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Abstract
As diets change in response to ethical, environmental, and health concerns surrounding meat consumption, fermentation has
potential to improve the taste and nutritional qualities of plant-based foods. In this study, cauliflower, white beans, and a 50:50
cauliflower-white bean mixture were fermented using different strains of Lactobacillus plantarum. In all treatments containing
cauliflower, the pH was reduced to <4 after 18 h, while treatments containing only white beans had an average pH of 4.8 after
18 h. Following fermentation, the riboflavin, folate, and vitamin B12 content of the cauliflower-white bean mixture was mea-
sured, and compared against that of an unfermented control. The riboflavin and folate content of the mixture increased signif-
icantly after fermentation. Relative to control samples, riboflavin increased by 76–113%, to 91.6 ± 0.6μg/100 g fresh weight, and
folate increased by 32–60%, to 58.8 ± 2.0 μg/100 g fresh weight. For one bacterial strain, L. plantarum 299, a significant 66%
increase in vitamin B12 was observed, although the final amount (0.048 ± 0.013 μg/100 g fresh weight) was only a small fraction
of recommended daily intake. Measurements of amino acid composition in the mixture revealed small increases in alanine,
glycine, histidine, isoleucine, leucine, and valine in the fermented sample compared to the unfermented control.

Keywords B-vitamins . Brassica oleracea . Lactic acid bacteria . Nutritional quality . Phaseolus vulgaris

Introduction

Recent research has highlighted good potential of a
change in diet in helping to resolve global challenges such
as climate change, biodiversity loss, and food insecurity
[1]. Studies exploring future sustainable food systems in
the Nordic countries suggest decreasing consumption of
meat by 80–90% and increasing consumption of vegeta-
bles. Legumes, with their high protein content, are of spe-
cial importance in this concern due to their benefits for
agricultural cropping systems via biological nitrogen-

fixation [2]. Thus, there is a need for developing new
plant-based products including legumes.

Fermentation has been used since ancient times for food
preservation, while also having an impact on organoleptic
characteristics. Several traditional Asian fermented bean prod-
ucts have now become popular in the West, including tofu,
tempeh, and miso. Additional driving forces in developing
fermented vegetable products are the growing interest in lo-
cally produced food, and consumer interest in products with
less chemical additives.

During fermentation with lactic acid bacteria (LAB),
available carbohydrates are converted to organic acids,
mainly lactic acid and acetic acid, depending on the
species used. For vegetables, a decrease in pH to
around 4 has been reported to ensure a stable product
[3]. The dominant species in spontaneous lactic acid
fermentation of vegetables is Lactobacillus plantarum
[4]. A benefit of using well-known lactic acid bacteria,
such as L. plantarum, for fermentation is that they are
included in the Qualified Presumption of Safety (QPS)
list, which authorizes their use in the food and feed
chain within the European Union.
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The aim in lactic acid fermentation is generally to preserve
the food by excluding growth of spoilage microorganisms.
However, lactic acid fermentation is a strain-dependent and
complex process with a broad impact on the nutritional value
of the food [5]. An increase in the content of important nutri-
ents, including the B-vitamins, after fermentation of plant-
based products has been reported [6]. Apart from the direct
effect on the food due to the bacterial metabolism, certain
strains of LAB are also associated with probiotic properties.
The L. plantarum strains investigated in the present study
have been shown to have different health effects in humans,
for example improved symptoms in people with irritable bow-
el syndrome [7], protection against lumbar spine bone loss in
postmenopausal women [8], and increased iron absorption
from foods [9].

The growth and capability for efficient fermentation of
LAB are affected by several factors, such as composition of
the substrate, strain-specific variations, and the fermentation
procedure. In the present study fermentation of vegetables,
cauliflower, white beans, and a mixture (50:50) of cauliflower
and white beans, was studied. Four strains of L. plantarum
were used and the effects of fermentation on levels of impor-
tant nutritional parameters such as amino acid composition
and riboflavin, folate, and vitamin B12 content were studied.
Three of the investigated strains are available commercially as
food supplements and as chilled plant-based food products
and have been used to ferment cereals, berries and fruit
[10–12]. The ability of the included strains to ferment vegeta-
bles and produce riboflavin, folate and vitamin B12 have not
been investigated before.

Material and Methods

Bacterial Cultures

Four different strains of L. plantarum (strain 299v, strain
Lp900, strain 299, strain Heal19) were provided by the com-
pany Probi AB, Sweden (https://probi.com/) and are described
in Table 1. For production of the inoculum used for
fermentation, the strains were cultivated as static culture in
MRS broth (BDH Chemicals, UK) at 35 °C for 16 h. After

this, the cells were harvested by centrifugation (Eppendorf
MiniSpin, 10,000 g for 3 min) and washed twice with 0.85%
NaCl solution. The control treatment was prepared with sterile
MRS broth and a similar washing procedure. The bacterial
suspensions, diluted in 0.85% NaCl and with an OD620 of 0.8
(corresponding to 7–8 log CFU/ml), and a control suspension
(0.85% NaCl only) were added in a concentration of 1% (w/w)
to the vegetable mixtures.

Experimental Set-up

Raw cauliflower (Brassica oleracea var. botrytis) mixed in food
processor, cooked and mixed white beans (Phaseolus vulgaris
L.), and a mixture of consisting of a 50:50 ratio (w/w) of raw
cauliflower and cooked white beans (cauliflower-white bean)
were weighed out into plastic containers. Each portion weighed
100 g ± 1 g and was combined with 2 g of sea salt.

Suspension of L. plantarum was added to each container.
The mixture was thoroughly stirred again following addition
of bacteria or control suspension. The pH of each sample was
recorded and the control samples were directly frozen at
−80 °C. Containers with bacterial culture were incubated at
30 °C for 44 h. The pH of fermented samples was measured
after 18 and 44 h.

After 44 h, the treatments were tasted and the cauliflower-
white bean mixture was chosen for further analysis. Samples
for determination of riboflavin (vitamin B2), folate, vitamin
B12, total protein, and amino acid composition in this treat-
ment were prepared and frozen at −80 °C. All samples were
analyzed for total protein and vitamin content, while analyses
of amino acid composition were performed on the control
samples of cauliflower-white bean mixture and the samples
fermented with L. plantarum 299.

Analysis

Determination of Riboflavin, Total Amount of Folate
and Vitamin B12

Determination of riboflavin was performed according to
European Standard EN14152, as described by Jakobsen [13].
Determination of the total amount of folate was performed

Table 1 Strains of Lactobacillus
plantarum used in this study Strain Origin DSM number1

L. plantarum strain 299v Human gastrointestinal (GI) tract 9843

L. plantarum strain Lp900 Ogi, red sorghum, Nigeria –

L. plantarum strain 299 Human GI tract 6595

L. plantarum strain Heal19 Human GI tract 15,313

The strains deposited at DSM are available commercially as food supplements and as chilled plant-based food
products
1 German Collection of Microorganisms and Cell Cultures
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according to European Standard EN1413, as described by
DeVries et al. [14], except for use of protease in the extraction
procedure. Extraction of vitaminB12was performed according to
method AOAC 952.20, as described by Ball [15].

Total Protein and Amino Acid Composition

Total amount of protein in the samples was determined by the
Dumas method [16] and applying a conversion factor of 6.25
for total nitrogen. Concentrations of the amino acids were de-
termined according to the method of Llames and Fontaine [17].

Statistics

The experiments were set up with three replicates in each
treatment and repeated once. The data obtained were analyzed
statistically using Minitab 17 for Windows. One-way Anova
followed by Tukey’s multiple comparison test was employed
to test for effects of treatments and the significance level was
set to P ≤ 0.05.

Results and Discussion

The different strains of L. plantarum behaved similarly with
regard to the effect of pH on the different treatments. No
significant difference was observed between the strains within
each reading (18 and 44 h). Data from all strains were there-
fore pooled for each time point for analysis of the effect of
fermentation on pH (Fig. 1). Cauliflower and white bean had a

similar initial pH of approximately 6.20. However, after 18 h
of fermentation with L. plantarum strains, the pH was signif-
icantly lower in the cauliflower and the cauliflower-white
bean mixture treatments (3.66 ± 0.05 and 3.75 ± 0.04, respec-
tively, mean ± SD) than in the treatment with white bean only
(4.82 ± 0.02). After 44 h of fermentation, a slight but signifi-
cant increase in pH was observed in the white bean treatment,
to 4.96 ± 0.01. In the treatments with cauliflower and
cauliflower/white bean mixture the opposite pattern was ob-
served, with a slight but significant decrease in pH to 3.44 ±
0.1 and 3.52 ± 0.07, respectively.

Thus, fermentation was more efficient in the treatments
including cauliflower adding benefits such as increased shelf
life due to the low pH. Cauliflower is reported to contain
approximately 4.2% carbohydrates, with a high concentration
of monosaccharides [18]. Legumes, on the other hand, are
well-known for containing high amounts of complex oligo-
saccharides, a component of dietary fiber that is less available
for microbial degradation [19]. Thus, the easily available car-
bohydrates provided by cauliflower most probably sustained
microbial growth, followed by a decrease in pH due to pro-
duction of organic acids, to a greater extent than in the white
bean treatment.

The mixture of cauliflower and white bean was chosen for
further studies on the content of total protein, riboflavin, fo-
late, and vitamin B12. The taste was dominated by a sour and
salty flavour, similar to traditional fermented cabbage (sauer-
kraut), but with a deeper, underlying umami taste that brought
a mild cheese-like quality. The taste was unusual, but not
unpleasant, though more comprehensive taste analysis and

Fig. 1 Changes in pH during
fermentation with Lactobacillus
plantarum of homogenized
cauliflower, white bean, and a
mix (50:50) of cauliflower and
white bean
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consumer research would be required to determine the mar-
ketability of the product.

From a nutritional perspective the benefit of including
white beans was clearly apparent, as the total amount of pro-
tein ranged from 21.1 to 23.2% of dry weight in the different
bacterial treatments. Inconsistent results have been reported
regarding the effect of fermentation on total protein amount
[20]. Based on work with cereals, it has been suggested that
the total amount of protein is generally not changed during
lactic acid fermentation, although an increase can be observed
in certain cases. If an increase is observed, it can often be
related to a decrease in carbon ratio in the total mass due to
bacterial metabolization of carbohydrates [21]. In the present
study, no significant differences were observed in organic car-
bon content or in total nitrogen in relation to the control or
between any of the treatments. Based on these results, no
effect on the total protein amount was observed.

Riboflavin is important for the function of several enzymes
involved in energy metabolism. It is naturally present in several
different foods, including plants, and main sources of riboflavin
intake are milk and dairy products, followed by cereals and
meat. It is a water-soluble vitamin that is not stored in the body,
and the daily dietary reference value has been set to 1.6 mg for
adults [22]. Despite its presence in a wide variety of foods,
riboflavin deficiency may occur. In this study, fermentation
with L. plantarum increased the concentration of riboflavin
significantly compared to the control in all treatments
(Table 2). Significant differences in riboflavin concentration
related to the different strains were observed. The highest value
was observed after fermentation with L. plantarum Lp900,
which gave an increase of 113% compared to the initial value,
to 91.6 ± 0.6μg/100 g fresh weight. The smallest increase, 76%
of the initial value, was observed in the treatment with
L. plantarum 299v. A similar increase in riboflavin content
has been observed by Capozzi et al. [23] on fermenting wheat
with L. plantarum for production of bread and pasta. However,
in their study the strains used were selected for over-production
of riboflavin, while such selectionwas not applied in the present
study. Our results suggest that fermentation with L. plantarum
can be used to increase the concentration of riboflavin in plant-
based foods. However, it should be pointed out that the levels of
riboflavin in the final fermented product were still generally

low, at the level of μg/100 g product, compared to the recom-
mended daily intake of 1.6 mg.

For folate, a similar pattern as for riboflavin was observed,
with a significant increase in all fermented samples and varia-
tions between strains. Like riboflavin, folate is synthesized by
both plants and microorganisms, with main dietary sources be-
ing leafy green vegetables, dairy products, and cereal products.
This vitamin, including several related compounds play a key
role in ensuring essential functions of cell metabolism, such as
DNA synthesis. However, the bioavailability of natural food
folates varies and these compounds are easily degraded. Thus,
folate deficiency is a general concern, and a strategy based on
fortification of selected foods has been adopted in some coun-
tries. In this study, the highest concentration of folate was ob-
served after fermentation with L. plantarum 299v, which
showed an increase of 60% compared to the initial value, to a
total concentration of 58.8 ± 2.0 μg/100 g fresh weight. The
smallest increase, 32% of the initial value, was observed in
the treatment with L. plantarum 299. Considering the average
recommended intake of 250 μg dietary folate equivalents/day
[24], the fermented vegetable mixture is of interest. The ability
of microorganisms to produce folate is strain-specific, and a
decrease in folate concentration in fermented products due to
microbial consumption has been reported [25]. It should be
pointed out that a significant increase in folate concentration
was observed for all four strains of L. plantarum included in
the present study, and that the genes for folate biosynthesis have
been identified in this species [26]. Thus, fermentation of veg-
etables with L. plantarum might be considered as a general
measure to increase folate concentration.

Vitamin B12 has a function as an important co-factor in
several enzymes in procaryotes, protists, and animals, while
B12-dependent enzymes have not been found in plants and
fungi. Production of vitamin B12 has been shown to be limited
to a few species of bacteria and archaea [27], and ensuring
intake of adequate levels of this vitamin is a high concern with
plant-based diets. In recent years, two strains of L. plantarum
that produce vitamin B12 have been isolated [28]. In the pres-
ent study, the increase in vitamin B12 in the fermentation treat-
ments was less pronounced than that seen for riboflavin and
folate. A significant increase in B12 content was observed after
fermentation with L. plantarum 299 only (Table 2). An

Table 2 Concentration (μg/100 g
fresh weight) of riboflavin, folate,
and vitamin B12 before (control)
and after lactic acid fermentation
of a mixture of cauliflower and
white beans at 30 °C for 44 h
using four different strains of
Lactobacillus plantarum

Treatment Riboflavin Folate Vitamin B12

Control 42.83 ± 1.20a* 36.84 ± 0.81a 0.029 ± 0.002a

L. plantarum strain 299v 75.64 ± 0.82b 58.82 ± 1.98c 0.033 ± 0.004ab

L. plantarum strain Lp900 91.60 ± 0.56c 55.88 ± 0.98c 0.034 ± 0.011ab

L. plantarum strain 299 76.36 ± 9.21b 48.74 ± 3.98b 0.048 ± 0.013b

L. plantarum strain Heal19 85.07 ± 2.14bc 53.55 ± 1.28bc 0.034 ± 0.004ab

Values shown are mean ± standard deviation

*Different letters within columns indicate significant differences (p ≤ 0.05; Anova followed by Tukey’s test)
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increase of 66% (to 0.048 ± 0.013 μg/100 g fresh weight)
compared to the initial value (0.029 ± 0.002) was observed
in this treatment. Considering that intake of 4 μg vitamin
B12 per day has been set as adequate by EFSA [29], it is clear
that the fermented products evaluated in the present study
could only provide a very small fraction of the total require-
ment, despite the significant increase. For the two vitamin
B12-producing strains of L. plantarum previously isolated, it
has been demonstrated that increased production of vitamin
B12 can be achieved by addition of a B12 precursor such as 5-
aminolevulinate [28]. Thus, a future approach to increase the
concentration of vitamin B12 in fermented vegetables could be
to ensure high concentrations of precursors before fermenta-
tion. Also, as the presence of human inactive analogues, such
as pseudovitamin B12, have been reported in LAB high-
producing strains should be subjected to detailed chemical
analysis including not only microbiological assay but also
liquid chromatographic methods [30].

It should be pointed out that no cell lysing treatment
was performed in the present study, apart from storage in
the freezer (−80 °C), and that strains of L. plantarum have
been demonstrated to have high stability when frozen
[31]. Additionally, no difference in moisture content in
any of the treatments compared to the control was ob-
served after lyophilization (data not shown). Thus, the
increased levels of vitamins observed in the present study

did not represent an intracellular pool, and were not due
to an increase in dry matter.

No distinguishable difference in taste could be detected in
the mixture fermented with the different bacterial strains and,
based on the significant increase in vitamin B12 level, the
vegetable mixture fermented with strain L. plantarum 299
was chosen for analysis of amino acid composition. The re-
sults showed small increases in alanine, glycine, histidine,
isoleucine, leucine, and valine in the fermented sample com-
pared to the control (Table 3). Of these amino acids, histidine,
isoleucine, leucine, and valine are essential in the human diet.
Thus, fermentation with L. plantarum 299 can be considered
to have slightly improved the protein quality of the vegetable
mixture. In contrast, a recent study reported a decrease in
protein quality after fermentation of pea proteins with
L. plantarum [32]. In that study, high consumption of the
sulfur-containing amino acids was observed and thus the au-
thors recommend selection of species other than L. plantarum
for fermentation. This discrepancy in results, despite working
with the same species and a similar vegetable, reflects the
strain-specific metabolism of L. plantarum, which has been
suggested to be due to their diverse ecological niches [28]. It
also highlights the need for working with several strains of the
same species in order to draw sound conclusions on charac-
teristics of the species.

Conclusions

Lactic acid fermentation is of importance for food preserva-
tion, while also having impact on taste and nutritional compo-
sition. In the present study three different vegetable substrates
(cauliflower, white bean, and cauliflower-white bean mixture)
were fermented using four different strains of L. plantarum.
All strains had a similar impact on pH of the different sub-
strates, and fermentation was more efficient in the treatments
including cauliflower. Due to the efficient fermentation, with a
final pH below 4, the pleasant taste and inclusion of legumes
the impact of fermentation on riboflavin, folate, and vitamin
B12 concentrations and on protein quality was studied in the
cauliflower-white bean mixture. All strains of L. plantarum
significantly increased the content of both folate and ribofla-
vin compared to an unfermented control. Fermentation also
had an impact on the content of vitamin B12, with fermenta-
tion with one of the bacterial strains (L. plantarum 299)
resulting in a significant increase in vitamin B12 content. In
the treatment involving fermentation of a cauliflower-
white bean mixture with L. plantarum 299, amino acid
composition was analyzed. The results revealed small
increases in the concentrations of alanine, glycine, his-
tidine, isoleucine, leucine, and valine in the fermented
sample compared to the unfermented control.

Table 3 Amino acid (aa) composition (g/100 g protein, dry weight
basis) of a mixture of cauliflower and white bean before (control) and
after fermentation with Lactobacillus plantarum strain 299

Amino acid Control Fermented sample

Alanine 1.11 ± 0.01a* 1.13 ± 0.01b

Arginine 1.42 ± 0.04a 1.42 ± 0.05a

Aspartic acid 2.92 ± 0.04a 2.97 ± 0.01a

Cysteine 0.23 ± 0.01a 0.24 ± 0.01a

Glutamic acid 3.60 ± 0.04a 3.63 ± 0.03a

Glycine 0.97 ± 0.01a 1.03 ± 0.01b

Histidine 0.67 ± 0.01a 0.70 ± 0.01b

Isoleucine 1.09 ± 0.00a 1.13 ± 0.01b

Leucine 2.02 ± 0.01a 2.08 ± 0.02b

Lysine 1.80 ± 0.01a 1.84 ± 0.05a

Methionine 0.25 ± 0.01a 0.23 ± 0.03a

Phenylalanine 1.40 ± 0.04a 1.46 ± 0.03a

Proline 0.93 ± 0.07a 1.00 ± 0.03a

Serine 1.52 ± 0.02a 1.48 ± 0.02a

Threonine 1.09 ± 0.01a 1.10 ± 0.01a

Tyrosine 0.85 ± 0.02a 0.87 ± 0.01a

Valine 1.32 ± 0.02a 1.36 ± 0.01b

aa 23.21 ± 0.14a 23.68 ± 0.05b

*Values within rows followed by different letters are significantly differ-
ent (p < 0.05)
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Thus a slight improvement in nutritional quality was ob-
tained after fermentation, although it should be pointed out
that the quantity of different vitamins produced during fer-
mentation, particularly of riboflavin and vitamin B12, was
low relative to the recommended intake.
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