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ABSTRACT Arctic charr (Salvelinus alpinus) is a species of high economic value for the aquaculture industry,
and of high ecological value due to its Holarctic distribution in both marine and freshwater environments.
Novel genome sequencing approaches enable the study of population and quantitative genetic parameters
even on species with limited or no prior genomic resources. Low coverage genotyping by sequencing (GBS)
was applied in a selected strain of Arctic charr in Sweden originating from a landlocked freshwater
population. For the needs of the current study, animals from year classes 2013 (171 animals, parental
population) and 2017 (759 animals; 13 full sib families) were used as a template for identifying genome wide
single nucleotide polymorphisms (SNPs). GBS libraries were constructed using the PstI and MspI restriction
enzymes. Approximately 14.5K SNPs passed quality control and were used for estimating a genomic
relationship matrix. Thereafter a wide range of analyses were conducted in order to gain insights regarding
genetic diversity and investigate the efficiency of the genomic information for parentage assignment and
breeding value estimation. Heterozygosity estimates for both year classes suggested a slight excess of
heterozygotes. Furthermore, FST estimates among the families of year class 2017 ranged between 0.009 –

0.066. Principal components analysis (PCA) and discriminant analysis of principal components (DAPC) were
applied aiming to identify the existence of genetic clusters among the studied population. Results obtained
were in accordance with pedigree records allowing the identification of individual families. Additionally, DNA
parentage verification was performed, with results in accordance with the pedigree records with the
exception of a putative dam where full sib genotypes suggested a potential recording error. Breeding
value estimation for juvenile growth through the usage of the estimated genomic relationship matrix clearly
outperformed the pedigree equivalent in terms of prediction accuracy (0.51 opposed to 0.31). Overall, low
coverage GBS has proven to be a cost-effective genotyping platform that is expected to boost the selection
efficiency of the Arctic charr breeding program.
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Genomic information is being incorporated at an ever increasing rate
in aquaculture breeding programs, guiding selection decisions (Yanez
et al. 2015). Use of genome wide genetic markers has the potential to
unravel the genetic factors that control traits of interest, increase the
accuracy of estimated breeding values (Meuwissen et al. 2001) and
optimize inbreeding management (D’Ambrosio et al. 2019). Current
knowledge supported by both simulation (Sonesson and Meuwissen
2009) and real data (reviewed in Palaiokostas and Houston 2017;

Lhorente et al. 2019) in a wide range of aquaculture species suggests
that substantial improvements for key production traits can be
obtained through use of genomic information. In particular, benefits
are most pronounced for disease challenges, sex-limited-, late-in-life-,
and post-slaughter traits.

Implementation of genomics in both animal and plant breeding
programs is commonly performed through the usage of single
nucleotide polymorphism (SNP) arrays (reviewed in Hickey et al.

Volume 10 | June 2020 | 2069

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Epsilon Open Archive

https://core.ac.uk/display/335350329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-4480-4612
http://orcid.org/0000-0003-3434-5202
http://orcid.org/0000-0002-9347-6379
http://orcid.org/0000-0003-4801-6207
http://orcid.org/0000-0001-6343-8155


2017) that typically contain tens or hundreds of thousands of indi-
vidual assays. However, SNP arrays typically require considerable
prior investment, their price per unit is expensive unless purchased in
large volumes (in the magnitude of hundreds of thousands), and
potentially suffer from SNP ascertainment bias (Lachance and
Tishkoff 2013). Advancements in high throughput sequencing
technologies offer cost effective alternatives in the form of reduced
representation genomic DNA libraries (Davey et al. 2011). A wide
range of library construction protocols have been developed like
restriction-site associated DNA sequencing (RAD-seq; Baird et al.
2008) and genotyping by sequencing (GBS; Elshire et al. 2011). The
main premise of GBS type methodologies is the reduction of the
genome complexity via using restriction enzyme(s) of choice. As
such, sequencing occurs only in size selected DNA fragments result-
ing from the enzymatic digestion.

The plethora of available type II restriction enzymes make the
aforementioned platforms particularly flexible, allowing researchers
to decide between dense or sparse genotyping strategies (Rochette
et al. 2019). Furthermore, through barcode ligation, multiple animals
can be pooled in a sequencing lane and subsequently de-multiplexed
bioinformatically thus allowing significant cost reductions per animal
unit (Palaiokostas et al. 2015; Brown et al. 2016; Robledo et al. 2017).
Taking into account that high throughput sequencers have pre-
determined costs and data output (sequencer model dependent)
per sequencing run, it is apparent that a tradeoff exists between
number of animals that can be utilized in a sequencing lane and the
expected sequencing coverage per animal.

In contrast, an ideal scenario, particularly suitable for selective
breeding purposes, will favor sequencing libraries that are produced
with frequent enzymatic cutters (resulting in dense genotyping) and
are composed from a multiplex including a large number of animals.
Low coverage GBS offer an attractive solution that offers for both high
SNP density and cost-effective genotyping (Dodds et al. 2015). GBS
using low sequencing coverage has been successfully used for
estimating genome wide linkage disequilibrium (Bilton et al.
2018a), constructing genetic maps (Bilton et al. 2018b; Chagné
et al. 2018), parentage assignment (Dodds et al. 2019), predicting
gender in animals (Bilton et al. 2019) and implementing genomic
selection (Faville et al. 2018).

Arctic charr (Salvelinus alpinus) farming is a small but growing
industry with ample margin for production scaling. Sweden is the
second largest producer of Arctic charr worldwide with a production
volume of approximately 1,310 tons (SCB 2017), while global pro-
duction is estimated between 6,000 – 10,000 tons (Olk et al. 2019). An
ongoing national breeding program for Arctic charr has been in place
for approximately 40 years, resulting in an improved strain capable of
reaching market size (600 - 800 g) one year earlier compared to wild
stocks (Eriksson et al. 2010). The breeding strain originates from a
landlocked population in lake Hornavan (Sweden) and no external

germplasm has ever been included in the breeding nucleus. The
Hornavan Arctic charr demonstrated superior growth capacity com-
pared to other Arctic charr populations in Sweden and was thus
selected for the establishment of a selective breeding program
(Nilsson et al. 2010). Currently, selection candidates are chosen using
best linear unbiased prediction (BLUP) methodology (Henderson
1975) for growth related traits. Typically, the breeding program has
been based on 45 – 125 full sib families (Nilsson et al. 2010) reared in
separate tanks until a size suitable (30 – 60 g) for identification using
passive integrated transponders (PIT) tags. Thereafter the breeding
candidates are reared communally in inland facilities.

Compared to the ample genomic information available in farmed
salmonids like Atlantic salmon (Salmo salar) and rainbow trout
(Oncorynchus mykiss), genomic resources for Arctic charr have only
started to become available very recently (Nugent et al. 2017, 2019;
Christensen et al. 2018). Nevertheless, no prior work has ever
attempted to investigate the genetic diversity status and the potential
for further improving the selectively bred Arctic charr strain in
Sweden through the use of genome-wide genetic markers. The aim
of the current study was to apply low coverage GBS in the afore-
mentioned breeding strain using 930 animals from two-year classes
(2013; 2017). Genome wide SNPs were identified and subsequently
utilized for estimating genetic diversity metrics, verifying available
parentage records and for estimation of breeding values through
genomic BLUP (GBLUP).

MATERIALS AND METHODS

Sample background
Animals used in this study originated from two discrete year classes
(2013 and 2017) of the Swedish Arctic charr breeding program. The
breeding nucleus is located in the facilities of Aquaculture Center North
(ACN; Kälarne, Jämtland, Sweden) where selection is operated using
non-overlapping generations of approximately 4 years each. As such, the
2017 year class was formed through artificial crosses among selected
animals from the 2013 year class. In the current study, 171 animals from
year class 2013 (selected based on DNA availability) and 759 animals
from year 2017 were genotyped using GBS. Genotyped animals from
year class 2017 originated from crosses between 11 sires and 13 dams.
Due to the aforementioned breeding scheme the genotyped animals of
2017 year class consisted of 13 full-sib families and two pairs of paternal
half-sib families. Family size ranged between 10 – 90 offspring.

According to available pedigree data, five sires and four dams from
the genotyped animals of year class 2013 were the parents of eight
genotyped families from year class 2017. In particular, two families had
both their putative parents genotyped, six had only one parent genotyped
(two families had only their dam and four families had only their sire
genotyped) and the remaining five families had neither of their parents
genotyped (Table 1). Moreover, upon PIT-tagging fin-clips were col-
lected from each animal for DNA extraction and stored in absolute
ethanol at -20�. The entire studywas conducted in accordance to Swedish
legislation for conducting animal research as described in the Animal
Welfare Act 2018:1192 (ethics permit: 5.2.18 – 09859/2019).

GBS library preparation and sequencing
A tissue plug of approximately 3 mm diameter from each fin clip was
used for DNA extraction. Prior to extraction, the tissue was air dried
overnight to remove all traces of ethanol and then DNAwas extracted
following a salt-based extraction protocol (Clarke et al. 2014). A
subset of the DNA extracted samples was visually assessed via 1.0%
agarose gel in order to ensure the existence of high molecular weight
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DNA. Quantification was performed using Picogreen (Quant-iT Pico-
green dsDNA Reagent, Cat P11495, Life Technologies, Carlsbad,
California, United States) fluorescence. Template DNA was digested
with PstI (recognizing the CTGCA|Gmotif) andMspI (recognizing the
C|CGG motif) restriction enzymes. Subsequent library preparation
followed the method outlined in Elshire et al. (2011). Constructed
libraries were size selected between 193 – 318 bp using a BluePippin
(Sage Science). In total 10 GBS libraries were constructed containing
90 – 94 individuals each. Sequencing was performed in 5 lanes of an
Illumina HiSeq 2500 using 100 cycles single end (SE) V4 chemistry.

QC filtering and SNP identification
Reads of low quality (average phred33 score below 30) were discarded
using trimmomatic v0.39 (Bolger et al. 2014). SNP identification was
performed using the UNEAK, Tassel v3.0.174 software (Lu et al. 2013)
using the following settings: -UFastqToTagCountPlugin -e PstI-MspI;
-UMergeTaxaTagCountPlugin -c 10; -UTagCountToTagPairPlugin
-e 0.03; -UMapInfoToHapMapPlugin -mnMAF 0.05 -mxMAF 0.5
-mnC 0.1. SNPs with mean coverage below 0.5X were discarded.
Finally, SNPs with Hardy-Weinberg disequilibrium (observed fre-
quency of the reference allele homozygote minus its expected value)
below -0.05 were removed using the KGD v0.8.7 software.

Genomic relationships
A genomic relationship matrix (GRM) was estimated using the
KGD v0.8.7 software (https://github.com/AgResearch/KGD). The
constructed GRM was the equivalent of G5, as described in Dodds
et al. (2015). In short, an initial GRM using the SNPs passing the
aforementioned QC filters was constructed (VanRaden 2008).
Subsequently, the diagonals were corrected in order to account
for sequence depth. Finally, the off-diagonal elements of the GRMwere
calculated using only SNPs that were scored in both of the correspond-
ing individuals. The range of genomic relationships among full-sibs was
inferred from the constructed GRM.

Genetic diversity – population structure
Mean expected (He) and observed (Ho) heterozygosity were esti-
mated separately for animals from year class 2013 and 2017 using the
KGD v0.8.7 software. Heterozygosity metrics were estimated both on
the raw scale and by taking into account the read depth. Moreover,
FST values among the genotyped families of year class 2017 were
estimated using the aforementioned software. Additionally, principal
component analysis (PCA) was performed in order to investigate
the population structure of the two separate year classes. PCA was

conducted through applying the singular value decomposition (SVD)
algorithm to the estimated GRM. Finally, aiming to investigate in
more depth potential genetic clustering of the genotyped families
(year class 2017), the discriminant analysis of principal components
(DAPC) was performed (Jombart et al. 2010). PCA was initially
applied in the constructed GRM as previously mentioned. A cross
validation step was followed using the xvalDapc function to select the
optimal number of PC for the DAPC. Thereafter, a discriminant
analysis step was conducted using clusters determined from the
principal components. The Bayesian Information Criterion (BIC)
was used for selecting the optimal number of clusters (K) based on the
elbow method (Jombart et al. 2010).

Parentage assignment
SNPs passing QC filters were used for parentage assignment pur-
poses. Assignment to most probable sire and dam was performed
taking into account the sequence depth of the corresponding indi-
viduals as described in Dodds et al. (2019). Specifically, the excess
mismatch rate (EMM) metric was considered for parentage verifi-
cation using a maximum threshold of 0.025. Furthermore, successful
assignment was accepted only when the relatedness (according to the
GRM) among putative parents and offspring was above 0.30.

Estimation of heritability for growth traits – breeding
value accuracy
Heritability estimates of juvenile weight and lengthwere obtained using
the constructed GRM. Variance components were estimated using
AIREMLF90 (Misztal et al. 2014) with the following animal model:

y ¼ Xbþ Zuþ Tcþ e (1)

where y is the vector of recorded phenotypes. X, Z and T are the
incidence matrices relating phenotypes with fixed and random effects. b
is the vector of the fixed effects (intercept and age), u the vector of
random animal effects �N(0, G  s2

g) with G corresponding to the
genomic relationship matrix (Dodds et al. 2015),   s2

g the additive genetic
variance, c the vector of random effect representing the full-sib com-
mon environmental effect due to rearing each family in separate tanks
� N(0, Is2

c ), where s2
c the corresponding variance, e the vector of

residuals�N(0, Ise
2), I the identity matrix and s2

e   the residual variance.
The common full-sib effect was estimated using the following

formula:

c2 ¼ s2
c

    s2
g þ s2

c þ s2
e            

;

n■ Table 1 Pedigree information for genotyped animals from year class 2017

Family Id Size No genotyped parents Sire Dam Paternal grandsire Paternal granddam Maternal grandsire Maternal granddam

F1 63 1 S1 D1 GPS1 GPD1 GPS2 GPD2
F2 90 2 S2 D2 N/A N/A GPS3 GPD3
F3 34 1 S3 D3 GPS4 GPD4 GPS2 GPD2
F4 20 0 S4 D4 N/A N/A GPS5 GPD5
F5 62 0 S5 D5 GPS6 GPD6 GPS2 GPD2
F6 90 0 S6 D6 GPS7 GPD7 N/A N/A
F7 61 1 S7 D7 GPS2 GPD2 GPS6 GPD6
F8 61 1 S7 D8 GPS2 GPD2 GPS8 GPD8
F9 90 2 S8 D9 GPS9 GPD9 GPS10 GPD10
F10 16 1 S8 D10 GPS9 GPD9 GPS8 GPD11
F11 90 0 S9 D11 GPS11 GPD12 GPS12 GPD13
F12 62 0 S10 D12 GPS13 GPD14 GPS5 GPD5
F13 20 1 S11 D13 GPS14 GPD15 GPS12 GPD13
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Heritability for juvenile growth and length was estimated using
the following formula:

h2 ¼ s2
g

    s2
g þ s2

c þ s2
e            

;

The prediction accuracy of genomic breeding values (GEBVs)
was calculated and benchmarked against the accuracy of EBVs
using traditional pedigree-based best linear unbiased prediction
(BLUP) (Henderson 1975). Accuracy comparisons between BLUP
and GBLUP were performed using a threefold cross validation
scheme. For this, the PIT-tagged individuals were split into
3 groups (the number of animals within each group ranged be-
tween 241 – 263) with an equal family representation among
groups. Each of these groups in turn was used as a validation set,
while the other two groups were used in the training set. The cross
validation procedure was repeated 10 times in order to reduce
random sampling effects.

GEBVs were estimated with GBLUP (Meuwissen et al. 2001)
using the BLUPF90 suite (Misztal et al. 2014) updated for genomic
analyses (Aguilar et al. 2011). Pedigree-based BLUP was applied to
calculate breeding values using the same software. The general form
of the fitted models was as in equation (1).

The prediction accuracy was approximated as:

r ¼ correlationðGEBV; yÞ=h;   (2)

where y is the vector of recorded phenotypes, (G)EBV is the vector of
(genomic) estimated breeding values and h is the square root of the
previously estimated heritability. In order to have meaningful compar-
isons between BLUP and GBLUP we used in both cases the heritability
estimated through the genomic relationship matrix.

DATA AVAILABILITY
Obtained sequences are available in the form of FASTQ files from
NCBI repository under project ID PRJNA607181. Information re-
garding the utilized barcode and the sequencing lane of each library is
available in supplementary file S1. Genotypic and pedigree informa-
tion is available in the supplementary files S2 and S3. Phenotypic
information for the genotyped animals of 2017 year class is available
in the supplementary file S4. Supplemental material available at
figshare: https://doi.org/10.25387/g3.12151725.

RESULTS

Dataset filtering
More than 1.35 billion SE reads were produced. Approximately 97%
of the above reads (�1.32 billion) had an average phred33 score above
30 and were kept for downstream analysis. Reads without the
expected enzymatic cut site and no recognizable barcode were
discarded, resulting in �964 million SE reads. Thereafter reads were
merged in 662,978 unique tags that were used as a template for SNP
identification. We removed 2 animals (year class 2013) that were
genotyped insufficiently (mean coverage , 0.1X). In total 17,652
SNPs were identified across 928 genotyped individuals. 70 SNPs with
mean coverage below 0.5X were removed. The mean SNP coverage
across animals was approximately 5X. Finally, 3,134 SNPs did not
fulfill the chosen Hardy-Weinberg equilibrium (HWE) threshold and
were removed. Overall, the final dataset was comprised of 14,518 SNPs
(Figure 1) genotyped across 928 animals.

Genomic relationships
Among the genotyped full-sib pairs, six animals from four families had
low genomic relationships with their full-sibs (below 0.10) and were
removed from subsequent analysis. The mean genomic relationship
among all full-sib pairs was 0.42 (Figure 2). Furthermore, since the
estimated genomic relationship matrix was non positive definite, a
bending approach was applied where a predefined threshold of 0.001
was used to replace eigenvalues below the aforementioned threshold
(Schaeffer 2014) constituting the obtained matrix invertible. The ‘bent’
GRM was used for estimating GEBVs using GBLUP (Figure S1).

Genetic diversity – population structure
Heterozygosity metrics were estimated both in the raw scale and by taking
into account the read depth of the corresponding SNP alleles. Higher
estimates of heterozygosity were found in the 2013 year class. Observed
heterozygosity (Ho) when the read depth was not taken into account was
0.21 and 0.19 in year class 2013 and 2017 respectively, while the
corresponding estimates of expected heterozygosity (He) were 0.19 and
0.17.When the read depthwas taken into account theHo was found equal
to 0.32 and 0.31 for year class 2013 and 2017 respectively. Moreover, the
He for the above year classeswas 0.29 and 0.28. FST based calculationswere
performed among the families of year class 2017. The median FST ranged
between 0.009 – 0.066, with the lowest estimate being observed between
families 7 and 8 and the highest between families 7 and 11 (Table 2).

Principal component analysis was used as a dimensionality reduction
technique both for visualization purposes and to infer potential clustering
among genotyped animals. Regarding animals from the 2013 year class
the first and second principal components accounted for 13% and 11%of
the total variance respectively (Figure 3).Moreover, in the case of animals
from the 2017 year class the first and second principal components
accounted for 23% and 16% of the total variance (Figure 3). DAPC was
applied in order to decipher the genetic structure of 2017 animals and
identify potential clusters (Figure 4). Cross validation suggested
that the optimal number of principal components for clustering
was 20 (Figure S2). Moreover, according to the obtained BIC the
optimal K was found to be 13 (Figure S3). Results from DAPC were
generally in accordance with the preliminary structure suggested
by PCA. According to DAPC families 9 and 10 were indistinguish-
able. The aforementioned families shared the same sire. A similar
pattern was observed between families 5 and 7, who had the same
grandsires and granddams (Table 1). On the other hand, families
2 and 11 formed unique clusters (Figures 3, 4).

Parentage assignment
Parentage assignment was performed for the eight families where at
least one parent (from year class 2013) was genotyped. The results
suggested that the identity of the putative dam in family 2 was most
probably incorrectly recorded. On the other hand, the putative sire of
the same family was confirmed by 98.9% of the offspring. Regarding
the other seven families, the genotypic data verified the available
parentage pedigree records. Between 97.8–100% of offspring in each
family were in accordance with the pedigree data. EMM was below
1% for all families apart from family 2 were EMM for the putative
dam was approximately 5.4% (Table 3).

Estimation of heritability for growth traits – breeding
value accuracy
The estimated heritability for juvenile weight and length was 0.21 (SE
0.07) and 0.19 (SE) respectively. The corresponding full sib effect for
weight and length was 0.11 (SE 0.08) and 0.12 (SE 0.08). Genetic
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correlation between weight and length was 0.94 (SE 0.13). For the
subsequent breeding value accuracy estimation only the weight was
used due to the high correlation between the two traits. The mean
accuracy using GBLUP was 0.51, while the corresponding accuracy
using pedigree BLUP was 0.31. In the case of GBLUP the obtained
accuracy of the cross validation scheme used ranged between 0.42 –
0.56, while in the case of pedigree BLUP accuracy ranged between
0.28 – 0.35 (Table 4).

DISCUSSION
Genomic technologies can be utilized to estimate relationship values
among the selection candidates at a higher resolution than a tradi-
tional pedigree-based analysis would allow. Relationships based on
pedigree records will assign the same value to all full-sib members of
individual families, making it impossible to utilize the within family
variance for selection. Therefore, the information obtained through
genomics can result in an increased accuracy of breeding values and a
more efficient management of inbreeding.

A plethora of recent studies have already highlighted the advan-
tages of including genomic information in aquaculture breeding
programs (Robledo et al. 2018; Houston and Macqueen 2019;
Yoshida et al. 2019; Boison et al. 2019; Saura et al. 2019; Vallejo
et al. 2019; Barría et al. 2018; Tsairidou et al. 2019; Joshi et al. 2020).
Nevertheless, genotyping related costs often limit the implementation
of genomic technologies in practice. Cost effective genotyping ap-
proaches like GBS appear particularly suitable for small – medium
sized breeding programs as is the case of Arctic charr breeding in
Sweden.

Low coverage GBS was applied in our study aiming to further
improve the selection efficiency of the Swedish Arctic charr strain.
We inferred genomic relationships among the genotyped animals
using a SNP derived genomic relationship matrix. The average
genomic relationship among full sibs in our study was found to be
0.42 (Figure 1) which is lower than the expected theoretical value. In
general, the average relationship among full sibs in the absence of

inbreeding is expected to be 0.50. Prior application of low coverage
GBS in selectively bred Atlantic salmon using varying SNP densities
(�24K – 30K) estimated an average relationship ranging between
0.36 - 0.45 among full sibs (Dodds et al. 2015). In comparison, an
average genomic relationship of 0.47 was found among full sibs in
selected lines of poultry through the usage of a 60K SNP array
(Lourenco et al. 2015). Therefore, our study has likely underestimated
the realized genomic relationships. Moreover, it has to be pointed out
that when the genomic relationship matrix is constructed using allele
frequencies estimated from the genotyped animals (as is the case in
the current study) and not from the founders, genomic relationships
seem to be underestimated (Legarra 2018). Overall though, the fact
that the obtained distribution of genomic relationships did not
exhibit long tails (typical pattern in the presence of genotyping
or pedigree errors) suggests that genotyping through low coverage
GBS in Arctic charr is efficient in providing insights regarding the
realized genomic relationships among selection candidates and allow-
ing therefore the exploitation of within family variance for selection
purposes.

Genetic diversity

As already mentioned, efficient management of inbreeding accumu-
lation is of the utmost importance for the long-term sustainability of
any breeding program. Therefore, genomic information can be
particularly useful for guiding selection decisions that would minimize
the loss of genetic diversity as has been already demonstrated in
salmonids among other species (Barría et al. 2019). Even though
inbreeding accumulation in the Arctic charr breeding program has
been below 1% per generation according to available pedigree data,
genomic tools can provide valuable insight regarding the existing
genetic diversity and inform for optimal crosses among selection
candidates.

The obtained heterozygosity metrics in our study showed that the
He was lower than the Ho indicating an excess of heterozygotes which
at first sight should correlate positively with the existence of ample

Figure 1 Distribution of minor allele frequency. A) Year class 2013. B) Year class 2017.
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genetic variation. In general, a breeding program would be expected
to be more resilient to the loss of genetic diversity in comparison to
commercial hatcheries where no pedigree records are kept. Even
though our dataset was comprised only of related individuals derived
from a closed breeding nucleus (particularly in the case of year class
2017 where the studied dataset was comprised of a small number of
full-sib families) the obtained heterozygosity values were higher in
comparisons to previous studies where we used GBS type method-
ologies in studying the diversity of farmed tilapia populations from
commercial hatcheries with no pedigree recordings (Kajungiro et al.
2019; Mbiru et al. 2019).

Nevertheless, it would seem premature to infer that due to the
excess of heterozygotes the existing genetic diversity in the Arctic
charr breeding program is sufficient. Interestingly, according to
literature an excess of heterozygotes has been observed in small

and relatively recently founded populations of both animals and
plants with separate sexes (Allendorf and Luikart 2007). Natu-
rally, the above phenomenon would be ephemeral, since in the
long-term heterozygosity would eventually decline. The back-
ground history of the Arctic charr breeding program suggests
that the founder population consisted of a small number of fish
(Eriksson et al. 2010). It has to be stressed, that a potential pitfall
of the current study lies on the fact that the methodology for
obtaining heterozygosity metrics through low coverage GBS is
still under development. However, available data from high
coverage ddRAD from a different subset of 2017 year class Arctic
charr, suggested observed and expected heterozygosity values in
close accordance with the values we obtained after depth ad-
justment in the current study (Ho = 0.33, He = 0.34; unpublished
data).

n■ Table 2 Median Fst values (14,518 SNPs) among families

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

F1 — 0.063 0.031 0.041 0.039 0.046 0.037 0.043 0.045 0.032 0.056 0.053 0.036
F2 — 0.049 0.035 0.056 0.060 0.057 0.034 0.052 0.027 0.067 0.056 0.033
F3 — 0.049 0.028 0.041 0.035 0.038 0.032 0.038 0.046 0.046 0.046
F4 — 0.043 0.017 0.042 0.044 0.029 0.050 0.039 0.027 0.052
F5 — 0.055 0.012 0.038 0.040 0.034 0.063 0.056 0.039
F6 — 0.059 0.051 0.047 0.029 0.063 0.045 0.029
F7 — 0.009 0.040 0.032 0.066 0.058 0.043
F8 — 0.048 0.029 0.059 0.063 0.043
F9 — 0.010 0.048 0.046 0.027
F10 — 0.032 0.040 0.049
F11 — 0.060 0.029
F12 — 0.040
F13 —

Figure 2 Realized relationships among full-sib pairs.
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Despite the fact that the Arctic charr breeding program has been
operational for almost 40 years, no prior study attempted to in-
vestigate the genetic diversity of the selected population. The FST

metric is commonly applied in studying the genetic differentiation
among populations (Cockerham and Weir 1984). Therefore, strictly
on technical terms the current dataset is not expected to be highly

Figure 4 Discriminant analysis of principal components in the 2017 year class.

Figure 3 A) Principal component analysis for the 2013 year class. B) Principal component analysis for the 2017 year class.
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informative for such analysis. Furthermore, no FST calculations were
performed for the animals from year class 2013 since those animals
constituted a representative sample of the breeding program for the
aforementioned generation. However, FST comparisons can provide
valuable insights regarding the differentiation of the genotyped
families from year class 2017. In order to minimize the possibility
of obtaining inflated FST values due to the reduced accuracy of
genotype calling in low coverage GBS we estimated median FST
values, since the latter are less sensitive to outliers (as a result of
genotypic errors). The obtained comparisons among the genotyped
families indicated low genetic differentiation among the tested fam-
ilies (0.009 – 0.066) which appears to be in line with the history of the
breeding program.

Moreover, in the current study we attempted to study in higher
depth the genetic differentiation among the tested animals using PCA
and DAPC. Applying PCA to the animals from the 2013 year class did
not indicate the existence of distinct clusters. On the other hand the
corresponding application of PCA in animals from year class
2017 provided indications regarding the existence of distinct clusters.
The underlying algorithm of PCA aims to summarize the total
variation of the tested dataset in a reduced dimension. Furthermore,
a major advantage of PCA is its computational efficiency. Neverthe-
less, the above approach is not optimal for distinguishing different
clusters and PCA does not qualify strictly speaking as a clustering
algorithm. DAPC on the other hand retains the computational
advantages of PCA, but at the same time offers higher resolution
for detecting genetic clusters (Jombart et al. 2010). In addition, being
an unsupervised learning approach, DAPC has the potential of
providing valuable genetic insight in samples of unknown origin.
Over the years, genetic material from the Arctic charr breeding
program has been disseminated in various farms across the country
(Nilsson et al. 2010). Potential crossbreeding with other Arctic charr
strains is therefore likely to have occurred in commercial farms. As
such, DAPC could assist in distinguishing the selectively bred Arctic
charr from other farmed strains or potential crossbreds in Sweden.
DAPC was successful in identifying clusters that were in agreement
with pedigree records. In particular, families originating from the
same grandsire and granddam were indistinguishable (e.g., families
5,7 and 9,10) and inseparable in comparison to other families that
were more distantly related according to pedigree records. Overall,
through GBS application informative decisions regarding selection
crosses can be obtained in the future even in the absence of pedigree
records.

Parentage assignment
An additional advantage of genetic markers, most relevant for
selective breeding, is their use for parentage assignment purposes.

Unfortunately, in the current study it was not possible to obtain tissue
samples from all the putative parents for the animals of the 2017 year
class (only for 2 full sib families we genotyped both parents). The
analysis conducted in the subset of families with at least one parent
genotyped (8 families) demonstrated that the derived genomic in-
formation was sufficient for verifying putative parentage records.
Apart from the obtained discrepancy between genotypes and pedigree
for the putative dam of family 2, the obtained genotypic information
verified the pedigree parentage records implying that low coverage
GBS is an effective approach for parentage assignment as already
demonstrated in red deer (Dodds et al. 2019). Despite the fact that
genotype calling in low coverage GBS entails higher uncertainty
compared with high coverage approaches (Dodds et al. 2015) all
full-sibs of family 2 indicated the existence of a pedigree error for that
particular dam. Furthermore, the relationship among the full sibs of
family 2 was in the range we recorded for all tested full sib pairs (0.35
– 0.45). As such, the above results indicate that a pedigree recording
error is the most likely explanation.

Heritability for growth traits - accuracy of breeding
value estimation
Moderate heritabilities (�0.20) for juvenile growth-related traits were
obtained in the current study suggesting that ample genetic variance exists
for further improving the Swedish Arctic charr strain. A high common
full-sib effect was found (0.11) which might be confounding with the
additive genetic variance. As such the obtained heritability might be
underestimated. Nevertheless, it has to be pointed out that a small number
of families (13) was used in the current study. In addition, the number of
animals genotyped per family varied widely (16 – 90). Therefore the
obtained heritability metrics should be treated with caution.

Even though genomic selection through GBS related approaches
has proven to consistently outperform pedigree BLUP in aquaculture
species (Barría et al. 2018; Aslam et al. 2018; Kyriakis et al. 2019) no
prior study attempted to investigate the efficiency of low coverage
GBS on prediction accuracy in farmed fish. The results from the
genomic prediction approach were encouraging for a future practical
implementation of GBLUP in the selected strain. The inclusion of

n■ Table 4 Accuracy comparison between GBLUP and PBLUP using
threefold cross validation (10 replicates)

Validation
Id

Group
size

GBLUP accuracy
(SE)

PBLUP accuracy
(SE)

1 249 0.56 (0.03) 0.35 (0.03)
2 241 0.54 (0.03) 0.29 (0.03)
3 263 0.42 (0.04) 0.28 (0.03)

Overall 753 0.51 (0.03) 0.31 (0.03)

n■ Table 3 Verification of suggested parentage from pedigree records

Family
Id

Mean Dam
relationship

Mean Dam EMM %
(SE)

Mean Sire
relationship

Mean Sire EMM %
(SE)

Dam verified
offspring (%)

Sire verified
offspring (%)

1 N/A N/A 0.41 0.24 (0.08) N/A 98.4
2 0.01 5.39 (0.04) 0.41 0.23 (0.04) 0 98.9
3 N/A N/A 0.39 0.33 (0.13) N/A 97.1
7 0.35 0.44 (0.03) N/A N/A 100 N/A
8 0.37 0.25 (0.04) N/A N/A 100 N/A
9 0.38 0.34 (0.08) 0.32 0.21 (0.04) 97.8 97.8
10 N/A N/A 0.37 0.04 (0.08) N/A 100
13 N/A N/A 0.50 0.21 (0.03) N/A 100

EMM refers to excess mismatch rate.
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genomic relationships resulted in an improved breeding value esti-
mation accuracy clearly outperforming the corresponding pedigree
BLUP based model. Additionally, our results appear to be in accor-
dance with prior simulation derived data where low coverage GBS
strategies were considered promising for delivering high prediction
accuracies as opposed to traditional pedigree based approaches (Gorjanc
et al. 2015). Nevertheless, we would have to acknowledge that the small
dataset we used for genomic prediction (759 offspring from year class
2017) limits our ability of drawing definite conclusions.

CONCLUSIONS
Overall, low coverage GBS has been proven to be an efficient and
cost-effective approach for obtaining a wide range of essential
information for selective breeding purposes. Applying low coverage
GBS in the selected Arctic charr strain allowed us to gain insightful
information regarding the genetic diversity of the stock, verify (or
reject) parentage records and estimate genomic breeding values.
Further studies focusing on application of GBS in studying resistance
of Arctic charr to common encountered diseases would be deemed
particularly promising since it would be possible to exploit the
within family variance during selection. Finally, studies aiming to
combine low coverage GBS with single-step BLUP approaches
(Aguilar et al. 2011; Legarra et al. 2014) where only a subset of
the selection candidates is genotyped, could be particularly valuable
regarding cost efficiency.
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