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ABSTRACT: A highly efficient, cheap, and organic alternative to the
commonly used iridium photosensitizer (Ir[dF(CF3)ppy]2(dtbpy))PF6
([Ir−F]) is presented for visible-light energy transfer catalysis. The
organic dye 2CzPN surpasses [Ir−F] in selectivity while at the same
time being easily accessible in one step. The catalyst is recyclable and,
due to its uncharged nature, soluble in nonpolar solvents such as
toluene. Furthermore, the scope of molecular scaffolds that are
compatible substrates for visible-light catalyzed dearomative cyclo-
additions is expanded.

Over the past few years, energy transfer catalysis has
gained significant attention and has emerged as a

powerful synthetic tool.1 The reasons for this are manifold,
but of particular significance is the methodology’s ability to
rapidly generate high levels of molecular complexity.1a,2 This is
elegantly highlighted by the works of Glorius et al.3 and You et
al.4 that demonstrate the generation of polycyclic cores by
intramolecular dearomative cycloadditions of naphthol
(Scheme 1A) and indole derivatives (Scheme 1B). The
resulting molecular scaffolds often map onto natural product
frameworks and are challenging to synthesize via other means.5

One alternative to accessing these structures is the direct
excitation of substrates by UV light. However, this method
often leads to unwanted side reactions and poor selectivity.6 By
utilizing visible light and suitable photosensitizers to indirectly
activate molecules, the need for UV light and/or other harsh
reaction conditions can be avoided.
Key to the success of such a mild visible-light catalyzed

process is the careful selection of a photosensitizer whose
triplet energy upon excitation with visible light and intersystem
crossing matches the targeted molecules. In the past,
photocatalysts (PCs) with sufficiently high triplet energies
for challenging dearomative processes of the type depicted in
Scheme 1 have been largely limited to iridium-based systems
utilizing (Ir[dF(CF3)ppy]2(dtbpy))PF6 ([Ir−F]) (Scheme
1C) and its derivatives.3,4,7 This catalyst, which has also been
shown to be effective in other catalytic energy transfer
processes, benefits from a long-lived excited triplet state and
a high triplet energy.1,8,9 Despite these desirable traits, iridium
catalysis has several significant drawbacks that limit its
widespread use. On the economic side, iridium has the
distinction of being the rarest of the rare earth metals and has a

correspondingly high price that can make the cost of the
catalyst prohibitively expensive.10 Furthermore, the presence of
transition metals in pharmaceuticals is highly regulated, and
use of an iridium photocatalyst in late stage steps is undesirable
in regards to industrial applications of these complexity
generating processes.11 Finally, the charged nature of the
expensive catalyst complicates its recyclability8d,12 as well as
limits the catalyst’s solubility in many common nonpolar
solvents.10a

This work aims to address these problems by avoiding
iridium and offers a highly effective, cheap, neutral, and organic
alternative for the widely utilized [Ir−F] photosensitizer.
Based upon OLED research13 and reports about the
photochemical and photophysical properties of organic dyes,
we were drawn to 1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene
(2CzPN) (Scheme 1D) as a promising candidate for this
task.14 Specifically, the high triplet energy of this system at 60.6
kcal/mol (corresponding to T1 = 2.63 eV)14d as well as the
prior use of this catalyst for photochromism15 led us to explore
its performance in the dearomatization reactions of afore-
mentioned naphthol and indole derivatives.
The dearomative cycloaddition of naphthol 1a was used as a

model reaction to investigate the organic catalyst 2CzPN
(Table 1). To begin, 1a and 5 mol % 2CzPN were irradiated
with 455 nm light in 1,4-dioxane at room temperature. Under
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these conditions, we were pleased to see full conversion of the
starting material but with poor selectivity, as measured by the
ratio of 2a:3a (entry 1). This reaction proceeds via two
sequential triplet energy excitation processes. First, excitation
of 1a results in a [2 + 2] cycloaddition to form 3a, while
subsequent excitation of 3a followed by rearrangement

furnishes 2a. The ultimate ratio of 2a:3a is influenced by the
triplet energy of the catalyst and the rate of energy transfer. For
the complete mechanism, see Supporting Information 5.1.
Lowering the wavelength from 455 to 405 nm did not

influence selectivity (entry 2). After a brief screening of
solvents, it was found that chloroform was ideal, leading to
formation of 2a with a high selectivity of 16:1 (entry 4). We
were able to lower both the reaction time to 14 h and the
catalyst loading to 1 mol % without impacting the reaction
(entry 5). Further lowering the catalyst loading resulted in
worse selectivity (entries 6 and 7). Through the addition of a
Lewis acidic additive, the reaction could be directed toward the
selective formation of 3a (entry 8). However, this observed
effect proved not to be general to other substrates.
Therefore, 1 mol % 2CzPN in chloroform irradiated at 455

nm for 14 h were chosen as the optimized conditions, giving 2a
in 94% isolated yield as a single diastereomer and with a 2a:3a
ratio of 16:1 (entry 5). In comparison, the optimized
conditions of Glorius utilizing 1 mol % [Ir−F] (1,4-dioxane;
0.04 M; 18 h; 455 nm) achieved a ratio of 6:1 with a yield of
86%,3 showing that 2CzPN is able to improve the selectivity of
the reaction. Control experiments utilizing the organic
photosensitizer thioxanthone (TX), which absorbs at lower
wavelengths16 (entry 9), and irradiation without any catalyst
(entry 10) resulted in no conversion, proving the necessity of
2CzPN.
With optimized conditions in hand, tailored to the organic

dye 2CzPN, the substrate scope was investigated to better
compare 2CzPN with [Ir−F]. To do so, five substrates were
selected with different electronic and steric properties at the
activating group R1 as well as at the naphthyl ring R2 (Scheme
2). For ease of comparison, the already reported yields with 1
mol % of the iridium catalyst [Ir−F] are included in brackets.
Based upon these yields, it is evident that 2CzPN is able to
catalyze the dearomatization of naphthols in a highly efficient
fashion that is comparable or superior to [Ir−F].

Scheme 1. Previously Reported Dearomatizations of
Naphthol Derivatives (A)3 and Indole Derivatives (B)4 and
Structure of the Organic Alternative 2CzPN (D) to ([Ir−
F]) (C)

Table 1. Optimization Studies for the Organocatalytic
Dearomatization of Naphthol 1aa

entry PC X time (h) solvent ratio 2a:3ab

1c 2CzPN 5 17 1,4-dioxane 1.2:1
2d 2CzPN 5 17 1,4-dioxane 1.2:1
3 2CzPN 5 17 PhMe 1.8:1
4 2CzPN 5 17 CHCl3 16:1
5 2CzPN 1 14 CHCl3 16 (94%)e:1
6 2CzPN 0.5 14 CHCl3 3:1
7 2CzPN 0.2 14 CHCl3 1:1.6
8f 2CzPN 1 17 CHCl3 1:20
9 TX 5 17 CHCl3 N/Ag

10 17 1,4-dioxane N/Ag

aReactions were run at a 0.2 mmol scale. bDetermined by 1H-crude
NMR ratio. Entries with a ratio showed no other proton signals and
full conversion with isolation of a mixture of 2a and 3a in near
quantitative yield. c0.04 M dλmax = 405 nm light was used instead of
λmax = 455 nm. e94% isolated yield confirms the use of the NMR ratio
is a reliable indication of yield. f0.1 equiv of Sc(OTf)3.

gNot
applicable. No conversion of starting material.

Scheme 2. Substrate Scope of Naphtholsa

aYields are isolated yields. Yields in brackets are isolated yields of the
originally reported reactions with 1 mol % [Ir−F].3 Reactions were
run on a 0.2 mmol scale at 0.1 M. bTwo mol % 2CzPN, 42 h.
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Reactions with 2CzPN readily scale and could be performed
equally effectively in multiple gram quantities with only 1 mol
% catalyst (Scheme 3A). We were also able to take advantage

of 2CzPN’s neutral charge to readily recycle the catalyst by
means of column chromatography in 88% yield, and the
recycled catalyst shows no change in activity upon reuse
(Scheme 3B).
Motivated by the positive results, we explored the

compatibility of 2CzPN with the dearomatization of indole
derivates. This class of compounds represents a more
challenging test due to their increased triplet energy. While
the optimized conditions for naphthol dearomatization
resulted in very poor conversion of 4a, it was found that
utilization of toluene as solvent allowed the reaction to proceed
in high yields (Supporting Information 3.1). It is thought that
the use of the less polar toluene solvent inhibits electron
transfer from the indole substrate to the excited photocatalyst
that preferentially occurs over triplet sensitization in polar
solvents.
The ability to utilize nonpolar solvents with 2CzPN

highlights another advantage of this organic photosensitizer
over the [Ir−F] system, which is only minimally soluble in
toluene (100−1000 ppm)10a and other nonpolar solvents due
to its charged nature (Table 2). A comparison of the maximum
solubility in a range of different solvents revealed a more than
100 times higher solubility of 2CzPN in toluene. It is
noteworthy that the organic catalyst retains high solubility in
polar solvents.

To demonstrate the efficiency of our conditions, a scope of
indoles was investigated (Scheme 4). Just as with [Ir−F],

substitution at the 2-position was well-tolerated (5a, 5d, 5e,
and 5f), as was the use of a more sterically hindered 1,1-
disubstituted alkene (5e). The reaction proceeds utilizing
substrates bearing the free indole N−H or an N-acetyl group,
with the highest yields observed with the acetylated substrates
(5b, 5c). These nearly quantitative yields are thought to be
attributed to the electron-withdrawing nature of the acetyl
group, which lowers the triplet energy of the substrates while at
the same time increasing their oxidation potential to limit
redox events with the catalyst. Using an N-acetylated substrate,
we were especially delighted to find that high levels of
reactivity could be obtained without the bulky diester linker
which facilitates ring closure via the Thorpe−Ingold−Effect
(5c).17 Once again, for all substrates tested, the organic
photosensitizer proved to be comparable or superior to [Ir−F]
at equivalent catalyst loadings.4

Having established that the organic catalyst is an effective
replacement for [Ir−F], we sought to test the organic
photocatalyst on more challenging cases containing allene
cycloaddition partners that have the potential to form highly
strained methylencyclobutane products.18 This class of
substrates is particularly intriguing due to the presence of an
olefin in the product that can serve as a functional group
handle for further structural elaboration.
Whereas the direct UV excitation of aromatic rings followed

by their trapping with allenes has been reported, little has been
done within the field of visible-light triplet-sensitized
chemistry.18 A rare example of triplet-sensitized chemistry
involving allenes is the work of Arai and Ohkuma, where 50
mol % of 3′,4′-dimethoxyacetophenone sensitizer was required
in the dearomative cycloaddition of indole derivatives.18d,e

However, in addition to the high catalyst loading, a high-
pressure mercury lamp was necessary (Supporting Information
5.2). Inspired by their work, we synthesized allene 6 to
investigate whether 2CzPN can overcome these significant

Scheme 3. Scale-up of the Reaction with Recycling of
Catalyst (A) and Subsequent Reaction with Recycled
Catalyst (B)

Table 2. Maximum Solubilities of [Ir−F] and 2CzPN in
Common Organic Solventsa

solvent [Ir−F]b 2CzPNc

PhMe 7.0 × 10−5 1.3 × 10−2

1,4-dioxanec 2.2 × 10−4 1.6 × 10−2

DCM 5.6 × 10−3 8.3 × 10−2

methyl tert-butyl ether 7.0 × 10−5 9.2 × 10−4

DMSO 1.6 × 10−1 1.6 × 10−2

aMaximum solubility given as concentration (Molar). bAs reported by
the group of Weaver.10a cSee Supporting Information 3.4.

Scheme 4. Substrate Scope of Indolesa

aYields are isolated yields. Yields in brackets are isolated yields of the
originally reported reactions with [Ir−F].4 Reactions run on a 0.05
mmol scale at 0.0125 M. bNineteen hours. cOriginally reported
reaction with 8 mol % [Ir−F].
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limitations. Applying the same optimized conditions as for 4b,
we were pleased to see full conversion of 6 to the dearomatized
products 7 and 8 in high yield and with a ratio of 5.3:1
(Scheme 5).

We next explored the previously unreported visible-light
photochemistry of naphthol allene derivatives. When treating
naphthol ketone 9a with slightly modified conditions described
above for the dearomatization of naphthols, we were surprised
to obtain the aromatic cyclic acetal 10a as the main product in
61% yield. The product was confirmed by a single crystal X-ray
analysis (Supporting Information 7.3) and supported by the
literature-known UV-photochemistry of allenyl salicylaldehy-
des.18b,c We believe that 10a is formed via dearomatized
intermediate 12 that upon 1,3-allylic transposition yields
product 10a. As a minor side product under these conditions,
dihydrofuran 11a was also obtained via a 1,4-cycloaddition. By
exchanging the acetyl group (9a) with a phenyl ester (9b),
only the dearomatized product 11b was observed in 81% yield
(Scheme 6).

In conclusion, we have shown 2CzPN to be a highly
effective and general triplet sensitizer that can serve as an
effective replacement for the expensive [Ir−F] catalyst that has
until now been the preferred sensitizer to activate substrates
with high triplet energies via visible light. Through a series of
direct comparisons, the organic catalyst consistently matched

or outperformed the iridium catalyst in dearomative cyclo-
additions. The organic dye was furthermore applied in the
previously not reported visible-light induced photocycloaddi-
tion of naphthol and indole allenes, giving rise to complex
polycyclic frameworks. The catalyst itself is readily synthesized
in gram quantities in one step from cheap and commercial
starting materials and is bench-stable. Its uncharged nature
allows for solubility in a broad range of polar and nonpolar
solvents and for easy recovery and reuse of the catalyst via
column chromatography. Finally, reactions performed with
2CzPN have proven to be readily amenable to large, multigram
scales. We believe that the presented work will facilitate a
broader use of visible-light mediated triplet-sensitized reactions
through the identification of a cheap organic replacement for
the previously utilized iridium catalyst.
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