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Abstract 

Race and ethnicity are risk factors for prostate cancer. In the United States, African 

American men have the highest rate of mortality followed by Caucasians, and Asian 

Americans.  The effects of race and ethnicity on prostate cancer are also reflected in 

different frequencies of ETS family fusion in different groups. ETS family fusions is 

the most common alteration in prostate cancer of Caucasian men at a frequency of 

~50%, however, they are lower in African Americans and Chinese at 20-30%. Most of 

the genomic prostate cancer studies are focused on cohorts of European ancestry, 

leaving minority groups underrepresentation. Furthermore, in racial mixing, the ethnic 

contribution to risk is unclear. Sardinia population is an isolated Mediterranean 

population, and a purported refuge population of Neolithic ancestry with much lower 

incidence of prostate cancer than that in mainland Europe. Here, we conducted a 

genomic prostate cancer genomic study on a Sardinia cohort diagnosed with local 

prostate cancer. We identified a novel germline risk mutation ARSD-G320D occurring 

in 53 percent of the patients, somatic UGT family amplifications which occurred in 

20% the patients, a novel in-frame fusion BTBD7-SLC2A5 occurred in 12 % of the 

patients. In addition, we pointed out that IRF8 deletion at 16q24.2 is a candidate 

driver in prostate cancer and patients with IRF8 deletion have worse prognosis. Our 

data revealed similarities and disparities in genomic alterations of prostate cancer 

between Sardinians and other ethnic groups. As well we have conducted a study based 



Tiansheng Zeng 

Genomic Landscape of Local Prostate Cancer in Sardinia Population 

PhD school in Life Science and Biotechnologies 

University of Sassari 
2 

on Chinese prostate cancer cohort and have seen greater molecular disparities from 

TCGA cohort than in the Sardinian prostate cancer cohort. In Chinese cohort we have 

identified 37 genes significantly mutated and 20 of them have not implicated in 

prostate cancer in Caucasian and reveals a set of genomic markers that may inform 

the ethnic disparities. 

 

ChapterⅠ.Introduction 

1. Incidence, mortality of prostate cancer worldwide 

Prostate cancer is the most common and fifth fatal cancer in men worldwide[1]. In 

2012, an estimated of 1.1 million people were diagnosed with prostate cancer, and 

307,000 deaths[2]. The incidence and mortality of prostate cancer vary greatly in the 

world [2-4].  

 

The highest incidence of prostate cancer is observed in Oceania (111.6/100,000), 

followed by North America (97.2/100,000), Western Europe (94.9/100,000), Nordic 

Europe (85.0/100,000) and the Caribbean (79.8/100,000), while the incidence is much 

lower in Southeast Asia (11.2/100,000), North Africa (10.6/100,000), East Asia 

(10.5/100,000) and South-Central Asia (4/100,000) [2].  
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The highest prostate mortality is observed in the Caribbean (29.3/100,000), followed 

by South Africa and Central Africa (24.4/100,000, 24.2/100,000). As the incidence in 

Caribbean as high as 79.8/100,000, the ratio of mortality/incidence is 37%, much 

lower than that in South and Central Africa which is up to 90% [2, 4]. Although both 

the incidence and mortality in Southeast Asia, Central and South Asia are low, the 

ratio of mortality/incidence is as high as 64%[4]. Nevertheless, almost 70% of the 

newly diagnosed cases with prostate cancer in the world are in more developed 

regions such as North America, Oceania and Northern and Western Europe, the ratio 

of mortality/incidence in those area is only between 10-18% [2, 4] and the prostate 

cancer mortality rate has been decreasing over time[5, 6]. 

 

2. Risk factors of prostate cancer 

2.1 Race and ethnicity 

The incidence and mortality of prostate cancer vary greatly by geographic regions, 

strikingly, in the United States, the incidence and mortality of prostate cancer varies 

considerably by race and ethnicity [7, 8]. The prostate cancer incidence of the North 

America Africans is up to 208.7 per 100,000 and the mortality is up to 47.2 per 

100,000, while prostate cancer incidence in the Asian American, Native Hawaiians 

and Pacific Islander (AANHIP) is only 67.8/100000 which is almost one third of 

North America Africans, and one half of Non-Hispanic Whites (123/100000) [8]. The 
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incidence, the mortality, and the ratio of mortality to incidence is lowest in AANHIP 

rather than North America Africans and Non-Hispanic Whites [8]. Even though, 

disparities in the diagnosis, treatment, and survival of prostate cancer patients of 

different races are often attributed to socio-economic status and access to healthcare 

[9, 10], after adjusting for those effects, racial disparities in prostate cancer incidence 

and mortality rates in United State remain significant [11]. In the United States, a 

white person has a 16% lifetime risk of prostate cancer and a 2.5% chance of death 

from prostate cancer, while black people are 70% more likely to develop prostate 

cancer and 40% more likely to die [12]. 

 

2.2 PSA Screening 

In 1970 Wang and Valenzuela found that PSA was a highly sensitive marker of 

prostate cancer [13]. A longitudinal research project in Baltimore, revealed the 

relationship between serum PSA and prostate cancer [14]. In the late 1980s, PSA 

screening for prostate cancer diagnosis was adopted in the United States and 

subsequently in Europe, thus making the incidence of prostate cancer in the United 

States and Europe increase rapidly in the 1990s [15, 16]. However, due to the low 

specificity of PSA screening for high-grade, clinically significant disease, a 

considerable proportion of people were subjected to unnecessary prostate biopsy or 

diagnosed with indolent cancer resulting in overtreatment [17]. In Europe and the 
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United States, an estimated 23-42% of prostate cancer cases were over-diagnosed due 

to PSA screening (2002) [15]. Based on a large clinical study in the United States, 

USPSTF (US Preventive Services Task Force) recommended against PSA-based 

screening for prostate cancer for men of any age in 2012 [18], led to 18% relative 

decreasing in PSA screening rates for men aged over 50 between 2010 and 2013 [19]. 

However, among men greater than 75 years old recorded in the SEER database, the 

proportion of men presenting with metastatic disease increased from 2011 (7.8%) to 

2013 (12.0%). A study conducted by ERSPC found that for every 1,000 men screened 

for PSA, three patients were prevented from metastasis and one was prevented from 

cancer-specific death. Based on these observations, in 2017, the USPSTF revised its 

recommendations and suggested that the decision to perform a PSA test for men aged 

55 to 69 should be individualized by consulting their doctors [20]. Currently PSA 

screening rates in the United States and Europe are higher than that in other regions in 

the world. The latest data show that the screening rate for prostate cancer is 30.7% for 

American whites, 28.1% for American blacks and 25% for Asian Americans [21]. 

 

2.3Environmental factors 

The incidence of prostate cancer in East Asia (~10/100,000) is much lower than that 

in North American Asians (~67/100,000) indicating that environment may be 

important risk factors for is prostate cancer. With the growth of economic and the 
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adoption of Western lifestyles during the last decades, the incidence of prostate cancer 

in East Asia has increased significantly. Singapore, Japan and Taiwan have 

experienced a sharp increase in the incidence of prostate cancer, from a low level 

(~5/100,000) to 30/100,000, 30/100,000 and 40/100,000 respectively [22-24]. The 

incidence of prostate cancer in China increased from 5/100,000 (2000) to 10/100,000 

(2011) in ten years, and it is still growing. Current evidences have shown that obesity, 

high-fat diet, smoking and sunshine exposure may be risk factors for prostate cancer. 

Epidemiological studies on whether obesity increases the incidence of prostate cancer 

are very inconsistent, instead obesity increases the risk of prostate cancer progression 

[25, 26]. Animal model studies have shown that high-fat diets may induce prostate 

cancer progression through affecting growth factor signaling, lipid accumulation, 

inflammation and endocrine regulation. In addition, epidemiological evidence reveals 

that smoking is associated with the prognosis of prostate cancer[27], but its molecular 

mechanism is not well understood. There are studies indicating the short-day in high 

latitudes regions resulting high incidence of prostate cancer due to the insufficient 

sunshine exposure affecting vitamin D synthesis[28]. Nevertheless, low fat, 

vegetables, tomatoes, olive oil rich diets and exercise are protective for prostate 

cancer[29, 30].  

 



Tiansheng Zeng 

Genomic Landscape of Local Prostate Cancer in Sardinia Population 

PhD school in Life Science and Biotechnologies 

University of Sassari 
7 

2.4 Age 

Age has a great impact on prostate cancer incidence and mortality. The risk of 

prostate cancer begins to increase in men with age over 40 years old and increases 

sharply when over 50 years old [31]. Over two-thirds of prostate cancer cases are 

older than 65 years old [31, 32]. However, there is evidence that the older you are, the 

more likely you are to develop prostate cancer, and it has been hypothesized that if 

men do not die of other causes, prostate cancer is inevitable. Men under 35 have 

almost no risk of prostate cancer. Therefore, the lower incidence of prostate cancer in 

Africans than that in North America Africans is largely due to the lower life 

expectancy of African males. With the aging of the global population, we need to pay 

attention to the increasing burden of prostate cancer. 

 

2.5Infectious diseases 

Over the years, several studies have focused on the association between prostate 

cancer and viral infections including human papillomavirus (HPV), herpesviruses 

including cytomegalovirus (CMV), human herpes simplex virus type 2 (HSV2), 

human herpesvirus type 8, (HHV8) and Epstein-Barr virus (EBV), polyomavirus 

BKV and xenotropic murine leukemia virus-related virus[33]. But a systematic 

review in 2013 indicated that there was insufficient epidemiological evidence 

showing that a single infectious pathogen was associated with prostate cancer, which 



Tiansheng Zeng 

Genomic Landscape of Local Prostate Cancer in Sardinia Population 

PhD school in Life Science and Biotechnologies 

University of Sassari 
8 

may due to the limited sample sizes in the study, resulting in the impossibility to 

assess non-persistent infection, and on the other hand, prostate cancer may be 

associated by multiple infectious pathogens [34]. A recent analysis of 5000 prostate 

cancer patients and 6000 healthy people has found that HPV16 infection increased the 

risk of prostate cancer [35]. 

 

Due to the development of second-generation sequencing technology, the doctrine of 

sterility in urine has been overthrown [36, 37]. Urinary microbial homeostasis and 

pathogenic microorganisms may cause prostate cancer inflammation and thus 

promote tumorigenesis [38]. Several bacteria have been proven to cause bacterial 

inflammation of the prostate, including E.coli. and other species of Enterobacteriaceae 

[39]. Propionibacterium acnes has also been demonstrated to cause prostate cancer 

inflammation and promote tumorigenesis [40-43]. Evidence also shows that some 

sexually transmitted pathogens such as Chlamydia trachomatis, Neisseria gonorrhoeae, 

or Trichomonas vaginalis are associated with prostate cancer [44-47]. Although it is 

hard to find a direct link between a single pathogen and the occurrence and 

development of prostate cancer, the relationship between various infections promoting 

inflammation of prostate cancer and the occurrence of prostate cancer has been 

gradually elucidated.  
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2.6 Family history  

The genetic risk of familial prostate cancer was first proposed in the 1950s. Johns et al. 

carried out statistical analysis of 13 case-control studies, showing that men with a 

family history of prostate cancer had a 2.5-fold increased risk for prostate cancer. In a 

subsequent large number of studies, it was confirmed that men with a family history 

of prostate cancer had an increased risk of prostate cancer, especially with the 

presence of early onset, a relative, or multiple cases in the family. In 2015, Albright et 

al. conducted a retrospective analysis of 443 men with complete family history and 

assessed the relative risk of PC [48]. All these men had complete ancestral genealogy 

data. It was found that the risk of prostate cancer was increased by 2.46 if there was 

only one male immediate relative suffered from prostate cancer, while the risk 

reached by 7.65 when at least four male immediate male relatives had been diagnosed 

with prostate cancer [48]. In cases who have at least one immediate relative was 

diagnosed with prostate cancer before the age of 50, the risk was 5.54 [48]. Current 

studies have shown that the risk of prostate cancer in men is also increased due to rare 

germline risk variants such as BRCA1/BRCA2 or DNA mismatch, and the presence 

of breast cancer, ovarian cancer, rectal cancer and Lynch syndrome in families [49]. It 

is generally believed that the history of prostate cancer, breast cancer, ovarian cancer, 

rectal cancer and Lynch syndrome in relatives within three generations increased the 

risk of prostate cancer in men [50]. 
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3. Heritability of prostate cancer 

Early genetic quantitative studies of identical and fraternal twins have showed that the 

heritability of prostate cancer is 42% - 58%, higher than that of any other malignant 

tumors [51-53]. Linkage analysis based on pedigree prostate cancer has identified 

several chromosomal loci related to prostate cancer genetics [54-58]. In 1996, Jeffery 

et al analyzed 66 families at high risk for prostate cancer and identified for the first 

time the susceptibility locus of chromosome 1q24-25, which was named Hereditary 

prostate cancer 1(HPC1) [54]. Through this method, several chromosomes with 

different prostate susceptibility loci were also identified, including chromosomes 2, 3, 

5, 6, 8, 10, 11, 13, 15, 17, 19, 20 and 22 [59, 60]. However, the chromosome regions 

identified by linkage analysis are too large to accurately identify the gene variant 

affecting the disease. Subsequent genome-wide association analysis (GWAS) and 

genome-wide exome sequencing further revealed susceptible variants in these regions, 

such as rs1006908 on chromosome 8q24 [61] and HOXB13 (G84E) on chromosome 

17q21.[62] 

 

3.1Loci with low penetration explain 19% of the hereditary of prostate cancer 

Similar to other complex genetic diseases, the inheritance of prostate cancer is 

affected by variants with high frequency but low penetration and low frequency but 

high penetration in the populations [63, 64]. Genome-wide association analysis can 
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identify SNPs with high frequency but low risk. In 2016, Gudmundsson et al. reported 

the first genome-wide association analysis of prostate cancer, which confirmed that 

chromosome 8q24 carries prostate cancer susceptibility genes [65]. With the increase 

of GWAS research sample size and the development of chip imputing, the efficacy of 

GWAS in identifying prostate cancer susceptible SNPs has been greatly optimized, 

and more susceptible sites have been identified [66-69]. Scyumacher et al. recently 

have identified 63 new prostate cancer sites by analyzing data from 140,000 men[70]. 

Todate, 167 prostate cancer susceptibility loci have been identified by genome-wide 

association analysis [70]. These loci with high frequency and low penetration explain 

about 19% of the familial risk of prostate cancer [70]. However, most of the GWAS 

associated sites are located in the non-coding regions, and the molecular mechanisms 

of their effects on prostate cancer is still unresolved [71]. One hypothesis is that 

variants in these loci are associated coding regions affect prostate cancer and the other 

one is that these loci affect the transcriptional regulation region of coding genes.  

 

3.2 Rare mutations on susceptible genes explain 15% of the hereditary of prostate 

cancer 

In recent years, the effect of variants with low frequency and high penetration on the 

heredity of prostate cancer has become clear, such as HOXB13, BRCA1/BRCA2, 

DNA mismatch and DNA damage repair pathway [72]. These variants account 
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forabout 5% of the family risk of prostate cancer [73, 74]. In the following we will 

introduce the mechanism and clinical manifestations of the population frequency of 

these gene mutations on prostate cancer.  

 

3.2.1 HOXB13 

In 2012, Ewing et al. scanned 200 genes in 17-21-17q22 of 96 patients in different 

prostate cancer family clusters, and found that 18 patients had HOXB13 G84E rare 

mutations [62]. Furthermore, they verified the mutation in 5083 unrelated prostate 

cancer cases of European descent and 1401 control subjects. The mutation rate was 

approximately twenty-fold higher in the prostate cancer cases (1.4% or 72 in 5083) 

than in the controls (0.07% or1 in 1401)[62]. Odds ratio of HOXB13 G84E for the 

development of prostate cancer was 5.1 among men with positive family history and 

early onset and 1.7 among men with no family history and late onset [62]. 

Subsequently, in a large international family risk study of prostate cancer, 5% of 

prostate cancer families had the HOXB13 G84E variant [75], with the highest variant 

frequency around 20% in Finland, followed by Sweden around 8.2% [76]. Evidence 

suggests that HOXB13 G84E appeared most prevalent in the Nordic population, with 

a moderate penetration rate [77]. Different HOXB13 mutations have also been 

detected in prostate cancer cases in other racial or ethnic groups, including in African 

[62] (G216C and R229G), Asians (G135E) [78] and Portuguese (A128D,F240L)[79], 
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but the frequency and impact of these variants on the risk of prostate cancer remains 

to be further confirmed. 

 

The HOXB13 gene encodes for a homeobox related transcription factor regulating a 

gene expression cascade which is critical for prostate development [80]. Other than 

that, HOXB13 protein has been shown to interact with Androgen Receptor signaling 

[81, 82], but its role in prostate tumorigenicity remains unclear and needs to be further 

investigation. 

 

3.2.2 BRCA1/BRCA2 

The relationship between BRCA1/BRCA2 and hereditary breast and ovarian cancer 

first revealed that BRCA1/BRCA2 mutations increase the risk of breast and ovarian 

cancer[83]. Subsequent studies have found that rare mutations in BRCA1/BRCA2 

also increase the risk of prostate cancer [84]. Many studies have shown that BRCA1 

mutations increase the risk of prostate cancer between 1.07 and 3.75 (odds ratio), 

while BRCA2 mutations increase the risk of prostate cancer more significantly 

between 4.65 and 8.6 (odds ratio). In a BCLC study involving 173 BRCA2 mutated 

families, the overall risk associated with prostate cancer in BRCA2 was 4.65, but in 

men who developed the disease before age 65, the risk rose to 7.33. In the study of 

prognostic analysis of patients with BRCA1/BRCA2 mutation, PSA-free survival and 
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overall five-year survival were significantly reduced in patients with BRCA2 

mutations. Strikingly, in a recent genomic study that including 150 metastatic 

castration resistance prostate cancers (mCRPC), 8% of the patients had germline 

variants of BRCA2.  BRCA1 and BRCA2 occur in about 0.87% and 5% of familial 

prostate cancers. Both BRCA1/BRCA2 mutations increases the risk of prostate cancer 

and BRCA2 mutations are associated with early onset of disease and prognosis. Due 

to relatively low numbers of cases carrying BRCA1/BRCA2 and the variability of 

specific mutations, the differences in mutation frequencies among different races is 

still unknown.  

 

BRCA1/BRCA2 is a tumor suppressor gene encoding proteins that repair damaged 

double-stranded DNA by high-fidelity replication using the undamaged sister 

chromatid as a template [85]. BRCA1 has a broad range of functions, including 

recruiting effector factors to double strand break sites, regulating end resection of 

DSBs, activating G1/S, S-phase, and G2/M checkpoints, and mediating 

non-homologous end joining, and single-stranded DNA annealing repair pathways [85, 

86]. The BRCA2 protein mainly recruits RAD51 and HR60 to DSB at the beginning 

of homologous recombination repair [87]. Deleterious mutations in BRAC1 and 

BRCA2 impair BRCA1/BRCA2 function and lead to instability of DNA, thus 

promoting carcinogenesis [88].  
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3.2.3 DNA mismatch repair genes 

DNA mismatch repair gene mutations was first identified as the causative gene of 

Lynch syndrome[89]. Researchers subsequently observed that Lynch syndrome 

patients had a higher incidence of cancer than that of the normal population, 

especially in rectal cancer. In 2004, Harakdsdottir et al. analyzed the SEER database 

and observed 11 out of 188 men with Lynch syndrome developed prostate cancer 

(relative risk 4.87). In 2009, Grindedal et at. confirmed that DNA MMR mutations 

increased the risk of prostate cancer by analyzing 106 men with DNA MMR 

mutations in the Norwegian Cancer Registry [90]. Ryan et al. assessed the relative 

risk of prostate cancer associated with DNA MMR mutation to be 3.36 [91]. Then 

Rosty et al. estimated the relative risk of prostate cancer associated with MSH2 (5.8), 

MLH1(1.1), and MSH6(1.3)respectively[92]. Inactivation of MMR proteins, result in 

a high rate of microsatellite instability (MSI) in their tumors [93, 94]. 

 

3.2.4 Other prostate cancer germline risk variants 

Other germline mutations are also associated with the risk of prostate cancer. In a 

study investigating germline risk mutations in metastatic prostate cancer, researchers 

found that 1.87% of metastatic tumors had CHEK2 germline mutations, 1.6% of 

ATM, 0.43% of PALB2 and 0.43% of RAD51D germline mutations [95]. A Polish 

study has found that NBN657del5 was present in 9% of pedigree prostate cancer 



Tiansheng Zeng 

Genomic Landscape of Local Prostate Cancer in Sardinia Population 

PhD school in Life Science and Biotechnologies 

University of Sassari 
16 

patients, and 2% of sporadic prostate cancer patients, while the mutation frequency in 

the control group was only 0.6%. In addition, in the recent TCGA pan-cancer study 

for screening germline risk variants, it suggested that germline variants on BRIP1, 

DKC1, EPCAM, GALNT3, MTAP, PMS2, POT1, RAD51C, RECQL, SEPRINA1, 

TSC1, TSC2, UROD and some other genes might also affect prostate cancer. 

 

4. Somatic Genomic alterations in prostate cancer 

Normal cells need to acquire multiple abilities to transform into tumor, including 

sustained growth signals, desensitization of growth inhibition signals, resistance to 

death, unlimited replication and proliferation, sustained angiogenesis, tissue 

infiltration and metastasis, avoidance of immune surveillance, and abnormal energy 

metabolism. Inflammation and genomic instability generate somatic mutations that 

expedites the acquisition of tumor promoting abilities. Before innovation of next 

generation sequencing technology, researchers identified a number of somatic 

mutation events in prostate cancer through fluorescent in-situ hybridization and 

comparative genomic hybridization, including loss of NKX3-1 [96, 97] and 

PTEN[98], amplification of MYC [99, 100] and AR [101]. Subsequent advances in 

gene expression profiling technologies led to the discovery of ETS family transcript 

factor over expression[102], and the discovery of recurrent TMPRSS22-ETS gene 

fusions in prostate cancer [103]. With the development of next generation sequencing 
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and bioinformatic analysis technologies comprehensive examination of prostate 

cancer genomes became an efficient tool for identification of cancer related mutations. 

In early prostate cancer genomic studies using next-generation sequencing, a large 

number of novel prostate cancer genomic alterations were identified [104-111]. 

However, due to the limitation of the sample sizes and early generation analytical 

methods, these studies failed to uncover the full spectrum of the complex 

heterogeneity of prostate cancer genomes. In 2015, the Cancer Genome Atlas

（TCGA）published a multi-omic genomic study which included 333 cases of primary 

prostate cancer [112]. Researchers found that 74% of prostate cancers could fall into 

seven molecular subtypes: 1) ERG fusion (46%), 2) ETV1 fusion (8%), 3) ETV4 

fusion (4%), 4) FL1 fusion (1%), 5) SPOP mutation (11%), 6) FOXA1 mutation (3%) 

and 7) IDH1 mutation (1%) [112]. Besides these reported mutations, TP53, PTEN, 

PIK3CA, RB1 and other gene alterations were also altered. In 2018, Joshua Armenia 

et al. combined genomic data from 1013 prostate cancer samples and identified that 

97 genes were significantly mutated in prostate cancer, 70 of which had not been 

reported before, such as the ubiquitin ligase CUL3 and the transcription factor SPEN 

[113]. In addition, they defined a new molecular prostate cancer subtype that has 

mutations on epigenetic related genes [113]. Other related studies have also revealed 

that local indolent prostate cancer had lower numbers of molecular mutations [114], 

instead metastatic prostate cancer had higher mutation burden rates [115]. 
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The unveiling of prostate cancer genome provided insights into prostate cancer 

biology and have enabled the identification of novel drug targets, diagnosis and risk 

stratification biomarkers for this disease. The molecular biology, diagnosis, risk 

stratification and therapeutic development of prostate cancer are presented in Chapter 

1.7，1.8and 1.9. 

 

5. Molecular evidence for racial disparities of prostate cancer 

In recent years, the molecular basis for racial disparities of prostate cancer has 

accumulated. Early GWAS studies revealed the 8q24 locus [58, 61, 116] and some 

other prostate cancer risk alleles [117, 118] were associated with African Americans. 

GWAS studies based on men from different populations, such as Latino [119], South 

Asian [120], Japanese [68, 121], and Chinese [122, 123] ancestries have further 

identified potential race-specific prostate cancer risk alleles. Later whole exome 

sequencing revealed that the rare mutation HOXB13 G84E occurred more frequently 

in the family prostate cancer of the Nordic populations [62, 76, 77, 124] and the rare 

variation in Tet2 is associated with clinically relevant prostate carcinoma in African 

Americans [125]. Most recently, prostate cancer genomic studies revealed ETS family 

fusions was the most common alteration in prostate cancer of Caucasian men at a 

frequency of ~50%, however, they are much lower in African American and Chinese 

[103, 126, 127]. Similar to ETS fusion, PTEN loss is more frequently found in 
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prostate cancer of Caucasian men than other ethnicities [128]. There are also other 

race-specific prostate cancer genomic alterations such as LSAMP loss [129], ERF 

loss-of-function mutations [130, 131] and CDC27-OAT [132] fusion in prostate 

cancer of African Americans. However, most of the genomic prostate cancer studies 

are focused on cohorts of European ancestry, leaving minority groups under 

represented [133]. Furthermore,in racial mixing, the ethnic contribution to riskis not 

fully understood. 

 

6. Oncogenesis and development of tumors 

The size of the prostate is slightly larger than the walnut. It is located at the bottom of 

the pelvic cavity, under the neck of the bladder, on the urethra; behind the pubis, 

before the rectum, and surrounds the junction of the bladder mouth and the urethra, 

with a seminal vesicle gland attached, and urethra and the vas deferens wrapped [134]. 

(Figure 1.1) The main function of the prostate is to secrete and store prostatic fluid. 

Prostatic fluid can be mixed with sperm to form semen which contains sperm and 

semen. About 10% to 30% of the semen is made from the prostate [134, 135]. The 

prostate also contains smooth muscle tissue, which helps ejaculation[135]. As prostate 

is located upstream of most male genital organs, including the vas deferens, 

epididymis and testis, the prostate is also considered the first line of defense for the 

male reproductive system against foreign antigens or pathogens from the bladder and 
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lower urethra [136]. The prostate is divided into transitional zone, central zone and 

peripheral zone. It consisted of 30 to 50 glands, with each one consisting of three 

basic types of cells, basal cells, luminal cells and neuroendocrine cells [137]. Most 

prostate cancers originate from luminal cells in the peripheral area of prostate cancer 

[138, 139]. The normal epidermal cells of the prostate develop into prostatic 

intraepithelial neoplasia, then local prostate cancer, then locally advanced prostate 

cancer, and eventually developed into metastatic prostate cancer [140-144]. With 

increasing age, inflammation prostatic atrophy is common [145, 146]. Inflammation 

atrophy has a larger impact area, especially in the peripheral areas with high incidence 

of prostate cancer [147]. Inflammation can be caused by infection and disruption of 

the epithelial barrier [33, 148]. Evidence suggests that inflammation-induced 

oxidative stress or reactive oxygen species (ROS) cause mutations in cell genes, 

leading to the transformation of normal cells to prostatic intraepithelial 

neoplasia[149-151]. In 2016, Mani, R.S. et.al found that inflammatory cytokine 

signals such as tumor necrosis factor (TNF) signals in epithelial cells result in DNA 

breaks which eventually lead to the fusion of TMPRSS2-ERG [152]. Other studies 

indicate bacterial infection leads to low expression of NKX3-1 in prostate epidermal 

cells [149]. Proliferative luminal epithelial cells of intermediate phenotype which 

abnormally express gene such as CDKN1B, GSTA1, COX2, MYC, PSA, AR, 

NKX3-1, MET, GSTP1 are enriched in prostatic proliferative inflammatory atrophy 

(PIA) [148, 153]. These studies suggested that inflammation can transform normal 
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cells to prostatic intraepithelial neoplasia. Besides, environmental toxins may cause 

DNA damage in normal epidermal cells of the prostate by triggering oxidative stress, 

which may lead to the carcinogenesis of epidermal cells, such asheterocyclic amines 

ingested from burnt diets through blood circulation to the prostate or by the urine 

reflux into the prostate also trigger oxidative stress [154-156].  

 

Figure1.1 The size of the prostate is slightly larger than the walnut. It is located at 

the bottom of the pelvic cavity, under the neck of the bladder, on the urethra; behind 

the pubis, before the rectum, and surrounds the junction of the bladder mouth and the 

urethra, with a seminal vesicle gland attached, and urethra and the vas deferens 

wrapped. 

 

Most prostate cancers are indolent, and only a small proportion of prostate cancers 

progress aggressively to metastatic tumors. Metastasis prostate cancer undergo 
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Epithelial to mesenchymal transition (EMT) to migrate to the adjacent lymph nodes 

and then to the lungs, liver or bone[157, 158]. Recent studies have suggested that 

circulating tumor cells [159, 160] and exosomes[161] may play an important role in 

tumor metastasis. Despite the efforts to reveal the mechanism of prostate cancer 

metastasis and to develop drugs for the treatment of metastatic prostate cancer, 

metastatic prostate cancer has not yet been cured so far. 

 

7. Prostate cancer diagnosis 

Current clinical diagnosis of prostate cancer is based on the framework established in 

the 1990s. It mainly includes three main indicators: serum PSA level, rectal digital 

examination and tissue biopsy. Patients with serum PSA greater than 4.0 or rectal 

finger positive need to be further confirmed by biopsy [162, 163].  

 

7.1 PSA screening 

In 1970s, Wang and Valenzuela found that PSA was a highly sensitive biomarker of 

prostate cancer[13]. Then, in a longitudinal study in Baltimore, the relationship 

between PSA in serum and prostate was further elucidated [14]. In the late 1990s, 

PSA was used to screen prostate cancer because of its high sensitivity to detect 

prostate cancer, replacing the previously used prostatic acid phosphatase (PAP)[164].  
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PSA is a glycoprotein and composed of 237 amino acids, secreted by prostate 

epithelial cells. Normally, PSA is not released into the blood, because of natural 

blood-epithelial barrier between the prostatic duct system and the peripheral 

circulation system, thus maintaining low concentration in the blood. The invading and 

migration of prostate cancer cells disrupt blood-epithelial barrier, resulting in 

increasing of PSA concentration in the blood. Unfortunately, blood PSA elevation is 

also observed in benign prostatic hyperplasia (BPH) and prostatitis [165]. High levels 

cannot distinguish cancer from inflammation especially in patients with serum PSA 

levels <10 ng/ml[166]. Instead of only serum PSA level, the ratio of free PSA to total 

PSA, PSA density, PSA ROS curve have been shown to increase the specificity of 

PSA, but with limited effect [167]. 

 

7.2 Biopsy 

The mode of prostate biopsies has evolved considerably over the years. Open or 

finger-guided transperineal biopsy with low accuracy was the standard method for 

biopsy sampling in the early 1920s. This method is very invasive, leading to high 

incidence of urinary incontinence and ED, and patients need to spend a long time in 

hospital to recover. The emergence of transrectal ultrasound (TRUS) guided prostate 

biopsy greatly improves the accuracy of biopsy and reduces the side effects of tissue 

biopsy [168]. In 1998, Levine and colleagues found that 12-core prostate biopsy 
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increased the detection rate of prostate cancer by 30% compared with 6 cores[169]. In 

2003, the guideline for prostate cancer biopsy was revised to 12 needle biopsy and 

enhanced sampling of the anterior and lateral regions [170]. Nevertheless, needle 

biopsy has a significant chance of missing the prostate cancer. Thirty percent of 

patients with negative biopsy were identified as prostate cancer positive by repeat 

biopsy [169, 170]. In addition, transrectal ultrasound guided prostate cancer puncture 

also increases the risk of bacterial infection of the prostate [164].  

 

7.3 Risk stratification 

The risk stratification system for prostate cancer was originally derived from the 

D'Amico classification [171] of low-risk, medium-risk, high-risk disease or the the 

Epstein criteria [172] for low-risk (clinically unimportant) cancer mainly based on 

Gleason score of tissue puncture biopsy, serum PSA level and clinical classification. 

However, the inaccuracy of the risk stratification resulted in a high proportion of 

prostate cancers were inaccurately assessed, which lead to over-treatment or 

inadequate treatment. 
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7.4 Development of prostate cancer diagnosis and risk stratification 

7.4.1 PSA derived 

Fortunately, the understanding of the biology of PSA secreting and maturation helps 

to the identification of greater specificity of PSA isoform biomarkers. In particular, 

the detection level of the [-2] pro-PSA ('p2PSA') in serum can improve the diagnostic 

specificity of prostate cancer compared with free PSA or total PSA. PSA is initially 

translated as inactive pre-pro PSA, which carries a 17-amino acid signal peptide. 

During the secretion of PSA, pre-pro PSA is cleaved to pro-PSA by removing the 

signal peptide. Mature PSA, pro-PSA still requires cleavage by human kallikrein 2 

(hK2) to remove the Pro precursor peptide of 7 amino acids at N terminal. In this step, 

alterative splicing isoforms have been found including [-1], [-2], [-4], [-5] and [-7] 

pro-PSA [173]. 
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Figure1.2 Molecular forms of PSA. The arrows with dashed line mean the forms of 

PSA that go from the cell to the blood. PSA: prostate specific antigen, BPSA: benign 

PSA, iPSA: intact PSA, PSA-ACT: Alpha 1-antichymotrypsin-PSA, PSA-API: 

alpha1-trypsin inhibitor PSA, PSA-A2M: alpha 2macroglobulin, hK-2: human 

kallicrein 2, hk-4: human kallicrein 4. 

 

7.4.1.1PHI index 

In 2012, the Prostate health index (PHI)was approved by the U.S. Food and Drug 

Administration (FDA) for aiding doctors to determine whether a patient with PSA 

level 4-10ng/ml requires biopsy[174]. Prostate health index (PHI) is a diagnostic 

index for prostate cancer that combines serum total PSA, free PSA and [-2] pro-PSA 
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levels. It is calculated by the formula ([-2] pro-PSA/free PSA) * tPSA. Patients with 

high serum level of total PSA and [-2] pro-PSA, and with low level of free PSA have 

higher PHI scores and are more likely to suffer from prostate cancer [174]. Fossati 

and colleagues evaluated PHI index in a total of 2034 patients with PSA at 2.5-10 

ng/ml. In the ROC analysis, the AUC (Area under the curve) of PHI was 0.77, while 

the AUC of -2] pro-PSA was 0.76, % fPSA was 0.68, PSA was only 0.5[175].  

 

7.4.1.2 The 4Kscore 

The 4Kscore combines four prostate-specific biomarkers including total PSA, free 

PSA, intact PSA, and human kallikrein 2 [hK2] with clinical information to provide 

men with an accurate and personalized measure of their risk for aggressive prostate 

cancer [176, 177]. The 4Kscore Test was evaluated in multiple cohorts in Europe and 

subsequently validated in a US multicenter prospective study. Overall, the 4Kscore 

Test reduced prostate biopsy rates by 94% in men and there is evidence that the 

4Kscore can predict the likelihood of cancer spreading to other parts of the body in 

the next 20 years [178-180]. 
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7.4.2 Urine-derived biomarkers 

7.4.2.1 SelectMDx 

SelectMDx is a urine-based test based on prostate cancer genomic biomarkers 

HOXC6 and DLX1, which together have a 76% sensitivity (reliability) for detecting a 

prostate cancer that is aggressive enough (Gleason score of 7 or greater) to require 

treatment [181]. When additional risk factors (namely age, PSA, PSA density, family 

history and rectal examination) are added to the calculation, the accuracy of the test 

(negative predictive value) for excluding prostate cancer rises to 98%, with an 

expected total reduction of biopsies of 42%. So clearly there is great potential to avoid 

unnecessary prostate biopsies. A multi-centre scientific study made in 2016 and 

published in European Urology confirms the accuracy of the test[181]. while a 2018 

study in the Journal of Urology has concluded that „routine use of the SelectMDx 

urinary biomarker panel to guide biopsy decision making improved health outcomes 

and lowered costs in American men at risk for prostate cancer [182]. This strategy 

may optimize the value of prostate cancer risk assessment in an era of increasing 

financial accountability. 

 

7.4.2.2 ExoDx 

ExoDx Prostate(IntelliScore) is a clinically validated, non-digital rectal exam (DRE) 

urine-based liquid biopsy test that predicts the presence of high-grade (Gleason score 
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≥7) prostate cancer for men 50 years of age and older with a PSA 2 – 10 mg/mL 

presenting for an initial biopsy. A “rule out” test, ExoDx Prostate(IntelliScore) is 

designed to more accurately predict whether a patient presenting for an initial biopsy 

does not have high-grade prostate cancer and, thus, could potentially avoid an initial 

biopsy and, instead, they continue to be monitored [183]. ExoDx Prostateanalyzes the 

urine for three biomarkers on exoRNA that are expressed in men with high-grade 

prostate cancer. Using a proprietary algorithm that combines the relative weighted 

expression of the three-gene signature, the test assigns an individual risk score for 

patients ranging from 0 to 100. A score >15.6 is associated with an increased 

likelihood of high-grade prostate cancer on a subsequent biopsy [184]. 

 

Additional molecular markers of prostate cancer based on different urine are being 

studied, such as MI-Prostate Score based on urinary secretory microRNA, Progensa 

and Protarix based on urinary proteomics[185]. 

 

7.4.3 Genic Tests 

In 2017, the Philadelphia Consensus recommended that prostate cancer patients with a 

family history of HBOC and prostate cancer, as well as metastatic prostate cancer, 

need to undergo genetic screening for germline risk variants on genes 

includingBRCA1/2, HOXB13, and DNA mismatch repair genes [50]. Risk variants in 
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these genes not only increase the susceptibility to prostate cancer, but are also partly 

associated with the early onset and prognosis of prostate cancer or treatment selection 

[50].The risk genes and evidence discussed in the Philadelphia Consensus are shown 

in Table 3. 

 

8. Treatment of prostate cancer 

Alterative treatment selection for prostate cancer patients are mainly based on risk 

classification. In recent years, with the available of new targeted therapies and 

immunotherapy, genic testing become a supplemental option to guide the treatment 

selection [49]. 

 

8.1 Active monitoring for very-low risk prostate cancer 

Recent studies have shown that very low-risk prostate cancer tends to remain indolent. 

The probability of their progression to metastatic prostate cancer or cause death is 

very low. To avoid side effects caused by treatment, in 2017, the American Urological 

Association announced that it is best for men who are diagnosed with very low-risk 

prostate cancer to actively monitor disease progression rather than receive treatment.  
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8.2 Activemonitoringfor low risk prostate cancer 

Men who are diagnosed with low-risk prostate cancer should also be given priority in 

actively monitoring disease progression as well.Active monitoring is usually 

performed on patients with low-risk prostate cancer undergoing serum PSA 

monitoring, repeated prostate biopsy and MRI. Datahave shown that patients with 

low-risk prostate cancer under active monitoring have a probability of dying from 

prostate cancer less than 1% within10 years.[186] 

 

8.3 Treatment for patients with low risk cancer 

Because some lesions affect the daily life of patients, for patients with low-risk local 

prostate cancer, radical prostatectomy, external beam radiotherapy and brachytherapy 

are often used clinically. Othertreatments, such as cryotherapy, high-intensity focal 

ultrasound and photodynamic therapy, are also used [186]. 

 

8.4 Treatment for locally advanced prostate cancer 

For patients with locally advanced or high-risk prostate cancer, recent studies have 

shown that radical prostatectomy plus ADT or radiotherapy plus ADT can 

significantly reduce the 10-year mortality risk compared with ADT alone. However, 

10% to 20% of patients havebiochemical recurrence with elevated serum PSA in 2~3 
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years after ADT treatment and develop into castration resistant prostate cancer (CRPC) 

followed by metastasis to bone, lung and other sites (mCRPC). The median survival 

time of patients diagnosed with castration resistance prostate cancer is 15 to 36 

months[187]. 

 

8.5CRPC treatment 

8.5.1 Second Generation Androgen Receptor Antagonists 

Although many patients develop resistance after 2~3 years of ADT treatment, 

mCRPC is AR signaling dependant. In 2012, the second generation AR antagonist 

Enzalutamide [188]was approved by FDA in the United States for the treatment of 

mCRPC. In clinical trials, Enzalutamide significantly improved overall survival (OS) 

and progression-free survival (PFS) in patients with prostate cancer after 

chemotherapy.  

 

In 2012, Abiraterone, an inhibitor of CYP17A1, was also approved by FDA to treat 

mCRPC. CPY17A1 is an important enzyme in androgen synthesis pathway. It can 

effectively inhibit androgen synthesis by inhibiting CYP17A1. Clinical data showed 

that abiraterone combined with low-dose synthetic glucocorticoids effectively 

prolonged progression-free survival of the patients (5.6 vs 3.6 months, P < 

0.001)[189]. 
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8.5.2 PAPR inhibitor 

A recently completed phaseclinical trial showed that PARP inhibitor 

(Lynparza/a/olaparib) significantly improved disease-free progression survival in 

mCRPC patients with BRCA1/2, and ATM mutations, compared with Enzaluramide 

and Abiraterone [190]. 

 

8.5.3 Siupleucel-T 

Sipuleucel-T is an autologous dendritic cell vaccine targeting Prostatic acid 

phosphatase (PAP). In 2010, the FDA approved sipuleucel-T as the first and only 

immunotherapy for mCRPC[191]. In clinical trials, the 36-month survival rate in the 

Sipuleucel-T group was 31.7% while 23.0% in the placebo group[192]. 

 

8.5.4 Chemotherapy 

In 2004, TAX327 reported that chemotherapy drug docetaxel improves outcomes in 

mCRPC. Tannock et al. demonstrated in a randomized trial of 1,000 men with 

mCRPC that docetaxel chemotherapy improved patient survival by nearly 3 months, 

with 45% of patients having a 50% reduction in PSA [193]. In 2015, the taxanes 
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represented by docetaxel in combination with prednisone have been used as first-line 

treatments for mCRPC patients [194]. 

 

8.5.5 Ra223mCRPC 

Ra223 was approved by FAD in 2013 for the treatment of mCRPC with bone 

metastases. Clinical trial shows that Ra223 can increase the median survival time of 

mCRPC patients with bone metastases by 4.5 months[195]. 

 

9. Translate genetics to biology and therapeutics 

The treatment of mCRPC has made great progress, but due to the heterogeneity of 

tumors and drug resistance during treatment, the fact is that mCRPC still cannot be 

cured. In recent years, a large number of new prostate cancer driver genes (potential 

targets) have been identified in prostate cancer genomic studies, and the 

breakthroughs in immune cell therapy and immune checkpoint therapy in other 

tumors have encouraged researchers to move forward. 

 

In 1941, Charles Huggins first reported the beneficial effect of androgen ablation 

on metastatic prostate cancer. This discovery greatly inspired researchers to develop 

androgen deprivation therapy (ADT) for prostate cancer. ADT therapy is still a very 

important therapy for prostate cancer. Although 10% to 20% of patients have 

https://en.wikipedia.org/wiki/Metastatic
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biochemical recurrence with elevated serum PSA in 2~3 years after ADT treatment 

and progresses to CRPC which is associated with a poor prognosis. 

 

Recent advances in prostate cancer genetics and genomics have provided considerable 

insights into prostate cancer biology and have identified a considerable number of 

cancer drivers which can be exploited as novel drug targets. 

 

By 2018, More than 97 somatic drivers, 20 susceptibility genes, 167 germline risk 

alleles, in prostate cancer have been identified. To unveil the targetability of them, 

Wedge et al. conducted computational chemogenomic analysis of prostate cancer 

drivers and identified 11 targets of approved drugs, 7 targets of investigational drugs, 

and 62 targets with compounds that may be active and should be considered 

candidates for future clinical trials[196]. 

 

The following summarizes the most promising targets for prostate cancer discovery 

and highlight key signaling pathways as potential sources of targets including 

Androgen receptor signaling, the PIK3-AKT signaling, the WNT signaling, the DNA 

repair defects, the MAPK signaling. 
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9.1 AR signaling 

9.1.1 GnRH 

Gonadotropin-Releasing Hormone (GnRH), also known as Luteinising-hormone 

releasing hormone (LHRH), plays a crucial role in anti-androgen therapy [197]. 

Natural GnRH receptor agonists are secreted by hypothalamus and activate the 

receptors in the pituitary, increasing the release of LH (luteinizing hormone[198]) and 

ACTH (adreno-cortico-tropic-hormone) from the pituitary[199]. LH and ACTH 

promote corresponding target organs respectively to increase androgen secretion. In 

1971, the chemical structure of GnRH in pigs was obtained [200]. Then a series of 

active analogue agonists were developed.  

 

The persistent activation of GnRH receptor by GnRH analogue agonists depletes the 

pituitary of LH and ACTH, and the ultimate result is that androgen levels continue to 

drop to a very low level. In a phase III trial for patients with locally advanced prostate 

cancer, the 5-year clinical disease-free survival rate was 40% (95% CI 32% - 48%) in 

the radiotherapy group compared to 74% (95% CI 67% - 81%, P < 0.001) in 

theGnRH analogues and radiotherapy combined therapy group [201]. Therefore, 

GnRH analogues can significantly improve the outcome of locally advanced prostate 

cancer patients. 
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The persistent activation of GnRH receptor in the early stage causes a temporary rise 

in testosterone levels and promotes the progression of the disease. To resolve the 

adverse effects of GnRH receptor agonists, the development of GnRH receptor 

antagonists has been investigated. Antagonists inactivate the GnRH receptor by 

competitive binding with receptors. In 1997, Abarelix, a potent GnRH receptor 

antagonist, was successfully developed. Subsequently, several GnRH receptor 

antagonists, such as Degarelix, and Relugolix were introduced into the market [202, 

203].  

 

9.1.2 AR 

9.1.2.1 AR-LBD 

In 1990, the first generation of non-steroidal androgen receptor antagonists, flutamide 

[204] was approved and rapidly used as an important drug in the treatment of 

advanced prostate cancer, followed by Nelutamide and bicalutamide [205]. Flutamide 

must be absorbed in the gastrointestinal tract and metabolized in the liver to be 

activated leading to hepatotoxicity [206]. In addition， Drug resistance to the first 

generation non-steroidal androgen receptor antagonists caused by 

T877A[207],W741C[208] and F876L[209] mutations in the ligand binding domain of 

AR is usually observed within 1 year after first administration. In 2012, the 

second-generationnon-steroidal androgen receptor antagonist Enzalutamide was 
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approved by FDA. Enzalutamide is able to overcome the resistance caused by W741C 

mutation and has 8-fold greater affinity for AR than the first generation of 

non-steroidal androgen receptor antagonist[188]. Apalutamide with the same 

mother-ring chemical structure as Enzalutamide has been approved to treat CRPC in 

2018 [210]. There was no obvious hepatotoxicity for the two drugs but seizures or 

rash and hypothyroidism are common side effects [188, 211]. Drug resistance is 

usually observed about 2-3 year later after administration because of AR F867L 

mutations, over-expression of AR-V7, AR co-activator, or activation of 

glucocorticoid receptor signaling [212].  

 

A new non-steroidal androgen receptor antagonist,Darolutamide which is able to 

overcome the resistance caused by AR mutations including F867L, W741L and 

T877A has shown stronger antitumor activity and stronger AR affinity than 

Enzalutamide [213, 214]. It should be approved by the FDA to treat the mCRPC in 

the near future. 

 

9.1.2.2 AR-nonLBD 

Androgen receptor (AR) is a steroid hormone receptor in the nucleus, which contains 

a central DNA binding domain (DBD), ligand binding domain (LBD), and hinge 

domain and N-terminal domain(NTD). Mutations in AR-LDB domains and the 
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expression of AR-V7 without AR-LDB domain can lead to resistance to 

Enzalutamide and other second generation of AR antagonists [212, 215]. To 

overcome the resistance, drugs that bind AR non-LBD domain become a new strategy. 

Niclosamide has long been used as an anthelmintic, but it have been found that it can 

promote the degradation of AR-V7and effectively inhibit the growth of tumors [216]. 

Other strategies for degradation of AR have been investigated as well. The clinical 

trial of AR-110, an effective AR degrading agent developed by PROTAC (Proteolysis 

Targeting Chimera) technology is ongoing. 

 

9.1.3 AR-binding protein 

HSP90 is a chaperone protein that binds AR and maintains full-length AR in a 

high-affinity ligand-binding conformation[217]. Inhibition of HSP90 results in 

abnormal AR signaling [218, 219]. Both in vitro and in vivo models, HSP90 

inhibitors also result in depletion of AR-V7[220]. However, phase I and phase II 

studies of HSP90 inhibitors have been generally disappointing because of poor patient 

tolerability and modest antitumor activity [221, 222]. Nonetheless, in the clinical 

studies of patients with advanced prostate cancer, inhibitor of HDAC which acetylates 

and activates HSP90 by acetylation, showed anti-tumor activity[223]. 
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FOXO1 binds to AR-NTD domain and inhibits AR transcriptional activity[224]. 

However, PTEN deletion in prostate cancer results in AKT activation which 

phosphorylates the FOXO1 resulting in its nuclear exclusion [225, 226]. In a phase II 

clinical study, ATK inhibitor Ipatasertib combined with abiraterone showed better 

anti-tumor activity than abiraterone alone, especially in prostate cancer patients with 

PTEN deletion [227].  

 

9.1.4 CYP17A1 

CYP17 are key enzymes in the synthesis of testosterone. Ketoconazole, an antifungal 

drug, has been found to broadly inhibit CYP17 enzymes and has been widely used in 

the treatment of prostate cancer before [228]. Due to its hepatotoxicity, ketoconazole 

has been limited in the clinical treatment of prostate cancer[228]. Nonetheless, a 

CYP17A1 inhibitor, abiraterone[189]combined with low-dose glucocorticoid 

effectively prolonged the progression-free survival (5.6 vs 3.6 months, P < 0.001) of 

mCRPC. Abiraterone, was successfully approved by FDA to treat mCRPC in 2012. 

 

9.1.5 5alpha reductase 

5 alpha reductase can reduce testosterone to highy active dihydrotestosterone [229], 

so 5alpha reductase inhibitors also play a role in the treatment of prostate cancer[230]. 
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For example, dutasteride combined with abiraterone can effectively improve the 

therapeutic effect of abiraterone[231]. 

 

 

 

 

Figure 1.3 The cellular biology of prostate cancer. The complex underlying cellular 

biology and signaling cascades associated with prostate cancer are illustrated.  
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9.2 DNA repair Defects 

Both germline and somatic genomic aberrations of DNA repair genes have been 

reported in prostate cancer. Causative germline mutations in DNA defect repair genes 

occur in 5% of hereditary prostate cancer carries[64], and strikingly, in 8-15% of 

mCRPC. Somatic mutations of DNA repair genes occur in almost 23% of 

mCRPC[111]. The most commonly aberrant genes are BRCA1/2 and ATM. 

 

In 2005, studies showed that PARP inhibition could lead to death of BRCA1/2 

deficient tumor cells [232]. Several studies over the past decade have demonstrated 

the utility of PAPR inhibitors in different types of tumors[233-235]. The PARP 

inhibitor olaparib has been approved by the FDA for the treatment of women with 

advanced ovarian cancer. While for mCRPC, recent clinical trials showed that PARP 

inhibitor (Lynparza/a/olaparib) significantly improved disease-free progression 

survival in patients with BRCA1/2, ATM mutations, compared with Enzaluramide 

and Arbitrone[190]. 

 

PARP (Poly ADP-ribose polymerase) detect and initiate an immediate cellular 

response to single-strand DNA breaks. Inhibition of PARP in the DNA repair 

deficient tumor results in synthetic lethality of the tumor cells [232, 236]. There are 

also studies suggesting that PARP inhibitors may have broader anti-tumor activity as 

PARP interacting with ETS and AR [237, 238]. 
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In addition, DNA mismatch genes aberrations such as MSH6, MSH2, PSM2 occur in 

prostate cancer and potentially other defects in DNA repair [90, 239, 240]. These 

aberrations impair DNA mismatch repair, lead to an increase in mutation burden of 

tumors. There is also evidence showing microsatellite instability in tumors associated 

with DNA mismatch mutation, therefore, MMR defects can sensitize cancer to 

immunotherapy (Anti-PD-1, anti-CTLA4 therapeutics)[241, 242]. So far, patient 

selection approaches in CRPC for immune-checkpoint targeting have yet to be 

pursued. 

 

9.3 PIK3-AKT pathway 

PIK3-AKT signaling pathway is altered in 19% of local prostate cancer and 30% 

ofmCRPC. PTEN deletion is the most common aberration affecting 12% of local 

prostate cancers and 25% of mCRPC[112, 243]. Animal model experiments 

confirmed that the deletion of PTEN resulted in the formation of precursor prostate 

cancer lesions [244] and promoted disease progression when such features are 

combined with abnormalities in ERG, TPP53 [245, 246]. 

 

In tumors lacking PTEN, PI3KCA activity is suppressed while PI3KCB signaling is 

active. But in clinical studies with PI3KCB inhibitors, whether it was used alone or in 
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combination with docetaxel, the overall 1-year survival rate have not been shown to 

improve[247]. The reason for this may be that the inhibition of PI3KCB only results 

in the inhibition of AKT-mechanistic target of mTOR signaling which relives the 

feedback inhibition onupstream substrates and thus causes activation of PI3KCA and 

a rebound in downstream signaling[248]. However, Dactolisib, an inhibitor of 

multiple targets including PI3K and mTOR also have not shown any therapeutic 

advantage [249].  

 

Inconsistent with PI3K and mTOR inhibitors, ATK inhibitor Ipatasertib combined 

with abiraterone showed better anti-tumor activity than abiraterone alone, especially 

in prostate cancer patients with PTEN deletion [227]. Studies have shown that the 

anti-tumor activity of ATK inhibitors benefit from PTEN-AKT-FOXO1 axis instead 

of AKT-mTOR signaling [225]. 

 

Recent studies also indicate that PTEN loss induces cellular senescence and 

myeloid-derived suppressor cell infiltration can block this senescence [245, 250, 251]. 

In the PTEN-null mouse model, infiltration of CD11b+, glucocorticoid receptor 

1-positive myeloid cells protect a population of proliferating tumor cells from 

senescence. These myeloid-derived suppressor cells appear to infiltrate the prostate 

along a chemokine-chemokine receptor (CXCR2), and release IL-1 receptor 

antagonist, which inhibits senescence and drives proliferation. These findings 
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suggested that, targeting innate immunity may be a new therapeutic approach for 

PTEN-loss prostate cancer [252, 253].   

 

9.4 ETS gene rearrangements 

The transcription factors of ETS family such as ERG, ETV1, ETV4, FLI1 have 

important oncogenic roles in many prostate cancers. ETS rearrangements were found 

in about 40-60% prostate cancer patients of European ancestry. The most common 

rearrangement are ERG (46%), followed by ETV1 ( 8%), ETV4 (4% )and 

FL1( 1%)[254].  

 

ERG usually fuses with TMPRSS2 which is regulated by an androgen -regulated 

promoter element[103]. TMPRSS2-ERG fusion leads to ERG overexpression, 

resulting in AR expression and tumor cell proliferation[255]. Overexpression of ETS 

induces the formation of prostatic intraepithelial neoplasia(PIN) in a genetically 

engineered mouse model[153]. When combined with increased AR signaling or 

PTEN loss，Overexpression of ETS leads the progression of tumors[153]. Therefore, 

inhibiting ETS oncogene signaling is a promising therapeutic strategy to treat prostate 

cancer.  
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Transcription factors are generally considered as undruggable targets. However, new 

strategies of modulating the activity of transcription factors have shown promise, 

including disrupting the interaction between transcription factors and other proteins 

andthe interaction between proteins and DNA, or restricting the binding of 

transcription factors by epigenetic modification of chromosome[256]. Currently, such 

as dithiophene diamidine compounds and DB1255 which inhibit ERG-DNA 

interactionsare under development[257]. In addition, clinical trials using optimized  

liposome-encapsulated siRNA to silence ERG expression in prostate cancer is 

ongoing[258].Another potential therapeutic strategy is to target the downstream 

effectors of TMPRSS2-ERG. Evidence shows that PLA2G7 is up-regulated in 

ERG-positive cancer and PLA2G7 silencing by siRNA sensitized 

ERG-rearrangement-positive VCaP cells to oxidative stress, reducing cell viability 

[259, 260].  

 

In addition to ERG rearrangement, YK-4-279, a small molecule drug targeting the 

FLI1 rearrangement, has reached phase I clinical trials for Ewing sarcoma treatment 

[261]. YK-4-279 inhibits the binding of EWS-FL1 to RNA helicase and induces 

apoptosis of cancer cells.YK-4-279 also shows the ability to inhibit ERG and ETV1 

rearrangements in vitro [262]. 
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9.5 TP53 

As the most common aberration, TP53 mutations are carried in 41% of pan-cancers, 

especially in HGSOC (high-grade serous ovarian cancer) (98%), esophageal 

adenocarcinoma (89%) and small cell lung cancer (85%). Almost 15% of 

mCRPCcarry TP53 mutation[263].  

 

TP53 is a tumor suppression gene, encodes the p53 protein which maintain a low 

level by MDM2 regulated post-translational ubiquitin degradation in normal cells. 

When DNA is damaged, cellular stress induces phosphorylation of MDM2 and 

acetylation of p53, leading to accumulation and activation of p53. Activated p53 

proteins stopproliferating cells in G1/S phase to repair the DNA damage[264]. 

Oncogenic stress triggers a DNA damage response involving p53, which constitutes a 

major barrier against tumor development. However, recent studies have shown that 

this effect of p53 is dispensable in tumors, and that p53 maintaining the homeostasis 

of cellular metabolism and redox balance in cell is even more important[265]. 

Moreover, many mutant p53 proteins have acquired gain-of-function (GOF) activities 

[266-268], which enable them to, for example, inactivate other p53 family members, 

in particular the tumor proteins p63 and p73 [269].(Figure 1.4) 

 

In contrast to aberrations in tumor suppressor genes such as RB1, adenomatous 

polyposis coli (APC) and PTEN, most TP53 mutations are missense mutations [113]. 
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Therefore, a drug development strategy for p53 is to use small molecules that promote 

proper folding and/or reactivation of common missense-mutant p53 proteins. Several 

of these compounds show significant anti-tumor activity in vitro and in vivo models.  

Clinical trials of two of the mutant-p53-targeting compounds are ongoing. APR-246 is 

being tested in phase II trial s[270], while the molecule COTI-2 is being studied in a 

phase I trial [271]. Although the current clinical trials do not include the treatment of 

prostate cancer, the efficacy of these drugs in the treatment of prostate cancer with 

TP53 mutation should also be investigated in the future. 

 

 

 

Figure1.4Mutant p53 proteins have acquired gain-of-function (GOF) activities, 

inactivate other p53 family members, in particular the tumor proteins p63 and 

inhibit the transcription activities of p63. 

 

9.6 WNT signaling 

Aberrations that result in WNT pathway activation, such as loss of function of APC 

(adenomatous polyposis coli protein), mutations in genes encoding beta-catenin and 
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mutations in RNF43 have been reported in 15% of the mCRPC[254]. RNA-seq 

revealed that WNT beta-catenin signaling is a functionally important pathway for 

androgen-independent prostate cancer progression [272, 273]. Therefore, targeting 

WNT signaling in the subset of the mCRPC with activation of this pathway is 

promising. There are multiple compounds engaged in clinical trials for solid tumors 

[274]. As well the efficacy of these drugs to treat mCRPC with WNT 

pathwayaberrations should also be investigated in the future. 

 

9.7 The RAS-RAF-MEK signaling 

Arguably less common in prostate cancer, but nevertheless still clinically relevant and 

potentially targetable, is oncogenic activation of RAS-RAF-MEK signaling [275, 

276]. Such activation includes uncommon (1-2%) recurrent BRAF and RAF1 

rearrangements as well as rare mutations of these genes [277] and other aberrations of 

genes activating this pathway, including HRAS, SPRED, SPROUTY, FGF, and 

FGFR[112, 113]. 

 

As ETS proteins are downstream effectors of RAS-RAF-MEK-extracellular 

signal-regulated kinase(ERK) signaling, resistance to AR blockade in 

ETS-rearrangedprostate cancer has been postulated to involve RAS-RAF-MEK 

signaling[278]. Activation of the MAPK pathway could also activate ETS signaling in 
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some ETS-rearrangement-negative tumors[279]. Studies of RAS-RAF-MEK 

inhibitors in CRPC are now needed to understand which subtypes of these cancers are 

driven by MEK, to further elucidate the importance of this pathway in CRPC. 

 

10. Objectives 

The incidence of prostate cancer in Europe also varies greatly in different regions, 

with a high incidence in Western and Northern Europe and a low incidence in 

Southern Europe. Sardinia is an island in the middle of the Mediterranean Sea, north 

to the European mainland and south to North Africa[2]. The incidence of prostate 

cancer in Sardinia is lower than in mainland Europe. Most recently Sardinian prostate 

cancer incidence is about 44 per 100,00, while Southern Europe is about 58 per 

100,00 and Western and North Europe is up close to 100 per 100,00 [280, 281]. 

What‟s more, Chiang et al. demonstrated that Sardinia is a genetically isolated 

Mediterranean population and a purported refuge population of Neolithic ancestry. 

The evolutionary divergence from the European mainland population appeared to 

143.3±1.3 generations (~4,300 years ago) which was much earlier than the divergence 

between Southern and Northern Europe [282]. Therefore, the genetic disparities may 

possibly explain of the disparities of prostate cancer incidence between Sardinian and 

other ethnic or populations.  
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Race and ethnicity are risk factors for prostate cancer. The effects of race and 

ethnicity on prostate cancer are not only reflected in different incidence but also in 

different frequencies of ETS family fusion in different groups. ETS family fusions is 

the most common alteration in prostate cancer of Caucasian men at a frequency of 

~50%, however, they are lower in African Americans and Chinese at 20-30% and 

10-20% in respectively. So far, most of the genomic prostate cancer studies are 

focused on cohorts of European ancestry, leaving minority groups underrepresented. 

Furthermore, in racial mixing, the ethnic contribution to risk is unclear. These 

problems pose a serious challenge to a compressive understanding of genetic risk, 

diagnosis and treatment of prostate cancer patients [133]. 

 

My aim is to determine the genomic landscape of prostate cancer of Sardinian 

population. This will better define prostate cancer risk management and treatment. It 

will also provide a better understanding of the effects of genetic factors on prostate 

cancer in the genetically unique Sardinian population. 

 

My Specific Objectives ARE: 

1.Characterize the somatic mutation and indels in prostate cancer of Sardinia 

2.Characterize the Copy number variation in prostate cancer of Sardinia 

3.Characterize the fusion events in prostate cancer of Sardinia 

4.Characterize the germline risk in prostate cancer of Sardinia 
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Notes: To unveil the ethnic disparities of molecular basis of prostate cancer, we will 

also conduct a genomic study in Chinese prostate cancer cohort which is briefly 

summarized in the discussion chapter.“A brief summary of a genomic study in 

Chinese prostate cancer cohort”. 

 

ChapterⅡ. Material and methods 

1. Patients and Samples 

This research was approved by the Ethical Committee of the Sassari AOU. Our study 

includes 30 patient tumor resections before ADT treatment. FFPE sections were 

stained with hematoxylin and eosin and reviewed by experienced pathologists to 

determine the Gleason score and mark a boundary betweentumor lesions and 

corresponding tumor adjacent tissues. Paraffin blocks were divided into two sections 

based on histological findings. DNA extraction was conducted separately on each 

divided paraffin block.  

This research on Chinese prostate cohort was approved by the Ethical Committee of 

the Shantou University Medical College. 
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2. DNA extraction from FFPET tissue 

QIAGEN Gene-Read DNA FFPE Kit enables purification of high-quality genomic 

DNA and removes artificial C>T mutations and was utilized to extract DNA from the 

formalin-fixed paraffin-embedded tissue (FFPET). All the procedures followed the 

manufacturer protocols. The concentration and quality of DNA were determined by 

Qubit3.0 and Agilent 2100. The qualified DNA with a fragment size more than 800 

bp and the total amount of 100 ng was used for library preparation.  

 

3. Whole Exome Sequencing Library Preparation 

100~200ng DNA per sample was used for library construction using the KAPA 

Hyper-Plus Kit. Enzymatic fragmentation was performed according to the 

manufacturer instructions. Fragments with a size of 180-220bp before adapter ligation 

were selected for capture using the Roche Seq-Cap EZ Med-Exome system resulting 

in a total capture of 67Mb. Libraries were analyzed for size distribution by Agilent 

2100 Bioanalyzer and quantified by real-time PCR. The qualified libraries were 

sequenced by the Illumina X-ten platform with 8 samples per lane.  
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4. Sequence data Quality control. 

The original fluorescence image files obtained from X-ten platform were transformed 

to short reads (Raw data) by base calling and the short reads were saved in FASTQ 

format, containing sequence information and corresponding sequencing quality 

information. Reads were filtered as follows:1) Discard paired reads if either read 

contained adapter contamination (>10 nucleotides aligned to the adapter, allowing ≤ 

10% mismatches); 2) Discard paired reads if more than 10% of bases are uncertain in 

either read; 3) Discard paired reads if the proportion of low quality (Phred quality <5) 

bases is over 50% in either read. All downstream bioinformatics analyses were based 

on the high-quality cleaned data. 

 

5. Read mapping and processing. 

Sequencing data was mapped to the reference human genome (UCSC hg19) using the 

Burrows-Wheeler Aligner (BWA) software to obtain the original mapping results in 

BAM format [283]. Then, SAMtools, Picard, and GATK tool kits were used to sort 

BAM files and duplicate marking, local realignment, and base quality recalibration to 

generate final BAM files for somatic and germline SNVs and indels calling[284, 285]. 
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6. Somatic SNP and INDEL calling and annotation 

Somatic SNVs were identified by GATK muTect1. Somatic INDels were identified 

by Pindel based on paired bam files that were generated from paired tumor and tumor 

adjacent normal tissues [286]. The minimal depth for high confidence SNVs was set 

as 10, while a depth of 20 was set for INDELs. Based on high sensitivity of the Pindel 

algorithm and the possible damage of DNA due to historical FFPETs (>5 years), 

single nucleotide deletions were removed from final results. Annotation of the 

somatic SNVs and INDELs was performed using Oncotator[287]. The annotated 

MAF files were used for downstream analysis. 

 

7. Identification of mutation drivers 

To obtain putative driver mutations in our Sardinian prostate cancer cohort,SNPs and 

indels were mapped to OncoKB database. [288]. OncoDriveCluster was used to 

predict significantly mutated genes in our Sardinia prostate cancer cohort [289] that 

may represent novel driver mutations. Novel mutations as well as the identified 

OncoKBc identified genes were mapped to cancerhotspots and the 3Dhotspots 

database, and then analyzed with MutationAssessor, SIFT, Polyphen2, and FATHMM 

[290-292]. Candidate driver mutations were defined as, listed in the Cancer hot spots, 

or 3D hot spots, or annotated as damage mutations by at least three of the four 
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methods, MutationAssessor, SIFT, Polyphen2, and FATHMM. Protein 3D structures 

were downloaded from the PDB database and virtualized by PYMOL [293]. 

 

8. Germline SNVs and INDELs calling and candidate germline risk 

identification 

GATK-HaplotypeCaller was utilized to call germline SNVs and INDELs from tumor 

adjacent tissues [294]. Mutations with QUAL>200 were identified and annotated by 

ANNOVAR. Mutations with a MAF>0.01 in either 1000 Genomes or Exome 

Sequencing Project (ESP) databases were removed. Candidate germline risk 

mutations were then assessed as possible damage mutations using four methods, 

MutationAssessor, SIFT, Polyphen2, and FATHMM. Here we considered only 

mutations as damaging if identified by all four methods. Truncating mutations in 

tumor suppressor genes were considered as candidate germline risk mutations as well. 

Mutations identified in more than three samples or annotated by the 

FamilialCancerDatabase were considered as high confidence mutations [295]. 

 

9. Fusion calling, filtering, ORF prediction and visualization 

Fusion event calling from raw read files of tumor adjacent tissues and tumor lesions 

was performed using FusionMap which is designed to detect and align fusion 

junction-spanning reads to the genome directly [296]. Fusions were filtered out if 1) 



Tiansheng Zeng 

Genomic Landscape of Local Prostate Cancer in Sardinia Population 

PhD school in Life Science and Biotechnologies 

University of Sassari 
57 

seed reads were <=3 or were listed in the in-family analysis or found in a paralog 

gene list, 2) fusions associated with uncharacterized genes, immunoglobin genes, 

mitochondrial genes or repeat regions, and 3) fusions that were reported in normal 

samples. High confidence fusions were input into FusionHub to search for reported 

fusions and predict the fusion effects. GO, KEGG and Reactome pathway enrichment 

analysis of fusion genes were performed by metascape[297]. 

 

10. Copy number variation calling, filtering and driver copy number variation 

identification 

Control-FREEC was used to detect CNV with paired pileup files that were generated 

from unsorted bam files [298]. High confidence somatic CNVs were identified with a 

p-values less than 0.01 for both Wilcoxon and the Kolmogorov-Smirnov tests. They 

were next annotated by ANNOVAR [299]. Intergenicregions were then removed. 

Copy number variation reoccurring analysis was performed using GISTIC 2.0 [300]. 

 

Sardinian prostate cancer driver copy number variations already present in 

OncoKBannotatedalterations were classified as Putative copy number variations. 

Classification of Sardinian “candidate driver copy number variations” was based on 

curation in OncoKB onco-gene (amplification) or in OncoKB tumor suppressor gene 

(loss). 
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11. Integrative analysis of SNP, INDEL, fusion and copy number variation 

The TCGA prostate cancer cohort dataset was downloaded from cBioPortal. Somatic 

SNPs, INDELs and copynumbervariations of the TCGA cohortandour Sardinian 

cohort were used to identify differential gene mutations, amplifications and deletions 

using the Fisher test. Adjusted P value of less than 0.05 was considered as significant.  

 

12. Differential gene expression and genomic alterations in prostate cancer. 

Differential expression of our candidate driver genes in matched TCGA normal 

samples and GTEx (Genotype-Tissue Expression Project) tissues was performed with 

GEPIA2 [301]. The frequency of the candidate driver alterations in other prostate 

cancer genomic studies was obtained from cbioportal[110].   

 

13. PCR-based ERG fusion detection 

Frequencies of different breakpoints for TMPRSS2-ERG fusions was based on the 

COSMIC database. We designed 5 pairs of primer using Primer5 for detection of the 

amplification and detection of TMPRSS2-ERG fusions based on the top five most 

frequent break points found in the COSMIC database.  DNA of 19 historical paraffin 
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blocks of tumors from Sardinian prostate cancer patients was extracted and used for 

PCR screening forTMPRSS2-ERG.  

 

 

 

Figure 2.1 Flow chart of project of Genomic Landscape of Local Prostate Cancer in 

Sardinian Population 
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Chapter Ⅲ . Results: Genomic landscape of Localized Prostate Cancer in a 

Sardinian cohort 

1. General summary of clinical and sequencing parameters 

A total of 30 patients from the Pathology section of the Department of Experimental 

Medicine of the University of Sassari (Sassari, Sardinia, Italy) and diagnosed with 

prostate cancer during 2010 were included in the study. Most patients had levels of 

PSA<10 ng/ml and Gleason scores <=7（low risk, 23 out of 30 patients), six patients 

had PSA levels between 10 ng/mg ~20 ng/ml and Gleason scores<=7 (intermediate 

risk, 6 out of 30), one patient had a Gleason score of 9 (high risk, 1 out of 30). The 

age distribution of the patients ranges from 54 to 74. Among them, 20 patients were 

60~69 years old, four patients were 54 to 59 years old, six patients were 70 to 74 

years old. Survival records show that one patient died within one year after diagnosis, 

while another 4 patients died 5 years after diagnosis. All patients had prostate 

resection. Clinical information is summarized in Table 1. 
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Paired tumor and tumor-adjacent FFPETs sections were obtained from historical 

paraffin blocks of tumors and adjacent normal tissue from resected prostates. DNA 

was extracted from paraffin sections and libraries constructed for whole exome 

sequencing. Sequencing coverage of tumor tissues was between 39-176, with the 

median of 67. The sequencing coverage of histologically normal tissue adjacent to 

tumor tissue was between 30-156, the median was 58 (Figure3.1). 
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Figure 3.1Sequence depth of tumor and tumor adjacent tissues. A) Sequence depth 

distribution of tumor adjacent tissues. B) Sequence depth distribution of tumor tissues. 

 

2. Somatic driver mutations in Sardinia prostate cancer 

To identify somatic mutation in the Prostate Cancer cohort in Sardinia, we sequenced 

the whole exons of paired-samples from 30 patients. Somatic SNPs and Indels were 

called by GATK mutect1 and Pindel respectively. A total of 911 missense SNPs, 37 

splice site mutations, 119 truncating mutations and 140 in-frame indels were 

identified in a total 30 tumor tissues. The number of somatic mutations per patient 

varied from 7 to 114. The median number was 28 mutations per patient. (Figure 3.2) 
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Figure 3.2 Summary of somatic mutation in 30 prostate cancer patients in 

Sardinia. A) Number of somatic mutations in each patient. B)Fraction of six different 

conversions in each sample.C) Overall distribution of six different conversions. D) 

Overall distribution of Transitions and Transversions.E) Oncoplot of gene with 

mutation in at least 3 of the 30 patients. 

 

To identify potential driver mutations, we first mapped all mutations to the 4457 

annotated alterations in the OncoKB database. We found 15 putative driver mutations 

present in 13 genes (Figure 3.3). SPOP -Y87C and KMT2D-TRUNC mutations 

occurred in two samples. Single mutations were found for BRAF-G469A, 

http://www.mun.ca/biology/scarr/Transitions_vs_Transversions.html
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FLT3-R834Q, APC-TRUNC, BCOR-TRUNC, CDKN2C-TRUNC, 

FBXO11-TRUNC, KEAP1-TRUNC, FBXO11- TRUNC, NF1-TRUNC, 

TP53-TRUNC, RBM10-TRUNC, ZFHX3-TRUNC (Figure 3.5).  

 

 

Figure 3.3 All the 1067 somatic mutations of 30 prostate cancer patients in 

Sardinia were annotated as clinical actionable mutations, putative drivers, 

cancer hot spot mutations and 3D hot spot mutations,respectively.Novel drivers 

were predicted by OncoDrieverCluster. Five mutations are clinical actionable, 15 

mutations are cancer putative drivers (OncoKB annotated alterations). Sixty-five 

mutations are observed in OncokB curated genes and 22 mutations are observed in 

significant mutated genes that predicted by OncoDriverCluster. 
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Figure 3.4 Oncoplot of putative and novel somatic drivers of prostate cancer 

from 30 Sardinian local prostate cancer samples 

wereobtainedbywholeexomesequencingof paired tumorandtumor-adjacent 

tissues. Each green dot represents a patient with a putative missense mutation, black 

dot represents a patient with putative truncating mutation, purple dot represents a 

patient with fusion of the specified gene. 

 

In addition, we found that TP53-F106C was a cancer hot spot mutation and 

FOXA1-S250P was a 3Dhotspot mutation (Figure 3.3). We next mapped these 

mutations to the CIVIC database of actionable mutations and found BRAF- G469A, 

NF1-TRUNC, APC-TRUNC and KMT2D-TRUNC clinically actionable mutations  

(Table2).  

 

Table 2 Clinical actionable mutations in 30 prostate cancer patients  

Patient Gene Type of mutation Drug-Sensitivity 

401 BRAF p.G469A Vemurafenib, Cetuximab, Erlotinib 

202 NF1 p_1172fs Dabrafenib，Binimetinib，JQ1 

202 APC p_1212fs G007-LK,JW55 

303 KMT2D p.GSYTDPYAQPPL2372fs AR-42 

305 KMT2D p.QEPPP2350fs AR-42 

 

To identify potential novel driver candidateswhich were not identified in the OncoKB 

database, we next used the OncoDriverCluster algorithm to predict significantly 
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mutated genes in our cohort. A total of 12 genes including the putative driver SPOP 

were found to be significant in our cohort (Figure 3.4).  

 

 

 

Figure 3.5 All the somatic mutations of 30 Sardinian prostate cancer were input 

in OncoDriverCluster algorithm to predict significantly mutated genes in our 

cohort. The y-axis is the log10(fdr), the x-axis represents that the fraction of 

mutations in a particular gene were predicted as cancer driver.  
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Mutations in these 12 genes and mutations in OncoKB curated genes were annotated 

for functional disruption using MutationAssessor, SIFT, Polyphen2, and FATHMM. 

Nine mutations were predicted to be deleterious mutations by at least three methods, 

and four of them were simultaneously predicted to be deleterious mutations by all the 

four methods (Figure 3.6). 

 

Figure 3.6 Four mutations of all the 1067 somatic mutation of 30 Sardinian 

prostate cancer patients have been annotated as damage mutations by all of the 

following, MutationAssessor, SIFT, Polyphen2, FATHMM methods, another 5 

mutations have been annotated as damage by at least three of the four methods. 

 

Six of the 9 domains containing the above mutations have known 3D structures. They 

include, the ALOX12B protein (R422W, Figure 3.7A), the ATAT1 protein (D19V 
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mutation, Figure 3.7B), the ERBB2 Receptor L domain harboring the C53R mutation 

(Figure 3.7C), the ERCC2 protein (R497C mutation, Figure 3.7D), the MAX protein 

(D87N mutation, Figure 3.7F), the TBX3 T-box domain (V202D mutation, Figure 

3.7H).  
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Figure 3.7 A) ALOX12B Lipoxygenase domain R422W mutation.B) ATAT1 D19V 

mutation.C) ERBB2 Receptor L domain C53R mutation.D) ERCC2 R497C 
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mutation.E) FOXA1 Forkhead domain S250P. F) MAX D87N mutation. G) SPOP 

MATH domain Y87C.H) TBX3 T-box V202D mutation. 

 

3. Somatic copy number variation in Sardinia prostate cancer 

Control-Freec was used to analyze somatic copy number variation in paired samples 

of 30 prostate cancer patient in Sardinia. A total of 784 segments of copy number 

variation events were identified, including 9520 gene-level events (2920 gene gains, 

6600 gene losses). We found 444 gene amplifications (copy number variation is 

greater than or equal to 2) and 2135 deletions (copy number variation is less than or 

equal to -2).(Figure 3.8) 
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Figure 3.8 Control-Freec was used to analyze somatic copy number variation in 

paired samples of 30 prostate cancer patient in Sardinia.Each row represents a 

patient. And the column represents the chromosomes. Each dark red bar represents a 

patient with amplification of the region. Each dark blue bar represents a patient with 

deep deletion of the region. Each light red bar represents a patient with gain of the 

region. Each light blue bar represents a patient with loss of the region. 

 

To identify the copy number variations that may act as “oncogenic drivers”, we first 

mapped copy number variations to the 4457 OncoKB annotated alteration database. 

Six putative oncogene gain events were identified, involving six genes (BCL6, ROS1, 

CDK6, EGRF, ETV1, NTRK1), affecting 5 different tumor samples. Thirty-eight 

putative tumor suppressor gene loss events were identified, involving 30 genes, 

affecting 11 samples. Among them, CDKN1B-loss, DUSP4-loss, and PRDM1-loss 

occurred three times each, and PTEN-loss and RB1-loss occur twice. (Table 3) 

 

Table 3 Clinical actionable copy number variation in 30 prostate cancer patients 

Patient Gene Type of mutation Drug-Sensitivity Drug-Resistance or Non-Response 

815 TYMS Amplification Pemetrexed Pemetrexed 

2154 BRCA1 Deletion Olaparib,CX-5461  

309 EGFR Amplification Cetuximab, Panitumumab Osimertinib, Rociletinib 

309 FBXW7 Deletion Rapamycin (Sirolimus)  

404 NBN Deletion GPI-15427  

305 PTEN Deletion Carboplatin, Buparlisib Everolimus, BYL719 

406 PTEN Deletion Carboplatin, Buparlisib Everolimus, BYL719 

404 RASA1 Deletion Trametinib  
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2154 TSC2 Deletion MTOR Inhibitors  

307 RB1 Deletion Palbociclib（PD0332991)  

404 RB1 Deletion Palbociclib（PD0332991)  

301 STK11 Deletion NA Docetaxel, Selumetinib 

401 ATXN1L Deletion NA Vemurafenib, Dabrafenib 

411 ATXN1L Deletion NA Trametinib 

 

In order to identify new potential driver copy number variation events, we performed 

copy number replay analysis using GISTIC 2.0. A total of 15 significant amplification 

intervals were identified along with the identification of 20 significant loss intervals 

(Figure 3.9).  
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Figure 3.9G-score across the whole exome region of 30 Sardinian prostate 

cancers. G-scores were calculated by the GISTIC algorithm to determine the 

amplitude and the frequency of copy number variation. 

 

Among the loss intervals, 6q15, 13q21 and 16q24 showed large-scale deletions. 

Further, we found that the 15 significant amplification regions did not contain a 

known onco-gene, but the 20 significant loss regions contained 21 OncoKB curated 

TSGs. Of the total 46 copy number deletion events, 15 deletion events contained 8 

genes that were previously annotated as putative drivers.The other 31 deletion events 

involved 13 curated tumor suppressor genes, including BACH2-loss (4 events), 

NKX3-1-loss(4 events), ATP6V1B2-loss (3 events), EPHA7-loss(3 events), 

ESCO2-loss (3 events), SESN1-loss (3 events), TP63-loss (3 events), ERCC3-loss (2 

events), IRF8-loss (2 events), FAS-loss (1 events), RECQL-loss (1 events), 

SDHC-loss (1 events), TBL1XR1-loss (1 events) (Figure 3.10).  
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Figure 3.10Oncoplot of amplifications in oncogenes and deletion in tumor 

suppressor genes. Each red bar represents a patient with amplification of the 

specified gene on the left. Each blue bar represents a patient with deep deletion of the 

specified gene. 

 

We also examined the frequency of the deletion of the genes outlined above in other 

prostate cancer genomic studies and found that IRF8-loss occurred in 2-8% of 

prostate cancer patients [104, 254, 302-305](Figure 3.11). Patients with IRF8-loss 

have worse survival outcome compared with patients without IRF8-loss (Figure 3.12). 

These data indicated that IRF8 deletion is a potential important driver in prostate 

cancer. 
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Figure 3.11 Frequencies of IRF8 deletion across the prostate cancer genomic 

studies that documented in cBioportal database. 
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Figure 3.12 Patients with IRF8 deletion have decreased survival. 

 

4. Comparison of gene mutations between prostate cancer in the TCGAdatabase 

and Sardinia cohort 

To identify similarities and differences in prostate cancer mutations between Sardinia 

and patients of North America European ancestry, we had integrated the somatic 

mutation and copy number variation data from our Sardinian cohort and made a 

gene-level comparison to the TCGA prostate cancer dataset. The results reveal that 

MUC4, PRG4,DSPP SNPs and indels, 4q13.2 (UGT family genes) and 4q16.3 

(ZNF595, ZNF718) amplifications, 8q23.1 (USP17L1/2/3) and 4q35.2 (DUX4) 

deletions are significantly enriched in the Sardinian prostate cancer cohort compared 

to the TCGA cohort (Fisher test, adjusted p value<0.05)(Figure 3.13-3.15). We also 
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observed that both the Sardinian cohort and the TCGA data set had similar 

frequencies and types of tumor suppressor gene deletions (Figure 3.15). MUC4 and 

PRG4 are large glycoprotein and mutations in them are possible passengers. The 

4q16.3 amplification and 4q35.2 deletion only affect very small region of the 

chromosome. 8q23.1 deletion overlap with TCGA 8q23.1 deletion but have border 

expansion. 4q13.2 amplification including multiple UGT family members (Figure 4.1). 

The pick gene is UGT2B4 which is tend to have high expression in TCGA tumor 

samples rather than normal samples(Figure 4.3) and patients the high expression of 

UGT2B4 have better disease-free survival (p=0.047) (Figure 3.17). Co-expression 

genes of UGT2B4 and enriched in Steroid hormone biosynthesis pathways. 
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Figure 3.13 The TCGA prostate cancer cohort dataset was downloaded from 

cBioPortal. Somatic SNPs, INDELs of the TCGA cohortandour Sardinian cohort 

were used to identify differential gene mutations frequencies using the Fisher test. 

Adjusted P value of less than 0.05 was considered as significant.Mutations in MUC4, 

PRG4 and DSPP are significantly increased in Sardinia prostate cancer cohort 

compared to the TCGA cohort (p value < 0.05). 
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Figure 3.14 The TCGA prostate cancer cohort dataset was downloaded from 

cBioPortal. Amplifications of the TCGA cohortandour Sardinian cohort were used to 

identify differential gene mutations, amplifications frequencies using the Fisher test. 

Adjusted P value of less than 0.05 was considered as significant. 4q13.2 and 4q16.3 

amplifications are significantly greater in the Sardinia prostate cancer cohort 

compared to the TCGA cohort (p value < 0.05). 
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Figure 3.15 The TCGA prostate cancer cohort dataset was downloaded from 

cBioPortal. Amplifications of the TCGA cohortandour Sardinian cohort were used to 

identify differential gene mutations, deletions frequencies using the Fisher test. 

Adjusted P value of less than 0.05 was considered as significant. 8p23.1 and 4q35.2 

deletions are significant greater in the Sardinia prostate cancer cohort compared to the 

TCGA cohort (p value < 0.05). 

 

To further understand the potential impact of these genes on tumor development, we 

examined the gene expression profiles in the TCGA and the Genotype-Tissue 
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Expression (GTEx) databases for differential expression between prostate tumors and 

normal tissue. Expression profiles revealed that MUC4 is significantly 

down-regulated in prostate cancer tissue (Figure 3.16). Furthermore, patients with 

high expression of PRG4 have poorer disease-free survival (Figure 3.17) compared to 

patient with tumors having lower expression of PRG4. These indicate that mutations 

in MUC4 and PRG4 may be more than just passenger mutations. UGT gene cluster 

represents a family of glycosyltransferases which are able to transfer estradiol to 

estradiol glucuronide and are involved in the regulation of estrogen metabolism 

(Figure 3.18)[306-308].  

 

 

 

https://www.ncbi.nlm.nih.gov/gene/100415862
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Figure 3.16MUC4 is significantly down-regulated in prostate cancer tissues 

(GEPIA dataportal). Expression of MUC4 was determined in 43 normal (green bar) 

and 497 prostate cancers (red bar) from the TCGA database. MUC4 was found to be 

significantly upregulated (p<0.05) in localized prostate tumors compared with tumor 

adjacent normal tissue. 

 

 

 

Figure 3.17 Low expression of PRG4 have better disease-free survival (GEPIA 

dataportal) compared to normal expression.All the 497 TCGA localized prostate 

cancer patients were divided into a PRG4 low expression group and a PRG4 high 
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expression group based on the PRG4 median expression. Between-group comparisons 

of DFS were performed by the Kaplan-Meier method and the log-rank test. 

 

 

 

 

Figure 3.18 UGT family is important genes in super pathway of estrogen 

metabolism.(https://pathcards.genecards.org/card/estrogen_metabolism) 

 

5. Novel BTBD7-SLC2A5 fusions and ETS family status in prostate cancer of 

Sardinia 

We next used FusionMap to identify fusion events in whole exome data. We detected 

15 in-frame fusions and 44 out of frame fusion genes in the 30 patients. Of the fusion 

events, only two pairings, MAGOH->TMEM220 (out of frame) and 

BTBD7->SLC2A5 (in frame), occurred in more than one sample, 5 and 4 times 

https://pathcards.genecards.org/card/estrogen_metabolism
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respectively (Figure 3.19).BTBD7-SLC2A5 contains exons 1-10 of BTBD7 and 

exons 2-8 of SLC2A5. N-terminus of the fusion protein contains the BTB/POZ 

domain of BTBD7, and the C-terminus contains Transmembrane region of SLC2A5 

(Figure 3.20).  

 

 

 

Figure 3.19 Oncoplot of fusion genes that are altered in more than 2 or more 

patients (ERG fusions were detected based on PCR methods and the remaining 

fusions were detected by FusionMap software based on WES data).  
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Figure 3.20 Predicted transcript and protein of the BTBD7-SLC2A5 fusion 

determined by Fusion hub. The predicted protein contained the entire 

transmembrane domain and fructose transporter domain of SLC2A5 and the BTB 

domain of BTBD7. 

 

ETS family fusions are the most common fusion event associated with prostate cancer. 

ERG-TRMPSS2 gene fusions are found in 46% of prostate cancers, followed by 

ETV1 fusions in 8% and ETV4 fusions in 1% of the patients [254]. In our whole exon 

data of 30 Sardinian prostate cancer patients, none of the ETS fusions was detected. 

Possibly due to the low sensitivity of whole exon data to detect fusion events, we also 

used PCR to detect ERG fusions at the RNA level in 19 samples. ERG fusions were 

detected in only two of the 19 samples (11%) (Figure 3.19). The frequency of ERG 

fusion is still lower than the expected frequency found in patients with European 

ancestry. However, we did observe a significant deletion of 22q23.1 in the copy 

number reoccurring analysis (Figure 3.9 & Figure 3.15). Considering the ERG 

fusion event is often co-occurrence with ERG deletion, the frequency of ERG fusion 

events in Sardinia prostate cancer may be higher at 11%. 
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6. Germline risk mutations in the patients 

In order to identify germline risk mutations for prostate cancer in the Sardinian 

prostate cancer cohort, we used the GATK best practice pipeline to perform germline 

SNP and INDEL calling with fastq files that generated from tumor adjacent tissue. 

We filtered out the mutations with a calling quality less than 200 and MAF>0.1. The 

remaining mutations were evaluated for the effect on protein structure/function using 

MutationAssessor, SIFT, Polyphen2, and FATHMM. A total 113 mutations were 

annotated as deleterious mutations by all the four methods Among these, we found a 

variation in ARSD-G320D (Figure 3.21 & Figure 3.22) affecting 53% of the patients 

and that in CNN2-G250V-G263S (Figure 3.21 & Figure 3.22) affecting 9% of the 

samples. In addition, four genes that were previously recorded in the Family cancer 

database, which contains approximately 500 cancer related hereditary disorders, have 

one mutation each for CHD1 (S847T), MSH2 (A382C), HPS6 (L498P), and 

BMPR1A (A319G). 
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Figure 3.21 Oncoplot of germline risk mutations. Each green dot represents a 

patient with a germline missense mutation in a specified gene on the left. 

 

We next examined expression of ARSD and CNN2 in prostate cancer by looking at 

prostate cancer gene expression profiles in the TCGA and the Genotype-Tissue 

Expression (GTEx) databases. We found that ARSD tends to be highly expressed in 

tumor tissues (data not show). Patients with high expression of ARSD have better 

disease-free survival than those with lower expression of ARSD (Figure 3.23).  
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Figure 3.22 A) ARSD Sulfatase domain with the G320D mutation.B) CNN2 calponin 

domain with G250V and G263S mutations. 

 

Considering that ARSD regulates estrogen metabolism (Figure 3.25), it is possible 

that tumors with high ARSD expression or expressing variants of ARSD impact 

castration therapy (homo-therapy) hence leading to better or differential (variant) 

disease-free survival. CNN2 is significantly down-regulated in tumors compared to 

normal tissue acting as a possible tumor suppressor gene (Figure 5.24). These results 

indicate that ARSD and CNN2 germline mutations are potentially associated with 

prostate cancer development or therapeutic impact in Sardinia.  
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Figure 3.23 Patients with high ARSD expression have better disease-free survival 

(GEPIA dataportal). All the 497 TCGA localized prostate cancer patients were 

divided into a ARSD low expression group and a ARSD high expression group based 

on the ARSD median expression. Between-group comparisons of DFS were 

performed by the Kaplan-Meier method and the log-rank test. 
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Figure 3.24 CNN2 significantly down-regulated in prostate cancer tissues 

(GEPIA dataportal). Expression of CNN2 was determined in 43 normal (green bar) 

and 497 prostate cancers (red bar) from the TCGA database. CNN2 was found to be 

significantly upregulated (p<0.05) in localized prostate tumors compared with tumor 

adjacent normal tissue. 

 

Moreover, the data show that there is a tendency of mutual exclusivity (p=0.062) 

between the germline risk variants ARSD-G320D and somatic UGT family 

amplification (Figure 5G). 
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Figure 3.25 ARSD is one of the genes in super pathway of estrogen metabolism. 

(https://pathcards.genecards.org/card/estrogen_metabolism) 

 

ChapterⅤ. Discussion 

Emerging evidence indicates that there are remarkable disparities in prostate cancer 

epidemiology as well as the molecular landscape among different ethnic groups of 

European, North America African and Asian origin [4, 133]. The Sardinia population 

is an isolated Mediterranean population with evolutionary divergence from the 

European mainland population taking place some 143.3±1.3 generations in the past. 

Furthermore, prostate cancer incidence is lower in the Sardinia population compared 

with mainland Europe [281, 282]. However, the genomic landscape of prostate cancer 

in Sardinia is unknown. We performed whole exome sequencing on tumor and 

tumor-adjacent tissues from 30 patients diagnosed with local prostate cancer to reveal 

https://pathcards.genecards.org/card/estrogen_metabolism
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germline risk variants, and identify somatic SNPs, INDELs, copy number variations, 

and fusion events in prostate cancers. Our data show both genomic disparities and 

similarities between prostate cancer in our Sardinian cohort and prostate cancers 

reported in the TCGA European ancestry cohort.  

 

ERG gene family fusions are detected in approximately 50% of patients with 

European ancestry. However, recent studies show that the incidence of ERG fusion 

are lower in patients of North America African (20-30%) and Asian (8%-22%) 

ancestry [305, 309, 310]. We were unable to detect ERG fusion events in Sardinia 

prostate cancer cohort by whole exome sequencing, although we did detect 2 out of 

19 (11%) patients having ERG fusion when using a PCR based method. ERG fusion 

events are accompanied with ERG loss on Chromosome 21q22.3 [311]. Nevertheless, 

we only observed ERG loss in only 7% of our Sardinia cohort compared to 15% 

reported in the TCGA cohort (most of ERG fusions occur in RNA level). Our data 

indicates a lower frequency of ERG-fusion events in Sardinia cancer patients. 

 

We did find, however, a novel fusion event, BTBD7-SLC2A5, in 12% of the 

Sardinian patients. In addition, we didfind a novel fusion event, BTBD7-SLC2A5, in 

12% of the Sardinian patients, whose breakpoints were within an exon region (Figure 

6A). BTB/POZ domain-containing protein 7 (BTBD7) BTBD7 regulates the 

dynamics of cell adhesion and motility during epithelial branching 
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morphogenesis[312], and has been reported to be associated with various 

cancers[313-315]. BTBD7 fusions were also observed in the TCGA pan-cancer 

cohort. BTBD7-UBR7 and UBR7-BTBD7 were observed in breast cancer, 

BTBD7-RGS9 fusion in Ovarian Cancer, and TARBP1-BTBD7 fusion in Lung 

Adenocarcinoma (http://www.cbioprotal.org/). However, each of those fusions 

were detected only in a single patient. In our study, BTBD7 fusion with the fructose 

transporter SLC2A5 was observed in four of the prostate cancer patients in Sardinia, 

indicating BTBD7 fusion can be observed more frequently in tumors in a specific 

population.  

 

SLC2A5 is a fructose transporter and has been reported to be associated with various 

cancers as well[316-318]. Lung cancers with mutations in SLC2A5 promote lung 

adenocarcinoma cell growth and metastasis by enhancing fructose utilization[317]. 

BTBD7-SLC2A5 fusions that identified in this study contained entire transmembrane 

domain and fructose transport domain of SLC2A5 may be involved in shifting of 

energy metabolism to enhance tumor growth. However, further investigated in the 

future is needed to determine the importance of this fusion. 

 

BTBD7-SLC2A5 may also be involved in unregulated cell adhesion and motility or 

epithelial morphogenesis due to loss of exons 10 and 11. Functional studies will aid in 

uncovering the functional consequences of this fusion event. 

http://www.cbioprotal.org/
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Meanwhile, we found that 20% of the Sardinia samples had amplification of UGT 

family while only 0.3% in of the TCGA cohort had amplification in this region. UDP 

glucuronosyltransferase family genes catalyze the addition of the hydrophilic moiety, 

glucuronide, to acceptor molecules in a process called glucuronidation[319, 320]. In 

humans there are two major classes of UDP glucuronosyltransferase, UGT1 and 

UGT2, each of which contains multiple genes on chromosome 2 and 4, respectively. 

In Sardinian prostate cancers we observed an amplification in chromosome 4q13.2 

which contains multiple UGT2 genes (Figure4.1). 

 

 

Figure 4.1 Oncoplotof amplifications of genes in Chromosome 4q13.2 across 30 

Sardinian prostate cancer patients. Each red bar represents a patient with an 

amplification of the specified gene on the left. 
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Within this amplified region the genes UGT2B7, UGT2B15, UGT2B17 and 

UGT2B28 have been broadly investigated in prostate cancer because of their ability to 

inactive DHT and testosterone[321].  Germline inactivating mutations including 

deletion/insertion mutations or single nucleotide polymorphisms of these genes 

increases prostate cancer risk by presumably increasing levels of unconjugatedactive 

androgens either systemically (due to reduced hepaticmetabolism), or locally in the 

prostate, or both[321]. However, a number of studies haveexamined the relationship 

between UGT2B15 andUGT2B17 expression levels and prostate cancer progression. 

One study reported that UGT2B17 protein level wasincreased in prostate cancer 

relative to BPH, and it wasmore abundant in metastatic than benign tumors[322]. 

Another study reportedthat higher UGT2B17 protein levels were associated with 

higherGleason scores, metastasis, and progression to CRPC[323].Moreover, 

UGT2B17 overexpression was associated withincreased risk of biochemical 

recurrence during androgendeprivation therapy[324]. Recent work has identified a 

novel function for UGT2B17 in androgen-independent AR signaling related to the 

activity of c-Src kinase[323]. In contrast, UGT2B15 protein levels were reduced in 

prostate tumors relative to BPH. To examine the impact of UGT2B15 expression in 

prostate cancer, we investigated the expression data of the 497 prostate cancer 

patients from TCGA. Our analysis showed that the expression level of UGT2B15 in 

tumors had a tendency to be lower than normal tissues (but not significantly lower), 
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although, UGT2B15 was similar to UGT2B17, patients with higher expression of 

UGT2B15 had increased risk of biochemical recurrence (Figure 4.2). These analyses 

suggest that high expression of UGT2B15 and UGT2B17 in the tumors had additional 

functions other than DHT and testosterone metabolism[323].  

 

 

Figure 4.2 Patients with high expression of UGT2B15 had reduced disease-free 

survival compared with those patients with low expression of UGT2B15.  A) All 

the 497 TCGA localized prostate cancer patients were divided into UGT2B15 a low 

expression group and a UGT2B15 high expression group based on the UGT2B15 

median expression. B) Between-group comparisons of DFS were performed by the 

Kaplan-Meier method and the log-rank test. 

 

UGT2B4 was identified as the peak of amplification in the UGT family in our present 

study. Interestingly, UGT2B4 is noticeable for its ability in the clearance of 



Tiansheng Zeng 

Genomic Landscape of Local Prostate Cancer in Sardinia Population 

PhD school in Life Science and Biotechnologies 

University of Sassari 
99 

estrogens[325]. It was reported that polymorphisms of UGT2B4 have been associated 

withincreased breast cancer risk[326]. To examine the impact of UGT2B4 expression 

in prostate cancer, we investigated the expression data of pan-cancer study from 

TCGA. Our analysis showed that the expression level of UGT2B4 in tumors of breast 

cancer was significantly lower than normal tissues while UGT2B4 was significantly 

higher in tumors than normal tissues of prostate cancer (Figure 4.3 ). 

 

 

 

Figure 4.3 Expression of UGT2B4 was determined in 43 normal (green bar) and 

497 prostate cancers (red bar) from the TCGA database. UGT2B4 was found to 

be significantly upregulated (p<0.001) in localized prostate tumors compared with 

tumor adjacent normal tissue 
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Figure 4.4 Spearman rank correlation analysis was performed on expression 

profiles of tumor tissues of 497 TCGA localized prostate cancer patients and 

UGT2B4. 1165 genes were positively co-expressed with UGT2B4 and 868 genes 

were negatively co-expressed with UGT2B4 i. (Spearman correlation >0.1, p<0.01) 

 

To further examine the potential function of the UGT2B4 in prostate cancer, we 

performed the spearman correlation analysis of UGT2B4 in the expression data of the 

497 prostate cancer patients from TCGA. We found that UGT2B4 expression was 
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associated with increased expression of genes that were found enriched in glutamine 

and monocarboxylic acid metabolic pathways. (Figure 4.4-Figure 4.7). 

 

 

Figure 4.5 Thirty-seven curated oncogenes and tumor suppressor genes were 

correlated with UGT2B4 in the spearman rank correlation analysis. Heatmap of 

hierarchal clustering of patients based on expression of UGT2B4 and 37 UGT2B4 

co-expressed oncogenes and tumor suppressor genes was described using a function 

Heatmap in ComplexHeatmap R package. Patients were split by median expression of 

UGT2B4 before hierarchal clustering. There was a cluster of prostate cancer patients 

with high expression of UGT2B4, SPINK1, SRC. 
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Thehigh frequently of somatic UDP-glucuronosyltransferase gene family 

amplification on Chromosome 4q13.2 in Sardinian prostate cancers may promote 

tumorigenesis and development by upregulating the expression of UGT2B4 and 

UGT2B7/15/17. Upregulation of these genes may homeostatically maintain the 

crosstalk of AR and ER signaling[327, 328] or other metabolic signaling pathways 

such as SRC and MYC signaling[323].  

 

 

 

Figure 4.6 Functional enrichment including GO Biological Processes, KEGG and 

Reactome pathways (http://www.metascape.com/) reveals that genes 

co-expressed with UGT2B4 in the spearman correlation analysis were 

functionally enriched in ribonucleoprotein complex biogenesis, as well as 

glutamine, nucleotide and monocarboxylic acid metabolic pathways 

 

http://www.metascape.com/
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Another possibility is that UDP glucuronosyltransferase family amplification is 

related to their important role in detoxification of xenobioticsubstrate[329]. Prostate 

cells with increased expression of UDP glucuronosyltransferase may have provided 

enhanced fitness against Sardinian environmental xenobiotic toxins. 

 

 

Figure 4.7 PPI network of UGT2B4 co-expression genes in prostate 

cancerProtein-Protein interaction network of UGT2B4 co-expressed genes were 

downloaded from InWeb_IM (https://www.intomics.com/) and visualized by 

Cytoscape.UGT2B4 positive co-expression genes that broadly interact with SRC and 

MYC, functionally clustered in ribosome biogenesis, functionally clustered in 

nucleobase biosynthesis monocarboxylic acid metabolism, and Carbohydrate 

https://www.intomics.com/
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metabolic are highlighted in red. Genes that negative co-expressed with UGT2B4 

clustered in synapse organization and are blue highlighted. 

 

In addition, we found that IRF8-loss occurred in 6% of Sardinia prostate cancer and in 

2-8% of prostate cancer patients across multiple prostate cancer genomic studies [104, 

254, 302-305](Figure 3.9). In the most recent genomic study of mCRPC, data show 

that patients with IRF8-loss have poorer survival outcome compared with patients 

without IRF8-loss, indicating IRF8 is an important tumor suppression gene in prostate 

cancer.  

 

IRF8 (also ICSBP) is a transcription factor that is a member of the interferon 

regulatory protein family (IRF)[330]. IRF8 is predominantly expressed in 

hematopoietic stem, progenitor and terminally differentiated cells including myeloid, 

NK and dendritic cells [331]. IRF8 functions as a transcriptional activator and 

repressor that is required to mediate immune cell differentiation and execution of 

cell-type-specific gene expression programs [332]. IRF8 also regulates the expression 

of genes involved in several cellular functions including adaptive immunity, cell cycle 

regulation and apoptosis [333, 334]. Loss of IRF8 in murine models results in a 

hematopoietic malignancy, in part due to STAT5 repression of IRF8 tumor 

suppressive activity [335]. Homozygous biallelic IRF8 mutations have been identified 

in NK deficiency syndromes and IRF8 missense mutations have been identified in 
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dendritic cell deficiency syndromes, suggesting IRF8 is required for functional NK 

and dendritic cell development [336]. Somatic hotspot mutations in the IRF8 DNA 

binding domain have been identified in pediatric-type follicular lymphoma [337] and 

in diffuse large B cell lymphoma[338]. In addition, IRF8 downregulation is found in 

hematopoietic malignancies due to epigenetic and signaling dysregulation [335, 339]. 

Even though the role of IRF8 in immunity has been widely investigated and the its 

somatic mutations have been identified in lymphoma, its role in prostate cancer is still 

unknown. 

 

In keeping with several studies on prostate cancer we identified somatic mutations in 

TP53, SPOP, KMT2D, FOXA1 and copy number loss of NXK3-1, PTEN, RB1, 

PCDH9. These mutations are well recognized as important drivers of prostate cancer 

across multiple ethnic groups [113, 254, 305, 309].  

 

Early genetic quantitative studies of identical and fraternal twins have demonstrated 

that the heritability of prostate cancer is 42% - 58%, higher than that of any other 

malignant tumors[52, 340]. Todate, 167 prostate cancer risk loci have been identified 

by genome-wide association analysis [70]. These loci with high frequency and low 

penetration in the population explain only about 19% of the familial risk of prostate 

cancer. In recent years, the effect of variants with low frequency and high penetration 

on prostate cancersusceptible genes has become clear, such as HOXB13, 
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BRCA1/BRCA2, DNA mismatch and other DNA repair pathway[72]. These variants 

explained only about 5% of the family risk of prostate cancer.Where is the missing 

heritability of prostate cancer? 

 

In addition, in United States, the incidence and mortality of prostate cancer varies 

considerably by races and ethnicities [7, 8]. The prostate cancer incidence of the 

North AfricanAmerican is 208.7 per 100,000 and the mortality is 47.2 per 100,000, 

while prostate cancer incidence in the Asian American, Native Hawaiian and Pacific 

Islander (AANHIP) is only 67.8/100000 which is almost one third of North America 

Africans, and one half of Non-Hispanic Whites (123/100000)[8]. Even removal of 

effects of other factors, racial disparities in prostate cancer incidence in United State 

remain significant. 

 

Therefore, racial geneticdisparity is one of the major factors contributing to the 

variability in the incidence of prostate cancer. Even though multiple large multi-ethnic 

genome-wide association studies focused on identification of ethnic specific risk locus 

for prostate cancer, they are insufficient to explain all of the racial disparity [119, 341]. 

Where is the missing racial genetic disparity on prostate cancer? 

 

One of the reasons for the missing heritability and racial genetic disparity of prostate 

cancer is that most studies are based on GWAS or Whole exome sequencing which 
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underrepresent the full genome and epigenetic factor. The other possible reason is that 

the prostate cancer risk variants are too rare to be significantly identified. Even though 

almost 20 susceptible gene have been identified [49], we are still not able to identify 

the frequency of most of the specific mutations in different populations because they 

are very rare. Recently there are other bolder speculations that environmental factors 

can alter the epigenome and can be inherited in future generations [342]. If this is the 

case, studies based on GWAS and WGS and WES only focus on nucleotides, and do 

not examine markers of epigenetic heritability [343] However, the current evidence is 

not sufficient to indicate that the epigenome play a significant role in prostate cancer 

heritability.  

 

The racial mixing and the underrepresentation from racial and ethnic minorities in 

current studies are possible reasons as well. In 1795, Johann Friedrich Blumenbach 

defined the different races of mankind. So far, the scientific community still adopts a 

similar fuzzy definition, which cannot accurately distinguish races, especially when 

racial mixing is becoming more common. In addition, most of the prostate cancer 

genomic studies are based on the Caucasian cohorts. The insufficient number of 

specimens from African Americanmen and other minority populations, together with 

the heterogeneity in the molecular etiology of prostate cancer across populations, 

challenge the generalizability of findings from these projects [133]. 
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In the 30 Sardinian prostate cancer patients, we have identified 106 potential germline 

risk variants on 82 genes with five of the genes having been previously demonstrated 

to be associated with familial cancers. Significantly, ARSD-G320D variants were 

observed in 53% of the Sardinian patients. If there are germline prostate cancer risk 

variants in the Sardinian population, it would be striking as the highest frequency of 

germline risk variants were observed in HOXB13 G84E which only occurred in about 

1~2% of unselected Nordic patients [344].  

 

Even though we cannot exclude the ARSD G320D variants, as ARSD have been 

demonstrated to be associated with estrogen metabolism which strongly affects 

prostate cancer. ARSD transforms the storage form of estrogen (estrogen sulfate) to 

act estrogen(https://pathcards.genecards.org/card/estrogen_metabolism). 

Evidence that supports estrogen as a prostate cancer-causing agent includes 

association of elevated levels of estrogen with prostate cancer, changes in estrogen 

receptor status in advanced prostate cancer, and rodent models and chimeric human 

tissue graft models showing induction of prostate cancer using estrogen plus 

testosterone. Based on our data in this study, it is still difficult to link the 

ARSD-G320D as a risk variant for prostate cancer in Sardinia. A larger cohort and a 

more focused study will help resolve these questions. 

 

https://pathcards.genecards.org/card/estrogen_metabolism
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Overall, our data revealed the similarities and disparities of the molecular basis of 

prostate cancer between Sardinians and other ethnic groups (Table4.1). The 

understanding of the genomic landscape of prostate cancer in different ethnic 

populations will give help in the application of precision medicine in Sardinian 

patients. The novel drivers we identified in prostate cancer in our Sardinian cohort are 

potential drug targets. Further understanding their functional mechanism of action 

will aid in developing drugs to benefit the patients. To achieve these goals, in the 

future, a retrospective research study with a larger cohort with prognosis information 

is necessary to investigate the clinical relevance of these gene aberrations in Sardinian 

prostate cancer. Furthermore experiments in vivo and vitro should be engaged to 

determine the biology and targetability for these genes. 

 

Conclusion and prospect 

We analyzed both germline variation and somatic mutations of 30 Sardinian prostate 

cancer patients and identified a novel Germline risk mutation ARSD-G320D 

occurring in 53 percent of the patients. We also found somatic UGT family 

Table 4.1 Important gene  aberrations that enriched in Sardinian prostate cancer 

Gene_Symbol Aberration Type Frequency

UGT famlily Amplification Somatic 20%

ARSD G320D Germline 53%

BTBD7-SLC2A5 Fusion Somatic 12%

CNN2 G250V&G263S Germline 9%
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amplifications which occurred in 20% the patients. Interestingly, both ARSD and 

UGT family members regulate estrogen metabolism. A link between estrogen 

metabolism and prostate cancer is well established [307, 345, 346]. In addition, we 

identified 15 putative and 9 novel candidate driver mutations, 44 putative copy 

number driver events and another 31 tumor suppressor gene deletion events on 11 

tumor suppressor genes. We pointed out that IRF8 deletion in 16q24.2 is a candidate 

driver in prostate cancer and patients with IRF8 deletion have worse prognosis. 

Finally, we identified one candidate out of frame fusion MAGOH-TMEM220 and one 

candidate in-frame fusion BTBD7-SLC2A5 occur in 15% and 12 % of the patients 

respectively. Our data revealed similarities and disparities of the molecular basis of 

prostate cancer between Sardinians and other ethnic groups and will benefit the 

prostate cancer risk monitoring and treatment management and development in 

Sardinia. 

 

A brief summary of the Chinese prostate cancer study 

To broaden our understanding of ethnicity and prostate cancer we conducted a WES 

study on a cohort of Chinese prostate cancer patients. In the Chinese prostate cancer 

cohort, we have seen greater molecular disparities from TCGA cohort than in the 

Sardinian prostate cancer cohort. In the Chinese study, we have sequenced tumors of 

144 Chinese prostate cancer patients and identified 38 genes significantly mutated 
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genes. Interestingly, 20 of them have not been implicated in prostate cancer in 

Caucasians studies. These genes include nucleoporin 93, and cyclin D2. (Figure 5.1). 

Comparing Chinese and Caucasian prostate cancer reveals a set of genomic markers 

that may be informative for ethnic disparities. (Figure 5.2 & Figure 5.3). These 

genomic markers are summarized in Table 5.1. 

 

 

Figure 7.1 Oncoplot of 38 somatic drivers of prostate cancer from 144 Sardinian 

prostate cancer patients. * Novel identified drivers in prostate cancer of Chinese. 
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Figure 7.2 Comparison of Chinese and Caucasian prostate cancer with somatic 

mutations. 

 

Overall，comparison of Chinese and Caucasian prostate cancer genome reveals a great 

ethnic disparities and once again emphasize the challenge toa compressive 

understanding of genetic risk and precision medicine of prostate cancer patients 

because that race and ethnic minority groups underrepresented in the prostate state 

genomic studies. 

 

 



Tiansheng Zeng 

Genomic Landscape of Local Prostate Cancer in Sardinia Population 

PhD school in Life Science and Biotechnologies 

University of Sassari 
113 

 

Data and material accession numbers 

All data are available in NCBI, under study accession number: PRJNA546032. 
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Abbreviations  

HPV Human papillomavirus 

CMV Cytomegalovirus 

HSV2 Human herpes simplex virus type 2 

HHV8 Human herpesvirus type 8 

EBV Epstein-Barr virus 

HPC1 Hereditary prostate cancer 1 

GWAS genome-wide association analysis 

mCRPC Metastatic castration resistance prostate cancers 

MSI Microsatellite instability 

ROS Reactive oxygen species 
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TNF Tumor necrosis factor 

PIA Proliferative inflammatory atrophy 

EMT Epithelial to mesenchymal transition 

PAP Prostatic acid phosphatase 

TRUS Transrectal ultrasound 

HK2 Human kallikrein 2 

PHI Prostate health index 

FDA Food and Drug Administration 

AUC Area under the curve 

DRE Non-digital rectal exam 

CRPC Castration resistant prostate cancer 

OS Overall survival 

PFS Progression-free survival 

ADT Androgen deprivation therapy 

GnRH Gonadotropin-Releasing Hormone 

LHRH Luteinising-hormone releasing hormone 

LH Luteinizing hormone 

ACTH Adreno-cortico-tropic-hormone 

AR Androgen receptor 

DBD DNA binding domain 

LBD Ligand binding domain 

NTD N-terminal domain 

PROTAC Proteolysis Targeting Chimera 

PARP Poly ADP-ribose polymerase 

CXCR2 Chemokine-chemokine receptor 

PIN Prostatic intraepithelial neoplasia 

HGSOC High-grade serous ovarian cancer 

GOF Gain-of-function 

APC Adenomatous polyposis coli 

ERK Extracellular signal-regulated kinase 

FFPET Formalin-fixed paraffin-embedded tissue 

BWA Burrows-Wheeler Aligner 

ESP Exome Sequencing Project 

GTEx Genotype-Tissue Expression Project 
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