2019 cycles in Quirusil-
las and Jashore and the 2018 and 2019 cycles in Okinawa, 
with two sowing dates (10 days difference) in each cropping 
cycle to expose the population to different environments. 
The experiments were then named according to the loca-
tion, cropping cycle and sowing date, where ‘Quir’ stands 
for Quirusillas, ‘Jash’ for Jashore and ‘Oki’ for Okinawa, 
‘18′ and ‘19′ for 2017–2018 or 2018 cycle and 2018–2019 
or 2019 cycle, respectively, and ‘a’ and ‘b’ for the first and 
second sowing, respectively. For example, the experiment 
‘Quir19b’ represents the second sown experiment carried 
out in Quirusillas in the 2018–2019 cycle.

The materials were sown in 1-m double rows spaced 20 
cm apart, and no replication was made within each sowing. 
In Bolivia, Urubo and Atlax were used as resistant and sus-
ceptible checks, respectively, whereas in Bangladesh, the 
corresponding checks were BARI Gom 33 and BARI Gom 
26. A misting system was set up in the nurseries, working 
from 8am to 7 pm, with 10 min of spraying each hour to 
keep a humid microenvironment that is conducive for WB 
infection. A mixture of locally collected MoT isolates was 
used for field inoculation, including OKI1503, OKI1704, 
QUI1505, QUI1601, QUI1612 in Bolivia and BHO17001, 
MEH17003, GOP17001.2, RAJ17001, CHU16001.3, 

JES16001 in Bangladesh. The isolates were selected based 
on their capacity of high sporulation. Inoculation was tar-
geted to the anthesis stage of each line and was repeated 
2 days later, where the inoculum was applied in the evening 
at a concentration of 80,000 spores/mL, using a CO2-driven 
backpack sprayer. WB evaluation was performed at 14 or 
21 days after the first inoculation, depending on the disease 
development, on 10 spikes that had been tagged at anthesis. 
Upon evaluation, the total and infected number of spike-
lets were counted for each of the 10 spikes, and then WB 
index was calculated with the formula WB index = Inci-
dence × Severity, where Incidence stands for the percentage 
of spike with WB symptom and Severity for the averaged 
percentage of infected spikelets. Days to heading (DH) and 
plant height (PH) were scored in all the experiments.

Statistical analysis

The SAS program ver. 9.2 was used to conduct analysis of 
variance (ANOVA), with its PROC GLM module, whereas 
the calculation of Pearson’s correlation coefficients was car-
ried out using the PROC CORR function. The ANOVA 
results were used for calculating the heritability estimates, 
with the formula H2 = �2

g
/(�2

g
+�2

g∗y
/y + �2

g∗s
/s + �2

e
/sy), where 

�
2
g
 represents genetic variance, �2

g∗y
 for genotype-by-year 

interaction,�2
g∗s

 for genotype-by-sowing interaction, �2
e
 for 

error variance, y for the number of years and s for the num-
ber of sowing dates.

Genotyping

Genomic DNA was extracted from young leaves of 2-week-
old plants with the CTAB method. RILs of the popula-
tion were genotyped with the DArTseq® technology at 
the Genetic Analysis Service for Agriculture (SAGA) at 
CIMMYT, Mexico. Additionally, five STS markers in the 
2NS/2AS region were used in this study, and they are Ven-
triup-LN2 developed by Helguera et al. (2003), WGGB156 
and WGGB159 by Wang et al. (2018b), IWB11136 by Xue 
et al. (2018) and cslVrgal3 that was derived from a follow-up 
study of Seah et al. (2001) (E. Lagudah, pers. comm.). Mark-
ers with more than 20% missing data points were removed 
from further analysis, as well as those highly distorted with 
a minor allele frequency less than 30%. Redundant markers 
identified with the BIN module of the ICIMapping v. 4.1 
software (www.isbre​eding​.net) were discarded.

Linkage and QTL mapping

Linkage groups (LG) were generated with the JoinMap v.4 
software (Van Ooijen 2006), with LOD scores from 5 to 
10 for grouping and the maximum likelihood algorithm 

http://www.isbreeding.net
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for ordering within each LG. Chromosome anchoring of 
LGs was obtained via BLASTing sequences of the DArT-
seq markers against the Chinese Spring genome (IWGSC 
RefSeq v1.0). QTL analysis was conducted with MapQTL 
v6.0 (Van Ooijen 2009), in which interval mapping (IM) 
was first tried to detect potential QTL for a trait as well as 
the most closely linked markers to those QTL. Subsequently, 
multiple QTL mapping (MQM) for each QTL was carried 
out, using the tightly linked markers as cofactors. Significant 
QTL were defined in this study when they have a LOD score 
of > 3.0 in at least one environment or over the threshold of 
2.0 in multiple environments. The software MapChart ver. 
2.3 (Voorrips 2002) was used to draw LGs and LOD curves.

Results

Phenotyping

WB index varied greatly across the 12 environments, with 
Quir18a being the lowest with a grand mean of WB index 
of 18.5% and Oki19a the highest with 56.1%. The disease 
variation corresponded generally well with the climatic 

data, where warmer and higher precipitation in February 
(Quirusillas and Jashore) or July (Okinawa) favored WB 
infection (Fig. S1). The resistant parent Caninde#1 showed 
consistently lower WB infection than the susceptible parent 
Alondra, with their respective WB index ranged from 0 to 
32% and 45 to 100% across environments. Transgressive 
segregation was often observed, in both the resistant and 
susceptible directions (Fig. 1). ANOVA indicated significant 
effects of ‘Genotype’ as well as those of ‘Genotype × Year’ 
in all three locations, and moderately high heritability esti-
mates were obtained that ranged from 0.71 for Quirusillas to 
0.87 for Okinawa (Table 1). Phenotypic correlations of WB 
were all significant among experiments, with r-values rang-
ing from 0.41 to 0.87. In general, higher correlation coef-
ficients were found among experiments in Bolivia, whereas 
lower correlation coefficients were observed among experi-
ments in Bangladesh (Table 2).

In Okinawa, late-sown experiments exhibited consistently 
lower WB than the earlier-sown ones, whereas the trends 
were less clear in Quirusillas and Jashore (Fig. 1). Correla-
tion of WB with DH and PH was either nonsignificant or 
significant at low levels (Table 3). Of the significant corre-
lations between WB and DH, those in Jashore experiments 
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Fig. 1   Histograms of wheat blast index in the Caninde#1/Alondra 
population in individual environments. Phenotypic ranges of the two 
parents are indicated, where C stands for Caninde#1 and A for Alon-
dra. ‘Quir’ stands for Quirusillas, ‘Jash’ for Jashore and ‘Oki’ for 

Okinawa, ‘18′ and ‘19′ for the 2017–2018 or 2018 cycle and 2018–
2019 or 2019 cycle, respectively, and ‘a’ and ‘b’ for the first and sec-
ond sowing, respectively. Grand mean (M) and standard deviation 
(SD) values are presented for all experiments
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Table 1   Analysis of variance 
for wheat blast index in different 
locations and its heritability 
estimates

Location Source DF Mean square F value P value Heritability

Quirusillas Genotype 297 2641.00 10.68  < 0.0001 0.71
Year 1 74,437.42 301.01  < 0.0001
Sowing (year) 1 8059.75 32.59  < 0.0001
Genotype × year 287 721.37 2.92  < 0.0001
Genotype × sowing 291 310.66 1.26 0.0336
Error 238 247.30

Jashore Genotype 297 2256.78 5.67  < 0.0001 0.74
Year 1 31,555.83 79.26  < 0.0001
Sowing (year) 1 14,699.25 36.92  < 0.0001
Genotype × year 297 571.83 1.44 0.0009
Genotype × sowing 297 421.93 1.06 0.3086
Error 297 398.13

Okinawa Genotype 297 3912.81 24.09  < 0.0001 0.87
Year 1 117,455.51 723.16  < 0.0001
Sowing (year) 1 342.04 2.11 0.1478
Genotype × year 294 440.79 2.71  < 0.0001
Genotype × sowing 297 247.29 1.52 0.0002
Error 282 162.42

Table 2   Pearson’s correlation coefficients of wheat blast index among the 12 environments (color table online)

Quir18a Quir18b Jash 18a Jash 18b Oki18a Oki18b Quir19a Quir19b Jash 19a Jash 19b Oki19a

Quir18b 0.69 1 

Jash 18a 0.44 0.51 1 

Jash 18b 0.41 0.51 0.58 1 

Oki18a 0.59 0.62 0.56 0.58 1 

Oki18b 0.59 0.63 0.50 0.58 0.74 1 

Quir19a 0.56 0.55 0.45 0.50 0.74 0.73 1 

Quir19b 0.55 0.57 0.47 0.50 0.74 0.70 0.77 1 

Jash 19a 0.48 0.46 0.47 0.45 0.58 0.55 0.58 0.60 1 

Jash 19b 0.47 0.54 0.49 0.52 0.64 0.60 0.62 0.60 0.59 1 

Oki19a 0.62 0.64 0.57 0.61 0.83 0.79 0.82 0.78 0.64 0.69 1 

Oki19b 0.57 0.61 0.50 0.59 0.77 0.79 0.80 0.73 0.63 0.62 0.87

All correlations were significant at P < 0.0001. ‘Quir’ stands for Quirusillas, ‘Jash’ for Jashore and ‘Oki’ for Okinawa, ‘18′ and ‘19′ for the 
2017–2018 or 2018 cycle and 2018–2019 or 2019 cycle, respectively, and ‘a’ and ‘b’ for the first and second sowing, respectively. Cell shades 
change from green to red with the increase of correlation coefficients

Table 3   Phenotypic correlation of wheat blast index with days to heading (DH) and plant height (PH) in individual environments

‘Quir’ stands for Quirusillas, ‘Jash’ for Jashore and ‘Oki’ for Okinawa, ‘18′ and ‘19′ for the 2017–2018 or 2018 cycle and 2018–2019 or 2019 
cycle, respectively, and ‘a’ and ‘b’ for the first and second sowing, respectively
*p < 0.01; ** p < 0.001

Quir18a Quir18b Jash18a Jash18b Oki18a Oki18b Quir19a Quir19b Jash19a Jash19b Oki19a Oki19b

DH 0.15* 0.03 0.21** 0.03 0.07  − 0.05  − 0.25**  − 0.14 0.2** 0.17**  − 0.06  − 0.21**
PH 0.04  − 0.08  − 0.32**  − 0.26**  − 0.04  − 0.07  − 0.14*  − 0.02  − 0.08  − 0.19**  − 0.26**  − 0.36**
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were always positive, whereas those in Quirusillas and 
Okinawa experiments were all negative, except for Quir18a. 
In the case of PH, however, all significant correlations were 
negative (Table 3), implying that tall plants tended to have 
a low level of WB.

Genotyping and linkage analysis

Initially, 78,255 SNP markers were scored for this popula-
tion, and finally, 2131 non-redundant markers of high qual-
ity were used for subsequent analysis. Thirty-six LGs were 
generated, representing all 21 wheat chromosomes, of which 
2B had the highest number of markers (301) and 4D had the 
lowest number of markers (16), whereas only four markers 
remained unlinked. These LGs covered a total genetic dis-
tance of 4851 cM, with an average distance between markers 
of 2.3 cM.

QTL mapping

Seven QTL have been identified on chromosomes 1AS, 2AS, 
2BL, 3AL, 4BS, 4DL and 7BS, of which only the one on 
2NS/2AS was consistently significant across environments, 
explaining phenotypic variation from 22.4 to 50.1%, whereas 
other QTL were of minor effects and were significant in only 
a subset of experiments (Table 4). The QTL on 7BS was 
significant in nine out of 12 experiments, being the second 
most stable QTL and explaining phenotypic variation from 
3.7 to 7.4%. The remaining minor QTL were significant in 
two (1AS) to six (4BS) experiments. Caninde#1 contributed 
resistant alleles of the QTL on 2NS/2AS, 1AS and 4DL, 
whereas the susceptible parent Alondra contributed those 
of the remaining four QTL (Table 4). It is noteworthy that 
the QTL on 4BS was linked to a QTL for PH in the Rht-
B1 region (Fig. S2), whereas none of the remaining QTL 
showed any association with PH or DH (data not shown). 
Boxplot chart showing phenotypic effects of stacking dif-
ferent QTL exhibited clear-cut results between groups with 
and without 2NS, demonstrating the dominant role of 2NS in 
conferring WB resistance in this population (Fig. 2). Within 
2NS or non-2NS group, however, minor QTL showed addi-
tive effects, i.e., the more QTL stacked, the lower the average 
or median WB index (Fig. 2).

The 2NS QTL and its associated markers

The 2NS/2AS translocation segment corresponds to a 
16.0-cM region on the distal part of the 2A LG, and the 
WB-resistant QTL was mapped between DArTseq mark-
ers 3958902 and 1209870, corresponding to a 1.2-cM 
region (Fig. 3). The five STS markers were found in the 
flanking regions of this QTL, with Ventriup-LN2 and cslVr-
gal3 in its distal region with genetic distances of 3.6 and Ta
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2NS - - - - - - +             +             +              +             +              +             +

No. of QTL# 0 1     2              3             4              5             0             1             2              3          4            5       6 

No. of lines 4             24          41            53           19            8              5             15           21           39 26            22           5

Fig. 2   Phenotypic effects of 2NS and its combinations with differ-
ent numbers of minor QTL identified in this study. The allelic sta-
tus of 2NS was determined by the two flanking markers 3958902 and 
1209870, and other markers in the QTL region as well as phenotypic 

data were also considered when missing or recombination happened 
between the two markers. Cross and horizontal lines in each box 
denote the mean and median values, respectively. # only non-2NS 
QTL were counted
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Fig. 3   QTL profile for wheat blast resistance on chromosome 
2NS/2AS across environments. Genetic distances are shown in cen-
timorgans to the inner sides of the linkage groups (LG). Only frame-
work markers are presented on the 2A LG, whereas all mapped mark-

ers are shown on the 2NS/2AS LG, where non-SNP markers are 
highlighted in red. A threshold of 3.0 is indicated by a dashed vertical 
line in the LOD graph. The profiles of the remaining QTL are pre-
sented in Fig. S2 (color figure online)
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2.9 cM, respectively, and the three co-segregating markers 
WGGB159, WGGB179 and IWB11136 in its proximal side 
with a genetic distance of 0.9 cM (Fig. 3).

Discussion

WB resistance of a wheat line can vary greatly under dif-
ferent environmental conditions; thus, an appropriate dis-
ease pressure is needed to clearly differentiate the geno-
types under evaluation. Mostly, WB pressure under natural 
infection is insufficient to correctly assess lines for their 
resistance levels. Early breeding work for WB resistance 
in South America relied mostly on natural infection, which 
happened sporadically across years and often unevenly in 
the experimental fields, enabling some genotypes to escape 
the infection and appear resistant or tolerant (Kohli et al. 
2011; Duveiller et al. 2016). This, along with the gain of 
virulence of newly emerged MoT isolates, could be the most 
important reasons explaining that early-suggested WB resist-
ant lines turned out to be susceptible in later evaluations. In 
the current study, the first field evaluation took place in the 
2017 cycle in Okinawa (denoted as Oki17), under natural 
infection. However, the WB infection was very weak, with 
about half of the population showing no symptom and a 
grand mean of WB index of merely 1.9%, and there was no 
significant correlation between Oki17 and those presented 
in Table 2. Likewise, the 2NS/2AS QTL for Oki17 was of 
minor effect with phenotypic effect of only 7.0% (data not 
shown), much smaller than from other environments. There-
fore, Oki17 was not used in this study. Quirusillas is another 
hot spot of WB in Bolivia, where researchers and breeders 
have set up WB screening nurseries. Some breeding materi-
als were sown there in the 2016–2017 cycle without artificial 
inoculation nor misting system, and the results turned out 
to be unsatisfactory (data not shown). This shows that arti-
ficial inoculation and misting are indispensable for obtain-
ing robust phenotypic data of WB, even in hot spots like 
Quirusillas and Okinawa. Therefore, artificial inoculation 
and misting have been adopted in the two screening sites 
in Bolivia since 2018, as well as in Jashore, Bangladesh, 
upon the establishment of WB screening nursery in the 
2017–2018 cropping cycle. It is noticeable that even with 
artificial inoculation and misting system, WB development 
was not very high in several environments, like Quir18a and 
Jash18b (Fig. 1). Considering also the significant genotype-
by-environment interaction, field evaluation for WB must be 
performed in multiple environments (preferably in different 
locations across years) in order to obtain robust phenotypic 
results.

It is well accepted that early-sown materials usually get 
heavier WB infection than the late-sown ones in South 
America; thus, it is not suggested to plant wheat too early in 

order to avoid the WB infection (Goulart et al. 1990; Cruz 
and Valent 2017). This rule, however, was based on pre-
vailing weather conditions, whereas in a specific cropping 
cycle it may not be true. For example, during the 2017–2018 
cropping season in Quirusillas, a reverse trend was observed. 
Nevertheless, data from Okinawa agreed well with the gen-
eral trend (Fig. 1). In South Asia, temperature and rainfall 
during the late part of the wheat season are expected to 
increase and become more conducive for WB; thus, late-
sown or late-headed lines are expected to have more severe 
WB infection, as shown by our results (Table 3, Fig. 1). 
Therefore, a recommendation to South Asian farmers in 
terms of WB would be to avoid planting the crop late, which 
agrees well with the avoidance of spot blotch and terminal 
heat (Joshi et al. 2007).

Plant height has shown a close association with Fusarium 
head blight (FHB), a major spike disease of wheat, with 
one of the underlying mechanisms being that spikes of tall 
plants are well ventilated and thus become drier and have 
lower FHB severity, compared to those of short plants (Yan 
et al. 2011). Considering the likewise requirement of WB 
for high humidity, a similar association between WB and 
PH is expected, which was demonstrated for the first time in 
the current study (Table 3). Notably, the WB QTL on 4BS 
partly overlapped with a PH QTL at Rht-B1 (Fig. S2), and 
this genetic linkage might have contributed to the phenotypic 
correlation. Apart from this QTL, none of the remaining 
QTL was associated with PH, being markedly different from 
those for FHB (He et al. 2016; Xu et al. 2020). This might 
also imply that PH has less impact on WB than on FHB, but 
further study is needed to corroborate or negate it.

As expected, the 2NS/2AS translocation demonstrated 
consistent and large phenotypic effects on reducing WB 
infection, but its effects were not high enough to be regarded 
as a simple Mendelian factor. This implies that 2NS alone 
cannot provide complete protection against WB, which is in 
agreement with Cruz et al. (2016b). In fact, the most sus-
ceptible 2NS carrier showed a grand mean of WB index 
close to 70%, and many had a grand mean higher than 50% 
(Fig. 2), showing that 2NS-mediated resistance is highly 
dependent on the genetic background, where other factor(s) 
might be required to fulfill its function. The breakdown of 
2NS resistance to WB has been reported in Paraguay (Singh 
et al. 2016) and Brazil (Ceresini et al. 2018). In a greenhouse 
experiment conducted in Bolivia, the well-known 2NS car-
rier Milan exhibited an average WB severity of 35% (Marza 
et al. 2019). Therefore, 2NS resistance is most likely incom-
plete, at least under high WB pressure, and new MoT isolates 
appear to have higher virulence to the 2NS carriers (Cruz 
et al. 2016b). To achieve better and durable resistance, addi-
tional QTL are necessary. As shown in our results, the more 
QTL accumulated, the less WB is observed. Unfortunately, 
all non-2NS QTL identified in this study were of minor 
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effects and would be difficult to use in a MAS strategy. It is 
imperative to identify novel QTL with major effects for WB 
resistance, so that they can be utilized in breeding to reduce 
the high selection pressure 2NS is exerting on the MoT 
population. In this regard, non-2NS genotypes identified by 
Cruppe et al. (2020) as resistant to WB could be analyzed 
in genetic studies for the discovery of new QTL. Neverthe-
less, without such QTL, it is still possible to obtain non-2NS 
lines with an acceptable level of WB resistance by stack-
ing multiple minor QTL. Such examples can be observed 
from Fig. 2, where many non-2NS lines showed good WB 
resistance, although we should keep in mind that a few of 
them might be actually 2NS carriers that were mistakenly 
classified as non-2NS based on flanking markers, because 
no functional marker is currently available for this QTL. 
The strong phenotypic effects of multiple minor genes were 
well demonstrated in wheat rusts (Singh et al. 2016), but we 
must say that to do the same in WB is far more challenging, 
considering the difficulty in WB phenotyping and the small 
phenotypic effects of the so-far known minor QTL.

The molecular marker Ventriup-LN2 has been widely 
used for diagnosing the presence of the 2NS segment in 
hexaploid wheat with good accuracy (Helguera et al. 2003; 
Cruz et al. 2016b). The drawback of this marker is its domi-
nant nature, which might lead to false-negative results when 
DNA quality is poor. The marker amplifies PCR product 
in 2NS carriers; thus, it cannot differentiate heterozygous 
(2NS/2AS) from homozygous (2NS/2NS) genotypes. Addi-
tionally, this marker is distal to the WB resistance QTL, with 
a distance of 3.6 cM in the current mapping population, 
making it less diagnostic. The marker cslVrgal3 is similar to 
Ventriup-LN2 in all aspects. Different to these two markers, 
WGGB156 and WGGB159 developed by Wang et al. (2018b) 
are codominant, closer to the QTL, and thus could be more 
effective for tracking the QTL in crosses.

The WB resistance QTL from 2NS has a projected physi-
cal region of 2.3 Mb on the 2AS chromosome of Chinese 
Spring (IWGSC RefSeq v1.0). This region harbors 79 anno-
tated high-confidence genes, of which 14 are of NBS-LRR 
gene family, three are of disease resistance protein, as well 
as genes belong to receptor-like protein kinase, ABC trans-
porter G family member, dirigent protein, F-box domain 
protein and defensin that have been associated with disease 
resistance in wheat. Nevertheless, the underlying gene for 
this QTL might not be one of them, since Chinese Spring 
is a 2AS carrier, whereas the resistance allele of this QTL 
comes from 2NS. However, the clusters of resistance genes 
in the reference genome may indicate that 2NS/2AS QTL 
region is enriched for resistance-encoding genes, which 
could be a hint for future investigation of the locus.
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