Loss-Function Learning for

Digital Tissue Deconvolution

ol G LU
3 R L 5

R
=
i
0
...? @

S\

DISSERTATION ZUR ERLANGUNG DES
DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.)
DER FAKULTAT FUR BIOLOGIE UND VORKLINISCHE MEDIZIN

DER UNIVERSITAT REGENSBURG

vorgelegt von
Franziska Gortler

aus
Regensburg

im Jahr 2019






Loss-Function Learning for

Digital Tissue Deconvolution

ol G LU
3 R L 5

R
=
i
0
...? @

S\

DISSERTATION ZUR ERLANGUNG DES
DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.)
DER FAKULTAT FUR BIOLOGIE UND VORKLINISCHE MEDIZIN

DER UNIVERSITAT REGENSBURG

vorgelegt von
Franziska Gortler

aus
Regensburg

im Jahr 2019






Das Promotionsgesuch wurde eingereicht am: 27.09.2019

Die Arbeit wurde angeleitet von Prof. Dr. Rainer Spang.

Unterschrift: Regensburg, den 27.09.2019



Publications

Parts of this thesis have been published in the proceedings of RECOMB 2018 [1I]. This includes the
abstract, the notations and the mathematical loss-function learning description in section [2.1] and
of chapter [2| Also parts of the results of the melanoma data set in chapter |3| were published as
well as their discussion in chapter



Danksagung

Mein Dank gilt meinem Doktorvater Rainer Spang sowie meinem Kollegen Michael Altenbuchinger
fiir die Unterstiitzung bei der Durchfiihrung der Doktorarbeit. Sowie meinen Kollegen fr die vielen
fachlichen und manchmal vielleicht nicht ganz so fachlichen Gesprache am Lehrstuhl fr funktionelle
Genomik.

Ebenso bedanken mochte ich mich bei Christian Schmiedl vom RCI Regensburg fr das zur
Verflingung stellen des CLL-Datensatzes.






Contents

Bbstractl . . . . . . o 11
Miroductonl. . . . . . o o o 15

|1 Biological and Algorithmic Basics| 17
(1.1  Tumor Infiltrating Immune Cells| . . . . . . .. ... ... . . 0. 17
1.2 Algorithmic basics| . . . . . . . . . . . 19
[L.2.1 Mathematical Basics and Limitationsl . . .. ... ... ... ... ... ... 19

(1.2.2  Historical Development of D'I'D and Early Works|. . . . . . .. ... ... .. 21

(L.2.3  State of the Art Deconvolution Methods . . . . . ... ... ... ... .. .. 22

2 Methods 25
2.1 Notationg . . . . . . . . 25
[2.2  Loss-Function Learning] . . . . . . . . .. ... o 25
[2.3  Loss-Function Learning Problem is not Convex - Counterexample Shown tor Hessian |

| with Negative Eigenvalues| . . . . . . . . . . .. ... .. 28
2.4 Algorithm for Loss-function Learning|. . . . . . . . . . .. ... ... ... ...... 34
[2.5  Simulation Study on Artificial Data] . . . . .. ... ... oo oo 35
B__Results of DTD with Melanoma Datal 45
|3.1  Description of the Melanoma Dataset| . . . . . ... ... ... ... ... ...... 45
3.2 Melanoma and Cell Type Characterisation|. . . . . . . . ... ... ... ....... 46
[3.3  Loss-Function Learning Improves DTD Accuracy in the Case of Incomplete Reterence |
D 7Y 71 S 48
[3.4  Loss-Function Learning Improves the Quantification of Small Cell Populations| 49
[3.5  Loss-Function Learning Improves the Distinction of Closely Related Cell Types| . . . 51
3.6 Loss-Function Learning is Beneficial Even for Small Training Sets, the Pertormance |

| Improves as the Training Dataset Grows| . . . . . . . . . . ... ... .. .. ..... 53
3.7  HPC-Empowered Loss-Function Learning Rediscovers Established Cell Markers and |

| Complements Them by New Discriminatory Genes for Improved Performance] . . . . 55
13.8  Loss-Function Learning Results Depend on the Size of the Gene Spacel . . . . . . .. 60

9



3.9 Loss-Function Learning Shows Similar Performance as CIBERSORT for the Dom- |
| inating Cell Populations and Improves Accuracy for Small Populations and in the |
| Distinction of Closely Related Cell Types| . . . . . . ... ... ... .. .. ..... 62

13.10 Loss-Function Learning Improves the Decomposition of Bulk Melanoma Profiles|. . . 64

4 Deconvolution of Blood Specimens from Patients with Chronic Lymphozytic |

[Leukemial 67
4.1 Description of the CLL Dataset| . . . . . . . .. ... ... ... ... .. ... 67
|4.2  Classification of Single-Cell RNASeq Data in Cell Types by t-SNE| . . . . . ... .. 70
[4.3  Chronic Lymphocytic Leukemia (CLL) and Characterization of the Cell Types by |

| Single Cell RNASeq Measurements| . . . . . . . .. ... ... ... ... ....... 70
4.4 Loss-Function Learning Applied to the CLL Dataset| . . . . . . . .. ... ... ... 72
[4.5  Loss-Function Learning is Able to Detect Known Biomarkers| . . . . .. ... .. .. 76
[4.6  Expressed Genes in the Experimental Data are also Found to be Highly Expressed |

| in the Loss-Function-Learning Model| . . . . . . . ... .. .. ... ... ... .... 79
[4.7  Application of the Loss-Function Learning Model on Bulk Sequencing Datal . . . . . 84
4.8 Comparison with CIBERSORT| . . . . . . ... ... ... ... ... .... 88
4.9 Deconvolution of Bulk Profiles with Deconvolution Models Learned ot Foreign Data] 91

6_Discussion| 97

6 Summary and Outlook]| 99

|A Appendix: Auxiliary Calculationis used for Calculating Gradient and Hessian| 101

10



Abstract

The gene expression profile of a tissue averages the expression profiles of all cells in this tissue.
Digital tissue deconvolution (DTD) addresses the following inverse problem: Given the expression
profile y of a tissue, what is the cellular composition ¢ of that tissue? If X is a matrix whose columns
are reference profiles of individual cell types, the composition ¢ can be computed by minimizing
L(y — Xe¢) for a given loss function £. Current methods use predefined all-purpose loss functions.
They successfully quantify the dominating cells of a tissue, while often falling short in detecting
small cell populations.

In this here presented, newly developed approach training data are employed in order to learn
the loss function £ along with the composition c¢. This allows for adaption of the loss function
to application-specific requirements, such as focusing on small cell populations or distinguishing
phenotypically similar cell populations.

Loss-function learning is tested on two different single-cell RNA sequencing data sets. The first
is generated from melanoma specimens and the second from peripheral blood samples of patients
with Chronic Lymphocytic Leukemia (CLL). The CLL data were augmented by bulk sequencing
data. It could be demonstrated that the here introduced method quantifies large cell fractions as
accurately as existing methods and significantly improves the detection of small cell populations
and the distinction of similar cell types. Furthermore, it is shown that the developed DTD models
may be applied mutually to both sets of data. As a result the model on the melanoma data is also
relevant for the CLL data set and vice versa.
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Einleitung

In der Medizin wird das bosartige unkrontrollierte Vermehren und Wuchern von Zellen als Krebs
bezeichnet. Bosartig heifit, dass es neben der Ausbildung des Priméartumors zur Streuung und somit
Bildung von Metastasen kommt. Die Haufigkeit des Befalls der einzelnen Organe ist abhingig
von Faktoren wie Alter, Geschlecht, Region und Lebenswandel. In Deutschland ist Krebs die
zweithaufigste Todesursache nach Herz-Kreislauf-Erkrankungen. Wird rechtzeitig eine Therapie
begonnen, oder tritt ein langsam verlaufender Krebs erst in hohem Lebensalter auf, so muss der
Verlauf nicht todlich sein. Die relativen 5-Jahres-Uberlebensraten iiber alle Krebsarten in Deutsch-
land betrugen 2017 65% bei Frauen und 59% bei Méannern [2].

Besonders erbgutbeeinflussende Faktoren sind krebsserregend, da hier die Mutationen in alle
nachfolgenden Tochterzellen weitergetragen werden. Wahrend der Zellteilung ist die Zelle beson-
ders anfallig fiir Mutationen, deshalb sind sich schnell teilende Zellen haufiger von Kreps betroffen.
Die meisten Krebsarten (90-95% der Fille) werden durch Umweltfaktoren ausgelost [3]. Diese
sind Umweltgifte und radioaktive, Rontgen- oder UV-Strahlung, die auch bei Untersuchungsme-
thoden wie CT-Scans [4] auftritt. Daneben gibt es biologische und therapeutische Einfliisse wie
Onkoviren [5], Stammazelltherapie [6] sowie immunsuppressive Therapien nach Organtransplantation
[7]. Ebenso haben die Lebensumstinde und der Lebensstil einen grofien Einfluss auf die Entste-
hung von Tumoren. Dabei handelt es sich beispielsweise um Ubergewicht [8, @], Tabak- sowie
Alkoholkonsum.

Tumore bestehen nicht nur aus den entarteten Krebszellen sondern enthalten Blutgefifie zur
Versorgung sowie Immunzellen. Die Zusammensetzung dieser Immunzellen ist abhénig von der Art
des Tumors sowie dem Patienten. Zwischen Immun- und Tumorzellen gibt es komplexe Wechsel-
wirkungen [10], diese haben Einfluss auf den Verlauf der Erkrankung [11] sowie die Heilungschancen
[12]. Ebenso koénnen die vorkommenden Immunzellen zur Immuntherapie der Tumore verwendet
werden [I3HI5]. Krebszellen tarnen sich gegeniiber den Immunzellen und werden von diesen somit
nicht mehr erkannt. Schafft man es, diese Blockade zu 16sen und das Immunsystem zu stimulieren,
so ist es diesem wieder méglich, die Tumorzellen zu erkennen und zu vernichten [16] [17].

Es spielt eine Rolle, welche Immunzellen sich im und um den Tumor aufhalten, und in welcher
Menge sie vorkommen. Ubliche Methoden um diese Frage zu beantworten sind beispielsweise Im-
munhistochemie oder fluoreszensz aktivierte Zellsortierung (fluorescence-activated cell sorting =
FACS). Bei der Immunhistochemie [I8] werden Proteine oder andere Strukturen in Gewebe mit Hilfe
von Antikérpern sichtbar gemacht. Tumorzellen konnen so identifiziert und klassifiziert werden, da
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in diesen bestimmte, nachweisbare Antigene exprimiert sind. So kénnen Therapien bei morpholo-
gisch gleich erscheinenden Tumoren auf deren tatséchliche Tumoreigenschaften angepasst werden.
Bei FACS werden die Zellen einer Probe analysiert, indem sie einzeln mit hoher Geschwindigkeit
an einem Lichtstrahl oder einer elektrischen Spannung vorbeigeleitet werden. Dabei werden unter-
schiedliche Effekte erzeugt, abhéngig von Form, Struktur und Zellfarbung, aus welchen die Zelleigen-
schaften abgeleitet werden.

Weitere Verfahren sind Einzelzell- RNA-Sequenzierung [19], Massenspektrometrie [20] und PT-
PCR [19].

Neuere Methoden wie gene set enrichment analysis (GSEA) oder digital tissue deconvolution
(DTD) sind computergestiitzt. GSEA [21, 22] ist eine Methode um Gen- oder Proteinklassen zu
identifizieren, welche in einer groflen Anzahl von Genen oder Proteinen iiber- oder unterreprasentiert
sind.

In dieser Arbeit stellen wir eine Methode zur DTD vor. Dabei werden anhand von Einzelzellmes-
sungen diejenigen Gene bestimmt, welche bei der Dekonvolution des untersuchten Gewebes die op-
timalen Ergebnisse erzielen. Der grofie Vorteil ist, dass, so diese Gene einmal bestimmt sind, sie zur
Dekonvolution von Bulk-Messungen verwendet werden konnen. Hierzu existieren viele verschiedene
Algorithmen, einige davon werden in den Kapiteln [1.2.2] und [1.2.3] beschrieben. Die Verwendung
von aus Einzelzellmessungen definierten Gensets zur Dekonvolution ist ein grofier Vorteil, da Bulk-
Messungen im Vergleich zu Einzelzellmessungen deutlich kostengiinstiger sind. Bei einigen DTD
Methoden werden Referenzprofile der zu untersuchenden Zelltypen verwendet, bei anderen nicht.
Diese kénnen ebenso aus den Einzelzellmessungen gewonnen werden. Die hier vorgestellte Metho-
de zur Digital Tissue Deconvolution [I] gehért zu den ersteren Verfahren. Sie verwendet jedoch
im Unterschied zu anderen Methoden zusétzlich zu Referenzprofilen und Einzelzellmessungen noch
die Zellzusammensetzung bekannter Mischungen um die fiir die Dekonvolution aussagekraftigsten
Biomarker zu bestimmen. Im Gegensatz zu anderen Methoden werden diese Gene je nach betrach-
teten Immunzelltypen algorithmisch bestimmt und nicht aufgrund von biologischem oder medi-
zinischem Vorwissen. Damit ist diese Methode zur Bestimmung des Immunzellgehaltes von Proben
einerseits sehr variabel andererseits sehr und anpassungsfihig, z.B. an die jeweiligen Zelltypen von
Interesse. Der Nachteil dieser Methode ist, dass hierfiir immer Daten zum Lernen notwendig sind,
so z.B. von single-cell Sequenzierungen.

In der vorliegenden Arbeit werden im ersten Teil (Kapitel die biologischen Grundlagen erklart
sowie etablierte und neue Methoden zur Bestimmung von zelluldren Zusammensetzungen vorgestellt.
Anschlielend wird die Methode der Digital Tissue Deconvolution mathematisch beschrieben und
numerische Simulationen dazu durchgefiihrt (Kapitel . Anhand zweier Datensets wird gezeigt,
dass das beschriebene Verfahren zur Detektion der Immunzelltypen geeignet ist. Es wird zuerst
ein Datenset aus Einzelzellmessungen von 19 Melanomen betrachtet (Kapitel . Beim zweiten
Datenset handelt es sich um FEinzelzellmessungen zu verschiedenen Zeitpunkten der Therapie bei
vier Patienten mit chronischer lymphatischer Leukémie (Kapitel . Zudem wird fir beide Datensets
die vorgestellte Methode mit der aktuell fiihrenden Methode in diesem Bereich, CIBERSORT [23],
verglichen. In allen Vergleichen wurden bessere Resultate erzielt.
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Introduction

In medicine, cancer is defined as a malign and rampant proliferation of cells. The term “malign”
expresses that besides the development of a primary tumor there is also a dissemination of cells
which leds to metastases. How often the individual organs are affected by this disease depends on
factors like age, sex, residence and lifestyle. In Germany cancer is the second most common cause
of death following cardiovascular diseases. If therapy is started early enough, or if the cancer is of
a kind that progresses slowly and occurs in old age, cancer does not necessarily have to be deadly.
The average five-year survival rates in 2017 across all cancer types in Germany were 65% for women
and 59% for men [2].

Particular factor for inducing a carcinogenic progress are cell mutations which are passed on
to all following daughter cells. During cell division the cell is especially vulnerable to mutations,
so cells that multiply fast and often are affected more easily than other cells. Most cancer types
(90-95% of all cases) are triggered by environmental factors [3], such as pollutants but also X-rays or
UV-rays which are used for survey methods like CT-scans [4]. Furthermore there are also biological
and therapeutic influences like oncoviruses [5], stem-cell therapy [6] as well as immunosuppressive
therapies after organ transplantation [7]. Also environment and lifestyle factors contribute to tumor
formation. These factors can be obesity [8, 0], tobacco and alcohol consumption.

Tumors not only consist of degenerated cancer cells but also contain blood vessels for supply of
nourishing substances and immune cells. The particular composition of these immune cells depends
on the tumor type and on the individual patient. There are complex interactions between immune
and tumor cells [10], which influence the course of the disease [I1] and the prospects of treatment
[12]. The present immune cells can also be used for immunotherapy of the tumors. Cancer cells
camouflage themselves against the immune cells and are thus no longer recognized by them. If it
is possible to lift this mimicry and to stimulate the immune system, it is possible for the present
immune dells to recognize and destroy the malignant cells [16] 17].

Here it matters which immune cells are current in and around the tumor, and in which quantity
they are present. Common methods to answer these questions are for example immunohistochem-
istry or fluorescence-activated cell sorting (fluorescence-activated cell sorting = FACS). In immuno-
histochemistry [I8] proteins or other structures in the tissue are visualized by means of antibodies.
Tumor cells can thereby be identified and classified because they express certain detectable antigens.
As a result therapies can be adapted to the actual tumor properties in tumors which have identical
morphology. When using FACS the cells of a probe are analyzed by passing them one at a time
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through a light beam or an electrical voltage with high velocity. Different effects are produced,
depending on shape, structure and cell dyeing. from the recorded specifics individual cell properties
are derived.

Other methods are single-cell RNA sequencing [19], mass spectrometry [20] and PT-PCR [19].

Newer methods such as gene set enrichment analysis (GSEA) or digital tissue deconvolution
(DTD) are fully computationally generated. GSEA [21} 22] is a method to identify gene or protein
classes which are over- or underrepresented in a large number of genes or proteins.

In this thesis an advanced method for DTD is introduced. Based on single cell measurements
genes which achieve the optimal results in the deconvolution of the examined tissue will be deter-
mined. A major benefit is that, once genes are determined, they can be used for deconvolution
of bulk measurements. To this end there already exist many different algorithms, some of them
are described in the chapters [1.2.2] and [T.2.3] The here presented approach uses data sets from
expensive single cell measurements to train the method for application to the cost efficient bulk
measurements. Some deconvolution methods use reference profiles of the cell types under study,
others do not. These reference profiles can also be obtained from the single cell measurements.
Our presented method for digital tissue deconvolution [I] is part of the methods mentioned first.
However, in contrast to other methods it uses in addition to reference profiles and single cell mea-
surements also mixtures with known cellular composition to determine the most relevant biomarkers
for deconvolution. Unlike in other methods, the genes relevant for deconvolution are determined
algorithmically, only depending on the immune cell types considered and not on the basis of prior
biological or medical knowledge. Hence, our method for determining the immune cell content of
samples, is quite variable and adaptable to cell types of particular interest. However, additional
data with known cell composition is needed for determining the significant biomarkers.

In the present thesis the first part (chapter 1)) is devoted to the technical biological terms as well
as established and new methods for the determination of cellular compositions. Subsequently, the
method of digital tissue deconvolution is described mathematically and numerical simulations for it
are conducted (chapter . Based on two data sets, it is shown that the described method is suitable
for the detection of various immune cell types. First, a data set with single cell measurements
of 19 melanoma specimens is considered (chapter . A second data set consists of single cell
measurements of chronic lymphocytic leukemia from four patients at different points in time (chapter
4)). For both data sets the results of our newly established method is compared to the current state
of the art method CIBERSORT [23]. In all cases superior results are produced.
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Chapter 1

Biological and Algorithmic Basics

This chapter deals with the biological background of tumor infiltrating immune cells and the mathe-
matical basics of digital tissue deconvolution. Section gives an introduction to tumor infiltrating
immune cells. Section outlines the mathematical and algorithmic basics of Digital Tissue De-
convolution (DTD) and gives an overview of available deconvolution algorithms.

1.1 Tumor Infiltrating Immune Cells

The immune system is the biological defense system of higher life forms. It is a complex system
constituted by sophisticated interplay of organs, cell types and molecules. Its function is to prevent
tissue damage caused by pathogens, to eliminate alien substances, excrete microorganisms infiltrat-
ing the body, and to destroy defected body cells. There are two different mechanisms in the immune
defense. On one hand there is the innate immunity which needs no training by pathogens. The
reaction of the innate immune system occurs within minutes and is defined in the genetic infor-
mation. On the other hand is the adaptive immunity. Here, the immune defense is acquired and
hence specific for the pathogen. The adaptive immunity is characterized by the flexibility to adapt
to new or altered pathogens. After initial contact For a complex immune response both parts of
the immune system are necessary [24].

A major part of the immune system are the leukocytes, or white blood cells. In this work
monocytes and macrophages which are part of the innate immunity are considered. These cells are
scavenger cells as they absorb extraneous material and dispose it. After appropriate stimulation B
cells produce specialized antibodies in order to defeat certain pathogens or other harmful substances.
T cells as part of the adaptive immune system mediate between innate and adaptive immunity. Nat-
ural killer cells (NK cells) are part of the innate immune system as they do not have antigen-specific
receptors. They detect and kill tumor and virus infected cells [25]. Endothelial cells participate in
innate and adaptive immune response. They function as detectors of foreign pathogens and inflam-
matory processes and mobilize other immune-cell types like monocytes, macrophages and T cells
[26].
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Figure 1.1:  Here tumor cells (blue)
are infiltrated by immune cells like B
Nawratkitercet Cells, mast cells, T cells (CTL, memory
T cells, Tregs), natural killer (NK) cells
and others. Blood vessels which pro-
vide nutrients for the tumor are shown
in red. Picture from [12].
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Immune cell types can be influenced by tumors. Cancer tissue needs immune cells to communi-
cate with the surrounding immune system to keep it in check. In the beginning these immune cells
try to limit tumor growth, but later they get inactivated or even help the tumor to grow. These cells
originate from immunological cells. An example for such cells are the cancer associated fibroblasts
(CAFs). CAFs are involved in the chronic inflammation of cancerous tissue which supports the
tumor. Another sort of tumor supporting immune cells are the nurse like cells (NLC). These cells
promote the survival of CLL lymphocytes by production of chemokines of antiapoptotic activity
and they promote the expression of adhesion molecules [27].

The human body is composed of different tissues, which are characterized by different cellular
compositions. In cancer cells the normal process of growth, cell division and apoptosis is altered.
Thus, the cellular composition in tumor tissue differs from that in normal tissue. Tumor tissue
additionally is infiltrated by immune cells and blood vessels. Immune cells and tumor cells interact
within a complex network [10], dependent on the specific tumor type. Figure visualizes a tumor
tissue (blue), where tumor and immune cells interact with each other.

Tumor infiltrating immune cells or their composition affect disease progression [I1] or treatment
success [12]. Moreover, small subpopulations can be potential targets for immunotherapy. The
immune cells interact with the tumor and some of these interactions even support the tumor. If
they can be blocked by immunotherapies, immune cells can fight the cancerous cells and kill them.
Thus, the success of treatment also depends on the presence, quantity, and molecular sub-type of
the infiltrating immune cells [28]. There are several methods to estimate the cellular composition
of tumor tissue. Fluorescence-activated cell sorting (FACS; e.g. [29]), cytometry by time-of-flight
(CyTOF; e.g. [30]), and single-cell RNA sequencing [31] are common techniques.
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Figure 1.2: 1In gene set enrichment analysis
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1.2 Algorithmic basics

Several computational tools to predict the amount of immune cells in cancer tissue are already
available. They can be categorized as supervised and unsupervised methods. Supervised methods
use reference profiles of a set of preselected cell types. Unsupervised methods [32] can be applied
without prior knowledge. Common input for DTD are gene expression data as well as methylation
data, from sequencing [33], 4] and microarray technology [35, [36].

An alternative are gene-set enrichment methods [37, [38]. Here, the aim is to find statistically
enriched genes which are involved in a pathway of interest or a certain cellular process [39]. Yet
another method are single-sample approaches in which genes are ranked by the differential expression
between two different biological conditions. Finally, one tries to estimate the bulk measurement by
adjusting the content of the different cell types. Supervised DTD methods require cell-type-specific
reference profiles. These algorithms solve an inverse problem as associated with gene set enrichment
analysis (GSEA). Their aim is to provide the most accurate estimate for the cellular composition
and not to give the best prediction of the bulk profile.

1.2.1 Mathematical Basics and Limitations

The bulk profile y is constructed by RNA-seq or methylation data values for all considered genes.
In the columns of reference matrix X, the reference profiles for the cell types of interest are stored.

19



gene expression relative proportions

data from reference cellular of immune cell
bulk profile y profile X composition ¢ populations
Y1 Xa1l X329 - | Xiq z
Y2 X2 1
p— o 2 >
Yp Xpal Xp2d 9 i:‘l

Figure 1.3: Deconvolution methods use the bulk profile y and the reference matrix X from the
regarded cell types. With this information one can calculate the composition ¢ of the immune cells
in the bulk. Picture from [28].

The gene counts for the individual cell profiles are found in the rows of the matrix X. With given Y
and X the cellular composition C' of the specific cell type is estimated and one obtains the relative
immune cell proportions. The bulk Y is a linear combination of the reference profiles in X. Figure
is an illustration of the problem. Mathematically, Figure can be written as

Y1 X111 X1 ... Xig c1
Y2 Xo1 Xoo ... X2, C2

y=| " |=| T . 1T [ =xe (1.1)
Yp Xp1 Xp2 ... Xpg Cq

The naive solution would be

argmin||y — Xcl|3. (1.2)
(&

To get better deconvolution results, the naive solution in equation is replaced by a given loss
function £. In order to calculate the cellular composition C' of the bulk profiles Y, the loss function
L(y — Xc¢) is minimized. The different competing DTD methods use different algorithms to find the
best composition C' of the profiles Y for a given predefined all-purpose loss function L.
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If the bulk profiles Y were exact mixtures of the reference profiles contained in X the existing
deconvolution methods would work perfectly and for the true cellular distribution C' the result of
Y — X would be zero. However, the bulk profiles in Y are not exact mixtures, which causes several
problems:

(1) It is hard to quantify small cellular fractions. In tumors the cell populations of the
immune cells are mostly small. However the reaction of a tumor to immunotherapy may be
determined by them. Therefore it is important to reflect the faint signals coming from the
small cell populations with an appropriate weight in the DTD algorithm. This aspect allows
for major approvements in the calculations an is the most sensitive adjustment tool.

(2) Potential incompleteness of the reference profile collections. Some cells in the an-
alyzed tissue might not be covered by the reference profiles. This results in a not solvable
global DTD problem. This issue is treated by increasing the frequency of the other cell types
in order to compensate for the contributions of the not covered cells in the DTD-algorithm.
In other words, if a reference profile is missing, the algorithm will overestimate another profile
instead.

(3) Similar expression profiles of two different cell types are hard to distinguish. For
not related immune cells the expression profiles differ greatly and they are easier to quantify.
But for immunological sub-entities of a cell-type the differences between the corresponding
reference profiles are more subtle. The distinction of two cell types becomes more difficult
with the similarity of their cellular profiles.

To summarize, for different applications there are different approaches necessary. This can be
done by adapting the loss function £ to the specific problem. In the end, the aim is always to
focus on a predefined gene set which is most helpful to deconvolute the cell types of interest. DTD
results depend strongly on the gene set. For example distinguishing between immune cells based
on a set of genes if those are not expressed is not possible. These genes are then dominating in the
loss function £. When using a helpful gene set even small cell populations with faint signals can be
deconvoluted correctly. The problem is that it is not clear a priori, which genes are important for
deconvolution and which ones are better to be ignored.

1.2.2 Historical Development of DTD and Early Works

IRIS One of the first attempts to digital tissue deconvolution was IRIS, immune response in silico
[40]. A compendium of microarray expression data of six immune cell types, either in activated or
differentiated states of major non-immune tissues, were used to identify immune-specific genes. A
gene is defined as immune-cell specific, if its expression value in the immune-cell profile is higher
than in any major organ tissue. IRIS groups genes within a cell type, or if they are specific for
more than one cell type, in a lineage. For the statistical clustering an unweighted average method
is used. In microarray experiments, the genes found by IRIS can be used as cell markers for analysis.
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DeconRNASeq DeconRNASeq is a more recent deconvolution solution for mRNA-Seq data. It is
provided by Gong et al. [4I]. The algorithm uses a linear model of reference profiles. The cellular
compositions are used as weights which are preserved to be non-negative. For calculating the pro-
portions of specific cell types in a sample, a non-negative least-squares constraint problem is solved.
For obtaining the global optimum in the solution quadratic programming is used. The method can
also predict missing fractions in the bulk sample. The problem is given by

. 2 Yoicki=1
ming(||CX = Y|]9), such that { o> 0.V (1.3)

where the matrix Y contains the bulk samples, X the normalized transcriptional measurements
from pure tissues and C the proportions of the tissues over the samples.

1.2.3 State of the Art Deconvolution Methods

TIMER was developed to study the interactions of tumor-infiltrating immune cells with the sur-
rounding cancer cells [42]. In Figure the deconvolution workflow is shown. First, several pre-
processing steps are carried out, e.g., the sample purity is calculated. The surrogate for tumor
purity is the fraction of aneuploid cells (a). Then, batch effects need to be removed (b). Next,
genes which are negatively correlated with tumor purity are selected. Those, which have expression
levels strongly affected by the purity of the tumor are tested for immune signature enrichment (c).
Next, the top 1% of the strongest expressed genes are removed, since they dominate the inference
of results (d). Finally the deconvolution of a mixture Y is calculated by (e):

f = argmin Z Y9 — Z X2, (1.4)

vrifr>0 9€{Goyr} all cell types r

where Y9 is the gene expression of gene g, with g € Goy. Here Gy collects the genes which remain
after the filtering steps. The expression of gene g in cell type r is given by X/ and f, is the amount
of cell type 7 in the mixture Y.

CIBERSORT A second state-of-the-art method is CIBERSORT [43]. Here, a linear support
vector regression (SVR) algorithm with adaptive feature selection is used to devonvolute bulk mix-
tures. Figure [1.5| gives an overview of the deconvolution process.

CIBERSORT needs a matrix of gene expression profiles X and a bulk gene-expression profile Y as
an input. The cell fractions C' are defined through

Y = XC. (1.5)

CIBERSORT uses v-support vector regression, which is an optimization method for binary clas-
sification problems. Here two classes are separated by a hyperplane with maximal margins. The
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Figure 1.4: The five steps of TIMER for
calculating the distribution of immune
cells in a bulk sample. (a) calculation
of the tumor purity and removing batch
effects (b). Gene selection using tumor
purity (c). Removing of the strongest
expressed genes (d). Finally the cellu-
lar proportions are estimated by a con-
strained linear regression problem (e).
Picture from [42]
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Figure 1.5: Schematic representation of CIBERSORT. Transcriptome profiles of purified cells are
used to construct the gene expression signature matrix X. With this, the transcriptome profile
of a tumor bulk Y is deconvoluted by a v-support vector regression algorithm. After significance
thresholding, the relative cell-type fractions C' are returned. Picture from [43].
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Y — Regression line Y — Regression line
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= - "“;:\+g = .. Figure 1.6: Visualization of v-vector re-

gression for two different choices of v.
The solid black line represents the re-
gression line and the red points the sup-
port vectors. Picture from [43].

v
v

hyperplane boundaries are determined by a subset constituted by the input data. This subset
supplements the vectors. Support vector regression fits a hyperplane with as many data points as
possible within a distance e. The points outside the € environment of the regression line are the
support vectors shown as red points in Figure .6l The algorithm minimizes a linear combination
of two functions:

1. The loss function which measures the error associated with data fitting by a linear e-insensitive
loss function.

2. The penalty function that determines the complexity of the model. Here it is a Lo-norm
penalty.

The resulting cell-type proportions C' are normalized to a sum of one.
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Chapter 2

Methods

In this chapter the mathematical background of loss-function learning for digital tissue deconvo-
lution is presented. Section introduces the used notation. Section gives the mathematical
background of loss-function learning. In section it is proved that the corresponding optimiza-
tion problem is non-convex. Finally, a line search algorithm with adaptive step size is presented
in section and it gets shown that this algorithm is able to find the most informative genes for
deconvolution in a simulation study, as seen in section |2.5

2.1 Notations

Let X € RP*? be a matrix with cellular reference profiles X. ; in its columns, where the dot stands
for all row indices. X;; is the reference expression value of gene 7 in cells of type j, p the number
of genes, and ¢ the number of cell types in X, respectively. Further a matrix Y € RP*™ with bulk
profiles of n cell mixtures Y., in its columns and a matrix C' € R?*" with the cellular compositions
of the mixtures C' ; as columns is introduced.

2.2 Loss-Function Learning

Following the established linear DTD algorithms, the mixture Y., is approximated by a linear
combination of reference profiles (the columns of X) with C j; as weights and the composition of
the k-th mixture C. j is estimated by minimizing

,Cg(Y’k —XC.Jﬁ), (2.1)

where
Ly = [|diag(g)(Yoe — XC.1)l[3 - (2.2)

In contrast to standard DTD algorithms, which determine g by prior knowledge or separate statisti-
cal analysis, g is learned directly from data. To this end it is assumed that a training set of mixtures
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Y. ) from a specific application context with known cellular proportions C'.; with sum one exists.
The entries of g are the gene weights that define the loss function. The aim of the here presented
algorithm is to learn g from the training data such that minimizing £,(y — Xc¢) with respect to c
yields accurate quantifications of cell populations for future samples with similar characteristics as
those used for training.

The newly developed method has two nested objective functions: An outer function L(g) and
an inner function £,4, which is here given by equation . L evaluates discrepancies between the
estimated and the true cellular frequencies of cell types across samples by Pearson correlation:

L(g) ==Y cor(C;.,C;.(g)) subject to g; > Oand ||g][z =1, (2.3)

j=1
where the C‘](g) are the estimates of C;. given g. To evaluate L(g) it is necessary to calculate all
Cj,.(9), which requires optimising £, with respect to all C. ;. Note that if § is a minimum of L, so
is ag for @ > 0. The constraint ||g||2 = 1 is thus needed to ensure unique solutions. Note that

cor(Cj.,a;C;.) = cor(Cj.,C;.), (2.4)
where a; is an arbitrary positive constant. This symmetry is important, since bulk and reference
profiles must be normalized to a common mean across genes or to a common library size. A
normalized reference profile X.; of a cell type reflects the true RNA content X.J of these cells
only up to an unknown factor: X.; = an .j- Large cells with a lot of RNA have smaller o than
smaller cells. The same is true for the bulk profiles Y. ;., where the relation Y. ; = ka/.,k holds. The
deconvolution equation

Vip=XCp+e (2.5)

yields estimates for éjk that reflect the number of cells of type j. However, Y and X are not
observable in practice and consequently, C' is not accessible by DTD directly. So, one needs to work
with X and Y instead.

Note that C., = C. 1/ Z?:l Cjk. Consider now the hypothetical deconvolution formula with

normalized Y but the unobservable true X
Vi =XC) +e. (2.6)

Here, it is assumed C!, = cC. , for all k, where ¢ is a positive constant. In other words it is assumes
that if the library size of Y. . is the same for all samples, roughly the same number of cells are needed
to account for it. This assumption allows to replace Y by Y.

The choice of the correlation in the definition of L(g) also allows to replace X by X. If Eq.

(2.6) is written using X,
q

1
Y.Jg = Z CT]XJCJ/k + € (2.7)
j=1
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is obtained Thus, the estimated cell frequencies are a—le; = a%—cjw and can be quite different from
the training proportions (. in absolute numbers. Nevertheless, they correlate with ;. and will
thus generate small losses L(g).

In summary, data normalization makes tissue deconvolution a non-standard deconvolution prob-
lem. The choice of correlation as loss function allows for estimation of cell frequencies independent
of normalization factors.

The minimum of £, can be calculated analytically, yielding

Clg) = (XTTXx)'XxTry (2.8)
with T' = diag(g). Inserting this term into L leaves a single optimization problem in g. L is

minimized by a gradient-descent algorithm. Let p; and o; be the mean and standard deviation of
Cj.., respectively. For the gradient (for more detailed calculations see Appendix

aL(g) _ i n a (Cor(ci],q Cj,)) 8C]k(g)
9gi J=1 k=1 Cjk g
a n A
1 (cov(C;.,Cj.) , » 9C;k(9)
= ~ = (Cj — o —(Cjx — 15) (2.9)
NI () 03— ) - R ) 2

is obtained. With equation one gets for the partial distribution %;fg)

aéjk < 9 T —1y-t )
= — ((X'TX) " XTY
dg; 0gi (( ) ) i

= (—(XTTX) " (XTs()X) (XTTX) ' XTTY + (XTFX)_lXTé(i)Y)jk .

Written as a matrix one gets

0C(g)
Jg;

= (XTTXx)'xT5() (1 - X (XTTX) ' XTT)Y, (2.10)
where §(i) € RP*P is defined as

(2.11)

. 1 ifi=j =k,
5(Z)jk:{ /

0 else.

The constraints ||g|ls = 1 and g; > 0 were incorporated by normalizing g by its length and by
restricting the search space to g; > 0.
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X AX+H(1-N)y y

Figure 2.1: Left region is convex. For ev-
ery two points in X, the connection line is
also in X. The right region is not convex.
One can find two points x and y where the
line-segment joining these points x and y lies
outside of the gray set X. Picture from [44].

Figure 2.2: An example for a convex func-
tion. The connecting line for every x,y € X
lies on or above the function f. Picture from
[45].

2.3 Loss-Function Learning Problem is not Convex - Counterex-
ample Shown for Hessian with Negative Eigenvalues

Here, it is shown that the loss-function Equation [2.3]is non-convex.

Definition 2.3.1 X C R"” is a convex set, when for every pair of points within the region, every
point on the straight line segment that joins the pair of points is also within the region, thus

Ve,ye X :VA € [0,1]: 2+ ANy —z) € X. (2.12)
Let X C R™ be convex. A function f: X — R is called convez, if
Va,y € X :VA€[0,1]: fa+ My — ) < fz) + A(f(y) — f(2)). (2.13)

Figure shows an example for a convex and a nonconvex region and Figure shows a convex
function.

Definition 2.3.2 A matrix A € R™"*"™ is called symmetric, if
AT = A, (2.14)

Definition 2.3.3 A symmetric matriz A is called positive semidefinite, when the corresponding
quadratic form qa is positive semidefinite, that means

qga(z) >0 VzeR" z#0. (2.15)
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The quadratic form is given by
qa(z) = 2T Az VYo € R™,x # 0. (2.16)

Definition 2.3.4 Let D € R be a non-empty, open subset. Let k be a non-negative integer. The
function f is said to be of differentiability class C* if the derwatives f, ', ..., f*) exist and are
CONntINUOUS.

Theorem 2.3.5 Taylor’s theorem with Peano remainder term Let f : [a,b] — R € C"H!,
n €N, xg € (a,b). This implies the formula for the remainder term of Lagrange

R (o
HOEDY ! k;(v d (x — 20)" + Rn(x; 70), (2.17)
k=0

where Ry, (x;x0) is given by

FU©) — f (o)

n!

R, (x;x0) := (x — )" for a & €[0,1]. (2.18)

Furthermore it holds for the remainder term in the n-th order that
R, (x;20) = o((x — x0)") for x — xy. (2.19)

proof: For proof see Kénigsberger, Analysis 2 [46]. O
The o in theorem is little-o-notation by Landau. The notation f = o(g) or f € o(g) means
that f is growing slower than g.

Theorem 2.3.6 Criterion of convexity (see [46])
Let f:U — R be a C?-function on a convex and open set U. Then:

i) [ is convez if and only if f"(x) >0 VzeU.
ii) f is strictly convez if f"(x) >0 VzeU.

proof: For proof see Kénigsberger, Analysis 2 [40]. O
As the calculation of U is not taking place in R, but in R?, the theorem needs to be upgraded:

Theorem 2.3.7 For f € C? and X C R™ open, convex and nonempty holds:
f is convex on X if and only if Vo € X :  V2f(x) is positive semidefinite.

proof: =: Show first:
f € CL(R™), X € R"™ is convex and not empty. Then:

fis convex in X & Vr,ye X : f(y) > flz)+ (V) (y—x). (2.20)
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First the direction “=" of equation (2.20) is proven. Let f be convex on X, then

fle+ My —2) < f(@)+A(fy) - f(z)) VA€[0,1],Vr,y € X.
= W)= f(z) + A(f(y) = f(2)) = f(z+ Ay —x)) = 0. (2.21)

As f € C?(R™) it ensues that W()) is continuously differentiable as composition of continuously
differentiable functions and ¥(0) = 0. So

V'(A) = fy) = fz) = (Vf(z+ Ay —2)" (y — @)
V'(N) = fy) = flz) = (V)" (y - 2). (2.22)

U(A) >0 and ¥(0) = 0 implies ¥/(0) > 0 because ¥ € C2(R"). It follows with equation (2.22)) for
f(y) that

Fly) = (@) + (V) (y — ). (2.23)
Second, direction “«<” of equation (2.20) is proven. Let y be given by y = z + tc with = € X,

¢ € R™ and t > 0 sufficiently small. Since X is convex and not empty it follows that for sufficiently
small ¢t alsoy =x +tc € X Vce R" With Equation (2.22) follows

0< flz+te) — fx) —t(Vf(x) e (2.24)

With the Taylor formulas in theorem and TTaylor = @ + tc and 2o Taylor = « follows for
fy) = flz +te)

flx+te)=f(x) + (V@) (z+tc—z) + %(w +te—2)'V3 (2 + te — x)?

rV2f(€) — V*f(z)
2!

v~

o(t2)

With equation (2.25)) it follows for equation ([2.24)

+ (x +tc— ) (x+tc—x). (2.25)

flz+te) — f(z) —t(Vf(z) e :%tQCTv2f(£L')C +0(t?) >0 | : t;
V2 f(x)e + 20;;52) >0 (2.26)
With ¢ — 0 4 0 one gets
tiiggo <CTV2f(x)C + 2Ot(2tQ)> > 0. (2.27)

Therefore the Hessian is positive semidefinite.
Now the other direction of the theorem is shown.
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<: Now the assumption is Vo € X : V2f(z) is positive semidefinite.
One has to show that f is convex (see definition ).
As f € C? and X is open, convex and nonempty, there exists for every z,y € X a & €]0, 1] such that

fly) = f(@) + (V@) (y —z) - %(y — )"V f(z +E(y — 2)(y — ) (2.28)

holds. As Vx € X it holds that V2 f(z) is positive semidefinite and so 27 V2f(x)z > 0V x € X (see
definition [2.3.3)). It follows

1
W =)' V(@ + &y —2)y —2) > 0. (2.29)
With equation (2.28)) this yields

f) > f@) + (V@) (y — o). (2.30)

Let T :=x+ x4+ Ay — z) with XA €]0,1]. T € X for 2,y € X since X is convex. Using equation
(2.30) with (z,y) = (7, x) and with (z,y) = (T, y) yields

f(z) 2f(@) + (Vf(@)" (2 — ) [-(1=2)
+ fly) 2f@) + (V@) (y - 7) [+
(1 =Xf(z) +Af(y) 2f(z+ Ay —2)) +0 (2.31)
which is the definition of convergence (see . 0

To prove non-convexity, theorem [2.3.7 gets applied. It holds g; >0 V i€ 1,...,p. Note that at
least as many g; need to be non-zero as cell types are included. Otherwise the corresponding system
of equations remains under determined. Further the normalization ||g|| = 1 is to ensure uniqueness
of the solution. Here this constraint is neglected, since it does not change the subsequent arguments.

G is part of a p—dimensional sphere and G is nonempty and convex. Furthermore, G is not
open since g; > 0 V ¢ € 1...p. First the inner part G of the region G is considered. Figure
illustrates the region G for ¢ € R? for 3,2 and 1 cell type, respectively. For ¢ > 1, G is convex,
nonempty and open. Furthermore, the covariance and the standard deviation are C* and thus also
C (g) is C*°, where it gets assumed that the standard deviation remains non-zero in general.

The Hessian of the outer loss-function L(g) is given by (for more detailed calculations see
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Figure 2.3: For three genes x,y and z
and three cell types the allowed region G
corresponds to the green area. For two
cell types G corresponds to the green
area and its border (blue), where the
lineszx=y=0,z=y=0,andx =2z =
0 are excluded. Theorem is only
valid on G. Picture from [47].

Appendix

9C;i(9) 9C;(9)

8 (8(—COI(Cj’.,éj7.))>

j=1 k=1 8C‘jk 8C’jk 391 8gi
®

(2.32)
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For @ and B one gets

1 ) R cov(C<7.,CA'-7.) . R 1
QY o5 (A — &) (njaf 2 (Ck = f5) = —(Ce = Hj))
1 N 2 o
+ 20,57 (Cik — 1) (Cli — fi5) — ;?COV(CJ,-a C5.)(Clk — i)
+(n — 1)cov(Cy.. CAJ,)} (2.33)

and
® = ((XT'TX)' X {s()X(XTTX)'XT5(i) (-1 + X(X'TXx)'X'T)
+0(1) X (XTTX) ™ [XT6()X(XTTX) ' XTT = XT6(D] 1Y), - (2.34)

Non-convexity is shown by a counter example. Here, specific values for X, C, and Y are chosen,
subject to the constraints

1' XZ,]ZOVZE{lv"'gp} andeE{l,...,q}7
2. Cjp>0Vje{l,...,q}andV k€ {1,...,n},
3. Vi, >0Vie{l,...,q andVEke{l,...,n}.

For the reference matrix X

1 00
0 20
X = 00 3 (2.35)
0 0 4
is chosen and for the distributions in C'
2 1
C=14 6]. (2.36)
3 2
The bulk profiles Y were chosen as
1 5
2 6
Y = 3 7 (2.37)
4 8

To prove non-convexity, it has to be shown that the Hessian matrix has negative Eigenvalues. For
calculating the Hessian H the reference matrix X and the bulk profile Y are normalized to 100
counts in every column. The composition C' is normalized to 1 for each column.
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The estimated bulk profiles C' are calculated with equation 1j by using g = (i, i, i, %)
Equation (2.32)) yields the Hessian H,

0 0

0 0
14.959681  6.333319
6.333319 —27.626320

0 0
0 0
H= 2.
0 0 (2.38)
0 0
The Eigenvalues are 15.88160, 0, 0 and -28.54824.
One of four of the Eigenvalues is negative. Thus, function equation (2.3|) is non-convex for X,

C, and Y as given by equations (2.35)), (2.36]), and 1' With theorem the Hessian of the

regarded loss-function learning problem is not convex in GG and therefore not on G.

2.4 Algorithm for Loss-function Learning

Here, the used algorithm for loss-function learning is presented. This algorithm uses a coordinate
descent in condition with line search. The update step is

.
BRI s.vL  forse{0,1,. .. Smax)s (2.39)

Gstep s = Jstarting point
max

where VL is the gradient of the loss function. Step size is the step length in the direction VL and
Smaz 18 the maximum number of points that are evaluated along the gradient. Further negative en-
tries in gstep s are set to zero such that the constraint g; > 0 holds. For every step s € {0,1,. .., Smax}
one calculates the corresponding g5 and the value of the loss-function L. There are three possible
cases where the position of the optimal sqp¢, which corresponds to the minimum in the loss-function
L, is localized. All cases are exemplified in Figure 2.4}

1. The loss-function L takes its minimum for sopy € {1,2,...,5max — 1}. In this case, it gets
updated and the next iteration starts:

Inew start = YGsopt (240)

2. L takes its minimum for sopt = Smax. Here, the maximum in the direction of the gradient is
not yet reached. The search continues in the direction of the calculated gradient and gets not
updated in the next iteration. The new starting point of the gene weight is

Onew start — Ysmax (241)
and the step size in the next iteration is doubled.

3. L takes its minimum for sqpy = 0. So the starting point for g is very near to the maximum
in the direction of gradient. To find a better solution, the same starting vector g is used and
the step size is divided by 10. Here, an update of the gradient is not necessary.
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a)

Figure 2.4: The three cases of minimum positions are shown here. The red arrow points to the
minimum of the loss-function. In figure (a) the minimum is reached within the number of steps.
In figure (b) the minimum is not reached after the maximal step number, therefore the step size is
increased. In figure (c) the starting step sg is too near to the minimum of the loss function, which
makes it necessary to reduce the step size.

As starting step size the number of steps is chosen in order to minimize the number of initial
parameters. Then, in every iteration either the gradient or the step size is updated. When a
minimum of the loss-function L is reached in sopt € {1,2,. .., Smax — 1} a new gradient is calculated
(Figure a). The step size is updated when the minimum is not yet reached or if it is reached
in the first step, receptively (Figure b an ¢). The number of steps is given by the user. For
initialization g = (1, ..., 1) gets used.

2.5 Simulation Study on Artificial Data

In this section it gets shown that loss-function learning reliably identifies cell markers for DTD.
A reference matrix X consisting of four reference profiles (columns) and six genes (rows) gets

defined as

X1 : (2.42)

Il
oo o w
DN O OO
© O oo
N oG OO

and normalized column-wise to a value of 100.

The cellular compositions of the artificial bulk profiles were simulated by randomly drawing
values between zero and one for each cell type and then normalized to the sum of 1. By multiplying
the reference matrix X with the cellular compositions in C', bulk profiles Y are obtained. 50 artificial
bulk profiles for testing are simulated and normalized like the reference profiles. In order to proof
the autonomy of the learned models from the training data 100 different cellular compositions C'
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are simulated to give 100 different artificial training mixtures. Every training mixture consists of
100 artificial bulk profiles.

In the presented loss-function learning scenario, column 3 and 4 of X get ignored and only the
first two get used for loss-function learning.

The gene weight of \/g is assumed for every gene in the beginning. This yielded a mean

correlation of 0.673 £ 0.039 for the training sets and of 0.673 in the test set for the two cell types.
The estimated gene weights are given in Table

std. model | 0.637 + 0.039
gene 1 0.748 £ 0.005
gene 2 0.252 + 0.005
gene 3 0£0
gene 4 0£0
gene 5 0+0
gene 6 0£0
loss-fct. learned model 1+0

Table 2.1: Mean value and standard deviation for 100 complete optimization runs applied to the
ideal loss-function learning problem. Each was optimized for 100 different randomly chosen cellular
compositions. Only for the two genes which carry information the algorithm calculated a gene
weight greater than zero. The corresponding average correlation for the two considered cell types
was close to 1 on simulated test data.

The algorithm obtained non-vanishing weights for gene 1 and 2, while the other gene weights were
equal to zero. Thus, the algorithm correctly selected those genes which had a vanishing contribution
in cell types 3 and 4. The results of the gene vectors after loss function learning were manipulated
for all genes, to check their influence on the overall deconvolution result. For this manipulation a
random value between zero and one for the gene of interest were taken and then the manipulated
vector of gene weights g were renormalized again to one. With these new gene vectors the artificial
bulk of the test set was deconvoluted. Results can be seen in table 2.2

manipulation in | result of loss-fct. learned model

no manipulation 1+0
gene 1 1£0
gene 2 1£0
gene 3 1£0
gene 4 1+0
gene b 0.870 = 0.098
gene 6 0.840 + 0.106
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Table 2.2: Mean value and standard deviation for 100 complete optimization runs applied to of the
ideal loss-function learning problem before and after gene manipulation. The results are shown on
the test set.

Manipulation in gene one and two had no influence on the deconvolution results. The loss-function
learning problem in this case is purely analytically solvable. The gene weight corresponds to a
multiplication of the first two rows of Y = X with a constant value. This has no influence on
the solution C'. Gene three and four did not contribute to the deconvolution and consequently the
average correlation over the considered cell types did not change. Here the values in the reference
matrix are zero and thus, according to equation , a non-zero value in ¢, i.e. in I', had no
influence on the resulting cell-type distribution C’(g) For the genes five and six a manipulation
led to a decreased value for the overall correlation. For these genes the reference matrix has non-
vanishing entries for all four cell types. Here, the deconvolution of cell type 1 and 2 is confounded
by the amount of cells of type 3 and 4 and consequently the performance gets lower in accuracy.

Next, the reference matrix X was changed slightly and the first two cell types were considered
for deconvolution, as previously. The new reference matrix becomes

8 4 5 0
36 00
007 4
Xo=1g 0 1 s (2.43)
5299
6 29 7

The remaining simulation study was designed as previously (100 training sets with 100 artificial
bulk profiles each and 50 artificial bulk profiles as test set). The results are shown in Table

std. model (training set) ‘ 0.655 £ 0.041
gene 1 0.751 + 0.005
gene 2 0.248 4+ 0.005
gene 3 0£0
gene 4 0£0
gene 5 0 4+ 0.001
gene 6 0£0

loss-fet. learned model (test set) ‘ 0.906 + 0

Table 2.3: Mean value and standard deviation for 100 complete optimization runs applied to the
ideal loss-function learning problem. Results for X5. The results are shown for the test set.

Although the gene weights were similar to the first simulation study, the performance analytically
from a correlation of 1 to 0.906. Note that the deconvolution problem is no longer perfectly solvable
due to confounding contribution of cell types 3 and 4. The gene weights were manipulated as in
the previous simulation study and yielded the results shown in Table
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manipulation in | result of loss-fct. learned model

no manipulation 0.906 = 0
gene 1 0.906 £ 0.001
gene 2 0.906 £ 0
gene 3 0.906 £ 0
gene 4 0.906 = 0
gene 5 0.781 + 0.080
gene 6 0.784 + 0.068

Table 2.4: Mean value and standard deviation for 100 complete optimization runs applied to the ideal
loss-function learning problem before and after gene manipulation. The shown results correspond
to reference matrix Xo and are again evaluated on test data.

Manipulating the genes two to four had no influence on the results as discussed previously. Also
manipulation of gene one had no influence. As the gene weights vectors were heavy on the first
two genes and the others only showed vanishing entries, equation led to a simplified equation
system consisting of two equations for two variables. This reduced mathematical expression again
is perfectly solvable. A change in the gene weight vector of gene one corresponds to a multiplication
of the corresponding equation gY = gX¢, with a constant factor and has therefore no influence on
the results. The last two genes had entries in all cell types and thus a change in the gene weights
led to lower correlations than in the first simulation study which was shown above.
As third example the reference matrix Xs is considered,

00 8 4
0036
745 7

Xs=|] 5 5 4 (2.44)
9 9 5 2
9 7 6 2

Now, there are zeros in the first two genes of the two investigated cell types. The realization of the
experiment was the same as in X; and X5. The results for the gene weights and their standard
deviation are itemized in table 2.5l

std. model (training set) 0.954 4 0.050
gene 1 0.013 £ 0.018
gene 2 0.013 + 0.018
gene 3 0.025 + 0.032
gene 4 0.031 £ 0.042
gene 5 0.897 £ 0.136
gene 6 0.020 = 0.028

loss-fct. learned model (test set) ‘ 0.971 + 0.002
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Table 2.5: Mean value and standard deviation for 100 complete optimization runs applied to of the
ideal loss-function learning problem. Results for X3. The shown results correspond to the artificial
bulk of the test set.

Again the resulting mathematical expression is not analytically solvable. The starting correlation
for the standard set with equally distributed starting genes was quite high. The gene weight was
mainly focused on gene five. The manipulation results are listed in table

manipulation in | result of loss-fct. learned model

no manipulation 0.971 + 0.002
gene 1 0.971 + 0.002
gene 2 0.971 £+ 0.002
gene 3 0.412 + 0.192
gene 4 0.779 £ 0.060
gene 5 0.968 £+ 0.012
gene 6 0.848 + 0.070

Table 2.6: Mean value and standard deviation for 100 complete optimization runs applied to the
ideal loss-function learning problem before and after gene manipulation. Calculations for the third
reference matrix X3. The results are shown for the artificial bulk of the test set.

Here, again, gene one and two had no influence on the results, as their entries in the matrix were
zero. Gene three had a high influence since here the overall correlation dropped while manipulating
the corresponding entry in the gene vectors. Even if gene five had a high value of the gene weight
vector, the influence on the overall correlation result was small as the value dropped only slightly
(0.968 vs 0.971) under manipulation. The other two genes also contributed to a decreased value in
the overall correlation.

The last example considers a reference matrix X4 with non zero entries in every gene for every
cell type. The matrix was given by

Xy = (2.45)

Sy Ot W Ut W
NN O
O © = g = Ot
~N O TR O N

Here, obviously no gene is destined to be used by the algorithm for deconvolution. The numerical
simulation was carried out as before. The results for deconvolution and gene weights are listed in

table
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std. model (training set) 0.648 £ 0.045

gene 1 0.999 + 0.004
gene 2 0.000 + 0.000
gene 3 0.000 +£ 0.001
gene 4 0.000 + 0.000
gene 5 0.000 £ 0.002
gene 6 0.000 £ 0.001

loss-fet. learned model (test set) ‘ 0.936 + 0.001

Table 2.7: Mean value and standard deviation for 100 complete optimization runs applied to of the
ideal loss-function learning problem. Results for X4. Results are shown for the artificial bulk of the
test set.

The gene weight was concentrated on gene one. Manipulating the gene vectors led to the results
listed in table 2.8l

manipulation in | result of loss-fct. learned model

no manipulation 0.936 £ 0.001
gene 1 0.934 £ 0.015
gene 2 0.758 + 0.003
gene 3 0.842 4+ 0.001
gene 4 0.665 = 0.005
gene b 0.068 = 0.074
gene 6 0.204 4+ 0.074

Table 2.8: Mean value and standard deviation for 100 complete optimization runs applied to the
ideal loss-function learning problem before and after gene manipulation. Calculations for the fourth
reference matrix Xy4. The results are shown for the artificial bulk of the test set.

The results display that gene one has no significant influence on the deconvolution results, even
if the corresponding value of the gene weight vector was very high. Gene two to four had more
influence on the deconvolution result. Manipulating the last two genes had a significant influence
on the deconvolution results. Here, a deconvolution was not possible any more.

Next, biological variability was studied (see section . The perfectly solvable example X3
was chosen for simulation on 100 training sets with 100 artificial bulk sets each and a test set with
50 artificial bulks consistent with the previous procedures. For simulating the biological variability,
an error, drawn from a normal distribution with mean zero, was added and an increasing standard
deviation between 0.1% to 100% of the total number of counts in the bulk samples of the training
sets. For all perturbations the g=1 model was compared to the model optimized by loss-function
learning. The results of the mean correlation for training and test set are shown in figure [2.5] The
standard model (blue) gives for every perturbation step high variance in the deconvolution results.
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With increasing perturbation, the average correlation drops. For the loss-function learned model
(green) only small variance in the results for small perturbations up to 1% are shown. Here the
loss-function learning algorithm was able to calculate a model for deconvoluting the bulk profiles,
despite the perturbations. For higher perturbations the algorithm showed less performance and the
results within one perturbation step varied within a broader range. Also, for high perturbations
the loss-function learned model led to better results than the standard model on average, which
showed a poor performance in general. Figure displays the gene weights of every set for all
perturbations. With increasing perturbation, the range of the gene weight for the considered gene
was increasing. The weights are for most sets concentrated on the first and second gene. Gene
three and four stay at or near zero for all perturbations. Even for high perturbations the algorithm
realizes that these two genes are not helpful for deconvolution. For higher perturbations gene five
and six exhibit very high values for some data sets.
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Figure 2.5: Average correlation of the standard model and the model from loss-function learning.
The training sets were perturbed by an error simulated from a normal distribution with standard
deviation ranging from 0% to 100% of the total count number of the bulk measurements. Small
perturbations up to 1% have only a small influence on the results from loss-function learning (green).
For higher perturbations the variance within one perturbation increases and the average correlation
drops fast. The standard model (red) shows a similar distribution as the loss-function learned model.
However the deconvolution results show higher variance in the results for small perturbations.
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Figure 2.6: Gene weight distribution vs standard deviation for the six genes after loss-function
learning. For every gene, gene weights versus perturbation is plotted for all samples. As for the
unperturbed model gene one exhibits the highest value for most samples, followed by gene two.
These two genes are the genes which held the deconvolution information in an unperturbed data
set. Gene three and four continuously show very low gene weights. The weights in gene five and six
respond with higher values to greater perturbation in some of the data sets.
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Chapter 3

Results of DTD with Melanoma Data

In this chapter the developed loss-function learning algorithm for digital tissue deconvolution is
applied to single-cell RNA sequencing data of melanomas. Section gives a short overview over
the data set. Next a biological description of melanoma tumors and the analyzed cell types follows
in section In section [3.4] - it is shown that the presented loss-function learning algorithm
improves deconvolution results in different settings. First, it is pointed out that incomplete reference
data does not deteriorate the deconvolution (section . Next, it is proven that digital tissue
deconvolution is able to quantify small cell populations (section and that it can disentangle
closely related cell types (section . Even for small training sets loss-function learning improves
performance. The starting point of the deconvolution and the used training mixtures have only
little influence on the results which is shown in section Section [3.7] elaborates how high-
performance computing was used for calculating a model with five times as many genes as before
and demonstrates that the developed procedure is able to detect cellmarkers. Results for smaller
and larger data sets are compared in section Finally it is displayed that loss-function learning
outperforms the state of the art method CIBERSORT (section [3.10]). The discussion of the results
follows in chapter

3.1 Description of the Melanoma Dataset

For both training and validation, expression profiles of cellular mixtures of known composition
needed to be available. Expression data of melanomas whose composition has been experimentally
resolved using single-cell RNASeq profiling [48] got used for the calculations. The data included
4,645 single-cell profiles from 19 melanomas. The cells were annotated as T cells (2,068), B cells
(515), macrophages (126), endothelial cells (65), cancer-associated fibroblasts (CAFs) (61), natural
killer (NK) cells (52), and tumor/unclassified (1,758). The first 9 melanomas defined the validation
cohort and the remaining 10 the training data. Figure illustrated the data set.

First, data were transformed into transcripts per million. Then, for each cell cluster we sampled
20% of single-cell profiles in the training data were sampled, summed up, normalized to a common
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single-cell RNASeq of 19 melanoma tumors
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Figure 3.1: In upper part of the figure the fractions of patients in training and validation cohort
are visualized. The lower part shows the distribution of the different cell types.

number of counts, and removed from the training data. This yielded reference profiles X. ;. The
1,000 genes with the highest variance across all reference profiles were used to train models.

The sum of all single-cell profiles of a melanoma yielded the bulk profiles. In addition, a large
number of artificial bulk profiles were generated by randomly sampling single-cell profiles and sum-
ming them up. All bulk profiles were normalized to the same number of reads as those in X. ;.

3.2 Melanoma and Cell Type Characterisation

Melanomas are cancers which are derived from melanocytes, the pigment-containing cells. They
normally occur in the skin, but rarely at other places like mouth, intestines or eye [49]. A large
majority of melanomas are caused by ultraviolet light exposure in humans with fair skin [49] [50].
Others are derived from moles [49]. Increased risk for melanomas is indicated by the existence of an
exuberant number of moles starting from childhood, family members with melanomas, poor immune
function and some rare genetic defects [51]. Melanomas are detected through biopsy or analysis of
suspicious skin lesions. When detected early, the prospects of successful treatment are high. The
cancer is then totally removed by surgery. Yet, when the lymph nodes are affected, the healing
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prognosis is much worse. New therapies with immunotherapeuthical approaches for treatment of
spread melanomas are currently developed and tested in clinical studies. Among other things, the
therapeutical potential of melanoma specific T cells [52] and antigene presenting dendritic cells are
tested [53,54]. But in contrast to leukemia, which is also tested for several cellular immunotherapies,
the melanoma is a firm and compact tumor. As such, it is not as easily reached by immune cells as
leukemia cancers.

In healthy patients the main task of T cells is to identify and eliminate virus-infected cells. The
assumption is, that T cells are also able to recognize and eliminate cancer cells. Due to mutations
in the tumor, tumor-specific neo-antigens are arising [55), [56]. They help the tumor to protect itself
against the immune system. T cells, which normally scan the cells for damage, do not recognize these
mutated cells as invaders, therefore the malignant cells can proliferate. For therapeutic efficiency
of immunotherapies these neoantigens are considered to be important [57], as it is suggested that
neo-antigens are commonly recognized by intratumoral CD8+ T cells [57]. CD4+ T helper cells
play a key role in the regulation of most antigen-specific immune responses. The response of CD4+
T helper cells to melanomas and other tumors helps to develop optimal anticancer vaccines and to
create T cell related therapies [57].

B cells are part of the adaptive immune system. They produce antibodies and present antigens.
B cell receptors on their cell membrane allow them to bind on specific antigens and initiate an anti-
body response to it [58]. The microenvironment of tumors is often infiltrated by B cells. Depending
on the tumor, the immune response to the tumor can be positively or negatively regulated. It is
found that particularly in melanomas without metastases, the content of tumor associated B cells is
significantly higher as in melanomas with metastases. Furthermore the overall survival of patients
is significantly correlated with a higher number of tumor associated B cells [59]. A comparison
between melanoma-associated and peripheral blood-derived B cells showed that they are distinct in
abundance, clonality and gene expression. The B cells in the tumoral content may act as antigen
presenting cells. They help to initiate an anti-tumor immune response based on T cells [60]. B cells
have also the ability for acquiring antigens via the B cell receptor. These antigens can be transferred
to other antigen-presenting cells by direct cell contact, i.e. to macrophages which activate CD4+ T
cells.

Macrophages are white blood cells which are part of the innate immune system. They help to
activate the adaptive immune system by initiating defense mechanisms based on recruiting other
immune cells. For example, they activate T cells by presenting them antigens [61]. In solid tu-
mors, tumor-associated macrophages (TAM) are important components in the microenvironment
of the tumor. They emerge from monocytes and exhibit in each differentiation state various im-
munosuppressive functions which maintain the microenvironment of the tumor. Drugs or stromal
factors can simulate the tumor-associated macrophages to produce specific chemokines which re-
cruit tumor-infiltrating lymphocytes. Therefore the macrophages constitute ideal targets for cancer
immunotherapy [62]. TAMs are involved in all stages of tumor development. In an early stage
they establish an inflammatory micorenvironment. Later they suppress the anticancer activity of
the immune system. Another feature is that they enhance migration and invasion of cancer cells,
thereby contributing to the metastatic process [63].
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Endothelial cells play an important role in the cancerogeneous promotion. The endothelium
constitutes the inner surface of blood and lymphatic vessels. As such a barrier between circulating
blood or lymph in the lumen and the rest of the vessel wall is formed. The endothelium is involved
in most disease states [64]. The tumor extravasation through the membrane of endothelial cells is
a critical step in the metastatic progress. Tumor cell extravasation is promoted by the interaction
of metastatic melanoma cells with the endothelial cells [65].

A further cell type of the immune system are the natural killer cells which belong to the lym-
phocytes. They classify and kill abnormal cells like tumor and virus cells. NK cells have no antigen
specific receptors and belong to the innate immune system [66]. They are regarded for the de-
velopment of novel therapies as they participate in the early immune response against melanoma.
Also their interaction with dendritic cells and cytokine secretion assists in the development of an
adequate response of the adaptive immune system. As the melanoma cells often escape the CD8+
T cell recognition due to the down-regulation of major histocompatibility complex class (MHC) I
molecules, NK cells have the scope to detect and destroy melanoma cells which express low levels
of these molecules which makes NK cells potential candidates for melanoma immunotherapy [67].

A cell type which supports melanomas are the cancer-associated fibroblats (CAFs). The tumor
microenvironment displays a high number of these complex cells [68], which are unable to undergo
apoptosis [69]. CAFs create an environment supportive to tumor growth and metastasis by produc-
ing cytokines and chemokines. Moreover they dispose pro-inflammatory and pro-angiogenic factors
[69]. The strategy in targeting CAFs is to create a tumor-resistant microenvironment in order to
suppress the growth of melanomas which carry different genetic mutations. However until now, the
mechanism by which CAFs help melanomas to progress and how they contribute to drug resistance
[70] is not precisely known.

3.3 Loss-Function Learning Improves DTD Accuracy in the Case
of Incomplete Reference Data

From the training cohort 2,000 artificial cellular mixtures were generated. For each of these mix-
tures, 100 single-cell profiles are drawn randomly, their raw counts are summed up and normalized
to a fixed number of total counts. Analogously, 1,000 artificial cellular validation mixtures were
generated.

Then, the reference matrix X got restricted to three cell types (T cells, B cells and macrophages)
after drawing 20% of every cell type including tumor/unknown to generate a very realistic distri-
butions in the training sets. Hence endothelial cells, CAFs, NK cells and tumor/unclassified cells
in the mixtures are not represented in X. The variance of all genes in X was calculated and then
the 1,000 most variable ones were used for calculation of the loss function. For standard DTD
with g = (1,...,1) correlation coefficients of 0.70 (T cells), 0.39 (B cells), and 0.52 (macrophages)
between true and estimated cell population sizes for the validation mixtures were observed (scatter
plots for validation set in Figure (a)-(c)). These improved to 0.87 (T cells), 0.89 (B cells), and
0.84 (macrophages) for loss-function learning, after 1000 iterations of the gradient descent algorithm
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on the training data are ran (scatter plots for validation set in Figure (d)-(f)).

In order to test whether additional information improves the learned model, the 1,000 most
variable genes based on all six cell types including tumor cells were chosen. Minimized again only
for T and B cells and macrophages, correlation coefficients of 0.87 (T cells), 0.89 (B cells) and 0.82
(macrophages) for the validation mixtures were obtained. Compared to the model above, which
selected genes from only three of the considered cell types, the deconvolution results are nearly the
same.

The loss-function learning algorithm converged for the training and test set (blue and green line
in Figure g) within the 1000 iterations run. The red line displays the mean correlation of the
standard model.Further, it can be observed that the deconvolution improves fastest in the first few
steps and then converges at about 300 steps. Note that no signs of overfitting are observed, as can
be deduced from by the green line representing the test data.

The heatmap for the 50 most important genes (genes were ranked by g; x var(Xj;.)) is shown in
Figure h. The map clusters genes characteristic of T cells, B cells, and macrophages, while no
clusters for endothelial cells, CAFs and NK cells are observed. The latter cell types were part of
the artificial bulk but not considered in the deconvolution.

Next, it got tested whether the calculated cellular composition using loss-function learning
depends on the starting point g of the algorithm. For this purpose, the gradient descent algorithm
is tested on the 100 most variable genes for 100 different, uniformly drawn starting points g € [0, 1]7.
The maximal Euclidean distance between the resulting composition vectors ¢ was 2%.

To test the limits of the approach, all but the macrophages are excluded, which account for
less than 3% of all cells, from the reference data X. Here the 1,000 highest expressed genes for
macrophages are chosen. It can be observed that standard DTD broke down, while loss-function
learning yielded a model that predicted macrophage abundances that still correlated well (r = 0.83)
with the true abundances (Figure . Figure ¢ shows the corresponding heatmap of the
reference matrix X. It can be observed that the learned model focuses on genes that characterize
macrophages.

3.4 Loss-Function Learning Improves the Quantification of Small
Cell Populations

Data for the mixtures of T cells, B cells, macrophages, endothelial cells, CAFs, NK cells and
tumor /unclassified cells were generated in the same way as before. All cells except the tumor cells
were used in X. This time the abundance of B cells in the simulated mixtures at 0 to 5 cells, 5 to 15,
15 to 30, 30 to 50, and 50 to 75 out of 100 cells is controlled. Not surprisingly, small fractions of B
cells were harder to quantify than large ones. Deconvolution results for the standard deconvolution
model with g = 1 calculated for every B cell content are shown as red diamonds in Figure [3.4] a.
Loss-function learning improved the accuracy for all amounts of B cells, but the improvements were
greatest for small amounts (Figure a). With only 0 to 5 cells in a mixture the accuracy improved
from r = 0.22 to r = 0.79. Furthermore, it could be observed that loss-function learning on small
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Figure 3.2: (a)-(c) Scatter plot for the validation sets for standard DTD with ¢ = (1,...,1).
Loss-function learning improved the results for all cell types (d)-(f). (g) Average correlation versus
optimization steps for loss-function learning. The blue line corresponds to the training data, the
green line to the test data. For comparison the g=1 model, marked red, is included. Plot (h) shows
the heatmap of the 50 most important genes (genes were ranked by g; x var(X;.)). The algorithm
focuses on genes that separate T and B cells and macropages. Blue corresponds to low expression
and red to high expression.
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B cell proportions yielded a model that was highly predictive of B cell contributions over the whole
spectrum (Figure a green stars). Furthermore the trained model got extrapolated to the sample
mixtures containing a lower B-cell fraction of between 50% to 70%, (Figure a orange Crosses).
Here the model lost performance compared to the loss-function learning model for every B cell step.
With higher amounts of B cells in the mixtures it was not necessary for the model to specialize on
small amounts of the cell type.

If the top-ranked genes of the model learned for the small B cell population are compared
(Figure [3.4p) to that of the macrophage-focussed simulation (Figure[3.4]¢), it can be observed that
the former still comprises marker genes to distinguish all cell types, while the latter focuses on genes
that characterize macrophages.

3.5 Loss-Function Learning Improves the Distinction of Closely
Related Cell Types

The cell types that were annotated by Tirosh et al. [48] displayed very different expression profiles.
If one is interested in T cell subtypes such as CD8+ T cells, CD4+ T-helper (Th) cells, and
regulatory T cells (Tregs), reference profiles are more similar and DTD is more challenging. The
fraction of annotated T cell profiles get subdivided as follows: all T cells with positive CD8 (sum
of CD8A and CD8B) and zero CD4 count were labelled CD8+ T cells (1,130). Vice versa, T cells
with zero CD8 and positive CD4 count were labelled CD4+ T cells (527). These were further split
into Tregs if both their FOXP3 and CD25 (IL2RA) count was positive (64), and CD4+ Th cells
otherwise (463). T cells that fulfilled neither the CD4+ nor the CD8+ criteria (411) contributed
to the mixtures, but were not assessed by DTD. The reference matrix X, here consisting of T cells,
B cells, macrophages, endothelial cells, CAFs and NK cells, was augmented by the selected T-cell
types and thereby replaced the original T-cell labeling with the more specific profiles for CD8+ T
cells, CD4+ Th and Tregs. Then 2,000 training and 1,000 test mixtures were simulated as outlined
before.

For standard DTD with g = 1, correlation coefficients of 0.19 (CD4+ Th), 0.53 (CD8+), and

o1



,\
&

o
— 7
W/w v ¥
[ee]
N -
o &
g o O
8 /
— q —
T o ©
LI) /
m ~ o
o
O pu—
© T T T T T
n n o o n
| — (97] n N~
o | | | |
LN L0 o o
— o Te]
B cells [%]

T cells
B cells
macro.
endo.
CAFs
NK cells

c3
COL1A1
c7
MMP1

vz
IFI30
COL3A1

AIF1
CiR
MMP2

ADAMTS1
D1

TFPI
VWF

2
93
=2

S1PR5
cD19
BANK1
MS4A1
CD79A
cD79B
TYROBP
SPP1
cD68
c1aB
MS4A6A
cD14
FCN1
C1QA
FOLR2
VsIGa
MSR1
CSFIR
KRT19
GREM1
CLDN11
FBLN1
C100rf10
THBS1
CYR61
IGFBP7
SPARCL1
GNG11
MMRN1
ECSCR
ccLi4
CLDN5
EGFL7
HYAL2

~
(¢
~—

T cells
B cells
macro.
endo.
CAFs
NK cells

i8
23

IFI30
vz
csT3
GPX1
GRN
IFITM3
TYROBP
FCERI1G
ccL4
RGS1
RNASEL
SPP1
cpes
FCNL
cp14
APOCL
MS4AGA
AIF1
c1Q8
S100A9
C1QA
ciqe
B2M
MTRNR2LS
MTRNR2L2
HLA-DRA
co74
LAPTMS
HLA-DRB1
HLA-DPAL
SRGN
SATL
ZFP36
PSAP
VIM
FTL
FTHL
TMSB10
GAPDH
RPL3
RPS8
RPL19
UGDH-AS!

Figure 3.4: Plot (a) shows how the correlation between predicted and true cellular frequencies
for B cells depends on the proportion of B cells. The blue triangles correspond to models from
loss-function learning and red diamonds to the standard DTD model with ¢ = 1. Furthermore, the
green stars show how the model trained on mixtures with 0 to 5% B cells extrapolates to higher
B cell proportions. The orange line in contrast was trained on mixtures with 50 to 75% B cells
and extrapolates to lower B cell proportions. Plot (b) shows a heatmap of the 50 most important
genes corresponding to the green star model (genes were ranked by g; x var(X;.)). Plot (c) shows
an analogous heatmap for loss-function learning on macrophages only. Blue corresponds to low
expression and red to high expression.
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0.58 (CD4+ Th), 0.78 (CD8+), and 0.57 (Tregs) for the here discussed method (Figure [3.5)).

3.6 Loss-Function Learning is Beneficial Even for Small Train-
ing Sets, the Performance Improves as the Training Dataset

Grows

The simulation in subsection was repeated, but varied the size of the training data set. It was
observed that loss-function learning improved accuracy for training data sets as small as 15 samples.
Moreover, with more training data the performance improved and saturated only for training sets

with more than 1,000 samples (Figure .
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Figure 3.6: Performance with and without loss-function learning as a function training set size.
The performance was assessed by calculating the average correlations between predicted and true
cellular contributions over all cell types. The green and blue curve correspond to the performance
of loss-function learning for validation and training mixtures, respectively. The performance of
standard DTD with g = 1 is shown as a red line for the validation mixtures.
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For 20 training sets the loss function and the average correlations for the different sizes of training
sets were calculated. The test set contains always the same 1,000 bulk profiles (Figure . The
training sets had a length of 8,000 simulated bulk samples. For 15 samples, the first 15 from the
simulated bulks were selected, for 30 samples, the first 30 were selected and so on.

For small training sets the performance was sensitive to the individual simulation run, only as
indicated by the large error bars in Figure [3.7] Here the calculated model adapted strongly on the
given training set. This can be seen by the corresponding results for the test set, which also shows
large error bars. However, for all evaluated simulation runs, the resulting model is better than
the standard model (red line), even if only 15 training sets are used. With more training data the
training performance decreased while the test performance increased. In both cases the error bars
became tighter with more samples in the training set. Thus, for larger training sets convergence to
a common value may be observed. Outliers with decrease performance are produced occasionally.
It can be speculated that those may be contributed to the non-convexity of the Hessian (see section
, where the model ends up in a local optimum which is not close to the global extremum.

Since our loss-function learning problem is not convex, the influence of the starting point g to
the result of the deconvolution process was studied. For this purpose, the process was started at
20 different randomly calculated points (gstart:[071]p). This was done again for training set lengths
ranging from 15 up to 8,000 samples. The test set consisted of 1,000 simulated bulk mixtures and
the loss-function learning was done for the 1,000 most variable genes, as previously. Figure [3.8
shows the results. For all randomly chosen starting points the deconvolution without loss-function
learning led to compromised deconvolution results, as shown in red in Figure[3.8 After loss-function
learning the results of training and test set improved for all starting points. As the yielded data of
the learned models spread over a range of approximately 0.1 in correlation, the algorithm converges
to different local optima. The correlation range in the test set turned out to be smaller than in the
training set. In the later case all models led to similar correlation in the test set. To summarize, it
was observed that the starting point exerts only a small effect on the deconvoulution results.

3.7 HPC-Empowered Loss-Function Learning Rediscovers Estab-
lished Cell Markers and Complements Them by New Discrim-
inatory Genes for Improved Performance

A final model, optimized on the 5,000 most variable genes gets introduced. For this purpose 25,000
training mixtures from the melanomas of the training data were generated. With standard desktop
workstations the solution of this problem was computationally not feasible. A single computation
of the gradient took 16 hours (2x Intel Xeon CPU [X5650; Nehalem Six Core, 2.67 GHz|, 148 Gb
RAM), and this needs to be computed several hundred times until convergence. Therefore a High-
Performance-Computing (HPC) implementation of the code by parallelizing equations and
with MPI, using the pbdMPI library ([71], [72]) as an interface was developed. Furthermore
R was linked with the Intel Math Kernel Library for threaded and vectorized matrix operations.
The algorithm was ran on 25 nodes of our QPACE 3 machine [73] with 8 MPI tasks per node and
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Figure 3.9: Scatter plots and correlation results for test sets for loss-function learning with the 5,000
most variable genes.

32 hardware threads per task, where each thread can use two AVX512 vector units. In 16 hours
5,086 iterations were finished, after which the loss defined in Equation was stable to within 1%.

A test set consistent of 1,000 bulk profiles was simulated. The correlation results and scatter
plots are shown in Figure Despite for the two CD4+ T cell subtypes good deconvoluion results
were achieved. The results for the CD+4 T cells were similar to the ones learned for the 1,000 most
variable genes (see Figure . All cell types an their deconvolution results for both gene lenths
are shown in Table The comparison and discussion is in section The high-performance
model includes several genes, whose expression is characteristic for the cells distinguished in the
present study. These include, among others, the CD8A gene, which encodes an integral membrane
glycoprotein essential for the activation of cytotoxic T-lymphocytes [74] and the protection of a
subset of NK cells against lysis, thus enabling them in contrast to CD8- NK cells to lyse multiple
target cells [75]. As evident from Figure NK cells are clearly set apart from all the other
cell types studied by the expression of the killer cell lectin like receptor genes KLRB1, KLRC1,
and KLRF1 [76]. B cells, on the other hand, are clearly characterized by the expression of (i)
CD19, which assembles with the antigen receptor of B lymphocytes and influences B cell selection
and differentiation [77], (i) CD20 (MS4A1), which is coexpressed with CD19 and functions as a
store-operated calcium channel [78], (iii) B Lymphocyte Kinase (BLK), a src-family protein tyrosine
kinase that plays an important role in B cell receptor signaling and phosphorylates specifically (iv)
CDT79A at Tyr-188 and Tyr-199 as well as CD79B (not among the top 150 genes) at Tyr-196 and
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Tyr-207, which are required for the surface expression and function of the B cell antigen receptor
complex [79], and (v) BLNK, which bridges BLK activation with downstream signaling pathways
[80]. The expression of FOXP3 is also highly cell specific. FOXP3 distinguishes regulatory T cells
from other CD4+ cells and functions as a master regulator of their development and function [81].
Finally, CD4+ T-helper (Th) cells are distinguished indirectly from all the other aforementioned
lymphocytes by the lack of expression of cell type-specific genes. In contrast to lymphocytes,
macrophages, cancer-associated fibroblasts (CAFs), and endothelial cells, which line the interior
surface of blood vessels and lymphatic vessels, are characterized each by a much larger number
of genes. Exemplary genes include CD14, CD163, MSR1, STAB1, and CSF1R for macrophages.
The monocyte differentiation antigen CD14, for instance, mediates the innate immune response to
bacterial lipopolysaccharide (LPS) by activating the NF-xB pathway and cytokine secretion [82],
while the colony stimulating factor 1 receptor (CSF1R) acts as a receptor for the hematopoietic
growth factor CSF1, which controls the proliferation and function of macrophages [83]. CAFs, on
the other hand, are distinguished by the expression of genes encoding extracellular matrix proteins
such as fibulin-3 (EFEMP1), various collagens (COL1A1, COL3A1, COL6A1, COL6A3), versican
(VCAN), a well known mediator of cell-to-cell and cell-to-matrix interactions [84] that plays critical
roles in cancer biology [85], as well as the matrix metalloproteinases MMP1 and MMP2, two collagen
degrading enzymes that allow cancer cells to migrate out of the primary tumor to form metastases
[86]. Noteworthy is also GREM1, an antagonist of the bone morphogenetic protein pathway. Its
expression and secretion by stromal cells in tumor tissues promotes the survival and proliferation of
cancer cells [87]. Genes characteristic for endothelial cells include among others CDH5, a member
of the cadherin superfamily essential for endothelial adherens junction assembly and maintenance
[88], the endothelial cell-specific chemotaxis receptor (ECSCR) gene, which encodes a cell-surface
single-transmembrane domain glycoprotein that plays a role in endothelial cell migration, apoptosis
and proliferation [89], claudin-5 (CLDN5), which forms the backbone of tight junction strands
between endothelial cells [90], and the von Willebrand factor (VWF'), which mediates the adhesion
of platelets to sites of vascular damage by binding to specific platelet membrane glycoproteins and
to constituents of exposed connective tissue [91].

Of the top 150 genes shown in Figure 28 genes were discussed. These genes have a total
weight of 28% of all 5,000 gene weights (calculated as g; x var(X;.)). The developed algorithm
complements this gene set with additional genes, including some that were not yet used to charac-
terize cell types. An interesting example is CXorf36 (DIA1R), which has been described as being
expressed at low levels in many tissues and deletion and/or mutations of which have been associ-
ated with autism spectrum disorders [92]. However, nothing is known about its function to date.
Therefore, its observed overexpression in endothelial cells may provide an important clue for future

study on its function.
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3.8 Loss-Function Learning Results Depend on the Size of the
Gene Space

The HPC calculated loss-function learned model for the 5,000 most variable genes were compared
with the model for the 1,000 most variable genes that were obtained from calculations on a local
desktop station. Table gives an overview over the correlation results for training and test set
in this scenario. The outcome for both loss-function learned models were averaged over all eight
cell types. The computations for the overall correlation of the test set for 5,000 and 1,000 most
variable genes turned out to be 0.772 and 0.776, respectively. The results for the different immune
cell types fluctuated up to 4% (NK cells). On the training data the 5,000 gene model performed
better than the 1,000 gene model. On the test data, however, this trend was not observed. There
for every cell type the correlation results were better on the larger set than for the smaller gene set.
On average, an improvement of 7.9% was recorded. Especially the smaller subpopulations, such as
CD4+ Tregs, gave much higher correlation values. Interestingly, this trend was not observed on the
test set. Thus, it may be assumed that the 5,000 gene model was overfitted in the test set.

:2‘11 type B | macro | endo | CAF NK | CD44 Th | CD8+ | CD4+ Treg || mean
1,000, tr || 0.880 | 0.902 | 0.908 | 0.904 | 0.671 0.670 | 0.846 0.539 || 0.790
5,000, tr || 0.912 | 0.938 | 0.943 | 0.946 | 0.846 0.755 | 0.855 0.761 || 0.869
1,000, te || 0.863 | 0.841 | 0.937 | 0.915 | 0.739 0.562 | 0.777 0.577 || 0.776
5,000, te || 0.889 | 0.834 | 0.943 | 0.925 | 0.699 0.586 | 0.749 0.550 || 0.772

Table 3.1: Correlation results for training and test set using loss-function learning. Contrasted here
are the results for the HPC model with 5,000 vs the local desktop calculations with the 1,000 most
variable genes. The HPC model was calculated on 25,000 training and 5,000 test mixtures. For the
local desktop model the standard 2,000 training and 1,000 test mixtures were used.

For several gene numbers the results of loss-function learning in training and test set, as well as the
necessary computing time were compared. For gene numbers up to 1,000 genes the same simulated
training and test set were used and restricted to the regarded number of genes. For comparison
the results of training and test set for the HPC loss-function learning problem with 5,000 genes
were plotted. The time component was neglected, as it was not possible to calculate this system
on a normal desktop station. Figure gives the results. The average correlation in the test set
saturated with 1,000 genes (green). Due to overfitting effects the retrieved values for the training
sets were still increasing (blue).

Concerning computation time, the calculation of the correlation was the most time consuming
part for smaller number of genes. When the number of genes increased, the calculation of the cellular
composition became more and more complex and resource consuming. Even if the overfitting effect
for more than 1,000 genes was overcome by using more single cell measurements of more patients,
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the time component had to be kept in mind as it limits the maximal number of regarded genes in
the calculations.

In summary, the deconvolution with more than 1,000 genes did not lead to better results than
the HPC model with 5,000 genes. This was also the case for subtypes of CD4+ T cells, which
showed the most compromised performance on test data. The performance gain on the training
data did not persist on the test data.

3.9 Loss-Function Learning Shows Similar Performance as CIBER-
SORT for the Dominating Cell Populations and Improves Ac-
curacy for Small Populations and in the Distinction of Closely
Related Cell Types

Next the model trained in subsection were compared to a competing method. For this, 1,000
test mixtures from the validation melanomas were generated. For comparison CIBERSORT [23]
were chosen, because it was consistently among the best DTD algorithm in a broad comparison
of five different algorithms on several benchmark data sets [23]. CIBERSORT were performed on
the test mixtures, using two distinct approaches: first, the generated validation data were uploaded
to CIBERSORT using their reference profiles. The specific cell types used by CIBERSORT are
subsumed as follows:

B cells: B cells naive and B cells memory.

e Macrophages: Monocytes, macrophages MO0, macrophages M1, macrophages M2, dendritic
cells resting and dendritic cells activated (as they belong to the mononuclear phagocyte sys-
tem).

e Endothelial cells: Not available at CIBERSORT.
e CAFs: Not available at CIBERSORT.
o NK-cells: NK cells resting and NK cells activated.

e CD4+ T cells: T cells follicular helper, T cells CD4 naive, T cells CD4 memory resting and
T cells CD4 memory activated.

e CD8+ T cells: T cells CDS.
e Tregs T cells: T cells regulatory (Tregs).

CIBERSORT further separates plasma cells, T cells gamma delta, mast cells resting, mast cells
activated, eosinophils and neotrophils. For these cell types no corresponding cell types were labeled
in the available melanoma data set.
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The performance of CIBERSORT on the validation data is summarized in Figure [3.12] as
CIBERSORT“ (yellow). It can be observed that the large population of B cells was estimated
accurately, while smaller populations were inaccurate (NK cells, Tregs). Next, the melanoma our
reference profiles were uploaded and used the CIBERSORT gene selection (CIBERSORT? green)
got used. It was found that highly abundant cell types (B cells and CD8+ T cells) were predicted
with high accuracy. However, the distinction of similar cell types such as CD4+ T helper cells and
Tregs was compromised, » = 0.42 and r = 0.42, respectively. Similarly, predictions for the small
populations of CAFs were compromised. That might be explained by the fact that CIBERSORT
does not take into account their distinction and thus appropriate marker genes might be missing.
In a direct comparison to CIBERSORT the here presented method continuously showed similar or
better performance.

Next, it was tested whether the developed method would have also worked for bulk profiles
generated by a different technology than the reference profiles. The scRNASeq derived loss-function
and the bulk profiles described above was used but the reference profiles in X were replaced by
microarray data downloaded from the CIBERSORT web page. The microarray matrix X was
rescaled such that the gene-wise means were identical to the scRNASeq data. Results are shown
in Figure 3.12]in pink. Although accuracy was slightly reduced, the CIBERSORT results still get
outperformed by the here presented method.

‘m#mm%mm
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Figure 3.11: Heatmap of X for the features with the top 150 weights (g; x var(X;.)). Blue cor-

responds to low expression and red to high expression. The data were clustered by Euclidean
distance.
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The ranking of the predefined biomarkers in the CIBERSORT reference profile were compared
with the highest weighted genes in the loss-function learning DTD models. In the HPC set of the
5,000 most variable genes 240 out of 547 genes of the CIBERSORT reference profile were present.
This means the developed loss-function learning approach did not treat 307 genes which were
included in the CIBERSORT standard program. Instead the loss-function learning model identified
other available genes in the dataset as helpful for deconvolution. The gene weight was averaged
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over the full reference set, which yielded 0.0388 + 0.109. In contrast, genes which were not included
marked an average weight of 0.0159 4 0.1250. This number also reflects the gene ranking resulting
from the loss-function learning model. CIBERSORT genes were ranked 2.44 times higher than the
other genes on average.

When considering the model from loss-function learning for the 1,000 most variable genes, only
109 genes of CIBERSORT were contained in the melanoma reference profiles. It was observed that
CIBERSORT genes had an average gene weight of 2.911 4+ 1.234 while the remaining genes had an
average weight of 5.537 £ 5.905 .

3.10 Loss-Function Learning Improves the Decomposition of Bulk
Melanoma Profiles

All mixtures discussed so far were artificial because only 100 single-cell profiles were chosen ran-
domly. They might differ significantly from mixtures in real tissue. Therefore, 19 full bulk melanoma
profiles were generated by summing up the respective single-cell profiles. These should reflect bulk
melanomas [93]. The predicted results are contrasted with the true proportions in Figure
Only the predictions for Tregs were compromised with r = 0.48, while the predictions for all other
cell types were reliable with correlations ranging from r = 0.70 (CD4+ Th) to r = 0.99 (CAFs) on
the validation melanomas.
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Figure 3.13: Deconvolution of melanoma tissues. The circles indicate melanomas from the validation
data and plusses from the training data. Figure (a) to (h) correspond to B cells, macrophages,
endothelial cells, CAFs, NK cells, CD4+ Th cells, CD8+ T cells, and CD4+ Tregs, respectively.
The solid black lines show the corresponding linear regression fits on the validation data, the dashed
lines the identity.
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Chapter 4

Deconvolution of Blood Specimens
from Patients with Chronic
Lymphozytic Leukemia

This chapter and the following are built on a similar structure as chapter |3| First, the CLL-data
set is introduced (section . Then, the characterization of single-cell measurements by t-SNE
(section are reviewed and the biological background of the relevant cell types is given (section
[1.2). In section follows the application of loss-function learning to the CLL data set. It is also
demonstrated that the deconvolution model leads to reasonable biomarkers (section [A.5). Section
points out that the model from loss-function learning can be generalized to bulk gene-expression
profiles of CLL blood specimens. The comparison with the state of the art deconvolution tool
CIBERSORT follows in section In subsection 4.9 the DTD model from the melanoma data set
gets applied to the CLL data and vice versa. In chapter [5] follows the discussion of the results.

4.1 Description of the CLL Dataset

A data set of 43069 single-cell RNA sequencing profiles from CLL blood specimens was provided
by Christian Schmidl EI[94]. The datas were pheripheral blood samples of routine examinations
retrieved from patients. CLL is characterized by an over expression of CD19 and CD5. The data
were measured using the 10x technology, which yields potentially lower read counts. Cells were
collected at therapy start and then once or multiple times after 30, 120, 150 or 280 days following
treatment with Ibrutinib. Ibrutinib is a BTK protein kinase inhibitor. It disturbs the survival
signal of B and CLL cells, thereby inducing apoptosis in this cells. Ibrutinib also helps transporting
B and CLL cells from the bone marrow and lymph nodes into the blood stream, which contributes
to break up nests of malign cells in the tissue. All afflicted patients were treated with other drugs

'Mail: christian.schmidl@ukr.de
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before starting on Ibrutinib as a single agent therapy.

The sampling frequency and it’s corresponding time points are shown in Fig. as well as in
the first column of Table There were several cells, defined by only a few hundred genes which
showed non-zero count. As a consequence, cells with less than 200 detected genes were discarded
from further analysis. The single cells were distributed over the cell types as follows: Tumor cells
(27285), CD4+4 T cells (1811), CD8+ T cells (8420), monocytes (2233), natural killer (NK) cells
(1024), nurse like (NL) cells (388) and cells of unknown type (1908). The data were normalized
to transcripts per million (TPM). Table illustrates the distribution of single cell measurements
over different patients and time point of measurements.

. cell type CLL | CD4+ | CD8+ | mono. | NK | NL | unknown sum
patient
PT 1,d0 2674 12 55 20 2| 6 10 [ 2779
PT 1, d 120 921 42 27 26 3] 0 57 || 1076
PT 5,d0 6361 66 | 254 33] 52| 6 62 || 6834
PT 5, d 30 3170 | 539 [ 2292 [ 3338 | 325 62 419 || 7145
PT 5, d 150 477 710 3301 789 | 283 39 468 || 6067
PT 6,d 0 1103 69| 994 | 788 52227 329 || 3562
PT 6, d 30 4967 73] 510 22| 24] 4 114 || 5714
PT 6, d 120 1877 21 161 18 4] 1 30 || 2112
PT 6, d 280 3048 91 | 470 3] 13] 9 66 || 3770
PT8,d0 1876 26| 115] 122 75| 33 15 || 2262
PT 8, d 30 465 12 82 2| 37] 0 12 610
PT 8, d 120 346 | 150 | 159 2| 154 1 326 || 1138
total | 27285 | 1811 | 8420 | 2233 | 1024 | 388 | 1908 || 43069

Table 4.1: Distribution of single-cell CLL data from different patients and time point of measure-
ments. PT abbreviates patient and is followed by its assigned number. d quantifies the number of
days after treatment. Further short notations are: CLL for tumor cells, CD4+ for CD4+ T cells,
CD8+ for CD8+ T cells, mono for monocytes, NK for natural killer cells and NL for nurse like cells.

There are more single cell measurements from patient five and six than from patient one and eight.
Note that, as a consequence, there is a dominant contribution from patients five and six and their
specific characteristics in the calculations. In order to compensate for this overcontribution, one
patient with high and one with a low number of measured cells was paired in the training and
validation sets. Thus, the training mixtures and reference profiles were dominated by patients six,
the validation set by patient five. Depending on the method of measurement the gene count per
cell might retrieve several zero count entries.
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single-cell RNASeq of 4 CLL patlents at dlfferent time pomts

200029

do d 120 dO d 30 d150 dO d30 d120 d280 do d30 d120
—

o " — ~
PT1 PT5 PT6 PT 8
N— ' -
W
2 patients validation cohort 2 patients training cohort
100 % testsets

20% reference profile

L. 80% trainingssets
cells are distributed as follows:

tumor

CD4+ T cells
CD8+ T cells
monocytes
NK cells

NL cells
unknown

Figure 4.1: In the upper part of the graph distribution of the patients in the training and validation
cohort as well as the different measurement points for each patient are visualized. In the lower part
of the illustration, the distribution of the single cells over the different cell types is shown. Note,
the presence of a high amount of tumor cells compared with the number of immune cells.
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Figure 4.2: The first five pictures show the t-SNE clustering of the single cell RNASeq measurements
with pigmented marker genes (CD79A, CD3, NKG7, CD14 and CD16). In the last picture the results
of the RNASeq clustering are plotted against the results of cell type determination by FACS.

4.2 Classification of Single-Cell RNASeq Data in Cell Types by
t-SNE

T-SNE is a method to reduce high dimensional data to lower dimensional representations [95]. Here,
the 2D representation was used to separate the data into clusters. In the regarded case the high
dimensional space is given by the number of genes. In figure the results of the t-SNE clustering
are shown. t-SNE 1 and t-SNE 2 are the coordinates of the two dimensional space. The single cell
measurements were pigmented by several marker genes to determine the corresponding cell type of
the observed clusters.

The cluster of CLL cells was characterized by a high expression of CD79A, which is a popular
marker for B cells. The cluster of CD4+ and CD8+ T cells were characterized by a high expression
of the marker gene CD3. Further, the monocyte cluster was identified through the expression of
CD14 and the NK cluster by expression of the NKG7 gene. For a description of CLL and the
immune cell types of this data set see section [4.3

4.3 Chronic Lymphocytic Leukemia (CLL) and Characterization
of the Cell Types by Single Cell RNASeq Measurements

An accumulation of monoclonal CD54 mature B cells in lymphoid tissues, peripheral blood and
bone marrow [96] leads to one of the most common B cell malignancies in older adults: chronic lym-
phocytic leukemia (CLL) [97], which is a low-grade, leukemic B-cell-non-hodgkin-lymphoma. The
CLL arises by clonal augmentation of mature and small celled B Imphocytes. These accumulated
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CD5+ B cells are resistant to apoptosis [98]. It is assumed that genetic variations are the activator
of CLL. CLL is not curable by therapy with antibodies or by chemotherapy.

The malignant CLL cells and the surrounding tissue have an extensive interaction [99]. This
interaction is decisive for their survival and marks the resistance to therapy and the generation
of a milieu which suppresses the immune system [I00]. When CLL proliferates in the tissue, the
interactions of the tumor cells are taking place in particular with nurse like (NL) cells [I01].

In general, nurse cells help other cells, provide food and stability to the cells in their surrounding
environment. As specialized macrophages, they assist in the development of new red blood cells in
the bone marrow, helping them to mature. In CLL, the NL cells differentiate from CD14+ cells
[102] into large, round and adherent cells [98]. These NL cells protect the malignant CLL cells
also from apoptosis [101, T03HI05]. The expression of CD68 [102] and CD163 [106] is characteristic
for NL cells. Their gene expression pattern resembles that of tumor associated macropages [106].
Like these macrophages in solid tumors, it is expected that NL cells mediate the resistancy to
chemotherapy [I07] and have, like in other cancers, an influence on overall and progression free
survival of patients [108], 109].

Monocytes are the largest type of leukocytes. They can differentiate into macrophages and
myeloid lineage dendritic cells. In healthy people the monocytes get instructed by B- and T- cells
to eat malignant cells. In CLL, immunosuppressive genes, for instance PTGR2, RAP1GAP or
CDC42EP3 [77], are alternated. Furthermore genes which are associated with phagocytosis and
inflammation are deregulated in monoyctes [77]. Additionally the proliferation of T cells is blocked
by the contact with these altered monocytes in the CLL patients [77].

T cells are white blood cells and part of the immune defense. Together with B cells, the T
cells constitute the acquired immune response. They migrate through the organism and control
the membrane receptors of other cells in order to find morbid transformations. There are several
different subgroups of T cells, here CD4+4 and CD8+ T cells are considered. In general, the CD4+
T cells are helper cells. When they recognize an ill cell, they use cytocines to call other immune
cells for help, where as the CD8+ T cells kill the affected cell directly.

In CLL the immune functions of the T cells are downregulated. The T cells exhibit an irregular
distribution of subtypes, showing higher expressions in their immune checkpoints and a higher
amount of proliferated cells than T cells in normal tissue. Due to disease activity and disease
treatments the T cell profiles in the CLL patients differ substantially [110].

Finally there are natural killer (NK) cells. They belong to the lymphocytes and can identify
abnormal cells, like tumor cells or virus infected cells, and kill them [66]. The NK cells are part of
the native immune response. They recognize bacterial and fungus cell walls and annihilate invading
those cells. In CLL, the NK cells are exposed to a high amount of tumor cells. As a consequence
their phenotype and function is altered. The patients express higher numbers of NK cells, but
these are less mature. They show signs of being worn out and the cell degranulation process gets
dysfunctional [111].
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4.4 Loss-Function Learning Applied to the CLL Dataset

The second two patients (patient six and eight) of the CLL data set were used for creating a training
set and reference profiles. Data from the other patients (one and five) were used for creating a test
set only. Training and test set as well as the reference profiles for the different cell types were
created as described in section For the reference profile 20% of the single cells were drawn
randomly from every cell type, summed up and normalized. As for the melanoma data set, 1,000
normalized bulk profiles in the test set and 2,000 in the training set were created. For calculation
of the loss-function learned model only the five non-malignant known cell types (CD44 and CD8+
T cells, monocytes, NK and NL cells) were used in the reference profile. Thus, about 70% of the
cells in the mixtures were not covered by reference profiles. For calculations the 1,000 genes with
the highest variance were used. The loss-function learned model converged in the training set to a
mean correlation over the five considered cell types of 0.841 after 1,000 optimization steps. For the
test set the obtained correlation was 0.738. For the standard model a correlation of 0.347 (training
set) vs 0.227 (test set), respectively, was obtained. In Figure the convergence of training and
test set for the loss-function learning problem is shown. Here the average correlation is plotted
against the calculation steps. The curve of the test set (green) remains slightly below the training
set (blue), which could be expected since the loss-function learning model adapts to the training
set. Results for standard and loss-function learning model are shown in Figure [£.4] In the first
row the deconvolution results for the standard model of the test set are shown (picture (a) - (e)).
Results for the training set after loss-function learning are shown in the second row (picture (f) -
(j)). Results of the validation set can be found in the last row (picture (k) - (0)). For all cell types
better results for the learned model were achieved than for the standard model. Particularly for
CD4+ T cells, NK and NL cells the improvements in the training set were remarkable. Here, the
standard model was not able to detect them accurately, quite in contrast to the loss-function learned
model. The result for the CD4+ T cells in the validation set was surprising. In the training set
high improvements for this cell type compared to the standard model could be observed, however
in the test set the performance was much lower. The correlation score matched the success of the
training set roughly only by half. Due to the strict segmentation of patient data in training and
test set, it is likely that the CD4+ T cell subtypes were unevenly distributed over the two sets.
Thus, the reference matrix, which was constructed from the same patient data as the training set,
did not equally represent the CD4+ T cells in the test set. Different subgroups of the CD4+ T cells
like conventional CD4+ T cells (Tconv), regulatory T cells (Treg) or activated conventional CD4+
T cells (act Tconv) may have been present in the different patients. In the calculations however,
the training and validation set was dominated by one patient only. Therefore it can be speculated
that the underlying CD4+ T cell distribution between both patients were not cohorent. To test
this hypothesis patients were not separated in training and test set. All single cells were combined
together in one pool. Out of it 20% of every cell type were drawn for creating the reference profiles.
The rest was separated in two equal parts. One was used for creating the test bulk profiles, the
other for the training ones. With this procedure it was ensured that the biological variability of the
CD4+ T cells was captured each in the reference profile, training and test set.
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Figure 4.3: Visualization of minimization for loss-function learning, where patient data were strictly
separated into training and validation data. Loss-function learning was calculated for all five immune
cell types. The mean correlation over all cell types is plotted against the respective optimisation
steps. The red line is the mean correlation of the standard model, calculated for the validation set.
In blue the correlation for the training set is shown. The mean correlation of the test set is shown
in green. In both cases the correlation saturated for high numbers of optimization steps.
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Figure 4.4: Individual loss-function learning calculation results for training and validation set for the five immune
cell subtypes of the CLL data set. (a) to (e) show the correlation between real and predicted cellular distribution
for the standard model (¢ = (1,...,1)) for all different cell types. (f) to (j) give the corresponding results for the
loss-function in the cases when strong discrepancies between the performance on the training and validation data
were observed. In the last row ((k) to (0)) loss-function learning results for the validation set can be seen. For CD4+
T cells after loss-function learning of training and validation set high discrepancies were found.
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Figure 4.5: Visualization of minimization for loss-function learning, including all five immune cell
types, where the single cells were separated randomly in reference profiles, training and validation
set. The mean correlation of all cell types in the reference matrix is plotted against the respective
optimization steps. The red line is the mean correlation of the standard model, calculated for
the validation set. In blue the correlation for the training set is shown. In the beginning, high
improvements are observed, while the loss function saturates for high numbers of optimization
steps. The mean correlation on the test set is shown in green. Here, the differences between the
results of training and test set are much smaller than previously in Figure



Figure shows the results for the standard model on the test set in the first row, as well as
the loss-function learned model on the training and test set in the second and last row. The results
for CD4+ T cells in the training set was performing slightly lower than the CD4+ result, calculated
with the strictly separated training and validation group (see Figure . Now the higher variability
of the single CD4+ T cells, utilized for creating the training sets and the reference profile, prohibited
a higher adaption of the loss-function learning model to all of the CD4+ T cell subtypes of all four
patients. As opposed to the strictly separated case, a specialization of the loss function to one or
two subgroups of the CD4+ T cells was not possible any more. In the test set it was the other way
round. Here much better results could be achieved due to the better coverage of the CD4+ T cell
subtypes by the reference profile and the training set. The CD8+ T cells and the NK cells also
showed improvement in the test set for the randomly mixed test and training set compared to the
strictly separated case. They turned out to produce similar correlation results for the training set
in both cases. However, their values for the test set proved to be significantly better. On the other
hand results for monocytes didn’t change qualitatively, which supports the hypothesis of subtype
mingling. For NK cells no similar conclusions could be drawn due to their overall low number. In
their case the test results turned out to be even better than in the training set, compared to the
strictly separated case.

In summary, the predictions for the test set were better than previously in the strictly separated
case (0.822 vs. 0.738). This can also be verified from the convergence graphs in Figure Here
the optimization results for the test set (green) are closer to the training set (blue) when compared
to the graphs for the strictly separated test and training set (see Figure .

To further examine the hypothesis of diverse, patient-specific CD4+ T cell subtypes information
from other CD4+ T cell entities is required. These data, however, are currently not available from
the t-SNE labeling and so the task is left for future investigations.

The observation that one gets better results when the training and validation cohort are not
strictly separated by patient is intuitively clear. However, the strength of this effect was surprisingly
high, suggesting that also other sources of inconsistencies need to be taken into account, like for
instance, batch effects.

4.5 Loss-Function Learning is Able to Detect Known Biomarkers

As in section again the 50 most important genes of the loss-function learning model calculated
from all available single-cell RNASeq measurements were analyzed. The genes were ranked from
the CLL model by the following score: First, the variance for each gene in the reference matrix was
calculated. Then, the variance was multiplied with the gene weight g; to form the trained model:

score; = g; X var(X;). (4.1)

In Figure the results for the 50 most important genes are shown. The left side of the heatmap
a dendogram shows that the cell types cluster into two groups. One consisting of NL cells and
monocytes and the other one of CD4+ and CD8+ T cells together with the NK cells. The calculated
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model includes several genes, whose expression is characteristic for the cells distinguished in the
present study. Below some of the most important genes for every cell type are discussed.

The NL cells, which contribute to the microenvironment of CLL, express, among others,
CDKN1C. CDKNIC is upregulated in CLL lypmhocytes cultured with NL cells [I12] and it is
suggested to act as a tumor suppressor gene. CD68 is a biomarker for NL cells in CLL and their
tissue-associated counterpart, the macrophages [I13]. It is a marker of survival chance in cancer
patients [114] 115]. NK cells are clearly set apart from all the other cell types by the expression
of the killer cell lectin-like receptor genes KLRB1 and KLRF1 [76] [116] and by an overexpression
of the CST3 gene, which occurs in both monocytes and nurse like cells, in the CLL samples.
The overexpression of CST3 in CLL, compared to normal B cells, may affect the regulation in
the immunoreactivity process and in protein degranulation [I17]. Another exemplary gene in NL
cells and monocytes is the allograft inflammatory factor 1 (AIF1), which is highly expressed in
activated macrophages around inflamed tissue. AIF1 appears in the macrophages related cell types
monocytes and NL cells. The B cell receptor (BCR) plays an important role in the interaction of the
microenvironment of germinal centers with B cells. The germinal centers account for proliferation.
It is believed that the BCR contributes to pathogenesis and clinical evoluion in CLL [II8]. BCR
activates, among other genes, FOS which is overexpressed in monocytes and NL cells [I19] 120] and
the C10orf54 gene [12I]. FOS proteins regulate proliferation, differentiation and transformation of
cells. The expression of FOS has also been associated with apoptosis in some cases [122]. The
C10orf54 gene is an immunoregulatory receptor which inhibits the T cell response [123].

Moncytes are set apart from the NL cells for example by expression of MS4A6A and LGALS2.
In CD16+ monocytes MS4A6A, which is necessary for signal transduction, is higher expressed than
in other monocyte subtypes [124]. In CLL patients higher numbers of CD16+ monocytes were
detected compared to healthy patients [125]. A second, very important, gene marker for monocytes
is LGALS2. T cells, NK cells, macrophages, neutrophil granulocytes and other immune cells are
affected by this gene. It influences immune surveillance, molecular trafficking, apoptosis, metastasis,
inflammation and lots of other critical functions in cancer biology. As it supports cancer survival,
this molecule constitutes a critical part of the tumor microenvironment. It kills T cells and infers
with functions of the NK cells to suppress the immune system and support metastasis [126], 127].

On the other hand T cells are set apart form the NK cells by the T cell marker CD3D [128§]
which is expressed in CD4+ and CD8+ T cells. GO-term analysis of CLL patients showed that this
gene indicates biological functions like cell growth and proliferation, response to inflammation and
immunological disease [129]. The same holds for the CD247 gene marker, which is also expressed in
the NK cells. Another T cell marker is TRAC, which is a T cell receptor [130]. There are also genes
characteristic for both NK and T cells, for example CCL5. CCL5 is a proinflammatory chemokine
which is involved in activated T cells in the glucose uptake, covering the high demands of energy in
T cells. It also regulates trafficking of, among other things, T cells and NK cells [131]. A further
biomarker for NK- and T cells is GNLY which is cytolytic against tumors and microbes [132]. It
also activates the expression in many cytocines, i.e. in CLL5 [I33]. IL32 is expressed in NK and
activated T cells, especially in T cells which undergo apoptosis [134]. The serine protease GZMB
and CTSW are biomarkers for NK and CD8+ T cells [I35] 136]. The natural killer cell granule
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Figure 4.7: Heatmap of the reference profile X for the features with the top 50 weights (g; x
var(X;.)). Blue corresponds to low expression and red to high expression. The data were clustered
by Euclidean distance. Reference profiles and training and test set were generated out from all four
CLL patients.

protein 7 (NKG7) is also a marker gene for NK and CD8+ T cells [137].

The here developed algorithm completes the discussed gene set with an additional set of genes,
which proved through calculations, to be among the 50 most relevant genes for cancerogenesis.
Some of those supplemental genes may be further examined and may lead to biological insights.
They potentially give hints on new biomarkers for the investigated cell types.

4.6 Expressed Genes in the Experimental Data are also Found to
be Highly Expressed in the Loss-Function-Learning Model

In Figure the highly expressed genes for the five labeled immune system cell types (CD4+ T cells,
CD8+ T cells, CD14+ myeloid cells, CD56+ NK cells and nurse like cells) as well as the tumor cells
(CD19+ CLL cells) are shown. The diagram lists the single cell datas for all patients at different
points in elapsed time. It can be seen that the CD4+ T cells show no individual characteristic
marker genes which would be characteristic for them alone. Their biomarkers are shared with the
other cell types. The CD4 marker is also found in myeloid cells, CCR7 in CLL cells, CD3G, CD3D
and IL32 in CD8+ T cells. Hence it is difficult to label the CD4+ T cells correctly. As a result the
deconvolution results by loss-function learning get affected.

Loss-function learning was done for the five listed cell types and the tumor cells. The simulated
bulk and reference profiles were totally separated, patient one and five were used for creation of
training set and reference profile, patient six and eight were used for the test set. The results before
and after loss-function learning for training and test set for simulated bulk sets can be seen in Figure
Here the deconvolution for CLL tumor cells, monocytes and NL cells gave high quality results.
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The ones for CD8+ T cells and NK cells gave a slightly lesser quality. Again, only the results for
the CD4+ T cells were compromised.

The heatmap in Figure [4.10] shows the 150 most variable genes. The highly expressed genes
in Figure also give major contribution to the high ranked genes after loss-function learning.
For the CD4+ T cells CD3G, CD3D and I1.32 were found. Regarding the genes of the CD8+ T
cells all expressed genes of the experiment were reproduced by our data. The genes CD14, CST3
and CD68 were high expressed for myeloid cells and monocytes, respectively. For the NK cells we
found FCGR3A, TRDC, GZMB, NKG7 and IL32 in both sets. The NLC shared the genes CST3,
FCGR3A and CD68. Only for the CLL cancer cells no genes highly expressed in the experimental
data in the high ranked genes of the loss-function learning model were found. Good deconvolution
results for the CLL cells were achieved. The CLL cells give the main part in the mixtures. Therefore,
as seen in section [3.4] a small number of biomarkers is sufficient for deconvolution.

2Christian Schmidl, mail: christian.schmidl@ukr.de

80



CD19+ CD4+ CD8+ CD14+ CD56+ Nurse-like
CLL cells T cells Tcels myeloidcells NK cells cells

cD14
CcD4 [HH_
CST3 Il
FCGR3A ]lm
CD68
TCL1A
CD79A
cD19
CCR7
CD24
TRDC
GZMB
NCR1
NKG7
CD3G
CD3D
CDS8A
IL32

Expression
(row scaled) -
0 max

Patient ID:

EEN CLL1 =mm CLL6
B CLLS mmm CLL8

Y Y Y T T B e ays):
. 0 . 30
mm 120 = 150

280
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Figure 4.9: Loss-function learning results for training and validation set for the five evaluated immune cell subtypes
and the CLL cells of the CLL data set. The training set and reference profiles are simulated from patients one and five

data sets, validation set of patient six and eight. (a) to (
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)

(1,...,1)) for the different cell types.
results. For the loss-function strong discrepancies between the performance on the training and validation data were
observed. In the last row ((k) to (0)), loss-function learning results for the validation set are shown. For CD4+ T
cells, after loss-function learning of training and validation set high discrepancies were found.
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4.7 Application of the Loss-Function Learning Model on Bulk Se-
quencing Data

Eight of the twelve CLL specimens were measured by bulk RNA sequencing. These bulk data were
augmented by additional four CLL bulk measurements [94]. For all bulk data, cellular compositions
were estimated by FACS sorting. Here, it was tested whether the cellular compositions of these data
can be predicted accurately using the models estimated from loss-function learning. Figure 4.8 gives
an overview of the bulk data, which were measured at different time points, and the corresponding
single cell data.

Firstly it was validated that FACS sorting provides accurate estimates of the cellular com-
positions. For this purpose, the eight samples with corresponding single-cell measurements were
used. The composition of the cell types determined over both ways, by FACS and by single cell
sequencing, were compared. The focus was put on the cell types which were considered in both,
single-cell RNA sequencing and FACS, namely CD4+ and CD8+ T cells, monocytes and NK cells.
The cellular proportions for both technologies were normalized to one. This ensures that results
are comparable. Then, for each of the five concordant cell types cellular proportions from FACS
versus the corresponding values from single-cell sequencing were plotted. The corresponding results
together with respective correlations are shown in Figure For all cell types which were present
in both data sets, very high correlations, more than 94%, were achieved. The graphics visualize the
slight deviation of the fitted data (solid line) from the ideal ratio indicated by the line through the
origin (dashed line). Thus, the total percentages of cells in both sets were very similar and no shifts
between the two measurements were observed. The last picture Figure summarizes the results
as a histogram. The mean correlation over all cell types was 97.7%. Thus, i that the distribution
measured by FACS may be taken as cellular composition of the bulk profiles. Next, the model
from loss-function learning estimated from single cell RNASeq measurements was applied to the
bulk samples. All single cells of the four single cell samples were used without corresponding bulk
sample (PT1 d120, PT6 d280, PT8 d30 and PT8 d120) as reference profiles and as training. For
the creation of the reference profiles 20% of all cell types were sampled. Out of the remaining cells
100 cells were drawn by chance for every training set and a simulated bulk profile was calculated.
In total 2,000 bulk profiles were simulated. The reference profiles and the mixtures in the training
set were normalized to a fixed count number. As test set all twelve bulk profiles were used. For the
cellular composition of the bulk FACS results were applied. For the calculation of the loss-function
learning model the five cell types which were labeled in FACs and single cell measurements (CLL,
CD4+ T cells, CD8+ T cells, monocytes and NK cells) were used. The results for the deconvolution
of the bulk profiles are shown in Figure[4.13] It can be observed that the results from DTD correlate
well with the estimates taken from FACs (from 0.729 for NK cells to 0.983 for CLL cells).
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Figure 4.11: In the upper part of the graphic, the distribution of the patients at the different time
points of measurement is visualized. In the lower one the corresponding FACs profiles are shown.
Eight of the FACS measurements showed consistency with the single cell measurements. Four of
the single cell measurements did not show accordance.
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Figure 4.13: Results of bulk deconvolution for a model learned from training sets consisting of single
cells without corresponding bulk profiles. The CLL-tumor cells were treated as a cell type. The
measurement points were labeled like in figure For eight patients both, FACs and single cell
measurements were available. The labeling of the other four patients corresponds to the notation
given by the experimenter and can be seen in Figure a) to e) are the results of the loss-function
learned model, f) summarizes the results in a barplot.
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4.8 Comparison with CIBERSORT

Like in chapter [3.9] here the results of the CLL data set get compared with CIBERSORT calcu-
lations. Cell types of CIBEROSRT got assigned to the immune cell types of the CLL dataset as
follows:

e CLL: B cells naive and memory.

e CD4+ T cells: T cells CD4 naive, memory resting and memory activated, T cells regulatory
(Tregs), T cells follicular helper.

e CD8+ T cells: T cells CDS.
e Monocytes: Monocytes, macrophages M0, M1 and M2, dendritic cells resting and activated.
e NK cells: NK cells resting and activated.

For comparison of both deconvolution methods initially the genes of the CIBERSORT reference
profile were used for comparison and later the 1,000 most variable genes as done previously. The
reference profile of CIBERSORT consist of 547 genes. Out of these, 489 were covered by the
generated single cell profiles. Those were the genes utilized for loss-function learning. As in section
only the single cells without corresponding bulk profiles were used for loss-function learning.
20% of the single cells of every cell type were taken for creating reference profiles, the remaining
fraction was utilized to simulate a training set of 2,000 mixtures. The results are shown in Figure
414

The standard model with it’s reference profiles and without loss-function learning is shown in
red. There it can be observed that this model performs remarkably well, except for CD8+ cells.
When CIBERSORT reference profiles were applied, the B cell results were compared with the tumor
cell content from CLL, since CLL is a malignancy of mutated B cells. For the standard model (red)
an overall correlation of 0.743 was achieved. The CIBEROSRT algorithm (green) in conjunction
with with the reference profiles generated by the developed algorithm shows compromised results,
compared to the standard model. Loss-function learning improved the results of the standard model
(blue). CIBERSORT with its own reference profiles gives better results than the standard model
(yellow). However, it did not outperform the model from loss-function learning. One has to keep
in mind that only a few bulk samples were available for the development of the here presented new
approach. Thus, the correlation is expected to have a large uncertainty.

Due to the small validation set of only twelve bulk samples, the results for the test set from
chapter where the single cells were separated by chance in reference profiles, training and
validation set, got incorporated. Now, however, no strict separation of patients in the sampling
of the test and training set took place. The predefined gene set of CIBERSORT was used for the
calculations and all the five immune cell types existing in the single cell data set got considered.
The results can be seen in Figure NL cells can not be deconvoluted by CIBERSORT with
their own reference profiles since they are not part of the CIBERSORT reference profiles. Thus,
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Figure 4.14: Deconvolution results for the bulk profiles evaluated with different devonvolution
methods. Comparison of loss-function learning model with CIBERSORT, calculated for the genes
of CIBERSORT. Red: Reference profiles from CLL data for the CIBERSORT genes. Standard
model. Green: Reference profiles CLL, deconvoluted in CIBERSORT. Blue: Reference profiles
CLL, loss-function learned. Yellow: CIBERSORT with CIBERSORT reference profiles.

the figure shows no bar for the NL cells. In this case they are also not involved in the calculation
of the mean correlation. Again the loss-function learning model led to the best results (blue),
now followed by CIBERSORT combined with the loss-function learning reference profile (green),
followed by the naive model (red). Here again the CD4+ T cells gave the least improved results
and were not predictable in the simulated mixtures with the standard model. CIBERSORT with
their own reference profiles showed the worst performance (yellow).

In the case of simulated bulk mixtures the results for all deconvolution methods performed not
as good as for the bulk profiles in Figure Due to the reason that there are only twelve bulk
measurements, each single measurement gives a much higher contribution to the correlation than a
single one out of the 1,000 simulated bulk profiles. Consequently, estimates for the correlation are
expected to be much more stable than in the previous study on the bulk profiles.

Deconvolution results of the predefined gene set chosen by known biomarkers of CIBERSORT
were compared with our gene set chosen computationally by the highest variance in the reference
profile. First the deconvolution results for the simulated bulk set using the 1.000 most variable
genes were investigated. Only in the CIBEROSRT comparison, where the reference profiles from
CIBEROSRT were used, we used the smaller gene set predefined by CIBERSORT. The results can
be seen in Figure 4.16

Next deconvolution results of both gene sets, the 1.000 most variable genes optimized by loss-
function learning problem and the predefined gene set of CIBERSORT got compared. The results
are shown in Figure

When solving the deconvolution problem with loss-function learning better results were obtained
for the genes chosen by variability (dark blue) than for the predefined gene selection of CIBERSORT
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Figure 4.15: Deconvolution results for generated bulk profiles of the single cell measurements were
genes from the CIBERSORT reference profiles were used. Comparison of loss-function learning
model with CIBERSORT. Red: Standard model. Green: CIBERSORT combined with the refer-
ence profiles generated by the developed algorithm. Blue: Loss-function learned model. Yellow:
CIBERSORT with CIBERSORT reference profiles.
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Figure 4.16: Comparison of loss-function learning model with CIBERSORT. Deconvolution results
for generated bulk profiles from the single cell measurements. The 1,000 most variable genes were
used in the reference profile. For CIBERSORT deconvolution with the CIBERSORT reference
profile the smaller CIBERSORT data set was used. Red: Standard model. Green: CIBERSORT
combined with the reference profiles generated by the developed algorithm. Blue: Loss-function
learned model. Yellow: CIBERSORT with CIBERSORT reference profile.
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Figure 4.17: Deconvolution for generated bulk profiles of the single cell measurements. Comparison
of loss-function learning model with CIBERSORT calculated for the 1.000 most variable genes and
the CIBERSORT gene choice. From left to right: Green: CIBERSORT with our reference profile
for the 1.000 most variable genes. Dark green: CIBERSORT with our reference profile for the
CIBERSORT genes. Blue: Loss-function learned model for 1.000 most variable genes. Light blue:
Loss-function learned model for CIBERSORT genes.

(light blue). This ranking was also observed for each cell type individually. For the CIBERSORT
algorithm the opposite relation was found: the results were better for the gene selection given by
CIBERSORT (dark green) than for the choice taken by the loss-function learning algorithm(light
green). However, in both cases the loss-function learning method outperformed the linear regression-
based deconvolution algorithm of CIBERSORT. In the here newly developed approach the method
of gene selection is adaptive to the cell types of interest therefore better performance could be
achieved. Please note, that NL cells could not be deconvoluted by CIBEROSRT since they were
not considered initially for the gene selection.

4.9 Deconvolution of Bulk Profiles with Deconvolution Models
Learned of Foreign Data

There are still few data sets available, that are comprised of a high amount of labeled single cell
RNAseq measurements of one cancer type. Thus, it was of special interest to find out whether
loss-function learning models calculated with one data set are transferable to a second data set of
a different cancer type. As two data sets of single cell RNAseq measurements were available, the
melanoma one discussed in chapter [3| consisting of 19 melanoma tumors and the CLL set which is
discussed now, the loss-function learning model got calculated with one data set and the other one
served as test set for deconvolution.

In order to prove transferability for both data sets reference profiles and a set of 2,000 simulated
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bulk profiles were created. For the reference profiles 20% of every cell type were taken and for the
bulk profiles out of the remaining stock 100 single cells got drawn by chance. Reference and bulk
profiles were normalized to a fixed count number as previously. The melanoma data set consisted
of seven cell types (B cells, macrophages, endothelial cells, CAFs, NK cells, CD4+ and CD8+ T
cells) where as the CLL data comprised six different types (CLL cells, CD4+ and CD8+ T cells,
monocytes, NK and NL cells). For both data sets deconvolution models got evaluated using loss-
function learning. Using those models the other respective data set for the four cell types which were
contained in both sets (CD4+ and CD8+ T cells, NK cells, as well as monocytes/macrophages) got
deconvoluted. Macrophages (melanoma data set) were matched with monocytes (CLL data set) as
most monocytes differentiate to macrophages.

Two different deconvolution approaches were taken. First, the reference profile matrix got lim-
ited to the cell types contained in both data sets. Second, all available cell types were deconvoluted
and subsequently only the cell types contained in both data sets got compared. For both approaches,
the standard model g = (1,...,1) and the loss-function learning model got tested. Figure cor-
responds to the first scenario, where the references profiles got restricted to the available cell types.
Figure gives results for where the models were trained on the full references profiles and where
they were constrained subsequently for comparison.

In both scenarios and for both cancer types the deconvolution with loss-function learning led
to better results than the standard model. The standard models led to similar results for both
approaches (preselected celltypes vs. all available cell types). In the case of preselected cell types
the results improved to 0.607 for the melanoma bulk profiles and to 0.667 for the CLL bulk profiles
with loss-function learning. For the deconvolution using all available cell types, values of 0.597
for melanoma bulk and of 0.693 for CLL bulk got obtained. Similar outcome can be observed for
both strategies. The two T cell subtypes, CD4+4+ Th and CD8+, were hard to deconvolute and the
deconvolution was compromised by the use of external reference profiles.

The HPC model got applied for deconvoluting the CLL bulk profiles. Before evaluation the
reference matrix got restricted to the cell types in both data sets (CD4+ and CD8+4 T cells,
macrophages and NK cells). The macrophages result for the cellular composition was compared to
the corresponding outcome for the monocytes. A summary is shown in Figure From the plots
a) - d) one can take the results for the standard model with g = (1,...,1), in e) - h) the results for
deconvolution with the HPC loss-function learning model is shown. For the monocytes/macrophages
and NK cells solid agreement is testified. Also the CD4+ T cells improved a lot compared to the
standard model. For CD8+ T cells however a compromised performance was obtained.

Furthermore the CLL bulk profiles for all eight cell types in the reference profile got evaluated.
After deconvolution the cell types of both data sets got compared. For the results of the CD4+ T
cells the results of the CD4+ Tregs and CD4+ T-helper cells were summed up and compared with
the CD4+ references of the FACS profiles, as the CD4+ T cells get separated in the HPC model.
Figure shows the deconvolution results for the standard model (scatter plot a) - d)) and HPC
loss-function learning model (scatter plot e) - h)). The deconvolution results for the HPC model
now turned out to be significantly better than for the standard model, as seen in Figure [4.20] despite
the lack of a sufficient large number of CD8+ T cells in the data set. On average the performance
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Figure 4.18: Results with deconvolution only for CD4+, CD8+, monocytes/macrophages and NK
cells, which were contained in both data sets. The mean correlation of the values for the four
considered cell types is labeled as mean in the histogram. From left to right: Magenta: Standard
model with CLL reference profile evaluated on simulated Tirosh bulk data. Green: Loss-function
learned model on CLL data, evaluated on Tirosh data set. Blue: Loss-function learned model
on Tirosh data, evaluated on CLL data set. Red: Standard model with Tirosh reference profile
evaluated on CLL data set.
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Figure 4.19: Cell-type reduction to the cell types contained in both data sets after deconvolution.
The mean correlation of the values for the four considered cell types is labeled as mean in the
histogram. From left to right: Magenta: Standard model with CLL reference profile evaluated on
simulated Tirosh bulk data. Green: Loss-function learned model on CLL data, evaluated on Tirosh
data set. Blue: Loss-function learned model on Tirosh data, evaluated on CLL data set. Red:
Standard model with Tirosh reference profile evaluated on CLL data set.
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got increased to 65.6% for the overall correlation compared to 14,3% without loss function learning.
Better deconvolution results were also achieved for the two T cell subtypes, i.e. 89% and 91%,
compared to 48% and 37%, obtained by the model were the reference matrix was restricted in
the beginning. The NK cells lost slightly in performance compared to the standard model. The
overall performance in the actual loss-function learning model mounted to 84.6% compared to 62.9%
attained by the loss-function learning model with restricted reference matrix in the beginning.

In the second deconvolution case the results after deconvolution got restrained to the shared
cell types of both data sets. By this procedure better results for the two T cell subtypes could be
realized. CLL is caused by degenerated B cells, which belong, like the T cells, to the lymphocytes.
When restricting the reference matrix before devconvolution, some of the CLL cancer cells seem to
get mislabeled as T cells as their reference profiles are too similar. From Figure[£.20/e) and f) it can
be concluded that, especially bulk profiles with a lower number of CD4+ and CD8+ T cells, get
overestimated. In these bulks the fraction of cancer CLL cells, and therefore degenerated B cells,
is very high. It seems that there a lot of CLL cells got assigned to the T cell portion. In the case
of the full reference profile these mislabeled CLL cells may be classified as B cells and thus are not
attributed to the T cells. This artifact can be seen in Figure e) and f), where for smaller T cell
contents much lower values get achieved compared to the restricted matrix case depicted in Figure
4. 20)

Therefore, it seems reasonable to apply the loss-function learning models of one data set to a
different cancer type, when including all reference profiles of the cell types which were used in model
calculation. Additionally it seems necessary to employ reference profiles or profiles for a very similar
cell type (B cells for CLL cells e.g.) for all cell types which compromise a high fraction of the bulk
mixtures. This holds especially true when dealing with different cell types belonging to the same
subgroup, e.g. the here presented T cells.
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Figure 4.20: CLL RNAseq bulk measurements deconvoluted with HPC model. The reference matrix
was restricted to cell types shared of both data sets before deconvolution. The standard model is
shown in pictures a) - d), the loss-function learning model in pictures e) - h).
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Figure 4.21: CLL RNAseq bulk measurements deconvoluted with HPC model. All eight cell types
were deconvoluted in the reference matrix and the results for the cell types available in both data
sets were compared. The standard model is shown in pictures a) - d), the loss-function learning
model in pictures e) - h).
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Chapter 5

Discussion

Application of training data for loss-function learning for digital tissue deconvolution is suggested to
adapt the deconvolution algorithm to the requirements of specific application domains. The concept
is similar to an embedded feature-selection approach in regression or classification problems. In
both contexts feature selection is directly linked to a prediction algorithm and not treated as an
independent preprocessing step.

The main limitation of the here presented method is the availability of training data. Other
methods do not use, and cannot use, training data. In fact, the strength of loss-function learning
results primarily from the additional information in training data with known cellular compositions.
Such data is not always available, but with current improvements in FACS and single-cell sequencing
technology, it is becoming increasingly available.

A specific instance of loss-function learning using squared residuals for £, got introduced and
evaluated by real patient data sets. The concept is not limited to this specific type of inner loss
function and can also be used in combination with other loss functions such as those from penalized
least-squares regression [138], [1 regression, or support vector regression [23]. However, the least-
squares loss function allows for stating the outer optimization problem in a closed analytical form,
reducing computational burden.

The outer loss function L evaluates the fit of estimated and true cellular proportions in the
training samples. The correlation of estimated versus true quantities across samples got chosen
instead of non-absolute measure of deviation such as ||c—¢||3, which does not fulfill symmetry [2.4).
Moreover, it was not required that the estimated proportions C. for tissue k£ to sum up to one.
Consequently, the estimated cellular composition for a given cell type is comparable between tissues,
but the estimated cellular composition across cell types is not. When testing the here presented
method it was not looked at absolute deviations of true versus estimated cell proportions, but only
at their correlation. It was intended to take account of how many cells of a specific type (e.g., T
cells) are in a tissue (Figure [3.13), nor whether they constituted 10% or 20% of the cells in this
tissue. However, if two tissues were considered and it got estimated that there were more cells of
that type in the first tissue compared to the second, this relation was also found in the true cell
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populations.

In summary, loss-function learning got introduced a new machine-learning approach to the
digital tissue deconvolution problem. It allows for adaption to application-specific requirements,
such as focusing on small cell populations or delineation of similar cell types. In simulations and in
an application to melanoma tissues the use of training data allowed to quantify large cell fractions
as accurately as existing methods, and significantly improved the detection of small cell populations
as well as the distinction of similar cell types.
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Chapter 6

Summary and Outlook

A novel method for digital tissue deconvolution got introduced. In contrast to other deconvolution
methods no predefined gene set for determining the immune cell content in bulk measurements was
used. An algorithm that adapts the gene set for deconvolution to the specific biological problem is
proposed. For this purpose, predefined training mixtures generated from single-cell RNA sequencing
measurements got employed. Since the newly developed algorithm learns the best loss function for
deconvolution, this new method is called ”loss-function learning”.

It got proved that the used loss-function learning function is not convex. Further, it was shown
that the deconvolution results for different starting points do only weakly depend on the initialization
of the algorithm.

It got verified that the developed algorithm can accurately estimate immune cell compositions in
two different single cell RNASeq data sets, one corresponding to melanoma metastases the other to
chronic lymphozytic leukemia (CLL). Further it was demonstrated that the estimation of small cell
proportions and on distinguishing similar cell types is improved compared to the current technique.
Moreover, it was proved that missing reference profiles in the deconvolution can be compensated.

For both data sets the new algorithm outperformed the state of the art algorithm CIBERSORT.
Particularly, because the new method is unbiased with respect to the selection of gene. Thus, it
potentially facilitates the detection of new cell markers.

For the CLL data set a corresponding bulk was available that was used for final validation of the
method. Here the tumor content reliably could be predicted, although the performance was slightly
compromised for NK cells, which made out only a small proportion of the immune cell content.

The newly developed method is limited mostly by the necessity of training data. However, it
was feasible to transfer the loss-function learning models from one dataset to another, apon which
the results were slightly compromised but substantially better than achieved by a standard decon-
volution approach.
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Outlook

Loss-function learning is a machine learning method and can be prone to overfitting. For this
purpose, it is planned to use penalty terms to regulate optimization problems. Possible strategies
are [1 and Iy penalties, corresponding to LASSO and ridge regression. This work is partly done
and will further be done by Marian Schn H Further, for instance user friendly software will be
provided and computation speed may be improved by using Python or C/C++ for instance. Fur-
ther advances may be achieved by the application of other functions for loss-function learning, such
as a least squares distance between predicted and true cellular compositions and non-negativity
constraints on the estimated compositions.

'Mail: Marian.Schoen@klinik.uni-r.de
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Appendix A

Appendix: Auxiliary Calculationis
used for Calculating Gradient and

Hessian

The following definitions for mean, variance, covariance and correlation are used:
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where o, is the standard deviation of vector a.

One gets
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and
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The gradient of the loss function L(g) (equation (2.3)) is calculated by
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The Hessian of the outer loss-function L(g) is given by
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