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Abstract

Phase field models recently gained a lot of interest in the context of tumour growth models. In
this work we study several diffuse interface models for tumour growth in a bounded domain with
sufficiently smooth boundary. The basic model consists of a Cahn—Hilliard type equation for the
concentration of tumour cells coupled to a convection-reaction-diffusion-type equation for an
unknown species acting as a nutrient and a Brinkman-type equation for the velocity. The system
is equipped with Neumann boundary conditions for the phase field and the chemical potential,
a Robin-type boundary condition for the nutrient and a “no-friction” boundary condition for
the velocity which allows us to consider solution dependent source terms.

We derive the model from basic thermodynamic principles, conservation laws for mass and
momentum and constitutive assumptions. Using the method of formal matched asymptotics, we
relate our diffuse interface model with free boundary problems for tumour growth that have
been studied earlier.

For the basic model, we show the existence of weak solutions under suitable assumptions on the
source terms and the potential by using a Galerkin method, energy estimates and compactness
arguments. If the velocity satisfies a no-slip boundary condition and is divergence free, we can
establish the existence of weak solutions for degenerate mobilities and singular potentials.

From a modelling point of view, it seems to be more appropriate to describe the nutrient
evolution by a so-called quasi-static equation of reaction-diffusion type. For this model we
establish existence of both weak and strong solutions for regular potentials and a continuous
dependence result yields the uniqueness of weak solutions and thus the model is well-posed.
These results build the basis to study an optimal control problem where the control acts as a
cytotoxic drug. Moreover, we rigorously prove the zero viscosity limit in two and three space
dimensions which allows us to relate the Cahn—Hilliard—Brinkman model with Cahn—-Hilliard—
Darcy models which have been studied earlier.

Finally, we also analyse the model with quasi-static nutrients and classical singular potentials
like the logarithmic and double-obstacle potential which enforce the phase field to stay in the
physical relevant range. Under suitable assumptions on the source terms, we can establish the
existence of weak solutions for these kinds of potentials.

Zusammenfassung

Phasenfeldmodelle stieflen in jiingster Zeit auf grofles Interesse im Zusammenhang mit Tu-
morwachstumsmodellen. In dieser Arbeit untersuchen wir mehrere diffuse Grenzschichtmodelle
fiir Tumorwachstum in einem beschrankten Gebiet mit ausreichend glattem Rand. Das Aus-
gangsmodell besteht aus einer Cahn-Hilliard-Gleichung fiir die Konzentration von Tumorzellen
gekoppelt mit einer Konvektions-Reaktions-Diffusions-Gleichung fiir eine unbekannte Spezies, die
als Nahrstoff dient, und einer Brinkman-Gleichung fiir die Geschwindigkeit. Wir vervollstdndigen
das System mit Neumann-Randbedingungen fiir das Phasenfeld und das chemische Potential,
einer Robin-Randbedingung fiir den Néhrstoff und einer reibungsfreien Randbedingung fiir die
Geschwindigkeit, die es uns erméglicht, 16sungsabhingige Quellterme zu berticksichtigen.

Wir leiten das Modell aus thermodynamischen Grundprinzipien, Erhaltungssitzen fiir Masse
und Impuls und konstitutiven Annahmen her. Mithilfe von formaler asymptotischer Analysis
setzen wir unser diffuses Grenzschichtmodell mit zuvor untersuchten freien Randwertproblemen
fiir Tumorwachstum in Verbindung.
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Fiir das Ausgangsmodell zeigen wir die Existenz von schwachen Losungen unter geeigneten
Annahmen an die Quellterme und das Potenzial unter Verwendung einer Galerkin-Methode,
Energieabschiatzungen und Kompaktheitsargumenten. Falls die Geschwindigkeit eine Haftbedin-
gung am Rand erfiillt und divergenzfrei ist, konnen wir die Existenz schwacher Lésungen fiir
degenerierte Mobilitdten und singulére Potentiale nachweisen.

Aus Modellierungssicht erscheint es realistischer, die Nahrstoffentwicklung durch eine sogenannte
quasi-statische Reaktions-Diffusions-Gleichung zu beschreiben. Fiir dieses Modell zeigen wir, dass
sowohl schwache als auch starke Losungen fiir regulére Potenziale existieren und diese Losungen
stetig von den Anfangswerten abhidngen. Daraus folgt die Eindeutigkeit schwacher Losungen,
sodass das Modell wohlgestellt ist. Diese Ergebnisse bilden die Grundlage fiir die Untersuchung
eines Optimalsteuerungsproblems, bei dem die Kontrolle als cytotoxisches Medikament wirkt.
Dariiber hinaus beweisen wir rigoros den Grenzwert der verschwindenden Viskositédten in zwei
und drei Raumdimensionen, wodurch wir das Cahn-Hilliard—Brinkman-Modell mit zuvor unter-
suchten Cahn—Hilliard-Darcy-Modellen in Beziehung setzen kénnen.

Schliefflich analysieren wir das Modell auch mit quasi-statischen Néhrstoffen und klassischen sin-
gulidren Potentialen wie dem logarithmischen und dem Doppelhindernispotential, die garantieren,
dass das Phasenfeld im physikalisch relevanten Bereich bleibt. Unter geeigneten Annahmen an
die Quellterme zeigen wir die Existenz von schwachen Losungen fir diese Art von Potenzialen.
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Introduction

“Cancer: Finding Beauty in the Beast” - the title of this art-science collaboration (see ) is
an excellent metaphor for the long-standing endeavour of mathematicians to describe tumour
growth by mathematical models. The author of depicts the important role of mathematics
in cancer research as follows: “Through the development and solution of mathematical models
that describe different aspects of solid tumour growth, applied mathematics has the potential
to prevent excessive experimentation and also to provide biologists with complementary and
valuable insight into the mechanisms that may control the development of solid tumours.”
Particular examples are the prediction of the patient’s response to specific therapies and the
development of new patient-specific treatment strategies which prevent undesirable side effects
and resistance of the patient to the therapy, see for example .

One of the earliest continuum models for spherical symmetric, avascular solid tumour growth
goes back to the seminal work of Greenspan . This model has been formulated as a free
boundary problem and important mechanisms like adhesion and necrosis, that is the uncontrolled
and unplanned cell death due to a lack of nutrients, have already been incorporated. It has been
assumed that the tumour consumes nutrients like for example oxygen or glucose and consists of
an outer rim of proliferating or viable cells and a necrotic core which forms due to an undersupply
of nutrients. The cell motion is assumed to be proportional to the pressure gradient caused by
the birth or death of cells. The model of Greenspan has served as a basis for many other works

which used variants and extensions of this model, see, €. g., .

As a young tumour does not have its own vascular system and must therefore consume growth
factors like nutrients or oxygen from the surrounding host tissue, in the early stage of growth
the tumour may undergo morphological instabilities like fingering or folding (see, e.g., )
to overcome diffusional limitations. This leads to highly challenging mathematical problems
when modelling the tumour in the context of free boundary problems since changes in topology
have to be tracked.

To overcome these difficulties, it has turned out that diffuse interface models — where the sharp
interface is replaced by a narrow transition layer and the tumour is treated as a collection of
cells — are a good strategy to describe the evolution and interactions of different species. In
contrast to free boundary problems, there is no need to explicitly track the interface or to enforce
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complicated boundary conditions across the interface, see, e. g., [137]. Moreover, tissue interfaces
may be more realistically represented by the diffuse interface framework since phase boundaries
between tissues may not be well delineated, see [67]. These models are typically based on a
multiphase approach, on balance laws for the single constituents, like mass and momentum
balance, on constitutive laws and on thermodynamic principles. Several additional variables
describing the extracellular matrix (ECM), growth factors or inhibitors can be incorporated into
these models, and biological mechanisms like chemotaxis, apoptosis or necrosis and effects of
stress, plasticity or viscoelasticity can be included, see [45/86,/119]. Apoptosis is the process of
programmed cell death and chemotaxis describes the movement of the tumour towards regions
with higher nutrient concentrations, see Chapter 2] for more details.

In this thesis, we will always consider a mixture of two components consisting of tumour and
surrounding tissue. Denoting by ¢ the difference of tumour and healthy volume fractions, and
s0 ¢ = 1 in the tumour and ¢ = —1 in the healthy region, the species or mass balance law in its
general form reads as

Orp + div(pv) +div(J,) =T,

where J, is the diffusive flux, v is the mixture velocity and I';, is a source or sink term. In
order to identify the flux J, it is essential to define the energy associated with the system. To
account for adhesive forces between the tumour and healthy components, it has been suggested
in [137] to take the well-known Ginzburg-Landau free energy which is given by

10, 96) = Su(0) + S 1vep,

where € and § are positive parameters related to the interfacial thickness and surface tension,
respectively. The non-negative function ¢: R — R is of double-well structure with two minima
in or near the pure phases ¢ = 1. Typical examples are the logarithmic potential 1,, which
was originally proposed by Cahn and Hilliard [32], the double obstacle potential 14, and the
smooth double-well potential ¥ which is an approximation of both 1, and 14,. They are
defined by

L+r)A+r)+n(1=r)-r)+ 517" ¥Yre(-11),

n
(1—7r%) for|r| <1,

¢10g(7“ = g(l
1

- { v = 3=,
400 else,

)
Yao(r)
with positive constants 0 < 6 < 6.. The term g?/f(%)) favours the pure phases ¢ = +1 while the
gradient term penalises too rapid spatial changes of ¢. In the absence of velocity and source

terms, the mass balance law and the Ginzburg—Landau energy lead to the famous Cahn—Hilliard
equation in which the flux is given by

Jo=-m(p)Vp where p=—PFcAp+ glb’(s&)

for a non-negative mobility function m(y). The Cahn-Hilliard equation has been derived in
the seminal work [32] by Cahn and Hilliard and has been studied by several authors, see,
e.g., |19,20,31,33}/61,[62]. Originally introduced to model phase separation in binary alloys, the
Cahn—Hilliard equation has become one of the most popular phase field models with various
applications like for example image inpainting (see [15,36,[88]), two-phase flow (see [3]121]),

topology optimisation (see [17,[18]) and tumour growth.

A common feature that a tumour shares with any other living tissue is the requirement of
nutrient supply in order to grow. Consequently, we need to account for an additional species



1 Introduction 3

like oxygen or glucose in our model. Following the approach in [119], the conservation law and
the energy contribution for the unknown species o acting as a nutrient read as

8o + div(ov) + div(d,) = T, N(p,0) = %m? + ypo(1— ),

where J, is a diffusive flux, I'; is a term related to sources or sinks, and X, X, are non-
negative constants referred to as nutrient diffusion and chemotaxis parameter. By N we denote
the nutrient free energy density which consists of one part which increases the energy in the
presence of nutrients and another part referred to as chemotaxis energy and accounting for
interactions between the nutrient and the tumour. As before, we may identify the flux as
Jo = —n(¢)(xo Vo — x, V) where n(-) is a non-negative mobility function, and the chemical
potential i has to be extended by adding a chemotaxis term —x,o which drives the tumour
towards regions with higher nutrient concentration. We can now write our system as

Orp + div(pv) = div(m()V (=g + B¢ (9) = X0)) + Ty,
0o + div(ov) = div(n(e) (xo Vo — x4, V) — Ty

Models of this form are referred to as Cahn—Hilliard type models and have been studied
in the absence of velocity, that is, setting v = 0, in many contributions like for example
[39,74L(821/85,/101}{103]. For mixtures consisting of more than two components it is more suitable
to describe tumour growth dynamics by so-called multiphase Cahn—Hilliard type models, see,
e.g., [13,/47,67,76L/86L|120L|137]. These models are more realistic if, for example, the tumour
undergoes necrosis.

However, neglecting the velocity may be too restrictive since living biological tissues in general
exhibit viscoelastic properties, see |78,(79,/125]. As pointed out in [64,/66], it is reasonable
to consider Stokes flow as an approximation of certain types of viscoelastic behaviour since
relaxation times of elastic materials are rather short (see [79]). Therefore, many authors used
Stokes flow to describe the tumour as a viscous fluid, see [301/35}/65,/68|/71]. Classically, as pointed
out earlier, velocities in tumour growth models are modelled with the help of Darcy’s law. In these
models the velocity is assumed to be proportional to the pressure gradient caused by the birth of
new cells and by the deformation of the tissue, see |261|66}/96]. Brinkman’s law now interpolates
between the viscous fluid and the Darcy-type models, see for example [511|121},134.{143], and
can be derived from the momentum balance law when neglecting inertial effects. In the context
of tumour growth this is a reasonable assumption since the Reynolds number is quite small.
Brinkman’s law was first proposed in [24] and has been derived rigorously by several authors
using a homogenisation argument for the Stokes equation, see [10,(124]. In this thesis, the general
form of Brinkman’s law including adhesion forces is given by

—div(2n(¢)Dv + A(p)div(v)I — pI) + v(p)v = —Bediv(Ve @ V), div(v) =T,

where Dv := 1(Vv+(Vv)T) is the symmetrised velocity gradient, p is the pressure, and 7(-), A(+)
and v(-) are non-negative functions related to shear and bulk viscosity as well as permeability.
Moreover, the source term I'y can be derived from single species laws and is usually closely
related to I',. Brinkman’s law can be interpreted as an interpolation between Stokes flow and
Darcy’s law since the former one is approximated on small length scales whereas the latter one
on large length scales, see [53)].

Summarising the above equations we obtain a coupled Cahn—Hilliard—Brinkman system for
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tumour growth which serves as the basis for this thesis and is given by

div(v) =Ty in Qx(0,T) = Qrp,
—div(T (¢, v,p)) + v(p)v = —div(BeVp @ Vi) in Qrp,
Orp + div(pv) = div(m(e)Vu) + Ty, in Qr, (1.1)
p= BT (p) = Bedp — X0 in Qr,

0o + div(ov) = div(n(¢)V(xe0 — xpp)) — s in Qp,
where Q C R%, d = 2,3, is a bounded domain, T' > 0 is a fixed final time and
T(¢,v,p) = 2n(¢)Dv + A(p)div(v)I — pI

is called the viscous stress tensor. In most parts of the thesis, we will supplement the system
(1.1) with initial and boundary conditions of the form

Ve-n=Vyu-n=0 on 90 x (0,T) = Xp,
Vo n=K(o —0 on X,
(0s —0) . )
T(p,v,p)n=0 on XL,

©(0) = o, 0o(0) =09 in Q,

where ¢g, 0¢ and 04, are given functions, d€2 is the boundary of 2 and K > 0 is a constant
related to the boundary permeability.

We will refer to — as the full model. In many parts of this thesis, we will use a so-called
quasi-static nutrient equation given by

0=Ac-T, in Qp. (1.3)

This seems to be more realistic from the modelling point of view since the timescale of nutrient
diffusion is usually quite small compared to the tumour doubling timescale. For contributions
in direction of the classical Cahn—Hilliard—Brinkman system, i.e., without source terms and
nutrients, we refer to [21,42] for the local model and [49}/50] for the non-local model. Moreover, we
mention the recent work [77] where they studied a (non-)local Cahn-Hilliard-Darcy-Forchheimer—
Brinkman model for tumour growth.

In the following, we will outline the main novelties and difficulties of our model.

e A very important feature of our model is that the source term I'y may depend on ¢ and
o. Although this condition is of high practical relevance due to the relation between Ty,
and I'y,, many authors have worked with prescribed source terms I'y not depending on
variables of the diffuse interface model, see e.g. [81,|105]. This is related to the fact that
boundary conditions of the form

v=0 on 0N or v-n=0 on o

require a source term I'y, which fulfils the compatibility condition

/dex:/div(v)dx:/ v-ndH¢ !l =0.
Q Q 99

Also in the case of inhomogeneous boundary conditions in the form given above, a
compatibility condition has to be satisfied. In the case of a solution dependent source
term, it is in general not possible to fulfil such a condition. In the literature, there are only
a few contributions in this direction, see, e.g. [47,83], where they consider a quasi-static
nutrient equation. To the author’s best knowledge, there is no contribution concerning
existence of weak solutions for Cahn—Hilliard type models for tumour growth with solution
dependent source terms, velocity effects and with a nutrient equation of the form 5
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e The term T(y, v, p)n characterises effects due to friction on the boundary. The boundary
condition 3 is one of the main features of our model and can be referred to as a
“no-friction” condition. It allows us to consider solution dependent source terms and is
quite useful in applications, see |95, App. III, 4.4], and very popular for finite element
discretisations of the Navier-Stokes equation since it appears naturally in the variational
formulation of 2. In numerical simulations, it can be used to implement boundary
conditions in an unbounded domain, for example a channel of infinite length. In this
context, we also want to refer to the so-called classical “do-nothing” boundary condition

— —pn =0,

on 7
see, e.g., [102]. To the author’s best knowledge, there are no contributions in the literature
for Cahn—Hilliard-type models for tumour growth with the no-friction boundary condition

e The presence of source terms causes several new difficulties in the analysis. In particular,
the most important properties of the classical Cahn—Hilliard equation are not fulfilled
by our model, like the decrease of energy and the mass conservation property for ¢, and
classical arguments for the analysis do no longer work. Crucial in the analysis is the
estimate for the chemical potential which requires a bound on the mean of p to apply
Poincaré’s inequality. However, the mean of p is related to the growth of the potential
¥(-) and therefore classical singular potentials cannot be included in the analysis in
general. In many contributions, the potential is required to grow at most quadratically,
see, e.g., [81183]. We will apply a new estimate that allows us to consider potentials with
higher order growth in some situations and, in particular, can be applied to the classical
double-well potential. Moreover, we remark that the velocity is not divergence free and
thus classical arguments for Stokes-like equations do not apply since the pressure cannot
be eliminated in the weak formulation.

Structure of the thesis We will now outline the structure of this thesis.

A fundamental biological and mathematical background is provided in Chapter 2] In the first
part we will introduce the biological notions and aspects related to tumour growth. In the
second part we provide auxiliary results that will be applied in this thesis. Most of them are
concerned with Galerkin schemes and the analysis of Brinkman or Stokes subsystems. We will
give a detailed proof for weak and strong solutions of the Brinkman subsystem with solution
dependent viscosities and permeability supplemented with Neumann-type boundary conditions
for the stress tensor. The corresponding results seem not to be available in the literature in this
form and may therefore be of independent interest.

In Chapter [3] we first derive the diffuse interface model using thermodynamic principles, consti-
tutive assumptions, balance laws for mass and momentum, and the Lagrange multiplier method.
We then discuss further aspects of modelling and we use the method of formally matched
asymptotics in order to relate our model with free boundary problems for tumour growth that
appeared earlier in the literature. Lastly, we will present numerical simulations which give
insights into the qualitative behaviour of the model. The simulations have been made by Robert
Niirnberg from Imperial College London (see [56]).

Existence of weak solutions for the full model in a very general setting will be established
in Chapter [ The proof is based on a Galerkin approximation, on energy estimates and
compactness arguments. The chapter is based on the work [54].

Partial results of the work [55] will be presented in Chapter [5| More precisely, we will prove
well-posedness and existence of strong solutions for the model with quasi-static nutrient equation.
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This will serve as the basis for the optimal control problem which we study in Chapter [0] We
point out that the analysis includes the classical double-well potential which is the standard
smooth potential used in the literature.

In Chapter [6] we analyse several singular limits of the model with quasi-static nutrients. We
remark that the results for three dimensions are part of the work [55]. In the limit of large
boundary permeability, i.e., sending K — oo in (1.2)),, we recover weak solutions with a
Dirichlet boundary condition for o. More interestingly, we investigate the zero viscosity limit
in the Cahn-Hilliard-Brinkman system (CHB) which allows us to relate our model to former
Cahn-Hilliard-Darcy models (CHD) for tumour growth in the literature, see, e.g., [83]. In
three space dimension we can show that weak solutions of the CHB model converge to a weak
solution of the CHD model. In two space dimensions, we show that strong solutions of the CHB
model converge to strong solutions of the CHD system. In particular, we establish uniqueness of
weak solutions for the CHD tumour model and we prove a qualitative estimate between strong
solutions of the CHB and CHD models in a similar fashion as in [21]. We remark that the CHD
model without source terms and nutrient is referred to as Cahn-Hilliard-Hele-Shaw system and
has been investigated in, e. g., [48l|63[112].

A variant of the CHB model with one-sided degenerate mobilities and singular potentials will
be analysed in Chapter [/} The mobility degenerates in ¢ = —1 and we allow for a singularity of
¥(+) in ¢ = —1. Typical examples are so-called single-well potentials of Lennard—Jones type,
see, e. g., [5,/6]. In contrast to the rest of this thesis, we consider a no-slip boundary condition
for the velocity and we set I'y, = 0, i.e.,

div(v) =0 a.e. in Qp, v=0 a.e on Xr.

We establish the existence of weak solutions for the full model based on arguments in [62].
However, we cannot apply the ideas directly since solutions for the non-degenerate mobility are
not regular enough in order to justify a testing procedure in the style of [62]. Our idea is to add
a regularisation term 60;v, d > 0, in the Brinkman equation in order to obtain more regular
solutions for the system with non-degenerate mobility. We then regularise potential and mobility
with the same parameter § and establish estimates independent of § > 0 which allows us to
obtain solutions for the degenerate mobility by sending § — 0. Due to the no-slip boundary
condition, the result remains valid for the Stokes equation since estimates can be obtained
independent of the permeability v. Our result seems to be the first for local Cahn—Hilliard type
models for tumour growth with source terms and degenerate mobility. For the non-local version,
we refer to [75] where they consider a two-sided degenerate mobility.

Under certain conditions on the source terms we can establish existence of solutions for the
model with quasi-static nutrients and singular potentials, see Chapter [§] The results are part
of the work [59] and include the logarithmic and double obstacle potential which are the most
relevant examples. For our analysis it suffices to prescribe conditions on I', and I'y in the pure
phases ¢ = £1. In order to control the source terms we come up with a new estimate which
allows us to bound the convex parts of the regularised potentials on the boundary independent
of the regularisation parameter. We use the ideas presented in the work [88] to control the
mean of ¢ since classical arguments as in [19] fail which is due to the fact that mass is not
conserved. By sending the viscosities to zero we establish the corresponding results for the
CHD model. Finally, we prove existence of solutions for the stationary model without velocity.
In the context of Cahn—Hilliard type models with singular potentials and source terms we
mention the works |76}85], where the first one is in the absence of velocity and with Dirichlet
boundary conditions and the second one considers a multi-phase model with a different boundary
condition for p. We point out that our methods can be used in a similar fashion for the so-called
Cahn—Hilliard—Oono equation, see [93], and for models with applications to image inpainting,
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see [15,/88].

Finally, in Chapter [0 we study an optimal control problem where the medication by cytotoxic
drugs acts as the control. The results are part of the contributions [57,/58]. We modify the
nutrient equation by adding a term that models the supply of nutrients from an existing
vasculature and we impose a Neumann boundary condition, i.e.,

0=Ac+B(op—0)—T, in Qr, Vo-n=0 onXr,

where B is a positive constant and op is a given nutrient supply from the vasculature. We
establish the fundamental requirements of calculus of variations, the existence of a global optimal
control and first order necessary optimality conditions. Similar results have been obtained for
classical Cahn—Hilliard models in [16}38}/41},91}/104,/141,/142] and Cahn—Hilliard type models for
tumour growth in, e. g., [40,/841[106,128130]. In the last part of the chapter we establish second
order sufficient conditions for local and global optimality. Finally, we investigate local and global
uniqueness of optimal controls. To the author’s best knowledge, this is the first contribution
regarding second order optimality conditions for Cahn—Hilliard type models for tumour growth.
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Biological and mathematical background

2.1 Fundamental biological aspects of tumour growth

In this section we present basic notions of biology which play a key role to understand mecha-
nisms and processes related to tumour growth. Since the biology of humans and the inherent
mechanisms in the human body are extensive and complicated, giving a complete description
of cancer biology is far beyond the scope of this work. However, we aim to describe the key
mechanisms and structures needed to understand the models we consider in this work. Once we
have sketched the typical tissue structure, we will describe the different stages of tumour growth,
from early stages where the tumour mainly grows by consuming nutrients from the surrounding
environment, to later stages where the tumour has built its own vascular system. This part is
inspired by and collected from the very well written and detailed biological textbooks @
and the work .

2.1.1 The tissue structure

Basically, we can subdivide the tissue into four groups (see [109, Chap. 1.2]).

(i) The supporting tissue called mesenchyme consisting of connective tissue like fibroblasts
(which make collagen and elastin fibres as well as associated proteins), blood vessels,
lymphatics, bone, cartilage and muscles; the stroma contains, e. g., the fibroblasts, blood
vessels, lymphatics or collagen fibres, and is a part of the mesenchyme. The extracellular
matrix (ECM) builds the main part of the stroma and consists of fibres like collagen or
elastin surrounded by water and proteins.

(if) The tissue-specific cells called epithelium — these are the specific cells of different organs
like, e. g., skin, intestine or liver.

(iii) The haematolymphoid system consisting of ‘defence’ cells like lymphocytes, macrophages
or lymphoid cells.

(iv) The nervous system which is divided into the central and peripheral nervous system,

9
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the first one consisting of the brain and spinal cord whereas the latter is comprised of
nerves leading from the central system.

Structure and function of individual tissues are maintained by tissue-specific cells that are
arranged in a standard pattern (see Figure and Figure 1.1]). Tissue-specific cells are
grouped in a layer of epithelium, separated by a semipermeable basement membrane from
the mesenchyme. The connective tissue consists mainly of the stroma which may be supported
by a layer of bones or muscles, and is supplied with, for example, nutrients and nervous control
by blood and lymphatic vessels or nerves, depending on the tissue-specific needs.

Endoplasmatic
Mltochondrlum Redlcplum

Stem cells ———— \ } . ‘1
Differentiated ‘
Epithelium| ce!ls

Basement

“‘m Z X
membrane\

Cytosol Nucleus
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Figure 2.1: Typical tissue structure.

The epithelium mainly consists of two cell-types.

(i) Differentiated cells usually only differentiate into a specific type of cell which is due to
a so-called cell memory phenomenon. The cells remember changes in gene expression and
maintain their choice through subsequent cell generations, see @ Chap. 7, p. 454].

(ii) Stem cells are specialized cells and provide an indefinite supply of new differentiated
cells if those are, for example, lost or discarded, see @, Chap. 23, p. 1417].

The structure of both differentiated and stem cells can basically be divided into three parts
(see Sec. 2.1.3]). The inner part consists of the nucleus that contains the cell’s DNA.
It is surrounded by the so-called cytoplasm consisting mainly of the cell liquid cytosol and
containing organelles carrying out the functions of the cell, like, for example, mitochondria
and endoplasmic reticulum.

Each cell is enclosed by a semi-impermeable plasma membrane separating the cytoplasm from
the surrounding extracellular tissue and containing proteins that transfer information across the
membrane, possibly triggering a changing behaviour of the cell. Moreover, the plasma membrane
keeps the nutrient gathered in the cell and excretes waste products into the environment. For
more information, see [9, Chap. 1].
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2.1.2 Tumour growth as a multistage process

We first need to explain some crucial terms that are involved during the whole process.

Growth and proliferation (see [109, Chap. 1.3]): Although the term growth is often used
for both of these processes, it is important to distinguish these two processes in the context of
tumour growth.

We use the term growth to describe an increase of, for example, cell, tissue or tumour size. It
is worth mentioning that there is a very precise mechanism allowing individual organs to reach
a certain size which is usually never exceeded.

The term proliferation here means an increase of cell number realised by division. In the case
that a part of the tissue is injured, damaged cells are replaced by division (proliferation) of
the surviving cells. This process is mostly completed by special reserve or stem cells which
can divide in order to substitute organ-specific cells. Proliferation is a multi-stage process and
involves in particular the final stage called mitosis where two copies of the DNA are separated
and two nuclei with this new DNA emerge.

Apoptosis (see [109, Chap. 12.2]) is the process of programmed cell death. Understanding
this mechanism is of high importance for cancer researchers to develop new effective strategies
and medicines since the effectiveness of, e. g., drug-based cytotoxic cancer therapy relies on the
ability to kill cancer cells by inducing apoptosis.

In normal tissue — at least in an adult body — proliferation and apoptosis are rather balanced.
As explained above, once a cell is injured or its DNA is damaged, the process of controlled cell
death (apoptosis) starts and the damaged cell is replaced by a new one via proliferation.

The early stages - avascular tumour growth (see [45, Chap. 2.2.1-2.2.3])

In order to describe the early stages of tumour growth it is important to understand the effects
that trigger the initial growth phase. The initial formation of tumour tissue is a multistage
process referred to as carcinogenesis.

It starts with a genetic mutation of normal cells which triggers the formation of one or a small
colony of tumour cells. If these mutations can overcome their natural repair mechanisms, they
can further mutate which enables them to ignore neighbouring signals that would inhibit their
growth.

In such a case the colony reaches the next stage of carcinogenesis in which low apoptosis favours
the formation of a highly proliferative tumour colony. This ensemble of cells is referred to as in
situ cancer, that means, it is situated in the epithelium and is usually rather small. It is more
likely that the colony develops by mutations of stem cells rather than differentiated cells, since
the latter ones are restricted in proliferation and cannot divide unlimited. In fact, after a limited
number of divisions, differentiated cells either rest in an quiescent state or die by apoptosis.

In conclusion, the evolution of an initial tumour colony is mostly triggered by an imbalance of
low apoptosis and high or fast cell proliferation.

At that time the young tumour colony does not have its own vascular system and must therefore
consume growth factors and vital nutrients like oxygen or glucose from the surrounding stroma.
Nourishment diffuses from the vascularized stroma, enters the epithelium where the tumour
is located, and is uptaken by the cancerous cells to proliferate rapidly. As the extent of the
tumour ensemble increases, cells in the middle are affected by hypoxia which means that they
suffer from an undersupply of vital oxygen and, as a consequence, their rate of proliferation and
the growth rate of the tumour declines, see [27]. If the concentration of oxygen or glucose in
the tumour centre becomes smaller than a critical value, these cells undergo necrosis, that is,
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Proliferating rim

Quiescent region

Necrotic core

Surrounding tissue

Figure 2.2: Structure of the tumour after necrosis, see also \ Scheme 1].

uncontrolled and unplanned cell death due to a lack of nutrients. Once the process of necrosis has
started, the tumour typically consists of three layers: a necrotic core, a region of quiescent cells
which do not proliferate, and an outer viable rim of proliferating tumour cells, see Figure [2.2]

Apart from vascularization which will be described later on, there are other mechanisms that
allow the tumour to overcome nutrient limitation. By interacting with its environment, the
tumour can mechanically displace or compress its surroundings like the basement membrane.
For instance, the tumour can release enzymes to degrade and remodel the ECM which possibly
creates new fuel for growth. Degradation of the ECM leads to additional space and reduced
pressure in the tumour’s micro-environment. As a result the tumour invades and may undergo
morphological instabilities like fingering or folding along the directions of low mechanical pressure,
see, for example, .

A similar effect is observed during chemotaxis, describing the movement (of the tumour) towards
regions with higher concentrations of a soluble substrate (like oxygen) along the concentration
gradient. In this context we also mention a process called haptotaxis, describing the movement
towards directions with higher concentrations of a substrate-bound (chemo-)attractant.
Moreover, some tumours can mutate in order to build active glucose transporters (e. g., SGLTS)
on their cell membrane to be independent of nutrient diffusion (so-called passive transport).
These transporters trigger the movement of, for example, glucose towards the tumour colony even
against the gradient of nutrient concentration. Such a process is referred to as active transport.
For more information regarding chemotaxis and active transport, see, for example, and the
references therein.

The vascularization stage (see [@, Chap. 23], Chap. 2.2.4])

During the process of vascular growth new capillary vessels are developed by sprouting or
division from the pre-existing host vasculature. This process is referred to as angiogenesis and
it is responsible for permanent remodelling and extension of the capillary network. It occurs
during the whole life-time of a human being and mostly occurs if a part of the tissue suffers
from a lack of blood supply and sends out complex signals, in particular so-called vascular
endothelial growth factors (VEGFs), in order to trigger the growth of new vessels.

Every vessel consists of a lumen surrounded by a shin sheet of endothelial cells which play a
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crucial role during the process of angiogenesis, and a basal lamina separating the vessel from
the surrounding outer layers.

Once the size of a tumour gets big enough, interior cells suffer from hypoxia. Those hypoxic
cells produce hypoxia-inducible factors (HIFs) stimulating the transcription and secretion
of so-called tumour angiogenic growth factors (TAFs) like VEGFs. As the VEGF proteins
diffuse from the hypoxic region, a VEGF gradient emerges. Once the endothelial cells of the
vessel detect this gradient they are stimulated to proliferate and they secrete proteins in order
to find a way through the basal lamina. A new capillary forms, directed towards the VEGF
source via chemotaxis or haptotaxis, and this new capillary links with another existing vessel
or capillary, resulting in a new vasculature providing direct oxygen or nutrient supply to the
cancer tissue and allowing for rapid growth of the tumour. For a more detailed description of
this process, we refer, for example, to [9, Chap. 23].

In well-oxygenated tissue there are enzymes that switch of the production of, for example, HIFs
once the new capillary has formed. However, this may not be the case in tumour tissue where
new vessels can evolve even if the cells are well-supplied with oxygen or nutrients. Those new
vessels may be less efficient, their neovasculature may be leaky, less stiff or collapsing when
faced with tissue stress, and the basal lamina may have defects. As a consequence, drug therapy
may be inefficient since drugs may not reach the tumour tissue.

The last stage in the process of tumour growth is referred to as metastasis and commonly causes
death. It involves many complex phenomena, like, for example, genetic instabilities, increasing
HIF production and loss of cell-cell adhesion. The tumours invade their surroundings and
may develop secondary cancers. In many cases lymphatic vessels build the basis to enable
the tumour escaping from its primary organ. Some of the cancer cells are transported to and
arrested by lymph nodes. They may be destroyed or they build new tumours. The process of
metastasis can also be a result of tumour cells entering blood vessels and moving to other organs.
It is worth mentioning that, although being the most harmful stage, metastasis is still poorly
understood. We refer to [45] and references therein for more information regarding this process.

2.2 Notation

We first fix some notation. Throughout this thesis we denote by Q € R%, d = 2,3, a bounded
domain with boundary 99, and by T > 0 a fixed final time. We denote Qr = Q x (0,7,
Yr =00 x (0,T), and for ¢t € (0,T) we write Q; := Q x (0,t). For a (real) Banach space X we
denote by ||| x its norm, by X* the dual space, and by (-,-)x the duality pairing between X*
and X. For an inner product space X the inner product is denoted by (-,-)x. We define the
scalar product of two matrices by

d
A:B:= > apbj for A, B R
j,k=1

and the divergence of a matrix by

d

d
div(A) == (Z axkajk(x)> VA € R
k=1

7j=1

By n we will denote the outer unit normal on 92. For the standard Lebesgue and Sobolev
spaces with 1 < p < oo, k > 0, we use the notation LP := LP(Q2) and Wk? := WkP(Q) with
norms ||-||z» and |-||y».», respectively. In the case p = 2 we use H* := W"? and the norm
Il 7. For 8 € (0,1) and r € (1,00) we will denote the Lebesgue and Sobolev spaces on the
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boundary by LP(9€2) and W#"(99) with corresponding norms [|-|| s a0y and || ||ws.~aq) (see,
e.g., 133, Chap. 1.3] for more details). In the case r = 2 we use H?(992) :== W57 (99Q). We
denote the space Wéﬁ P as the completion of C§°(Q) with respect to the W*P-norm and we set
HE = Wg’Q. By L?, Wke HF LP(09), H?(0Q), WA (09), ng,p and HE we will denote the
corresponding spaces of vector valued and matrix valued functions. For Bochner spaces we use
the notation LP(X) := LP(0,T; X) for a Banach space X with p € [1,00]. If X = LP we will
sometimes identify LP(0,T; LP) with L?(Qr). We define
I-llans = -4 + I8

for two or more Bochner spaces A and B. For the dual space X™* of a Banach space X we
introduce the (generalised) mean value by

1/ . 1
vo=-— [ vdr forvel, v,:=-—(w,1)xy forveX".
0 o o ot

Moreover, we introduce the function spaces
L ={we L’ wo=0}, (H")5={feH"): =0},
H} ={we H?: Vw-n=0ond0}.

For problems related to the Stokes equation we define the space of smooth and divergence-free
vector fields with compact support in 2 by

V= {veCrQRY: div(v) =0},

and we define ) )
H=V" ) v=yp".

Then, it is well-known (see, e. g., [22, Lem. IV.3.4, Thm. 1V.3.5]) that V = {v € H}: div(v) = 0}
and H = {v € L?: div(v) =0, v-n =0 on 9Q}. Finally, for 1 < ¢ < co we define

L (Q) = {f e L: div(f) € L7}

equipped with the norm

Q=

Iflls,, @ = (IElIL. + [div(E)I7)7

where div is the weak divergence.

2.3 Auxiliary results

We divide this section into several parts which are related to specific topics in this thesis. First,
we recall some general results.

2.3.1 General auxiliary results
We start by stating the following generalised version of Holder’s and Young’s inequalities:

Lemma 2.1 Let Q C R?, d > 1, be a bounded domain. Let v e LP, 1 < p < oo, and w € L?
1 < g < oo. Then the product vw belongs to L™ where

1 1 1

_—= - -,

r P 4q

)

and
[vwlLr < lofle|lw][za- (2.1)
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Lemma 2.2 Let a,b € R and p,q € (1,00). Then, for every § > 0 it holds

dp)t—a 1 1
|ab| < d]al? + <p()]|b|q with ’ + i 1. (2.2)

Proof. We follow the arguments in |11, proof of Lem. 1.14]. Without loss of generality, we
assume a,b > 0. Concavity of the logarithm yields

1 1 1 1 1 1
In(ab) = In(a) + In(b) = = In(a?) + — In(b?) < In (ap + bq> = ab < —aP + -b7.
p q p q p q
Therefore, for 6 > 0 we have

L 1 ppj 1—q
ab = (pd)7a . b < daP + E ((pé)‘a) bl — §aP & %bq,
T p ;

(pd)»

and the proof is complete. O
We recall Poincaré’s inequality with mean value for H'.

Lemma 2.3 (see (80, Thm. I1.5.4]) Let Q C R, d > 2, be a bounded domain with Lipschitz-
boundary. Then, for all f € W14, 1 < q < oo there exists a constant Cp depending only on Q,
q and d such that

IfllLe < Cp (IVfllua + |fal) Vfewh, (2.3a)

or equivalently
If = fallee < CplIVflLa ¥ fewh. (2.3b)

Furthermore, we will use the following generalised Gagliardo—Nirenberg inequality:

Lemma 2.4 Let Q C R?, d > 2, be a bounded domain with Lipschitz boundary and for m € N,
1 <q,r < oo, let f € W™ N L% Moreover, consider any integer j € [0,m) and any 6 € [ £, 1]
such that there exists p € [1, 00| satisfying

i (o Been(-D)

Ifre (1,00) and m — j — % is a non-negative integer, we assume in addition that 8 < 1. Then
there exists a positive constant C depending only on Q, d, m, j, p, q, r and 6 such that

1D? flle < CULF I AN 7 (2.4)

Proof. See, e.g., [4, Thm. 5.8], [118, Thm. 1] and references therein. O

In the following we introduce the notions of linear and compact operators as well as (bi-)dual
spaces.

Definition 2.5 (see |11, Sec. 3.2, Def. 3.5 and Sec. 6.2]) Let X, Y be normed K-spaces where
K € {C,R}. Then, we define the set of linear operators by

L(X,Y)={S: X - Y|S is linear and continuous},
and the set of compact operators by
K(X;Y) = {S € £(X,Y)| S(B1(0)) is compact in Y} .

The dual space of X is defined by X* := £(X;K) and the bi-dual space by X** := (X*)*.
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Lemma 2.6 (see [11, Sec. 6.2.1]) Let X be a normed space. Then the mapping Jx € L(X; X**)
defined by
(Jx(x),2%)x+ = (", 2)x V2" e X"

is an isometry. In particular, it holds that

*
lelx = sup AToTX

-—_— 2.5
srex-\{o} lz*llx= (25)

Lemma 2.7 (see (11}, Sec. 10.1]) Let X, Y be normed spaces. Then the mapping *: L(X,Y) —
L(Y*, X*) which assigns to S € L(X,Y) an operator S* € L(Y*, X™*) defined via

(S*y*,x)x = (y",Sx)y VeeX, y eY” (2.6)
is an isometric embedding. The operator S* € L(Y™*, X*) is called dual or adjoint operator of

SeL(X)Y).

Theorem 2.8 (Schauder, see (11, Thm. 10.6]) Let X,Y be Banach spaces and S € L(X;Y).
Then it holds
SeK(X,)Y)«—= S* e K", X").

Lemma 2.9 Let X,Y be separable Banach spaces such that X is densely and continuously

Y
embedded into Y, i. e., there exists a continuous embedding i: X — Y such that i(X) =Y.
Then, Y™ is continuously embedded into X*. Moreover, if X is reflexive, the embedding is dense.

Proof. First, we note that i* € L(Y*, X*). Let f € Y* such that i*(f) = 0. Then, it follows

—Y
by definition that (f,i(z))y = 0 for all 2 € X and since i(X) = Y, this implies f = 0.
Consequently, ¢* is injective which yields the first assertion.
Now, let X be reflexive and let h € X** such that h(i*(f)) = 0 for all f € Y*. Then, there

exists © € X such that Jx(x) = h and

0= (h,i"(f))x- = (Ix(2),7"(f))x- = ("(f),2)x = (f,i(z))y VfeY"

Since i is injective and by ([2.5)), this implies 2 = 0, hence h = Jx(x) = 0. Therefore, we infer
that
h(i*(f)) =0 VfeY* = h(z*)=0 Vz*e X"

7X*
By the Hahn—Banach theorem we obtain i*(Y*) = X* which completes the proof. O

2.3.2 Results related to Galerkin schemes

Galerkin schemes are a common approach to prove existence of solutions for PDE systems. The
procedure can roughly be described as follows:

(i) construct a Schauder basis by means of eigenfunctions of a certain differential operator.

(ii) solve the PDE system on finite dimensional subspaces given by the span of eigenfunctions.
For time-dependent problems, this mostly can be done by solving a system of (non-linear)
ODEs.

(iii) prove that solutions are independent of the dimension of the finite dimensional subspaces.

(iv) use compactness arguments to recover the solution of the original problem when passing
to the limit in the approximating system.

In the following we will present auxiliary results related to the individual steps of the Galerkin
scheme.
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Construction of a Schauder basis — the Neumann—Laplace operator

In this part we assume that Q C R?, d > 2, is bounded domain. We begin with the following
definition:

Definition 2.10 The Neumann-Laplace operator —Ay: H! — (H')# is defined through

(—Anu,v)gr == / Vu-Vuodz VYu,ve H'.
Q
Remark 2.11 For arbitrary u € H!, the element —A yu belong to (H')§ since

(—Anu,1)gr = [ Vu-V1de =0.
Q

Lemma 2.12 The following statements hold true:
(i) for every f € (HY)§ there exists a unique w € H* N L3 such that —Ayu = f,
(i) for every g € L3 the mapping f: v — (g,v)12 defines an element f € (H').

Proof. We define the space V := H! N L3. Then, applying Poincaré’s inequality and the
Lax-Milgram theorem, there exists a unique u € V solving

/Vu-Vv de = (f,v)gn Vv eV.
Q

Since f € (H'), this identity holds also for all v € H! which implies (i).
Assertion (ii) follows due to Holder’s inequality and the proof is complete. O

In particular, the inverse operator (—Ay)~1: (H)y — H N L2 is well-defined.
Lemma 2.13 Let w € H'. Then, it holds
(—AN)_l(—ANw) = w — wq.
Proof. Setting f = —Ayw € (H')%, we obtain
(f,w)ym = /QVw-Vvdz:/QV(w—wQ)-Vvdx Yoe H.

Since w — wq € H' N L3, this implies (—Ax) " (=Ayw) = (=Ay)"1f = w — wg which
completes the proof. O

Corollary 2.14 The following statements holds true:

(i) the embeddings H% C H' C L? ~ (L*)* C (HY)* C (HZ)* are dense and continuous,

(ii) the embeddings H3 CC H' CC L? and (L*)* CC (H')* cC (H%)* are compact.

Proof. (i): from standard Sobolev embedding theorems (see Lemma [2.32)), it follows that
HZ, C H' C L? with continuous embeddings. Moreover, it is well known that the embedding
H' C L? is dense. From [82, Lemma 3.1], we obtain that the embedding H% C H' is dense.
Then, since H%, H', L? are separable, reflexive Banach spaces, applying Lemma yields that
the embeddings (L?)* C (H')* C (H%)* are dense and continuous. Finally, the embedding
L? C (L?)* is dense and continuous since L? is a separable Hilbert space.
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(ii): it is well-known that the embeddings H3, CC H! CC L? are compact. Therefore,
Theorem implies the compactness of the embeddings (L?)* cC (H')* cC (H%)* which
completes the proof. O

Furthermore, the identifications (u,v)p1 = (u,v)r2, (u,w)y2 = (u,w)r2 hold for all
uwe L? veH and we HE,.

Lemma 2.15 Let f1, fo € (H');. Then, the expression
(flaf2)(H1)8 = /QV((*AN)%J(}) 'V((*AN)flfl) dz
defines a scalar product on (H')§. Moreover, it holds that

(fir,(=AN)" o) = / V((=AN)"T ) - V((~AN) T ) do = (fo,(=AN) " fi) e (2.7)

Q

and

(fvv)(Hl)g = ((7AN)71fvv)L2 vf € (Hl)z;, (S Lg (28)
Proof. Symmetry and linearity are obvious. Moreover, for f € (H'); it holds

(f )y = IV((=AN)""f)Ilf2 >0

and

(f )y =0+ IV(—AN) ' f)llL2 =0 = (—AN) ' f=c<= (-ANn)"'f=0
— (AN ((AN)"f)=f=0

where we used that (—Ay)"'f € H' N L3 and (—An)((—An)"'f) = f. Identity (2.7)
follows by definition of the Neumann—Laplace operator and the scalar product along with
(—AN)((—AN)TYf:) = fi, i = 1,2. Finally, (2.8) is a consequence of

(f,0) ) :/Qv((—AN)—lf)-v((—AN)—lu) dz = (—An((—Ax) "), (—AN) " fim
= <’U7(_AN)71f>H1 = ((_AN)ilfﬂ])LQa

where we used that
—AN((—AN)il’U) =v YveH'n L%

and <h1,h2>H1 = (hl,hg)L2 for all hl € L2, h2 S Hl. O

Lemma 2.16 The Neumann-Laplace operator —Ay: D(—Ax) C (HY)g — (H)§ is positive
definite and self-adjoint with D(—Ayx) = H* N L.

Proof. Applying Poincaré’s inequality and using (—Ay)"1(—Ayu) = u for all w € H N L2, the
first assertion follows due to

(—ANu,u)(Hl)S:/Q|u|1dx20||u||2L2 Yue H' NI

Now, since (—Ayx) ' (—Anu) = u for all u € D(—Ay), for v € D(—Ay) it follows from the
definition of the scalar product that

(U7_ANU)(H1)3 = (_AN’I},’LL)(HI)S Yué€ D(—An)
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This implies D(—Ay) C D((—An)*) and —Ayv = (—Ap)*v for all v € D(—Ay).

Let v € D((—AN)*), w = (—Apn)*v € (H')j and define @ = (—Ay)~'w € D(~Ax). Then, we
have

(’Ua(*AN)U)(Hl)S = (w,u)(Hl)g = ((*AN)w;u)(Hl)(’; = (’J),(*AN)U)(Hl); V’UJ S D(*AN)
Since —An (D(—An)) = (H')§, this yields v = @ € D(—Ay). Consequently, we have
((_AN)vau)(Hl)g = (U7(_AN)U)(H1)[’§ = (w,u)(Hl)S Yu e D(—AN)

The denseness of D(—Ay) in (H')g implies (—Ay)v = w = (—Ay)*v and therefore the operator
—An: D(=Ay) C (HYy — (HY)§ is self-adjoint. O

Lemma 2.17 The inverse Neumann—Laplace operator L = (—Ay)~t: L3 — L% is positive
definite, symmetric and compact.

Proof. Let f, g € L3 such that y = Lf, 2 = Lg. Then, we have
(5 iz = [ wfdo= [ y(-Avydo= [ [TyP o0
Q Q Q

(,Cf,g)Lz:/ngdx:/Qy(—AN)zdx:/QVszdx:(f,Lg)L2.

Now, let {fu }nen C LE be a sequence and denote by {2, = L f,, }nen C H'NL3 the corresponding
solution sequence. Using elliptic regularity theory (see Lemma below), it follows that
2z, € H% for all n € N. Then, due to the compact embedding H% <> H! and reflexive
weak compactness, it follows that there is a subsequence (again labelled by n) such that
zp — 2 € H* N L% as n — oo. This completes the proof. O

Corollary 2.18 The eigenfunctions of the Neumann—Laplace operator form an orthonormal
Schauder basis in L* which is also a Schauder basis of H%.

Proof. The previous lemma and the spectral theorem (see |11, Thm. 10.12]) yield the existence
of a countable set of eigenfunctions {v; };en of the inverse Neumann—Laplace operator that forms
a complete orthonormal system in L. The corresponding eigenvalues converge to zero as i — oc.
The eigenfunctions of the Neumann-Laplace operator are therefore given by w; = 1/ \/@ and
w; = v;_q for i > 2 and {w;};en is a Schauder basis of L?. Using elliptic regularity theory
(see Lemma below) we obtain w; € H%. In the following we denote by \;, i € N, the
corresponding eigenvalues to w;, i € N, and we note that \; = 0. For every g € H% and
Gn =D 1 (g9, w;) 2w; we obtain

n n n n

Agn = (g,wi)r2Aw; =Y (g, Niwi) 2w = (g, Aw;) 2w = Y _(Ag,wi) 2w

i=1 i=1 i=1 =1

Consequently, we know that Ag, converges strongly to Ag in L? and using elliptic regularity
theory we infer that g, — g strongly in H%, as n — oo. This completes the proof. O

Now, we prove a convergence result for the projection onto H'.

Lemma 2.19 Let {w; }ien be the eigenfunctions of the Neumann—Laplace operator with corre-
sponding eigenvalues {\; }ien, i. €.,

—Aw; = \w;  in §, (2.9a)

Vw;,-n=0 on 0N). (2.9b)
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By PnL2 we denote the L?-orthogonal projection onto the n-dimensional subspace span{wy, . .., wy}.
Then, {w;}ien is orthogonal in H* and for all v € H' it holds

L2 . 1 L?
Pyv—v inH" asn— o0 and | Py vl g < ||v]lge-

In particular, {w; };en s a Schauder basis of H'.

Proof. By the previous lemma it holds that {w;};en is an orthonormal Schauder basis of L?.
The H' inner product is defined by

(v, w)m ::/Vv-Vv—i—/vw Vo,we H.
Q Q

Testing (2.9a)) with w; in L? and integrating by parts we obtain
/ Vwi . ij = )\,/ w;w; = )\iéij~
Q Q

(wi,wi) = (14 Xi)dij. (2.10)

Hence, we deduce that

This means that {w;};cy is a orthonormal Schauder basis in L? which is orthogonal in H'. In
general, if {v; };en is an orthogonal set in an inner product space H, the projection of x € H
onto the n-dimensional subspace V,, := span{vy,...,v,}, n € N, is defined by

n
1 1
PHy = E (x,vi) —uv; with a; =jvi|lg V1<i<n. (2.11)
Q5 H (67

i=1 v

From (2.10) we deduce that

Hw1||H1 =1+ VieN.
Hence, we can define the H'-orthogonal projection of v € H' onto the n-dimensional subspace
W, = span{wy,...,wp} by

n

1
Pflv = Z m(v,wi)lei. (2.12)
i=1 v

Partial integration yields

(v,wi)}p:/Vv-Vwi—i—/vwi:)\i/vwi+/vwi:(1—|—/\i)(v,wi)p VieN.
Q Q Q Q

This means
n

1 1 2
PH Yy = Z m(v,wi)}pwi = Z(v,wi)szi = P, (2.13)
i=1 i=1

n

Since {w; }ien is a orthonormal Schauder basis in L?, we know that

n
E(v,wi)szi—)v in L? asn — oo.
i=1

1
n—

H
In order to show that Pflqlv 2% vin HY, it is enough to show that span{w;: i € N} = H?,
see, e. g., |11} Section 9.7]. This is equivalent to show the following statement:

fed, (fw)m =0 VieN= f=0.
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Taking f € H! such that (f,w;)g: = 0 for all i € N and integrating by parts, we have

0= (f,wi)m :/vf'vwi+/fwi:(1+)\i)/fwi~
Q Q Q
Since 1 4+ A; > 0 this implies
(f,’wi)LZZO Vi e N.

Using that {w;}ien is a Schauder basis in L? yields f = 0 and therefore Pflv 222 v in HY.
Since Pflv = szv for all v € H!, this implies that PnL2v — v in H' and ||P752v\|H1 < ||v|| g2
for all v € H', see |11} Section 9.7], and the proof is complete. O

Results on ODE theory

The results in this part are collected from [100, Chapter I]. By D C R¥*! we will always denote
an open set and we write an element in D as (¢,x), with ¢t € R and x € R¢. Furthermore, let
f: D — R For (ty,x0) € D given we consider the following initial value problem:

(IVP) find an interval I C R containing ¢ and a function x defined on I such that

%:f(t,X(t)) onl,  x(to) = xo. (2.14)

Definition 2.20 We call x a classical solution of (2.14) on I if
(i) x € CH(I;RY), (i) (t,x(t)) € D Vtel, (ii) x satisfies (2.14).

The following result is referred to as (Cauchy—)Peano existence theorem and can, e.g., be
found in {100, Thm. 1.1].

Lemma 2.21 Let f be continuous on D. Then, for any (to,Xo) there exists at least one classical

solution x of (2.14)).

Another concern is whether we can specify the existence interval I more precisely. To this
end, we give the following definition:

Definition 2.22 Let x be a solution of (2.14)) on some interval I. We call X a continuation of
x if the following conditions hold:

(i) % is defined on an interval I with I cc I,
(ii) X coincides with x on I,
(iii) % satisfies (2.14)) on 1.

A solution x is called non-continuable if there exists no continuation, i.e., the interval I is the
maximal existence interval of x.

We have the following result:

Lemma 2.23 Let f: D — R? be continuous and bounded and let x be a solution of on
some interval I. Then, there exists a continuation of x to a mazximal existence interval (a,b).
Let x be the extension of x such that X satisfies on (a,b). Then, (t,%x(t)) tends to the
boundary of D ast — a and t — b.
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Proof. See |100, Thm. 2.1]. O

Now, we investigate under which assumptions on f we have uniqueness of solutions. We
have the following definition of local Lipschitz continuity.

Definition 2.24 A function f: D — R? is said to be locally Lipschitz continuous with respect
to the second variable if for any closed bounded set U C D there is a k = k(U) such that

|f(t’y1) - f(t’y2)| < kb’l —Y2| v(t7yl)7 (tayQ) el

The following result is referred to as Picard-Lindeldf existence theorem.

Lemma 2.25 Let f: D — R? be continuous and locally Lipschitz continuous with respect to the
second variable. Then, for any (to,Xo) € D there exists a unique classical solution x of (IVP).

Proof. See [100, Thm. 3.1]. O

Let us assume that we have a classical solution x of (IVP) on some existence interval T.
Integrating the first identity in (2.14)) with respect to time from tg to ¢ € I and using x(tg) = xg
we obtain

x(t) = xo + t Ft,x(t) dt Vtel. (2.15)

The formulations and are equivalent if f is continuous, see, e.g., |100, Lem. 1.1].
Therefore, we can seek for a solution of the integral equation instead of solving (IVP). If
f is not continuous on D we cannot expect to obtain a classical solution of (IVP).

However, the right hand side of does not necessarily require that f is continuous. Indeed,
the integral in is defined if, for example, f is dominated by and L!-function on D. This
allows us to solve (IVP) at least in an extended sense.

It turns out that it is enough to demand that f satisfies the so-called Carathéodory conditions
which are defined as follows:

Definition 2.26 We say that f: D — R satisfies the Carathéodory conditions on D if

(i) f is measurable in ¢ for each fixed x,
(ii) f is continuous in x for almost every ¢,

(iii) for each compact set U CC D there is an integrable function my (t) such that

lf(t,x)] <my(t) Y(tx)eU. (2.16)

We have the following existence result:

Lemma 2.27 Let f: D — R? satisfy the Carathéodory conditions on D. Then, for any
(to,Xxo) € D there exists an absolutely continuous function x defined on a real interval I such
that (2.15) is satisfied. Moreover, x satisfies the first identity in (2.14]) for almost every t € I.

Proof. See [100, Thm. 5.1]. We remark that our definition of Carathéodory condition is slightly
different than in |100]|. Indeed, in [100] the function f is required to be continuous in x for all
t. By a closer inspection of [100, Proof of Thm. 5.1] we see that it is enough to ask for the
continuity in x for almost every ¢. O
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We have the following analogous statement to Lemma (see [100, Thm. 5.2] for a proof):

Lemma 2.28 Let f: D — RY satisfy the Carathéodory conditions and let x be a solution of
on some interval I. Then, there exists a continuation of X to a maximal existence interval
(a,b). Let X be the extension of x such that X satisfies on (a,b). Then, (t,%(t)) tends to
the boundary of D ast — a and t — b.

Finally, we give a criterion for uniqueness of solutions for (2.15)).

Lemma 2.29 Let f: D — R? satisfy the Carathéodory conditions on D and suppose that for
each compact set U CC D there is an integrable function ky(t) such that

If(t,y2) — f(t,y1)| < kv(®)|y2 —y1| V(t,y2), (t,y1) € U.

Then, for any (to,xo) € D there exists a unique solution x of (2.15).

Proof. See the proof of [100, Thm. 5.3]. O

Results related to a priori estimates
We start with a Gronwall inequality in integral form (see [82, Lemma 3.1]).

Lemma 2.30 Let «, 3, u and v be real-valued functions defined on [0,T] for T > 0. Assume
that « is integrable and bounded on [0,T], § is non-negative and continuous, u is continuous, v
is mon-negative and integrable. If u and v satisfy the integral inequality

u(s) + /OS v(t) dit < af(s) + /OS B(t)u(t) dt  for all s € (0,T],

then, it holds for all s € (0,T] that
u(s) +/O v(t) dt < a(s) +/O a(t)s(t) exp</0 B(r) dr) dt. (2.17)

The following Gronwall-type inequality can be found in [52]:

Lemma 2.31 Let u be a continuous, real-valued function defined on [0,T)| with T > 0. Moreover,
let a, B, v be real-valued, non-negative, integrable functions on [0,T] with o bounded on the
same interval and assume that

u(s) < a(s) + /OS(B(t)u(t) +7(t)) dt Vs e [0,T].

Then, it holds

W< [0 ds s oo ( [ s dt) )

0<s<T
Now, we recall results for elliptic regularity theory.

Lemma 2.32 Let Q C R%, d > 2, be a bounded domain with CY'-boundary. Furthermore, let
1 1
BA>0,1<p<oo, fELP, gec W P(Q) and h € W?" 5P (9Q). Let u,v,w € H' be the
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solutions of

—Au+Iu=f inQ, Vw-n=g on 08,
—Av=1Ff inQ, Vuo-n+pfv=g on 0,
—Aw=f inQQ, w=~h ondfQ.

Then, it holds u,v,w € W?P and

fulbwer <€ (1fles + lall - gy ) HWWM§C<WMVH9Wuwwm)’QB)

e <€ (Ul + 1lya 3, )

for a constant C independent of u,v,w.

If, in addition, for k > 1 the domain Q has a C*tV1_boundary, f € WZ’,“, g€ W1+k_%’p(3Q)
and h € W2+k_%’p(89), then w,v,w € Wf” and

fullwnsas < (1fllwss + lolyros- ey )
lhwssas <€ (Il + lallgrse o ey ) (219)
fulwrsas <€ (Wl + Wl ose g, )

Proof. This follows from an application of [97, Thm. 2.4.2.5-2.4.2.7, Thm. 2.5.1.1]. O

Lemma 2.33 (trace and extension operator) Let Q C R?, d > 2, be a bounded domain with

Lipschitz-boundary and let 1 < g < co. Then, there exists a bounded linear operator T: W14 —
1

W a9(0Q) such that

[Tull,, <O q)llullwra Yue W, (2.20)

1a0) =

and T(u) = ulgq for all u € C*°(Q). Furthermore, there exists a bounded linear operator
1 1
T.: W2 9(90Q) — Wb satisfying TTe(u) = u for all u € W' 49(9Q) and

1—%,q
ITeullwro < CQallul g,y Yo €W T9(00). (2.21)

Proof. See [117, Chap. 2, Thm. 5.5, Thm. 5.7 O
The following interpolation inequality will also be of importance:

Lemma 2.34 (see (80, Thm. II.4.1]) Let Q C R%, d > 2, be a bounded domain with Lipschitz
boundary and let u € WH9 with q € [1,00). Assume

€lg,q(d-1)/(d—q)] ifq<d,
€ [g,0) ifg>d.

Then, it holds that

(2.22)

Wi

a (1-3H)(1-a) Ita(l—
Julzror < € (Nullsa ullgn + & PO g 12075)

d(r—q)

for a positive constant C = C(d,r,q,Q) and o = DR
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Results for the limiting process
We first state a generalised version of Lebesgue dominated convergence theorem.

Lemma 2.35 Let k € N, 1 < p < o0, and let fi, f: Q — R be measurable functions. Further-
more, let {grtren be a sequence of measurable and non-negative functions such that g, — g in
L' as k — oo. Then, if

fe—=f aeinQ ask—oo, |filP <gr a.e and forallk €N,

it follows that
fi,feLP YkeN, fi—f inILP ask— oo.

Proof. See |11, Thm. 3.25]. O

We also state an Aubin—Lions type lemma.

Lemma 2.36 Let X, Y, Z be Banach spaces with compact embedding X CCY and continuous
embedding Y C Z. Then, the following statements hold:

(i) for 1 < p < oo the embedding W11(0,T; Z) N LP(0,T; X) CC LP(0,T;Y) is compact,

(ii) for r > 1 the embedding W17 (0,T; Z) N L*(0,T; X) cC C([0,T];Y) is compact.
Proof. See [132] Sec. 8, Cor. 4]. O

In order to apply these kinds of embeddings we need to characterise Sobolev embedding
properties.

Lemma 2.37 (see (11, Thm. 10.9, Thm. 10.18], [{l, Thm. 4.12, Thm. 6.3]) Let Q C RY,
d > 1, be a bounded domain with Lipschitz-boundary and define WOP := LP for 1 < p < oo.
Furthermore, let k1,ko > 0 be integers, 1 < p; < o0, 1 <py <00, and 0 < a < 1. Then, it
holds that:

(Z) ka‘l Z kJQ and

d d
ki —— > kg — —,
p1 P2

then the embedding W P1 C Wk2P2 egists and is continuous. In particular, there exists a
positive constant C' = C(Q,d, k1, ka,p1,p2) such that

lullwias < Cllullwrns ¥u € WE,

(ZZ) ka‘l > ko and
d d
ki — — > ko — —,
p1 P2

then the embedding W*Pr cc Wk2P2 s compact.

(ZZZ) Zf k1 > ko and

d
ki — — >k2,
D1

the embedding WFPr cC Wk js continuous.



26 2 Biological and mathematical background

(iv) if k1 > 1, a € (0,1) and

k1—£=k2+a7
P1

then the embedding Wk1-p1 C C*2:2(Q) is continuous.
(v) if k1 > 1 and
d
ki — — > ko + q,
D1

then the embedding W*tPr CC Ck22(Q) is continuous and compact where C*20(Q) =
C*2(Q).

2.4 Results for a Stokes resolvent system

In the subsequent chapters we will analyse various tumour growth models involving variants
of the Stokes equation. Since we will consider Neumann-type boundary conditions for the
velocity in combination with non-constant viscosities and permeability, we need non-standard
results that are rather hard to find in the literature. In particular, the solvability of the Stokes
resolvent system plays a crucial role in this thesis since it corresponds to a Brinkman equation
with positive permeability. For the reader’s convenience we provide the proofs required for the
analysis by using ideas presented in |1}22}[80L/126}133].

We first recall Korn’s inequality (see [37, Thm. 6.3-3]).

Lemma 2.38 Let Q C RY, d > 2, be a bounded domain with Lipschitz-boundary and let u € H'.
Then, there exists a constant C'i depending only on § such that

[lullm: < Ck (||u||i2 —|—/ Du: Du dac) . (2.23)
Q

As usual for Stokes-like equations, the properties of the operator div and V and their relation
play a crucial role. We therefore recall the most important results in the following.

Lemma 2.39 (see [80, Sec. II1.3]) Let Q C RY, d > 2, be a bounded domain with Lipschitz-
boundary and let 1 < q < co. Then, for every f € L and a € W'=1/99(9Q) satisfying

/Qf dz = /(ma ‘ndH (2.24)

there exists at least one solution u € Wh4 of the problem
diviu)=f inQ, u=a on 09,

and the estimate
Jallwia < C ([ fllze + llallwi-1/aso0) (2.25)

holds for a positive constant C' depending only on Q0 and q.
Proof. Let T, be the operator defined in Lemma [2.33] Then, it holds

/ div(T,a) dz :/ a-ndH4! = / fdz, |div(Tea)lze < C(Q,9)llallwi-1/a.q(00)-
Q o9 Q
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Since fQ f —div(T.a) dz = 0 and using the last inequality, we can use [133, Chap. II, Lemma
2.1.1] to conclude that there exists w € W satisfying
div(w) = f — div(T.a) in 9, w=0 on 09,
and
Iwllwre < C(Q,q) (Ifllze + lldiv(Tea)llze) < C(2,q) (Ifllze + llallwi-1/a.0(a0)) -
Consequently, by (2.21)) the function u = w + T.a satisfies
diviuy=f inQ, w=a ondQ, |ulwee<Cq) (|flce+ ||a||W1_1/q,q(39))

which completes the proof. O

Lemma 2.40 (see [135, Lem. I1.2.2.2]) Let Q@ C R%, d > 2, be a bounded domain with
Lipschitz-boundary, let 1 < g < oo and % + % = 1. Then, for any f € (Wé'q )* satisfying

f e 7
( ’V>Wo’ 0 VveV
there exists a unique pressure p € L? such that
/ pde =0, f=Vp in (Wé"/)*, (2.26)
Q

and
Ipllze < CUEN (wyp.ory- (2.27)

for a positive constant C' depending only on Q and q.

Moreover, we will use the following result.

Lemma 2.41 Let Q C R?, d > 2, be a bounded domain with Lipschitz-boundary. For all
q € (1,00) the space LY, () equipped with the norm

Q=

lulley,, @) = (lullLe + [[div(a)]L.)

div
is a (reflexive) Banach space. Moreover, there exits a continuous trace operator Ty : L, () —

(Wl—%q’ 11 _ 0o (@))?
a (89)) v ¢t =1 such that Ty(w) = w-n for all w € (C>°())". It holds that

(Ta(u),®) = /Qu Vo dx +/ P div(u) dz YueLd (Q),VPe Wb (2.28)

1—L g
w7 (09) Q

w7 (a0)

||Tn(u)||( oy ) < Caivlullys @) YueL§ (Q) (2.29)

with a constant Cg;y depending only on Q and q.

Proof. See |80, Thm. I11.2.2] and [131} Sec. 5]. O

2.4.1 Weak solutions of the Stokes resolvent system

In this part we will prove existence and uniqueness of weak solutions for a Stokes resolvent
system with variable viscosities and a non-constant permeability. Our arguments are based on
those presented in |22]. Throughout this part we make the following assumptions:
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Assumptions 2.42 The functions n, A and v belong to C°(R) and fulfil
o <n(t)<m, 0<AE) <X, vo<v(t)<wy, VteR (2.30)
for positive constants ng, m1, v1 and non-negative constants g, vo. Furthermore, we assume

that s € (1,2] ifd=2 and s € [£,2] if d = 3.

The main result of this subsection is the following:

Proposition 2.43 Let Q C R?, d = 2,3, be a bounded domain with CY'-boundary, let c € H"
forr > 1 and let vy > 0. Then, for every set of data fulfilling (f,g,f,) € L® x L? x (H'/2)*,
there exists a unique weak solution pair (v,p) € H! x L? of

—div(T.(v,p)) +v(c)v==Ff inQ, (2.31a)
div(v) =g inQ, (2.31b)
T.(v,p)n=1£, ondQ, (2.31c)

where
T.(v,p) = 2n(c)Dv + A(¢)div(v)I — pl.

In addition, it holds

IVl +[lpllze < C (IfllLs + lgllze + o]l gar/2)-) (2.32)

with a constant C depending only on 2, s, ng, N1, Ao, Vo and vy.

Remark 2.44 (i) In contrast to classical Stokes problems it is not enough to assume that
f € (HY)*. This is due to the boundary condition which involves first derivatives
of the velocity field. In fact, assuming f € (H')* we can at best get that div(T(v,p))
belongs to (H')*. In this case the trace of T(v,p) is not an element of (Hz)*.

(ii) The assumption on s will be needed later on to show existence of strong solutions to (2.31]).
For the proof of Proposition [2.50] it is sufficient to consider the case s < 2. For the case
s > 2 the arguments are more involved and will not be presented in this work.

The general idea to prove Proposition [2:43]is the reduction to the case g = 0. To this end
we need the following lemma:

Lemma 2.45 Let Q C R?. d = 2,3, be a bounded domain with Lipschitz-boundary, let ¢ € H"
for v > 3 and let vy > 0. Then, for every fi € (H)*, g1 € L3, there exists a unique weak
solution pair (v,p) € Hy x L3 of

—div(2n(c)Dv + A(c)div(v)I) + Vp+v(c)v =11 in , (2.33a)
div(v) = g1 in Q, (2.33b)
v=0 on 0, (2.33¢)
satisfying
IVl + lpllze < € (Uil + llgalz2) (2.34)

with a positive constant C depending only on §2, ng, n1, Ao, Vo and vy.

Proof. Because of Lemma there exists vi € H} satisfying

div(vi)=g1 a.e. inQ,  [villg < Cllg1] 2. (2.35)
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We then seek for v of the form v = v; 4+ vy where vy satisfies (2.33)) in the weak sense for g3 = 0
and f; replaced by

f1 = f1 + div(2n(c)Dvy + A(¢)div(v1)I) — v(c)vy.

Due to the assumptions on f; and using (2.35)) we have

1Eullany)- < € (g ey~ + llga 22 (2.36)
for a constant C' depending on 2, 11, A\¢g and ;. Now, we define the function space
W = {w € H}: div(w) =0 a.e. in Q}.

Furthermore, we define a bilinear form a: W x W — R and a linear functional [: W — R by
a(wi,wo) = / 2n(c)Dwy : Dwo + v(c)wy - wo dz, I(w) = (f W) B
Q

By Holder’s inequality, the assumptions on 7(-), v(-), and by the definition of the duality product,
it is easy to check that a and [ are well-defined.

Moreover, it is obvious that a is bilinear. Using Hoélder’s and Young’s inequalities along with
Korn’s inequality for trace free functions, it is easy to check that a is also continuous and
coercive. Therefore, the Lax—Milgram theorem guarantees the existence of a unique vo € W

solving
a(ve,w) =1l(w) VweW

which is equivalent to
/ 2n(c)Dvy: Dw + v(c)vy - w dz = (£ Wi YweEW. (2.37)
Q

Choosing w = vy in (2.37)) and applying Young’s, Holder’s and Korn’s inequalities, it follows
that

_ Gk
min{2ng, v}

Ivallan < (
Furthermore, by (2.37) we see that

> ”f‘l”(H}))*- (2.38)

(=div(2n(c)Dvy) + v(c)ve — fi Wi =0 VweW. (2.39)
By Lemma and ([2.38)) we obtain the existence of a unique pressure p € L3(£2) such that
— div(2n(c)Dvy) + v(c)ve + Vp=f; in (H}), Ipllz2 < ClIfillexy)- (2.40)

with a constant C' depending only on €2, 79, 11, o and v1. Then, by construction we see that
(v,p) € H} x L3 is a weak solution of (2.33)) and satisfies (2.34) which completes the proof. [

We can now prove the main result of this subsection.

Proof of Proposition[2.73. We divide the proof into several steps.

Step 1: First we aim to reduce the problem to the case g = 0. For (z1,...,24)T € Q we define

1 2n(c
Vi = E(xla e axd)T Vo ‘= gaVvi, Po = ga (7765) + )‘(C)) 5

where gg = ﬁ ng dz, and we observe that vy € H!, py € L?. Furthermore, it holds that
div(vg) = go in © and

/ T.(vo,p0): VB dz =0 V®cH', T.vo,po)n=0 a.e. on 9. (2.41)
Q
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The second identity follows since ¢ € H"(99) for r > 1 and thus T,(vo,po) € L*(0%). Now, let
(Wo,p0) € H(l) X L% be the unique weak solution of

—div(Te(wo,m0)) + v(c)wog =0 inQ, div(wp)=¢g—9gq inQ, wo=0 ondQ
which exists according to Lemma and satisfies the estimate
[woller + llpollzz < Cllgll 2 (2.42)

This gives T.(wo,T) € L? and div(T.(wq, 7)) = v(c)wo € L2. Using Lemma and (2.42))
yields Te(wo, mo)n € (H2 (89Q))* and

ITe(wo, mo)nl| < Cllgllz>- (2.43)

H (00))"
It remains to show that there exists a unique weak solution (w, ) of the system
—div(To(w, 7)) + v(e)\w =f =f — v(c)vg in Q,
div(w) =0 in £,
T.(w,7)n=Fp =, — T.(wo,mo)n on Of).

Indeed, if such a solution exists one can check that (v, p) :== (W + wq + vo, 7 + 7o + po) satisfy

(2.31). Moreover, by (2.42)-(2.43) it follows that
[

L < C([If]

Lo +llgllzs)  and ||Fyllgizy < C (Il @iz +llgllze) (2.44)

with C' depending only on 2 and v1. To keep the notation clear, we will write f,, f, v and p
instead of Fy, f, w and 7 in the following.

Step 2: We introduce the function space W := {w € H!: div(w) = 0 a. e. in Q} and we define
a bilinear form and a linear functional on W by

a(wy, wa) = / 2n(c)Dwi: Dwy +v(c)wy - wa dz, U(w) = (fs,W)mg1/2(60) +/ f wdzx.
Q Q

Employing the continuous embeddings H' < H!/2(9Q) and W — (L")* one can check that a
and [ are well-defined. Then, it is straightforward to check that the conditions needed to apply
the Lax—Milgram theorem are fulfilled (see proof of Lemma for details). This gives the
existence of a unique v € W fulfilling

a(v.w) = I(w) ¥YweW,
or equivalently
/927](C)Dv: Dw +v(c)v-wdz — (£, W)gi/2(90) = /Qf -wdr YweW. (2.45)
Furthermore, with similar arguments as in the proof of Lemma and by we get
Ivlie < € (Ifllery- + lgllze + IEll ez ) - (2.46)
We now define the function space
Vi={w e (C52(Q)%: div(w) =0 a. e. in Q}.

Since clearly ¥V € W, by (2.45) and Lemma we obtain the existence of a unique pressure
p € L3 such that

= div(2n(c)Dv) + v(c)v + Vp=1£, |Ipllrz < C (Ifllr)- + lglle + [follerirzy-) . (247)
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Writing (2.47), in the equivalent way
—div(2n(c)Dv — pI) = f — v(c)v € L?, (2.48)
we see that (2.46) implies 2n(c)Dv — pI € L;,(Q2). Let & + 1 =1 which implies s > 2 due to

the assumptions on s. Using (2.48]) and applying Lemma we obtain that

/Q 2n(c)Dv: Dw + v(c)v - w dz — ((2n(c)Dv — pI)n,w)w%,S/(am = /Qf -w dz

for all w € W N W5, Comparing this with (2.45) we see that

((2n(c)Dv — pI)n — f, ,W>W%ysl(aﬂ) =0 Ywe WnWhH (2.49)

From now on we will use that W'~ (9Q) = W' (09).
Step 3: Let ¢p € W&’ (09) such that [, 4 -n dH4! = 0. Then, by Lemma there exists
a solution w € Whs' satisfying
div(w) =0 in Q, w=1 on 9.
Hence, it holds w € W N W15 which shows that (2.49) holds for all 4 € W5’5(8Q) fulfilling
Joq ¥ -ndH =0.
Step 4: Define 9, = n which belongs to W=*' (9Q). Then, it holds
o -n dH! :/ In|? dH*! = 09| > 0.
aQ a0
For any ¢ € W+ (9Q) we set

o L o dHe!
1=~ oy ([ prm ) o

hence
1

— P-n de—l) P,
09| < 00 0
Since by definition fag ;- ndH?! = 0 we know from Step 3 that

Y =1 +

(20()DV — pIn — £y, 86y 1 0y =0

Introducing the number

Co ((2n(c)Dv — pI)n — £, , 1)

1
109 W (90)]

this implies

_ . d—1
((2n(c)Dv — pI)n — f; ’¢>W%>‘*'(89) =C) . Y -ndH
Consequently, for any ¢ € W' (09Q) we have
_ ) d—1
(20(e)DY =20 = 6 ¥y = [ (Com) - it

This proves that
(2n(c)Dv —pI)n — f, = Coyn  in (W%’s,(89)> .
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Setting p = p + Cy we see that
(2(c)Dv — T —f, =0 i (W' (99)) .
Therefore, we have solved (in a weak sense) the problem

—div(Te(v,p)) +v(c)v =1 in €,
div(v) =0 in €,
T.(v,p)n=15 on 0N.

In particular, the pressure p is defined in a unique way. Finally, using (2.44)) and ([2.46)-(2.47)),
we can establish the estimate (2.32)) which completes the proof. O

Later on, we will also need a continuous dependence result for the system (2.31]). To this
end, we make the following additional assumptions:

Assumptions 2.46 The functions n, X and v fulfil Assumptions[2.43 and, in addition, for all
r, s € R it holds that

n(r) =n(s)] < Lylr —sl, (M) = Als)| < Lalr =], [v(r) —w(s)] < Ly|r—s[  (2.50)

or positive constants L,, Ly and L, .
n

The following continuous dependence result will be important in the Galerkin scheme in
Chapter [4]

Proposition 2.47 Let Q C R%,d = 2,3, be a bounded domain with CY'-boundary and let
Assumptions hold. Furthermore, let (£f;,g;,c;) € L2 x L2 x (L* N H"), i=1,2, r > %, be
given and let (v, p;) € HY x L2, i = 1,2, be the unique weak solution pairs of

—div(2n(c;)Dv; + A(c;)div(vi)I — pI) +v(c;) v, = £ in Q, (2.51a)
div(v;) =¢; inQ, (2.51b)
(21(¢c;)Dv; + M¢;)div(vi) I —p;I)n =0  on 90 (2.51c¢)

according to Proposition . Then, the differences (v,p) = (va — v1,p2 — p1) fulfil
[Vller + llplle < C([1f2 = fillzz + llg2 — g1llz2 + ([[fill2 + lg1lle2)lle2 — erllo) — (2.52)

with a constant C' depending only on Q, ng, 11, Ao, Vo, v1, Ly, Ly and L,,.
Proof. In the following we denote by C' a generic constant depending only on €, ng, 11, Ag,
Vo, V1, Ly, Ly and L,. We denote v :i=vy — vy, p:=ps—p1, f:=1fH —f;, g == g2 — g1 and
¢ = cg — ¢1. Then, a straightforward calculation shows that (v, p) satisfies

/ (2n(c2)DV + A(c2)div(v)I — pI): D® + v(co)v - @ dz

Q
= —/ 2(n(c2) —n(c1))Dvy: D® + (A(c2) — A(eq))div(vy)I: D® dx
Q

—/(V(cl) —v(c))vy - ®—f - ®dr V®cH, (2.53)
Q

and
div(v) = g. (2.54)
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Due to Lemma there exists a solution u € H' satisfying
diviu)=¢ a.e.in, u= (|819|/Qg dx) n a.e.on 0f, lullg: < C|lgllL2- (2.55)
Choosing ® = v —u in and using the assumptions on 7(-) and v(-) we obtain
20DV + w0llvIE: < [ 20(ca)Dv: Du+vlea)v - da
- | 2n(c2) = ex)Pvi: Dy —w) dr
- [ W) —vtenmi- v —w) =1 (v —u) o
By , , (2.30), (2.32), (2.50) and ([2.55) it is straightforward to check that the r.h.s. of

this inequality can be controlled by

Vo
IRHS| < ol DVIIE: + - [IVIIZ: + C (172 + llgllZz + (HillZz + g1 l72)llelZe) -
Combining the last two inequalities and using (2.23)), this implies

[Vl < C(Ifll2 + llgllez + (Ifillz2 + [lgallz2)llellze) - (2.56)
Using Lemma there exists a solution q € H! satisfying

div(q) =p a.e.inQ, q= <|01Q| /Qp dz) n a.e. on 99, laller < Cllpllz2.  (2.57)
Choosing ® = q in gives
Ipll2. = /Q (2n(c2)DV + A(c2)div(v)I): Dq + v(cz)v - q da
+ /Q 2(n(e2) —n(c1))Dvy: D+ (A(e2) — Alcr))div(vy)I: Dq dz
+ /Q(V(cl) —v(e2))vi-q—f-qdax.

Applying (2.1), (2.2), (2.30)), (2.32)), (2.50) and (2.55)-(2.57) we can control the r.h.s. of this

inequality by

1
[RHS| < §||p||i2 +C (€172 + lgllze + (Ifl172 + llgallZ2)llelZ) -
Consequently, the last two inequalities imply that

Ipllz < C(IfllL2 + lgllzz + (Ifullz2 + llgrllz2)llel ) -
Together with (2.56)) this completes the proof. O

2.4.2 Strong solutions of the Stokes resolvent system
Throughout this part we make the following assumptions:

Assumptions 2.48 The viscosities fulfil n, A € C%*(R) and
o <n(t)<m, O0<A({E) <A VteR

for positive constants 1o, 1m1, and a non-negative constant \o. The function v belongs to C°(R)
and fulfils
vo<v(t)<vy VteR (2.58)

for positive constants vy and vi. Furthermore, we assume that s > 1 if d =2 and s > g ifd=3.
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For constant viscosities we have the following result:

Lemma 2.49 Let Q C R?, d = 2,3, be a bounded domain with C*'-boundary and let c € H”,
r > . Furthermore, we assume n(-) =n and X(-) = X for constants > 0 and A\ > 0. Then, for
every g € W5, £ € L® and £, € W=3:5(9Q) there exists a unique solution (v,p) € W2* x Wbs
of the system

—div(T(v,p)) +v(c)v="=f a.e. in §, (2.59a)
div(v) =g a.e. in Q, (2.59b)
T(v,p)n =1, a.e. on 01, (2.59¢)

where T(v,p) = 2nDv + Adiv(v)I — pI. Furthermore, the estimate

Vliwe.s + Bpllwse < © (Ilee + lgllwse + 1ol . o) (2.60)

holds for a positive constant C' depending only on Q, s, n, A, vy and vy.

Proof. First we observe that W!=%:5(9Q) C (Hz(9Q))* and W c L2. Applying Proposi-
tion there exists a unique weak solution pair (vi,p;) € H! x L? of . We divide
the proof into two cases. This is due to the fact that in three space dimension it holds that
v1€H1CL6gL3 for s > 6.

Case 1 (s < 6): Applying Lemma there exists a unique ¢ € W3 satisfying
—Ag=g inQ, ¢=0 ond,  |gwss <Clgllwre. (2.61)

We define vy := —V¢q and we consider the system

—div(T(v,p)) + vov = £ — div(2nDvy + A\gI) + vova + (vg — v(c))vy = f in Q, (2.62a)
div(v) =0 in Q, (2.62b)
T, p)n =1, + (2nDvs + A\gI)n = F, on 0. (2.62c)

Let E: W=5:5(9Q) — W* be a bounded, linear extension operator satisfying (Fh)|sq = h
for all h € Wl_«%vs(aﬂ). Then, (EFp)|oq = Fp and by [127, Thm. 1.1] there exists a unique
strong solution (¥, p) € W25 x WS satisfying (2.62) and

[¥liwee + lallwe < € (Il + 1Pl s o0, (2.63)

It is straightforward to check that (v, p) :== (V — vy —va,p —p1) € H! x L? is a weak solution of
(2.59) with data (f,g,f,) = (0,0,0) and by Proposition it follows that vi = Vv — va, p1 = p.
By the definition of v5 and using (2.61)), along with 7 it follows that (vi,p1) € W2 x W
is a strong solution of satisfying which completes the proof for the case s < 6.

Case 2 (s > 6): Sobolev embedding theory yields (f,g,f,) € L x W16 x W1=5:6(9Q) and
therefore the case s < 6 implies vi € W26 ¢ W12 Then, we can define f as before to obtain
f € L°. The remaining arguments are exactly the same as in the case s < 6 which completes
the proof. O

We now prove the following result for the non-constant viscosity case.

Proposition 2.50 Let Q ¢ R%, d = 2,3, be a bounded domain with C*'-boundary. Assume
thatf € L5, ge Whs, £, € Wl_é’s(ﬁQ) and c € WY with r > d and s < r. Then, there exists
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a unique solution (v,p) € W25 x Wbs of the system

—div(2n(c)Dv + A(e)div(v)I) + v(c)v+ Vp=1f a.e. in Q, (2.64a)
div(v) =g a.e inQ, (2.64b)
(2n(c)Dv + A(c)div(v)I — pI)n =f, a.e. on 09, (2.64c)

satisfying
IVliwz + lpllw.e < C (Il

Lo+ llglhwre + 5] (2.65)

w1*%’5(351)>

for a positive constant C' depending only on 0, s, ng, N1, Ao, Vo, 1 and ||c||wr.r.

Proof. We divide the proof into two steps and we use arguments presented in [1].

Step 1: The case A\(-) = 0:
First we observe that W1=+#(9Q) c (Hz(0Q))* and W'* C L? and therefore by Proposi-
tion [2.43] there exists a unique weak solution pair (v,p) € H x L? of with A(-) = 0 which
means that

div(v) =g a.e.in Q,

and
/Q(Qn(c)Dv —pl): Vo +v(c)v- ¢ dz — (fy, @) ai/2(90) = /Qf ~¢pdz YoecH'. (2.66)
We define ¢ = n(c) "1¢ and calculate
[ @D = (0 D Vo (e 6 o — () o B
= [ CaeDY = ): V() 6) + w0}y - & da = (.1(6)” Dhavcony

. 2n(c)Dv: (V(n(c) ™) ® ¢) —pV(n(c)™) - ¢ dz

= [ @Dy =p1): (Vo = V(a(e) ) ©.6) + vle)v - & do = {fyphuavs(on

- / (n(e) ) -  da + / V(AW —n(e) 1) b - / (2n(e)Dv - pI): V((c) ™) ® ¢ da
Q Q Q
= <h7¢)>Q.

We see that the pair (v,p) == (v,n(c)"'p) € H* x L? is a weak solution of (2.59) for the data
f =h, g = g, and with f, replaced by n(c)~'f,. Due to the assumptions on f,, () and c, it
follows that 1(c)1f, € W=15(9Q).

Our aim is to show that h € L®. To this end we observe that

[(h,@)a| < Ol fll:(|®ll, = + C ([vllar + [Ipll2) X+ Vel )@l (2.67)
where 1 11 1 1
S0 r o 2 Sy So

Observe that the assumptions on r guarantee that

so>1 ifd=2, 80>g if d =3.

In the case s < % = 5o we observe that h € L*.

We now consider the case s > QQ—J:T Using h € L*° and applying Lemma we obtain
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(V,p) € W25 x Whso Due to the assumptions on 7(-) and ¢ this implies p € W'*° and by
(2.60) we have the estimate

|Mmmﬁwmw%scu+w¢u(fLm+mmmﬁwmml$mm). (2.68)

Hence, we have (v,p) € WhPo x [Po with

If 57 < min(s, d) we can repeat the above step and after k steps we obtain h € Lin(s:sk:d) where

1 1 1 1 1

—=—4+—-—k({=—-]. 2.69

Sk 2 + T (d r) ( )
Since r > d, we see that the r.h.s. of this equation is strictly monotone decreasing. Now, we
consider two cases:

Case 1 (s < d): In this case we have after k steps that h € L™"(%5%) Since the sequence on the
r.h.s. of (2.69)) is monotonically decreasing, after a finite number of steps we deduce that s > s
and consequently h € L*. With similar arguments as above we then obtain the estimate ([2.65]).

Case 2 (s > d): With exactly the same arguments as in Case 1 we obtain after a finite

number of steps that (v,p) € W24 x W4, Now, we take p = fffi € (1,00) which implies

(v,p) € WP x LP due to Sobolev embedding theory. Furthermore, since r > d we observe that

11 2d+r—d d+r 2r 1

r P 2dr 2dr <ﬁid'

Since s < r this implies (v,p) € W2* x W which completes the proof for the case A(-) = 0.

Step 2: The case A(-) # 0: Let (v,p) € W% x W1 be a solution of (2.64) with A(c) =0
Define v := v and p = p + A(c)g. Since div(v) = g it follows that Vp = Vp — div(A(c)div(v)I).
Then, it is easy to check that (v,p) € W?* x W1# is a solution of (2.64) with A\(-) # 0 and

[plwrs < C([Bllwrs + 1A (c)gllw)
< Clpllwrs + C (llellL=[IVgl

Le + Vel llgllne)
1

. X 1 1
< Clllws + Clelwarlglhwne with <+ = <.

The last inequality follows from the Sobolev embedding W'+* C L resulting from

d d 1 1 1 1 1 1 1
l-——-> = - = = = > = >d
S q d s q 1 s d r
Together with (2.69) this shows (2.65)). Uniqueness follows from linearity of the system (2.64))

and by (2.65). O

In order to show continuous dependence of the system (2.64) with respect to ¢ we require
additional assumptions on the nonlinearities.
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Assumptions 2.51 The permeability function satisfies v € C°(R) and
lv(t) —v(s)| < Lyt —s| Vs, teR

for a positive constant L,

In order to use Proposition within a Galerkin scheme we will employ the following
continuous dependence result:

Proposition 2.52 Let Q C RY, d = 2,3, be a bounded domain with C*'-boundary and let
Assumptions hold. Furthermore, let (f;, g;,c;) € L2 x HY x WL i = 1,2, with r > d be
given and let (v;,p;) € H? x H', i = 1,2, be the unique strong solution pairs of

—div(2n(c;)Dv; + A(c;)div(vi)I — pI) + v(c;)v, = £ in Q, (2.70a)
div(v;) =g¢g; inQ, (2.70b)
(2n(c;)Dv; + A(¢;)div(vi)I—pI)n =0 on 09 (2.70¢)

according to Proposition . Then, the differences (v,p) == (va — vi,p2 — p1) fulfil
[Vliaz + llplla < C (2 = filluzllg2 — g1l + ([frllue + lgrlla)llez — erflwrr)  (2.71)

with a constant C' depending only on Q, 1o, M1, Ao, Vo, V1, Ly, |lci||lwrr and || calwir.

Proof. In the following we denote by C' a generic constant depending only on €, 19, 11, Ao, Vo,
v1, Ly, ||c1]lwir and ||ca||wir. We denote vi=vo —vi, p=ps—p1, f = —f1, g =92 — ¢
and ¢ := ¢y — ¢;. Then, a straightforward calculation shows that (v, p) satisfies

—div(2n(c2)DV + A(c2)div(v)T — pI) + v(c2)v = f  in Q, (2.72a)
div(v) =g in Q, (2.72b)
(2n(c2)Dv + A(e)div(v)I — pI)n = f,  on 99, (2.72¢)

where

f = f+div(2(n(c2) — n(c1))Dvi + (A(c2) — A(c1))gil) — (v(c2) — v(er))vi,
£y, = (2(n(c1) — n(c2))Dvi + (A(e1) — Aez))g1]) n.

Now, we observe that
div(2(n(c2) — n(c1))Dv1) = 2Dvy (1 (c2)(Vez — Ver) + (7' (c2) — 1 (e1))Ver)
+ (n(c2) —n(c1))div(2Dvy).

Setting 4 + 1 = 1 and using r > d we can check that H' C L™ and W ¢ L*. Invoking the

assumptions on 7)() yields

12Dv1 (1 (c2)(Vez = Ver)||rz < Cl2Dvi |y [ Vellr < Cllvifmzllc]wr,
12Dy (1 (c2) = 7'(e1))Ver |z < ClI2Dva [ [[Ver[urllell e < Cllvallaelellw.r,
1(n(c2) = n(c1))div(2Dvy)[|L2 < Cllef| Lo [[div(Dvy)|lLz < Cllva a2 llelwrr,
and therefore
[div(2(n(c2) = n(c1))Dv1)[le < Cllvallezlellwa.r-

With similar arguments we obtain

div((A(c2) = Ale))gnd) = (v(e2) — v(er))villee < Cllelwrr (gl + [[villa2) -
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From the last two inequalities and ([2.65)) we obtain
£z < € (I€lle + (£l + loall ) lellwrr) -

With similar arguments it follows that

12(n(c1) = n(e2))Dvi + (Aler) = Mez)) gl < C([[frllee + llgalla)lellwr.

Using the trace theorem and the assumptions on 92, this implies

1oll ;4 50y < CUIEllL2 + llgillz)llclwr.r.
Applying (2.65) to (2.72)) and using (2.73))-(2.74) we deduce that
Ivilg2 + Pl < C(EllLzllglla + (fullee + lglla)llelwr)

which completes the proof.

(2.73)

(2.74)



Modelling aspects

Using basic thermodynamic principles and the Lagrange multiplier method of Liu and Miiller,
we will derive a general Cahn—Hilliard-Brinkman model for tumour growth including effects like,
for example, diffusion, chemotaxis, active transport, proliferation and apoptosis. This model
will serve as the basis for this thesis and several variants of this model will be analysed. We
will consider a partial mixing of a fluid consisting of two components and we follow the ideas
presented in . Furthermore, we use basic ideas of continuum mechanics, see, e.g., .

In the second part of this chapter, we will discuss several additional modelling aspects like, for
example, specific forms of source terms, pressure reformulations, a general energy inequality,
boundary conditions and non-dimensionalisation arguments.

Then, we will use the method of formally matched asymptotics to derive some sharp interface
models for tumour growth which are related to free boundary problems that have been studied
earlier in the literature.

In the last part of this chapter we will show numerical simulations which give further insights
into the model and the influence of different parameters.

3.1 Derivation of the model

Let us consider a bounded domain Q € R?, d € {1,2, 3}, and a mixture consisting of tumour
and healthy cells. We denote the first and second component as the healthy and tumour tissues,
respectively. Furthermore, we introduce p;, i = 1,2, (actual mass of the component matter per
volume in the mixture) and p;, ¢ = 1,2 (mass density of a pure component ). The mass density
of the mixture is denoted by p := p1 + p2. We define

Pi
U; = —
Pi
as the volume fraction of component ¢ and
C; = &
p

39
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as the mass concentration of the i-th component and we note that ¢; + c; = 1. Physically we
expect p; € [0, p;] and thus u; € [0,1]. By vy, i = 1,2, we denote the velocity of component 4
and we make the following assumptions on our model.

(i) The excess volume due to mixing of the components is zero, i.e.,
U+ uz = 1. (31)

(ii) We allow for mass exchange between the two components. Growth of the tumour is
represented by mass transfer of healthy to tumour tissue and vice versa.

(iif) We choose a volume-averaged mixture velocity, i.e.,
V= uiVvy + ugva. (3.2)

(iv) We assume the existence of a general chemical species acting as a nutrient for the tumour,
like, for example, oxygen or glucose. The concentration of this species is denoted by ¢ and
it is transported by the velocity v and a diffusive flux J,.

We remark that the choice of the mixture velocity is in contrast to [113] where they use a
barycentric/mass-averaged mixture velocity v := ¢1vy + ¢ava leading to a more complicated
expression for the continuity equation.

3.1.1 Balance laws

We now study the balance laws for mass and momentum.

Balance of mass
The mass balance law in its local form for the two components is given by
Opi + diV(ini) =I;, i=1,2, (33)

with source or sink terms I';, i = 1,2. Dividing (3.3) by p;, ¢ = 1,2, we obtain the identities

T,
Using (B1)-(2) and (§3) yields
T; r Tr
div(v) = div(uyvy) + div(ugve) = Z < - 8tui> S (3.5)
i1 \Pi P P2
We introduce the fluxes
1 1
J; = pi(Vi—V)7 J=J1+Jy, J=—"TJ+ —Jo,
1 P2

where J; describes the remaining diffusive flux after subtracting the flux resulting from mathe-
matical transport along the mixture velocity. Using the identity

T +pv=J1+J2+ pv=p1v1+ pava
in conjunction with (3.3), the equation for the mixture density reads as

Op + div(p1vy + pave) = Op +div(pv + J) =T + Ts. (3.6)
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In particular, we see that the flux of the mixture is decomposed into one part representing
mathematical transport along the mixture velocity and another part describing additional fluxes.
In some models it is assumed that there is no gain or loss of mass locally which is the case if
I'y =-Isin . From now on we denote by ¢ = uy — uy the difference in volume fractions
of the two components. Recalling p; = p;u; and using the identity

. ) 1
div(u;v;) = div (/szi) = div (pz(vi —v+ v)) = —div(J;) + div(u;v),

Pi Pi Pi
from (3.4) we obtain

1 T
Opu; + —div(J;) + div(u;v) = —.
Pi Pi
Subtracting the equation for u; from the equation for us yields
r r
Ay + div(pv) + div(d) = =2 - L = Ly. (3.7)
P2 P1
In particular, using u; + us = 1 gives
1+ 1-
Uz = Twa Uy = 9 4
which means that {x € Q : ¢(z) = 1} represents the region of pure tumour tissue whereas
{r € Q: p(x) = —1} is the region of pure healthy tissue. From the definition of p and wu;,

1 = 1,2, it follows that
p1+p2 | p2—p1
p=pp)=—F5—+=5 %

and therefore p depends linearly on ¢. Moreover, we see that

p=p1 fe=-1, p=p fp=1
For the nutrient we postulate the balance law
Opo +div(ov) + divl, = —T',, (3.8)

where T’ is a source or sink term, ov models transport by the volume-averaged velocity and J,
represents other transport mechanisms.

Balance of linear momentum

We make the following assumptions for our model.

(i) As in [3], we consider the mixture as a single fluid with volume-averaged velocity v which
satisfies the balance law of linear momentum of continuum mechanics.

(ii) We assume that inertial forces are negligible which can be justified as the Reynolds number
for biological processes like tumour growth is usually very small. Since gravity plays no
role in our model of interest and other body forces are difficult to imagine, we neglect
body forces.

(iii) Contact forces are represented by a stress tensor T, and we assume an additional source
m in the momentum balance equation which could for example represent momentum
exchange.

(iv) We assume that the stress tensor is symmetric, isotropic and depends on Vv, ¢, u, o and
V.

With all these assumptions, the balance of linear momentum takes the form
div(T) + m =0, (3.9)

where T and m have to be specified by constitutive assumptions.
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3.1.2 Consequences of frame indifference

In the following we apply the same arguments as in [60,(99]. The constitutive law for the stress
tensor is assumed to be of the form

T = T(p, 4,0, Vi, V).

Dependence of the stress tensor on Vv

In the following, we suppress the dependence on (¢, i1, 0, Vo) and denote L := Vv. We allow
for observer changes of the form

(t,2) = (t7,27) = (t,a(t) + Q(t)z)

with smooth functions a: Ry — R™ and Q: Ry — R™ " satisfying QTQ =TI and det(Q) = 1.
The vector a realises a translation while Q is an orthogonal matrix. Under a change of observer,
the quantities T and L transform to QTT*Q and QLQT + Q’'QT (see, e.g., [60]). Moreover, the
assumption of isotropy for the stress tensor requires that the constitutive law does not change.
Hence, the relation

QT(L)Q™ = T(QLQT +Q'Q") (3.10)

has to hold for all Q. Let €2y be an arbitrary skew-symmetric matrix and define Q as the unique
solution of the initial value problem

Q'(t) =2Q(t), QUO0)=I Vit>0.

It can be checked that Q satisfies QTQ = I and det(Q) = 1 and therefore (3.10]) has to hold for
all such Q. At time t = 0 we find that

A~

T(L) = T(L 4 Q).

Using the identities

1 1
L=D+W, D:= §(L+LT), W = §(L—LT)
we obtain
T(L) = T(D + W + Q). (3.11)

These relations must hold for all skew-symmetric matrices 2y and all L. We now fix L and
choose

Qy=-W
in (3.11) to obtain that

T(L) = T(D).

The r. h.s. of this identity depends only on the symmetric part of L and therefore T(L) = T(D)
Finally, we take Q constant in time in (3.10)) to get the additional restriction

QT(D)QT = T(QDQ). (3.12)
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Dependence of the stress tensor on Vo

Let Q be an arbitrary orthogonal matrix satisfying det(Q) = 1. In the following, we suppress
the dependence on (¢, 1, o, Dv) and we restrict to the three-dimensional case. Similar as before,
we require that

QT (Vy) =T(QVy)Q VQ. (3.13)

Let Q be the matrix that realises a rotation around V¢ with the angle of rotation given by
5. Then, it holds that QVy = Vi and thus Vi is an eigenvector of Q with corresponding
eigenvalue 1, and the eigenspace has dimension 1. From (3.13]) we obtain

QT(Vy) = T(Ve)Q,
and applying both sides to Vi gives
QT(Vy)Vp = T(Ve)V

Hence, T(V@)Vg@ is an eigenvector of Q with corresponding eigenvalue 1. Since the eigenspace
of Vi has dimension 1, this implies

T(Ve)Ve = a(Ve) Ve (3.14)

for a function a: R® — R. For the vector q = §(Vy) = T(Vy) Ve we obtain by using (3.13)
that

4(QVy) = T(QVe)QVy = QT(Ve) Ve = Qa(Vy),
and thus the expression on the left hand side of (3.14) is isotropic. Therefore, the r.h.s. of
(3.14) has to isotropic, and we conclude from (3.14]) that
a(QVe)QVe = a(Ve)QVy,
and so, if a # 0, it follows
a(Ve) = a(QVy).

Now, for any vector a with |a| = |V, there exists an orthogonal matrix Q with det(Q) =1
such that a = QVp, and therefore

T(Ve)Ve = a(|Ve|) Ve (3.15)

Due to the symmetry of T, there exist eigenvectors v;, ¢ = 2,3, of T with corresponding
eigenvalues o;(Vp), i = 2,3, such that {V¢/|V¢|,va,vs} forms an orthonormal basis of R?.
Moreover, it holds that

Vo

T(V(p) (‘V(pbm ® m + OZQ(VQD)VQ X vy + ag(V(p)V3 X V3. (316)
Let Q; be the matrix that realises a rotation around V¢ such that Q;ve = vz and Qiv3 = —vs.
Then, using (3.13) with Q = Q1, we obtain by using (3.16) that
\ Vo
a(|[Vel|) ‘vip| ® —— |V | + a2 (Ve)vs @ vo — a3(Vy)va @ vs

( (Ve |)m ® % + aa(V)va @ va + a3(Vp)vs ®V3> Q.

Applying both sides to vy or v we obtain

as(Vo)v; = a3(Ve)v; fori=2,3 = az(Ve) = az(Vy).
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Together with (3.16)), this gives

¥

\vJ Vo Vap)
Vo) =a(|Vy|) =— @ —— \Y - = 3.17
B(T0) = al(Ve) 08 © 5 +aalVe) (1- 25 8 22 (3.17)
and therefore
i — Qi _ _Vy o Ve
T(QVy) = QE(TAIQT + (@2(QV9) - ax(Ve)Q (1= 5 0 T2 ) Q.
In order to fulfil we require that
Ve Vo _ 3
(@2(Q¥9) - a7 (1- T5 0 T2 ) Qu=0 vue B (00,07, (15)

We now argue by contradiction in order to show that as depends only on |V|. Assume that
there exists Qg such that as(Q2Ve) # as(Vp). This implies QaVy # Vo and there exists a
vector x € R?\ {(0,0,0)T} such that QJx = vy, which implies

V(p Ve

(2(Q2Ve) — a2(V) Qo (I T Vel © Vel

2 ) QBx = (@2(QuV) - ax(Tp))x £ 0

This is a contradiction to (3.18]) and therefore as(QVy) = az(V) for all orthogonal matrices
Q. Then, arguing as above we obtain as(Vy) = as(|Vy|), and (3.17) implies
Vo Vo >

®

- 3.19
ol © Wl (3.19)

B(V) = allVo) L @ o +an((e) (T

3.1.3 Energy inequality and the Lagrange multiplier method:

In an isothermal situation, i.e., the system’s temperature remains constant, the second law of
thermodynamics is formulated as an energy inequality, see, e.g., [98]. Thus, the specific form of
the stress tensor and the fluxes for ¢ and o depends on the choice of a suitable system energy.
Since we have neglected inertia effects in the momentum balance law, we assume that there is
no contribution of kinetic energy. For a model including inertia effects we refer to [2] where the
authors deduce a Navier—Stokes—Cahn-Hilliard system. We postulate a free energy of the form

e=¢é(p,Vo,o). (3.20)

A discussion of the situation when source terms are present can be found in, e. g., [99, Chap. 62].
We denote by V(t) C Q an arbitrary volume which is transported with the fluid velocity. Using
the second law of thermodynamics in an isothermal situation, the following energy inequality
has to hold

d
—/ e(p, Vo, o) de < —/ Jo-ndH 4 / (Tn) - v dH?1
dt Jyv @ oV (1) oV (¢)
Change of Energy flux across Working due to
energy the boundary macroscopic stresses
+ / oIy + ¢,y + ¢ (—Ty) da, (3.21)
V(t)

Supply of energy

where n is the outer unit normal to 0V (¢), J. is an energy flux yet to be determined and ¢, ¢,
and ¢, are unknown multipliers which have to be specified. Furthermore, the second boundary
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term describes working due to the macroscopic stresses, see, e.g., [3].
We introduce the material derivative of a function f by

Off=0f+Vf-v.

Following the arguments in, e.g., [3,[87], we now apply the Lagrange multiplier method of Liu
and Miiller which has been developed in [111]. More precisely, we introduce Lagrange multipliers
Avs Ay and A, for (3.5) and (3.7)-(3.8). The following identity can be easily verified upon using

the momentum balance equation:
—/ (’I‘n)~vd7—ld*1:—/ div(T) - v+ T: Vvdz = m-v—T: Vvdz.
AV (t) V(t) V(t)
Therefore, using Reynold’s transport theorem and , the following local dissipation inequality
has to be fulfilled for arbitrary values of (¢, 0, Vo, Vo, v, I, T, Ty, 00, 00 0)
D =0le+ediv(v)+div(Je) —T: Vv+m-v —c,I'y — ¢,y + ¢, 15
— Av(div(v) = T)
— A (0F 0 + pdiv(v) + div(J,) — T')
— Ao (0f0 + odiv(v) + div(J,) + T',) <O0.
For the first term in the definition of —D we calculate

Oe .o Oe Oe .o
%8,5 2 + m@t (ch) + 7815 ag.

do
We therefore arrive at the inequality

—D = div(J. — ATy — Aedo) + VA, - T, + VA, - T,

+ 00y <(§; )\q,> + 070 <§Z )\U)
—T: Vv+mov+206{(Vgp)
OV
+ (o = Ae)To + (Av — ) Tv + (Ap — )T,
+ (e — App — Ao — Ay) div(v) < 0.

Ofe =

Using the identity
0z; (07 0) = 040y, 0 +V - V(0y;0) + 0z, V- Vo = 07 (O, ) + O, v - Voo

we calculate

) . Oe . 1. Oe . Oe Oe
div <8t gom) = 0; pdiv <8V<p> + 07 (Vo) - o + Vv: (Vgp ® 6V<p> .

Therefore, we can rewrite —D as

—D = div (Je —Apdo — Asdo +at’<paave(p> +VA, Iy + VA, - I,

. [ Oe . Oe . [Oe
+8tg0(&0—dlv <8V@) —A¢> +8t0'(80_—>\g>

Oe
(T i . .
( +(V¢®8ch>) Vv+m-v
+(co = A)lo + (Av — )Ty + ()‘so - C@)Pw
+ (e — App — Apo — Ay) div(v) <0. (3.22)

Finally, we define the chemical potential as

Sy
P =%, " \avy )




46 3 Modelling aspects

3.1.4 Constitutive assumptions:

To fulfil (3.22) we can argue as in, e. g., [3,87] and we make the following constitutive assumptions

Oe

J.=2Jdy + 2\, — 0 e = Ay, 3.23
+ Apdy t (p(’?Vgo c ( a)
Oe de Oe
=)\, = — —di = > = )\O' = —, .23b
Cyp °= o iv (3Vgp) W, ¢ %% (3.23b)
de
I = —mle)Vi 3, =-nle)V (5. (3.250)

where m(y¢) and n(p) are non-negative mobilities corresponding to a generalised Fick’s law
(see [3]). In principle, m(-) and n(-) could also depend on additional variables like p and o.
With these choices (3.22)) simplifies to

— <T+ (Vgo@ (’fVip)) Vv m- v+ (e— Ay — Ao — Ay) div(v) <0. (3.24)

We now introduce the unknown pressure p and we rewrite the stress tensor as
T=S—-pI where S=T+pl (3.25)

An easy calculation yields the identity

de 1 1 Oe de 1
V s (Vv—(VVv)T) )= = |V — \V/ - (Vv — (V)T
( e @)'2( v= (V)T 2( ¢®8Vgp 6Vg0® 90>'2( v— (V)T

Since the skew symmetric part of Vv can attain arbitrary values (see, e.g., [3]) and by the
symmetry of T we conclude from (3.24) that

Oe Ode

Ve® oV - oV

® Vo

which implies

de |? 9 de \?
The last identity yields
Oe
Vo (¢, Vo,0) = alp, Ve,0)Vp (3.26)

for some real valued function a(p, Vo, o). Since S is symmetric we have
S:Vv=S: %(VV-I- (Vv)T) +8: %(VV —(Vv)T)=S: Dv.
For the pressure we use I: Dv = tr(Dv) to obtain
pL: Vv = —pL: Dy —pI: (Vv — (V)7) = —px(Dv) = —pdiv(v).
Invoking the last two identities and using we get
T: Vv =8: Dv —pdiv(v).
This identity allows us to rewrite as

—(S+ (Ve®alp, Ve, 0)Ve)) : Dv+m-v+ (e — App — Ao +p — Ay) div(v) <0.
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In order to control the mass exchange term we set
Av i =e— A9 — Ag0 + D,
and therefore it remains to fulfil the inequality
(S+ (Ve®a(p,Ve,0)Ve)): Dv—m-v > 0.

Similar as in, e. g., [3] and motivated by Newton’s linear rheological law we make the constitutive
assumption
S+ Ve ®alp, Vi, o)V = 21(0)DV + A(p)div(v)I,

where 7(-) and A(-) are non-negative functions referred to as shear and bulk viscosities. This
means that, on account of the last identity, the dissipation inequality (3.22)) holds provided

—m-v > 0.
Using similar arguments as in, e. g., [120] we choose
m = 71/(%0)‘15

where v(-) represents the permeability and is also referred to as “drag” coefficient function.
Summarising, the constitutive assumptions are given by

de de
e=7-Jo - e 2
J an +pJ, — 0 wav(p (3.27a)
de(p,Vp,o) . (De(p,Vp,0) de(p, Ve, 0)
— )\ — — d _— = s = )\0' =, 3.27b
“ v Oy v OV € do ( )
v =Av =€ — Ao — Ao0 + D, (3.27¢)
de(p, Ve, o
3= -V 3, =—nle)¥ (PETED) g (3.27d)
S+ (Ve ®alp, Ve,0)Ve) = 2n(e)Dv + A(¢)div(v)L (3.27e)
Furthermore, we showed that
de(p,Vp,0)
Ve a(p, Vi, o0)Ve.

We remark that by we require a(p, Vi, o) = a(p, |Vp|,0). The energy flux J, in
is chosen such that the divergence term in vanishes. It contains classical terms like uJ,
and %J o which describe energy flux due to mass diffusion and the non-classical term 9; ¢ aave@
describing working due to microscopic stresses. For more details see, e.g., |3,|87]. Collecting the

results above, we arrive at the following dissipation inequality

2
> 0.

D = 2n()[DV[* + A(p) (div(v))? + v(@)[v[* +m(9)[Vil* +n(e) ’ng

Hence, dissipation is produced by the following processes: viscosity effects on the velocity,
changes in volume, dissipation at the pores of the mixture due to the flow, and transport along
Vi and V2.

3.1.5 The model equations:

From now on we assume a general energy of the form

e(p,Vo,0) = f(e, Vo) + N(p,0).
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The first term accounts for interfacial energy of the diffuse interface, whereas the second term
represents the energy contribution due to the presence of the nutrient and the interaction
between the tumour tissue and the nutrients. For more details regarding the second energy
term, we refer to [101]. Furthermore, we assume that f is of Ginzburg-Landau type, that is,

10, 96) = Zu(0) + Z1vep,

where 1 is a potential with minima at s = 41, typically the classical double-well potential, and
the parameters 8 > 0 and € > 0 are related to the surface tension and the interfacial thickness,

respectively.

With this choice we calculate
de [, Oe Oe
— == N, —— = f3eV v = — =N,
E SV (@) + Ny, Vo BV, alp,Ve,0) =fe, =-

where N, and N, denote the derivatives of N (¢, o) with respect to ¢ and o, respectively. In
the following we use the relation (3.25)).

Recalling (3.5)), (3.7)-(3.9) and using the constitutive assumptions (3.27)) we obtain the following

general Cahn—Hilliard-Brinkman model for tumour growth

div(v) =Ty, (3.28a)
—div(2n(e)Dv + A(p)div(v)I) + v(p)v + Vp = —div(8eVy ® V), (3.28b)
Op + div(epv) = div(m(¢)Vu) + Ty, (3.28c¢)
p =249 (p) — BeAp + N, (3.28d)
Opo + div(ov) = div(n(p)VN,) — Ty, (3.28¢)
where
S R Y

p2 p T P2
3.2 Further aspects of modelling

3.2.1 Specific source terms

We now outline specific choices of source terms which are commonly used in the literature.

(i) Assuming no gain or loss of mass locally (see (3.6)), we demand that
Fg = —Fl =T.

Then, there is a close relation between the source terms I'y and I', given by

r r 1 1 r r 1 1
FW:___:<_+_)F’ Fv:_2+_1:<—_—>1—" (3.29)
P2 P1 P1 P2 P2 P1 P2 P1
In the following we set
1 1 1 1
o= — — -, ﬁ e + —_—. (3.30)
P2 P1 pP1 - P2
(ii) Using linear kinetics (see, e.g., [81,87]) we choose
I':=(Po — A)h(y), ', = Coh(y), (3.31)

where P, A and C are non-negative constants related to proliferation, apoptosis and
consumption. The function h(-) interpolates linearly between h(—1) =0 and h(1) = 1 and
can be extended constant outside of the interval [—1, 1]. We refer to [87] for the motivation
of these specific source terms.
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(iii) Using linear phenomenological laws for chemical reactions, in [101] it was suggested to
take
Dy =Ty = P(@)(No — 1) (3.32)

for a non-negative proliferation function P(-). These kind of source terms have, e.g., been
studied in [39}74]. In [101] it has been proposed to take

Ply) =
(?) {O else

for positive constants § and Py, where ¢ is usually very small. In contrast, the authors
in [103] considered a proliferation function given by

Ply) = {26—1130\/11)(@) v e -1,

0 else.
(iv) Taking I'y = 0 and I = T'3 one obtains

1
r,=ry,=-—TI.
P2

This choice will be of importance when deriving the formal asymptotic sharp interface
limit for a mobility of the form m(p) = mee with a positive constant mg, where source
terms of the form (3.29) with I' as in (3.31]) do not fulfil a corresponding compatibility
condition.

3.2.2 Pressure reformulations

We consider different reformulations of the pressure leading to some variants of equation (3.28b).

(i) We first redefine the pressure as q :==p + gd;(ga) + %|Vg@|2 and use to obtain
Vqg=Vp+ (1n— Ng,)Ve+ pediv(Ve @ Vo).
Hence, (3.28b|) can be rewritten as
— div(2n(¢)Dv + A(¢)div(v)I) + v(¢)v + Vg = (1 — N, )Ve. (3.33a)
(i) Defining 7 :=p+e = p+ 2(p) + L|Vep|? + N(p, 0) yields
Vr=Vp+ uVe+ Ny;Vo + Bediv(Ve @ V).
Hence, we can reformulate by
—div(2n(¢)Dv + A(@)div(v)I) + v(¢)v + Vr = uVe + N, Vo. (3.33b)
(iii) If we choose p:=p+ e — up — Nyo we get (see (ii))
Vo =Vp+ fediv(Vep @ Vo) — oV — oV N,,
and transforms to
—div(2n(¢)Dv + A(@)div(v)I) + v(@)v + Vp = =9V — 0V N,. (3.33¢)
(iv) Choosing ¢ := p + e — up, we obtain
Vi=Vp+ N;Vo—oVu+ Bediv(Ve @ Vi),
and consequently

— div(2n(¢)Dv + X(p)div(v)I) + v(¢)v + V§ = —pVu + N,Vo. (3.33d)
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3.2.3 A general energy inequality:

We now deduce an energy inequality for (3.28) with the pressure as defined in (ii). Furthermore,
we define the viscous stress tensor by

T(v,p) = 2n(e)Dv + A(p)div(v)I — pl.

Then, the system under consideration is given by

div(v) =Ty in Qp, (3.34a)
—div(2n(p)Dv + A(p)div(v)I) + v(¢)v + Vp = uVo + N, Vo in Qr, ( )
Oy + div(pv) = div(m(¢)Vu) + Ty, in Qr, (3.34¢)

p="29¢'(p) — BeAp+ N, inQp, (3.34d)

)

0o + div(ov) = div(n(p)VN,) =T,  in Qp. (3.34e

From now on we assume that there exists a solution to this system which is regular enough to

carry out all the calculations. Multiplying (3.34c) with u, (3.34d]) with —d;¢ and (3.34€) with
N,, integrating over {2 and by by parts, we obtain

/ O+ pVe - v+ @l +m() |Vl = Tpp dz — / m(@)uVp-ndH*"" =0,
Q oQ

d
- / dpp( — Ny) da +
Q

4 / Byp(p) + E£|V? da — / BedhoVip-n dH = 0,
dt Jq o0

/ 00Ny + NoVo - v+ Nyol'y +n(p)|[VN,|* + I, N, dz — / n(@)N,VN, -ndH! = 0.
Q oN

Moreover, we multiply (3.34b|) with v and integrate over (2 and by parts to get
/Q 2n(0)|DV[* + M) (div(v))? + v(9)[v|* = pL'v — (uVe + N, Vo) - v da
- T(v,p)n-vdH ! =0,
o0

where we applied the identities Dv: Vv = Dv: Dv and div(v)I: Vv = (div(v))?. Summing up
the last four equations we obtain the energy identity

d g
G | 200+ IV + N(e.0) do+ [ m@IVu? + (o) TN da

+ /Q () [DVP + M) (div(v))? + v(@) [v] d - /Q Top— Ty, da

+ / (up + Noo —p) Ty, dz — / m(@)uV-n+ n(p)NyVN, -n dHI!
Q G19)

- Bedy Vi -n dH! — T(v,p)n-vdHI"! =0. (3.35)
o9 o9

3.2.4 Boundary and initial conditions

We prescribe homogeneous Neumann boundary conditions for the phase field variable, the
chemical potential and the stress tensor, i.e.,

Veo-n=Vu-n=0 a.e. on X, (3.36a)
T(v,p)n=0 a.e. on M. (3.36b)
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For the nutrient we may prescribe Robin-type boundary conditions of the form
n(¢)VNy, -n= K(os — 0) a.e. on X (3.36¢)

for a constant K > 0 referred to as the boundary permeability and 0., denoting a given nutrient
supply at the boundary. We may see o, as a far-field nutrient level outside of €2, and recalling

(13.27d)) we can rewrite (3.36¢|) as
Jo n=K(0—0x).

Thus, we see that there is nutrient outflow if o > o0, i.e., the nutrient concentration on the
boundary is higher than the far-field nutrient level, and inflow if o, > ¢. The rate of inflow or
outflow depends on the boundary permeability K. Finally, we impose the initial conditions

©(0) =g, 0c(0)=0¢ a.e.inQ (3.36d)

with prescribed functions g, 0g. The Robin boundary condition (3.36¢|) can be interpreted as
an interpolation between Neumann and Dirichlet boundary conditions. Indeed, the case K = 0,
that means no boundary permeability, corresponds to the Neumann type boundary condition

n(¢)VNy, -n=0 a.e. on Xp,
whereas formally sending K — oo gives a Dirichlet boundary condition of the form
0 =04 a.e. on .

Finally, we remark that (3.36a)-(3.36¢|) are chosen in such a way that the boundary terms in
(3.35) simplify to

K Ny (000 — o) dH,
o

This can also be realised with no-slip boundary conditions for the velocity v.

3.2.5 Specific form of the nutrient energy

For the rest of the thesis we consider a nutrient energy density of the form

Xo
N(p,0) = Zrlo* + xp0(1 - ¢) (3.37)

for positive constants X, and x, referred to as the nutrient diffusion and chemotaxis parameter,
respectively.

The first term characterises energy effects due to the presence of the nutrient, i.e., a high
concentration of nutrients leads to a high energy of the system. The second term accounts
for chemotaxis effects, i. e., tumour cells move towards regions of high nutrient concentration.
We refer to |[101] for more details regarding this form of the nutrient energy. Using (3.37) we
compute

Ny = Xo0 + Xo(1 — ), N, = —x,0.

Therefore, the fluxes J, and J, are given by

Jo = -m@)V (20/(0) = BeAp = x0) T = =nlP)V (X0 = X00) -

There are two non-standard contributions in the definition of J, and J,. The term m(¢)V(x,0)
drives the tumour cells towards regions of high nutrient concentrations and is referred to as
chemotaxis.
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Moreover, we encounter a term of the form n(p)V(x,¢) driving the nutrients towards regions
with higher tumour concentrations. This effect is called active transport and seems to be
counter-intuitive at first glance. However, it can be observed for malign tumours in, e.g., the
avascular growth phase. Indeed, to overcome nutrient limitations, some tumours express more
glucose transporters to provide an increasing glucose transport through the cell membrane. We
remark that this term is only active on the interface and we refer to |87] for more details.

In general we can decouple chemotaxis and active transport mechanisms by introducing for
A > 0 a new mobility

D(p) = A""n(@)xe,  Xo = A"'Xe (3.38)
Then, the fluxes can be rewritten as
3o = —m(p)V (20/(¢) = BeBp —xp0) . Jo=—D(%)V (0 - Ap). (3.39)

By formally sending A — 0 we can switch of active transport while preserving the chemotaxis
mechanism.

3.2.6 Non-dimensionalisation arguments

The nutrient equation

In Chapter |5| we will consider a model variant of where the nutrient is assumed to
evolve quasi-statically meaning that the time derivative of ¢ does not appear in and
the nutrient evolution is driven by the tumour evolution. This can be motivated using a
non-dimensionalisation argument. Recalling the decoupling of chemotaxis and active transport
mechanisms and assuming for simplicity that D(y) = D, where D,, is a positive nutrient diffusion
constant, we have the following equation describing the evolution of nutrient

0o + div(ov) = D,div(Vo — AVp) — Ch(p)o, (3.40)
where A and C denote the active transport and nutrient consumption rate, respectively. Further-
more, h(-) is an interpolation function satisfying h(—1) =0 and h(1) = 1.

We now introduce the rescaled quantities

/ o / x / 3 r_ vV
o =—, T = —, t = -, VvV ==
oo L T v’
where o is the characteristic nutrient concentration. The quantities L and T are the charac-
teristic length and time scales determining the characteristic velocity given by

_ L
v=—.
T
Computing all the quantities in (3.40) in the new variables z’ and ¢’ yields
o0 . Do Do A
% (Op o’ +divy (o'v')) = g T3 Ayo’ — ?Aw/(p/ —Caooh(¢)o’. (3.41)
Then, we can define the time scales for diffusion, active transport and consumption by
L2 Lo, 1
Tp = — Ty = —— Te = .
D Do— 5 A DO-A ) C C

Since we are interested in the evolution of the tumour, the time scale of interest is the tumour
doubling time scale denoted by Trp. Choosing T' = Trp and dropping the primes in (3.41]) we

obtain T T T
D . D D

2D (90 +d — Ao — 22 Ap— 2P h(p)o.

TTD( io + div(ov)) - AT (p)o
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Since experimental values indicate that the tumour doubling timescale is much longer than

nutrient diffusion timescale (days compared to minutes or seconds), see, e.g., [29], we have that
Tp

7 < L Therefore, it is reasonable to replace the last equation by

0= Ao — 0Ap — ah(p)o, (3.42)

where 6 denotes the ratio between nutrient diffusion and active transport timescale, whereas « is
the ratio between nutrient diffusion and consumption timescale. In some situations it might be
reasonable to assume that Tp and T) are of the same order, see, e. g., [82]. However, there might
be situations where Tp < Ty, and thus the active transport term in (3.42) can be neglected.
Moreover, formally sending A — 0 we see that 0 = %’ = 2 0 and therefore (3.42) reads as

0o

0= Ao — ah(yp)o.

Brinkman’s equation

In the following we analyse the Brinkman equation (3.34b)) via a non-dimensionalisation argument.
For simplicity we set Ty, = 0 in (3.34al) and we assume that the viscosities and porosity are
constant. Then, (3.34b]) reduces to

—nAv+vv+Vp=uVe+ N,Vo.

We now introduce a new scaling " = ¥ where L is the characteristic length. Calculating all the
quantities with respect to z’, dropping the primes and multiplying the resulting equations by L,
we obtain

—%Av 4+ Luv +Vp=puVe+ N,Vo.

This allows us to make the following observations: On small length scales, i.e., L < 1,
Brinkman’s equation approximates Stokes flow, whereas on larger length scales, i.e., L > 1, it
is an approximation of Darcy’s law, see also [53].

3.3 Formally matched asymptotics

Let Q C R%, d = 2,3, be a bounded domain. In the following we formally derive the sharp
interface limit of the system

diV(V) = :52_1F2(<p’ g, N) + ﬁl_lrl(spa g, ,LL), (3433)
_diV(T(V7p7 410)) + V(@)v = (/,L + XWU)V§O7 (343b)
81‘/90 + le((pV) = le(m((p)vM) + ﬁ;lFQ((p? g, M) - ﬁ;lrl (507 g, u)a (343C)
=24/ (p) — BeAp — X0, (3.43d)
0¢o + div(ov) = div(n(e)(xe Vo — xo V@) — To(p, 0, 1), (3.43e)
where
T(v,p, ) = 2n(¢)DV + A(p)div(v)I — plL.
We will focus on the double-well potential given by
1

vip) = (197 (3.44)

and satisfying
V() =¢" =0, ¥'(p) =3¢" — 1.
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0.5

Figure 3.1: Plot of the double-well potential.

We plot the double-well potential in Figure [3.1

Moreover, we assume that n(-), A(+), v(-) are smooth with n(-), v(-) positive such that n(—1) = n,
(1) = na, v(—1) = 11, v(1) = va, and A(*) non-negative such that A\(—1) = Ay, A\(1) = A2. For
the mobility m(-) we consider the following three cases:
mo Case (i),
m(p) = emg Case (ii), (3.45)
(14 ¢)?  Case (iii).

3.3.1 Outer Expansion

Assumptions
We make the following assumptions (compare [87]).

(i) For any € > 0 small enough there exists a family (¢c, Ve, pe, fte, 0c)e>0 of solutions to

(13.43al)-(3.43€) which are sufficiently smooth.

(ii) We assume that
() ={(t,z) € [0,T] x Q: @(t,z) =0}

are evolving hypersurfaces (see, e.g., [14, Def. 23]) that do not intersect with 9 and we
define

Y(e,t) ={z € Q: @ (t,z) = 0}.

We assume that for every ¢ > 0 small enough and for each time ¢ € [0, 7] the domain
can be divided into two open subdomains

Qyi(e,t) ={z € pe(t,x) >0}, Q_(gt) ={z € Q: ¢t z) <0}

separated by X(e,t) such that Q4 (¢,¢) is enclosed by X(e,¢). Thus, for all £ > 0 small
enough and all ¢ € [0, 7] it holds that

Q=04:(5,t) U X(e,t) UQ_(e,t), (e, t) =004(g,t), Qi(e,t) =Q\0_(g,1).

We show a sketch of the typical situation in Figure
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Figure 3.2: Typical situation for the formal asymptotic analysis.

(iii) We assume that (@e, Ve, Pe, tle, 0c)e>0 have an asymptotic expansion in ¢ in the bulk
regions away from 3(¢) (outer expansion), and another expansion in the interfacial
region close to ¥(¢) (inner expansion).

(iv) The zero level sets of ¢. depend smoothly on ¢ and £ and converge as ¢ — 0 to a limiting
evolving hypersurface ¥(0) which evolves with normal velocity V.

We use the notation 3.43da0 and 3.43d‘11 for the terms resulting from the order a outer and
inner expansions of (3.43d)), respectively.

Expansion to leading order
We assume that f. € {¢., Ve, De, fie, 0c } can be expanded by
fe=fotefi+efat. ...
Then, to leading order 51 yields
= B¢’ (o) = 0. (3.46)

Stable solutions of (3.46|) are the minima of ¢(-) and they are given by pg = £1. Consequently,
we define

Qr ={z € Q: po(z) =1}, Qp ={x € Q: po(z) =—-1}. (3.47)
The typical situation for Q7 and Qg is shown in Figure [3.3

Since Vg = 0, Oppg = 0 in Qr and Qp, we obtain for the equations to zeroth order that

div(vo) = 7:T2(0, 00, ko) + 5:T1(0, 00, o), (3.48a)
—div(T(vo, po, ¥o)) + v(p0)vo = 0, ( )
—div(m(p0) Vo) = 5:T2(¢0, 00, 110)(1 = p0) = 5-T1(0, 00, o) (1 + o), (3.48¢)
Oroo + div(ogveg) = div(n(vo)xsVoo) + Ts (w0, 00, to), (3.48d)
where
T(vo,po: po) = 21(¢0)Dvo + A(po)div(ve)I — pL.

We now analyse the three different cases for (3.43c) according to the mobilities introduced in
(3.45).
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Figure 3.3: The tumour and healthy regions Q0 and Qp.

Case (i) (m(p) = mg): In this case we obtain

—moApo = py ' Ta(0,00, 10) (1 = ¢0) = A1 T1(0, 0, 110) (1 + po)- (3.49a)

Case (it) (m(p) = emyg): The mobility is rescaled and the chemical potential does not contribute
to the equations at zeroth order. Indeed, we have

P 'Ta(po, 90, 110) (1 = @) = py 'T1 (0, 90, o) (1 + o). (3.49Db)
Case (iii) (m(¢) = (1 4 ¢)?): The degenerate mobility case leads to
— div(% (14 ¢0)? Vo) = p3 'T2(po, 90, 110)(1 = @o) — p1 'T1(0, 90, o) (1 + o). (3.49¢)
Remark 3.1 (i) In order to fulfil we have to assume that
'y (1,00,00) =0 and Ty(—1,00, 1) = 0. (3.50)

Furthermore, we observe that for general source terms the chemical potential uy appears on
the r.h.s. of (3.48a]) although the bulk equations for 1y remain undetermined. Therefore,
it is reasonable to assume that the source terms are either independent of u, i.e.,

I = Fl(@a U)a Iy = ]-—‘2(907 J)v (351)
or we may ask for
I (£1l,0,u) =0, Tao(£l,0,u)=0. (3.52)
To fulfil (3.50)) and (3.51) we could choose

o 1 1
=0 Taea)=% (5 - ) (Po- A0+

where P and A are non-negative constants related to proliferation and apoptosis, respec-
tively. In this case the source terms in (3.43a), (3.43c) coincide and are of the form

T,(¢,0) =Ty(p,0) = %(730 — A1+ ),

h
where 1 1
o= — — —.
P2 P2
Equation (3.50|) can be interpreted as follows:



(iii)

3.3 Formally matched asymptotics 57

e in the pure tumour phases, there can be no growth of healthy cells,

e in regions of unmixed healthy tissue, there is no spontaneous growth of tumour cells.

In a situation where we assume no gain or loss of mass locally, i.e., I's = —I'1, condition
(3.50) implies that
1_‘1<j:17 00, MO) = FQ(ila 00, IU/O) =0

which coincides with (3.52]). Hence, death and growth are restricted to the interfacial
region and we may choose, for example,

Ti(p,0,p) = (e, 0,p)(1 — ©°)4

for a function v, to be specified. Alternatively we could use phenomenological laws to
describe growth and death by choosing

Iy =—T'1 = Pi(e)(Xo0 + Xp(1 — ) — p),
where P;(-) is a proliferation function satisfying P;(+1) = 0. For instance, we could take
Pi(p) = 1(1-¢%)?
In the healthy region (3.49¢) simplifies to
0= 2p; 'Ta(—1,00, Ho)-

This is a compatibility for the source term I's. For similar reasons as before we can assume
that either the source terms are independent of p or

I'i(—1,0,u4) =Ty(-1,0,p4) =0.
Reasonable choices are
I3(p,0) = 72(p,0)(1 4 ©)+
for some function s, or
Iy Iy
P

where Py(¢) = po(1 4+ ¢)+. This can be interpreted as a scaled zero excess of total mass

= Py(¢)(Xo0 + Xo(1 = ¢) — ),

and we have

Ty = 2P () (o0 + Xo(1 =) —p), Ty =0.
If the mobility was degenerate in both phases we would obtain the same condition as in
(13.50)).

Similar conditions have to hold for the source term I',. From now on we assume that the
source terms are independent of u.

3.3.2 Inner Expansion

New Coordinates and matching conditions

This subsection uses ideas presented in 3] and [89]. We denote by 3(0) the smooth evolving
interface which is assumed to be the limit of the zero level sets of . as € — 0 (see, e.g., [89]
for details). We now introduce new coordinates in a neighbourhood of 3(0). To this end, we
choose a time interval I C R and a spatial parameter domain U C R?~! and we define a local

parametrisation of ¥(0) by

v: I xU — RY.
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By v we denote the unit normal to X(0) pointing into the tumour region. Close to y(I x U) we
consider the signed distance function d(¢,z) of a point = to 3(0,t) with d(¢t,z) > 0if v € Qp
and d(t,z) < 0 if 2 € Qx. We introduce a local parametrisation of I x R? near v(I x U) using
the rescaled distance z = g by

G(t,s,2) = (t,y(t,s) + ezv(t, s))

with s € U € R, We show a sketch of the situation in Figure

Figure 3.4: Schematic sketch of the inner region close to %(0).

The (scalar) normal velocity is given by
V=0v-v,
and we observe that (G¥)~1(t,z) = (t, s, 2)(t, z) fulfils
Oz = é@td = —év.

In particular, it holds that v (¢, 2) = Vd(¢, z) on 2(0,¢).

Let b(t,z) be a scalar function and define B(t,s(t,x),z(t,z)) = b(t,z). Then, in the new
coordinate system we obtain

d 1

ab(t,x) = 0B+ 0,B0;z+ VB -0;s = fgvazB +h.o.t..
In the following, we will often suppress the dependence on t. For the gradient of b we have

1
Vib= V5. B+ _0.B,

where Vy__ is the surface gradient on ., = {y(s) + ezv: s € U}.
For a vector quantity j(t,z) = J(¢, s(t, x), 2(¢t, x)) we obtain

1
Ve j= gé‘zJ v +divy, J
with divy_, being the surface divergence. Furthermore, it holds
1 1
ALb(t,x) = —0::B — —Kk0,B +h.o.t.,
€ €

where x is the mean curvature. In addition, we have

Vs..B(s,2) = Vy(0)B(s, 2) + h.o.t.,
divyg, J(s, 2) = divsJ (s, z) +h.o.t.,
As,, B(s,z) = Asg0)B(s,2) + h.o.t..
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Summarising all the identities deduced so far yields

d 1
Sb(s.2) = —2VO.B+hot., (3.53a)
1
V.b(s,z) = EBZBV + Vs@B +h.o.t., (3.53b)
1 1
Ab(s, z) = 6—28%3 - g/iaZB +h.o.t., (3.53¢)
1
divyj = =0.3 v + divyg)d +hoo.t.. (3.53d)

Using (3.53b)-(3.53c|) component-wise we obtain
1
V.= E@J Qv+ Vgd +h.o.t., (3.53e)
1 1

We denote the variables ., ue, 0c, Ve, pe, in the new coordinate system by ®., =, C., V¢, P,
and we assume the following inner expansion

F.(s,2) = Fy(s,2) + eFy(s,2) + €2 Fy(s,2) + ...

for F. € {®.,Z,,C., V., P.}. The assumption that the zero level sets of . converge to 3(0)
implies
Dy(t,s,2=0)=0.

We will employ the matching conditions (see [87])
zEI:Eoo Fy(t, s, 2) = f(t,z), (3.54a)
Zgrfooa Fo(t,s,z) = (3.54b)
zgrfooa Fi(t,s,2) = Vfi(t,z) v (3.54c)
where
fiE(t,x) = ;i{% fo(t,z £ 0ov) for z € 3(0,t). (3.55)

Moreover, we introduce the notation

15 = ;i{% ft,z+dv) — %i{‘% ft,z —dv) for xz € ¥(0,1) (3.56)

to denote the jump of a quantity f across the interface.

Inner Expansion to leading order

Step 1: From 1—1 we obtain
9::Q0 — P'(Po) = 0. (3.57)
Since ®p(t, s,z = 0) = 0 we can choose ¥ independent of s and ¢, hence, ®qy solves
h(2) =9 (Po(2)) =0, ®0(0) =0, @g(Fo0)= =1, (3.58)

where we used ([3.54a)). The unique solution of (3.58) is given by

$y(2) = tanh (\2) .
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Figure 3.5: Plot of the optimal profile.

The optimal profile ®( is shown in Figure [3.5
Multiplying (3.58); with ®f(z) yields

%((‘56(2))2)’ = (¥(20(2)))" V2| < oo.

Integrating from —oo to Z with |Z] < oo, using (3.54a))-(3.54b)) and (-

S = B(@o(2)) V]2l < oo

which is referred to as the so-called equipartition of energy.
Step 2: From I_l we obtain (using (3.53d)))
6ZV0 -v=0.

Due to 0,v = 0 this implies
0,(Vo-v) =0.

Integrating by parts, this gives
O:/ 0,(Vo-v)dz =[Vy - v]Z.

Hence, the matching condition ([3.54a)) yields

Vol -v=v{ -v—vy -v=0.

1) = 0, we obtain

(3.59)

(3.60)

(3.61)

(3.62)

Step 3: We now analyse (3.43d]) by considering each term individually. First of all, on the 1. h.s.

of (3.43d) the leading order terms are of magnitude 6(¢~!) and given by

1
dyp = —=V®, +h.o.t.,
g

1 1
Vep-v= (gaszu + Vy)® +h.o. t.) (Vo +h.o.t.) = EGZ@VO -v+h.o.t., (3.63)

1 1
godlvx(v) = ((I)O —+ h 0. t) <682V vV + diVE(O)V —+ h 0. t) = ECI)OaZVO -V + h o.t..



3.3 Formally matched asymptotics 61

The terms p, 1y and ﬁl_lI‘l are of magnitude 0(1) at leading order and they therefore do not
contribute. We distinguish again the three cases for the mobilities:

Case (i) (m(p) = my): Using (3.53¢)), at order #(¢~2) we obtain

moAg i = my0d..Zo.
Recalling , from 1_2 we get

mp0,,=0 = 0.

Upon integrating and using the matching condition we obtain

0:20=0 V|z| < o0.
Integrating again from —oo to co and using , this yields

(ol = 0. (3.64)

Case (ii) (m(p) = emyg): Using div(emoVu) = emoAp and we have

1
div,(emoVpu) = gaz(moaon) +h.o.t..

In conjunction with we therefore obtain from I_l that
— VP + 0, (PyVy) - v = 0,(mo0.Eo). (3.65)
The identities V = 0yy - v, 0,(0yy) = 0 and 9,v = 0 imply
0,V = 0,(0py) v+ 0y 0,v=0.

Using d,v = 0 and (3.61)), integrating by parts yields

“+o0
/ —V(bé)(z) + az((I’()Vo) cvdz = [(—V + Vo . V)‘I)o]tg = 2(—V + vo - I/).

— 00

Employing the matching condition (3.54b|) gives

+oo
/700 0,(mp0,Ep)dz = Zgrfoo(moé)on(z)) - ZLiIPOO(moazEO(z)) = 0.

Combining the last two identities with (3.65]), we end up at

2(—V + vg - I/) =0. (366)

In particular, we obtain from (3.61)-(3.62) and (3.65) that

8ZZEO = (—V + Vo V)CI)G = 0,

which together with the matching condition (3.54b)) implies that 9,E¢ = 0 for all |z| < oo.
Hence, we obtain that = is independent of z.
Case (iii) (m(p) = (1 + ¢)?): With similar arguments as above we obtain from 1_2
that

1.9, ((1+ ®0)? 0,Z0) = 0.

Integrating this inequality in time from —oco to z with |z| < co and using the matching condition

(13.54b|) gives

(14 ®0)?0,Z0(t, 5,2) =0 V2| < oo.
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Since |Pp(z)| < 1 for |z| < 0o, this implies that
0.Z0(t,8,2) =0 V]z| < o0, (3.67)

and therefore =y is independent of z.

Step 4: Using d,v = 0 and applying similar calculations as for (3.43c), from 1_2 we
obtain

8Z(n(<I>o)XgazCo) — 3Z(n(<I>0)X¢3Z(I>0) =0.

Integrating this identity from —oo to z with |z| < oo and using yields
n(P0)(x00:Co — xoP(2)) =0 V2| < o0
Since n(®g) > 0, this means
Xo0:Co(t,s,2) = xp®(2) V|z] < 0. (3.68)

Upon integrating and using (3.54a)) we see that

[o0]; = [Col(t, s, 2)] / 9.Co(t, s, 2) = / Dy (2) dz = 2%. (3.69)

Step 5: Finally, we analyse 3.43b;2. Using (3.53€)) we obtain
1
va = VZ(O)V + gan RV + h.o.t. y
1 1
D,v = §(V2(O)V + (Vs V)T) + Z(8ZV @r+veqd,V)+ho.t..

We define £(A) = 1(A + AT) for a quadratic matrix and use the last two identities together
with 0,v = 0 to obtain

v (1) D) = 500 R)ED-V @ 1))w + 0. (1(@)E (Vo) V)
+ %dng(o)(n(q))S(@ZV ® V)) +divy ) (n(®)E(Vs)V))
= L0-(1(@)E (0-V © ) ) + L0-(n(D)E (Vo) V)v)
+ Zdive (M@)EQD.V © ) + dive (BE(Vne) V) + ho.t.. (370)
Furthermore, using gives

1

For the forcing term we obtain
1

Now, with similar arguments as above and recalling (3.60]) we obtain at order (s~2)

divy (A(p)dive (v)I) = X (¢)dive (v)I Vi + M) Vi (dive (v))
=N (®)(0, Vo - 1)1, Pov + A\(9)0.(0. Vo - v)v
—0. (3.73)
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Using (3.70))-(3.73]), from 3.43b;2 we obtain
0, (2n(P0)E(0. Vo @ v)r) = 0. (3.74)

Due to (3.61) we have
(v ®09,Vo)v = (0, Vg -v)v=0.

Together with (3.74) and the identity (0. Vo ® v)v = 9,Vy, this implies
0-(n(®0)0- Vo) = 0.

Integrating from —oo to z with |z] < oo, using the matching condition (3.54b]) and the positivity
of n(+), this gives
0, Vo =0 V|z| < c0. (3.75)

Once more integrating and using the matching condition (3.54a)) yields
[vo] 5 = 0. (3.76)

Inner Expansion to higher order

We will now expand the equations in the inner regions to the next highest order.

Step 1: From 3.43d?, we obtain
ﬁ@1¢//(¢’0) + B’Q¢6 - ﬁazzq)l - chCO - E0~

Multiplying by ®{ and integrating from —oo to +oo yields

/ Zo(t, s)®((2) dz = / B (90)) @1 — B0, P1®( + Br|PH|* — x,Co®p dz.  (3.77)

—0Q0

Using (3.54a))-(3.54b)), (3.57) and ¢’'(£1) = 0, integration by parts gives

/ (V' (@0)) @1 — 0., P1P(dz = [t (Po)P1 — 0.1 DT

— 00

- /OO 0. D1 (1 (@) — B) dz = 0. (3.78)

— 00

Recalling that =g is independent of z and applying the matching condition (3.54a)) we have

+oo
/ Eo(t, 8)Pp(2) dz = 2pp. (3.79)

— 00

By the equi-partition of energy (3.59) we compute

oo o 1
/ 1By ()2 dz = / 1B)(2) | V/20(@o (7)) dz = / V) dy

- IOO ! 22
:\/5/_1(1—92)@:\3[:37,
and obtain
+oo +oo
BrE|®)(2)|? dz = ﬁ/{/ 2¢(Pp(z)) dz = BKT. (3.80)

Finally, by (3.68]), we obtain

“+o0 +oo % “+o0
/ XeCo®((z) dz = Xa/ 0,Co(t,s,2)Co(t,s,2) dz = 7‘7/ 2.(ICol?) dz

— 00 — 00 — 00

5 ool (3:81)
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Collecting (3.77))-(3.81) gives
2ug = BRT — %HUO\Q]E. (3.82)

This is a solvability condition for @, the so-called Gibbs—Thomas equation.

Step 2: With similar arguments as above and using (3.68)), equation 1—1 gives
(—V + VO . V)azCo = 82(71((1)0)()(0@01 — X(Pazq)l)).

Employing the matching condition (3.54¢c)) and Vg = 0 together with 9,V = 0 and (3.61), this
yields

o0

(=V+vo-v)oo)5 = / (=V+ Vi -1)0,C) dz

— 00

+oo
_ / 0.(n(®0) (0 0.C1 — x0.81)) dz = voln(po)Voo]l - v.  (3.83)

— 00

Step 3: Similar as in [3] we analyse (3.43c|) only for the mobilities (3.45)), () and (i4¢) since the
case ([3.45)), (i7) is rescaled and therefore does not contribute to the sharp interface limit.

Case (i) (m(p) = mp): Using 0,2 = 0 and (3.60)), from (|3.43c|)1_1 we obtain

(—V + Vo - V)q)é) = mp0,,21.

Integrating with respect to z from —oo to oo, using (3.61))-(3.62) and the matching condition

(3.54d)), this yields
2(—V + vo - I/) = my [Vuo]}f, i 2 (384)

Case (iii) (m(p) = m1(1 + ¢)?): With similar arguments as above we obtain
(=V+ V)0 = 210, ((1+ 00)%9.51) .
Using the matching conditions (3.544)), and the same arguments as for ([3.84), this entails
(=V+vo-v)=mVul -v. (3.85)

Step 4: Finally, we consider the momentum balance equation ([3.43b]) at order #(¢~1). Recalling
(3.70) and (3.75)), the term div,(2n(p)D,v) at order §(c~!) gives

Using that 9,V = 0, at order §(e71) the term div,(n(¢)div,(v)I) yields
82 ()\((DO)(an1 vV + diVE(O)V0)>V.

Using (3.71)), the term V.p contributes with

0. Pyv. (3.87)
Furthermore, we obtain from (3.72)) that
(1 + xp0) Vi = (Eo + x,Co) Pov (3.88)

at order f(¢~!). Combining (3.86)-(3.88)), at order 6(¢~!) we get

— 0, (277(61)0)8(an1 X V)I/ —+ Qn(q)o)g(VZ(o)Vo)V + A((I)O)(é)le -V + dng(O)Vo)l/ - P()V)
= (Eo + XwCO)(I)E)V~ (389)
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Since matching requires lim, 4., 9, V1(z) = VV(:)tV, we conclude

0.Vi®v+VgoVo— Vevg  for 2z — Foo,

0.V1 v +divg) Vo — divyve for 2z — +oo.

Integrating (3.89)) with respect to z from —oo to +oo and using ([3.54a)), this implies

+oo

—[21(0)E(Vevo) 4+ Mo)div(vo)I — poll v = / (Eo(t, s) + x,Co(t, s,2))®((2)v dz.

— 00

Together with (3.79) and (3.81)-(3.82]), we end up at

[T(V07p0a ()00)],11;'/ = _BKTV'

3.3.3 Equations of the formal sharp interface limit
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(3.91)

For the readers convenience we summarise the sharp interface models for the different mobilities:

Case (i) (m(p) = mp) The equations in the bulk are given by

—div(T(vo, po, ¢o)) + v(¢o)vo =0 in Qr UQgx,
div(vg) = g3 'T2(1,05) + oy 'T1(1,00) in Qr,
div(vg') = py 'Ta(=1,00") + oy 'Ti(=1,08)  inQp,

—moApd = —2p7'T1(1,00) in Qr,
—mOA,ué{ = 2[351F2(—1, aé{) in Qp,
orol + div(ed vd) = div(n(1)xo Vol ) = Tx(1,00) in Qp,

oroll + div(ol vl = div(n(—1)x, Vol ) = To(—1,0¢") in Qpy.

Furthermore, on ¥(0) we have the free boundary conditions

ol =0, [y =0, [oo]r =23,
2u0 = BrT — 3¢ [loo |, (=V+vo - v)[ooli; = [n(po)Voolir - v,
2(=V +vo - v) = mo[Vuolf - v, [T(vo,po, po)] v = —BKTV.

Case (ii) (m(p) = emg) The equations in the bulk are given by

—div(T(vo, po, ¢o)) + v(¢o)vo =0 in Qr UQg,
div(vl) = py 'Ta(1,0d) in Qp,
div(vg') = pr ' T1(=1,00) in O,
Orol + div(elvl) = div(n(1)xo Vol ) = Tx(1,0) in Qr,
ol + div(ellvil) = div(n(—=1)x,Voll) = Ty (—1,08) in Qp.

Furthermore, on X(0) we have the free boundary conditions

[VOH-} =0, [GO]E = 2%7 0= [”(@@VUO}E v,
V:VO'V7 [T(V07p07g00)}gl/: _/BK’TU'
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Case (iii) (m(p) = mi(1+ ¢)?) The equations in the bulk are given by

—div(T(vo, po, o)) + v(¢o)vo =0 in Qr UQy,
div(vg) = g5 'T2(1,05 ) + p7 'T1(1,00) in Qr,
div(vil) = py Ty (1, o)) in Qp,
—miApd = —p T (1, 08) in Qr,
Orol + div(ed vl) = div(n(1)xo Vol ) = To(1,0d) in Qr,

&soéq + div(oéivgl) = diV(n(—l)XUVUéq) — T, (-1, 05{) in Q.
Furthermore, on X(0) we have the free boundary conditions
volh =0, ool =232 20 = r7 — 3 loolll
(=Y +vo - v)ooli; = [n(¢o)Voolf; - v, (~V+vo-v) =mVy v,
[T(vo,po, o)l = —BrTv.

3.3.4 Specific sharp interface models

The limit of vanishing active transport, Darcy’s law and Stokes’ flow

We consider (3.43al)-(3.43¢]) with quasi-static nutrients and the mobility (3.45)), (i) along with

constant viscosities and permeability. Moreover, we decouple chemotaxis and active transport

according to ([3.38), we set

for a constant D > 0, and we choose

0 1 1 C
T=0, Tapo)=2 ( B > (Po—A)(1+¢), Tolp,0)=s0(l+¢).
2 P2 P1 2
This gives the following system of equations
div(v) = Z(Po— A)(1+ ),
—div(T(v,p)) +vv = (1 + xp0) Ve,
Ao+ V- v=divemoVpu) + %(7’0 —A)(1 - ¢?),
p =29/ (p) = BeAp — xp0,
0 = div(D(¢)Vo) — Adiv(D(p)Ve) — Ca(l + o),

where T(v, p) = 2nDv + Adiv(v)I — pI. With slightly different argument as above (see also [87])
and sending A — 0, we obtain

—div(T(vo,po)) + vvo =0 in Qr U Qp, (3.92a)
Pol —A) in Qr,
div(vy) = 4 P00 —A) i Qr (3.92b)
0 in QH,
C in
Agg =4 70 WD (3.92¢)
0 in QH,

and the free boundary conditions on X(0) are given by

Volr =0,  [o0]y =0,  Voj -v=DVoy v,

. (3.92d)
V= VoV, [T(Vo,po)]HV = 7BHTV'
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This model is a special case of the two-phase free boundary problem in [143] where they present
numerical simulations for . Similar models have been studied in [43]. For a one-phase
model with Brinkman’s law for the velocity we refer to [122].

Sending the viscosities to 0 in , we can express the velocity in terms of the pressure and
we obtain the following Darcy-type model

where free boundary conditions on ¥(0) are given by
T T o 1 T 1 T
[o0]gy =0, Vo; -v=DVoy v, ;[VpO]H v=0, V= —;Vpo ‘v, [poly = —BkKT.

Similar models have been studied in, e.g., [46,06/114.[115]. We remark that the continuity
condition for v across the interface (see (3.76)) is based on the positivity of the shear viscosity.

Sending the permeability to zero in (3.92)), i.e., v — 0, we obtain a Stokes model given by

—div(2nDvg + Adiv(vo)I — poI) =0 in Qr UQg,

a(Poy — in Qr,
div(vo) { UO %n QT
m H,

CO’O in Qr,

in Qg,

and the free boundary conditions on X(0) are given by

[volir =0, [o0)7r = 0, Vol -v=DVol v,
V=vy- v, [2nDvg + Adiv(vo)I — pol| v = —BkTV.

For similar models, we refer to [65}/66}68-70}72,/138]|.

The tumour as a viscous fluid surrounded by extracellular fluid

We now consider the same model as in the last part but with non-constant viscosities and
permeability and with o = 1. Moreover, we model the tumour as a viscous fluid and the
surroundings (e. g., the extracellular fluid) as an inviscid fluid (see, e.g., [27,30]) by setting

1+¢

ne) = o, Mp)= 12

2

1_
Ao, V(p)= 2901/0

for positive constants 79, A\g and vy. Hence, we consider the model

div(v) = $(Po — A)(1 + ),
—div(2n(p)Dv + A(@)div(v)I = pI) + v(p)v = (1 + Xx0) Ve,
dp+ V- v =div(emoVpu) + 1 (Po — A)(1 — ¢?),
p= L9/ (¢) - BeAp — x,0,
0 =div(D(¢)Vo) — Cao(l + ).
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Then, the equations in the bulk are given by

—div(2no DvE + X div(vi)I —pl T) =0 in Qr, (3.93a)
vil = —y'Vpll  in Qp, (3.93b)
Pol — A inQrp,
div(ve) =4 0 e (3.93¢)
0 in QH,
Coo in Qp,
I (3.93d)
0 in QH)

and the free boundary conditions on ¥(0) by

[VO]E v =0, [00]71; =0, VUOT V= 'DVO'(I)LI v,

3.93e
V=vo-v, (200 DvE + N div(vi)I — pl T)v = —(Br7 + pllv. ( )

By using the Darcy law and the continuity equation in Qp, we can rewrite (3.93al)-(3.93c|) as

—div(2noDv{ + Nodiv(vi) I — piT) =0 in Qr,
div(vl) =Pol — A in Qr,
—Apgl =0 in Qp,
and (3.93¢]), as
vi v =y 'Vpll v on X(0).

Linear phenomenological laws for chemical reactions

We consider the quasi-static model (3.43a))-(3.43€]), i. e., we neglect the 1. h.s. of (3.43€]), and we

take a mobility of the form mobility m(y) = emg. We assume that p; = py = 1 and

Py =-T1=Pe)(xoo +Xxp(1 =) =), T =2P(9)(Xo0 + X (1 — ¢) — p),
where
Pp) = Py (1 —¢%)?
for a positive constant Py. Moreover, we assume n(y) = ng, we rescale
no=ex, s Xo =€ Xe»

and we take constant viscosities and permeability. With these choices the system (3.43al)-(3.43€])
reads

div(v) =0, (3.94a)

—div(2nDv + Adiv(v)I — pI) + vv = (u + xx0) Ve, (3.94b)
Oep + div(pv) = emoAp + 2Pyih(p) (P20 + xo(1 =) — ), (3.94c)

=24/ (p) — BeAp — X0, (3.94d)

0=Ac —eAp —2Pyp(p) (220 + xo (1 — @) — ) . (3.94¢)

The equations in the outer regions are given by

—div(2nDvg + Adiv(vo)I — poI) +vvy =0 in Qr UQy,
div(vg) =0 in Qr UQgy,
—Aog =0 in Qr UQg.
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Inner expansion to leading order With similar arguments as above we obtain from

(3-94b) ;> and (3.94€);? that

vol5 =[o0], =0, 9.Vo=0.Co=0 V|z| < 0. (3.95)
From I_l we get
— V&) + 0.(Pg Vo) - v = 9.(md-Eo) + 2x, Potb(®0)Co. (3.96)

The equipartition of energy is given by

/00 20)(Pp(2))dz = 7.

— 0o

Therefore, integrating (3.96) with respect to z from —oo to co and using (3.95) yields
2(=V +vo-v) = Pox,T00. (3.97)

From (8.94d); " we obtain that
[Voolt - v = Pox,To0- (3.98)

Then, with similar arguments as above we arrive at the following limit problem

—div(2nDvg + Adiv(vg)I — poI) + vvg =0 in Qp UQg,
divwg =0 in Q7 UQyg,
—Aocy =0 in QprUQg,

with the free boundary conditions on ¥(0) given by

vol# = 0, [o0]7r = 0, [Vooll - v = PoxeT00,

2(=V + vo - v) = Pyx,T00, [2nDvg + Mdiv(vo)I — pol]hv = —Brrv.
The double obstacle potential
We will now present the main differences for the double obstacle potential given by

0 iffpl <1,

(3.99)
+o0o else.

P(p) = %(1 — %) + 11 01(p), T—1(e) = {

We plot the double obstacle potential in Figure and we refer the reader to [87] for more
details. The derivative has to be understood in the sense of subdifferentials, i.e.,

(—00,0] if p=—1,
V(p)=—p+0l11(p), OI_11(p) =40 if o] <1, (3.100)
[0,00) if p=+1.
Hence, (3.43d)) has to be replaced by
/Q —u(€ =) — Zo(§ — @) + BeVip - V(E — @) — X0 (€ — ) dz > 0 (3.101)

forall € e K:={¢ € H': || < 1a.e. in Q}.

Expanding (3.101)) in the outer region, we require ¢y = +1 and Qr and Qg can be defined as
before.
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-1 1
Figure 3.6: Plot of the double obstacle potential.

In the following we assume that the inner variable ®. is monotone increasing with z and we

assume that the interfacial layer has finite thickness 2/ with [ = 5. Furthermore, we assume that

O (t,8,2=75) =41, P(t,s,2=-F)=—1 (3.102)

The constant 7 is now defined as

From 3.101;1 and (3.102)) we obtain

+1 if 2> 7%,
®o(z) = ¢ sin(z) if [2] < F,
-1 if 2 < -3,

(I)l(t, S, i%) =0.

Moreover, the equipartition of energy (see (3.59)) holds and

[ bR = [ v@ae) dz =

s -
2 2

Finally, from (3.101 ?, we obtain (compare (3.82))

2o = BKT — %"[\0—0\215. (3.103)

Hence, except from the definition of 7 we obtain the same equations for the sharp interface limit
as for the double-well potential.

3.4 Numerical results

In this part we aim to show several simulations for the tumour growth model derived in this
chapter. The simulations are provided by Dr. Robert Nirnberg from Imperial College London
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(see [56]). We consider the system

div(v) = ad(Po — A)(p+1) in Qr, (3.104a)
—div(T(v,p)) +vv = (u+ x,0)Ve in Qp, (3.104b)
Oy + div(ev) = div(m()Vu) + ps3(Po — A)(1+¢)  inQp, (3.104c)
W= gw/(g@) — BeAp — X0 in Qr, (3.104d)
0 =div(D(Vo — xVy)) — 3Ca(p + 1) in Qr, (3.104e)
where
T(v,p) = 2n(#)DVv + A(p)div(v)I - pI,
and with mobilities of the form (3.45]), that means
(i) m(p) =mo, (i) m(p) =emo, (i) m(p) = mogz(1 +¢)*. (3.105)
We supplement the system with initial and boundary conditions of the form
Ve-n=Ve-n=0, oc=op on X, (3.106a)
T(v,p)n=0 on N x (0,T7), v=0 on 0282 x (0,7, (3.106b)
©(0) = o in £, (3.106¢)

where op is a given function and 0;€), 0-€), are measurable such that
010U =00 and 0,QNGQ=0.

In we denote by P, A and C the proliferation, apoptosis and consumption rate. Moreover,
the parameters D, x,, x and 3 are related to nutrient diffusion, chemotaxis, active transport
and surface tension. The remaining variables and parameters are defined as before. In the
case (3.105), (ii) we always set ps = a in order to fulfil (3.49b). We remark that setting
n(-) = A(-) = 0 leads to a Cahn-Hilliard-Darcy model.

In the following, we choose ¥ (-) as the double obstacle potential (see ), and we define the
function spaces

K={feH": |f|[<laeinQ}, Hjg={ueH':u=0 ae ondQ}.

We call (¢, 0, 1, v, p) weak solution of (3.104) and (3.106) if

pe HY((HY))NL*(HY), peL*(H'), o€ (op+L*(Hy)), vel?(Hg), pel*(L?),
such that ¢(0) = pg a.e. in Q, (t) € K for a.e. t € (0,T), and
/T(V,p):V(I)-i-VV-q)dl':/(ﬂ+X¢U)VQD'@d$7
Q Q
/div(v)@ dm:a%/ (Po—A)(¢+1) P dz,
Q Q
@up & + [ Vo-vedo =~ [ m@)Vu- e~} (ps - ap) (Po - A) (0 + D o,
Q Q
/(u+§<p+xcp0) (") dxé/ﬁevw-v(c—@dw,
Q Q
/D(VU—XV@)-Vd)dx:—/%Ca(cp—i-l)qﬁdx
Q Q

for a.e. t € (0,7) and all ® € Hy, o, ® € L?, £ € H', ( €K, ¢ € H}.
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The weak formulation is used for a finite element method based on a semi-implicit Euler
discretization, see . Unless otherwise stated, we will always use the following set of parameters

=002, a=05 ps=2, P=01 A=0, C=2, x,=05,

, (3.107)
D=1, op=1, x=002 A=0, v=100, :Q=0, Q=(-3,3)2

and the initial profile shown in Figure

Figure 3.7: Initial tumour size.

We will now systematically interpret the influence of different parameters in our model.

3.4.1 Brinkman’s and Darcy’s law

In the following we investigate the relation of the Cahn-Hilliard—Brinkman (CHB) and Cahn—
Hilliard-Darcy (CHD) models. Indeed, in Theorem [6.7| we will prove a qualitative estimate for
the solutions of the CHB and CHD model in two space dimensions. Thus, for small viscosities
we expect a similar qualitative behaviour of solutions to the corresponding systems. For the
mobility we take m(s) = (14 s)? which corresponds to ([3.105), (iii), with mo = 1. In Figure
we show the tumour for both the CHD and CHB model for n = 107> at time t = 12. We see
that the the qualitative behaviour for both models is similar for low viscosities which validates

the qualitative estimate.

Figure 3.8: Tumour at time ¢ = 12 for § = 0.1, left side for the CHD model, right side for the
CHB model with n = 1075.

3.4.2 Influence of mobility and surface tension

We now investigate the influence of the mobility and the surface tension. In Figure [3.9 we show
the evolutions with n = 107° and for different mobilities. The formal asymptotic analysis in
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the previous section indicates that the mobility (3.105)), (ii), corresponds to a free boundary
problem where the interface is transported solely by the fluid velocity.

Figure 3.9: Tumour at time t = 9 for n = 107, 3 = 0.1 and o = pg = 2, but with different
mobilities, left m(p) = 1(1 4 ¢)2, middle m(p) = ¢, right m(yp) = 1073

Thus, we see that a one-sided degenerate mobility causes instabilities while pure transport
stabilises the interface. Moreover, having a closer look we see that the thickness of the interface
is smaller for the mobility m(p) = 1073¢

As the Ginzburg-Landau energy models adhesion forces, it can be expected that a reduction of
the parameter 8 > 0 reduces surface tension forces and leads to instabilities. In Figure [3.10]
we compare the tumour evolutions for g € {0.1,0.01} with = 0.1 and for the mobility
m(p) = (1 + ¢)% We see that the instabilities are more pronounced for 3 = 0.01 and the

fingers are longer and thinner.
Figure 3.10: Evolution of the tumour with m(p 1 + )% and 1 = 0.1, above for 8 = 0.1 at
time t = 1, 3,6, 10, below for 8 = 0.01 at time t = 1, 1.5, 2,2.5.

However, in Figure [3.11] we see that a reduced surface tension does not cause instabilities if the
mobility is of the form m(y) = . Hence, the stabilising effect of pure transport seems to be
stronger than the destabilising effect of a reduced surface tension.
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Figure 3.11: Evolution of the tumour with 7 = 107° and 8 = 0.01, left for m(y) = (1 + ¢)? at
time ¢ = 2.2, right for m(yp) = € at time ¢ = 5.

3.4.3 Influence of the viscosity

Next we investigate the influence of the viscosity and we always take the one-sided degenerate
mobility m(p) = (1 + ¢)2.

In Figure we compare the tumour at time ¢ = 2.5 for constant viscosities n € {0.1,100}
and the Neumann boundary condition for the stress tensor. We see that the results look nearly
identical. We also plot the velocity magnitude which is slightly bigger for n = 0.1. Thus, it
seems that the influence of viscosity in the case of stress free boundary conditions is rather low.

.
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Figure 3.12: Tumour and velocity for 5 = 0.01 at time ¢t = 2.5, left for n = 0.1, right for n = 100,
on top the tumour and below the velocity magnitude.

In the case of no-slip conditions on one part of the boundary we observe a different situation. In
Figure we plot the evolution for € {0.1,10} with » =0, 8 = 0.1 and a no-slip boundary
condition on the left boundary, i.e., 92Q = {—3} x (—3,3). We see that for low viscosity the
tumour evolves radially symmetric whereas instabilities appear if the viscosity is higher.
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Figure 3.13: Evolution of the tumour at time ¢ = 1,3,6,10 with 5 = 0.1, v = 0 and a no-slip
boundary condition on the left boundary, on top for n = 0.1 and below for = 10.

We also show the velocity magnitudes at ¢ = 10 in Figure[3.14] Although the maximal magnitudes
are almost the same, we see more regions with high velocity if the viscosity is bigger, that means
for n = 10. It is also worth noticing that the velocity field is no longer symmetric as observed in
Figure [3.12] which is due to the no-slip boundary condition.
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Figure 3.14: The velocity magnitude at time ¢ = 10 with 8 = 0.1, » = 0 and a no-slip boundary
condition on the left boundary, left for n = 0.1, right for n = 10.

Figure 3.15: The tumour at time ¢ = 1.5 with 8 = 0.01, v = 0 and a no-slip boundary condition
on the left boundary, left for n = 0.1, right for n = 10.
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If we decrease the surface tension to 5 = 0.01, we can observe the development of fingers for
both viscosities and we see that the tumour evolves asymmetric and elongates towards the right
boundary, see Figure |3.15

Finally, we investigate the influence of different viscosities for the no-slip boundary condition.
We denote by 74 and n_ the viscosities in the tumour and healthy phase, respectively. In
Figure [3.16] we show the tumour at time ¢ = 10 for different cases.

Figure 3.16: Tumour at time ¢t = 10 with 8 = 0.1, v = 0 and a no-slip b. c. on the left boundary,
with n_ =0.01, ny =1; n— =1, ny =0.01; n— = 0.01, ny = 10; n— =10, ny = 0.01.

It can be seen that a large difference between the viscosities leads to a more interesting evolution.
Moreover, instabilities are more pronounced if the viscosity in the surroundings is lower than
in the tumour tissue. Thus, the tumour tends to grow towards directions with least resistance.
This effect has also been observed in a theoretical analysis in .



Cahn—Hilliard—Brinkman model for tumour growth

In this chapter we aim to analyse the model (3.34]) supplemented with (3.36). Since it has no
bearing on the analysis, we set 8 = 1 for the rest of this thesis. We will consider the nutrient

energy density given by (3.37)), that is
Xo
N(p,0) = "ol + xp0(1 = @),

where x, and X, are referred to as nutrient diffusion and chemotaxis parameter, and we denote

B )
Ny = QN(%U) = Xo0 +Xo(1 =) Ny = %N(@, 0) = —Xp0-

To get a first impression of the difficulties arising in the analysis, we recall the energy inequality
(3.35) given by

d

dt Jq

+ / 20()IDV]* + M) (div(v))* + v(p)[v]* dz + / KN (0~ 000) dH*
Q o0

_ e
() + 5Vl + N(po) dat [ m(@) Vil + () VN[ da

= / Tyopp—ToNg + (p— pp — Nyo)T'y da.
Q

In order to bound the right hand side of this inequality we need to make suitable assumptions on
the source terms I'y, I', and I';. In particular, we have to assume that I'y is uniformly bounded
in order to control the triple products pupl'y, and Nyol'y. As an immediate consequence we
have to assume that I'y is independent of p. Indeed, to pass to the limit within the Galerkin
scheme, all the occurring terms have to be linear in . If I'y, would depend linearly on pu, this
contradicts the uniform boundedness of I'y,. Moreover, we observe that the pressure appears
without control. This problem can be circumvented by using the method of subtracting the
divergence and estimating the pressure a posteriori. In order to get an estimate on the velocity,
the positivity of n(-) and v(+) is crucial. Finally, we notice that N(p, o) is not positive in general
as we cannot guarantee that ¢ and o stay in the physical relevant intervals [—1, 1] and [0, 1],
respectively. Therefore, we have to impose a smallness assumption on £ which is not a problem
in applications since the parameter ¢ is usually very small.

T
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The results in this chapter are based on the work [54]. We consider the model (3.34), i.e.,

div(v) =Ty a.e. in Qrp, (4.1a)

—div(T(v,p)) + v(¢)v = uVeo + N,Vo a.e. in Qr, (4.1b)
Orp +div(pv) = div(m(e)Vu) + T, a.e. in Qr, (4.1c)

p=ec ' (p) —eAp+N, a.e inQr, (4.1d)

0o + div(ov) = div(n(p)VN,) — T, a.e. in Qp, (4.1e)

where the viscous stress tensor is given by
T(v,p) = 2n(¢)Dv + A(p)div(v)I — pl.

Moreover, we equip the system with the boundary and initial conditions introduced in (3.36)),
i.e.,

Veo-n=Vu-n=0 a.e. on X, (4.2a)
T(v,p)n=0 a.e. on L, (4.2b)
n(¢)VNy, -n= K(0s — 0) a.e. on L, (4.2¢)
©(0) = o, (0) =09 a.e. in (4.2d)

for a boundary permeability constant K > 0, a given nutrient supply o at the boundary and
for given functions ¢g and og.

4.1 Assumptions and main result

We make the following assumptions.
Assumptions 4.1
(A1) The constants € and x, are positive and fized and x,, K are fized, non-negative constants.
(A2) The mobilities m(-), n(-) are continuous on R and satisfy
mo <m(t) <my, mno<n(t)<n VteR
for positive constants mg, m1, ng and ny.
(A3) The viscosities fulfil n, A € C*(R) with bounded first derivatives and
o <nt) <m, 0<A(F) <A VIER

for positive constants 1y, n1 and a non-negative constant \g. The permeability fulfils
v € C°R) and

vy <v(s)<wv, |v(r)—v(s)|<Lyr—s| Vr,seR
for positive constants vy, v1 and L.

(A4) The functions T'y, and T'y are of the form

Lp(CP, a, N’) = Acfi (Qov J) - oap(@a O—),U'v

r
Lo, 0,1) = Ao (0,0) — 05(p, 0) 1,
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where 0,0, : R2 = R are continuous bounded functions with 0, non-negative, and
Ay, Ay R? — R are continuous with linear growth, i. e.,

0i(p, )| < Ro,  [Nilp, 0)| < Ro(L+[p| + o) forie{p o}

such that
ITy| + Lo < Ro(1+ [ + |of + [u])

for some positive constant Ry.

(A5) The function T'y € C°(R2,R) is assumed to be bounded and Lipschitz-continuous, i. e.,

ITv(e, o)l <70,  [Tv(p2,02) = Iv(p1,01)| < L (|2 — 1] + o2 — 01])
for positive constants vy and L.
(A6) The function v € C%*(R) is non-negative and satisfies
W(t) > Rift]’ =Ry VteR
for some constants Ry, Ry with Ry positive, and either one of the following holds:

1.) if 8, is non-negative and bounded, then there exist positive constants Rs, Ry such
that

W] < Rs(L+[t), [/ (0)] < Ra(L+t]), [¢"(O)] < Rs VEeR.
2.) if 0, is positive and bounded, that is
Ry >0,(t,s) >Rs >0 Vt,seR
for a positive constant Rs, then
[ (t)] < Re(1+t|7) VteR
for q € 10,4) and for a positive constants Rg.
Furthermore, we assume that
£ Xolt

(A7) The initial and boundary data satisfy

Ooo € L*(0,T; L%(09)), o € HY, o€ L*.

Remark 4.2 Due to the relation of € to the thickness of the diffuse interface which is typically
very small, the assumption on € in in practice means no restriction. Furthermore, the
Lipschitz-continuity of I'y, is needed within the Galerkin ansatz to guarantee continuity of
velocity and pressure under perturbations of ¢ and o, see Proposition 2.47 We further remark
that our analysis includes source terms of the form and if we choose, for example,
P(p) = max (0, min (20 Py, 0 Py(1 + ¢))) in for positive constants ¢ and Py, or

I' = (Pmax(0,min(1,0)) — A)h(p), h(p) =max (0,min (1,3(1+¢))), I's=Coh(yp)

in (3.31]), where P, A and C are the same constants as in (3.31). We cannot use exactly the
same form as in (3.31)) as I'y needs to be bounded uniformly.
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We now introduce the weak formulation of (4.1)-(4.2).

Definition 4.3 (Weak solution for (4.1))-(4.2))) We call a quintuple (¢, o, 1, v, p) a weak solution
of (T)-([E2) if

we HY0,T; (HY)*)n L>®(0,T; H") N L*(0,T; H?),
o€ W5 (0,T; (HY)*) N L>(0,T; L?) N L*(0, T; H'),
peL*0,T;HY), vel?0,T;HY), peclLs0,T;L?

such that
div(v) =Ty(p,0) a.e. in Qp, ¢(0)=¢p a.e. in Q,
(0(0),)mr = (00,Q) i V(¢ € HY,
and
/QT(v,p): Ve +v(p)v-®de = /Q(quo + N,Vo)-® dx, (4.3a)
(Opp, @) g2 = /Q —m(p)Vu - Ve +T,® — (V- -v+ely)@dr (4.3b)
/Q,uCD dr = /Qg—lxlf’(@yb +eVp VO — x,0® dz, (4.3c)
(40, ®) i = /Q Cn(Q)VN, - VO —Ty® — (Vo - v+ oTy)d de
+ " K(00o —0)® dH! (4.3d)

for a.e. t € (0,7) and for all ® € H!, ® € H!.

The main goal of this chapter is to prove the following existence result:

Theorem 4.4 (Weak solutions for ([£1)-([E.2)) Let @ C R, d = 2,3, be a bounded domain with
CY1-boundary 0. Suppose Assumptz’ons are satisfied. Then, there exists a weak solution

quintuple (p, o, 1, v,p) for (4.1)-(4.2) in the sense of Definition . Moreover, the estimate

ol vy yn Lo (B2 (H2) + HUHWL%((Hl)*)an(Lz)ﬂLZ(Hl)

1
+llullzzmy + K20l 2z 00) + Hané(Lz)

+ Vllz2y + [[div(ev)]] <C (4.4)

L GO TP

2L
holds for a constant C independent of (¢, p,0,v,p). The constant C is also uniformly bounded
for K € (0,1].

Remark 4.5 An additional term B(ocp — o) could be included in the nutrient equation ,
where B > 0 is a constant and op is a given function. Provided that op is regular enough we
can still establish the result of Theorem [I.4] and actually all the other results in this thesis
remain true. The term B(op — o) models the nutrient supply from an existing vasculature and
will be explained in more detail in Chapter [9}
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4.2 Existence of weak solutions (Proof of Theorem [4.4))

4.2.1 Galerkin approximation

We will construct approximate solutions by applying a Galerkin approximation with respect to
o, u and o and at the same time solve for v and p in the corresponding whole function spaces.
As Galerkin basis for ¢, u and o, we use the eigenfunctions of the Neumann—Laplace operator
{w;}ien that form an orthonormal Schauder basis in L? which is also a basis of H3; (see Chapter

).
We fix k € N and define

Wy = spanf{ws, ..., wg}.
Our aim is to find functions of the form

k k
pr(t,x) =) af(wi(z), p(t,z) = Zb?(t)wi(zr% ox(t, ) = ZC?(t)wi(x)

i=1

satisfying the approximation problem
/Qﬁtgakv dx = /Q —m(or) Vg - Vo + Ty v — (Vg - vie + @y 1 )v da, (4.5a)
/Qukv dz = /QsVka Vo4 e M (or)v — xpopv du, (4.5b)
/Qatakv dx = /Q (oK) (XoeVor — XeVer) - Vo —T5 v — (Voy - vig + oIy p)v do

+ , K(0oo — op)v dHIL, (4.5¢)

which has to hold for all v € Wy, where 'y = Ty (¢r, 0k, k), Lo = To(@k, 0%, pi1;) and
I'v i = I'v(¢k,0r). Furthermore, we define the velocity vj and the pressure p; as the weak

solutions of (2.31)) with
f = Vor + NopVor, g=Ivkr, c=¢r £ =0,

where

0
No,k = 7N((Pk70—k) = XoOk + ti(l - ‘Pk:)

do
Using the continuous embedding H% < L> and (A5)), straightforward arguments yield that
uVeor + NoxVoy, € L?, Ty € L2

Therefore, by Proposition [2.43] we obtain that (v, p) € H' x L? and the following equations
are satisfied

/ T(vi,pr): V® + v(pg)vy - ® dz = / (ukVor + No ) Voi) - @ dx V@ € H', (4.5d)
Q Q

div(vg) =Ty x a.e. in Q. (4.5e)

We define the following matrices with components

(S0 = /Qm(gok)Vwi -Vw; dez, (Sk);i = /Qn(gok)Vm -Vw; dz V1<i4,j<n,
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and introduce for all 1 < 4,5 < n the notation
1#? ::‘/szl((pk)wj dz, "/’k = (¢’1€7"'7¢I]§)T=
(Mag) ji 52/ wyw; dH, Sij = / Vw; - Vw; dz,
o0 Q
G? = / Ty (pk, ok, p)w; dea, GF = (Gk,...,.aNT,
Q

Fy ::/gzrg(%ak,uk)wj de, Fr*=(FF,.. .. F)T,

E? = / TooWj dHi1, sk = (Bk 20T
o
(CHji = | Vw;-vyw; da, (D*),j = / ww; Ty (¢, ox) dz,
Q Q
and we denote by d;; the Kronecker-delta. Furthermore, we define the vectors ak = (af,..., aﬁ)T,

b* == (b},...,b8)T and c* = (cf,...,cf)T. Inserting v = w;, 1 < j < k, in (4.5a)-(4.5d) and
using the above introduced notation, we get a system of ODEs equivalent to (4.5a))-(4.5c]), given
by

%ak = —SFbF 4+ G* — (C* + D")a", (4.6a)
bk = eSa¥ + e~ 1ypF — x cF, (4.6b)
d
&ck = Sk (y,a* — x,c") — FF — (CF + DF)c* — KMpock + K=F, (4.6¢)
where vy, pr are defined as above. We complete the system with the initial conditions
@) = [ powide Vi<i<k, (4.72)
Q
(c®);(0) = / oow; dz V1 <i <k, (4.7b)
Q
where we have
k k
> @)Owi|| < llgoll, > (@)iOwif < lool| e
i=1 H1 i=1 2

Substituting and vy, into , , we obtain a coupled system of ODEs for a* and
c* where 1,[1k, F* G* Sk Sk C* and D* depend non-linearly on the solutions a* and c”.
Owing to the continuity of m(-), n(-), ¥'(-), I'y(-,-) and the source terms and due to (A3]) and
the stability of the system under perturbations (cf. Proposition , we obtain that the
right hand side of depends continuously on (a*,c¥).

Therefore, Lemmaensures that there exists T} € (0, co] such that — has at least one
solution triple a®, b* c* with a*, b* c* € H'([0,T}),R¥) (where we used the relation for
b*). Hence, ([4.5a)-(4.5d) admits at least one solution triplet (g, pi, o) € (H([0,T7); Wi))>?.
Furthermore, we can define vi and pj as the solutions of -. With similar arguments
as above, we obtain that (vi(t),pr(t)) € H! x L? for all ¢ € [0,7}). We remark that the
Cauchy—Peano theorem cannot be applied since the coefficients >* are not continuous in time.

4.2.2 A priori estimates

Let §;; denote the Kronecker-delta. We choose v = b¥w; in [.5a), v = J;a¥w; in ([£5D) and
v = X,,c?wj + X@(\/@(slj — a?)wj in (4.5c¢) and sum the resulting identities over j =1,... k,
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to obtain

/ Orprpu, do = / —m(er)[Vuk|* + To ik — (Veor - vie + ol g e A,
Q Q
d _ €
/ i Oppr dx = ?/ € 11/1((,0k) + 7|V<pk\2 dz +/ Ny 10 d,
Q tJo 2 Q
/ atO'kNg’k dox = / —n(gok)|VNg’k|2 — Fg’kNaﬁk — (VO'k “ Vi + Jka’k)Ngyk dz
Q Q

+ K(00o — 0%) Nk dma1,
o0

where we used that

Summing up the three identities yields

_ &
| "(on) + §|V§0k|2 + N(pk,0x) do
Q

+/ m(or)|Viel® + n(or) [ VNG k| d33+/ Kxolow? dR
Q 09

= / Ly ke — Lo No i dr + [((C)'OQJVC,JC — Unga(l — gok)) dH!
Q o

— / (Vgak “ Vi + @krwk)uk + (Vak “ Vi + O’krmk)Nmk dzx. (48)
Q

For the Stokes subsystem, we would like to take vy as a test function in (4.5d)). Then, we would
have to get an estimate for p, without having any a priori estimates on the solutions. Therefore,
we use the so called method of subtracting the divergence.

Due to the assumptions on Q and I'y (in particular 'y, € L™ for all k¥ € N) and using
Lemma for every g € (1,00) there exists a solution uy € W14 (not necessarily unique) of
the problem

div(ug) =Ly x in Q,
e
u, = Iy da:) n=a; on 0N,
109 ( Q
satisfying the estimate
[ukl[wra < [Ty el e (4.9)

with a constant ¢ depending only on ¢ and §2. We remark that the compatibility condition (2.24))
is fulfilled since

1
/ ap -ndHl = — </ Ty dx> / n-ndH! = / [y dz.
aQ 109 \Ja a0 Q
Choosing ® = v, — uy, in (4.5d)) and using (4.5€), we end up at

/ Qn(gok)|ka|2 + V(cpk)|vk|2 dz = / 2n(pr)Dvy: Vug + v(pk)vi - ug do
Q Q

+ / (/lkVQOk + NgkaO'k) . (Vk — uk) dzx.
Q
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Adding this identity to (4.8]) gives
a4
det Jq

+/ m (o) |V + n(er) |V No k| d$+/ Kxolog|> dH4
Q o0

9
=) + 5Vl + Nigron) dot [ 2n(o0Dwif? + vlgnlwf? do
Q

= / F%kuk — Fo,kNa,k dx + K(UooNa,k — Unga(l — (pk)) d’Hd71
Q o
- / (Veor - ug + oy k) pk + (Vor - g + 0k Ty 1) No g d
Q

+/ 2n(r)Dvi: Vug + v(pk)vi - ug de. (4.10)
Q

We now estimate the terms on the right hand side of this identity individually.

Estimates for the Stokes terms

Using Hoélder’s and Young’s inequalities and inequality (4.9) with ¢ = 2, we see that

/ 2n(ox)Dvy: Vug + v(pr)ve - ug da
Q

< 2 |[Dvillez [[Vug[lLz + vif[villee gLz

< ol DvilZa + 2 valizs + (B 4 2L )2
= 7o kllL2 B kllL2 o 20 kllH?

2

2
Vo 7 v
< 10| Dvi|ze + 5 Ivilliz + Clq,19) (1 + = ) Ty k17
o 21

2 o 2 i v 2
< MolDvillL: + S IvillL: + Ol 12 { == + 5~ | 70, (4.11)
no  2vg
where we used (A3]), (A5)), and where C(q,|f?|) depends on the constant arising in (4.9).

Estimates for the boundary term

Using again Holder’s and Young’s inequalities together with the trace theorem, we see that

K(00oNg i — 0kXo(1 — @) dH4!

o0
Ko 2Kx2 Ky
S lokll72 a0y + ( X £+ T@ (\Q| + ||80k||2LZ(aQ)) + K(Xp + Xo) ool 7200
< BXoy 12 o (1 2 C 2 4.12
="y HJkHL2(aQ)+ 1( +||‘Pk||H1)+ 2||Uoo||L2(asz)a (4.12)
where

2Kx2 K
01:: (X<p+>0p

Y 9 ) (|Q|+Ct2r)’ Cy = K(X@+X0);

and Cy, is the constant resulting from the trace theorem.

Energy inequality for non-negative 6,

First we deduce an estimate for the L?-norm of py,. Inserting v = bfwj into (4.5b)) and summing
over j =1,...,k, yields

/ |lpw|? da = / e M () + eVir - Ve — XpOrpte A
Q Q
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Using Holder’s and Young’s inequalities together with the assumptions on ¥ (see (A6]), we
obtain

el < /Q e Ra(1 + [l + el Veorl [V an| + xplowllp] da

1 2R? €
< §||ukH%z + ?;‘ (12 + llerllz2) + 3 (IVerlfe + IVuelliz) + x5llowlze,

and consequently

4R?
lellze < —5* (190 + llewllZ) + & (IVerllte + 1 Vinllze) + 2 loxlZe- (4.13)
By (A4) we observe that

Lo (ks O, 1) e = N (0r5 o) i — O (01, o) |12

Therefore, we can neglect the non-positive term —6.,(¢x, o) )|ux|? on the r.h.s. of ([4.10). Using
(A4) and Hélder’s inequality (in the following, we will write A; i == A;(¢xk, ox) for i = ¢, 0), we
can estimate the first term on the r.h.s. of (4.10) by

‘/ Agp,klik - FU,k(XUUk + ti(]- - @k)) dx
Q

< el e lelzs + (1Aonllze + Rollinllz2) (Ixook +xo (1 = @1)l22)
1
< Ro (14 x) (120} + lrlize) + (1 + xo)llowlze ) w2

1 1
+ Ro(194% + llenllz + lowllze) (ol + Xollonllz + xolonllz2 ) -

Using Young’s inequality, we obtain

< OllpkllZe +Ca5 (L4 llenlz2) +Casllonl|ze (4.14)

‘/ Ag it — Do k(Xook + X (1 — ¢1)) da
Q

with constants

3R2
Css = <45°(1 +xe) + Ro (1+ xp + xi)) (14 Q)

2

3R
Cys = T;(l + Xo)® + Ro(1 4 xo + X2),

and § > 0 to be chosen later. It remains to estimate the third and fourth integral on the r.h.s.

of (4.10). Using (A5), (4.9) and the continuous embedding L>® — L7 for all g € (1,00), we
observe that

[akllwre < elg, DTy kllze < elg, DT kllpe < e(g,2,70)

for all ¢ € (1,00). Using (2.1)-(2.2) and the Sobolev embedding W4 C L*>, ¢ € (3,00), we
obtain

/(V@k suy + oy i)k dz
Q

< (IVerllLz[[ukllLe + llerll L2 [1Tv llzoe) ik 22
< Clg, [QDITv kel (IVeorllLz + llorllz2) Ikl 2

< 26C(g 19)

ST o (lorllZe + 1VerllLe) +olluxllz g € (3,00) (4.15)
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with ¢ > 0 to be chosen later. With similar arguments we deduce for ¢ € (3, 00) that

/(VUk sug + Uka,k)Nn,k dx
Q

< (19wl el + ol slls) Vel
<0, [Vorl[[Nokll 2 + vollow 2| No k|l 2
< (C@.12NCy 5+ Ca) (1 + nls + lonl32) + 81Vl (4.16)
with
%0 (BXS(L+190) +3x7) Xe
Cy5 = - L Co=n0 (L+x0 + 3201 +1)),

and § > 0 to be chosen later. Furthermore, using Holder’s and Young’s inequalities we deduce
that

IXeVorllts = IVNok + X Verllts <2 (IVNoxlZ2 + Ixe Verliz) - (4.17)

In the following we fix ¢ € (3, 00) and we denote by Cx the constant arising in Korn’s inequality.
Choosing 4, 4 small enough and applying (A3), (A6) along with (.11)-(4.17) in (£.10) yields
the energy inequality
d
dt

— 9
e (pn) + 5 IVl + 2 lonl? + x0n(1 — o) de

min(nOa V0/2) ||

n noX?r
C2 2

mo Kxo
Vello + Vs + P Vo 2 + X o, 22

_ Cb
< G (14 19l + ol + lowelBacon ) + - (o)l + Ral2)

with a constant C}, depending on the system parameters, but not on k& € N. Integrating with
respect to time from 0 to s € (0,7 gives

s+ IV + S onls) e+ [ xoon(s)(1 = (o) d
/ min no,uo/2)

2
mo noXg Kxo
Vil + —- 9 IViklgz + THV%H%? + ?”Uk”?ﬂ(é)ﬁ) dt
Ry |2 - [f 1
<G (1+ R' ')wa L 19l + loulia + - lwtenls ar
+Collocel|Za(o,75L2(00)) T I (wo) 1 + 5 ||900||H1 + ||00HL2 (4.18)
Since o € H, 09 € L? and 9¥(po) € L' by (A6]), we observe that

_ 19 Xo
Cr=e " [(eo) s + 5 llvoliin + T llovllza < oo.

Using Holder’s and Young’s inequalities together with (A6)), we obtain

[ xemn(s)1 - pn(s)) @
Q

< 2

ok (s)

2 2

X2 2X5
e+ | 255+ —2 | 12
(pr() 2+ (mzl )19

3Xo 2 1 XZRQ 2Xi
S 1 4 [ Xet2 Ql.
< S low()7z + ol (e(s)]l *(XURl )M
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Substituting this inequality into (4.18)) yields

min (21 ; >§r> (1o (e + IVer(s)fe + llor(s)]32)
/ min 770>V0/2)

OXU
vl + 7||Vﬂk||L2 +

Kxo
IVorllz. + —2 5 ok 7200y At

<C(1+T+ ||UOO||i2(L2(3Q))) +Cr+ C~Yb/o IVerlze + lloxllzz + 1v(e) o dt,  (4.19)

- - Ry |9 XoR2  2x3 Cy
= 1 119, = |.
Cy max (Cb < + R R Wi + ™ | |, R

o = éb (]. + T+ ||UOOH%2(O,T;L2(39))) + CI, /B = éb7

where

Setting

and noting that

o (1 + /0 Bexp </Ot ﬁdr) dt) — a(1 + exp(Bs) — 1) < aexp(BT),

an application of Lemma to (4.19) gives
sup (¥ (x(s))llzr + [Ver(s)lLz + low(s)lli2)

s€(0,T]
+/ Vil + Viellzz + 1 Vorllze + Kokl 720y dt < C (4.20)
0

with a constant C independent of k£ € N. In particular, the constant C' is bounded uniformly for
€ (0,1]. In the following we will use the constant C as a generic constant which may change

its value even within one line. Using (A6) and (4.13]), as an immediate consequence of (4.20))
we obtain

T
sup [low(s)lm + / a2 dt < C. (4.21)
$€(0,T] 0

Energy inequality for positive 6,
We assume that (A6), 2.) is valid. Then, arguing as above, the specific form of 'y, yields

Fga,k,uk = Acp,k,uk - 0#,0(90/67 Uk)|ﬂk|2-

We move the second term on the r.h.s. of this equation to the 1. h.s. of . Then, we can
perform exactly the same estimates as before, but we do not need . We remark that
estimate was the only reason why we needed assumption (A6)), 1.). Again choosing § and
6 small enough, we arrive at the inequality (compare ({.19))

2 (2 52) (Gl + IV s + Ion(o)E)

noX?y
2

® Rs Kx
+/o Crlvelifn +mollViklze + 7”%”%2 + IVorlie + TU”U’C”2L2(8Q) de

S C(1+T +los|Zeo,i22(00)) + C1 + C/ IVerlLz + llowllz: + v(en)llr dt - (4.22)
0

with C; as defined above. Here, we have the term mg||Vu||3. instead of % ||V ||32 because
we do not use (4.13)). We still have

[4(o)ll Lt < o0
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since
[9(po)llr < C (14 [lwollfs) < C (1 + llpollzn) < oo

due to (A6]) and the Sobolev embedding H' C LS.
Applying Lemma and using similar arguments as above along with (A6)), from (4.22) we
obtain (£-20)- (L21).

Estimates for the pressure

Using and we deduce that
/kadiv(@) dz = /52(217(@;@)ka + Mep)Ty 1) V® dx
+ /Q (v(pr) Vi — e Veor — NokVoy) - @ dz (4.23)
for all ® € H'. Now, we define a family of functionals on H! by
Fip(®) = /0(277(901«)]3‘% + Mer) Ty pD): V@ + v(pp)vi - @ — (uxVeor + NopVoy) - @ da
for all ® € H'. Using Holder’s inequality, and the Sobolev embedding H' C LY, we obtain

[Fr(®) < C (lleeHH1 Ty kllzz + Vellee + [l Verll s + ||Na7kVUk||Lg) [E41e8

S C A+ [villa + llpellzs IVerlue + 1No gl sl VorllL2) [| @] a

with C = C(2,70, 71, Mo, Y0, v1). Taking the supremum over all ® € H' with ||®|/g: < 1, we
deduce that

[Fell@yy- < C QA+ |Ivillm + [ukllzs [Verllne + [[Nokl s [[Vor|lL2) - (4.24)

Now, (4.23) implies
fk(@)z/pkdiv(cb) dr V& c H. (4.25)
Q

Invoking Lemma we deduce that there is at least one solution q; € H' of the system

1
div(qx) = pr  a.e.in Q, Ak = — (/ Dk d:r) n a.e. on 0f)
109 \Ja
satisfying
lakllar < Callpxl| 2 (4.26)

with Cy depending only on €. Notice that the compatibility condition (2.24)) is satisfied since

/ qr -ndH? :i (/pk dx)/ n-ndHi! z/pk dz.
a0 109 \Jq a0 Q

Choosing ® = q;, in (4.25)) and using Young’s inequality along with (4.26]), we obtain

1Pell72 = Frlar) < | Pkl -

C? 1
arller < Call Fill - Ipellee < SHIFelfeany- + 5 Pz

which gives

lollz2 < Call Fell gy~
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Using Young’s and Holder’s inequalities together with (4.24]), the last inequality implies

T 4 T 4 4 4 4 4
[ttt < [T v el + IVl + 18 1 vonl . a
0 0
1 1 1 1 1
<C (1 + ||VkHz2(H1) + H/ikH22(L3)||v30k||z4(1,2) + HNo,k||£4(L3)||VUkH£2(L2)> .

Due to —, the first three terms on the r.h.s. of this inequality and the term
||VU;€||§2(L2) are bounded. Using the continuous embedding L*°(L?) N L2(H') — L*(L?)
resulting from Gagliardo-Nirenberg’s inequality and the bounds (4.20)-(4.21)), by the specific
form of N, 1, we obtain N, ; € L*(L3) with bounded norm (independent of k € N). Consequently,
the r. h.s. of the last inequality is bounded independent of & € N which implies

Pkll g 2y < C- (4.27)

Remark 4.6 Alternatively we may also use a Poincaré-type inequality which is a consequence
of Necas’ inequality (see [22, Thm IV.1.1 and Prop. 1V.1.7]). Indeed, for all ¢ € L? there exists
a constant Cn such that

1

lallz> < Ox (| [ 9o + IVallagy- ) (428)
€ /o o

Taking ® € H} arbitrary in (4.23)) and using the same estimates as above yields

<C.

With similar arguments and taking, for example, ® = (21,0,0)T in (4.23)), we obtain
[r)al 4 0y < C

Combining the last two estimates and using (4.28)) gives (4.27)).

Higher order estimates for ¢

We aim to deduce estimates for ¢ in L2(H?). Using Gagliardo—Nirenberg’s inequality and the
Sobolev embedding H! C L%, we have

1 1
okl < Cllorll a0kl 7r2-

Applying elliptic regularity theory, this implies
1 1 1
lorliz= < Cllorlin (lonl i + 1Agul?) (4:29)

Choosing v = )\ja?wj in (4.5b)), integrating by parts and summing the resulting equations over
j=1,...,k, yields

el Apklz: = / Vi - Vi, — e " (o) [Vor|* + X Vor - Vi, da.
Q
Due to Holder’s inequality and the assumption on ¢(-), we therefore get

elAprllte < IVillezIVerlive + xelVor(e Vo +/ C 1+ |pxl?) [Ver|* da.
Q
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Integrating in time from 0 to 7" and applying Hélder’s inequality along with (4.20])-(4.21)) gives
ellApklZzr2y < IVakllL2@wa) [ VeorllLo @) + XolVorll 2w [ Veerll L2 w2

T
v [ [ arloln Vo do de
0 Q
T
<C (1 +/ / lon || Veor|? do dt) . (4.30)
0 Q
In the case ¢ = 0, applying (4.20) yields
T
| [ 1w aat = 190 < .
In the case g € (0,4), we use Holder’s inequality and (4.29)) to calculate
T T
| [1edve? asac<c [ o= 9oz a
0 Q 0
ol onl 4 4
<C [ loulnlionlhs (o + 1agul) ar
q+2 ’ %4 3
< O\ lerll 7 ay + ; okl [[Apkll72 dt | .

Observing % > 1, we can use (2.2)) to estimate the last integral on the r.h.s. of this inequality by

2(q+4)
1

g @t 4 = € 2
el 18wl at < Clloul iy + S1A0u s e
Invoking the last three inequalities together with (4.30) we obtain
€
§||A90k”%2(L2) <C.
Using elliptic regularity theory in conjunction with (4.21)), this implies

lerllzz(mz) < C.

Together with (4.20)-(4.21) and (4.27), we therefore deduce that

lerllzoe (mroynrzae) + okl w2ynrz ) + laell 2 + vl e el g .y < . (4:31)

Regularity for the convection terms and the time derivatives

By Hélder’s inequality and the Sobolev embedding H' C L® we obtain that

T T
IV vil gty = [ 1900 el dt < [ valoVeanls
0 0

20,151%)
T

<c / vili2e ol 2
0

< CH‘Pk”QLw(o,T;Hl)||Vk||%2(o,T;H1)-

Using the boundedness of T'y, and (4.21)) we infer

lorTy ]2 < Cllowl? <C

3 3
L2(0,T;L2 L2(0,T;L2) —
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with a constant C' depending on vp. From the last two inequalities and (4.20])-(4.21)) we deduce
that

<C. (4.32)

||diV(Q0kvk) HL2(0,T;L%) -

Taking an arbitrary ¢ € L*(0,T; H') and integrating by parts we obtain
T T
/ / div(opvy)¢ dz dt = / Copvi -ndHT dt
0o Ja o Joa
T
- / / oV - V( do dt. (4.33)
0o Ja
Due to (2.4) with j =0, p=3, m=1, r = ¢ =2, we have

1 1
lokllzs < CllokliZallowl £ -

Then, by Hélder’s inequality and the Sobolev embedding H' C L° along with (4.31]), we can
estimate the second term on the r.h.s. of (4.33)) by

T
/ /Uka~VCd$dt
0 Q

T
< [ loullo vl IV e
0

T 1 1
sc/nmmmmmmwmwmmw
0

1 1
< OHUkHzoo(p)||‘7k||22(H1)HVk||L2(H1)||C||L4(H1)

< Cl[¢lzacay-

Furthermore, using (2.22)) with r = ¢ = 2 (hence oo = 0) gives

1 1
lowlzaon < € (ol + ol lowl 5 )
By (4.20]) this implies
llokllLa(r2o0)) < C.

Together with Holder’s inequality, the trace theorem and (4.31)), we obtain

T T
/ / Corvi -n dHT! dt| < C/ llorllLzo0) |V llLa o) IC] L a0y dt
o Joa 0

T
sc/n%mwmwwmmmuﬁ
0

< CllokllLazz@ap Vel 2@y 1< Lacan)
< Cl[¢l ey

From the above estimates and (4.33]) we get

/OT/QdiV(Uka)C dz dt

and taking the supremum over all ¢ € L4(H?!) yields

< Cl¢llpacay,

div(opve)]| <c. (4.34)

L3 (0,T5(HY)*) =
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Now, we denote by {Cx;}1<j<k the coefficients of ¢ € L*(0,T; H') such that Px¢ = Z?:l Crjw;j.
Then, taking v = (p;w; in (4.5c), summing over j = 1,...,k, and integrating the resulting
identity in time from 0 to T yields

T
/ / 0z0rC dx dt
0o Ja

T
< / m(Xol[VorllLe + Xxo[[VerllL)I[VPrClle + [[To kll 22 [PrCll L2 dt
0

T
+/ ||diV(O’ka)H(H1)* PkCHHl dt
0

T
+/ K(llosollz2a0) + okl L200))IPkCll L2 (00) dt.
0

Using (4.20)-(4.21]) we obtain
ITokll2z2) < C(Ro, |, T) (14 llokllp2cr2y + lowll 22y + lluwll2z2y) < C.

Then, Holder’s inequality, the trace theorem and the estimate [|Pr(||g: < C||¢||g yield

T
/ / OrorC dx dt
0o Ja

By taking the supremum over all ¢ € L*(H') and using (4.20)-(4.21)) along with (4.34)), we end
up with

<C (1 + ||diV(0ka)HL§((H1)*)) <l e ey

19,0k <C. (4.35)

LE((HY)7) =
With similar arguments we can show that

0okl L2 ((m1y-y < C. (4.36)

Notice that we have lower time regularity for the time derivative of ¢} compared to the convection
term since the regularity of the time derivative depends on the term V.

4.2.3 Passing to the limit

At this point, we summarise the estimates (4.27)), (4.31)-(4.32) and (4.34))-(4.36) to deduce

||90k||H1((Hl)*)nLoc(Hl)nLZ(m) + HUkle,g(( ) + ||Nk||L2(H1)

H1)*)NLoo (L2)NL2(H?
v ervill o 3) 1AV g ey T IVEIL2E) +llpell g o) < O (437)
Using standard compactness arguments (Lemma and reflexive weak compactness), the
compact embeddings
HITHQ) = WITH2(Q) s WIT Ve Z, j>0,1<r <6,

and L2 < (H')*, we obtain, at least for a subsequence which will again be labelled by k, the
convergence properties

) weakly-star in H'((H")*) N L>®(H") N L?(H?),
oK — 0 weakly-star in W3 ((HY)*) N L>®(L?) N L*(H"),
Wi = 1 weakly in L*(H'),
P — D weakly in Lg(Lz),
Vi =V weakly in L*(H'),

div(ppvg) = 7 weakly in LQ(L%)7

div(opvi) — 0 weakly in L3 ((H")"),

div(vg) — div(v) weakly in L(L?)
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for some limit functions 7 € L2(L2) and 0 € L3 ((H')*). Furthermore, we have the strong
COLVErgences

or — ¢ strongly in C°(L")NL*(W'") and a.e. in Qr,

or — o strongly in C°((HY)*)NL*(L") and a.e. in Qp
for all r € [1,6). From now on, we fix 1 < j < k and £ € L?, ® € H!, § € C5°(0,T). Then,
since the eigenfunctions {w;};en belong to H% we observe that dw; € C*(H%) for all j € N,

Furthermore, we have 6§ € C*(L?) and §® € C*(H'). Inserting v = w; in (4.5a)-(4.5d),
multiplying the resulting equations with ¢ and integrating over (0,7") yields

T
/ 5(t) </ (8t90k — F%k +Voi-vi + Qﬁkl—‘v’k)w]' + m(cpk)Vuk . ij dl‘) dt =0, (4.38&)
0 Q
T
/ 5(t) </ (e — e (pr) + Xpor)wj — eVipr - Vw, dx) dt =0, (4.38b)
0 Q
T
/ 5(t) </ (Owok + Lo + Vor - vip + 01Dy k)w; + (o) VNG s Vw, dx> dt
0 Q
T
—/ o(t) ( K(0s — or)w; de1> dt = 0. (4.38c¢)
0 a0
Furthermore, multiplying (4.5dl) with ¢ and integrating in time from 0 to T gives
T
/ 5(¢) (/ T(vi,pr): V® 4+ v(op)vi - ® — (Vo + No iy Voy) - @ da:) dt =0. (4.38d)
0 Q
With similar arguments, (4.5€]) gives

/OT 6(t) (/Q div(vi)§ dx) dt = /OT 5(t) (/Q Ty & dg:) dt. (4.38¢)

Now, we pass to the limit in (4.38).
Step 1: (4.38a]) Since dw; € C>*(H?) < L*((H')*) we obtain

T T
/ / Orprdw; do dt — / 5(t)(Orp,wj)pr At as k — oo. (4.39)
0o Ja 0

By continuity of m(-) and since ¢ — ¢ a.e. in Qr as k — oo, we observe that m (i) — m(p)
a.e. in Qp. Using the boundedness of m(-) and applying Lebesgue dominated convergence
theorem to (m(pr) — m(p))?[6]?|Vw;|?, we obtain

|(m(er) —m(e))dVw;|lr2r2) =0 as k — oo.

Then, the weak convergence Vi — Vpu in L?(L?) as k — oo implies

T T
/ / dm(pr)Vw; - Vg do dt — / / om(p)Vw; - Vude dt  as k — oo. (4.40)
0o Ja 0o Ja
Using the Sobolev embedding H? C L™, we have

T T
/0 /Q 02w 21V e — Vpf? da dt < / 8P IVin — Vil Za 2 dt

< ClloN1 7 0,y 1wl lon — @llT2 (o)

—0 ask — oco.
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Therefore, dw; Ve, — dw; Ve strongly in L?(L?) as k — oo. Then, by the product of weak-
strong convergence we obtain

T T
/ / dw;Vey - vy do dt — / / dw;Ve-vdrdt ask — oo. (4.41)
0o Ja 0o Ja
Using the boundedness and continuity of I'y(-,-), with similar arguments as for (4.40]) we obtain
|(Ty(@r, o) = Tv(w,0))0w;l| 20 — 0 as k — oo

which implies

T T
/ / dwjorl'v(pk, ox) de dt — / / dwjel'y(p,0) dedt  as k — oo. (4.42)
0o Ja 0o Ja

Now, using the estimate
lewllzn < Cllowllzelonl e

together with and the strong convergence oy, — ¢ in C°(L?) as k — oo, we obtain that
o — o strongly in L*(H') as k — oo. Using the weak convergence v; — v in L2(H'), by the
product of weak-strong convergence we obtain div(grv) — div(ev) in L3 (L2) as k — co. By
uniqueness of weak limits, this implies div(¢pv) = 7.

Recalling the specific form of Ty, given by I'y, 1, = Ay (¢k, 0%) — 0, (k, o) i and using that
vr — ¢ and o — o a.e. in Qp together with the continuity and boundedness of 6,(-,-),
Lebesgue dominated convergence theorem implies

T
/ / 16,0, (01, 0%) — B (0, )P da dt 0 as k — oc.
0 Q

Therefore, w;0,(pk, o) — dw;0,(p, o) strongly in L?(Qr) as k — oo. Together with the weak
convergence py — p in L2(Q7) we conclude that

T T
/ / dw;0,(or, or) i do dt — / / dw;b,(p,o)pdrdt ask — oo. (4.43)
0o Ja 0o Jo

We now analyse the other term in the definition of 'y, . Applying the inequality ||a|—|b]| < |a—1|,
we obtain

T
/O / [(55) (0] — L)) Az dt < [16w; | 22(cam 0k — Pllzz(ny — 0 as k — oo,

and

/OT/Q |(0w;)(lox| — |o])| do dt < [Jow;||2)llox — ollL2r) —+ 0 as k — oo.
This implies
Ro(1 + || + lo])|0w;| = Ro(1+ |¢| + |o|)|dw;|  strongly in L*(Q7) as k — oo.
Since ¢, — ¢ and o}, — o a.e. in Qr as k — oo, the continuity of A, (-,-) yields
dwjAg(or, 0k) = dwjA,(p,0) a.e. in Qp as k — oo.

Using
|0w; Ay (ors o) < |0w;|Ro(1+ okl + orl) € L'(Qr) VE>1,
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by the generalised Lebesgue dominated convergence theorem (see Lemma [2.35)) we obtain

T T
/ / dw;iAy(pr, or) de dt — / / dwjA,(p,0) de dt  as k — oo.
o Jo 0o Jao

Together with (4.43), this implies

T T
/ / ow; T, (r, ok, pi) do dt — / / dw;Ty(p,0,p) de dt  as k — oo. (4.44)
0o Ja o Jao

Step 2: We now analyse ([4.38D). Since uy — u, o — o and Vg — Vi in L?(Qr) and
L?(L?), respectively, we easily deduce

/T 5(¢) </ (tr + Xo0k)wj — Vg - Vw; dx) dt

— / </ w+ xp0)w; — eV - Vw; d:z:> dt as k — oo. (4.45)

Recalling that @), — ¢ strongly in C°(L") for r € [1,6), for s € [1,5) and ¢ = 25 < 6 we obtain

[ [ ow—proutazar< [ ilastoelion - ol at

< Clléllzoo,mlwsll e llor — @l za(ray

—0 ask — oco.

This implies
lor — ¢|*0w; — 0 strongly in L*(Q7) as k — oo.

Furthermore, we have

lol*low;| < C(s) (o — @l* + lol*)|ows] € L1 (Qr)  for all k > 1,
(lpk = &l” + ") [dws] = [¢]*[6w;|  a.e. in Qr as k — oo,

T T
/ /(Igok—<p|s+|<p|s)|5wj| dz dt—>/ / lo|*|ow;| dz dt  as k — oo.
0o Jo 0 Jo

Again using the generalised Lebesgue dominated convergence theorem, we obtain

T T
/ lok|?0w; de dt — / / |pl?dw; de dt  as k — oo. (4.46)
0o Ja o Ja

Now, by continuity of ¥’(-) we have ¥'(pr) = ¢'(¢) a.e. in Qr as k — co. Furthermore, by the
growth assumption on ¢’(-) we observe that

[0 (or)0w;| < C(1+ |px|®)|6w,| € LY(Qr) for all k €N, s € [1,5).

Using once more the generalised Lebesgue dominated convergence theorem and (4.46)), we get

T T
/ / e 1Y (pr)dw; do dt — / / e (p)ow; dz dt  as k — oo. (4.47)
0o Ja 0o Ja

Step 3: We now pass to the limit in (4.38€)). Since ¢ — ¢, op — o a.e. in Qp as k — oo, the
continuity and boundedness of Iy and similar arguments as for (4.40) imply

/ /(5 kadxdt—>/ /6 o) dxdt ask— oco.
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Recalling the weak convergence div(vy) — div(v) in L?(L?) as k — oo, we deduce

T T
/ / o(t)div(vg)€ de dt — / / d(t)div(v)é de dt  as k — co.
0o Ja 0o Jo
This allows us to pass to the limit k& — oo in (4.38€) to obtain
T T
/ 5(t)/ div(v)¢ do dt = / é(t)/ Iy(p,0)¢ dz dt. (4.48)
0 Q 0 Q
In particular, since this holds for all § € C§°(0,T) and all £ € L?, we have
div(v) =Tyv(p,0) a.e. in Qr. (4.49)
Step 4: With similar arguments as for (4.39))-(4.40) and (4.44]), we obtain
T T
/ / 8tak5wj dz dt — / 5(t> <3ta,wj>H1 dt,
o Ja 0
T T
/ / 0n(pr)VNy i - Vw; do dt — / / n(e)(xe Vo — x, V) - Vw; dz dt, (4.50)
0o Jo 0o Jo
T T
/ / dw; T (k, ok, i) de dt — / / ow;To(p, 0, 1) do dt
0o Jo 0o Ja

as k — oo. For the boundary term in (4.38d)) we first recall the continuous embedding H' «—
L*(992). Then, by the weak convergence of o, — o in L?(X7) we conclude

/0T5(t) (/890kwj dH‘H) dt—>/0T6(t) </m ow; d’Hd‘1> dt ask—oo.  (4.51)

To pass to the limit in the convection term of (4.5¢)), we first show that

T T
/ / oLy (p,0)éw; de dt = / / odiv(v)dw; dz dt. (4.52)
0o Ja 0o Ja
Indeed, a short calculation yields
T T
| 1aPlusion = of do e < [ 182wy s o~ ol de
0o Ja 0

< Clol e 0.0y lwi i llow = oll72 )

—0 ask— oo,

where we used that oy — o strongly in L?(L3). Therefore, we obtain that oxdw; — odw;
strongly in L?(L?). With similar arguments as for (¢.48), this implies ([¢.52). Now, as dw; €
C>°(H?) — L*(H'), the weak convergence div(ojvy) — 6 in L7 ((H')*) implies

T T

/ div(ogvy)ow; dz dt — / 0(t){(0,wj)gr At as k — oo. (4.53)

0o Ja 0

Integrating by parts, we see that

T T
/ div(ogve)dw; do dt = / Swyovi -m dHI dt
0 Ja o Jea

T
. / / dopvy - Vw; do dt. (4.54)
0o Ja
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To proceed further, we now prove that o, — o strongly in L?(L?(052)) as k — oo. Using
Lemma with r = 3, ¢ = 2, it follows that

1 3 1 5
ok = llfsoay < C (low = allallow = all s + llow = allsllor = ollfn ) -
Integrating this inequality in time from 0 to T" and using Hélder’s inequality we obtain
1 3 1 5
ok = ol 2zs oy < € (low = olZagunylow = ol Zagarn) + low = oll oz lon = ol oy ) -

Due to the boundedness of o}, — o € L?>(H') and invoking the strong convergence o3 — o in
L?(L?) as k — oo, this implies

H(jk — J||L2(L3(aQ)) -0 ask— o0,

hence o}, — o strongly in L2(L3(09)) as k — oo. Using the continuous embedding H' < L*(9Q)
resulting from the trace theorem, we therefore have (after another extraction of subsequences)

or — o strongly in L*(L*(09)), v — v weakly in L*(L*(09Q)) as k — oo.

Again by the trace theorem and the continuous embeddings H2 < W16, W&:6(9Q) — L5(9),
we observe that w; € H?(Q) — L5(99). Since the outer unit normal is continuous, we calculate

T T
/0 /E)Q Ol = o 4 dt < /0 0111wl 76 o0y llow — oll7s a0y At

< C”(SH%GC(O,T)”wj”%I? ok — U||2L2(L3(8Q))

—0 ask— oo,

meaning dwjorn — dw;on strongly in L?(L?(02)) as k — oo. Then, by the product of
weak-strong convergence we obtain

T T
/ dw;oRVy -1 dH At — / dwjov-n dH¥r dt as k — oco. (4.55)
0 o0 0 oN
Furthermore, since o — o strongly in L2(L") for all 7 € [1,6) as k — oo, we get

T T
/ / 621V 2o, — of? d dt < / 62wy 26 ok — o2
0 Q 0

< Cllo)1 7 o,y llwill o = oll72 (s

—0 ask — oco.

Then, since vy — v weakly in L2(H!) as k — oo, by the product of weak-strong convergence

T T
/ /6akvk~ij dxdt%/ /5ov~ij dz dt ask — oo.
0o Ja 0o Ja

Consequently, recalling (4.53)) and (4.55)), we can pass to the limit in (4.54)) to obtain

we have

T T T
/ (t)(0,w;)pr dt = / Swiov-n dH dt — / / dov - Vw; dz dt. (4.56)
0 o Joa 0o Jo

Again integrating by parts yields

T T
/ 3(t)(0,wj) g dt = / / div(ov)ow; dz dt,
0 o Jo
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hence div(ov) = 6 in the sense of distributions. In particular, by (4.52)) we have

T T
/ 6()(0,wy)p dt = / / Vo - viw; + oT'y(p, 0)dw; de dt.
0 0o Jo

Step 5: Finally, we pass to the limit in (4.38d). Recalling that 6® € C°°(H'), by continuity
of (), A(+), v(-), and since ¢ — ¢ a.e. in Qr as k — oo, we observe that n(ypr) = n(p),
Mek) = AMe) and v(pr) — v(p) a.e. in Qp as k — oco. Invoking the boundedness of n(-),
A(+) and v(-), applying Lebesgue dominated convergence theorem to (n(px) — 1())?[0]2|V®|?,
(Ar) — M) 1P [TBI2 and (v(x) — () ? 62V BP gives

[(n(er) = n(0))dV®|L2r2) =0 ask — oo,
|[(A(pr) = M@)oV | 212y — 0 as k — oo,
(v(pr) — v(0)0V®| 22y = 0 as k — oo.

Therefore, by the weak convergence vy, — v in L?(H'), div(vy) — div(v) in L?(L?) and pr, — p
in L3(L?) as k — 0o, we easily deduce that

T T
/ / 0T (vi,p): V® da dt — / / dT(v,p): V& dz dt,
0o Ja o Jo

T T
/ / ov(pg) vy - ® de dt — / / v(p)v - ® da dt
0 Q 0 Q

as k — oo where we used that §® € L*(H!). Using ¢ — ¢ strongly in L2(W'3) as k — oo
and the Sobolev embedding H* C L®, we have

(4.57)

T T
/ /Q 52182 Vir — Vl? de dt < / G120 [V o — VeollZa dt
0 0

< ClldlI7 0.1 12 10 0w — @l 2 .2y

—0 ask— oo,

meaning 6® - Vo — @ - Vi strongly in L?(L?) as k — oco. By the product of weak-strong
convergence it follows

T T
/ / OV - ® da dt — / / ouVe - ®drdt ask — oco. (4.58)
o Jao o Jo

By the specific form of N, j and since ¢ — ¢, o) — o strongly in L?(L?) as k — oo, using a
similar argument as for (4.58) yields

N, 16® — N,6® strongly in L*(L?) as k — oo.

Consequently, by the product of weak-strong convergence we obtain

T T
/ / ON, Vo - ® dz dt — / / 0Ny (p,0)Vo - ® dxdt ask — oco. (4.59)
0 Ja o Ja
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Now, we can pass to the limit in (4.38a))-(4.38¢)) to obtain

/ (000 1y) e = / ") ( | ~mle Vi vu; + T dx) dt

T
- / 3(t) (/ Vo - vw; + ol'vw; dx) dt,
0 Q

T T
/ o(t)pw; de dt = / @) (e (p)w; + eV - Vw; — xpow;) do dt,
Q Q
/ 0(t)(0ro w1 dt = / / ot ©)VN, - Vw; —Tow;) do dt (4.60)
- / 0(t)(Vo - vw; + oTyw;) de dt
Q
T
+/ (1) ( K(0oo — 0)w, del) dt,
a0

/ / T(v,p): V® da dt = / / ©)V+ uVo+ N,Vo) - & da dt,

/0 5(></de( )@dx) dt—/o 5()</Qrvq>dx) dt.

Since these equations hold for every § € C§°(0,T), we obtain that (¢, 0, u, v, p) satisfies
with ® = w; for almost all t € (0,T) and all j > 1. Furthermore, the last equation in
implies div(v) = I'v(p,0) a.e. in Q7. As {w,}jen is a Schauder basis of H% and H% is dense in
H', we obtain that (¢, o, 1, v,p) satisfies (4.3b))-(4.3d) for all ® € H' and E for all ® € H'.

Step 6: It remains to show that the initial conditions and the energy estimate are satisfied. To
this end, we notice that — imply ¢ (0) = Prpo and 01 (0) = Prog where P, denotes
the L2-orthogonal projection onto the finite-dimensional subspaces Wy. Since {w;};en is a
Schauder basis in L2, it holds that Prpg — @o in L? as k — oco. Furthermore, we know that
©r — @ strongly in C°([0,T]; L?), meaning ¢ (0) — ¢(0) strongly in L?. But this already
implies ¢(0) = ¢o. Furthermore, since o belongs to C°([0,T]; (H')*) we see that o(0) is
well-defined as an element of (H!)*. Furthermore, using the strong convergence o, — o in
C°([0,T]; (H')*) we obtain for arbitrary ¢ € H' that

lim <0'k(0) 3 C>H1 = <U(O) 7C>H1 .
n—roo
By the strong convergence Pyo¢ — ¢ in L2, this implies
{00, = lim (Proo, (e = lim (0%(0), )t = (0(0), () a

which yields o(0) = oo in (H!)*. Finally, the estimate (4.4]) follows from (4.37) by weak
(weak-star) lower-semicontinuity of norms and dual norms.

Remark 4.7 If the boundary of ) satisfies 9Q € C%!, one can show that ¢ € L?(H?) with
bounded norm. Indeed, inserting v = /\?afwj in (4.5b)), integrating by parts and over (0,7") and
summing the resulting equations over j =1, ..., k, we obtain

T
5\|VA<,0;€||2L2(L2) = —/0 /QV (ke + Xo0k) - VA — e 9" (o) Ver, - VApy dz dt.  (4.61)

For the first term on the r. h.s. of (4.61), applying Holder’s and Young’s inequality gives

g
<C (||Nk||2L2(H1) + HJkH%Z(Hl)) + Z||VAQDI€H2L2(L2)'

/ V (ke + Xp0k) - VAgy do dt
Q
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If ¢(-) satisfies assumptions (AG)), 2.), the second term on the r.h.s. of (4.61)) can be estimated
by

/ / " (pr)Veor - VApy, dr dt </ / TIRe(1 4+ k)| Ver|[VAgy| do dt.
Applying Young’s and Holder’s inequality, we obtain
r €
|| e Ralven VA ar e < CIV el Eans + IV AR s,

3 1
Furthermore, using the inequality [k z < C([l@kllar + [lorll f1 [ VA@K|E:) gives

T
/ /5_1R6|<pk|q|Vgak||VAgok|dx dt
0 Q
T
< [ < Rallanlli 9o lie IV A s e
0
at+4
<C/ H@kllHl ||VA<Pk||§1 + ek l4E IV Ak e dt
2(g+1) €
<C/ lorll st 1VA@LlE dt+C||<Pk||L(iJ(FH1)+§||VAs0kH%2(L2)’

where we used Young’s inequality. Observing that 8/(¢ +4) > 1 since ¢ € [0,4), we can use
Young’s generalised inequality for the first term on the r. h.s. of this inequality to obtain

2(3q+4)

S
o [ el 1980l < [ ol at+ 1A 0,

Invoking the last five inequalities in (4.61]) and using (4.37]), we see that
€
ZHVA(FkH%?(L?) <C.
Together with (4.37)), using elliptic regularity theory and 992 € C?! implies

lorllL2casy < C.

The case where () satisfies assumptions (A6]), 1.) corresponds to the case (A6]), 2.) with ¢ = 0.



Cahn—Hilliard—Brinkman model for tumour growth
with quasi-static nutrients

In this chapter we will consider a variant of the model analysed in Chapter [d] Instead of
imposing , the nutrients will evolve quasi-statically which has a twofold meaning. On
the one hand, we will neglect the time derivative on the left hand side of . On the other
hand, the tumour’s evolution affects the nutrients by consumption and therefore the nutrient
concentration varies in time.

We shortly recap the motivation for the modified nutrient equation. Denoting by Trp, Tp, T
and T¢ the timescales for tumour doubling, nutrient diffusion, active transport and consumption,
respectively, and following the arguments in Chapter |3] by non-dimensionalising and
using a source term of the form we obtain

_Tp,

T (p)o.

Tp . Tp
— + =Ac— —A
Trp (8¢ + div(ov)) o T, ®

As outlined in Chapter |3 experimental values indicate that TTT—’; < 1. Furthermore, neglecting
active transport mechanisms and assuming %’ ~ O(1), the nutrient equation reads as

0= Ao — h(p)o.

We point out that it is possible to neglect active transport mechanisms while keeping chemotaxis
via the decoupling (3.38)-(3.39). Furthermore, we remark that the energy of the new model is
given by

Blp.0) = [ S1V6 +7 (s do

thus, in contrast to (4.1]), there is no contribution from the nutrient free energy. Finally, we will
use the pressure reformulation according to (3.33al), thus (4.1b]) can be replaced by

—div(T(v,p)) + v(p)v = (u + xo) Ve,

where x denotes the chemotaxis parameter. In particular, the modified form of the forcing term
is more suitable to deduce a priori estimates for the new model.

101
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The results are part of the work [55]. We consider the system

div(v) =Ty (p,0) a.e. in Qp, (5.1a)

—div(T(v,p)) + v(p)v = (u+ xo)Ve a.e. in Qr, (5.1b)
Orp + div(pv) = div(m(e)Vu) + Ty(p, o) a.e. in Qr, (5.1c)

p=c 1 (¢) —eAp — xo a.e. in Qrp, (5.1d)

0= Ao — h(p)o a.e. in Qp, (5.1e)

where the viscous stress tensor is defined by
T(v,p) = 2n(¢)Dv + A(p)div(v)I - pl,

and x is a non-negative chemotaxis parameter. We equip the system with initial and boundary
conditions of the form

Viu-n=Ve-n=0 a.e. on X, (5.2a)
Vo-n=K(0u —0) a.e. on L, (5.2b)
T(v,pn=0 a.e. on L, (5.2¢)

©(0) = o a.e. in (5.2d)

where ¢q, 04 are given functions and K is a positive permeability constant.

In the following we outline the main challenges arising in the analysis. When testing the
Brinkman equation with v, we have to estimate the term fQ pdiv(v) dz. Hence, we need to get
an estimate on ||p||r2 in the absence of any a priori estimates. To overcome this difficulty we
will use the so-called method of “Subtracting the divergence”. More precisely, we choose v — u
as a test function in where u satisfies

div(u) =Ty in Q, u|619</QFVd:c)n on ON.

As a result we avoid to control the pressure a priori, but we now have to bound the term

/,qu0~ud:c:/(,uqu)Vgaoud:L'JruQ/Vg0~udx
Q Q Q

1
=/(u—ua)Vs0~udw+un (/dew/ wde‘l—/sondx)
Q |8Q| Q o Q

where pg = \ﬁll Jo v dz. To control the boundary integral, we will derive an estimate for the
Lr(0Q)—norm for ¢ where p € [2,6] is an exponent related to the growth rate of the potential
e

Furthermore, we comment on the assumption o, € L*(L?(9Q)) which is not needed to prove
existence of weak solutions, but crucial to establish well-posedness of the system. Indeed,
this allows us to estimate the velocity in L%(O,T; H?!) (see proof of Theorem and, as a
consequence, we can handle the term

/Q 20(1) — 1(p2))Dva: Vv da

in the proof of Theorem We remark that this term does not arise in the case of constant
viscosity.

Finally, in the proof for existence of strong solutions we will derive an estimate for the time
derivative of the nutrient concentration by using a difference quotient method. This argument
is needed due to the fact that the L?-orthogonal projection P,, onto the n-dimensional Galerkin
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solution spaces is not continuous on the whole space H2. Indeed, when testing (5.1d)) with Ad;¢
in the Galerkin scheme and integrating by parts twice, we encounter the term

T
/ / XA(P,0)0p dx dt.
0o Jo

Although we can control ¢ in L?(H?), an estimate of AP,,0 € L?(L?) can not be deduced due
to (5.2b). If the time derivative of o fulfils ;0 € L?(H*), a control of AP,o € L?(L?) is not
needed, see proof of Theorem [5.11]

5.1 Main results

We make the following assumptions:
Assumptions 5.1

(A1) The positive constants e, K, T are fized and x is a fized, non-negative constant. Further-
more, the function oo € L*(L?(0Q)) and the initial datum po € H' are prescribed.

(A2) The mobility m(-) is continuous on R and satisfies
mo <m(t)<my VteR
for positive constants mg and my.
(A3) The viscosities fulfil n,\ € C*(R) with bounded first derivatives and
o <nt)<m, 0<A{t)<XI VteR

for positive constants ng, m1 and a non-negative constant A\g. The permeability function
fulfils v € C°(R) and

vo <v(r) <w, lv(r) —v(s)| < L,jr—s| Vr,seR
for positive constants vy, v1 and L,,.

(A4) The source terms are of the form

Ly(p,0) = by(@)o + fu(p), Tyulp,0) =by(p)o + fo(p)

where by, fy € CY(R) are bounded with bounded first derivatives and by, f, € C°(R) are
bounded functions. The function h € C°(R) is bounded, non-negative and Lipschitz-
continuous with Lipschitz constant Ly,.

(A5) The function v € C%(R) is non-negative and satisfies one of the following conditions:

(i) it can be written as

W(s) =1(s) +1a2(s) VseR
with 11,12 € C*(R) and

Ri(1+[s7%) < 9{(s) < Re(1+[s]7%) Vs €R,
5 (s)| < Rs Vs eR,

where Ry, Ry and R3 are positive constants with Ry < Ry and p € (2,6].
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(it) it fulfils
¥(s) > Rols|*> — Ry, |¢/'(s)| < Ry (1+1s]), [¥"(s)|<Rs VscR,
where R;, i =0,...,3, are positive constants.

Remark 5.2 Using (A5)), it is straightforward to check that there exist positive constants R;,
1 =4,5,6, such that
¥(s) > Ryls|” — Ry VseR (5.3)

and
[¥'(s)| < Rg(1+4|s]P™!) VseR (5.4)

for p € [2,6].

Remark 5.3 It is easy to check that our assumptions are fulfilled by the classical double-well
potential ¥(s) = i(l — 52)? which approximates singular potentials of logarithmic type. Note
that the double-well potential does not ensure that the order parameter ¢ lies in the physical
relevant range [—1, 1]. However, also with the smooth double-well potential, convergence to a
sharp interface model holds true, see, e.g., [87] for the Darcy case or Chapter

In some situations it might be more appropriate to use so-called single-well Lennard—Jones type
potentials, see e.g. [5,/6,[12,27], since cell-cell interactions are expected to be attractive at a
moderate cell volume fraction and repulsive at higher densities. However, these potentials are
not included in our analysis.

Finally, we point out that singular potentials (logarithmic type, double obstacle type) are quite
delicate to handle if source terms are present. The analysis of those problems requires more
restrictive assumptions on the source terms I', and I'y and different techniques and will be
investigated later on, see Chapter

We now introduce the weak formulation of (5.1)-(5.2]).

Definition 5.4 (Weak solution for (5.1))-(5.2])) We call a quintuple (¢, o, 1, v, p) a weak solution
of G1)-ED) if

o€ HY0,T; (HY)*)nL>®(0,T; H') N L*(0,T; H*), pe€ L*(0,T;HY),

oc L*0,T;HY, velL*0,T;HY), pecL*0,T;L?,

such that
div(v) =Ty(p,0) a.e. in Qr, »(0) = ¢ a.e. in Q,
and
0= / T(v,p): V® 4+ v(o)v-® — (u+ xo)Vp - @ du, (5.5a)
Q
0= (0wp,®)m + / m(p)Vu - VO + (V- v+ ol'v(p,0) —=Ty,(p,0))P dz, (5.5b)
Q
0= / (1 + x0)® — e 1 ()@ — eV - VO da, (5.5¢)
Q
0= [ Vo -VO+h(p)o®dr+ | K(o—0s0)® dHI? (5.5d)

Q o0

for a.e. t € (0,T) and for all ® € H!, ® € H*.

We have the following theorem concerning weak solutions of (5.1))- (5.2)):
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Theorem 5.5 Let Q C R, d = 2,3, be a bounded domain with C3-boundary and assume that

Assumptions is fulfilled. Then, there exists a solution quintuple (¢, p,o,v,p) of (5.1])-(5.2)
in the sense of Definition[5.4] and the estimate

el (- ynne (avynL2 sy + lpllLzary + ol 2
Hlldiviev)ll, g+ IVIza + P22y < © (5.6)

holds with a constant C independent of (p, 1,0, v,Dp).
If in addition oo, € L*(L?(09)), we have

o€ LY0,T;HY), pel*0,T;L%), velL50T;H),

and

lollza ey + el acezy + vl ) T lldivev)lipe ez < C. (5.7)

8
L3 (H!

To prove continuous dependence on the initial and boundary data we need to make the
following additional assumptions.

Assumptions 5.6

(B1) The mobility m(-) is constant, without loss of generality we assume m(-) = 1.

(B2) The functions by(-) and f,(-) are Lipschitz continuous with Lipschitz constants Ly, and
Ly, respectively.

(B3) For v’ and ¢", we assume that

[ (s1) — ¥/ (s2)| < k1 (1 + [s1]* + [s2]*)[s1 — s2| Vs1,82 € R,
9" (s1) — ¥ (s2)] < ka(1+ [s1® + |s2)*)[s1 — s2| Vs1,s2 €R

for some positive constants k1 and ks.

Under these assumptions we can establish the following continuous dependence result:

Theorem 5.7 Let Q C R, d = 2,3, be a bounded domain with C3-boundary and assume that
Assumptions cmd hold. Then, for any two weak solution quintuples (@i, i, 05y Vi, Di),
i=1,2, of (5.1)-(5.2) in the sense of definition (5.4)) satisfying

p € H'0,T5(H') ) NL¥(0, T H') N L*(0, T3 H?),  pe LY(0,T; L%) N L*(0,T; H'),

o€ LY0,T;HY), velL50,T;HY), peL?*0,T;L?)

with 0; o € LA(L?(02)) and »;(0) = p; 0 € H* for i =1,2, it holds that

) S(l(l]PT] (o1 (®) = w2(Ol7r1) + ller = wallFr aryymrzcme) + i = p2ll72 )
€,
+[jo1 — JQH%Q(Hl) +[lvi — V2||i2(H1) + llp1 —102||2L2(L2)
< € (llero = ¢20llins + 0,00 = 7200l 2200 ) (5.8)

for a positive constant C' depending on Q, T, €, x, L, Ly, Ly, L,, K, ki, ka2, R1, Ra, R3,
P, Mo, M, Ao, Vo, V1, ||90i||L°°(H1)ﬁL2(H3): ||ﬂz'HL2(H1)7 ||UiHL4(H1)7 ||V||L§(H1)7 ”bV(')”le‘”(R),
I fvOllwree @), 106z @®)s 1 fo( )o@y, 1R Lo @), [110) [ @y, IAC) Tt ) -
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Remark 5.8 For i = 1,2, it holds that ¢; € H'((H')*) N L?(H?) and Vy; - n = 0 almost
everywhere on Y. Therefore, [123, Lemma 4.1] implies ¢; € C°([0,T]; H') for i = 1,2, and the
supremum in (|5.8)) is well defined.

In the following we introduce the notion of strong solutions.

Definition 5.9 (Strong solution for (5.1)-(5.2))) We call a quintuple (p, o, u,v,p) a strong
solution of (5.1)-(5.2) if

pe HY0,T; L) N L>(0,T; H*) N L*(0,T; HY), € L*(0,T;H?),

o€ L*(0,T;H?), velL*0,T;H%, peclL?*0,T;H"),

and (5.1)-(5.2) are fulfilled almost everywhere in the respective sets.

For the existence of strong solutions, we make the following additional assumptions:

Assumptions 5.10

(C1) The mobility m(-) is constant, without loss of generality we assume m(-) = 1.

(C2) The boundary datum ooe € HY(0,T; H2(99)) and the initial datum oo € H%; are pre-
scribed.

(C3) The function ¢ € C*(R) fulfils
0" (s)] < ks(1+[s*) VseR

for a positive constant k3.

We have the following result concerning strong solutions:

Theorem 5.11 Let Q C R%, d = 2,3, be a bounded domain with C>'-boundary and assume
that Assumptions and hold. Then, there exists a solution quintuple (p,u,0,v,p) of

(5.1)-(5.2)) in the sense of Definition . Furthermore, we have
p e COQr), pe L®(0,T;L%), ocH'(0,T;H')NL*(0,T; H?),
v e L30,T;H%), peLl®0,T;H"),

and the estimate

||S0||H1(Lz)mCO(m)mLoo(Hz)mLZ(Hzl) + ||‘7||H1(H1)ﬂL°°(H2) + HN||L°°(L2)0L2(H2)
+ [div(ev)llL2 2y + [[vIlsaaz) + [pl sy < C (5.9)

holds for a positive constant C independent of (¢, 1,0, v, p).

5.2 Well-posedness of the model
We will first prove existence of weak solutions.

5.2.1 Proof of Theorem

The idea of the proof is to apply a Galerkin approximation, to derive uniform estimates and
then pass to the limit in the Galerkin scheme.
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Galerkin approximation

We briefly present the Galerkin scheme. We construct approximating solutions by applying
a Galerkin approximation with respect to ¢ and p and at the same time solving for o, v
and p in the corresponding whole function spaces. We use the eigenfunctions {w;};en of the
Neumann-Laplace operator that form an orthonormal Schauder basis in L? which is also a
Schauder basis of H%;, see Chapter
We fix k € N and define

Wy, = span{wy, ..., w},
and we denote by Py the L2-orthogonal projection onto the k-dimensional subspaces W;. Our
aim is to find functions of the form

k

k
pult,e) =) af(wi(z),  pilt,z) = Z b; (t)wi(),

i=1

satisfying the approximation problem

Orppv dr = / —m(¢r) Vg - Vo + Ty v — (Vi - vie + oIy i )v da, (5.10a)
Q Q

/ v dr = / eVr - Vo + e (op)v — xopv dz (5.10Db)
Q Q

for all v € W, where I'y, i, :=T',(¢r, 01) and T'y == I'y (¢, 0x). Furthermore, we define o, as
the unique weak solution of

0= Aok — h(pg)or in Q, Vor -n=K(0s — o) on 0L, (5.10¢)
and the velocity vj and the pressure p; as the solutions of (2.64)) with
f=(u+xPror)Veor, g=Tvr, c=¢r £H=0

We complete the system with the initial condition ¢ (0) = Py . Due to the assumptions on
0o and h(-), it follows that o), € H'. Furthermore, using the continuous embedding H% < L™
and the assumptions on I'y, an easy calculation yields that

(g + XProp)Ver € L2, Typ € H' NLA

Therefore, by Proposition we obtain that (vi,pr) € H2 x H! and

—div(T'(vi, pr)) + v(er)ve = (b + XProk)Ver  a.e. in Q, (5.10d)
div(vg) =Ty a.e. in Q, (5.10e)
T(vi,pr)n=0 a.e. on Of. (5.10f)

Then, it is straightforward to check that — together with the initial condition for
¢y is equivalent to a coupled system of ODEs in the k& unknowns a¥, 1 <i < k. Owing to the
continuity of T'y, Ty, h, m and ¢’ and due to the stability of (5.10d))-(5.10f) under perturbations
of f, g and ¢y, (see Proposition and the stability of under perturbations of gy,
Lemma ensures that there exists some T;¥ € (0, oo] such that — admits at least
one solution triplet (¢, pux, o) € (H'([0,T3); Wi))? x L?([0,T}); H'). Finally, we can define
velocity and pressure via - and by Proposition we have (vy,pr) € H> x H'
for almost all ¢ € [0, T}).

We remark that a similar scheme as in the proof of Theorem [£:4] for velocity and pressure could
be applied. However, the ansatz we make here can also be used to prove strong solutions (with
a slight modification for the nutrient concentration), see proof of Theorem m
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A priori estimates

We now derive a priori estimates for (¢, tig, ok, Vi, k). By C we denote a positive constant not
depending on k € N which may vary from line to line. Furthermore, we will omit the subscript
k and we write 'y, T'y instead of I', (¢, 0) and I'v(p, o).

Estimating the nutrient concentration Testing the weak formulation of (5.10c) with o
and using the non-negativity of h(-) we obtain

|Vol|? do + K/ lo)? dH < K 000 dHIL.
Q Elo) o0

Using Hélder’s and Young’s inequalities we have

’K/ 000 dHI!
o0

Invoking the last two inequalities and Poincaré’s inequality yields

K K
< §||U||%2(am + 5”000”%2(89)‘

ol < Clloss || z2(a0)- (5.11)
Moreover, by the Sobolev embedding H' C LP, p € [1,6] and (A4)), we have

ITellze + ITv]lzr < C (1+ llocllzzon)  Vp € [2,6]. (5.12)

An energy identity In the following we will omit the projection Py for better readability.
However, we point out that the projection Py is continuous on H', see Chapter [2| Invoking

(A4)) and (5.11)-(5.12), by Lemma there exists a solution u € H! of the problem
1
div(u) =Ty in Q, u:(/dez>n::a on 0N
109 \Ja
satisfying the estimate
[ulli < CITv]lze < C (1 + [losollzza0)) - (5.13)

Multiplying (5.10d)) with v — u and using (5.10€])-(5.10{)), testing (5.10a) with p + xo, (5.10Db))

with 0;¢ and summing the resulting identities, we obtain

4
at /g,

- /Q —m(p)xVp- Vo + (L, — ¢ly) (1 + xo) de

_ g
S0 + IVl dot [ m(@IVa dot [ @)DV + vV do

+ /Q 2n(p)Dv: Vu+v(p)v-ude — /Q(M + x0)Vp - udz. (5.14)

Estimating the right hand side of the energy identity Using Holder’s and Young’s
inequalities together with (A3]) and (5.13)) gives

Yo
< [Vn(e)DvlEz + S lIv]ia

+C (1 + In(@)llz=) ITv][72- (5.15)

/ 2n(e)Dv: Vu+v(p)v-udz
Q
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To estimate the terms involving I'y and I',, we first derive estimates for the mean (u + xo)q.

Choosing v = 1 in (5.10b)) and using (5.4) leads to

/u—l—xada:
Q

[
Q

<Ry [ Leleldr < (L4 el
Q
hence
(n+x0)al < C (1+lielgh ) € (1+lelf")

In particular, using Young’s inequality, the Sobolev embedding L? C L?, p € [2,6], and (5.3)),
this implies

e+ xodal <€ (1411gl5Y) < CU+IglE) S CO+0@le),  (5.16)
el (e + xodol < C (lollze + lpllf,) < C A+ 1gl) < C O+ @) (5.17)

Using Holder’s, Poincaré’s and Young’s inequalities along with (5.11)-(5.12)) and (5.16)-(5.17),

we obtain

‘/QRP(NJFXU) dz| < CplTyllzz (I(1 + x0)l + V(1 + x0)[[L2)

mo
<C (1 + ||aoo||iz(m)) (1+[(u+x0)al) + gllvulliz

mo
<O (14 llowlZom) (1 + (@)L + 21 ValFe.

With similar arguments and using the Sobolev embedding H' C L9, it holds that

/ Iyvo(p + xo) de
Q

< ClTvllzsllpllz2 I+ xol e

< I go el (10a + xo)al + [V (1 + x0) 1)
mo
< C (14 0w laom ) (1+ el + ellzal(a + xDal) + 22 IVl

m
< C (14 lowlFcom ) @+ 1)) + IVl

Combining the last two inequalities yields

/ (T — oTy)(u + x0) dz
Q

m
< O (14 llowl220m ) (1 + (@) ) + Z2IValEe. (5:18)

For the first term on the r.h.s. of (5.14)), applying Holder’s and Young’s inequalities, (A2)) and
(5.11]), we obtain

/ m(p)xVu - Vo dx
Q

mo
< mix|| Vil |Vo|r: < guwnia + Cllocoll72 (a0 (5.19)

Estimating the remaining term

For the remaining term on the r.h.s. of (5.14)), we claim that the following bound holds:

‘/(M‘FXU)VQD’ud’I
Q

™m
< C(1+ loselZagom ) (1+ 19l + IVllEa) + 2 VallEa (5.20)

The proof of this inequality is divided into two cases.

The case p = 2: Using Holder’s, Young’s and Poincaré’s inequalities, the Sobolev embeddings
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H!' c LS, H' ¢ L3, and (5.3), (5.13), (5.16)), we obtain

(1+x0)Ve-ude
Q

< i+ xol sl Velluz[lullws

< C(I(n+x0)al + IV (1 + x0)[L2) [ Vellee [ulle
<C(1+[lellze + IV + x0)llL2) IVelle (14 llosoll200))

mo
< O (14 llowl20m)) (L+ llellfe + 1VolE2) + 2 Valfs

m
< O (1+ lowollizon ) (1+ (@)l + IV6llEe) + 21 Valis

which shows ((5.20)).

The case p € (2,6]: In this case, we need a more subtle argument. Testing (5.10b)) with —Ag,
integrating by parts and using (A5)), it holds

/ A + e ()| Vol dz = e / () Vel da + / V(u+ vo) - Voo da.
Q

Neglecting the non-negative term ¢ fQ |Ag|? dz on the 1. h.s. of this equation and using (A5]),
(i) along with Young’s inequality leads to

_ R 2
L 1or219el? do < (14 324 15 ) IVl + 6190+ o)l
Q

with > 0 to be chosen later. Together with the identity

2|8 p—2
v('f))‘zm 2|Vl

Rs e? s | 0p° 2
1+—+45R2 IVellze + =1V + xo)llze.
Applying the trace theorem yields

< Cj, (HI@I? 2+HV (Isolg) ;)

0 R3 e 5p?
< (el + 5 (14 22 + 5 ) IVl + S+ 001 ).

we therefore obtain

[vaer®)|,

<

N

2
[

hence
2 2 2
I R op
Iollomy < 2 (el + 5 (14 72+ 3o ) 19l + 219G+ 30l ). 52

Now, upon integrating by parts and recalling that div(u) = Ty in Q and u = [9Q|~*( [, ['v dz)n
on 0f), we calculate

/(u+xo)Vgo~udx:/ (u+xa—(,u—l—XU)Q)Vap-udm—i-(u-i-xa)g/ch-udac
Q Q Q

=/ (1 +x0 = (u+x0)a) Ve -ude
Q

1
+ (1t + x0)a (/ Iy dx/ @ dHIt — / ) dx) . (5.22)
109 Jq a0 Q
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Using Hoélder’s, Young’s and Poincaré’s inequalities, the Sobolev embedding H' C LS and (5.13)),
it is straightforward to check that

< Co, (1 + lloscllZ2(00)) (1 + 1VellE2) + 01l Vil

‘/ (1+x0 = (u+x0)a)Ve-udz
Q

with d; > 0 to be chosen. Using (5.13)), (5.17) and Hélder’s inequality, we obtain

<+ x0)allTv 2ol L2

< C (1 lloslirza)) A+ [¥(@)]e) -

Now, using Holder’s and Young’s inequalities, (5.3]), (5.13), (5.16)), (5.21) and recalling p > 2
gives

1
I+ xo Q—/dex/ o dH!
ooy [ |

‘(M+XU)9/ oIy dz
Q

<O (14195 ) ITelzellel ooy

< Coy(1+ Il ) IV + 200120 on)
< Co, (14 IowcllBzom ) (1 + 19(@)N121) + 82010015 o0,

where we used that ijl + % = 1. Employing the last three inequalities in ([5.22)), using (5.3,
(5.21) and choosing &, d1, d2 small enough, we finally obtain

mo
< (14 lowllzon ) (1+ (@) + IVelEe) + S Vala,

/(u+xa)V<p~udx
Q

which implies (5.20)).
An application of (5.15)) and (5.18)-(5.20)) in (5.14) along with (A3)), (5.3) and (5.11)) yields

d _ € mo 0
T [0+ 51V o+ BTl + RV + IVARDVIE: + ol

< a(t) (L + [Ve@)llz + (o)) .
and, recalling and ,

alt) i= C (1 + In(e(®) =) (1+ 0w 3200, ) € L0, T).

Integrating the last inequality in time from 0 to s € (0,7 and applying Gronwall’s lemma (see

Lemma leads to
_ € % myg I
e wle(s)ler + §||V<%7(S)H12L2 +/O THVMHia + 5\\"\\%2 + [IVn(e)Dv|iz + o7 dt
B E S S
< (a Yl (eo)llo: + §HV<,00H%2 +/ a(t) dt) exp (/ a(t) dt) Vs e (0,T). (5.23)
0 0

Due to (A1), (AF) and the Sobolev embedding H! C L°, we have ¥(pg) € L', Vo € L2. Then,

due to Korn’s inequality (see (2.23))) and (A3)), taking the supremum over all s € (0,77 in (5.23)
implies

T

esssup (Io(es) e + 1Ve(s)llz2) +/0 IVl +IVulie + ol dt < C.
se(0,

Recalling (5.3)), using Poincaré’s inequality, (5.16)) and the fact that p > 2, this in particular

gives

T
ess sup [lo(s) %1 + / 2 dt < C.
s€(0,T] 0
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Combining the last two inequalities yields

T
esssup (I(p(s)llz + llp(s)llEn) +/O IVIE + lelizn + llolizn dt < C. (5.24)
se(0,

Due to (A4)) and the Sobolev embedding H' C LS, this implies

ITvliz2(zsy + ITollL2(zey < C. (5.25)

Estimating the pressure By Lemma there is at least one solution q € H! of

div(q) =p in Q, q:|819</pdx)n on 0N
Q

such that
lallm < Callp| L2 (5.26)

with Cy depending only on . Notice that the compatibility condition (2.24) is satisfied since

1
/ q-nd’Hd1=</pdm>/ n-nd’;‘—[dilz/pdx.
o0 102 \Ja o9 Q

Multiplying (5.10d]) with q and using (5.10€])-(5.101]) we obtain

[P dz = [ @)D+ M@ID: Vado+ [ (v = (14 x0) V) - q de.
Q Q Q

Using , and Holder’s and Young’s inequalities, an easy calculation shows that
P72 < C(In(@)llz=IVn(@)DV[gz + A7 ITv 72+ IVIEe + X021 VollEs). (5.27)
Integrating this inequality in time from 0 to 7" and employing Hoélder’s inequality yields
1Pl 22 < € (InC)llzo )| VAIDVIE 2wty + IO gy 1T [F222))
+C (e + I+ X012 IVl 1)) -
By (5.23), (5.24)-(5.25) and , this implies

ol L2y < C. (5.28)

Higher order estimates for ¢ Our aim is to show that

lellLs(a2ynremsy < C. (5.29)

In the case where v satisfies (AF), (ii), we observe that |V (p)| = [¢"(¢)Ve| < C|Ve| and
the bounds for ¢ along with yield . Thus, it remains to consider the case where
¥(-) satisfies (A5)), (i) and thus p € (2,6]. Testing with —Ag, integrating by parts and
neglecting the non-negative term resulting from ; (see (A5)) leads to

(8¢l + [ eIV do < | Vintxo) - Vo da,
Q Q
Using Holder’s inequality and the assumptions on 19, we conclude that

ellAgllz: < e Rsl|Vollts + V(1 + xo)llLe [ VepllLe-
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Taking the square of this inequality and integrating in time from 0 to T gives
T T
2 [ 180l dt <€ [ IVl +IVpRIT 0+ o)l
0 0
< C (196l oy + 19 (1 + X0) 30 19013 e ) ) -
Applying elliptic regularity theory and (5.24) we obtain
lollLacaz) < C. (5.30)
Next, we test (5.10b]) with A%y, integrate by parts and in time over (0,7 to infer that
s||VA<p||L2 (L2) = / / (1 +xo) - VAp dz dt +/ / ©)Ve - VAp dz dt.

For the first term on the r. h.s., applying Holder’s and Young’s inequality gives

T
/ / V(p+ xo) - VAp dz dt
o Jo

€
< C (e + lol3arn ) + ZIVAIE @),
Due to . ) and ((5.24 -7 using Holder’s and Young’s inequalities yields

T
e (p)Vp - VAp dz dt| < C’/ / (14 |¢|”72) [Ve||[VAg| dz dt

<C [ (14 1ell52) 19pluell T Apls e

<o [ (1+1613E) IvAGhe a
< C (14101520 0rm) ) + ZIVAGIE2 w2
Recalling that p — 2 < 4, the last three inequalities imply that
IV A2y < C (14 ey + Ny + IelEaaey ) < C.

where we used (5.24) and (5.30). By elliptic regularity theory, (5.24) and (5.30), this gives
(5-29).

Regularity for the convection terms and the time derivatives Employing Holder’s
and Young’s inequalities along with the Sobolev embedding H' C LS leads to

2
196 VIZ, 0 ppd) <

Using (5.24)-(5.25)) we see that

C/ IV IVellEs dt < ClUVelZ o e IVIZ2 0 r0m0)-

leTellZezey < Cliel Lo () I lZ2(ps) < C-

From the last two inequalities we deduce that
||d1V(SOV)||L2(O7T;L%) é C
In conjunction with (5.24))-(5.25)) and using (5.10a)), this shows that

0cell L2 a1y < C.
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Notice that we have lower time regularity for the time derivative of ¢ compared to the convection
term since the regularity of the time derivative depends on the term Vyu. Invoking the last two
inequalities together with ([5.24) and (5.28))-(5.29)), we end up with

el zrr ((rry-ynroe (eroynzaonLe ) + ol + lullzacr)

FAvov) 3, + IVl + Il < C. (5.31)

Passing to the limit

We briefly sketch the ideas needed to pass to the limit in the Galerkin scheme. Recalling (5.31)),
using standard compactness arguments (Lemma and reflexive weak compactness) and the
compact embeddings

HITHQ) = WITh2(Q) s WIT VjeZ, >0, 1<r<6,
we obtain, at least for a subsequence which will again be labelled by k, the convergence properties

o — ¢ weakly-star in H'((H')*) N L>®(H") N L*(H?*) N L*(H?),

or — o weakly in L2(H"Y),
e — o weakly in L?(H'),
pr —p weakly in L3 (L?).
v — v weakly in L?(H'),
div(prvy) — 7 weakly in LQ(L%)

3
2

for some limit function 7 € L?(L?2). Furthermore, we have the strong convergence

or — ¢ strongly in CO(L")NLAWPT) N LA (W?") and a.e. in Qr

for all r € [1,6).

From now on we fix 1 < j < kand ¢ € L?, ¢ € H', ® € H', § € C5°(0,T). Then,
since the eigenfunctions {w;};en belong to H%, we observe that dw; € C*°(H%;) for all j € N.
Furthermore, we have §¢ € C*(L?), d¢ € C*(H'), 6& € C°(H'). Inserting v = w; in
—, using the weak formulation of , multiplying the resulting equations with

0 and integrating over (0,7), we obtain
T
/ 6(t) (/ (Oror + Vi - vie+ oilv e — Do) wi + m(pr) Vi - Vw, dx> dt =0, (5.32a)
0 Q
T
/ 5(t) (/ (. — e 1 (pr) + xok) W — eVipr - Vw; da:) dt =0, (5.32b)
0 Q

T
/ 5(t) ( / Vor - Vo + hlgn)ord dz + | K(ox — 0m) d?—td‘1> dt = 0. (5.32¢)
0 Q

o0

Furthermore, we take the L2-scalar product of (5.10d]) with @, multiply with § and integrate
over (0,7) to deduce

T
/ 5(t) </ T(Vi,p): VP + v(pp)vi - ® — (ug + XProk)Vor - ® dx) dt=0, (5.32d)
0 Q

where we used (5.10f). With similar arguments, (5.10¢) gives

/OT o(t) </Q div(Vk)gdx) dt/ng(t) (/Q rv,kgdx) dt. (5.32¢)
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Then, it is easy to check that we can pass to the limit in the linear terms. For the non-linear
terms we use the continuity of Py on L2, the strong convergence for ¢y, the assumptions on the
source terms, the viscosities, the permeability and the potential 1 (-) together with the product
of weak-strong convergence, see Chapter [4| for details. As {w;};en is a Schauder basis of H*
and due to the fact that (5.32a)-(5.32¢) hold for all § € C§°(0,T), we know that holds
along with div(v) = T'y(¢,0) a.e. in Q7. Attainment of the initial condition follows from the
continuity of Py on L? and due to the strong convergence ¢ — ¢ in CO(L?).

Further results on regularity

In the case that o, € L*(L%(09)), by (5.11]) we obtain
||0||L4(H1) S C. (533)
In particular, by (A4]) this gives
ITvllzazy + ITellar) < C.
Thanks to Lemma we have the continuous embedding
L°°(H1) N L*(H?) — L*(L'Y).
Hence, the assumptions on t(-) and (5.31]) imply
[k (80)||L4(L2) <C.
Taking ® = p + xo in (5.5¢) and squaring the resulting identity, an application of Holder’s and
Young’s inequalities gives
it xorllbe < € (10 (@) 1ke + 1900 + x0) 2 Vil2)
Integrating this inequality in time from 0 to T" and using (5.31)) together with the bound for
' (¢), we conclude that
e+ xollpa(z2) < C. 5.34)
We now choose ® = v in (5.5a)) and use Young’s, Holder’s and Korn’s inequality (see (2.23]))
along with the Sobolev embedding H! C LS to obtain

g - E g
IVl < € (Il E + 11+ xo) Vel S ) -

Integrating this inequality in time from 0 to 7', an application of Holder’s and Young’s inequalities
leads to

—~

s 1 1 s s
IV 5 ey < € (10l Eaqemy 10wl Eagany + s X0 1 a1V sy ) -
Using the continuous embedding L>(H') N L*(H?) < L¥(W3) resulting from Lemma [2.4] and
invoking (5.31)), (5.34) along with the boundedness of I'y in L*(L?), we conclude that
VI, % gy < € (5.35)

Furthermore, using Holder’s and Young’s mequahtles, (5.31)), (5.35) and the continuous embed-
dings H! < LS, L>°(H') N L*(H?) — L8(W'3) yields
T

IV VIEarizn) < € [ Il TolEs dt < CIVelawn M5 g gy <

Together with the estimate
leTvlZ2(r2) < Cll Lo ) ITvIlZ2s) < €
this implies
[div(ev) L2 2y < C. (5.36)

Using (5.33)), (5.34)-(5.36]) and recalling (5.31]), we obtain (5.7)) which completes the proof.
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5.2.2 Continuous dependence (Proof of Theorem D

In the following we set ¢ = 1 since it has no bearing on the analysis. Let (v;, 1, 04, Vi, Di)i=1,2
be two solutions of (5.1])-(5.2)) in the sense of Definition We denote I'y(p;,0:) == Ty,
Lo(pioi) =Ty, ¢ = 1,2, and 05 = 01,00 — 02,00. Then, the differences f = fi — fo,
fi S {Soiauivo-ivvi7pi}7 1= 1727 SatiSfy

div(v) =Ty —Ty2 a.e. inQp, ¢(0)=p10—920="wo a.e inQ,

and
0= /9(277(901)Dv + Mp1)div(v)I — pI): V® + v(pq)v- @ dz
- /Q(u +x0)Vp1 - @ + (2 + x02) Vo - @ — (v(p1) — v(p2))va - @ do
+ /9(207(@1) —1(p2))Dva 4+ (A(p1) — M2))div(ve)I): V@ dz, (5.37a)
0= <8t<p,<I>>H1 + /Q VM -V + (QOQ(FVJ — Fv72) — (F%l — F%g))q) dzx
+ / (Vo1 - v+ Ve v + oIy, 1@ dz, (5.37b)
Q
0= [ Vo -Vodz+ /Q(h(sol)a + o2(h(p1) — h(p2))® d

Q

+ [ K(0—05)®dHI! (5.37c)
o0

for a.e. t € (0,7) and for all ® € H!, ® € H', where p is given by

=" (p1) =P (p2) = Ap — xo a.e. in Qr. (5.37d)

In the following we will frequently use the Sobolev embeddings H' ¢ L5 and H! c L6. We
divide the analysis into several steps.

Step 1: Taking ® = ¢ in (5.37d)), using the non-negativity of h(-) and applying Holder’s and
Young’s inequalities, we obtain

_ L? K
Vol dz+ K [ o> dH"! < 2|on||7sllel7e + 5 (00122 (00) + losllT2(a0) ) +dllolZs

with § > 0 to be chosen and where we used (B2]). Choosing § > 0 small enough and using
Poincaré’s inequality, this implies

lollzr < C(K, Li, Q) (llo2llsllelliz> + ol z200)) - (5.38)

Step 2: By Lemma there exists a solution u € H' of the problem

1
diviu)=Ty1—-Ty2 aeinQ, u= \ETZI (/Q Iyi1—Tyvo2 dx) n a.e.on 99

satisfying the estimate

[ufler < efTyvp =Tz

Lo (5.39)
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with a constant ¢ depending only on 2. Choosing ® = v —u in (5.37a)) and ® = ¢ — Ap in
(5.37b)), integrating by parts, using ([5.37d|) and summing the resulting identities, we obtain

d1

53 UVellL: + llellza) + /Q 20(p1)|DV[* + v(p1)|[vI* + |Ag|]* + [VAp|? dx

=, V(' (p1) = ¥'(@2)) - (VA = V) = (D1 = Typ2) — pa(Tvn — Ty 2))Ap dz
+ /Q (Vi va + oTu)Ap + (' (91) — ¥/ (2))Vior - (v — w) da,
+ / (2 + x02)Ve - (v —u) + ApVyr -ude + / xVo - (Vp —VAp) dz
Q Q
+ /Q((ng,l —Ty2) = 2Ty —Tv2))p — (Vi - v+ Vo - va)p — Ty 1o da

+ [ 20(e1Dv: Yt vy u = 2n(er) =~ lg2)Dva: Vv — ) da

- /Q(V(Sﬁl) —v(p2))ve - (v —u)dr. (5.40)

Step 3: We now estimate the terms on the r.h.s. of (5.40)) individually and we frequently use
Young’s, Holder’s and Gagliardo—Nirenberg’s inequalities. By (A4]) and (B2]) it holds

Pvi =Ty < Cllol + |ozllel +1¢l),  [Toa —Tp2l < C(lo] + lozlle] + o)

Hence, applying ([5.38) leads to

ITv1 = Tvallzz + ITp1 = Tp2llre < C (A + [lozllrs) [@llar + Cllosl| 22 (a0)- (5.41)

Invoking (5.6) and (5.41)) we infer that

/ (Pp1 —Typ2) —p2(Tvi —Tyv2))Ap da
Q

1
< C(L+llallze) (U + loallze)lelzn + losolZzom) + 5l1A¢E
1
< C(L+ D2l + loallir) el + C(1+ lleall) lowllizon) + g 1ACIZ:.  (5.42)

By the specific form of T'y, applying (A4) gives

1
< O (1A llonlzs) el + gllAvlze. (5.43)

/ eI'v1Ap dz
Q

Using (Z18) and the estimate [|Af]|z2 < [[V/]|f2[|VAS|{» holding for all f € H3 N H?, we
calculate

< IVellwslvallee [Agll L2

/ V- volAp dx
Q

1 1
< Clvallm Vel lloll 7=V ARl £
< COlvella i@l (el + [[A¢llL2 + [[VAL]L2)

1 1
< C (1 vallfn) lellzn + SIAGlZ + IIVACIL.. (5.44)

Due to (B3)), (2.4) and (5.6, we obtain

19/ (01) = %' (@) 172 < C (1 + lonlizge + ll2llzre) il (5.45)
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Using the elliptic estimate || f|| gz < C||f||1%{1 ||f||1%{3 holding for all f € HZ, N H?3, by (5.6) we get

< Ol (1) =¥ (@) 2211 Ver s + b1l vz

< C (1 el +lle2lzs) el +olvim — (5.46)

/52(7/’,(802) — ' (p1))Ve1 - vdz

with d; > 0 to be chosen later. Recalling (5.39) and (5.41), with similar arguments we deduce
that

‘/Q(w’(w) — (01))Ver - u de

< CllY' (1) = ¥ (@)l 2 IVer flLsllulle
< C (14 llenllze + lleallze) llellm [ Ver s ule
< C 1+ lleilds + le2lzs + lozlis) lelde + Clloslzzon)- (5.47)

Applying (5.39) and (5.41) gives

< C (1 llp2lin + llo2llin) el

/ (2 + x02)Ve - (v—u) dz
Q
+ CllocollZ2 a0y + 2V (5.48)

with d2 > 0 to be chosen later. By (5.6]), (5.39) and (5.41)), it holds that

< [lA¢l2[Verles [al e

/ ApVp; -ude
Q

1
< CIVer|islulifn + gHA@H%z
< C (1 el + ozl ) llel
1
JrC||901||H2||Cfoo||%2(a§z) + §||A80||i2- (5.49)

Moreover, the assumptions on 7(-) and v(-) guarantee that

'/Q 2n(1)Dv: Vu+v(p1)v-ude

o o
< 2 IDviz + LYvilE + Clluliy
o o
< EIIDVHiz + ZIIVIIiz +C (14 [lo2ll7n) el
+ CllosellZ200)- (5.50)

Furthermore, using the boundedness of 7/(+), elliptic regularity and (2.4)), (5.39)), (5.41), we have

/Q 20(1) — n(p2)Dva: V(v — ) da

< Cllellze=DvellL> (Vv + [[ValL2)

3 1
< Cllgl i el o IDv2 ez (19¥ee + [ Vullce)
3 1
< 5|9 + ClIVulEs + Clell il i IDva 2
1 8
< [ VVIEe + Cllow 2200 + 1198 IR + € (14 IDVallfs + ozl ) el (5:51)

with d3 > 0 to be chosen later. Similar arguments lead to

< a|lVIIEs + Clloselzz o0y

/ (v(1) — vpa))Va - (v — ) da
Q

+C (1 [Ivallfn + llo2l7n) el Zm (5.52)
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with 64 > 0 to be chosen. Due to (5.41]) and since @3 € L>°(H') with bounded norm, we get

/ (Tt — Tz — 2Ty — Ty)) o da
Q

< C (1A [loallze) el + Cllosslliacany,  (5:53)
and, applying (5.6) gives

‘/Q(V% v+ V- vo)pdr| < ||V lus|vlwsllellz: + Vel [[vallus ¢l s

< C(IVerllualIvlie el + el Ivalla)
< C(lerllmz + Ivallm) llellzn + 85l vz (5.54)

with d5 > 0 to be chosen later. For the last term on the r.h.s. of (5.40)), we employ (A4) to

derive the bound
/ Ty1lpf? dz
Q

We now estimate the first term on the r.h.s. of (5.40)). First, we observe that
V(' (01) =9’ (02)) = " (01)Vipr — ¥ (02)Vipr = ¢ (1) Vo + Vipa (4" (1) — 9" (2)).
Due to ([A5), (i) and (5.6) along with the estimate ||¢1]|F < Cllo1%: @135, we obtain

< C(1+ |loallzs) el (5.55)

/Q 1" (1) Vep|* da < C/Q (1+1e1]?) IVl dz < C (1 + [l llgs) NIl -

1 1
Applying (5.6), (B3) and the elliptic estimate ||f||z> < C|/f|7;1]/f]l7s holding for all f €
HZ% N H3, we conclude that

/Q V2 (8" (1) — 4" (02))? dz < C / (1+ |o1[° + [0al®) | Vigal?[f?

< C 1+ el + lpallzs) 1Vealisllelis
< C 1+ leiliis + llezllzs) llelz-

The last two inequalities imply

IV (01) = ¢ (p2)) 172 < C (1+ el + lp2llrs) ol (5.56)

From this, we infer that

/QV(W(%) — 1/ (p2)) - (VAp — Vo) da| < C (1 + [lo1 3 + l@2ll3s) 1@l 4
+ 3 IVApls. (5.57)
Finally, by it follows
[ Vo (70 - VA da| < € (14 loalle) gl + Cllom om + 5V APIR. (555)
Using (5.42)-(5.58) in (5.40) and choosing

61:(52:63:64:55:

min{%, D _c
1002 b

where C'ic is the constant in Korn’s inequality, we end up with

d1 1
7 (Il + el) + Crlivlis + 5 [ |86 +]apf do
Q

< ar(t)llellin + a2 )loslliz(o0);
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where

8
ar(t) = C (1+ lols + lals + IVallip + el + loa |3 + ol )
0s(t) = C (1+ 1|2 + pallar2) -

Due to (5.6)-(5.7) it follows that oy € L'(0,T) and ap € L*(0,7T), where we employed that
oy € L*(H"Y) with bounded norm. Then, using a Gronwall argument (see Lemma [2.31]) in the
last inequality yields

T T
s 60+ [ Ietfudst [ 18ef+19AGE dads < 0 (ol + ol sason) -
se(0,

Together with elliptic regularity theory, this leads to

el (rmynracas) + IVIEz @y < C (lpollm + llosellLs(zzon))) - (5.59)
and from ([5.38) and (5.59) we immediately obtain
lollz2 ey < C (lpoll o + llosollLaczzaay)) - (5.60)

Using (2.4)), (5.45), (5.56), (5.59) and the boundedness of ¢y, ps € L(HY) N L4(H?) N L?(H?),
it is straightforward to check that

14" (1) = ¥ (w2)ll L2y < C (ol + loscllLaczzcan))) -
Invoking (5.59)-(5.60) and using the relation for p1 yields
Il 2y < C (llpollar + losollLazeo0y)
and in conjunction with — this gives
lellzr ayey < C (llollar + lossllLacrz(any) »
where we used for Oip. The last two estimates together with — entail that
el )y ynpe (rvynce sy + |pllLz ey + lollLz ) + VI L2 @

< C (ol + llosollLaz2o0y) - (5.61)

Step 4: It remains to control the pressure. Let q € H! be a solution of

1
div(q) =p in Q, q:wm</§2pdx>n on 9N

such that
lalle < cllpllr. (5.62)

with ¢ depending only on Q. Then, choosing ® = q in (5.37a]) we obtain
ol = [ 200DV + A)div(v)T): Va+ v(er)v-a da
= [ x)Vera+ (o + 10V 4 = () — viea)va - do

+ /Q (201(e1) - 1(2))DVvs + (A1) — Mg2))div(va)D): Vadz.  (5.63)
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Using (5.6))-(5.7) and (A3)), a straightforward calculation shows that

/ (2n(1)DV + Ap1)div(v)T): Va + (v(91)v = (1 + x0) V1 — (2 + x02) V) - q dz
Q
1
< C (vl + i+ xollFr + 2 + xo2llin el F) + leplliz-

For the remaining terms, we apply (5.6)-(5.7) and (A3]) to obtain

/s2(2(77(<p1) — 1(p2))DV2 + (A(91) — A(p2))div(va)D): Vg + (v(1) — v(g2))ve - q dz
< Clvalfu gl + el

Invoking the last two inequalities in (5.63)), integrating the resulting estimate in time from 0 to
T and using Young’s generalised inequality, we deduce that
Ipl|72(2y < C <||V||2L2(H1) + i+ xo 2y + iz + XU2||2L2(H1)||80||2LO<>(H1))

+Cva|?

Lg(Hl)H@H%S(Loo)-

Therefore, invoking the continuous embedding L>(H') N L?(H3) — L8(L>) along with (5.6))-
(5.7) and (5.61)), the last inequality implies

Ipll2c2) < C (lleoll o + llossll Lacrz00))) - (5.64)

In conjunction with ([5.61]) this leads to (5.8]), hence the proof is complete.

5.3 Existence of strong solutions (Proof of Theorem [5.11))

We will now prove Theorem [5.11] The testing procedure can again be justified by a Galerkin
scheme. In the following we assume for simplicity and as it has no further consequence for the
analysis that € = 1. Then, with similar arguments as before, we obtain

ol zr vy ynLee (aynLaE2) N2 (E3) + o llpacary + pll2aynca )

+ Idiv(ev)llzz 2y + V]l + Ipllrzcze) < C. (5.65)

L8 @Y

The result will now be established in a series of higher order estimates.

Step 1: Observing that (5.5d) is for a.e. t € (0,7T") the weak formulation of

—Ac + h(p)o =0 a.e. in Q,
Vo -n+ Ko =Koy a.e. on 0f),

by the assumptions on A(-) and by Lemma we deduce that

Therefore, invoking the Sobolev embedding H2 C L and the fact that oo € H*(Hz(99)) <
C°(Hz(09)), we have
ol Lo (2)n L (r) < C- (5.66)

By (A3)) this yields
[div(v)|[zee (o) + 1Tl Loe (o) < C. (5.67)



122 5 Cahn—Hilliard-Brinkman model with quasi-static nutrients

Now, for h > 0 we introduce the incremental ratio
Ou(t) = %(u(t +R) — u(t)).
Then, using we see that
0= / VOlo(t)- Vo + (88 (h(p(t)o(t + h) + 0o (t)h(p(t)® du

K(0ro(t) — 0los(t))® dH!
o0

holding for almost every ¢ € (0,7 — h]. Choosing ® = 9'c(t), integrating in time from 0 to
T — h and using the non-negativity of h(-), we conclude that

T—h T—h
/0 IVolo(t)|2s dt + K / 100 0(8)]22 o0 dt

/T h (/ o (h Yot +h)lo(t) de+ | Kolo(t)0los(t) de_1> dt

oQ

To estimate the r.h.s. of this equation, we use (5.66) along with the Lipschitz-continuity of A(-)
to get

T—h
<c / / 01 ()l e (1)] da dt

< C0Foll L2 0, 7—ni)-
< Cl0eell 20,1 (1) 10

T—h
/ Ol (h(p(t)o(t + R)Dlo(t) de di
0 Q

(0,T—h;H?)

t 0'HL2(0,T7h;H1)~

With similar arguments and using the trace theorem, the remaining term can be controlled by

T—h
/0 - KOMo(t)ol oo (t) dH™! dt| < OHatO'ooHLz(O’T;H%(aQ))||8{LO’HL2(O,T7h;H1)~

Invoking the last three inequalities together with (5.65) and (C2), an application of Poincaré’s
inequality leads to

<C.

||8{LU”L2(O,T7h;H1) <C (|\at90||L2(0,T;(H1)*) + ||atUooHL2(O,T;H%))

Since the constant C' is independent of h > 0, we infer
H@ta”LQ(Hl) § C.
Together with (5.66]) and the continuous embedding H'(H') < CO(H?), this entails that

lloll ez zrynco L= a2y < C. (5.68)

Step 2: Choosing ® = J¢ in (5.5b) and & = Adyp in (5.5c|), integrating by parts and
summing the resulting identities, we obtain

dt 3 / |Ap|? dz + / |0sp|* = / (div(pv) —T'y) Orp dz + X/ Vo - Voip dz
Q Q

4 /Q V" () [Vol? Dup + 4" (0) A i dr. (5.69)
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We recall that I'y,, I'y € L?(L?) with bounded norm. Then, using Holder’s and Young’s
inequalities, we can bound the first integral on the r.h.s. of (5.69) by

. . 1
/Q(dIV(SOV) = Ty) dhp dz| < C([div(ev)l7e + [TellZ2) + 710l

For the last term on the r.h.s. of (5.69)), we use Holder’s and Young’s inequalities along with
(2.4, (A5), (i) and (5.65)) to obtain

/Q V(@) A O dz| < C (1+ [llde) 1Ap] 121000l 2

1
< illatwlliz +C (L4 lelF) 1Ae]Ze.
Now, using (C3)), Holder’s and Young’s inequalities, (2.4]), (2.18) and (5.65)), we infer

] / (@) Vol Ohp da| < C (14 llpllE) V]2 |91l 2o

3 3
< C (1+1ipllis ) el s el o
C 1+ llellms) (lelze + 1Al2) [9us 2
C

1
<C(1+lelis) (L+18¢l72) + l0llZe-

IN

The remaining term on the r.h.s. of (5.69) can be rewritten by

d
X/ Vo -Voup de = —x/ Vo -V dr —/ Voo -V dx fora.e te(0,T).
) dt™ Jo Q
Invoking the last four (in)equalities in (5.69) leads to

d1 1 .
3 Lo st 1 [ ol s < 0 0+ laivevlRs + 10 + lolf)

+C 1+ llells) 1A¢]Z
d
+fx/VU~V(pdz—/ Voo -V do.
Integrating this inequality in time from 0 to s € (0, 7] implies
1 2 1 2 2 ° 2
SIAe)ze + 710l 0,6:L2) < Aol + ; ar(t) + oz ()| Ap(t)[72 dt
+ x/ Vo(s) - Ve(s) de — X/ Vo (0) - Vo dz
Q Q

- X/ / Voo - Vo dz dt, (5.70)
0o Jo

where
ai(t) = C 1+ |[div(ev)l[is + ITellZ +llels) . az(t) =C (1 +llelEs) .
Now, using (5.65)), (5.68) and ¢y € H%, we obtain

‘X/ Vo(0) - Vg dz| = ‘X/ c(0)Apy dz
Q Q

<C(1+Apollz2),

\x [ 9o(6) - Vot da| < ollonirny s [96(6)] <
Q s€(0,T]

‘X/ /V@tU-Vgo dz dt SC’/ |0co (8) || g1 dt.
0o Ja 0
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Together with (5.70)), this implies

1 1 s

§|IA<P(S)||2Lz + Zl\f’twlliz(o,s;m) <C(1+ | Apoll72) +/0 Bi(t) + B2 (D) Ap(t)[172 dt, (5.71)
where

Bi(t) = C (14 [|8:o ]|l ar + [div(ev)[IZz + ITellZ2 + lellFs) s Ba(t) = C (1 + [lpllFe) -

Due to (5.65), (5.67) and (5.68), it holds that £;, 32 € L'(0,T). Together with the assumption
o € H%, an application of Gronwall’s lemma in (5.71)) yields

&A@l Lo (r2) + [|0epll 222y < C.
In combination with (5.65) and elliptic regularity theory, this entails that

el z1(2)nres (r2)nr2ms) + ol mr(mayncomnynne a2y + lullL2(aynnaee)
Hlldiviev)lizzez) + VI g gy + IPl2222) < O (5.72)

Step 3: Applying (5.72) along with elliptic regularity theory in (5.5b|), and using the relation
(5.5¢) for p in conjunction with (5.72)), we obtain

|12l oo (22ynL2(m2) < C. (5.73)
Step 4: We now aim to apply Proposition m Employing (5.72) and the assumptions on I'y,

it is straightforward to check that
ITv|Loe a1y < C. (5.74)

Furthermore, since Vo € L*(L>), p 4+ xo € L*(L?) with bounded norm, it holds
(1 + xo)VolLawey < C. (5.75)

Hence, using the assumptions on 7(-), A(-) and v(-), an application of yields

[Vliez + lIplle < C(no. 1, Ao ellwa) ([ (1 + x0) Vel + [Ty ).

Integrating this inequality in time from 0 to T, using (5.74)-(5.75) and recalling ¢ € L (W14)
due to the Sobolev embedding H? C W', we conclude

IvllLs @) + llpllzsy < C. (5.76)

Step 5: Finally, due to the compact embedding H? < C°(Q) and because of (5.72]), we obtain

||SOHCO(E) S C
Summarising the above estimates we get
”(p”Hl(LQ)OCO(E)OLW(HZ)OLQ(HL") + ||U||H1(Hl)ﬂCO(Hl)ﬂLOO(m) + HMHLOO(L?)nLZ(Hz)
+ [[div(ev)llr2 2y + [VIiLagz) + [IPl2acary < C. (5.77)

These a priori estimates are enough to pass to the limit to show existence of strong solutions.
We remark that ¢y € H% is needed since the projection onto the finite dimensional subspaces is
continuous on H%;, but not on H2. For the details we again refer to Chapter 4 and .
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Step 6: Since (5.1d) holds a.e. in Qp, we see that ¢ is a solution of

Ap=9'(p) —p—xo  a.e inQr,
Vep-n=20 a.e. on Xp.

Due to the boundedness of 1/ (¢) — u — xo € L?(H?), elliptic regularity theory entails

el L2y < C.

Invoking the continuous embedding L°°(H') N L?(H3) — L¥(L*>°) and (5.77), this implies
(u+ xo)Ve € L¥(L?) with bounded norm. Consequently, with the same arguments as used for

(5.76) we deduce that

[vllzs@z) + llpllLs ) < C

which completes the proof.
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Asymptotic limits

In this chapter we aim to analyse several singular limits for the model considered in Chapter

The first limit concerns the boundary condition which, for a positive permeability constant
K, is given by

Vo -n=K(0e —0) on Y. (6.1)
Formally, the case K = 0 corresponds to a Neumann boundary condition, whereas letting
K — oo, we expect that o satisfies a Dirichlet boundary condition with datum o, (see
Chapter . If o satisfies a homogeneous Neumann boundary condition, equation gives a
control for the gradient of o but not for o itself which already indicates that the limit K — 0
cannot be established rigorously. To the contrary, by virtue of Poincaré’s inequality, the Dirichlet
boundary condition together with the gradient estimate deduced from allows us to prove
the limit of large boundary permeability rigorously, see Proposition [6.1}

A second concern is to analyse the relation of with Stokes flow and Darcy’s law. In the
limit »(-) — 0 which corresponds to Stokes flow, we encounter that Korn’s inequality does no
longer hold and the operator on the left hand side of has a non-trivial kernel consisting
of, e. g., rigid motions, hence we cannot establish the zero permeability limit rigorously.
Again, the situation is different if we consider the zero viscosity limit where we recover Darcy’s
law in the limit in 3D (see Theorem , although we loose regularity for the velocity field. In
two space dimensions, the situation is even better due to improved Sobolev embeddings, and we
can show that every strong solution of the Darcy model can be approximated by taking the zero
viscosity limit in Brinkman’s law (see Theorems and . For the zero viscosity limit, we
use similar ideas as presented in .

We will first analyse the limit K — oo and then the zero viscosity limit.

6.1 The singular limit of large boundary permeability

We aim to prove the following result:

Proposition 6.1 (The limit K — o) Let the assumptions of Theorem be fulfilled and
assume in addition that oo, € L2(H=(9Q)). Let K > 0 and denote by (¢k, i, 0k, Vi, PK) @

127
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weak solution of (5.1)-(5.2)) corresponding to po and K in the sense of Definition . Then, as
K — o0, we have (at least for a non-relabelled subsequence)

YK =@ weakly-star in H'((H')*) N L>®(H") N L*(H?),
oK — 0 weakly in L*(H"Y),
UK — [ weakly in L*(HY),
DK — D weakly in L*(L?),
VK =V weakly in L?(HY),
div(prvi) — div(ev)  weakly in Lz(Lg)7
0K — 0o strongly in L*(L?(09)),

where (p, 1,0, v,p) satisfies
div(v) =Ty(p,0) a.e. inQp, »(0)=po a.e inQ, o€ (oo +L*0,T;H)),
and with replaced by
0= /QVU - V& + h(p)o€ da (6.2)
for a.e. t € (0,T) and for all £ € Hf.

Proof. Due to Theorem for every K > 0 there exists a solution quintuple (¢x, ptx, 0K, Vic, DK )
solving — in the sense of Definition and enjoying the regularity properties stated

in Theorem In the following we assume without loss of generality that K > 1. Let

E: H2(09) — H' be a bounded, linear extension operator satisfying (Ef)|aq = f for all

f € H2(09) (see Lemma . Then, choosing ® = o — Fo in (in the following we

omit the operator F), we obtain

/\VUK|2+h(<p)|0K\2 derK/ oK — oo |? d”Hd*l:/VUK~VUOO+h(<p)0KUOO dz. (6.3)
Q oN Q

For the first term on the r.h.s. of this equation, we use Holder’s and Young’s inequalities and
the boundedness of the extension operator to obtain

1 1
< 110kl + 190mls < 7190k B +Clol?,y 0

/ Vog - Vo dz
Q

With the same arguments and using the boundedness of h(), we can estimate the second term

on the r.h.s. of (6.3) by

/ h(¢)okooo dz
Q

< 8lloxlze + Collowell? g e

Using the last two inequalities in (6.3) and neglecting the non-negative term [, h(p)|ox|* dz
on the 1. h.s. of (6.3, we obtain

3 2 2 d—1 2 2
1 IVoRP 4K [ ok = ol aH < Slonl+ Callraly

From Poincaré’s inequality and the boundedness of the operator E, it follows that

loxl3s < € <|vUK32 + o = 7eola(om) + aoon;;(am)
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for a positive constant C' independent of K. Employing the last two inequalities and choosing
4 > 0 small enough we obtain

2 . 2 1qsd—1 2
/Q|V0K| dx+K/8Q|aK Oacl? AR < Clloly

In conjunction with the estimate for ||ok||3., this implies

2 2 d—1 2
ol + 5 [ o = o aHI < Cllosl,y

Integrating this inequality in time from 0 to T’ and using oo, € L?(H 3 (09)), we conclude that
okl z2(ay + VK|lok - Oosllz2(r2(00) < C,
where C' is independent of K. Then, with exactly the same arguments as above it follows that
|l v )y (s () as) + ok |2y + VEllokx — 0ol 2222 00))
+ Nl p2 ey + ||diV(<PKVK)||L2(L%) + vk 2@y + e 22y < C. (6.4)

Using standard compactness arguments (see Lemma and reflexive weak compactness), we
obtain the convergence properties as stated in Proposition Passing to the limit can be
carried out with exactly the same arguments as in Chapters [d and [5] Here, we only present the

arguments needed to obtain (6.2). In the following let £ € H{ be arbitrary. Multiplying (5.5d)
with § € C§°(0,T), integrating in time from 0 to 7' and noting that H} C H', we observe that

T
0= / / §(Vor - VE+ h(pr)oxt) de dt V¢ € HY. (6.5)
0 Q

Since h(-) is a bounded, continuous function, 6§ € C®(H}) and ¢ — ¢ a.e. in Qr, the
Lebesgue theorem gives that

[h(pK)0E — h(p)0¢||L2(0r) — 0 as K — oo,

Since ox — o weakly in L?(Q2r) as K — oo, by the product of weak-strong convergence we
obtain

/OT/Qh(sﬁK)aKE dz dt — /OT/Qh(@Jg dz dt as K — oc.

Furthermore, since ox — o weakly in L?(H') and as §¢ € L2(H'), it follows that

T T
/ /(5VO’K'V£dfbdt—>/ /5VJ~V§dxdt as K — oo.
0 Jo 0 Jo

Therefore, we can pass to the limit in (6.5) to deduce that

T
_ A 1
o_/0 /Qawa Ve + h(g)ot) dz dt Ve € HY.

Since this holds for all § € C§°(0,T), we can recover (6.2)). Finally, from (6.4) we infer that
[ — 0ol < 76;
2 2 5
OK oo ||L2(L2(892)) = i

where C' is independent of K. Sending K — oo and recalling that oy — o weakly in L?(L?(99))
as K — oo, it follows that
0 =04 a.e. on ur

which completes the proof. O
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6.2 The singular limit of vanishing viscosities in 3D

As already pointed out above, Brinkman’s equation can be interpreted as an interpolation
between Darcy’s law and Stokes flow. In the singular limit of vanishing viscosities, one can
recover a so-called Cahn—Hilliard—Darcy model given by

div(v) =Ty(p, o) in Qr, (6.6a)
v(ip)v=—-Vp+ (p+ xo)Ve in Qr, (6.6b)

Orp + div(pv) = div(m(e)Vup) +Ty(p, o) in Qr, (6.6¢)
p=c (@) —eAp — xo in Qr, (6.6d)

0= Ao — h(p)o in Qr, (6.6e)

and supplemented with the boundary and initial conditions

Vu-n=Ve-n=0 on X, (6.7a)
Vo-n=K(ow —0) on X, (6.7b)

p=0 on X, (6.7¢)

©(0) = o in . (6.7d)

We first have to introduce the definition of weak solutions of the Cahn—Hilliard—Darcy system

Definition 6.2 (weak solutions of (6.6)-(6.7)) We call a quintuple (¢, 1,0, v, p) weak solution
of the Cahn—Hilliard—Darcy system {' if

@ € WHE(0,T; (HY)*) N L=(0,T; H') N L*(0,T; H*), pe L*0,T;H'),
o€ L}0,T;HY), vel*0,T;L%,), peL3(0,T;H}),
such that
div(v) =Tyv(p,0) a.e. in Qrp, ©(0) = o a.e. in p=0 a.e. on X7,

and

0= {0, d) 1 + /Q m(e)Vu - Vo da + /Q(Vw v+ oly(p,0) = Ty(p,0))¢ dz, (6.8a)

0= [ (10 x0)6 =710/ (9)6 — Vip- Vo da, (6.8b)

0= / Vo -Vo+h(p)opdr+ | K(o —0o)p dHI, (6.8¢c)
Q o0

0= / (@)Y + Vp— (11 + x0) V) - B dir (6.84)
Q

for a.e. t € (0,7) and all ¢ € H', ® € L.

The following theorem states that solutions of the Cahn—Hilliard—Darcy system can be found
as the limit of the Cahn—Hilliard-—Brinkman system when the viscosities tend to zero.

Theorem 6.3 Let Q C R?, d = 2,3, be a bounded domain with C3-boundary and assume that

Assumptz'ons (A1)-(A2), (A4)-(AD) hold. Furthermore, let {n,, A\n}tnen be a sequence of
Sfunction pairs fulfilling Assumptions (A3) such that

11 (Hllco@ = 0, An()llco@ =0 asn — oo,
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and assume in addition that v € C1(R) fulfils Assumptz'ons , Let (0n, thny Ony Vi, Dn) be
a sequence of weak solutions of the Cahn—Hilliard—Brinkman system in the sense of Definition
for n(-) = nu(-), () = An(+) and originating from @o € H*. Then, at least for a subsequence,
(@ns tons Oy Vi, P ) converges to a weak solution (¢, p, o, v,p) of the Cahn—Hilliard-Darcy system
in the sense of Definition[6.9 such that

Yn — ¢ weakly-star in Wl’%((Hl)*) NL®(HYY N L2(H?),
1

on =0 weakly in L*(H'),
W — o weakly in L*(H'),
Pn —p  weakly in L*(L?),
vy, =V weakly in L*(L?) N L? (L3, (),
20, (¢n)Dv,, — 0 weakly in L*(L?),
An(0n)div(vp,) I — 0 weakly in L*(L?),

and

on — @ strongly in C°(L"YN L2 (W?") and a.e. in Qp

for allr € [1,6). Moreover, it holds that

Vo-n=20 a.e. on X,
v(p)v=—=Vp+ (p+ xo)Ve a.e. in Qr,
p=c () —eAp — xo a.e. in Qp,

and

||‘P||W1,§((Hl)*)mLoc(H1)0L4(H2)QL2(H3) +llullez @y + oz

vl g 8, + IVl + 1Pl 5 ) < C (69)

div
with a constant C' independent of (p, u, 0, v, p).

Proof. Let {n,, A\n}nen be a sequence of function pairs fulfilling Assumptions (A3) such
that

[ (llcoy = 0, [[An()llco®) = 0 as n — oc.
Without loss of generality, we may assume that
[ (Mzee® <1, [An()llzee®) < 1.

Then, by Theorem for every n € N there exists a solution quintuple (¢, fin, On, Vi, Dn) Of

(5.1)-(5.2) in the sense of Definition fulfilling

pn € HY(0,T5 (H')*) N L®(0,T; HY) N L*(0,T; H?),  pn € L*(0,T; HY),
on, € L?(0,T; HY), v, € L*(0,T;H'), p, € L*0,T;L?),

such that

div(v,) =Ty(¢n,0n) a.e.in Qr, Ve, -n=0 a.e.on X, ¢,(0)=¢p a.e. in Q, (6.10a)
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and
0= /QTn(vmpn): V® + v(pn)Vin - B — (jin + x00) Vi, - @ du, (6.10b)
0= (0von,P)m +/Qm(g0n)Vﬂn - Vo dx
+ /Q(Vgon Vi + onlyv(0n, 00) — Typ(pn, 0,))@ da, (6.10c)

0= / Vo, - V®+ h(p,)o,® de + K(op — 000)® dndt (6.10d)
Q a0

for a.e. t € (0,7) and for all ® € H!, ® € H', where p,, is given by
tn =€ 1 (p) — €A, — xo, a.e. in Qr, (6.10e)
and the viscous stress tensor is defined by
T, (Vi, Pn) = 20 (n) DV, + A (@n)div(v,)I — p,I.

We will denote I'y ,, = I'v(¢n,0n) and Ty, ,, = T, (0n, op).

A priori estimates

In the following we derive bounds which are independent of n € N. By C, we denote a
generic constant independent of n € N. Furthermore, we frequently use Holder’s and Young’s
inequalities.

First, we recall that (A1]), (A5]) and the Sobolev embedding H! C L% imply that ¢(pg) € L',
Vo € L?. Then, using (Al]), (5.23) and the bound |7, ()| ®) < 1, taking the supremum
over all s € (0,7] in (5.23) yields

esssup ([[1(pn ()|t + [ Veen(s)[1Z2)
s€(0,T]

T

mo o
| IV mllEe vl + 1V (en)DValEs + ol dt < C.

Recalling (A5)) and using Poincaré’s inequality along with (5.16]), this in particular gives

T
esssup en(s) s+ [ llunlfs e < .
s€(0,T] 0

Now, using exactly the same arguments as in Chapter [b] we obtain

lonllaa2ynr sy < C.

Invoking the last three bounds along with (A4)), (6.10a]) and the Sobolev embedding H* C LS,
we deduce that

lenll Lo (rrynracazynrz sy + lnl L2y + llonllLz @y + 1Dvonllz ey + [1Tenllz2(ze)
+ 1div(va)llz2 Loy + 1V (en)DVallL22) + Vel 2@z, ) < C. (6.11)

Due to (5.27) and using the bounds [[1,,(*)|| L ®) < 1, [|An(-)||ze®) < 1 for every n € N, we
obtain

Ipallfe < € (I1v/m(ea)DValZe + ITvallfe + IValZe + lan + x0ulial VenlEe ) -
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Integrating this inequality in time from 0 to T" and using (6.11]) yields

Ipnllz2(z2) < C. (6.12)

Using (2.4)) and (6.11)) we obtain

IVen - vall 5 gy < Cllvalle@we) IVenllLsws) < CIIVnHLz<L2)IIs0nHLoo(H1 ||s0nHL4(H2) <G,

Ls(LS) -
and thus

By (6.11)) and the Sobolev embedding H' C L?, we calculate
lenLvnllzzz2) < llonlle@s)ITvnllzzwe) < Clignllzoe myTyvnllzzws) < C.
In conjunction with the continuous embedding L < (H')* and (6.10a)), we conclude that

Using the relation (6.10c)) for d;¢,, (6.11]) and the continuous embedding L? — (HY)*, this
yields
HathTL”L% ((H)*) §

Invoking the last two estimates and recalling (6.11)-(6.12]) leads to

H(pnHWl’%((Hl)*)mLOO(Hl)mL4(H2)nL2(H3) + ||Mn||L2(H1) + HUTLHL2(H1) + Hdiv(tpnvn)HL%(Lg)

+ div(va)llz2ze) + 1V (en)DVallz@we) + IVallz@wz, @) + IPallzzz) <€ (6.13)

div

Passing to the limit

Recalling (6.13)), using standard compactness arguments (see Lemma , reflexive weak
compactness and the compact embeddings

HITHQ) = WITH2(Q) s W™ Vi€ Z,j>0,1<r <6,
for a non-relabelled subsequence we obtain

©n — ¢ weakly-star in W55 ((HY)*) N L®(H") N L*(H?) N L*(H?),
1

o, — 0 weakly in L2(H'),
i — o weakly in L*(H'),
pn — p weakly in L*(L?),
vp — v weakly in L?(L?*) N L*(L%,,(Q)),

div(onvy) — 7 weakly in L3 (Lg)

for some limit function 7 € L3 (L%). Furthermore, using the fact that 17 () llcory — 0 and
[An()llcomy — 0 as n — oo, we have

¢on — ¢ strongly in CO(L") N LAWY N L (W) and a.e. in Qr,

Mn(on) — 0 a.e. in Qp,

An(pn) — 0 a.e. in Qp
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as n — oo for r € [1,6). In the following we fix § € C§°(0,T), ® € H', ® € H', ¢ € L? and

we note that §® € C°(H1), §® € C*°(H'), d¢ € C°>°(L?). Multiplying (6.10Db)-(6.10d)) with 4,
(6.10€) with ¢ and integrating from 0 to T and over Qr, respectively, we obtain

T
0= / 5(t) (/ T, (Vy,pn): VO + (V(gon)vn — (pn + Xon)Vgan) - P dx) dt, (6.14a)
0 )
0= /OT 5(t) ((at% D)t + /Q m(n)Vin - VO + (div(pnvn) — Ty )@ dm) dt, (6.14b)
0= /OT 5(t) (/Q(un — e N () + €Ay, + X0, dx) dt, (6.14c)

T
0= / o(t) (/ Vo, VO + h(pp)opn@de+ K [ (0, —00)® d?—ld_l) dt. (6.14d)
0 Q

Furthermore, we multiply (6.10a)), with d¢ and integrate over Q7 to obtain

o0

T T
/ / §(t) div(vy)¢ de dt = / / )Ty e da dt. (6.14e)
0o Ja 0o Ja
We now analyse each term individually. For (6.14c)-(6.14d)) we omit the details and refer to the
arguments used in Chapter |4 and [81, Sec. 5].
Step 1 ((6.14€))): Since ¢, — @ a.e. in Qr as n — oo and due to the boundedness of by (-) and

fv(+), Lebesgue dominated convergence theorem implies

160 (bv () = bv(@))llz2 @) = 05 1169 (fv(pn) = fv(@)ll2 @) = 0 asn — oo

Together with the weak convergence o,, — o in L?(Qr) as n — oo, by the product of weak-strong
convergence we obtain

T T
/ /(5FV,n¢dx dt—>/ /6FV(<,0,U)¢ dz dt asn — oo. (6.15)
0o Jo 0o Ja

Moreover, since v,, — v weakly in L?(L%, () as n — oo, it follows that v € L?(L2; (2)) and
div(v,) — div(v) weakly in L?(L?) as n — oco. From this considerations and by (6.15)), we can
pass to the limit n — oo in (6.14€]) to infer

/OT/QédiV(v)qS dzx dt:/OT/QéI‘v(go,o)gb dzx dt,

div(v) =Ty (p,0) a.e.in Qp. (6.16)

Step 2 ((6.14D)): Since 6® € C°°(H') and div(p,v,) — 7 weakly in L5 (L%) as n — oo, we
have

and therefore

T T
/ / § div(opvy,)® dz dt — / / dt® dxdt asn— oo. (6.17)
0o Ja o Ja

Moreover, by the strong convergence V,, — V¢ in L?(L?) and the Sobolev embedding H! C LS
it holds

T T
/ /Q 5210 | Vion — Vol? dar dt < / BPI® 261V — V|2 dt
0 0
< C61E o1y 121201 [V — Vo2 g = 0

as n — oo. This implies &V, — 6®Vy strongly in L?(L?). Together with the weak
convergence v,, — v in L?(L?) as n — oo, by the product of weak-strong convergence we get

T T
/ / 0OV, vy dz dt — / / 0OVyp - -vdrdt asmn— oo. (6.18)
o Jo 0o Ja
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Since ¢, — ¢ strongly in L?(L3) and a.e. in Q7 as n — oo, the boundedness of by (), fv(-) and
Lebesgue dominated convergence theorem guarantee that

| (by (pn)en — bv(‘ﬂ)‘ﬂ)é‘b”L"’(QT) — 0, Il (fv(®n)pn — fv(‘?)(p)a(b”LQ(QT) =0

as n — oo where we used that ® € H' C L5. Together with the weak convergence o,, — ¢ in
L?(Qr) as n — oo, this implies

T T
/ / 0OTy, pop do dt — / / 00Ty (p,0)p dr dt asn — occ. (6.19)
0o Ja 0o Jo

Using ([6.10al),, we see that

T T T
/ / 0div(ppvy)® dz dt = / / 0PV, - v, dr dt +/ / 0PIy oy da dt.
o Ja o Ja o Ja

Passing to the limit n» — oo on both sides of this equation and using ([6.18))-(6.19)), we obtain

T T T
/ / 07® do dt = / / 0PV -vdrdt+ / / 0PI (v, 0)p dx dt.
o Jo 0o Jo 0o Jo

Together with (6.16)), this entails

T T
/ / 0P dx dt = / / odiv(pv)® dz dt,
0o Ja o Jo

hence div(¢v) = 7 a.e. in Qp. For the remaining terms in (6.14b)), we again refer to Chapter
and [81} Sec. 5].

Step 3 ((6.14a))): With exactly the same arguments as used for (6.18)), in the limit n — oo we
have 0® - Vi, — d® - Vi strongly in L?(L?). Then, recalling that p, + xo, — p + xo weakly
in L?(L?) as n — oo, by the product of weak-strong convergence we obtain

T T
/ / (i + xon)Ve, - ® dz dt — / / d(p+xo)Ve-®dedt asn—oo.  (6.20)
0o Ja o Jo

Recalling that p, — p, v,, — v weakly in L?(L?) and L?(L?) as n — 0o, respectively, and using

the identity
T T
/ / OoppI: V® dzx dt = / / Oppdiv(®) dx dt
0o Jo 0o Ja

along with the assumptions on v(-) and the convergence ¢, — ¢ a.e. in 7 as n — oo, by the
product of weak-strong convergence we obtain

T T
/ / 0(—ppdiv(®) + v(pn)vy - @) de dt — / 0(—pdiv(®) + vv(p) - @) de dt  (6.21)
0o Jo 0o Ja

as n — oo. Finally, we recall that n,(p,) — 0 a.e. in Qp as n — co. Consequently, applying

(6.13) yields

< OH V nn(‘pn)DvnHLz(U)H(s\/ nn(wn)”LW(QT)H(I’HHl
< Ol (o)l L@ 10l Lo 0,1) [ @] ;2

—0 asn— oo (6.22)

T
/ / 020, (pr)Dvy,: V® da dt
o Ja
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Using that A, (¢,) — 0 a.e. in Qr as n — oo and applying (6.13)), it follows that

T
| ohm(ondivtv)t: 98 da dt] < Clliv(va)lliaen A )5 18] =0 | B
0

< ClAn(en)llze@mlldll Lo o,7) [P 1
—+0 asn— oo. (6.23)

Step 4: Due to (6.15))-(6.23)), we have enough to pass to the limit n — oo in (6.14]) to obtain
that

0= /0 " 80 ( /Q —pdiv(®) + (1(@)v — (4 + x0) V) - B dx) dt, (6.242)

T
0= /0 o(t) <<5‘tg0,<I>>H1 + /Q m(@)Vy - VO + (div(ev) — Ty(p,0))P dx> dt, (6.24b)

T
0= / a(t) </ (n—e "W (p) +eAp + x0)®P dx) dt, (6.24c¢)
0 Q
T
0= / 5(t) </ Vo Vo + h(g)od do + | K(o— 0u)® del) dt (6.24d)
0 Q o0
for all 6 € C§°(0,T) and
div(v) =Ty(p,0) a.e. in Q. (6.25a)

Since (6.24)) holds for all § € C5°(0,T), we deduce that

0= /Q —pdiv(®) + (v(p)v — (u + xo)Ve) - @ dz, (6.25b)
0= (Oup B + | (@) O+ (Voo v+ 6T (0,0) ~ Tl Bds,  (6:250
0= /Q(u — e W (@) + eAp + x0)® dz, (6.25d)
0= /Qva VO + h(p)o® dz + " K(0 — 000)® dHI1 (6.25¢)

holds for a.e. t € (0,7) and all ® € H!, & € H!. The initial condition is satisfied since
©n(0) = g a.e. in Q and by the strong convergence ¢, — ¢ in C°(L?) as n — co. By the weak
(weak-star) lower semi-continuity of norms and (6.13), we obtain that (p, u, o0, v, p) satisfies

HSDHWL%((Hl)*)ﬁLOQ(Hl)ﬁL‘l(HZ)ﬁLz(HS) + ||:LL||L2(H1) + ||U||L2(H1) + ||le(QOV)||L%(L%)

v () e qaey + IVl 2z, o + Pl 2 < €. (6.26)

div

Step 5: Using (6.25b) and (6.26), we obtain that p has a weak derivative in L5(L?) and it
holds

Vp=—v(p)v+ (u+x0)Ve a.e in Qp. (6.27)
By (2.4) we have X X s 1
Vel < ClIVellL:IVellge < Clellinllellzs

which in turn implies
IVellrsas) < C

due to (6.26)). Then, using the Sobolev embedding H' C L5 and (6.26)) again, we obtain

2+ X0Vl ) < C
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Since v € L*(L?) and p € L?(L?) with bounded norm, (6.27) yields

PN o2y ) S © (6.28)

Integrating (6.24a)) by parts, we obtain

T T
—/ 5(t) (/ p®-n d?—td_1> dt = / 5(t) (/ (=Vp+ (p+ x0)Vo —v(p)v) - @ dx) dt
0 o9 0 Q
for all ® € H! and all § € C§°(0,T). Because of (6.27)), this leads to

/OTé(t) (/Gpri'-nde_1> dt =0

for all ® € H! and all § € C§°(0,T). Therefore, we obtain
p=0 a.e. on .
With similar arguments, it is straightforward to show that
p=c Y (p) —eAp —xo a.e. in Qr, Veo-n=0 a.e. ondp

which completes the proof. O

6.3 The singular limit of vanishing viscosities in 2D

In this part we will analyse the relation between solutions of the Cahn—Hilliard—Brinkman and
Cahn—Hilliard—Darcy models in two space dimension. In particular, we will show that there
exists a unique strong solution of the Cahn—Hilliard—Darcy model which is the limit of unique
strong solutions of the Cahn—Hilliard—Brinkman model as the viscosities tend to zero.

6.3.1 Convergence of strong solutions of the Cahn—Hilliard—Brinkman
model

We start with the definition of strong solutions for (6.6)-(6.7)

Definition 6.4 We call a quintuple (@, u, o, v, p) strong solution of the Cahn—Hilliard—Darcy
system — if
o e HY0,T; L) N L*(0,T; H*), pue L*(0,T;H?),
o€ L*0,T;H%), velL?0,T;H'), pecL*0,T;HynH?)
such that
»(0) =¢p a.e. in
and equations 1) are fulfilled a.e. in the respective sets.

The following theorem shows that strong solutions of 1’ can be established via the
zero viscosity limit of (5.1)-(5.2)).

Theorem 6.5 Let Q C R? be a bounded domain with C*-boundary and assume that Assumptions

(A1), (A4)-(AB) and Assumptions hold. Furthermore, let {n,, An}nen be a sequence
of function pairs fulfilling Assumptions (A3) such that

[ (llco@) = 0, [Aa()llco@ =0 asn — oo,
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and assume in addition that v € CY(R) fulfils . Let (n, lin, On, Vi, Dn) be a sequence
of strong solutions of the Cahn—Hilliard—Brinkman system in the sense of Definition for
n(-) = 1.(-), M) = \u(4), and originating from oo € H3,. Then, at least for a subsequence,
(@ns fhns Oy Viny D) cONVETges to a strong solution (p, u,o,v,p) of the Cahn—Hilliard—Darcy
system in the sense of Definition[6.9 such that

On — @ weakly-star in H'(L*) N L®(H?) N L*(H?),
on — 0 weakly-star in H'(H') N L>®(H?),
fn — 1 weakly-star in L>(L*) N L*(H?),

Dn —p  weakly in L*(L?),

v, =V weakly in L* (L3, (),
20 () DV, — 0 weakly in L*(L?),
An(pn)div(vy)I — 0 weakly in L*(L?),

and
on — @ strongly in CO(WHT)Y N L2(W?") and a.e. in Qr

for all r € [1,6). Moreover, the quintuple (¢, p, 0,v,p) fulfils 1) a. e. in the respective
sets and

el (L2)nree (m2ynrz ey + Bl Lo (n2ynrz a2y + ol mryne m2)
+ [[div(ev)llr2z2) + [VIiLe@wz, @)nrz@r) + o2z < € (6.29)

with a constant C' independent of (o, u,0,v,p).

Proof. In what follows, we will derive estimates independent of n € N that can be justified
rigorously within the Galerkin scheme presented in Chapter [5] We notice that the the testing
procedure cannot be carried out on the continuous level due to a lack of regularity and due to

the fact that
d1

—7/ |Ap|? dz = / doA’pdx fora.e. t e (0,T)

dt2 Jo 0

does not hold since VAgp - n = —xVo - n almost everywhere on 7. We will frequently use
Hélder’s and Young’s inequalities and we denote by C' a generic constant independent of n € N.
We divide the proof into several steps.

Step 1: Hereinafter, we denote I'y ,, = I'v(¢n,0y,) and Ty, = Ty (n, 0,,). With exactly the
same arguments as in the proof of Theorem [6.3] it follows that

| o< (1)
+ vall2@z ) + IVn(en)Dvall Lz w2y + |div(va)l Lo @) + Pall2 2y < C. (6.30)

div

Taking ® = v,, in (5.5a)), we obtain

lnll oo (zrynLa(azynrz sy + lonllLoe 2y + |l 2 vyncaez) + ITvnllze @) + ITen

/ 1 () DV 2+ s (20) |1V (Vi) 2 4 (00) [V — pcliv(v,y) iz = / (4 + XOw) Vi v de.
Q Q

Due to the non-negativity of 1, (:) and A, (), we can neglect the first two terms on the 1. h.s. of
this equation to obtain

/ V(gpn)|vn|2 dz < '/ Prdiv(vy) + (tn + xX0n) Vo, - v, da
Q Q

Using the assumptions on v(+) and recalling (6.30)), this yields

1
Ivalles < € (14 lIpall 2 + 1t + x00) Vepuliz) (6.31)
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_Aay
Using (6.30), it follows that Vi, € Lai—2(L%) for all ¢; € (2,00). Then, by the Sobolev
embedding H' C L%, g3 € (1,00), and arguing similar as in [81], we infer that
Hat(anLr((Hl)*) < C Vre (1,2) .
With similar arguments as used for (5.68)), it follows that
HJn||W1,T(H1)ﬂco([07T];Hl) < C Vre (172) . (632)

Choosing ® = 0, in (5.5b), ® = Adyyp, in (5.5¢), and integrating by parts, we obtain

d1
—f/ |Ap,|* d —|—/ |0rpn|? do = — / (div(envn) —Ty.n)0pn da
+ X/ Vo Voo, de + / AY' (0)0pr, dz. (6.33)
Q Q
Due to (6.30)), it is straightforward to show that

1
< C+ clognl3 (6.34)

/ (*Fv,ngpn + Fap,n)at@n dSC
Q

Gagliardo—Nirenberg’s inequality in 2D and elliptic regularity theory guarantee that
1 1 1 1
IVenlles < CIV@lEIVenllia < € (llonllm + lenlfnldealEs) |
1 3
lenllee < Cllenll gsllenlla-
Therefore, the assumptions on v(-), the Sobolev embedding H! C L? and ([6.30)) imply
IA® (¢u))I72 =/ 19" (@n) [Vl + 4" (¢n) *| Apn|* dz
Q

<c /Q (14 lonl®)[nl® + (1 + [0nl®)|Agn[? da

< C 1+ [lenllSe) IVenllts + C (14 llenllie) 1 Aenl7
< C 1+ [[enllFs) (1+ 1A0n]Zz2) -

Consequently, we deduce

1
< C (14 llpallzr) (14 1A¢alIZ2) + SlI9ken] (6.35)

/ AW (o)) Beipn da
Q

Moreover, we observe that
d
X/ Vo, Vo, dv = ax/ Vo, -Von dxf/ Voo, -Veodx fora.e te (0,T). (6.36)
Q Q Q

We now analyse the remaining term on the r.h.s. of (6.33). Using Gagliardo—Nirenberg’s
inequality in 2D, we have

1 1 1 1
IVen|lLe < ClIVenllfallVenllfe < Cllenll i llenllfs-

Together with ([6.30))-(6.31]), this entails that

IVon 'VnH%2 < HVn”i?HV‘Pn”%OO
< Cllvaliizllenll g llenllae
< C (14 lIpnllzz + 1n + xo0)Veonliz) llenllms- (6.37)
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Using (6.30)), elliptic regularity theory and Gagliardo—Nirenberg’s inequality, we obtain

(ttn + XT0) Veonllz
< lpn + X0l 74l Venllza
<O (Ilpn + xonll7e + lin + xonll 22V (0 + xon)IL2) l@nllmr (lnll L2 + 1200 L2)
< C (llpn + x0nll72 + lttn + Xnll 22V (10 + x0n)IL2) 1+ [|Apn]lL2) -

Furthermore, using (5.5¢)), the assumptions on t(-) and (6.30)) gives

ln + xonllLz < C([Apnllze + ¥ (en)llz2) < C(L+[|ApallL2)
IV (sn + xon)llL2 < C (1 + [l@nllms)-

The last three inequalities imply that
1(kn + x00)Vnliz < C (L + llenllme) (1+ [Apnlli2) .-
Employing this inequality in yields
IVen - valte < C (1 +llenllfs +llpallz2) (1+ [ApalZ:) -

Consequently, we have

/ Von - Vadon dz| < OV - vall2
Q

1
< C (L4 lleallfre + Ipnllze) (L + [ ApnlZ2) + gllOsenlze.  (6.38)

Invoking (6.34))-(6.36)), (6.38) in (6.33]) and using (6.30) gives

d1 5 d
77||A<pn||%2 + é”at(an%? < —/ xVo, -V, dr — / xVoo, - Vo dz
Q Q

dt 2 dt
+an(t) (1+ [Apa(®)ll72) »
where
an(t) = C (14 lenllts + pallZe) -
Integrating this inequality in time from 0 to s € (0,7, we obtain

1 5 1 5
gllA%(S)Hiz + gllat@nllia(o,s;m < 51 Apoll +/0 an(t) (1+ [ Apn(t)l|72) dt

-2
+ x/ Von(s)  Vu(s) de — x/ Vo,(0) - Vo dz
Q Q
— x/ / Voo, - Vo, dx dt. (6.39)
0 Jo
Now, using (6.30)), (6.32) and ¢y € HZ; yields

‘x/QVan(O) Vo dz| < [lonllcoo,s):m Vol < C,

1
‘X/QV%(S) +Veon(s) dz| < lonlleoqo.smm IVen(s) Lz < C+ L 1A¢n ()72,

0 JQ 0
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Recalling (6.30), po € HZ,, and using the last three inequalities in (6.39)), we deduce that
1 1 s
T180n e + 500alEgrn < O+ [ anl®) 1+ 180u0IE2) at,

where oy, € L*(0,T) due to (6.30). Therefore, using elliptic regularity theory and (6.30)), an
application of Gronwall’s lemma leads to

lonllz (L2ynLe (m2)nL2 sy < C

with a constant C' independent of n € N. Then, recalling (6.30))-(6.32), applying the continuous
embedding L>(H?) N L?(H?3) < L*(W1°°) and using the relation (5.5¢)) for u,,, we obtain

ltenllLes 2y + llonllmrmynco ) + [[Valle@s) < C.
Invoking the last two inequalities along with , this in particular yields
[div(¢nvn)ll L2 L2y < C.
Hence, from the equation for Ap,, and using elliptic regularity theory again, we obtain
[nllr2 2y < C.
From the last four inequalities and , we obtain that

lonllar (L2ynLe 2Lz a3y + llonllar mrynee @2y + |nll e (22ynrz @2y + 11div(enva) 2 (22)
+ Ivallzawz @) + 1V (0n)DvallL2@we) + |div(va)ll Lo @r) + [[PallLze) < C. (6.40)

div

Step 2: With similar arguments as in the three-dimensional case, we can pass to the limit
n — oo in (5.5)) to deduce the existence of a solution quintuple (¢, u, o, v, p) solving

div(v) =T'y(p,0) a.e. in Qp, (6.41a)
v(p)v=—-Vp+ (u+ xo)Vep a.e. in Qr, (6.41b)

Orp +div(pv) = Ap+Ty(p,0) a.e. in Qp, (6.41c)
p=1"(p) — Ap — xo a.e. in Qr, (6.41d)

0= Ao —h(p)o a.e. in Qp, (6.41e)

and
p=Ve-n=Vy-n=0 a.e. onXp, Vo -n=K(o, —0) a.e. on Xp. (6.41f)
Following the arguments in the proof of Theorem we deduce that
lll2(may < C.
Furthermore, the following estimates hold (compare ((6.28)))

||(p||H1(Lz)ﬁLoc(Hz)ﬁLZ(hm) + ||0’||H1(H1)mLoo(H2) + HMHLN(LQ)HL?(HZ) + ||diV(LpV)HL2(L2)
+ Ivlizawe, ) + 1div(v)llL=(r) + Pl L2y < C. (6.42)

div

Step 3: Due to (6.41b) and ((6.41f), we observe that p is for almost every ¢ € (0,7T) a weak
solution of

—Ap =V (p)Ve v+ v(p)div(v) — div((x + xo)Ve) a.e. in Q,
p=0 a.e. on 9.
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Using elliptic regularity theory and the assumptions on »(+), this implies
72 < C (IVelliIVIE: + Idiv(v)l[Ze + [div((e + xo)Ve)[IZ2 + pll72) -

Integrating this inequality in time from 0 to T', using (6.42)), Gagliardo—Nirenberg’s inequality
and the continuous embeddings H? — L*, H' — L* L*(H?)N L?*(H3) — L*(WhH>), we
obtain

T T
/ Ipll= dt < C/ IVllE VT2 + Idiv(v)l[7e + [div((n + xo) V)| Z2 + [Ip[IZ2 dt
0 0
T
<C v 2 2 di 2 2 2 dt
¢ IVellie Ivllz + Idiv(v)lize + [l + xollz= + [plZz-

<C <||V<P||2L4<Loo) IVIIZs 2y + div(O)IZ2 2y + 1+ XLz 2y + IIPII%z@z))

<,
and consequently
IpllL2cay < C. (6.43)
By the non-negativity of v(-) and (6.41b)) we obtain
1
v=——(—Vp+ (u+x0)Vp) a.e. in Q.
5 V0 (n x0) V)

Using the assumptions on v(+), (6.42)) and (6.43)), it follows that v(p) = (=Vp + (1 + xo) V)
is bounded in L?(H?!). Therefore, we have

Ivllzzr < C.
In conjunction with (6.42)-(6.43)), this implies

||90HH1(LQ)HLOC(HQ)HLZ(H‘l) -+ HO’HHl(Hl)mLoo(Hz) -+ ||/L||L°°(L2)HL2(H2) -+ HdiV(QDV)HLz(Lz)
+Ivlizannreae ) + 1Pz < C

div

which completes the proof. O

6.3.2 Uniqueness of strong solutions for the Cahn—Hilliard—Darcy model

We have the following result concerning continuous dependence of strong solutions for the
Cahn—Hilliard—Darcy system:

Theorem 6.6 (Uniqueness of strong solutions) Let (¢;, i, 04, Vi, 0i), @ = 1,2, be two strong

solutions of 1) in the sense of Deﬁnition corresponding to initial data p; 0 € Hy,
i = 1,2, and boundary data 0; - € Hl(H%(8Q)), i1 = 1,2. Furthermore, assume that the

assumptions of Theorem [6.5 and Assumptions[5.6 hold. Then, the estimate

S[%PT}H%(S) —pa(s)1 7 + ller — <P2||§11(o,T;(Hl)*)mL2(o,T;H3) + [l — ﬂ2H%2(O,T;H1)
sg|0,
2 2 2
+ llor = o2llT20, 7m0y + V1 = Vallz2(0,m502) + 101 — P2l 720071
< C (g0 = w20l + o100 = F200ll3z0 70200 ) (6.44)

holds for a positive constant C' depending on ), T, €, x, Ln, Ly, Ly, L,, K, k1, ka2, Ry,
Ra, Rs, p, vo, v1, |l@illLem2ynrz sy, lwillezaeys lloilloe ey, [vellozay, [bv()llwiee ),
Lo )l ays oYl zoeqeys 1o (Nl gy 1) oo cey-

In particular, if 1,0 = Y2,0 and 01,00 = 02,00, Strong solutions of - are unique.
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Proof. Since it has no bearing on the analysis, we set € = 1 in the following. By C we denote a
generic constant that may depend on the same quantities as stated in the theorem. We will
frequently use Holder’s and Young’s inequalities and we recall the following estimate holding for
1=1,2:

@il 1 (L2ynLe (r2)nL2(me) + 100l aynpee (m2) + il poe (L2)nr2 a2y + 1div(eivi) L2 22
+ Vil 2@arynzae, ) + Ipillpzcaz) < C. (6.45)
In the following we denote I'y,(¢;, 05) =Ty i, I'v(@s,04) =Ty, i = 1,2, and 0o = 01,00 — 02,00-
Then, the differences f = f1 — fo, fi € {wi, i, 04, Vi, pi}, i = 1,2, satisfy the following equations
almost everywhere in Qp:

diV(V) = Fv,l - ].—‘\,727 (6463.)
v(p1)v = =Vp+ (b +x0)Ver + (k2 + x02) Ve + (v(p2) — V(1)) va, (6.46Db)
—Ap =div (v(p1)v — (1 + x0)Vip1 — (p2 + x02) Ve + (v(p1) — v(p2))va) , (6.46¢)
atgo = A/,L + (F%l — Fw)g) — Lpz(rvyl — FV’Q) — Lprv’l — V- v—Vy- vy, (646d)
p="(p1) =¥ (p2) — Ap — xo, (6.46¢)
0= Ac — h(p1)o — (h(¢1) — h(p2))o2. (6.46f)
Furthermore, the boundary and initial conditions are given by
p=0, Vo-n=Vu-n=0, Vo-n=K(o—0) a.e onXr, (6.47a)
kp(O) = ¥1,0 — ¥2,0 a.e. in Q. (647b)
We divide the analysis into several steps.
Step 1: Using exactly the same arguments as for (5.38]) and (5.41]), we have
ol < C ([lellez + llosollz2a0)) » (6.482)
ITva = Tvallr: < C(llellce + losllzzon) - (6.48D)
ITe1 =Tyl <O (llollez + llooollz2(a0)) - (6.48¢)

Multiplying (6.46d]) by —Ap, integrating over Q and by parts and using (6.46¢), (6.47a)), we

obtain

41

35l Velie + VAL = /Q(Vsol v+ Vo va)Ap + V(Y (1) — ' (92) — x0) - VAp da

- / ((Fcp,l - Fcp,?) - <P2(Fv,1 - Fv,?) - <va71)A<p dz.
Q

Furthermore, multiplying (6.46b)) with v, integrating over Q and by parts and applying (6.46€)),
(BATa), we get

vol[vIZs < / (42 + x02)Vip - v + pdiv(v) da + / (W (1) — &' (2) — Ap)Vepr - v da
Q Q

" /Q (vlo1) — v(g2))va - v de,
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where we used the assumptions on v(+). Summing up the last two (in)equalities, we obtain

d1
IVl + VAR + wlvIs

< / (Ve va + oTya)Ap dz + / VW (1) — ¢ (2) — x0) - VAp da
Q Q
- / (Cp1 —Ty2) — p2(Tv1 — Ty 2)) Ap da + / (2 + x02)Vep - v + pdiv(v) do
Q Q

+ /Q (v(1) — v(p2))Va - v da + /Q (& (1) — ¥ (92))Vigr - v da. (6.49)

We now estimate the terms on the r.h.s. individually. Using Gagliardo—Nirenberg’s inequality
in 2D, we obtain

18¢lZs < CllAgl Lz |Adla < ClAGlL: ([A¢]L2 + [VAR|L) < C ([A¢]Z: + [VAIL),

which implies

/ Vo - valAp dz
Q

Using the assumptions on I'y, and Ty, along with (6.45)) and (6.48a)-(6.48¢), it holds that

1
< IVellelvalus Al < CIVelE:valz: + 5 (1A¢l7: + [VA]L:)

1
| (@1 =T = ol = To) =) A | < € (s + o Faom) + 18l

Using the assumptions on v(-), applying (6.48a)) and the Sobolev embeddings H? C L>°, H' C L4,
a straightforward calculation shows that

[2 4302 V0 v+ (vlin) = wlgava v~ XV Vg da
Q

1 IZ0)
< C (lluz + x@llye + IVallin) Il +C (Il + lomlBeom) + 5IVACIE: + 2 vli2.

From the assumptions on (), the Sobolev embedding H? C L> and (6.45]), we obtain

’/QW(%) — 4 (p2)) Vg - v da

< [+l + el lellTeallv do
Q
Vo
< Clllolelts + 2 v

Furthermore, the assumptions on (-) and (6.45)) imply

/Q VW (1) — ¥/ (¢2)) - VA dz / (" (1) Vi + (" (101) — 0" (02))Viga) - VA da

Q

<c /Q VollVAG + (L+ o1 + o2 ol Veoal |V Ag] da
1
< O (19612 + lealisligls) + 1V Al
Finally, using ((6.48b]) we obtain
/pdiv(v) dz
Q

for § > 0 to be chosen. Employing the last six inequalities in (6.49)), we deduce that
a1 5o

dt 2 8
< Cs (1+ lenllFrs + llp2llzs + lluz + xoalEe + 1valfn) el

< 6lpl3= + Cs (@132 + lowel3e(on)
2 3 2
IV6lEe + S IVAGIE: +

IVIIE:

1
+ Csllosoll72o0) + ZIIAwHiz +pll7 (6.50)
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with § > 0 to be chosen.
Step 2: Multiplying (6.46d|) with ¢, integrating over Q and by parts and using (6.46€]), (6.47al),

we obtain

d1
Salelt 180l = [ @ien —v(e) —x) Apdo— [ (Tpr-v+ Vg o) o o

+/ ((Fcp,l — Fap,2> — @2(Fv,1 — Fv’g) — @Fv,l) (‘D dl‘ (651)
Q
On account of Young’s and Gagliardo—Nirenberg’s inequality, we observe that

lellzs < Cllelzzllela < Cligllzz (Iellze + Velrz) < C (lellz: + VeliLe) -
Then, by the Sobolev embeddings H? C L™ and H! C L*, we infer that

Vo
< C (L valln + llenllze) Il + ZIVIE::

/(Vgpl v+ Ve va)pda
Q

Using (6.45)) and (6.48b])-(6.48¢]), it is straightforward to show that

(@ =T = ea(n = To) =) 0 do) < € (el + o laom) ) -

Finally, invoking the assumptions on ¢(-) together with (6.45]) and (6.48¢)) gives

’/(w’(%)—w’(m)—xa) Ay dz SC/ (T lor|* + |2l ool + [o]) [Ag| da
Q Q

1
< C (llelz + lowlZcony ) + 7100132

Employing the last three inequalities in (6.51) and recalling (6.50) leads to

d1 1
73 (el + IVellze) + 5 (1A¢lZe + IVAQIE: +vollviEe)
< Cs (1+ llenlls + lpallis + lluz + X0zl + Ivallfn) llelz

+ CsllosellLz(a0) + dllplZ2 (6.52)
with § > 0 to be chosen. It remains to estimate the last term on the r.h.s. of (6.52)).

Step 3: Multiplying (6.46¢) with p, integrating over Q and by parts and using (6.47a)), we
obtain

IVplli- = /Q (1 +x0)Vep1 + (p2 + x02) Vi —v(p1)v — (v(p1) — v(p2))ve) - Vpdz. (6.53)

Since Vo -n =0 a.e. on X7, integrating by parts gives

A2, = / Apf? dr = — / Vi VA dz < ||V VAp|e.

Furthermore, using Gagliardo—Nirenberg’s inequality with j =1, p=¢ =00, m =3, r = 2
yields
1 1
IVerllLe < Cllenllzsllorll 2o
Combining the last two inequalities with (6.45)), this implies

<A@l L2 [IVerllue VPl

/ ApVr - Vpdx
Q

1
< Clerllus Vel IV A@ll: + S [IVEs

1
< C(llenllzs IVellze + IVA[L:) + SIVPIL::
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Invoking the assumptions on () and arguing similar as above, we deduce that

1
< Cleillz=llelze + g IVPIIL:.

/S (W/(01) =¥/ (22))Vipr -V da

Employing the last two estimates and the relation (6.46€) for p 4+ yo, we obtain

'/ (n+x0)Ver - Vpdz
Q

=| [0 = (o) - 20V Voo

1
< C(llenllis el + 1VARIE:) + 7 1VplIL:.
Due to the Sobolev embedding H? C L*°, we infer that

1
[2+ 3029 W da| <l + xeulls 9l + 1901
Q

Using the assumptions on () and the Sobolev embedding H' C L*, we get

1
< C(Ivlze + Ivallznllelz) + SIVPILa:

/Q (W(@1)v + (v(p1) — V(ip2))v2) Vp da

Employing the last three inequalities in (6.53|) and using Poincaré’s inequality we obtain
lpli7 < C (1 + llealls + llnz + xozl7e + V2l ) lelf + C (IVA@IE: + IvIE2) . (6.54)

Step 4: Choosing § small enough in (6.52)) and using (6.54) gives

d1
dt 2
< C (L+ leallis + ll2llzrs + ez + xoallzz + Ivallin) el + Cllosllizon)-

1
sl + 5 Az + IVAe]E: + wollvIIE:)

Integrating this inequality in time from 0 to ¢ € (0,7"), we obtain that
t
e ()l +/ 1Ap(s)[1 72 + [IVAR(8)[[E2 + vol[v(s)[IF2 ds
<0 [ als e a5 + 16Ol + [ TowlZaom 0
with
a(s) = C (14 [l1(s)llzs + N02(s)llFrs + llua(s) + xo2(s)ll72 + [va(s)llfn) € L0, T),
where we used (6.45]). Therefore, an application of Gronwall’s lemma gives
t
le ()1l +/O 1A¢lIZ: + IVAQIIE: + ol vii- ds < C (||50(0)||§p + ||Uoo||%2(o,t;m(an)))

for all t € (0,T]. Taking the supremum over all ¢ € (0,7 and using elliptic regularity theory,
this implies

t;;é%”@(t)nfql + el 2oy + VI 722y < C (||<P(0)||§Jl + HUoo||2L2(o,T;L2(aQ))) . (6.55)

Step 5: Using ([6.55)) together with (6.48a)) and (6.54)), an application of Poincaré’s inequality
yields

ol qarny + Iol2zany < C (I (O)B + lomo lBaco.zesscom ) - (6.56)
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Now, using the assumptions on ¢(-), and , it is straightforward to check that
14/ (o1) = 9 (e )22y < € (IO + oo 3a(0.7:22(002 ) -
Recalling — and using the relation for u yields
lal2ary < € (IOl + ool 07,1500 ) -
Together with (6.45), (6.48B)-(6.48c) and (6.55)-(6.56)), using the equation for Oy gives

||3t<ﬂ||%2((H1)*) <C (||80(0)||%11 + ||UDO||%2(O,T;L2(8Q))) .

Employing the last two estimates in conjunction with (6.55)-(6.56]), the inequality (6.44)) is
established and the proof is complete. O

6.3.3 A qualitative estimate

In the following we set 0o, = 1 for simplicity, although the estimates in the next theorem can be
carried out for sufficiently regular boundary data. We will now establish a qualitative estimate

for the difference of strong solutions to (5.1)-(5.2)) and —. In particular, this shows that

the unique strong solution of the Cahn-Hilliard—Darcy model can be obtained from the zero
viscosity limit in the Cahn—Hilliard—Brinkman model.

Theorem 6.7 Let the assumptions of Theorems and hold, let (@, tn,xs Onxs Vi x> Pn,2)
be the unique strong solution of the Cahn—Hilliard-Brinkman system in the sense of Definition[5.7)
according to n(-), A(-), and originating from gog’)‘ € HZ,, and let (¢p,pip,0p,VD,pp) be the
unique strong solution of the Cahn—Hilliard—Darcy system originating from o € H3. Then, it
holds

H‘/’n)\ - SODH%Il(O,T;(Hl)*)r‘wL‘x’(O,T;Hl)ﬂLQ(O,T;H3) + ||Mn,/\ - MD||2L2(0,T;H1)
+ llopa — UD”%OO(O,T;Hl) + [vox — VD”%?(O,T;L?) + llpy.a _PD||%2(0,T;L2)
A
< Cr (Il = wollis + IOl @) + MOl ) (6.57)

for a constant Cr depending on Q, T, €, x, Ln, Ly, Ly, L,, K, ki, k2, R1, Ro, Rs,
p; vo, vi, |[enallLem2ynzms), [|oplloem2)nrzms), leollzzz), lopllzem, [Vollzz@y,
[bv () lwreoe ®ys v () llwroe@ys 0o (lzoe@ys 1 fo() L@y, 1R Loe@ys I7() Lo (®), and
IAC) | oo (my- Moreover, if ol = o, then
||<Pn,A - SODHHl(o,T;(Hl)*)mLoo(o,T;Hl)mm(o,T;m) + ||,LL77,)\ - HDHL2(0,T;H1)
+ llows = opllpe ;a1 + IVax = Vollizrwe) + IPax — pollrzomz2)

=0 as [[n()llcom) — 0, [[AC)[lcow) — 0.

Proof. For convenience we recall that (¢p, up,op,vp,pp) satisfies

div(vp) =Tv(¢p,0op) a.e. in Qp, (6.58a)

v(ep)vp = —=Vpp + (up + xop)Vep a.e. in Qp, (6.58b)

Owpp +div(epvp) = App +T'y(¢p,0op) a.e. in Qp,  (6.58¢)
up = (¢p) — App — XD a.e. in Qr,  (6.58d)

0=Aop — h(pp)o a.e. in Qp,  (6.58¢)

Vep n=Vup-n=p=0, Vop-n=K(l—-op) a.e. on Xp,  (6.58f)

vp(0) = ¢ a.e. in §, (6.58g)



148 6 Asymptotic limits

and

lenllar2ynpe=m2)nrzmsy + lopllar(aynpe ) + lepll e 2)nr2 g2y + 1div(iepvp) |l 22
+ [vpllzza) + [Ippllpzcae) < C. (6.59)

We denote the differences by ¢ = ¢y — ¥p, t = piyx — D, 0 = Oy —0p, V.= Vyx — VD,
P = pp,x — pp. Furthermore, we use the notation I', p = I'y(¢p,op), I'v.p = I'v(¢p,0D),
Fi;m =T, (Pnx, 0n0), Ff,‘m =Ty (¢n,r,0n,x). Then, the differences fulfil

/Q 20 2) DV x: T8 + (Mg 2 )div (v x) — )iv(@) + vy 2)v - @ da

= /Q(u +x0)Veya - @+ (up + xop)Ve - @ + (v(pp) — v(pna))vp - @ dz,  (6.60a)
(O, ) s + / (Vonn v+ Vi vp)é da + / (6T, + opdiv(v))E dz

Q Q
_— / V- VE+ / (T}, = Dy p)€ da, (6.60D)
Q Q
0= / Vo . VE+ / (h(@nr) — h(@D))om s + h(pp)o)E + / Kot dn'! (6.60¢)
Q Q o0

for a.e. t € (0,T) and all ® € H!, ¢ € H* as well as

div(v) =T5, —Tvp a.e. in Qp, (6.60d)
p=v"(eg) =¥ (¢p) —Ap—xo  a.e inQr, (6.60e)
Voe-n=Vu-n=Vo-n+Ko=0 a.e. on X, (6.60f)
0(0) = 1 — g a.e. in Q. (6.60g)

Subtracting [, 21(¢nx)Dvp: V® 4+ X(¢y x)div(vp)div(®) dz on both sides of and
using Dvp: V® = Dvp: D®, we obtain that

/9277(90,7’,\)sz V® + (A(gy2)div(v) — p)div(®) + v(pya)v - @ dz
= [ (03000 + (1 + x00) T + (0(0) ~ vl )v) - @ do
- /Q 20(ep2)Dvp: D® + Ay 2 )div(vp)div(®) da. (6.61)

In the following we will frequently use Holder’s and Young’s inequalities and we divide the
analysis into several steps.

Step 1: Choosing £ = ¢ in (6.60c) and using the non-negativity of h(-) gives

190122 + Kllo|Zaon < \ [ (h0) = blep)onao as|

Using (6.59)), the Sobolev embedding H? C L and the Lipschitz-continuity of h(-), an applica-
tion of Poincaré’s inequality yields

ol < Cllel e (6.62)
In particular, using the specific form of I'y and I',, by (6.59)) we obtain

T3, = Tv.pllzz + T3, = To,pllze < Cllollze. (6.63)
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Step 2: We choose £ = —Ay in (6.60b)) and use (6.60¢]) to obtain

IVl + 198Gl = [ (T3, + opdiv(v) = (T, ~Ty.0)Ap do

+ /Q(V@n,/\ v+ Ve -vp)Ap dz

+ [ (V0 (o) = (p) = xVe) - VA s (664)
By Lemma there exists a solution u € H! of

div(u) = F:\',n -TI'vp a.e. in ,

u:|81m</91":\,m—Fv,D dm)n a.e. on 09,
and using it holds that
lull < U5, = Tv.pllze < Clig] e (6.65)
with a constant ¢ depending only on 2. Choosing ® = v —u in , we infer that
| 2060 )IDVE + vy 1w do

= [ (e x0)¥0nr + (1 + x00) Vi + (4(9) ~ vl )vp) - (v = w) da

+ /Q 2n(en 2 )Dv: Vu+ v(pya)v-ude — /Q 21(pn,2)Dvp: D(v —u) dz.
Summing up this identity with and using

[ 3o Vinaovde = [ (=Apt @/00) =0/ (e0) Vg v da

which follows from (6.60€]), we arrive at

a1

G3IVelE: + IVAGIE: + | 200 IDVE + oy )lvi? da

= / (onf,‘m + ¢pdiv(v) — (F;w — F%D))Anp dz + / Vo -vpAp dx
Q Q
+ /Q(W(%,A) — ¢ (¢p))Veya-vde+ /Q(V(w’(son,x) —1'(¢p)) —xVo) - VAp dz
+ [ (n+x00) i+ (v(op) = vy )vp) - (v =) do = [ (i x0)Vipy - wde

+ / 2n(pn A )Dv: Vu+ v(pyz)v-ude — / 21(pn,2)Dvp: D(v —u) dz. (6.66)
Q Q

Step 3: We now estimate the terms on the r.h.s. of individually. Due to (6.40), (6.59)
and (6.63)), we get

. 1
[ 6%+ opives) = (T, - Do) g da] < Cllelfa + gllAvlE (607

For the second term on the r.h.s. of , we invoke Gagliardo—Nirenberg’s inequality and
integrate by parts to deduce that

[Apls < CllAGlZ:1AeN 7 < C([1Ae] L2 + [VAP[L2) < C(IVellL: + [VAg|L2) -
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Consequently, by the Sobolev embedding H! ¢ L* we obtain

<IVelezlvpllus Al s

V- -vpAp dx
Q

1
< C(1+volin) IVeli: + g IVAR[ L. (6.68)

By the assumptions on 1(-), (6.40), (6.59) and the Sobolev embedding H? C L>, we deduce
that

‘/Q(W(s&n,x) =¥ (¢p))Vya - v da *+lenl") el Venallv] de

< O/ (1 + |‘Pn7>\
Q
< Cliele2lVeyalaz vl

Vo
< Cllenallislellis + §||V||iz- (6.69)

Recalling ([6.65) and the Sobolev embedding H? C L™, it is straightforward to check that

Vo
< C(lup +xopli) IVl + lellze + g lIvIEe-  (6.70)

[+ 300) Ve (v = w) s
Q
Applying (6.62)), we have

1
< Cllelzz + gIVASL- (6.71)

/ xVo - VAp dz
Q

Upon using (6.60€]), we can rewrite
[ +300 900w = [ @) =4 (0) — Ap) V0w d.

Then, using the assumptions on (-), (6.40), (6.65) and the Sobolev embedding H! C L%, a
straightforward calculation yields

1
[0 o) = 0 (00) - 800V da] <l + glAel

and therefore

1
[ x| < Ol + 5l1A0lE.

Moreover, using the assumptions on (-) and the Sobolev embedding H? C L* leads to

’/Q V(@' (enx) — ' (¢p)) - VAp dx
< /Q (W () Voo + (8" (9 2) — " (00))Viop) - VAY| da
1
< O (196l + lenlisllelis) + SIVAGIE

By (6.65)), the assumptions on v(-) and the Sobolev embedding H* C L*, it follows that

‘/Q(V(@D)—Z/(Lpn’A))VD,(V_u) e

o
<C(1+ Ivplin) llellF + gIIVII?ﬂ
and

’/Q 20 )DV: Vu+ vy )v - udz| < C (1+[n()ll=w) Il

Vo
+ [ wea DV o+ 2
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Employing the last four inequalities along with (6.67)-(6.71)) in (6.66]) and using the assumptions
on v(+), we end up with

14
SIVelEs + SIVAIE: + [ nien DV do+ 2 VI

dt2
< C (L + lenalds + lenllis + Ivolli + lup +xoplze + [In()lL=w@) el
3
+ §||A<p\|%2 —/ 21(pn,2)Dvp: D(v —u) dz. (6.72)
Q

Step 4: Choosing £ = ¢ in (6.60b) and applying ([6.60€)-(6.601) gives

d1

aleli 186l = [ (@0 = (00) = x)Ap do = [ (Fgun- v+ Vo vp)o da

_ /Q (9T, + ¢pdiv(v) — (T}, — Ty, p))¢ da. (6.73)
Invoking ((6.40) , and ((6.65) , we deduce that

\ /Q (612, + ppdiv(v) — (T, — Top))p de| < Cli2.

From the Sobolev embeddings H' C L* and H' C L*, we obtain

‘/(Vap,,,,\ v+ Ve -vp)pde
Q

Vo
< C(L+ Vol + llenallzs) el + 3 IVIEe:

Furthermore, using (6.60f), (6.62) and integrating by parts, we obtain

/ xoAp dx
Q

[ xvo 9| < C (el + 1901Rs).
Finally, by the assumptions on (-), (6.40) and (6.59)), we deduce that

\/ (o) ~ ¥/ (pp))Ap d| < CllglE: + L1l

Employing the last four estimates in (6.73]), we obtain

d1

Vo
T 2\|¢HL2 +3 IIA90||2L2 <C(1+|vplin + lenallze) lelin + gIIVIIiz~

Summing up this estimate with (6.72)), we end up with

d1
Sleln + 7 (18012 + IV AGIE: +lvIE) + [ 0oy DV da
< O (14 Inalss + lopls + Vol + len + Xl + In0ll o) el

- /Q 2n(opA)Dvp: D(v —u) dz. (6.74)

Step 5: It remains to estimate the last term on the r.h.s. of (6.74). Due to (6.65)), we obtain

< H\/znaon,anD
L L2

< 11Oz ® IDVDIIE2 + Clln() Lo lll7--

’/ 2n(¢p2)Dvp: Dudx 2n(¢n,2)Du
Q
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Finally, we calculate

IN

H\/27](<Pn,>\)DVD H\/277(9077,>\>DV
L2 L2
2 1 2
< H\/277(<Pn,)\)DVD + H\/Qn(wn,A)Dv
2 4 L2

1
< 20~ [PVl + 5 [ a0 )DVE do

'/ 2n(opA)Dvp: Dv dx
Q

Invoking the last two inequalities in (6.74)) leads to

d1

— 5ol +
dt 2

< ar(t)|lellFn + a2®)nC) | ),

1 1
10086l + IVl + wollviie) + 5 [ n(eq )PV do
with

ar(t) == C (1 + lenallis + llenlis + Ivollzn + llup + xopllie + In() |l Le®) € L'(0,T),
Oég(t) = 3||DVD(t)||i2 S Ll(O,T)7

where we used (6.40)) and (6.59). Integrating the last inequality in time from 0 to s € (0, 7] and
neglecting the non-negative term [, 7(¢y,(£))|Dv(t)|* dz, we obtain

le ()7 +/O 1Ae®)I72 + IVAR(®)IL: + vollvIL dt
S/O 2Ca1 (t)llp() 152 At + [l (0) 17 +||n(~)||Loo<R)/0 2a(t) dt. (6.75)

We now define

u(s) = [le(s)llzn € C°(0,T),
v(t) = [1Ap(0)IZ2 + IVAe(B)IL: + wollVIIE- € L'(0,T),

a(s) = [0 (0) 2 + 170)l| 2~y / “90n(t) d € L'(0.T),
B(t) == 2Cas (t) € L*(0,T),

and we note that « is monotonically increasing. Then, an application of Lemma to (6.75))
yields

le(s) 17 +/0 1Ae®) 172 + VAQ@®)IIE> + vollvIi- dt

< (10 + IO lewce) [ 20200 at)exp( [ pyar) vs e .71

Setting

Or = max {( [ o), ool [ sr) ( [ 200 d)} o,

taking the supremum over all s € (0, 7] in the last inequality and using elliptic regularity theory,
we get the bound

A
llonx = <PD||%°°(H1)F1L2(H3) + Vg — VDH%Q(LQ) <Cr <||<Pg — wollin + ||77(')||L°°(R)) .
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In particular, using the equation (6.60€) for u, recalling (6.62)) and possibly enlarging Cr, it
holds that

llona — §0D||%°°(H1)OL2(H3) + lpn,x — NDH%Z(Hl) + llons — O—DH%OO(Hl) + vy = VDH2L2(L2)

< Cr (o8 = woll3n + IO l~m) (6.76)
Step 6: We recall that
1/ (a2 )DVyallzwe) + [/ Alena)div(vya)llLzwe) < C (6.77)

with a constant C independent of 7(-) and A(+). Let q € H! be a solution of

div(q) =p in Q, q—|819</ﬂpdx)n on 0f)

such that
lalla: < cllpll>-
Taking ® = q in (6.60a) and integrating in time from 0 to T, we obtain

T
Ipllp2(rey = —/ /Q ((u+ x0)Venr + (up + xop)Ve + (v(ep) — v(n2))vD) - q dz dt,
0

T
+ / / 20(opA)Dvy A Va + Ay )div(vy 2 )p + v(pn 2 )v - q do di. (6.78)
o Ja

Using (6.40]), (6.59) and the Sobolev embedding H* C L*, a straightforward calculation yields

/O /Q (1 + X0)Vpmr + (up + x0D) Voo + (D) — v(pn )V — v(ppa)V) - a de dt

1
< O (el qarynzara) + I+ x0 132z + IV ) + 5 IplEczo)-
Furthermore, by (6.77) we infer that

T
/ /g m(ona)DVyr: Va da dt] < [20(n ) Dvyallzzws I Vall L2 ws)
0 2

1
< Cln() e ®lly/1(2n A )DVyAllF2 ey + EHPH%Q(Lz)
1
< Cln()llpew) + 6||p||2L2(L2)~

With similar arguments, we deduce

T
. 1
| [ Meaaivtrp do d] < CINOlL=e) + GlplE oy

Invoking the last three inequalities in (6.78)), we end up with

||p|\%2(L2) <cC <||<P||2Lo<>(H1)mL2(H2) + |+ XUH%z(m) + ||V||2L2(L2) + Im() e ) + H)‘(')||L°°(R)> -
Recalling (6.76]) and possibly again enlarging Cr, this implies

A
Ipns = pol32z2) < Cr (I8 = @ollEn + Gl @) + 1M ) -
Finally, using (6.40), (6.59)) and (6.62)-(6.63)), the relation (6.60b) for d; (¢, x — ¢p) yields
A
10 (onx — SDD)||2L2((H1)*) <Cr (||<Pg - <P0||§11 + ) llzee®) + H)‘(')HLO"(R)) .

The last two bounds in conjunction with (6.76|) yield (6.57)), hence the proof is complete. [
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A tumour growth model with degenerate mobility

In this chapter we analyse a tumour growth model with a degenerate mobility, and we use ideas
presented in . In such models diffusive mechanisms are switched off depending on the value
of the phase field variable. For the classical Cahn—Hilliard equation, it has been suggested to
take a mobility that degenerates in the pure phases ¢ = £1 and thus diffusion is restricted to the
interfacial region. As an important consequence, the phase field stays in the physical relevant
interval [—1, 1]. Often, the degeneracy of the mobility is combined with singular potentials of,
e. g., logarithmic type, and a typical example is given by

NGNS

M) = (1 ¢%), thes(e) = o (1 + @)1+ 9) + (1~ £)(1 ) + (1~ ¢?)

for positive constants 0 < 8 < 6, see, e.g., . ]A:)enoting with zﬁlog(go) = Yog () — %(1 —¢?)
the convex part of o4, we observe that m(¢)iy.,(¢) = 0 which plays a central role in the
analysis as we will see later. In particular, this property may be used to derive the so-called
deep quench limit & — 0 which corresponds to the double obstacle potential. In the context of
Cahn—Hilliard models describing tumour growth dynamics, the specific form of source terms is
crucial. Indeed, we have seen in Chapter [3]that the mobility’s degeneracy has, in some sense, to
be consistent with the specific form of the source terms. In order to elucidate this observation,
we give the following example: using linear kinetics (see ) and assuming that there is no

gain or loss of mass locally (see (3.29)-(3.30))), the equation for 9, is given by
Opp+ V- v =div(m(p)Vu) + (B — pa)(Po — A)h(e),

where h interpolates between h(—1) =0 and h(1) =1, a =p, " —p; ", B =p; " + py ', and for
positive constants P and A. In the pure phases ¢ = +1 equation (3.28¢) formally reads

(£a — B)(Po — A)h(£1) = div(m(£1)Vpu). (7.1)

In the healthy phase, the left hand side of is zero and thus m(—1) = 0 does not lead to an
inconsistency. However, in the pure tumour region, equation may not hold if we assume
m(1) = 0 since the left hand side of only vanishes provided Po — A = 0. Typical examples
for mobilities that degenerate only in the healthy phase are given by

m(y) = max (O,min (17 %(1 + <p))) or m(yp) = max (O,min (1, %(1 + @)2)) .
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7.1 Introduction of the model

Our aim is to analyse the following variant of (3.28)

div(v) =0 in Qrp, (7.2a)

—div(2nDv) + vv — Vp = —ediv(Ve @ V) in Qrp, (7.2b)
Op + div(pv) = div(m(e) V) + g(@, 0)h(p) in Qr, (7.2¢)
p=—eAp+e 1P (p) — xpo in Qr, (7.2d)

00 + div(ov) = div(xs Vo — x, V) — f(p,0)h(p) in Qr, (7.2e)

where the symmetrised velocity gradient is given by
Dv := (Vv + (Vv)T).

Here, the terms h(p)g(p, o) and h(p) f(p, o) act as source or sink terms. The nutrient free energy
density is of the form (3.37), i.e., N(p,0) = X2|0|*+ x,0(1— ), where X, is a nutrient diffusion
parameter and X, is a coefficient related to chemotaxis. We denote the partial derivatives of N
by

No=Xo0 +Xo(1 =¢), Ny =—xp0,

and we equip the system with boundary and initial conditions of the form

Ve-n=Vuy-n=Vo-n=0 on X, (7.3a)
v=0 on X, (7.3b)
¢(0) = o, 0(0) =09 in Q. (7.3c)

Remark 7.1 (i) We will consider a source term that satisfies h(p) = 0 for ¢ < —1 which
is consistent with a mobility satisfying m(—1) = 0 and a potential with a singularity in
@ = —1. In general, it is sufficient to prescribe h(—1) = 0 since, as discussed above, the
degenerate mobility guarantees the bound ¢ > —1 a.e. in Q7.

(ii) Equation (|7.2a)) holds, e.g., in the case of matched pure densities, i.e. py = p = p, and
assuming no gain or loss of mass locally. Indeed, this gives (see (3.29)-(3.30)))

1 1 2 1 1
].—‘90:(_"‘_)1—‘:_1—‘, FV:<___>F:0.
P P2 P P2 P

(iii) Equations and seem to be indispensable for the analysis. Indeed, the Dirichlet
condition for v guarantees that entropy cannot be transported across the boundary of €.
Furthermore, as a consequence of we require that div(v) has zero mean for almost
all t € (0,7T). This is, as already discussed in the previous chapters, not compatible with a
solution dependent source term in .

(iv) The standard strategy to prove existence of weak solutions is as follows. First, mobility
and potential are regularised and existence of solutions is shown for the system with
non-degenerate mobility and regular potential. Then, estimates that are independent
of the regularisation parameter are established by a suitable testing procedure. Finally,
one recovers solutions for the system with degenerate mobility and singular potential by
sending the regularisation parameter to zero.

However, this strategy does not work in our case since solutions for the system with
non-degenerate mobility are not regular enough in order to justify an appropriate testing
procedure. As a remedy, we will regularize by adding a term 60;v where § > 0 is
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the same regularisation parameter as used for mobility and potential. Then. we derive
uniform estimates in d and we pass to the limit § — 0.

Existence of weak solutions for — with non-degenerate mobility and regular
potential will be proven just for the sake of completeness.

7.2 The non-degenerate case

Assumptions 7.2 Throughout this section, we make the following assumptions.
(i) The potential y» € C*(R) satisfies
W<+ 1), '@ <C ¥(t)>-Cs VIER (7.4)
with positive constants C1, Cy and Cs.
(ii) The initial data satisfy po € H', oo € LS.
(iii) The functions g, f: R? — R are continuous such that
lg(p, o)l < Ca(l+ el +ol),  [flp, o)l <Cs(1+ el +o]) Ve,oeR (7.5
for positive constants Cy and Cs.

(iv) The function h: R — R is continuous, non-negative and bounded such that

Co(1+¢) <h(p) <Cr(1+¢) ifpel-1,1],
h(p) < Cs if p>1

for positive constants Cg, Cr7, Cg, and Cg < Cf.

(v) Ford=2,3, Q CR?is a bounded domain with C®-boundary.

Remark 7.3 From Assumptions|[7.2] (iv), it follows that h behaves like (14 ), = max(0, 14 ¢)
near o = —1. A typical example is given by

h(p) = max <0,min <;(1 + o), 1)) .

Furthermore, we observe that
he) <hseo VYo €eR,

where ho = max{2C7, Cs}. We refer to Chapter |§| for other examples of source terms that fulfil
our assumptions.

The following result treats the case where the mobility is not degenerate.

Proposition 7.4 (non-degenerate mobility) Let Assumptions be fulfilled and let m € CO(R)
with mo < m(s) < My for all s € R for positive constants mg and My. Then, there exists a
quadruplet (p, o, 1, v) with the regularity

pe H' (HY)NL®H")YNL*(H?), oe€H' ((H"))NL®L®)NL*H"),

pe NI NLA(HY), velL3(V)nL:H?)
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fulfilling the initial conditions together with equations (7.2al)-(7.2c), (7.2¢]) in the sense that

©(0) =¢o a.e. in o(0)=0¢ a.e in,

and
Oup = [ —ml) Vi VE+ gl ()€ + v VE do. (7.60)
(O &) = /Q —(XoVo =X V) - VE = [, 0)W(p)§ + ov - VE dz, (7.6b)
/ 2nDv: Du+vv-ude = / e(Ve®@Vy): Vudr (7.6¢)
Q Q

forallé € H', u €V and for a.e. t € (0,T), whereas (7.2d) and (7.3a)), are fulfilled almost

everywhere in their respective sets, 1i. e.,
p=—eAp+e () — xpo0 a.e inQr, Veo-n=0 a.e onXr. (7.6d)
Moreover, the inequality

el (aryynree anynczms) + lollm o @s)nczay) + lwllcs@w2)ncz @

+ [Ivll + [[div(ev)llz2(2) + [|div(ov) 3, =C (7.7)

L3 @)Lt (12) Ity <

is satisfied for a positive constant C independent of (v, p, o, V).

Remark 7.5 As usual for Stokes-like equations, the pressure does not appear in the weak

formulation ([7.6)). Thanks to Lemma the pressure can be recovered using (7.6c]). Indeed,
by Proposition [7.4] we have that

—nAV + vv + ediv(Ve © Vo) € L3 (V*) N L5 (L?),
and therefore there exists a unique pressure p € L3 (L2) N L% (H') satisfying

—nAv+ v+ Vp=—ediv(Vp @ V) a.e. in Qr.
Thus, we see that holds in the strong sense. In particular, by the pressure satisfies
<C

Hp”L%(L%)ﬂL%(Hl) =

for a constant C' independent of (¢, i, o, v, p).

7.2.1 Construction of approximating solutions

In the following we consider for § > 0 the system

div(v) =0 in Qp, (7.8a)
d0v — div(2nDv) + vv — Vp = (u + x0) Ve in Qp, (7.8b)
Ovp + div(pv) = div(m(p) Vi) + g(e, 0)h(p) in Qr, (7.8¢)
p=—eAp+e () — xp0 in Qp, (7.8d)
0o +div(ov) = div(xs Vo — xo, V) = f(@,0)h(p)  in Qr, (7.8¢)
supplemented with boundary and initial conditions of the form
Ve-n=Vuy-n=Vo-n=0 on X, (7.9a)
v=0 on X, (7.9b)

©(0) =g, o(0) =005 Vv(0)=0 in Q, (7.9¢)
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where 0 s € H%, is the unique solution of

— 5A0()75 + g0, = 00 in Q, VJO’(S -n=0 on 90. (79(:1)

Remark 7.6 The modified capillary term on the r. h.s. of (7.8b)) simplifies the a priori estimates
since the convection term in (7.8c|) and the term on the r.h.s. of ([7.8b]) cancel out within the
testing procedure. This is not the case if we use —div(e(Vy ® V)) as we do not have the
formula

/—S(Vgo@Vga):Vvdx:/(,u—f—xv,a)Vgo'vdw YueV
Q Q

on the Galerkin level.

We now prove the following lemma:

Lemma 7.7 (Existence of approximating solutions) Let m € C°(R) with mg < m(s) < My for
all s € R with positive constants mo, My, and let Assumptions[7.9 be fulfilled. Then, there exists
a quadruplet (s, o5, pis, Vs) with the regularity

s € HY((HY )N L®(HY)YNL*(H?), o05s€ HY(L*)NL>®(HY)NL*(H?),
ps € LYL2) NLA(HY), vse HY(L?)NL®(L*)NLT (V)N L: (H?)

such that the initial conditions and equations (7.8a))-(7.8d), (7.8€) are fulfilled in the sense that

05(0) = o, 05(0) =005, Vvs(0)=0 a.e inQ,

and
0= (0ps,&) mr + /Q Vs - vs &+ m(ps)Vis - VE — g(ws, 05)h(ps)§ du, (7.10a)

0= / 00¢vs - u+2nDvs: Du+vvs - u— (s + X005) Vs - u de (7.10b)
Q

forall§ € H', u eV, and for a.e. t € (0,T), whereas (7.8d)-(7-8¢) and (7.9a)),, (7.94),, are
fulfilled almost everywhere in their respective sets, i. e.,

s = —eAps + e 1 (ps) — 05  a.e. in Qr, Vs - n=0 a.e on Xy, (7.10¢)

and
0105 + Vo5 -5 = XoAos — XpAps — f(ws,05)h(ps)  a.e. inQr,
(7.10d)
Vos-n=0 a.e. on 2.
Moreover, the estimate
sl () ynLe ()AL (E3) + |06l 51 (L2)n Lo ()AL (B2)
+ HMZSHL‘I(L2)OL2(H1) + ||v6||H1(L%)ﬂL°°(L2)ﬁL%(V)HL%(Hz) <C (711)

is satisfied for a constant C independent of (s, s, 05, Vs)-

Remark 7.8 As before, we can reconstruct the pressure ps € L3 (L3) N L3 (H') such that
d0yv — div(2nDv) + vv — Vp = (i + xo0)Ve a.e.in Qp
and

<C

”p5||L§(Lg)mL%(H1) =

holds for a constant C' independent of (s, s, o5, Vs, Ds)-

Proof of Lemma[7.7 The proof is based on ideas presented in [77] and |83 Theorem 2.1].
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Galerkin scheme Let {¢;};cn be eigenfunctions of the Neumann—Laplace operator, see Chap-
ter[2l Furthermore, let {w;};cn be the eigenfunctions of the Stokes operator with corresponding
eigenvalues {1, }en, that means

-Aw;  =mn;w;  in ),
div(w;) =0 in Q,
W; =0 on 0f.

It is well-known that {w;};en forms (after normalising) an orthonormal Schauder basis in
H which is orthogonal in V (see, e.g., |90, II.3, Prop. 8, ¢), p. 135]). We fix n € N and
put W,, .= span{¢1,...,dn}, Vpn = span{wy,...,w,}. Furthermore, we define the projections
Iy, : L2 - W, and 1Ty, : H — V), by

HWn(rb = Z(¢7¢Z)L2¢’L v¢ € L2’ HVWW = Z(wawi)LZWi Vw e H.

=1 i=1

Our aim is to find functions of the form

@n&tm Zan5 ¢z lffnzitl' an6 ¢z

ons(t,z) = ch5 (t)pi(x Vst x) = Zd"5 Ywi(z

satisfying the approximation problem

/ upn,sv dz = / =(Pn,5)Viin,s - VU + g(n,6,0n,6)1(@ns)v — Vons - vpsvdr,  (7.12a)
Q Q

/ tn,sv dox = / eVns - Vo + 5711/1/(50”75)1) — X0On,sv dz, (7.12b)
Q Q

/ 0o sv dz = / V(Xo¥n,s — Xo0n,s) - VU — f(@n.5,0n,6)h(ons)v — Vo s - vy sv de (7.12¢)
Q Q

for all v € W,,, and

/ Ovns-u+nVv,s: Vu+rvv,s -ude = / (Bn,s + XeOn,5)Vns -ude (7.12d)
Q Q
for all u € V,,. We equip the system with the initial data

(pmg(O) = Hwngﬁo, O’m(;(O) = Hwn0075, Vn,(;(O) =0. (7.13)

Furthermore, we define a,, 5 := (a"°,...,a™®)T, b5 = (b1°, ... bP)T ¢, 5= (0, ..., cm0)T
and d,, 5 == (d”é,...,dﬁ‘s)T. Inserting v = ¢;, 1 < j < n, in — (712¢), u=w;, 1 <j<mn,
in and using the ansatz for the functions ¢, s, fin,5, On,s and v, 5, we can rewrite
(7.12)-(7.13)) as a system of coupled, non-linear ODEs for the unknowns a, s, c,s and d, s.
Owing to the continuity of m, f, g, h and v/, the Cauchy—Peano theorem ensures that there

exists T,% € (0, 00] such that (7.12))-(7.13]) has at least one solution quadruplet
(#n.5, Hn,ds On,6s Vi) € (CH([0, T3] Wa))? x CH([0, T3] V).

Now, we show a priori estimates for the Galerkin ansatz functions. In particular, this will lead
Ty =T.
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A priori estimates Multiplying (7.9d)) with o s and integrating over €2 and by parts, we
obtain

3|IVaoslg: + looslze < ClloolZe.
Therefore, the continuity of I,y on H'! entails
T, 00,6l 1 < Colloollzz, [T, ol < Collpol| (7.14)

for a constant Cy depending on &, but not on n € N, and a constant Cyy independent of § and
n € N.

We choose v = b’ ¢; in (712a), v = —(a}"*)'¢; in ([T12B), v = xoc} d; — xu(1 — a}’¢;) in
(7.12d]) and sum the resulting identities over j = 1,...,n, to obtain

2+ 9(0n,5, n6) (P06 ) s — Hn,sViPns - Vs da,

/ 4o shin,s dz = / —1(¢n.6)|V pin s
Q Q
f/ tn,50tpn s dox = / —eVons  VOions — € U (0n5)0Pn.s + XpOn,s01pn.s dz,
Q Q
/ Oron 5Ny’ dz = */ VN2 = f(@ns:00,8) (00 s) NG = Ng'Voys - vis da,
Q Q

where N,’f;‘s = Xo0n,s + X (1 — ¢n,5). Adding up the three equations and using the identity

d
7N(90n,6a Un,é) = Nz’(sato'n,zs - X@Un,zsatcpn,é

de
yields
d € _ n
i, §|V90n,6|2 +e ' Y(pns) + N(pns, ons) do + /Q m(n,5)|Vitn,s)* + VN ? da

= / 9(Pn.6,0m.6)1(Pn.6)tin.s — [(Pns,0n6)h(ns)NZ° dz
Q

- / (.Un,évﬁan,& + N:Ly’ava'n,é) *Vin§ dz.
Q

Choosing u = d;-“swj in (7.12d)) and summing the resulting identities over j = 1,...,n, we
obtain

do
55/ [Vis|? da +/ 2DV s 4 v|vns|* do = /(un,a + Xp0n.6)Vepns - Vs da.
Q Q Q
Using div(v,,5) =0 a.e. in  and v, s = 0 a.e. on 9Q, we deduce
_/ Nz’avan,& *Vins dz = _/ (XTUV (|Un,6|2) + X(,a(l - @n,é)vo’n,é) Vs dx
Q Q

= 7/ Xgaon,év@n,é *Vn,s dz.
Q

Employing the last three identities leads to

d

5 B 1)
— | =IVensl + e (pns) + N(ns,0ns) + = |Vnsl® da
dt Jg 2 2

+/ m(gon’(;)|Vun75|2 + |VN7’CL,’5|2 + 277|Dvn,5|2 + 1/|vn,(;|2 dx
Q

- / 9(0nsr n ) ns Vi — F(9nss ns)h(pns) N da. (7.15)
Q
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We now estimate the terms on the r.h.s. of (7.15)) individually. In order to control the term
involving g, we need a bound on the mean (i, 5)q. Taking v = 1 in (7.12b)) we see that

/ Hn,s dT = / 5711/)’(@7%5) — XOn,s dz.
Q Q
Due to ([7.4)), this implies
/,un,é dz
Q

where ¢y = ¢2(C1, €, Xy, [2]). Applying (7.5]), we obtain from Hélder’s, Young’s and Poincaré’s
inequalities that

<c2(1+ llensllez + llonslle2) .

/ g(SDn,67 Un,&)h(<pn,5)un,5 dx
Q

< Cihos (190% + ln.sl

v+ lonslzz ) Cr (IVimsllee + (un.s)el)

|2
L2

mo
< es (L lpnsle + lonsle) + 5 Vi

with ¢z = e3(c2, C4, heo, |2, Cp,mp). Due to Minkowski’s and Young’s inequalities, we have

2

iz 12X Venslie-

L2)2 < 2||VN;;’6

22 < (IVN™ ez + || X Veons]

HXUVU’I’L7§

For the term involving f, by Holder’s and Young’s inequalities we infer

/ Fons,00,6)(#n,6)(Xo0ns = Xo(1 = @) do| < ex (1+ lonslze + llonsllZs) .
Q

where ¢ = ¢1(Cs, hoo, Xs Xo» [€2]). On account of the last three estimates and the assumptions

on m(-), (7.15)) becomes

d [«
dt Jg 2

_ 0
Veon,s e 1¢(¢n75) + N(#ns,0n) + §|Vn,6|2 dx

mo 2 Xg 2 2 2
+/*2 [Vins|™ + 57V ousl” + 20D s|” + v|vasl” de
Q

<C (1 +/ len.sl® + Vens)® + onsl dx) (7.16)
Q
with C' depending on the same quantities as ¢;, 1 <7 < 3. Now, we introduce the initial energy
. -1 € 2, Xo 2
co5 = | (7 %(w0) + 5IVeol” + TFloosl” + xe006(1 — o) | dz
Q
that is bounded due to the assumptions on 1 and the initial data. Integrating (7.16) in time

from 0 to s € (0,7] and using (7.14]) along with the assumptions on (-) gives

[ 5190ms(6) £ 00n5(6)) + Nlons(s), 7 (5) + ivns(s) da

2
mo X
+ THV/J"MKSH%?(O,S;LZ) + vao—"ﬁniz(O,s;Lz) + 277 HDVn,lsH%Z(O,s;LQ) +v ||V77u5||%2(0,s;L2)

< Co,6 +C (S + H(pnﬁ”%Q(O,s;Lz) + ||V(Pn,5||%2(0’5;]_,2) + ‘lona5||%2(0,s;L2)) : (717)
Employing Hélder’s and Young’s inequalities, we get

’/Q Xen,5(8)(1 = ¢ns(s)) dz| < Xollons($)lr + Xxellons ()l L2 lon,s(s)l| L2

2

2x
< Xo 2 i
<7 lon.s(s)l|z2 + -

(190 + llens(s)l72) - (7.18)
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Now, the standard strategy to absorb the last term on the r.h.s. of (7.18) is to invoke a lower
bound on the potential t(-). As we will not be able to guarantee uniform lower bounds for (-)
in the degenerate case, we use a different approach.

. 8x2 . . .
More precisely, we choose v = %a;’é% in (7.12al) and sum the resulting equations over
j=1,...,n, to obtain

4x2 d ) 8x2
Y dt |‘Pn,6| dz = Y _m(Qpn,tS)Vﬂn,é “Vons+ h(@n,é)g(@n,év Un,é)‘Pn,é dz. (7.19)
o Q s Q

Using Holder’s and Young’s inequalities together with the assumptions on m(-), we have

8XiM0

<

L2l Veon,s]lL2

8)(2
— IV b6
Xo

/ m(@nﬁ)vunﬁ . v‘pn,& dx
Q

o

mo
< 0| Vitn sl + 4 Vipn.sli22

A

with ¢4 = ca(Xy, Xo» Mo, Mp). Furthermore, by (7.5) and Hélder’s and Young’s inequalities, we
observe that

8x2

. < o5 (14 lensllie + lonslliz)
o

/ h(@n,é)g(@nﬁa 0n,6)§0n,5 dx
Q

with ¢5 = ¢5(Xp, Xo» C1, hoo, [Q]). Using the assumptions on g, we see that

4X920 2
Ce ‘= ®0
. [pollz2

is bounded. Integrating (7.19) in time from 0 to s € (0, 7] and using the last two inequalities
yields

4X2LP 2 mo
||<pn75(8)||L2 <+ THV/L,M;

o

|%2(0,S;L2) + C4||v<pn,5||%2(0,s;L2)
2 2
+¢s (5 + lon,sll72(0,502) + ||Un,5||L2(0,s;L2)) .

Adding this inequality to (7.17) and using (7.18]), we get

2
€ _ Xo 2x
[ 5190ns ) + & 0(ons(o)) + lons(o)P + 22
Q X

1
[ens(s)* + 5 1vaa(s)* dz

g
2
mo X
+ THVMN#SHQL?(O,S;LQ) + 7U||V0n,6||i2(o,s;m) + 2"7||DV7175H%2(0,3;L2) + V”Vnﬁ”i?(o,s;L?)
<C (1 + ||80n,6||%2(0,3;L2) + Hvsﬁnﬁ”%Z(O,S;LZ) + ||Un,6H%2(o,s;L2)> :

where C' depends only on s and the same quantities as {¢; }o<i<g, but not on n € N. Together

with the estimate
/ 22 dz
Q

and ([7.4]), a Gronwall argument implies that

<er (L4 [lensliez + llowslzz)

ess sup (e (ns) ()Lt + llens(NEn + lons($)7z + [vas()lIz2)
se(0,

i dt < C (7.20)

T
4 / s 2 + [V omslZe + [V
0

for a positive constant C' depending on the system parameters, on §,  and T, but not on n € N.
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Higher order estimates With exactly the same arguments as Chapter [5, we obtain that
onsllr2casy < C. (7.21)

Using the assumptions on 9(+) and recalling that IIyy,_ is the L2-orthogonal projection onto W,,
this implies

1T, (V' (pn.6)) a2y < CllY (ons)llLawey < O+ lonslliec2)) < C.
Since ¢, 5 € H%;, we can calculate
1A¢n5l172 < ClIVenslLzIVAensllLe < Clignsllmllensllms,
which implies
1 1
1AensllLa(z2) < Cllensl Lo ) llonsl 2gs) < C-

From the last three inequalities, we deduce that e~ Ty, ¥'(pn.5) — eApns € L*(L?) with
bounded norm which together with (7.12b)) leads to

Hﬂn,J + X¢Jn’5||L4(L2) <C

In particular, we obtain that f, s is uniformly bounded in L*(L?). By and Sobolev
embedding theory, we have the continuous embeddings L>°(L?) N L2(H2) — L3 (L*) and
H*' C LS. Then, it follows that (f5,5 + X0n.5)Ven,s is bounded uniformly in L3 (L%) N L2(L3).
By classical regularity theory for the instationary Stokes equation (see, e.g., [90, IL.3, Cor. 4, p.
148]), we conclude that

<C.

HY(L3)NLE (H2) =
Applying (2.4)) combined with ([7.20])) and using the last bound, it holds

mahnrw ¥ )nrt ez = O (7.22)

[vns

[[Va,sll

Now, we derive higher order estimates for the nutrient concentration o, 5. Choosing v = Aic?’5¢i,
1 <i < n,in (7.12d¢), integrating by parts and summing the resulting equations over i = 1,...,n,
we obtain

d1
5 [ 1FonsP dotxo [ 180ws do = [ (8005 = F(onss0ns)hlns)) Aos da
Q Q Q
+/ Vons: Vs Aoy s dz. (7.23)
Q

Using the assumptions on f, h and (7.20))-(7.21), an application of Hélder’s and Young’s
inequalities yields

<O+ |Apns]

‘/ (XLPAQOmtS - f(@n,67an,6)h(90n,6)) Aan,ts dx
Q

X
22+ X2 Ag 512
With similar arguments and using the Sobolev embedding WL c L°°, we infer that

< IVonslezlvasllue | Aon sl 2

/ Vons VnesAops do
Q

Xo
< OVl Vsl 10 + 52 18]
Employing the last two inequalities in ([7.23)) gives
d
i 19l dz o [ 80l do < O+ [80nslEe) + Il s [ TomsllE
t Q o) W3

Integrating this inequality in time from 0 to s € (0,71, using ([7.14)), (7.21)-(7.22)) and elliptic
regularity theory, a Gronwall argument yields

0.6l Lo () L2 B2y < C. (7.24)
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Estimates for the time derivatives and convection terms By (7.20)), (7.22), the Sobolev
embedding WL % c L™ and Holder’s inequality, we have

<,

IVens  vasliczz) < ClIVenslie @ vasllzzwe) < Clienslioe @ [vasll e <

and therefore
Hdiv(@n,évn,é)HLZ(L2) < (. (7.25)

Furthermore, invoking (7.20)), (7.25) along with the assumptions on ¢ and h, for arbitrary

¢ € L2(H') we have
T
/ / Oron,s1lw, ¢
0o Ja

T
/ / Oppn,sC da dt
0o Ja

T
<c / 19t s 2 [ 9Ty, e
0

T
+C [ (1 vl svns)lz) o, Gl
0
By Holder’s inequality and the continuity of IIy, on H!, we obtain
T
| 2ens d at) < € (U sl oo + Idiv(onsvn)ll20) [€ln
0o Ja
Taking the supremum over all ¢ € L2(H!) and using (7.20)), (7.25)), we find that
10cpn.sllL2((mryy < C.
With exactly the same arguments as above, we obtain
[div(on,svns)ll2z2) < C.
Then, using the assumptions on f and h, ((7.20)-(7.21) and (7.24)), it follows that
||8t0n15||L2(L2) S C
Summarising the previous estimates, it holds that
lonsllmr (Y )nLe ()AL (H3) F | tn,sl 3 L2ynp2 (a1 F |Ons || Y (L2)n Lo (H)AL2 (H2)
+ [[div(en,sVn,s)llL22) + [|div(on,sVn,s)l L2 (22
+ HV"’(;”Hl(L%)ﬂLM(L?)ﬂL%(V)ﬁL%(H2) =C (7.26)

Passing to the limit By standard compactness results (see Lemma [2.36)) and compact
embeddings in 3D

HITL =With2 cc Wi vj>0,j€Z, 1<q<6,

and the compact embedding L? CC (H')*, we obtain from , at least for a subsequence
which will again be labelled by n, the weak(-star) convergences
(H'Y') N L=(H") N L2(HY),
Ons — 05 weakly-star in H'(L*)N L>®(H') N L*(H?),
Hn,s — Hs  weakly in LY(L*) N L2(HY),
YN L®@LA) N LS (V)N LS (H?),
div(pn sVns) — & weakly in L*(L?),
)

Ons — s weakly-star in H'

—~

Vs — Vs weakly-star in HI(L%

div(oy,,5Vn,s) — 0 weakly in L?(L?
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for some limit functions ¢, § € L?(L?), and the strong convergences

Yns — @5 strongly in C°([0,T]; L") N L*(W>") and a.e. in Qr,
Ons — a5 strongly in C°([0,T]; L") N L*(W'") and a.e. in Qp,
Va5 — Vs strongly in C°([0,T7; (H')*)

for any r € [1,6).

For the remaining part of the proof, we fix 1 < j < n and ¢ € C§°(0,T). Since ¢; € HZ,
w; € VN H?, we have (¢; € C*(H?), {w; € C°°(H?). Then, we can apply the same arguments
as in Chapters [4] and [5] to pass to the limit n — oo. Only for the convection term in (7.12d), we
need a more careful argument. Using Gagliardo—Nirenberg’s inequality, it holds that

_6 _r_
IVons = Vosllus < llons — o5l llons —osllpz™ Vr € [1,6).

Employing the boundedness of 0, 5 — 05 € L?(H?) for all n € N and the strong convergence
Ons — 05 in CO(L™) as n — oo for all r € [1,6), this implies

7
Vons — Vos strongly in LY(L*) asn — o0 Vq& {3,4) .

Using the continuous embedding V C LS and the weak convergence v, s — vs in L® (V) as
n — 00, by the product of weak-strong convergence we obtain

~ 112 1
div(op,5Vn,s) = div(osvs) weakly in LYL*) asn—oo Vg€ { 6> .

8379
By the uniqueness of weak limits, this leads that div(osvs) = 6 € L*(L?) and
T T
/ / div(oy,5Vn,s)(P; do dt — / / div(os5vs)(p; de dt  as n — oc.
0o Jo 0o Ja

Hence, choosing v = ¢;, 1 < j < n, in (7.12a)-(7.12c), u = w;, 1 < j < n, in (7.12d),
multiplying (7.12a))-(7.12d)) with ¢ € C§°(0,T), integrating in time from 0 to T" and passing to
the limit n — oo, we infer that

T
0= / () ((5t%7¢j>H1 +/ Vs - vs b +mlps)Vis - Vo; — hps)g(es, 05)¢; dx) dt,
0 Q
T
0= / ¢(t) (/Q pst; —e " (0s)d; — Vs - Vo + X005 dfc) dt,
0
T
0= / C(t) (/ 8t05¢j + Vos - vs (i)j + (XJVU(S — XLPVQD(;) . V¢j + h(gog)f(cpg,ag)gbj dx) dt,
0 Q
T
0= / ¢(t) </ Ovs - w; 4+ 2nDvs - Vw, +vvs - wj — (s + X005) Vs - Wj dx) dt
0 Q
holds for arbitrary ¢ € C§°(0,T) and all 1 < j < n. As a consequence, we see that (s, s, 0s, Vs)

satisfies (7.10a)-(7.10b) for £ = ¢;, u = w;, j > 1, and for a.e. t € (0,T). As {¢;}jen is a
Schauder basis for H' (see Chapter [2)) and as {w, }jen is a Schauder basis for V, we obtain that

(s, 115, 05, vs) satisfy (7.10a)-(7.10b)) for all ¢ € H* and u € V. Since Ayps, Aos € L*(L?), a
standard argument implies that (7.10c)-(7.10d) and (7.9a)),, (7.9a)),, hold.

Attainment of initial conditions It remains to show that the initial conditions hold. Noting
that ¢, 5 — s strongly in C°([0,T); L?) and ¢, 5(0) — ¢o in L? as n — oo, we conclude that
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©5(0) = g. With similar arguments, we deduce that 5(0) = ¢ 5 a.e. in Q. Since v, 5 — Vs
strongly in C°([0,T]; (H')*) and v,, 5(0) = 0, it holds that

(vs(0),&)m =0 VEeH.

Due to the continuous embedding H'((H')*) N L2(H') c CY([0,T];L?), we observe that
v5(0) € L? and consequently

/V5(0)~£dx:0 V¢ e HY
Q

which implies v5(0) = 0 in L? and a.e. in .

Reconstruction of the pressure By standard theory for the instationary Stokes equation
(see, e.g., |90, IL.3, Cor. 4, p. 148]) and using that (us + x,05)Vs € L5 (L2) N L2(L3?), there
exists a unique pressure ps € L5 (H') N L2(W'2) satisfying

/pgdxzo.
Q

Remark 7.9 Since vs € L's (V) N L5 (H2), for all u € V and almost every ¢ € (0,T) it holds
that

O

/ 2nDvs: Dudx = / 2nDvs: Vudz = / nVvs: Vudz.
Q Q Q
The first identity follows since

Du = Vu - 1(Vu— (Vu)7), Dv;: 1 (Vu— (Vu)T) =0.

Taking ¢ € C§°(0,T) arbitrary, the second identity follows from integration by parts and the
fundamental theorem of calculus of variations, more precisely

T T
/ / ¢(2nDvs: Vudz dt = —/ / ¢div(2nDvys) - u dx dt
0o Ja

// —(nAvs -udx dt
/ /Can Vu dzx dt,

where we used that div(vs) =0 a.e. in Qr.

7.2.2 Existence of solutions for non-degenerate mobility

We will now establish the existence of weak solutions for non-degenerate mobility and regular
potential.

Proof of Proposition[7.4] Without loss of generality, we assume § € (0, 1).

Step 1: We aim to find independent bounds for the initial value g 5. Multiplying (7.9d)) with
00,5, integrating over €} and by parts, we obtain

[ 8100sP + fooaf? de = [ ouons da.
Q Q
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Using Holder’s and Young’s inequalities, this implies
Villooslla < Clloo| 2 (7.27)
Furthermore, multiplying (7.9d)) with 08, s and integrating over 2 and by parts gives

55/ IVao.s%|o0.s|* dsr:—|—/ loo.5|° dxz/00086 dx.
Q Q Q '

Neglecting the non-negative term 5§ fQ |Voo.5|o0.s|* dz and using Holder’s inequality yields

1
loosll7e < /90005’,5 dz < [loosl7sloollze < 5llooslze + Cllool|Zs.

Recalling o € L°, this implies
loo.sllze < Clloolzs < C. (7.28)

Now, we derive a priori estimates for the solution quadruplet (ps, ps,os,vs) independent
of § € (0,1). To this end, using (7.10c|), the assumptions on (-) and the regularity ¢s €
HY((HY)*)N L?(H?), an application of [123| Lemma 4.1] yields

d 1 € _
(Orps s s + Xp05 + @s) 1 = E/ §|305|2 + §|Vg05|2 + e (ps) dz for a.e. t € (0,T).
Q

Now, choosing & = 15 + X405 + @s in (7.10a)) and using the last identity, choosing u = vs in
(7.10b)), multiplying (7.10d}) with Doy for D > 0, and integrating over 2, we obtain

d

1 2 € 2 -1 D 2, 0 2
N v = Zlvasl?| d
gy Q[le +5IVesl™ + e d(ps) + ool + Glvasl”| dz

+ / m(ps)|Vus|> + Dxo|Vos|* + 2n|Dvs|* + 1/|vn,5|2 dx
Q
= / —m(ps)Vs - V(Xp0s5 + ©5) + Dx, Vs - Vos dx
Q

+ /Qg(%,tfé)h(%)(ua + Xp0s + @s) — Df(ws,06)h(ps)os dz (7.29)

for D > 0 to be specified. Now, with similar arguments as in the proof of Lemma [7.7] a
straightforward calculation shows that

/Qg(%’ a5)h(ps) (s + Xpos + @s) dv — D f(ps, 05)h(ps)os do

mo
< C(mo, D) (1+ llosF2 + llpslF) + [ Vasll o

Using Holder’s and Young’s inequalities, we obtain

2

Dx, Dx
1 IVosliz + N 2 (Vs Ze-

/ DX@VQD5 -Vos dz| <
Q

With similar arguments, we infer

2M2 mo
< 0 (IVpsllEe + X3V oslEe) + S22 Vs

'/ m(ps)Vis - V(xeos + ps) do -
Q

Recalling the assumptions on m(-), plugging in the last three inequalities into (7.29) and choosing

_AMEXE +mo

XaTo

D
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we obtain

d 1 € _ D )
— §|<P5|2 + §|V905|2 + e Mp(ps) + 5|O’5\2 + §|Vn,6

2
d
at Jo o

m 1
+/ TO\V;MF + i\Vo*(;\Q +2n|Dv;s|? + 1/|vn75|2 dz
Q
< C 1+ |losl7z + llesll7z + IVeslliz) -

Integrating this inequality in time from 0 to ¢ € (0,77, using (7.4)), (7.28), the assumptions on
o and Korn’s inequality, a Gronwall argument yields

sl Lo crry + |05 ] oo (p2ynrz () + [ Visl 2 ey + Vo[ Vsl e ey + Vsl 2y < C.

Multiplying (7.10c); with 1, integrating over £ and by parts, using (7.10c), and applying
Poincaré’s inequality, the last inequality implies

lusllz2cery < C.

Combining the last two estimates, we obtain
sl poe rry + loslloe (z2yzz ) + lsllp2 gy + VollVsll Lo ey + [ vsllp2 gy < C. (7.30)

Then, with exactly the same arguments as in the proof of Lemma[7.7] it follows that

llsllLzcarey + lpsllpsrz) < C. (7.31)

Step 2: Next, we want to multiply 1 with o2 and then integrate by parts. To this end,
we have to check that both multiplication and integration by parts can be justified. Using
Gagliardo-Nirenberg’s inequality we observe that o5 € L'°(L'%), hence 0§ € L?(L?). Next,
using we observe that Vo; € L*(L2(89)) and o5 € L7 (L'°(892)). Hence,

03Vos € LY(L'(09)).
A similar argument gives
03Vps € LHLY(09)).

Again applying (2.34), it holds ¢§ € L (L%(QQ)) From Gagliardo-Nirenberg’s inequality, we
obtain
vs € L%(L?) N L5 (H?) — LT (W),

Then, the trace theorem yields
vs € L5 (W'3) & L5 (L32(50)),
and, in particular, we infer
odvs € LHLY(00)).
Hence, multiplying with Ug, integrating over {2 and by parts, we obtain
d1

—7/ |los|® dx—|—5x0/ |Vos|?|os]* dszXV,/ Vs - Vos |os|* dx
dt6 Jo Q Q

- /Qf(%,aa)h(wé)ff? dr, (732

where we used ([7.10c),, (7.10d)), and vs = 0 a.e. on ¥7. Using the assumptions on f and h, an
application of Hoélder’s and Young’s inequalities yields

/Q F(5,08)h(5)3 dz| < C (1+ [s]l%s + los]|Ss) -
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Another application of Holder’s and Young’s inequalities along with the Sobolev embedding
H! c LS leads to

‘5)@/ Vs - Vos |os|* dx
Q

5 -

< o /|w5| s dx+0/ V5?05 dz
5XO’ 4

<22 |V05| os|* dz + C||Vsisllosl|ie dz
5X0’ 4

< = |V05| |os|* da + C|ls |32 (1+HJ5”L6)'

Invoking the last two estimates and (7.32), we end up with

9Xo
5 | losl® do+ B2 [ Doslosit do < Cllgsl +C 1+ loslie) (14 losle)

Integrating this inequality in time from 0 to ¢t € (0,7 and using (7.28]) along with (7.31)), a
Gronwall argument yields

los Lo Loy < C. (7.33)
Step 3: We now derive estimates for the time derivatives and the convection terms. For

¢ € L2(H%) arbitrary, by (7.30)), (7.33) and the Sobolev embedding H* C L3 it follows

T
osvs - V¢ dzdi| < © / o120 s 1ol V¢ e dt
Q 0

< Cllos|l Lo oy 1vsl L2 ) lICl L2 a)
< Ol 2y,

and therefore

[div(osvs)|| L2y~ < C.
Then, the relation for ;05 yields
005l L2 ((mry-y < C.
Similarly, using the relation for 00;vs together with gives
3|10pvs |l L2 )y < C.
Furthermore, by the Sobolev embedding H' ¢ LS, and Holder’s inequality, we obtain
< CllgsllLeemnllvsllLz @y < C.

[[div(esvs)|l = Vs - vsl|

L2(L3)

Recalling ([7.30) and using the equation (7.10a)) for d;¢s, we conclude

r2¥) =

19cps |l L2 a1y < C.

Employing the last five estimates in conjunction with ((7.30))-(7.31) and (7.33|), we deduce that

sl rr((mryynLe (L2 a3y + 106l a1y ynne woyn2 @ty + sl Law2yne2 (m
+ V6|Vl oo w2y + 0l0evs L2y + 1Vell L2

+ldiv(esve)ll , 3, + 1div(osvs)llza ) < C. (7.34)
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Passing to the limit The approach is based on similar arguments as in the proof of Lemmal[7.7}
By standard compactness results (see Lemma [2.36]) and compact embeddings in 3D

HIt L =WIith2 cc Wi Vj>0,j€7Z, 1<q<6,

and the compact embedding L? CC (H')*, we obtain from ([7.26]) for a non-relabelled subsequence
that

05 — ¢ weakly-star in H'((H")*) N L>®(H") N L*(H?),
os — o weakly-star in H'((H')*) N L>®(L% N L*(H"),
ps — p weakly in LY(L?)N L2(HY),
vs — v weakly in L*(H'),

div(psvs) — 0 weakly in L? (L%)7

div(osvs) = 7 weakly in L2((HY)*)

for some limit functions 6 € L? (L%), € L2((HY)*), and

s — ¢ strongly in C°([0,T]; L") N LA(W?") and a.e. in Qr,
os — o strongly in C°([0,T); (H)*)NL*(L") and a.e. in Qr

for any r € [1,6). Using weak-star lower semicontinuity of norms and a generalised version of
Holder’s inequality, for every r € (1,6) we obtain

6—r
los —ollr < llos — UIILe s - UII T < Cllos - oll ¥
Using the strong convergence o5 — o in L?(L') as § — 0, this implies

o5 =0 inL%(LT) asd — 0 Vre(l,6).
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Since — 00 as r — 6, we conclude that

o5 — o strongly in LP(L") asd—0 Vpe|[l,00), r €][l,6). (7.35)

For the remaining part of the proof, let ¢ € C§°(0,T) and £ € H', u € V be arbitrary. We
multiply (7.10a)-(7.10b) with ¢, integrate in time and by parts, and use that v5(0) = 0 a.e. in
Q as well as ((T') = 0. Moreover, we multiply — with (£ and integrate over Qp
and by parts. Then, we obtain

T
0—/ ¢(t) ((@@a, &) m +/ Vs - vs & +m(ps)Vis - VE— g(ps, o) h(0s)E dﬂf) de,
/ /C (t)ovs -udx dt
—1—/0 ¢(t) </Q 2nDvs: Du+wvvs-u— (s + Xe05) Vs - u dx) dt, (7.36)
T
0= [ a0 ([ s+ xpms = o 0s))€ - Vs - Ve da)

T
0= / ¢(t) (/ 0105& + (Xo Vs — xo Vs — 05Vs) - VE+ f(ps,0n,5)h(ps)E dx) dt.
0 Q

Now, the arguments for (7.36), are exactly the same as in the proof of Lemma Using
Gagliardo—Nirenberg’s inequality, we obtain

2 1
Vs — Vol < Clles — @l i:lles — ol 3.



172 7 A tumour growth model with degenerate mobility

The strong convergence ps — ¢ in C°([0,T]; L?) as 6 — 0 and the boundedness of ps — ¢ in
L2(H3) for all § > 0 ensure that

Vs — Vg strongly in L6(L?) as § — 0. (7.37)

Then, by the Sobolev embedding H! C LS and the product of weak-strong convergence, we infer
that
Vs -vs = Ve v weakly in L%(L%) as d — 0.

The uniqueness of weak limits then yields div(gv) = 6 € L2(L?). This allows us to pass to the
limit in (7.36)), in a similar manner as in the proof of Lemma Using (7.34]) and Hélder’s
inequality, we obtain

/OT /Q ¢ (t)ovs -ude dt

as & — 0. Moreover, by (7.37) and the Sobolev embedding H* C L°, the product of weak-strong
convergence yields

< CIE )] L20,1) VOV oo (r2) VO 1 2

< O€' ®)|| 220y Vo[ullrz — 0 (7.38)

(s + x005)Vs = (L + x,0)Ve  weakly in L%(L%).

Then, we can apply similar arguments as in the proof of Lemma [7.7] to pass to the limit in
2. It remains to pass to the limit in (7.36),. We will only present the arguments for
the convection term. The remaining terms can be treated in the same way as in the proof of
Lemma Considering (¢ as an element in L?(H'), the weak convergence div(osvs) — 7 in
L2((HY)*) gives

T T
/ / ¢div(osvs)E da dt — / C{r,6)gr dt as 6 — 0.
0o Ja 0

Integration by parts yields

T T
/ / div(osvs)(T da dt = 7/ / Cosvs - VE da dt,
0 Q 0 Q

and using (7.35) along with vs — v weakly in L?(L%) as § — 0, by the product of weak-strong
convergence we obtain

T T
—/ /C05V5~V§d:rdt—>—/ /CO’V'ngIEdt as 6 — 0.
0 Jo 0 Jo

Hence, we conclude that

/OTg<T,g>H1 dt:—/OT/Q(ov~V§dxdt,

meaning div(ov) = 7 in the sense of distributions. Therefore, we can pass to the limit in (7.36]
and use similar arguments as in the proof of Lemma to deduce that (¢, i, o, v) satisfies

0= (e, &)m + /Q Vi -vE+m(p)Vu-VE—g(p,0)h(p)¢ du,
0:/ 2nDv: Du+vv-u— (p+ xe0)Ve-ude,

2 (7.39)
0= /Q (1 +xp0 =71 (9))€ — eV~ VE da,

0= (00, E) s + /Q (0o V0 — 1o V) - VE + f(.0) (@) — ov - VE da
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for almost all ¢ € (0,7) and all ¢ € H', u € V. Choosing u = v in (7.39),, recalling p € L>(H"),
and applying Korn’s, Holder’s and Young’s inequalities yields

Ivlle < Cllp+ xpo | Ls-

By Gagliardo-Nirenberg’s inequality, we have (1 + x,0) € L*(L?) N L?(H') — L3(L?), and
consequently
||V||L%(H1) S C

Moreover, since (1t + x,0)Vep € L (L2), classical regularity theory for the Stokes equation gives

<C.

91,8 gy <
Together with Gagliardo—Nirenberg’s inequality, the last two estimates entail that

v <C. (7.40)

L3 HHNL2(WLA)NLE (H2) =

Using and the boundedness of Vi € L8(L3), o € L?(H'), we deduce that
Ve-veL*L?), Vo-veLi(L3),

hence in particular § = div(pv) € L%(L?) and 7 = div(ov) € L7(L?). The validity of

follows from a standard argument.

Attainment of initial conditions The initial condition for ¢ is attained since @5 — ¢
strongly in C°([0,T]; L?) as 6 — 0 and because of ¢5(0) = ¢ a.e. in Q for all § > 0. Now,
multiplying (7.9d)) with &€ € H' and integrating over { and by parts, we obtain

/ (SVUO’(; -VE+ 0’0’55 dx = / oo dx.
Q Q

Since 05(0) = g5 a.e. in £, this implies
[ 5Vons - VE ot (030) & = (o0&
Q

Using the strong convergence o5 — o in C°([0,T); (H')*) as § — 0 along with (7.27)), passing
to the limit § — 0 in the last identity yields

(0(0),8)m = {00, &) VEEH,

Due to the continuous embedding H'((H')*) N L?(H') < C°([0,T]; L?), this implies

/0(0)§dx=/oogdx Vée HY,
Q Q

and consequently o(0) = o a.e. in 2. By standard arguments for the Stokes equation, the
pressure can be reconstructed and fulfils

p e L3(LA)NLE(HY), <C. (7.41)

||p||L%(L8)ﬁL%(H1

Finally, the estimate ([7.7)) follows from weak(-star) lower semicontinuity of norms along with

(7-40) and (7-41). O
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7.3 The degenerate case

7.3.1 Introduction of the mathematical setting

In the following let Q@ C R%, d = 2,3, be a bounded domain with 9Q € C3. We assume that 9(-)
can be decomposed as

Y(p) =¥ () +9°(p) (7.42)
with functions ¢!, 12 where ¢? € C?([—1, +00)) satisfies

[(@*)"(@)| <C Ve[l +00),
and 1': (—1,400) — R is convex and of the form
(¥")"() = max (0,min (3(1 4 ¢),1)) """ F(p) for some po € [1,2] (7.43)
with a C'-function F': [~1,4+00) — R satisfying
[Flet-1,400) < Fo

for a positive constant Fj. Hence, v is allowed to be singular in the convex part as ¢ — —1.
Without loss of generality, we assume that (1) (0) = (1)(0) = 0.

We introduce a degenerate mobility m(-) of the form

q0

m(yp) = max (0,min (3(1+¢),1))" m(p) with g € [1,2], go > po, (7.44)

with pg as in (7.43)), and a C'-function m: [—1,+00) — R satisfying
mo < m(p) < Mo Ve €[-1,+00), [mllcr—1,400) < My
for positive constants mg, Mo and M;. We extend the definition of m(-) to all of R by m(y) =0

for p < —1.
Finally, we define
®:(—1,+00) = RS
by
" (p) = ——~, @'(0)=0, ®(0)=0. (7.45)

Example 7.10 In the following we give two examples for the choice of potentials. We will show
a plot of the two potentials in Figure

1.) Assuming that cell-cell interactions are attractive in one phase and repulsive in the other
phase, so called single-well potentials of Lennard—Jones type are used frequently in the
literature. Following, e.g., the works [5}6], we define

L1+ ¢")In(l +¢) for ¢ > —1,
PHp) = { ?
400 else,

P2p) = 55— 1+ (14 ¢) (-5 -1+ 1(e—1)+3In(2)) Ve >-1,
where ¢* is the volume fraction at which the cells are at equilibrium. Then, it holds that
P q )

(1+¢%)

(1/J1)N(90) = m

Vo € (—1,400),



7.3 The degenerate case 175

and (7.43) is fulfilled with py = 2 and F(¢) = $(1 4 ¢*) if we modify ¢'(-) for ¢ > 1 via
U p) = —3(1+¢)m?2) - 11+ (e - D+ L +e)(e -1 Ye=1
Similarly, we have to extend t?2(-) in order to fulfil |(¢?)" ()| < C for all ¢ > —1.

2.) We can also use a modified version of the logarithmic potential by setting

O(In(l+¢)(L+¢) —¢) forp> -1,
VHp) = { (7.46a)
+00 else,
and
0. — 01n(2 0. 0. + 66 — 100 1n(2
Vi) = =5 n2) s S¢+ s ; LICI RV [~1,400)  (7.46b)

for 0 < < 6. Then, (7-43) is fulfilled with py = 1 and F(p) = §. Again, in order to
fulfil the assumptions, we need to modify 1! and 2 appropriately.

0.1}
0.04 +

0.02 +

~0.6 ko. ] 1

Figure 7.1: On the left a plot of the Lennard—Jones type potential with ¢* = —0.1, on the right

a plot of the logarithmic type potential with 6, = 1.5 and 6 = 1.

7.3.2 The main theorem
The goal of this section is to prove the following theorem:

Theorem 7.11 (degenerate case) Let Assumptions (7.9, (ii)-(v), be fulfilled. In addition, we
assume that o9 > —1 a.e. in ) and

/Q (o) + Do) < C

for a positive constant C. Then, there exists a quadruplet (p,J, o,v) satisfying
a) p € H'((H") )N C([0,T|; L*) N L®(H') N L*(H?),
b) p(0) =g in L? and Vo -n =0 a.e. on X,
c) p>—1a.e inQp,
d) o€ HY((HY)*)NnC(L?) N L>*(L% N L*(HY),

e) a(0) = og in L?,
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f) Je L*(L?),
g) veL?(HY,

and solving

T
/ (Oep(t),6(1)) pr dt = / J-VEdz dt +/ g(@,0)h(p)e —Vp-vEda dt, (7.47a)
0 Qr

Qr

(0,0, S = /Q(—X(,vg b oV +0v) -V — [, 0)h()d da,  (T.47D)

/ 2nDv: Du+vv-udx = / e(Vo® V) : Vudz (7.47¢)
Q Q

for almost all t € (0,T) and all ¢ € L*(H'), ¢ € H', u € V, where
J = —m(p)V(—eldp +e ' (¢) = xp0)

holds in the sense that

/ J-ndxdt = —/ eApdiv(im()n) +e H(my") () Ve -n—x,m(p)Vo n dr dt (7.47d)
QT QT

for allm € L*(0,T; HY) N L*>°(0, T;L*°) with n-n =0 a.e. on Y. Furthermore, there exists a
unique pressure p € L3 (L3) satisfying

—Vp = —div (2Dv — (Vo ® Vo)) +vv in L3 (V*).

Remark 7.12 In the case ¢op < 2 (and so also py < 2), the assumption

/Qw(‘;%) + ®(pg) < C

imposes no restriction on the initial data since ¥(-) and ®(-) are bounded in —1.

7.3.3 Approximation scheme

In the following let ¢ € (0, 1]. We introduce a positive mobility ms by

m(—=1446) for p < -1+,
ms(p) =
m(p) for o > -1+,

and we define ®5 such that ®§(p) = #(50) and ®5(0) = ®5(0) = 0. In particular, we have
Ps(p) = (p) for ¢ > —1+ 4. The modified potential 15: R — R is defined by 15 == 9} + 12
where

()" (=1 +06) for p < -1+,

(1/11)” (p) for o > =149,

©3)" (¢) = {

and ¥}(0) = ¥1(0), (¥})'(0) = (') (0). As for & we get P5(0) = W(y) if ¢ > —1+4.
Furthermore, we extend 4?2 to a function on all R such that [|¢)?(|c2r) < C.

With this choice for mg and s, by Lemma there exists a weak solution (which will be
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denoted by (s, tts,0s, Vs, 0s)) of

div(v) =0 in Qr,

d0yv — div(2nDv) + vv — Vp = (u + x,0) Ve in Qr,
Op + div(pv) = div(ms(p) Vi) + h(p) g(p,0)  in Qr,

p=—eAp+ e 5(p) — xu0 in Qr,

oo +div(ov) = xo Ao — X, Ap — M) f(p,0)  in Qr,
Veo-n=Vuy-n=Vo-n=0, v=0 on X,

which fulfils the initial conditions (7.9¢)-(7.9d]). The weak formulation is given by
0= (Orps, &) mr +/ Vs - vs & +ms(s)Vis - VE — g(ps, 05)h(ps)€ d, (7.48a)
Q
0= / 00ivs -u+2nDvs: Du+vvs-u— (s + x,05) Vs - u de (7.48b)
Q

for all ¢ € H', u € V and for a.e. t € (0,T), whereas (7.8d)-(7-8¢), (7-9a)), and (7.9a)),, are
fulfilled a.e. in their respective sets, i.e.,

s = —eAps + e 1P5(ps) — Xp0s  a.e. in Qr, Vs -n=0 a.e. on Xy, (7.48¢)

and
0105 + Vo5 - Vs = Xo Aos — XoAps — f(ps,05)h(ps) a.e. in Qp,
(7.48d)
Vo -nsg=0 a.e. on Xg.
Remark 7.13 Due to (7.48c)), we see that
€ _ .
(15 + Xp05)Vips =V (§|V905|2 +e 1%(%)) — div(eVps @ Vips).
Therefore, ([7.48b)) is equivalent to
/ 00ivs -u+2nDvs: Du+vvs-ude = / (Vs ® Vips): Vu dx (7.49)
Q Q

for a.e. t € (0,T) and for all u € V.

7.3.4 Some preliminary results
The following lemma will be important to estimate the source terms independent of ¢ € (0, 1].
Lemma 7.14 For all s € R it holds that

[h(s)(¥5)" ()] + |h(s)®5(s)| < C(1 +s]) (7.50)
with a constant C' independent of 6 € (0,1].

Proof. Let 6 € (0,1] be arbitrary. In the following we will frequently use the assumptions on
h(-), F(-) and (¥})'(0) = ®5(0) = 0. We consider only the case py = 2 which corresponds to the
highest degree of singularity of (¢})” and (®})”. We distinguish different cases.

(i) For s < —1 we have due to ([7.5) that

h(s)(¥3)'(s) = 0.
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(ii) If s € (=1, -1+ ¢) for some § € (0, 1), it holds

148 g 0
m&w@%n=h@</ ““;+®w+/;kéfﬁdﬁl

0
<AFph(s) (<1 + 67 +672|s — (=14 )])
< AFyCr6 (—142671)
<C

for a positive constant C' independent of § € (0, 1], where we used that

s—(=14+9 _
< (62 )>§6 1’ 0§h(8)§075

(iii) In the case s € (—1 + 4,0), an easy computation shows

0
h@ﬂ%Y@>Shw>/i(“%d4=4ﬂmwx—r+u+srw.

1+1¢)2

h(s)
1+s

Since < Cy for s € [—1,1], this implies that
[h(s)(¥3)'(s)| < C
with C' independent of § € (0, 1].

(iv) For s € [0, 1], we obtain

/OS (;“i(gQ dt‘ <A4Fyh(s) (—(1+s)"'+1) <C.

(v) Finally, if s > 1, we use the case s € [0, 1] to derive that

/ ! F(t)
el =) | [ 455 s [P a
< h(s) (2Fy + Fo(s — 1)) < C(1 + s).

In summary, this shows that
[A(s)(¥5)' ()] < C(A+s]) VseR

with a constant C' independent of 6 € (0,1]. Using the assumptions on m(-), with exactly the
same arguments it follows that

|h(s)®5(s)| < C(1+1s]) VseR

with a constant C' independent of ¢ € (0, 1] which completes the proof. O

The following lemma summarises uniform estimates for the approximating solutions.
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Lemma 7.15 (a priori estimates) There exists dg such that for all 0 < § < &g the following
estimates hold with a constant C independent of §:

esssup [ (1osOF + 5I9os(0 + {las(O + & 0s(s(0) + Ba(es(t) + ivs(0 ) da

0<t<T

T r1 1 €
+/ /Q §m5(<p5)\Vual2 + E\Voé\g + §|A906|2 + (¥5)" (05)|Vips|? da dt
0

T
—|—/ / n|Vvs|? + v|vs|? dz dt < C, (7.51a)
0o Ja
ess sup/ (—ps(t) — 1)% < C6, (7.51b)
0<t<T Jo
/ 1J5)% < C where Js = ms(ps)V 5. (7.51c)
Qr

Proof. In the following we denote by C a generic positive constant independent of ¢ € (0, 1]
which may change its value even within one line. Furthermore, we will frequently use Holder’s
and Young’s inequalities.

Step 1: Using that vs(-) is a quadratic perturbation of a convex functional and invoking [123]
Lemma 4.1], for almost every ¢t € (0,7) it holds

B d 1 € _
(Orps, — eAps + e P5(0s) + o) = o 5|‘P6|2 + §\V<P5|2 + e Mps(ips) da.
Q

Then, with exactly the same arguments as in the proof of Proposition [7.4] we get

d 1 2 € 2 -1 D 2, 0 2
L = - Olvs2 a
at o 2|905| + 2|V<P5| + e Ys(ps) + 5 los|® + 2|V§| x

+ [ ms(es) Vsl + Dxal Vs + 20Dvs + vl da
Q
= / —ms(s)Vis - V(xeos + ws) + Dx, Vs - Vos dx
Q

+ /Qg(%, o5)h(ps)(—eDps + e W5(ps5) + @s) — Df (s, 05)h(ps)os da (7.52)

for D > 0 to be specified and for almost every t € (0,7, where we used the expression for

ts + X 05 given by (7.48c) and the identity
/ wsVips - vs doe = / V (lgs]?) - vs da = / lps|? vs -ndHT — [ |ps|* div(vs) dz = 0.
Q Q T9) Q

The assumptions on m(-) guarantee that

< / Vs (28) [V s/ Mo |V (xp05 + 05)] da
Q

1
<7 [ melen) Vsl da + 200 (I Vasls + Vo)

/ ms(0s)Vs - V(xeos + s) do
Q

Furthermore, it holds that

Dxos Dy?
D Vosd v

With similar arguments as in the proof of Proposition [7.4] we deduce

/QDf(sDé,Ué)h(%)% dz

<

IVoslze + IVeslliz.

< Cp (1+ |lesl32 + llosllFz) »

< C(1+ lpslZz + llos]32) -

/ 9(ws,05)h(ps)ps dx
Q
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Employing the last four inequalities in ([7.52)) and choosing D = max (1, (1+ 4Moxi) Xgl) gives

d

E/Q (3losl® + £IVes|® + e s (ps) + 3los* + S|vs|?) da

+ [ 2ms(ps)|Vus)® + 2[Vos|? + 2n|Dvs|* + vlvs|* dz
Q
< O (L+ lloslz + llosllze) + /Qg(%ﬂa)h(%)(ﬁ_l%(%) —eAps) dz. (7.53)
It remains to analyse the last term on the r.h.s. of (7.53)). Applying (7.5), we have

<l Apsl7z + Cy (1+ ll@sllZe + llosllZz)

’/ e g(ps,05)h(ps)Aps dx
Q

with 7 > 0 to be chosen later. Due to the assumptions on %?(-) and using Lemma for 4}
along with ([7.5)), we obtain

< C(1+ llgslze + lloslzz) -

/Q 98, 05)h(i08)e ™ 0 (05) da

Invoking the last two inequalities in ((7.53)) yields

d Lo 2 ¢ 2 -1 L2, 0 1
< ‘v - 0 d
G [ |3l + 51Vl + < uton) + Hosl? + gival | aa
1 1
+/ §m5(<p5)|Vu5|2 + §|Vcrg|2 + 29|Dvs|* 4 v|vs|? dz
Q
< Cy (L lleslze + 1VesliEa + lloslliz) + vl Aps|z.. (7.54)

Step 2: In the following we aim to derive an estimate for Ap;s in order to absorb the last

term on the r.h.s. of (7.54). Choosing ®}(ps) € L?(H') as a test function in (7.48a]) and
invoking [123| Lemma 4.1], we obtain

% /Q s5(ps) dz = —/Qmé(%)v(—ﬁA% + e "W5(9s) — Xp05) - V5 (p5) Az
+ [ alion 7o)hen)®(es) ~ Rilion)Vis - vs da (7.55)
for almost every ¢t € (0,7). Integrating by parts and using vs € L?(V), we see that
/chg(%)vw cvs dr = /QV (®5(ps)) - vs dz = 0.

The identity ®§(ps5) = m and integration by parts yield

[ miles)V(—egs + €715 o5) = x, V) VO ) da
= /ﬂ(—EVA% +e 5 (95) Vs — xoV03s) - Vips ®F (0s)ms(ps) d
- /95|A</75|2 + 75 (05)[Ves|* — xp Vs - Vo da.

Using the assumptions on ?(+), it holds

- 1
/Qﬁ ) (5) Vs |* = X Vs - Vg da| < 1| VoslEe + ClI Vs e
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For the remaining term on the r.h.s. of (7.55)), we apply (7.5) and Lemma to obtain

< C (14 lleslis +llosllze) -

/Q 9(05 05)h(i05) B} (i05) da

Employing the last four (in)equalities in (7.55)), we end up with

d

5 [ @stest) do+ [ elbgsl + 1) (o) Vel da

1
< C(1+llesllZe + IVesllEe + lloslzz) + 7lIVosliEa

for almost every ¢ € (0,7). Adding this inequality to (7.55) and choosing v = 5, we get

181

d 1 2, ¢ 2 -1 1 2 d 2
R _ s P - v d
G [ [3lel? + SI70aP + e atos) + Bsts) + glool? + ivsl?| o
1 e 1
+ §m5(@6)|vué|2+§|A<P5|2+(¢§)“(<P5)|V<P6|2+Z|V06|2+277\DV6|2+V|V6|2C133
Q
< C(L+ llosllzs + IVesllz + lloslZ2) (7.56)

for almost all ¢ € [0,T]. Next, we notice that ®s5(u) < ®(u), 1}(u) < ¥!(u) for § sufficiently
small. Using (7.28) and the Sobolev embedding H' C L° along with the assumptions on ¢y and

00, we know that

1 € _ 1
/§|<P0\2+§|V500|2+5 1¢6(S00)+‘I’6(S00)+§|00\2 dz < C.
Q

Consequently, integrating (7.56)) in time from 0 to ¢ € (0, 7], an application of Gronwall’s lemma

implies (7.51al).
Step 3: We now prove (7.51b)). First observe that the convexity of ®5(-) and ®5(0) = &%(0)

imply
Ps(—14+8) >0, P5(—-14+5)<0

Therefore, for z < —1 and § € (0,1) we obtain
1
Ps(2) = Bs(—1+0) + P5(—1+6) (2 — (-1+0)) + 5@3’(-1 +8)(z — (=1+4))?

L0 (14 8)(2 — (—1+8))°

Z2
> (2) m@—(—m&)f
> (3" 2M0 +(-1+0))

> (2 —1)?
- (6) 2MO —z 1) ’
hence, using 6P° < § gives
(—2—1)2 < C6Ds(z) forall z< —1and§ < 1.

Employing ([7.51a)) we conclude
esssup/(—gpg(t) —1)3 dz < C§ esssup/ Ds(ps(t)) de < C6
0<t<T Jo 0<t<T Jo

which implies (7.51bf). Finally, because of ([7.51al), an easy computation shows that

T T
/ / ms(5)?|Vasl? de dt < C / / ma(s)|Vpg? da dt < C,
0 Q 0 Q

and the proof is complete.

=0
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The following lemma will be applied to pass to the limit in the proof of Theorem [7.11}

Lemma 7.16 Let § € (0,dp] and assume the assumptions of Theorem are fulfilled. Then,
it holds that

lesll ey L (aynrz a2y + losllmrarynr=weynrzy + Vsl L2 @)
+ \/5||V6||L°°(L2) + HdiV(gOgV(s) %) + ||diV(U§V5)||L2((H1)*) <C (7.57)

||L2(L

with a positive constant C independent of 6 € (0,dy]. Furthermore, as § — 0 we have (at least
for a non-relabelled subsequence)

w5 = P weakly-star in  H'((H")*) N L= (H") N L*(H?), (7.58a)

o5 =0 weakly-star in  H'((H')*) N L= (L% N L*(H"Y), (7.58b)

Vs =V weakly in L*(HY), (7.58¢)

div(psvs) — div(ev)  weakly in L*(L%), (7.58d)
div(osvs) — div(ov)  weakly in L*((HY)"), (7.58e)

Js — J weakly in L*(L?), (7.58f)

and

s — ¢ strongly in C°([0,T]; L") N L*(WhT)  and a.e. in Qr, (7.58g)

o5 — o strongly in C°([0,T); (H)*)NLP(L")  and a.e. in Qr (7.58h)

for any r € [1,6) and p € [1,00).

Proof. In the following we denote by C a generic constant independent of § € (0, dp]. Using
(7.51a)) and elliptic regularity theory, it follows that

||506||L°°(H1)QL2(H2) < C.

Due to Korn’s inequality (see (2.23)) and (7.51a)) we have
IVsll 2y + V| vs| oo 2y < C.

Invoking the last two inequalities and (7.51a)), with exactly the same arguments as in the proof
of Proposition it follows that

sl m () )nree (aynrzaz) + 105l mrnynrewoncz) + [vslloz @)

+ V6|Vl ey + |div(esvs) || + [|div(osvs) |2 (1)) < C

L2(L%)

which implies (7.57).

Recalling (7.514)), (7.57)), and arguing as in the proof of Proposition[7.4] we obtain (7.58a)-(7.58d)
and ([7.58¢)-([7.58h)). The argument for ([7.58d) is slightly different. Indeed, applying (7.57) and

reflexive weak compactness arguments, we infer that

3
2

div(psvs) — 0 weakly in L*(L

)

for some limit function 6 € LQ(L%). Integrating by parts, we obtain

Vs — Vol < Clles — ¢l2:l|Alps — @)
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Integrating this inequality in time from 0 to T, using (7.57)), (7.58g)) and weak(-star) lower
semicontinuity of norms, this leads to

T T
[ 190 = Velia at < [ s = el 1A o)
< Cllgs = pll7(r2)llvs — @ll72(zy =0 asd—0.
By the product of weak-strong convergence and , this yields
div(psvs) — div(pv) weakly in L%(L%) as § — 0.

Consequently, by uniqueness of limits we obtain div(pv) =0 € L2(L%) which completes the
proof. O

7.3.5 Proof of Theorem

We divide the analysis into several steps:
Step 1: Passing to the limit in (7.51b)) and using (7.58g)), we conclude that
p>—1 a.e in Qr. (7.59)

Using similar arguments as in the proof of Proposition [7.4 and recalling ([7.49)), the quadruplet
(ps, 5,05, vs) fulfils

T
0—/ <<8t5057 H1+/V905 Vs &+ ms(ps)Vis - VE— g(ps,05)h(ps)E dx) dt, (7.60a)

/ /C (t)ovs -udx dt

+ / ¢ </ 2nDvs: Du+ vvs-u—e(Vps ® Vis): Vu dm) dt, (7.60b)
0 Q

T
0= / ¢ (/ 01050 + (XoVos — xo Vs — 05Vs) - Vo + f(ps,05)h(ps)d dm) dt (7.60c)
0 Q
for all ¢ € C§°(0,T), € € L*(H'), ¢ € H* and u € V, where y; is given by

ps = —€ Aps + e (ps) — Xp0s a.e. in Q. (7.60d)

Using Lemma with similar arguments as in the proof of Proposition [7.4] it follows that

T T
/ (Do, &) dlt = / / J-VE— V- vE+ glo, )h(@)E dr dt,
0 Q

0

(Oh0 s B = — /Q (o Vo — oV — ov) - Vo + (i, 0)h(p) da dt

for almost all t € (0,7) and all £ € L?(H'), ¢ € H'. Due to (7.57) and the continuous
embedding L>(L?) N L?(H!') — L*(L3), we have that

V65 © Vsl 4 gy < O
Using reflexive weak compactness arguments, this means that Vs ® Vs — 0 in L%(LQ) for

some 0 € L7 ((L2)%4). Applying (7.584) and (7.53g)), by the product of weak strong convergence
we obtain

Vs ® Vs — Vo ®@ Vo  weakly in L3 (LP) Vp e (1,2).
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Then, by uniqueness of weak limits we deduce that 8 = Vo ® V. Invoking similar arguments
as in the proof of Proposition and using (Vu € C°([0,T]; L?), we infer that

0:/2an:Du+yv~u75(V<p®Vg0):Vudx
Q

for almost all ¢ € (0,7) and allu € V.
Step 2: We now identify J. To this end, we pass to the limit in

/ Js-ndxdt=— ms(s)V(—eAps + e 1 (ps) — Xp06) - m da dt, (7.61)
Qr Qr

where n € L2(H') N L>°(L*>°) with n-n = 0 a.e. on Y7. Since J5 — J weakly in L?(L?) as
6 — 0, it follows that

/ Js-ndrdt — J-ndxdt asd— 0. (7.62)
QT QT

Due to the fact that VAps may not have a limit in L?(L?), we integrate the first term on the
r.h.s. of (7.61]) by parts to obtain

ms(s)V(—eAps) -m do dt = / eAps(ms(ps) div(n) +ms(ps) Vs -n) de dt. (7.63)

QT QT

By definition of the mobility ms, we observe that

Ims(z) —m(z)] < sup  |m(z)] =0 asd—0
—1<2<—145

for all z € R. Hence, it follows that ms — m uniformly, meaning
ms(ps) — m(p) a.e. in Qrp.

Since Aps — Ap weakly in L2(L?) and ms is uniformly bounded we conclude

/ eApsms(ps)div(n) de dt — eApm(p)div(n) de dt as § — 0. (7.64)
QT QT

To analyse the second term on the r.h.s. of (7.63)), we first note that m’ is given by

0 for u < —1,
m'(u) = { qoges (1 + w) m(u) + ($(1+ u))qO m'(u) forue (—1,1),
m’ (u) for u > 1.

Thus, we observe that m’(-) may be discontinuous in 1, and m/(-) is discontinuous in —1 if
go = 1 and m(—1) # 0. Therefore, we have to employ a more involved argument to show that

mj(ps)Vips — m/(p)Ve in L*(L?). (7.65)

Using that ¢ > —1 a.e. in {7, we obtain
/ Ims(ps)Vips —m' (¢) Vil da dt = / Imj(ps)Vips —m/ (9) V| da dt
Qr QT“{“P‘:I}

+/ |ms(ps) Vs —m' (@) V| de dt.
Qrn{e>—1}N{p#1}
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Since Vi = 0 on the set {|¢| =1} (see [92] Lemma 7.7]) we infer
/ s i0) Vs — (o) Vil ot = | (o) Vil da
Qrn{|e|=1} Qrn{lel=1}

<C |Veps|? da dt
Qrn{lel=1}

*)C/ |V|? dz dt = 0
Qrn{lel=1}

as 0 — 0, where we used the boundedness of mf(-) and the fact that Vo5 — Vi a.e. on Qrp.
On the set {|p| # 1} we know that mj(¢s)Ves — m’(¢)Ve almost everywhere. On account of

Lemma this yields

/ |mf(s)Vips —m'(9)Vp|> dz dt —0 as§— 0
Qr
which shows (7.65). With similar arguments as for ((7.64]), we obtain that
/ eApsmis(ps)Vps - ndz dt — eApm/(p)Vy -ndxdt asd— 0. (7.66)
Qr

Qr

For the third term on the r.h.s. of (7.61), using the uniform boundedness and continuity of
ms(+), the convergence ps — ¢ a.e. in Qr and o5 — o weakly in L?(H') as § — 0, we deduce

ti/ mes(ps)Vos-m de dt — ch/ m(p)Vo-ndxdt asd — 0. (7.67)
QT QT

It remains to show that

/Q mses)if (e Vs n— [ e mi )@ Vpm asdo0. (16)

Due to the boundedness and continuity of (1?)” and using similar arguments as above, it follows
that
ms(ps) — m(p) a.e.in Qr, (1/J2)N(<,05) — (1/)2)”(<p) a.e. in Q7.

Together with the weak convergence @5 — ¢ in L2(H?'), this yields

/Q e ms(s) (V)" (05)Veps - m da dt — i e tm(p)(W*)"(9) Ve - n da dt (7.69)

as d — 0. For the term involving v}, we first observe that ms(})” is uniformly bounded a. e.
in Q7. Hence, it is sufficient to show that

ms(s)(¥5)" (vs) = (m(¥')")(¢) = m(p)Fy) a.e.inQr asd— 0. (7.70)

If o(z,t) > —1 + 4, the convergence in (7.69) follows from the definition of ms(-) and ¥}(-)
(recall that ms(z) = m(z) and ¥} (2) = ¥*(z) if 2 > —1+ §). Thus, let us consider points where
¢(z,t) = —1. We define k(r) = max (0, min(3(1 +),1)). Then, for § with ps(z,t) < —1+6
we have

me (s (2,1)) (¥5)" (ws(x, 1)) = M(=1 + 8) F(=1 + §)k(=1 + §)© P
220, (= 1)F(—1)k(—1)%Po

= (m@")") (e(x,1)).
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If ps(x,t) > =146 and @s(z,t) — —1, we have

ms (s (@, ) (¥5)" (g5 (1)) = m(ps(x, 1)) (1) (s(x, 1))
(s (, 1)) F (s (2, 1)) k(s (2, 1)) 707
= (m(¥")") (¢(z,1)).

as 6 — 0, where we used that m, F, k € C°. Hence, we have shown (7.70). We remark that the
assumption ¢o > po is essential since otherwise it holds that k(—1)% P = co. Together with
the strong convergence o5 — ¢ in L?(H') as § — 0, we obtain

/Q e~ ms(ps) (¥5)" (vs)Vips-n da dt — i e tm(p) ()" () Vemdrdt asd—0 (7.71)

which proves (7.68). Due to (7.62))-(7.64]) and (7.66])-(7.68]), we conclude that (7.47d)) holds.

Step 3: Attainment of initial conditions follows with exactly the same arguments as in the
proof of Proposition Moreover, the uniform estimates and weak(-star) lower semicontinuity
of norms imply that

S = —div(2nDv — £ (Vo @ V) + vv € L3 (0, T; V).

Hence, by Lemma there exists a unique pressure p € L%(O, T; L3) satisfying —Vp =S in
the sense of distributions which completes the proof.

7.4 The deep quench limit

In classical Cahn—Hilliard models, the deep quench limit is established by sending 8 — 0 for the
potential

Yiog(#) = 5 ({1 + )1+ ) +In(1 @)1~ ) + 21— ¢?) Ve (~1,1).

In this case, one obtains solutions for the so-called double obstacle potential given by

Yaolr) = {%(1 1) ol <1,

400 else.

This is not the case in our situation, since solutions do in general not fulfil ¢ < 1. However, we
may, e. g., consider the potential (7.46]). To avoid being too technical, we extend both ! and
¥? (see (7.46al),(7.46b))) quadratically for r > 1, and without loss of generality we assume that

0 < % in order to ensure that ¢”(1) > 0. Then, we define

+00 for r < —1,
PH(r) = Pg(r) = 4O (In(1+7)(1+7) —7) for |r| <1,
0(2In(2) — 1) + 0In(2)(r — 1) + 4(r — 1)? forr > 1,

and 12 := 12 where 92 is given by

~2(6. +2010(2)) + 0 + (20, — O1n(2)) (r + 1) + =2LF20ME (4 192 for p < 1,

YR (r) = 90703111(2) " %Tz i 9C+66’7;091n(2) for |r| < 1,

(1 —2In(2)) —0In(2)(r — 1) + %ln(g)(r —1)2 for r > 1.



7.4 The deep quench limit 187

Then, as 6 — 0, we see that 1} converges formally to [ [~1,00] defined by

oo for r < —1,
fi1.00(r) = {0 else

and 17 converges formally to ¢3 defined by

—2e 4 20.(r +1) = 3e(r+1)2 forr < -1,

P(r) =

;g2 0 for [r] < 1.
,(7,_1)2 for r > 1.

S el

We have the following result:

Theorem 7.17 Let the assumptions of Theorem be fulfilled and define ¥? as above. Then,
there exists a quadruplet (p, J,o,v) satisfying

a) p € H'((H)*)nC([0,T); L) N L®(H') N L*(H?),
b) ¢(0) = o in L? and Ve -n =0 a.e. on X,

¢) p>—1a.e inQr,

d) o € HY((HY)*)NC°(L2) N L®(L8) N L2(HY),

e) o(0) = og in L2,

f) J e L*(L?),

g) v e L*H),

and solving

T
/ (Orp(t) (D) g1 lt = / J-Ve de di + / 90 IM()E — Vo - vE de dt,
0 Qr

Qr

(0o, d) = /Q(—XUVU +x,Vo+0v)-Vo— f(p,0)h(p)¢ dz, (7.72)

/277Dv:Du—l—uv-udxz/a(Vgo@Vga):Vudx
Q Q

for almost all t € (0,T) and all £ € L*(H'), ¢ € H', u € V, where
J=—m(o)V(=elp + £ (¥*)(¢) = Xx,0)

holds in the sense that

/Q Jon da di = - / eAg div(m(p)n) +e L (m(©2)")(9)Ve n—xem(¢)Vo-n dz dt (7.73)

for allm € L*(0,T; HY) N L*>(0, T; L) with n-n =0 a.e. on Y. Furthermore, there exists a
unique pressure p € L3 (L3) satisfying

—Vp = —div (2nDv — (Vo ® V) + vv in L3 (V*).
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Proof. Let 6 € (0,1) and denote by (vs,Jg,00,Vg) the solution according to Theorem
corresponding to ¥y = z/;é + 1/12 with wé, 1/13 , as defined above. From weak(-star) lower semi-
continuity of norms, we have, thanks to Lemmas and the following bounds that are
independent of 6 € (0,1):

leollme (i) ynneayncz a2y + 1JollL2@we) + llooll )y ynree (Leynrz(m)
+ ||V9||L2(H1) + ||diV((p9V9)||L2(L%) + HdiV(O'QVQ)HLZ((HI)*) <C. (774)

Furthermore, as # — 0 it holds (at least for a non-relabelled subsequence) that

Yo — P weakly-star in  H*((H')*)n L>(H') N L*(H?), (7.75a)

o9 — 0 weakly-star in  H'((H')*) N L>(L%) N L2(HY), (7.75b)

Vo =V weakly in L*(HY), (7.75¢)

div(peve) — div(pv) weakly in L? (L%), (7.75d)
div(ogvy) — div(ov) weakly in LA((HY)"), (7.75€)
Jg—=J weakly in L*(L?), (7.75f)

and

o — ¢ strongly in C°([0,T); L") N LA(W'")  and a.e. in Qr, (7.75g)

o9 — o strongly in C°([0,T]; (HY)*)NLP(L")  and a.e. in Qp (7.75h)

for any r € [1,6) and p € [1,00). Due to the bound ¢y > —1 a.e. in Qr for all § € (0,1), we
obtain that ¢ > —1 a.e. in Qp. Then, with exactly the same arguments as above, we can pass
to the limit & — 0 to obtain (7.72). It remains to pass to the limit in

/ Jo -ndxdt = —/ eApg div(m(pe)n) + 5_1gk(<p9)q°_1m(<pg)Vgpg -mdxdt
QT QT

- /Q e (m(¥3)") (we) Vo - 1 — xem(ps)Voy - n da dt, (7.76)

where k(pyg) = max <O,min (1,5(1+ @9))). Invoking the boundedness of k& and m together
with o > 1 and ([7.74)), we obtain

/ 5_1gk(<p9)q°_1m(<p9)Vg09 -ndxdt—0 asf—0.
Qr

The remaining terms in ([7.76]) can be treated with exactly the same arguments as above, and
we deduce in the limit § — 0 that

/Q J-ndedt= 7/9 eApdiv(m(e)n) + e (mg)") (©)Ve -1 — xom(p)Vo - dz dt.

Finally, attainment of the initial conditions can be shown as before which completes the proof. [

7.5 Further applications

Now, we consider the model (3.28)) supplemented with (7.3) and with the choices T'y = 0,
Iy =Ty = P(¢)(Xo0 + Xp(1 — ¢) — p) Where

(1—¢?) forp| <1,
Ply) =
(?) {0 else.
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Moreover, we take m(yp) = P(p) and

Yo = thog() = & (0014 @)1 +9) + (1 — @)1~ 9)) + (1~ %) Ve (~1,1).
Finally, we set
Y=y = g(ln(l +e)L+e)+In(l - )1 -g), ¢*= %(1 —¢?).
Then, we have the following result:

Proposition 7.18 (degenerate case) Let Assumptions (ii),(v), be fulfilled, let m and P be
defined as above and let 6 € (0,1). In addition, we assume that || <1 a.e. in Q and

/Q Yolpo) + B(po) < C

for a positive constant C. Then, there exists a quadruplet (p,J, o,v) satisfying
0) ¢ € HY((H')") N C((0,T); L2) 0 L=(HY) 1 L2(H),
b) p(0) =g in L? and Vo -n =0 a.e. on X,
¢) ol <1 a.e. inQr,
d) o€ HY((HY)*) N L>®(L% N L3(H'),
e) o(0) = oq in L?,
f) J € L2(L?),
g) v e L*H),

and solving
T
0 :/0 (Oup(t),&(8)) prr dt — /QT (J =V v) - Vede dt
= [ PO+ %007 + x0l1 = 9) +28¢)€ — T PU)S do

0= (00,9)m + / (XoVo —x,Ve —ov) -V do (7.77)
Q

+ [ P (G +x0)7 + x5 (1= )+ Bp)0 = ™ (P ()6 o
0:/9277Dv: Du+uv~udx—/ﬂs(V<p®V<p) : Vudze
for almost all t € (0,T) and all ¢ € L*(H'), ¢ € H', u € V, where
J = —m(p)V(=eAp + 7 y(p) = x40)
holds in the sense that
| amdzat== [ capdivtmlem) +e i) () Ve n = xm(e)Vo m do dt (7.7

for allm € L*(0,T; HY) N L>=(0,T; L) with n-n =0 a.e. on 7. Furthermore, there exists a
unique pressure p € L?(L3) satisfying

—Vp = —div(2qDv — e(Vp ® V) + vv in L2(V*).



190 7 A tumour growth model with degenerate mobility

Remark 7.19 We split the source term in the weak formulation (7.77)) since ¢j(r) — too as
r — £1, while the product P given by

(PYp) (r) = § (In(1+ @) (1 +9)(1 = ¢) = In(1 = )(1 = 9)(1 +¢)) = beip(1 — ¥?)

is bounded on [—1, 1] and satisfies (P) (r) — 0 as r — £1.

Proof. The proof follows with slight modifications of the arguments in the proof of Theorem [7.11}
We will formally sketch the arguments that can be deduced rigorously with the same arguments
as used above.

Step 1: First, we replace g, f and h by Iy, I'; in (7.10a)), (7.10d]), and we regularize m and

¢ as above. Furthermore, we denote by (vs, ts, 05, vs) the solutions to the corresponding
2

system. Then, we take £ = us + 44,05 in (7.10a)), u = v4 in ([7.10b)), we multiply (7.10d)) with

X005 + Xo(1 — ¢s5) and we use (7.10c) to obtain

d 2Xi 2, € 2 1 O
£ e - - N Tvsl? d
rTe los|” + 2\V906| +e  Ps(ws) + N(ps,05) + 2|V5| T
+ / ms(9s)|Vs|® + [V Ngs|* 4 2n|Dvs|* + v|vs|* + P(s)(Xo0s + X (1 — 05) — ps)? da
Q
X2
= 4X—*" / —ms(ps) Vs - 05 + P(05)(Xo05 + X (1 = 95) — ps) s da, (7.79)
o JQ
where

N(ps,05) = %|05|2 + Xp05(1 —¢s), Ngs = X005+ Xeo(1 —@5).

Using Holder’s and Young’s inequalities along with the assumptions on m(-) and P(-), we obtain

2
X2 |[Voslia — ClIVeslis < [ [VNoaf dz,
Q

2
X 1
4;“0/ —m(ps) Vs - Vs da| < 5/ m(es)|Vus|? dz + C[|Vis|3z,
o JQ Q
X2 1
4780/ P(5)(No,s — ps)ps da| < 5/ P(ps5)(No,s — ps)* dz + Cllgs |2
o Q

Q
3Xo 2
[ xoos(0 - es(0) as| < 2lastl3 + 0 (14 Elostol).

where the last inequality holds for all ¢ € (0,7). Integrating (7.79) in time from 0 to ¢ € (0, T7,
and using the last four inequalities along with the non-negativity of 15, a Gronwall argument
yields

sl Loo (ary + 105l oo (L2ynr2 () + Vsl L2y + ||\/5V6||L<x>(L2) + [[vs(@s) | oo (L1
+[[vVms(ps) Vsl zaz) + [V P(es)(Xoos + Xo (1 — s) — ps)llz2z2) < C. (7.80)

Step 2: Now, we will derive entropy estimates. Taking £ = ®5(p;) in (7.10a) and using (7.10c)),
we obtain

d
i L @stes) dot [ gl + e @ en) Dol do [ Plos)e ) (0)Bile) do
Q Q Q

= /QP(%)((XJ + X0 )05 + X (1 — 5) + A5 — e (%) (p5)) R (s) da

+ / Vs - Vs — (42)(05)| Vigs ? da. (7.81)
Q
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Next, we observe that

(1 r2) (R2=)=n0) 4 G20} forr e (1-4,1),
P(r)®)(r) (1—172) (%(ln(l +7r)—In(1 —7))) for |r| <1-—4, (782)
(1-12) (1n(5)—12n(2—5) 4 (7«—652—_155)0 for r € (—1,1—0),

0 else.

Since 61In(d) — 0 as § — 0, this implies that |P(p5)®5(vs)| < C for a constant C' independent
of § € (0,1). Then, using (7.80) and the specific form of 12, we can estimate the r.h.s. of (7.81])
by

i P(5)((Xo + X5 + X (1 — @5) + eAps — e~ (%) (105)) P (s) da

" ] [ x5 Vos - WP (o) Vsl @z
Q

3
<C (A llosll + leslzn) + S1AwslZe (7.83)

Now, using the convexity of ¥} () and ®4(-) along with the non-negativity of P(-) and (1})'(0) =
%(0) = 0, we obtain

>0 f < 1)
P(r)e™ (45)' (r)®5(r) {_ 0 fZ :r: =

Hence, we can neglect the last term on the 1. h.s. of (7.81)). Integrating ([7.81)) in time from 0 to
t € (0,T), using (7.81) and ®s(r) < ®(r) for § small enough, a Gronwall argument along with
(7.80) and elliptic regularity theory yields
sl Lo (rrymr2 a2y + 1105 || oo (p2ynr2 ey + Vsl n2 gy + VOV oo (22)
1/2
+ 195 (@8)ll oo ) + 1®5(05) [l ety + 11((45)") / Vs|zzwz)
+ [1(ms(0s) Vs |l 2 w2y + 1V P(9s) (Xo0s + Xo(1 = 95) — ps) 222y < C. (7.84)

In order to obtain the L°(L5)-bound for s, we need a modified argument. Multiplying (7.10d)
with o2, integrating over 2 and by parts and using (7.10d)) yields

a1
dt 6

- /Q5X«>V<P6 - Voslos|* = P(gs)((Xe + Xe)os + Xe(1 — 05))03 dz

Josls + 5% [ Vool do
Q

+ [ Plos)(evh(es) — capa)o da. (7.85)
For the first term on the r.h.s. of , we can argue similar as above to obtain
[ x0T Vosloslt = Ploa)((xa + o) + (1~ ps))of d
< C (1 lealie) (14 losle) + x| [Voslosl o
Moreover, using the boundedness of the product P yields

<C(1+ ||os)|%) -

/Q P(gs)e "0 (0s)0? da
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Now, observing that |V (o3)| = 3|Vo;s||os|? and using the boundedness of P(-) along with the
Sobolev embedding H' C LS, we obtain
[ Plosteavsof as| < Clagslzloslollodlus
Q
< ClAgs||z2lloslZe (lo3 ]2 + 1V (@3) L)
<C(1+[lesliz) (1+losllSe) + xo /Q |Vos|?|os|* da.

Employing the last three inequalities in (7.85]) and neglecting the term 3x, [, [Vos|?|os|* dz
which is non-negative, we obtain

d1
dt 6
Then, applying (7.84), a Gronwall argument yields

losllge < C (1 + leslizr) (1+ llosllge) -

o]l Lo ey < C,
and with similar arguments as before (see also [81]) we deduce

<C. (7.86)

185l L2((ar1y) + 1005l L2 (rny-) + ldivesv)llzz o2y + 1 div(asvs)ll 4 gy <

Finally, with exactly the same arguments as in [62], it follows that
/(|§06| —1)3 dz < C§ for all § > 0 small enough (7.87)
Q

and

/ 5P dedt < C where 35 = —my(08)V(—ehps + e 0 (05) — xoos).  (7.88)
Qr

Passing to the limit As before, we can extract non-relabelled subsequences to obtain for
0 — 0 that

05 = P weakly-star in -~ H'((H")*) N L>=(H") N L?(H?),
o5 >0 weakly-star in  H'((H')*)n L>(L%) N LA(HY),
\ s weakly in L*(HY),

div(psvs) — div(pv) weakly in L? (L%),

div(osvs) — div(ov) weakly in LA((HY"),
Js—3J weakly in L*(L?),

and

@5 — ¢ strongly in C°([0,T); L") N L*(W™)  and a.e. in Qrp,

o5 — o strongly in C°([0,T]; (H")*)NL*(L") and a.e. in Qr
for any r € [1,6) and p € [1,00). Then, we can pass to the limit with exactly the same arguments
as before, except from the source terms. Indeed, inserting the expression for s, multiplying

with £¢ where € € C§°(0,T) and ¢ € H', and integrating over 7, the resulting terms are given
by

i/ﬂ P(05) ((Xo X005 + X (1—05) +eAps —e (1) (9s) —~H(¥3) (ps)) €@ da dt. (7.90)



7.5 Further applications 193

Since 5 — ¢ weakly in L?(H?) and a.e. in Qr and 05 — o weakly in L2(H!), using the
linearity of (1)2)'(-) yields

/Q P(p5)((Xo + Xp)Ts + X (1 = @5) + s — e (4% (5))) o da dt

- P(0)((Xo + Xo)0 + X (1 — ) +eAp — e (%) ()@ dz dt as 6§ — 0. (7.91)

For the term involving (¢)§)" we need a more subtle argument. First, using the expression for
(¥3)" and the fact that (¢§)(0) = 0, it follows that P(r)(¢}) (r) = 0P (r)(®}) (r) which is given
by (7.82). Then, it is easy to check that P(1})" is uniformly bounded and therefore, it suffices
to show that

P(ps)(¥5) (ws) = P(p)(¥')' () a.e. in Qr. (7.92)

For points (z,t) € Qp where |p(z,t)| < 1, this follows from the definition of (})’ since
(¥}) (z) = (1) (2) for |z] <1 — 4. Therefore, we consider points (z,t) € Qr where |p(z,t)| = 1.
Without loss of generality, we can assume @s(z,t) — 1 = p(z,t). Following the arguments
in [62], we first consider ¢ with ¢s(z,t) > 1 —J. Then, it follows that

Plis(,0)(3) (93(2,6)) = (1 = 5w, 1)) (=)0 . Lesap= (=t
<5(2-6)0 (m(z—s;—m(a) n 5(2175))
—0=(P@")(1) asé—0,

where we used that §In(d) — 0 as 6 — 0. For ¢s(z,t) <1 — 6 and ps(z,t) = 1, we have

P(ps(z, 1) (05) (w5 (2, 1)) = §(1 = w52, ) (1 + @s(z, 1)) In(1 + @5(x, 1))
- g(l + (,Og(l‘,t))(l - @5($’t)) 11’1(1 - @6($7t))
—0=(P@")(1) asé—0,

where we used again that xIn(z) — 0 for £ — 0. Putting all the arguments together, we can
pass to the limit in the source terms.

For the pressure, the argument is slightly different. Using that || < 1 a.e. in Qp, we obtain
that [¢[| (o) < C. Then, using Gagliardo-Nirenberg’s inequality gives

T T
/Q Ve ® Vel dedt < C / IVl dt < © / loll3 ez dt < Cllpl3arey < C-
T

Therefore, we have ||[Vo ® Vol|12(1,2) < C and, in particular,
—div (2nDv — (Vo @ V) +vv  in L*(V*).
Consequently, the pressure satisfies p € L*(L3) and
—Vp = —div(2nDv — (Vo ® V) + vv  in L*(V*),
which completes the proof. O

Since all the estimates deduced above are independent of 6 € (0,1), we have the following
result:

Proposition 7.20 (deep quench limit) Let the assumptions of Proposition be fulfilled.
Then, there exists a quadruplet (o, J,o,v) satisfying
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a) ¢ € HY((HY)) N O([0,T); L) 0 L= (H') N L3(H?),
b) ©(0) = @0 in L? and Vo -n =0 a.e. on Or,

¢) lp| <1 ae inQr,

d) o € HY((HY)*) N L=(L%) N L2(HY),

¢) 0(0) = og in L2,

f) Je L*(L?),

g) veL*H'),

and solving

T
0= [ 0. &0 - [ @-ov) Veara
0 Qr
= [ PO+ x)7 +xp1 = 9) +ebp+ g do
0= (00,9)m + / (Xo Vo — X,V —ov) - Vo da (7.93)
Q
+ [ PG +x0) 4 x(1 = 9) + €8+ 0p)o
O:/ 2nDv: Du—i—uv-udx—/s(Vgo@Vgo) : Vude
Q Q

for almost allt € (0,T) and all £ € L*(HY), ¢ € H', u € V, where
J= —m(gp)V(—sAgo - 6_190410 - X4p0')

holds in the sense that

/ J-ndxdt =— / eApdiv(m(p)n) — e 10.m(p)Ve -1 — xom(p)Vo -ndr dt (7.94)
QT QT

for allm € L2(0,T; HY) N L>(0,T;L*>) withn-n =0 a.e. on Y. Furthermore, there exists a
unique pressure p € L*(L3) satisfying

—Vp = —div(2nDv — (Vo @ Vo)) +vv in L*(V*).

Proof. This follows from the estimates in Proposition and with the same arguments as in
the proof of Theorem [7.17] O

Remark 7.21 Since v satisfies a homogeneous Dirichlet boundary condition and due to Korn’s
inequality, all the results in this chapter hold true for the case ¥ = 0 which corresponds to a
Stokes equation for the velocity v.

Furthermore, by scaling the viscosity appropriately, i.e., choosing 7 = §, when passing to the
limit § — 0 one recovers a Darcy law for the velocity. In the limit 6 — 0, the convection terms
can be treated similarly as in [81, Sec. 5] and for the velocity field we refer to the arguments
in |21, Sec. 7]. However, we point out that solutions of the Cahn-Hilliard-Darcy model are less
regular than for the Cahn—Hilliard—Stokes model.



A tumour growth model with singular potentials

In this chapter we will consider the model studied in Chapters [5] and [6] but now with singular
instead of regular potentials. Classical examples are given by the logarithmic potential

Plog (1) = g (In(1+7r)(1+r)+In(1-—r)(1-7r))+ ‘9—2“(1 —r?) Vre(-1,1)
for constants 0 < § < . and the double obstacle potential

0 for r € [-1,1],

Yao(r) = I_1,1(r) + %(1 — 7"2) Vrel[-11], I_iq(r)= {
+o00 else.

These kind of potentials are quite popular since they force the phase field to stay in between
the physical bounds ¢ € [—1,1]. Although they have been studied quite extensive for the
classical Cahn—Hilliard equation, contributions for models with source terms are rather rare in
the literature. Indeed, these causes several difficulties since bounds for the source terms are
quite delicate to establish, and specific assumptions on the source terms have to be imposed. In
particular, the property of mass conservation is lost which plays a crucial role in the analysis.
We remark that the problem we study is not only important for tumour growth dynamics,
but also for, e.g., the inpainting problem for image reconstruction (see, e.g., ) and the
Cahn—Hilliard—Oono (see, e. g., ) equation which has applications in mathematical biology.

We study the following system of equations

div(v) =Ty (p,0) in Qr, (8.1a)
—div(T(v,p)) + vv = (u+ xo)Ve in Qr, (8.1b)
Orp +div(pv) = Ap+Ty(p,0) in Qr, (8.1c)
p=9'(p) —Ap—xo  inQr, (8.1d)

0= Ao — h(p)o in Qr, (8.1e)

where the viscous stress tensor T and the symmetrised velocity gradient are given by

T(v,p) := 2n(@)Dv + A(p)div(v)I — pI, Dv := %(Vv + (Vv)T).

195
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We furnish (8.1)) with the initial and boundary conditions

Ve-n=Ve-n=0 on X, (8.2a)
Vo-n=K(l-o0) on X, (8.2b)

T(v,p)n =0 on X, (8.2¢)

©(0) = o in Q. (8.2d)

To establish our results, we need the following
Assumptions 8.1 Throughout this chapter we make the following assumptions:

(A1) ford € {2,3}, Q C R? is a bounded domain with C3-boundary.
(A2) the positive constants v, K and the non-negative constant x are fized.
(A3) the viscosities n, A € C*(R) N W1>°(R) satisfy

no <nt)<mn, 0<A{t)<XI VteR

for positive constants ng, m1 and a non-negative constant Xy, and the function h €
C°(R) N L*(R) is non-negative.

(A4) the source terms I'y and T'y, are of the form
Iv(p,0) =by(p)o + fu(®), Telp,0) =by(p)o+ fo(0), (8.3)
where by, fy € COHR) N WL>(R) and by, f, € C°(R) N L>(R).
It can be easily checked that the assumptions on b, and f, are enough in order to prove
Theorem Indeed, the more restrictive assumption in Assumptions [5.1] is only needed in
order to show the existence of strong solutions (cf. Theorem [5.11)). The Galerkin ansatz in the

proof of Theorem for velocity and pressure can be refined with a similar argument as in the
proof of Theorem [{.4] and therefore the Lipschitz continuity of b, and fy is enough.

8.1 Main results

8.1.1 The time-dependent problem for Brinkman’s law

We begin with a suitable notion of weak solutions for the model with the double obstacle
potential 14, and the logarithmic potential 1)1og.

Definition 8.2 A quintuple (¢, u, 0, v, p) is a weak solution to the CHB system (8.1)-(8.2) with
the double obstacle potential 14, if the following properties hold:

(a) the functions satisfy
o€ HY0,T; (H)Y* )N L®(0,T; H') N L*(0,T; HY), wpe€ L*0,T;H"),
o€ L>*(0,T;H?), velL*0,T;H'), pelL*0,T;L%
with ¢(0) = ¢ a.e. in Q.

(b) equation (8.1a) holds a.e. in Qp, while (5.5a)), (5.5b) and (5.5d) are satisfied for a.e.
t € (0,T) and for all ® € H! and ® € H'.
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(cl) for a.e. t € (0,T), p(t) e K:={f € H : |f| <1 a.e. in Q} and
[ 3o +0)(C =)~ Ve V(- p)de <0 vCEK. (8.4

We say that (¢, 1, 0,v,p) is a weak solution to (8.1)-(8.2) with the logarithmic potential tiog if
properties (a) and (b) hold along with

(c2) |o(z,t)| <1 for a.e. (z,t) € 2 x (0,T) and for a.e. t € (0,7T),
130 =il = Vo VCdz =0 e e (85)

Our first result concerns the existence of weak solutions to the CHB system (8.1)-(8.2)) with
singular potentials.

Theorem 8.3 Suppose Assumptz'ons (A1)-(A4)) hold along with

(B1) the source terms Ty and T, are of the form [B.3) with f, € C'([-1,1]), f, € C°([-1,1)),
by € C%([-1,1]), b, € CY([-1,1]) satisfying

bol(£1) = ba(£1) =0, (1) = A1) <0, fo(-)+ A1) >0, (86)
(B2) the initial datum ¢q belongs to K.

Then, there exists a weak solution (, 1, o,v,p) to (8.1)-(8.2)) with the double obstacle potential
Yo In the sense of Deﬁnition and, in addition, o € [0, 1] almost everywhere in Qr.

In addition, suppose the following assumptions are satisfied:

(C1) there exists a constant ¢ such that for any 0 < § < 1,

lby(s)] < cd, |by(s)| <cd  forallse[-1,—-140]U[1l—0,1].

(C2) it holds by(s)log(1£2) € CO(]-1,1]) and by(s) log(1E2) € CO([-1,1)).

1—s 1—s

(C3) the initial condition po € H(Q) satisfies |¢o(z)| < 1 for a.e. x € Q.

Then, there exists a weak solution (¢, u,o,v,p) to (8.1)-(8.2) with the logarithmic potential iog
in the sense of Definition . Furthermore, for a.e. t € (0,T), it holds that

t
/Q brog(0(®)) + 1V dz + / /Q VP + 20() DV + |v? da dt
t
< / / XV Vo + (T — oLy (g () — Ag) dx dt
0 Jo (8.7)

t
+ / / 2n(p)Dv: Du+vv - uds — (Ye(¢) — Ap)Ve - ude dt

0 Q

+ / Vrog(00) + L[ Vigo? de,
Q

where u is the unique solution to the divergence problem in Lemma with data f =Ty (p,0)
and a = ﬁ(fﬂ I'yv(p,0) dz)n, and o € [0,1] almost everywhere in Q.
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Example 8.4 We now give a biologically relevant example for the source terms I'y and I', that
satisfy . Following the arguments in Chapter 3| in a domain ) occupied by both tumour
cells and healthy cells, we denote by p; the actual mass density of the healthy cells per unit
volume in 2 and by p; the (constant) mass density of the healthy cells occupying the whole of
Q. Then, it follows that p; € [0, p1] and the volume fraction of the healthy cells can be defined
as the ratio u; = % € [0,1]. Let p2, p2 and us be the actual mass density of the tumour cells
per unit volume in 2, the (constant) mass density of the tumour cells occupying the whole of Q,
and the volume fraction of the tumour cells, respectively. Assuming there is no external volume
compartment aside from the tumour and healthy cells, we have u; + us = 1. Then, for some
function I'(p, o) one obtains

1 1 1 1
I'v=al'y T,=psl'y, a=———, pg:==—+ —.
P2 P1 P1 P2

We choose
T(p,0) =Pl —¢*o—Ap for p € [-1,1]

where P, A > 0 are the constant proliferation and apoptosis rates, so that proliferation occurs
only at the interface region {—1 < ¢ < 1}. Furthermore, we have

be(p) = aP(L— %), bo(p) =psP(L—¢%). fulp) =—adp, [o(e) =—psAe,
where by (+1) = b, (+1) = 0 and

Foll) = ful1) = —A% <0, L=+ fo(-1) = A2 >0,

P2

It is also clear that b, (s) = psP(1 — s?) satisfies (C1)) and (C2).

8.1.2 The stationary problem without flow

We will also consider the stationary problem without flow, i.e., equations (8.1d])-(8.1€|) posed in
Q and

0=Ap+T,(p,0) in £, (8.8)

together with the boundary conditions (8.2a))-(8.2b)) posed on 9f2. For the stationary problem
with flow, we refer to [59).

Definition 8.5 A triplet (¢, i, o) is a weak solution to the stationary system with the double
obstacle potential ¥4, if the following properties hold:

(d) the functions satisfy

o€ HyYy, pecHy, ocH.
(e) equations (8.1€)), (8.8) hold a.e. in © while (8.2a))-(8.2b)) hold a.e. on 0.
(f1) (8.4) holds along with p € K = {f € H': |f| <1 a.e. in Q}.

We say that (@, u,0) is a weak solution to the stationary system with the logarithmic potential
Y1og if properties (d) and (e) hold along with

(f2) (8.5) holds along with |¢(z)| < 1 for a.e. x € Q.
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Proposition 8.6 Under Assumptions (8.1, (Al)-(A4) and with £,(-) = by(-) = 0, there
exists a weak solution (o, u, o) to the stationary model with double obstacle potential 1qo in the
sense of Definition . If, in addition, and hold, then there exists a weak solution
(¢, 1, 0,v,p) to the stationary model with logarithmic potential 10g in the sense of Definition .
Moreover, it holds that o € [0, 1] almost everywhere in Q.

8.1.3 The time-dependent problem for Darcy’s law

By setting the viscosities 7(-) and A(-) to zero, the CHB model (8.1])-(8.2)) reduces to a Cahn—
Hilliard—Darcy (CHD) model consisting of (8.1a)), (8.1c)-(8.1¢]) and the Darcy law

1
ve—> (vp . xo—)w) in Qr, (8.9)

furnished with the initial-boundary conditions (8.2a))-(8.2b)), (8.2d)) together with the Dirichlet
boundary condition

p=0 on Y. (8.10)
We begin with a notion of weak solutions for the CHD model with singular potentials.

Definition 8.7 A quintuple (¢, u, 0, v, p) is a weak solution to the CHD system (8.1a)), (8.1c)-

B-1€), (-9, (8-2a)-(8:2H), (B-2d)), (8-10) with the double obstacle potential g, if property (cl)
from Definition holds along with:

(g) the functions satisfy
e L0, T; HY) N L*(0,T; H3) nWhE(0,T; (HY), e L2(0,T;HY),
o€ L>®(0,T;H?), veL*0,T;L%), pe L*0,T;L*) NL5(0,T; H})
with ¢(0) = ¢g a.e. in Q.

(h) for a.e. t € (0,T) and for all ® € H!, x € H} and ® € H!, (5.5b) and (5.5d)) are satisfied
along with

0= /(Vv — (4 x0)Vep) - & — pdiv(®) dz,
“ ) (8.11)
0= /Q S (V= (1 +x0)Ve) - Vx — Iv(p,0)x da.

We say that (¢, u,0,v,p) is a weak solution to the CHD system (B.1a)), (8.1d)-(8:1¢), (8.9),
(8:2a)-(B-2b), (8-2d), (B.10) with the logarithmic potential ¥ if property (c2) in Definition [8.2]
holds along with properties (g) and (h).

Remark 8.8 The variational equality (8.11)); comes naturally from when we neglect the
viscosities (o) and A(p). Meanwhile, the variational equality (8.11]), arises from the weak
formulation of the elliptic problem obtained from taking the divergence of Darcy’s law in
conjunction with the equation and the boundary condition .

Theorem 8.9 Under (Al))-(A3), (Bl) and (B2)), there exists a weak solution (¢, u,o,v,p) to
the CHD model with double obstacle potential 1, in the sense of Definition[8.7 and, in addition,

o € [0,1] almost everywhere in Qr.

Under —, , , —, there exists a weak solution (¢, u,o,v,p) to the CHD
model with logarithmic potential 1.5 in the sense of Definition and o € [0,1] almost
everywhere in Qr. Furthermore, for a.e. t € (0,T) the inequality holds with n() = 0.



200 8 A tumour growth model with singular potentials

8.2 The Brinkman model — Proof of Theorem (8.3

The standard procedure is to approximate the singular potentials with a sequence of regular
potentials, employ Theorem [5.5] to obtain approximate solutions, derive uniform estimates and
pass to the limit.

8.2.1 Approximation potentials and their properties

Double obstacle potential

We point out that in order to use Theorem the approximate potential should at least belong
to C?(R). We fix § > 0 which serves as the regularisation parameter, and we define

L= (143 +L forr>1+5,
&%( -1)3 forr € (1,1 +9),
Baos(r) =120 for |r| < 1, (8.12)
= (r+1)3 for r € (=1 —0,-1),
%( 1+ +4& forr<-1-4

Formally, it is easy to see that Bdoyg(’)") — I—1,1)(r) as 0 — 0, and so

Vdo,s(7) = Baos() + %(1 —r?) (8.13)

will serve as our approximation for the double obstacle potential. Let B40,5(1r) = Béo) s(r) =
(r+ 1/1210,5(7’)) € C1(R) denote the derivative of the convex part Bd075:

1(r—(143)) forr>1+54,

Sk (r —1)2 for r € (1,1 +9),

for |r| <1, (8.14)
— 555 (r +1)? forr € (-1 —4,-1),

Lr+(1+3%)) forr<-1-4.

ﬂdo,é (7”) ==

Then, it is clear that Bqo,s is Lipschitz continuous with 0 < 8}, 5(r) < 3 for all r € R.

Proposition 8.10 Let Bdo,é and V40,5 be defined as above. Then, there exist positive constants
Co and Cy such that for all r € R and for all § € (0,1/4),

Ydo,s(r) = Colr|* — C1, (8.15a)
0Bao,s(r)? < 2Bao,s(r) < 0(Bao,s(r))? +1, (8.15b)
8(Bao,5(r))? < Bao,s(r)- (8.15¢)

Proof. As 14,5 is bounded for |r| < 1+ 4, it suffices to show that (8.15a) holds for |r| > 14 4.
By Young’s inequality it is clear that for r > 14 ¢ with 6 € (0,1/4),

baos(r) 22 (r = (L+8))" = 1% 2 Colr? - €,

and a similar assertion holds also for r < —1 — ¢. This establishes (8.15a)).
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From the definitions of Bdo,(; and fqdo,s we see that if » € (1,14 96)

5830() = 153~ V' < 153 (r = 1)° < 2uaos(r) <

and if r >1+4+6
0Baos(? =1 (r— (1+3))" < 2Ba0s(r) < 3 (r = (14 3))° +1 < 0Bacs(r)® + 1.

Similar assertions also hold for the cases r € (—1—4, —1) and r < —1—§ which then yield (8.15b)).

< 1+ 6Bdos(r)?,

[SSRRST

A straightforward computation shows

L for jr| > 1+,
/ 0
Bdo,é( ) - 5 Bdoé {O for |’I"| < 1,

1
5(@/10,5(7"))2 = 5*3(7" ) 5*
5(Bhos(1)? = 25 (0 + 1)? S — 55 (r +1) = Floslr) forr e (1 -6,-1),

and so (8.15¢) is established. O

r—1) =B, 5(r) forre (1,1+9),

Aside from approximating the singular potential, it would be necessary to extend the source
functions by, b,, fv and f, from [—1,1] to the whole real line. Since the solution variable ¢
is supported in [—1,1] (see (c1) of Definition [8.2)), the particular form of extensions outside
[—1,1] does not play a significant role and we have the flexibility to choose extensions that
would easily lead to uniform estimates. Hence, unless stated otherwise we assume that by, b,
fv and f, can be extended to R such that f, € C°(R) N L>*(R), f, € CO1(R) N WH*(R),
by, € C°(R) N L= (R), by € COL(R) N W>*(R), and fulfil

by(r) =0, by(r)=0 Vlr|>1, (8.16)
r(fe(r) = fu(r)r) <0 V[r[>1. (8.17)

The latter implies that f,(r) — fv(r)r is strlctly negative (resp. positive) for r > 1 (resp. r < —1).
For the functions stated in Example we can consider following extensions: For r € R, we set

by(r) = amax(0, P(1 — r?)) by(r) = ps max(0, P(1 —r?)),
f@(r) = max(—pSA,min(pSA, _pSAT))v

and
—Aa r>1, —Aae=") r>1,
fv(r) =< —Aar Ir| <1, fa<0, fu(r)=<{—Aar Ir| <1, if a>0.
Aae(r+1) r < —17 Aa r < 717

Tt is clear that is fulfilled. For oo = 0, we see that fy(r) = 0 and so fsa( ) — fv(r)r = fu(r)
satisfies (8.17). For a > 0, if r < —1 we see that f,(r) — fv(r)r = A(ps — ar) > 0 and if
r > 1 we see that f,(r) — fv(r)r attains its maximum at r = 1 with value A(a — pg) < 0.
Similarly, for e < 0, if > 1 we see that f,(r) — fv(r)r = A(ar — pg) < 0 and if r < -1
we see that f,(r) — fv(r)r attains its minimum at » = —1 with value A(ps — a) > 0. Hence,
the extensions fulfil . Then, we can employ Theorem to deduce the existence of a
quintuple (s, s, 05, Vs, ps) to (8.1)-(8.2) with 1}, 5 replacing ¢ and source terms by, by, fy
and f, modified as above. Uniform estimates will be derived in the next section and then we
can pass to the limit 6 — 0 to infer the existence of a weak solution to with the double
obstacle potential in the sense of Definition
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Logarithmic potential

For § € (0,1) we define

¢10g(1 - ) + %’Og(l - 6) (7‘ - (1 - 5))
+= wlog( )(rf(lfé))2 forr > 1 -4,
Viog,s(r) = { Yrog() for |r] <1-—4, (8.18)
rog(0 = 1) + 9o (6 = 1) (r — (6 — 1))
+3 zplog( )(T_((S_l))z fOI"I“S—l—F(S7
with convex part
Blog,é(r) = 1/11og,5(7“) - %(1 — 7"2) VreR. (819)

As before, we define Biog,5(r) = B]log7§(’r) for all » € R and
R 0, R
Blog(r) = 1/Jlog(7") - 5(1 - r?)) ﬁlog(ﬂ = Bl/og(r) Vre (_17 1)

Proposition 8.11 Let Blogﬁ and Yiog,s be defined as above. Then, there exist positive constants
Co,...,Cs, such that for all r € R and for all 0 < 6 < min(1,0/(46.)), it holds

Yiog,s(r) = Colr|* — Cn, (8.20a)
Blog,s(r) = 0(46) 7 (Ir| = 1)F, (8.20b)
0B10g,5(1)? < 20B10g,5(r) + Ca < C3 (5(Brog.s(r))® + 1) , (8.20c)
8 (Blog,s(1)? < 0B1og,s(7), (8.20d)

where (|r] — 1)+ == max(0, |r| — 1).
Proof. For r > 1 —§ with 6 < 40 , a short calculation shows that

Blog(1=8) >0, Biog(1—3)(r — (1 -6)) >0,
Blog(1 = 8)(r — (1 =8))* = 20c(r — (1 - 9))*.
Then, it is easy to see that (8.20a]) holds with the help of Young’s inequality. Analogously,

using Blog (6 — 1) > 0, Blog(d — 1) = Blx(1 — &) and Biog(d — 1)(r — (6 — 1)) > 0 for r < =144,
we infer that (8.20a)) also holds for » < —1 4 § with 0 < &. Meanwhile, for |r| < 1 — 4 the

non-negativity of 5log yields
0.
Piog(T) > 5(1 —rH) > Colr? -0y Vir|<1-6.

This completes the proof of (8.20a)).
Using the non-negativity of fiog,s implies (8.20b]) for all » € R with |r| < 1. Now, let r > 1.
Then, from the definition of SBiog s it follows with similar arguments as before that

Brosr) = 5Plog(1 = 8)(r = (1 =8))° > gl =17 = 5= 1)

Similarly, it holds that B]Og’g( ) > £&(|r| = 1)? for r < —1 which shows (8.20D).
For (8.20c) we first observe that (wlog 50)=0= Blog,(s(O) and for § € (0,1]
0
! < — < = oc > 1—
ﬁlog,é(s) = 5(2 5) 5’ 61 g,5(5) = 0 Vse [Oa 6]7
00 <0,

1—s2—

0< 65{0&5(8) Blog,&(s) <0 Vs e [_1 + 57 0],
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which implies

[6(Brog,5(5))%]" = 20B10g,6(5) Blog,s(5) < 2010g,5(s) Vs € [0,1 4],
[5(ﬂlog,5(3))2]l = 26ﬂ10g,5(5>6{0g’5(5) > 2951055(3) Vs e [—1 + 5, 0].

Integrating the first inequality from 0 to 7 € (0,1— 4] and the second inequality from r € [—1+44,0)
to 0 yields

(5(610g,6(7“))2 < 2961()&5(7“) Vre [—1 + 6, 1-— (5]

Taking note that Bieg.s(r) is bounded on [—1 + 8,1 — §] uniformly in & € (0, 1], we easily infer
the upper bound 29310&5(7*) < 02(5([310&5(7'))2 + 1) for some positive constant Cy > 0 holding
for all r € [-1+4§,1 — d]. Meanwhile, a direct calculation shows that for » > 1—§ and 6 € (0, 1]
we have
62 62 2—-9 62 2—-0\2
= (r—(1-14))>? log(—— ) (r—(1— —dlog ([ ——
3uogs(r)? = 55 gy = (L= )+ 55 log (T3 ) = (1= ) + pdlog (=)

2-9

~ 02 2 A ~
< 2010g,5(r) + 0108 (=) = 20B105(1 = 0) < 20B10g,5(r) + C1,

0 0, 62 2-9¢ 62

Z = ZBiog(1 = 8) + —1log (—=2)(r — (1 — — 2 (r—(1-20))?

3 Phoss(r) = 5htos(1 = 0) + T log (S5 ) (r = (1= )+ 55— (1= 9))

0 - 62 2—0\2

< 6B0g.s(r)? + Shiog(1 = 8) = olog (5= ) < 6fhogs(r)? +C

on account of & < 7L< <1, the positivity of log((2 — §)/6)(r — (1 — §)) and the boundedness

of Brog(1 — &) and dlog((2 — §)/8)? for § € (0,1]. An analogous calculation leads to similar
inequalities for r < —1 + ¢, and thus (8.20d)) is established.

For (8.20d)) a straightforward calculation using ﬁ <1 gives

92
6<5llog,§(r)>2 = 2=4)% < 0Blogs(r) Vr| =104,

! 2 502 92 /
0 (Blog,s(1))" = TS < CEnEE) < O0Blgs(r) VIr|<1-04.

This completes the proof. O

Once again, we extend the source functions by, by, fv and f, from [—1,1] to the whole real
line in a way that satisfies (8.16) and additionally

>0 forre|[l,r,
rfo(r) — fo(r) < =0 for |r| > 2o, (8.21)
<0 forre[—ry,—1]

with smooth interpolation in [rg, 2rg] and [—2rg,r¢] for some fixed constant ro € (1,2). For
instance, with the functions f, and f, introduced in Example @, we can take as extensions

—aA for r > 2rg,
A(ps—a)
S (r — 2rg) —aA for r € [1, 21,
—aA% for |r| > 1, 2ro—1 ( 0) [ ol
folr) = folr) =< —psAr for |r] <1,
—aAr  for |r| <1, Alps+o) ) A ) .
ﬁ(T"— TQ)-O& OI"I"E[— To, — ],
—aA for r < —2ry,

with ro = 2. Then, using ps — a > 0 it is clear that rfy(r) — f,(r) fulfils (8:21).
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8.2.2 Existence of approximate solutions

To unify our analysis, we use the notation

¢d0,6 for 140, 1 for 1o,
Vs = ©
wlog,é for wlogv 06 for ¢log7

and denote by 35 the convex part of ¥5. Employing Propositions and and using that s
has quadratic growth, we see that (AF)), (ii) is satisfied, and by Theorem for every § € (0,1)
we infer the existence of a weak solution quintuple (s, tts5, 05, Vs, ps) to — with 9§ in
. More precisely, it holds that

div(vs) = Iy (s, 05) a.e. in Qr, (8.22a)
ps = Vs(ps) — Aps — x5 a.e. in Qp, (8.22b)
and
0= / T(vs,ps): V® +vvs - ® — (us + x05)Vps - @ dz, (8.22¢)
Q

0 = (005, C) +/ Vs - VC+ (Vs - vs + psTv(ps, 05) — Dy(ps, 05))¢ da, (8.22d)
Q
0= / Vos - V({+ h((pg)ag( dx + K(O'5 — 1)< dH4! (8.226)
o 20

for a.e. t € (0,T) and for all ® € H! and ¢ € H'.

8.2.3 Uniform estimates
We first state the following lemma:

Lemma 8.12 Let Biogs denote the derivative of (8.19), and let by, € C%'(R) N W1 (R),
by, € CO(R) N L*®(R), fv € CUHR) N WH>*(R), and f, € CO(R) N L>*(R) be given such that

(8.16), (C1), (C2) and (8.21) are satisfied. Then, there exists 5o > 0 and a positive constant C
independent of § € (0,dp) such that for all 6 € (0,00), s € R and r € R,

(rTy(r,8) = (7, 8)) Prog 6 (r) = =C(1 + |s| + |r]). (8.23)
Proof. We define

G(r,5) = s(by(r)r = by(r)) iog,s(7)-

Then, due to (8.16), G(r,s) =0 for s € R and |r| > 1. Using (CI)), we have for § € (0,1), s € R
and r € [1 —4,1] that

|G(r,s)| < [s] ([bv(r)] + [b(7)]) Brog,s(r) < 2|5[cdP10g,s(r)
— 9|s|c (g log 258 + 5o (r — (1 - 5))) < Clsl,

where we used that [0logd| < C for § € (0,1). Consequently, we have that G(r,s) > —C/|s| for
60 €(0,1), se Rand r € [1 —§,1]. A similar assertion holds for » € [-1,—1 4 ¢§]. Lastly, for
[r] <1—4, we use (C2) to deduce that

G (r,s)| < [s| (I7]]bv(r) Brog,s ()] + [by (1) Brog,s (1))
< s ( max

bv 1 147
 Spax [by(r)log 1=

r

bo(r)log | ) < C
+Terr[l_a1}§1]‘ p(r)log 127 ) < Clsl,
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and consequently G(r,s) > —C|s| for all |r| <1 — 46 and all s € R. Therefore, for all § > 0,
s € Rand r € R, it holds that G(r,s) > —C|s|. Next, we define

H(r) =rfu(r) = fo(r).
By continuity of H(r) and invoking ({8.21)), we can find a constant dy € (0,79 — 1) such that

H(T)>0 fOI"?“E(l—(SQ,l"F(SQ),
H(r) <0 forre (—1—20p,—14 dop).

Then, it is clear that for |r| > 2rg it holds H(r) = 0 thanks to (8.21)) satisfied by the extensions
of fy and f,. Meanwhile, for any § € (0,dp) we see that if |r| <1 — 3y <1 —6, then

|Brog,(r)| = [log {¥%| <log 25%,  |H(r)| < C(1 + |r|),

T

which implies that
H(7)Biog,s(r) > —=C(1+|r]) for |r] <1 —dp.

On the other hand, as 1o > 1, for r € [=2rg, =1 4 0] U [1 — do, 2r] we use that Siog s(r) and
H(r) have the same sign, so that their product H(r)Bieg,5(r) is non-negative. Hence, combining
with the above analysis for the function G, we obtain the assertion (8.23]). O

In the following we derive uniform estimates for (¢s, is5, 05, Vs, ps) in 0, and denote by C a
generic constant independent of § which may change its value even within one line.

Nutrient estimates Choosing ( = o5 in (8.22¢) and using the non-negativity of h(-) leads to
2 2 y9/d-1 i K 2 K
\Vos|"dz + K [ os|"dH" <K | o5 dH" < —|losl72090) + 5109,
Q o0 20 2 2

from which we deduce that os is uniformly bounded in L>°(0,7;H'). Elliptic regularity
additionally yields

losllre(0,1;m2) < C. (8.24)

Meanwhile, choosing ¢ = —(05)_ := — max(0, —0s) shows that
HV(O—J)—”%Z + KH(Ué)—H%2(39) < *K/BQ(O'(;)_ dHdt <0

on account of the fact that (05)— > 0. Hence, we deduce that (o5)— =0 a.e. in Q7 and as a
consequence, oy is non-negative a. e. in Qp. Similarly, choosing ¢ = (05 — 1)+ := max(os — 1,0),
we have

V(o5 = 1)+lILz + Kll(0s — 1)+ lIZ2(00) = — /Q Wps)os(os —1)4 dz <0

on account of the non-negativity of h(-) and o5(c5 — 1);. As before, this gives (o5 — 1)1+ =0
a.e. in Qr and consequently o5 < 1 a.e. in Q. All together, it holds that o5 € [0,1] a.e. in Q7.
Furthermore, by the continuous embedding H? < L> and the assumptions on by, b, fy and
fo, we have

IT ol zoe 0,520y + ITv|lzoe 0,52y < C- (8.25)
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Estimates from energy identity Thanks to (8.25)), there exists a solution u € H! to the
problem

div(u) =Ty in Q, u= L (/ Iy dx) n=:a on 0, (8.26)
109 \Jo
satisfying the estimate
[uflwrr < Cllv[[r <C Vp e (1,00). (8.27)

Technically, we should stress the dependence of u on §, but in light of the uniform estimate
(8.27) we infer that us is bounded in L>(0,T; W'P) for any p € (1,00). Henceforth, we drop
the index ¢ and reuse the variable u.

Choosing ® = vs — u in (8.22¢), ¢ = ps + xos in (8.22d), using (8.22b)) and summing the

resulting identities, we obtain

d 1

i Lvaten) 4 5Vesl dot [ 1Vhsl + 2n(es) DV + vivof? da

dt /g, 2 o

= / —xVus Vo5 + (Ty — @sT'v)(Bs(ps) — Ocps — Aps) dz (8.28)
Q
+ / 2n(¢s)Dvs: Du+vvs-ude — / (Bs(¢s) — Ocps — Aps)Vips - u da,
Q Q

where we used the fact that s is a quadratic perturbation of a convex function 35, in conjunction
with [123] Lem. 4.1] to obtain the time derivative of the energy. By Young’s inequality and the

estimates (8.24]), (8.25) and (8.27)), we find that

/ 2n(ps)Dvs: Du+vvs-u—xVus - Vos — (Ty — osTv — Vs - u)(Ocps + Ags) do
Q

v 1
< [[V/n(es)Dvsllz2 + §\|V5||iz + ZHVWHiz + 2] ApsI72 + C(1+ [lpsliFn) (8.29)

for a positive constant £ yet to be determined. It remains to control the two terms with Ss(ps).
Integrating by parts and employing (8.26]) leads to

/ B5(0s)Ves -ude = / V(Bs(ps)) - u dz
Q Q

J— 1 P d—l _ A
= al </Q I'y dx) - Bs(ps) dH /Qﬂ(s((p(s)l—‘v d. (8.30)

Using (8.27) and the relation 35(r) = ¢s(r) — %(1 —12), we obtain

/ B5(ps)Ty da
Q

/Q (Vs(ps) — §=(1— ¢3)) Ty dz
<C(1+[[es(es)llLr + lleslFz) - (8.31)

Meanwhile, using (8.15b)), (8.15¢)), (8.20¢)), (8.20d) and the trace theorem (with constant ct,), it
follows that

185(05) |1 o9) < C + CslV3 Bs(05)l|7200)
< Cuck, (IV Bsleo)lI3 + IVOB5 (e5) VersiEa ) +C

< Gyl (@Hé(g(%)nﬂ +01 [ BilenI Vel dx) i

< C 1+ lleslie + ws(es)ller) + C:sCfrsz/Qﬂfs(%)IV%F dz.  (8.32)
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To deal with the remaining term we need to distinguish between fqo,5 and Biog,s. From the

definition (8.14) of Sqo,5 and (8.16])-(8.17), for any s > 0 and r € R,

=0 for|r|]<1ands>0,
<0 for|r|>1lands>0

Baos(r)(Ly(r, s) = 1Ty (r, 5)) {
which implies that
/@w(%ﬂa) — sy (s, 05))Bdo,s (@s) dz < 0.
Q
Meanwhile, for Siog s, we use (8.23) and (8.24) to obtain
/<Fw(¢5,05) — sl (5, 05)) Brog,s(ps) da < C(l + H<P5||L1)-
Q
Therefore, we find that
| (Ootos.03) = oaT (s, 0s))Bs) do < (1 + i),
and so, when substituting (8.29))-(8.32) into (8.28)), we arrive at
d 1 2 3 2 2 Vo2
— | ¥s(ps) + 5IVes|” de+ [ ZIVus|” +0(es)[Dvs|” + Slvs|” do
at Jo 2 o4 2
<1+ 1s(eo)llus + lesl3e + 1Ves22)
+ 22l + CackCn [ Bi(es) Vsl do.
Q

Testing (8.22b|) with —AAy; for some positive constant A, integrating by parts and using
Vs -n =0 on d and (8.24) yields

A/ |Aps|* + B5(ps)|Veps|* dz = A/ V(us + x05) - Vips — [Vips|* da
Q2 Q
1
<C(1+[Veslis) + Z||VM5||2L2~

Then, summing up the last two inequalities and choosing A > C3¢2.Cy and € < % yields

d
o (Is(e)llLr + IVesliz) — C (Ils(@s)ll + IVesliZ)
+ I Vuslzz + 11(85(s)) > Veslia
+ 1 A¢s|72 + |(n(s))/*Dvs| 72 + vilvs]l7-
<C. (8.33)
Before applying a Gronwall argument, we first note that for the double obstacle potential,
invoking the assumption (B2)) implies Bdo,&(s@o) = 0, and for the logarithmic potential, the

assumption (C3)) implies there exists d; > 0 such that |pg(x)| <1 —6; for a.e. x € Q, and so
Biog,s (o) is uniformly bounded. Hence, for 0 < § < min(1,6/(46.), o, d1) =: 0+, we see that

185 (o)t < C.
Integrating (8.33)) in time from 0 to s € (0,7}, using (8.15al), (8.20a]), Korn’s inequality and

elliptic regularity theory, we deduce the uniform estimate

195 (28)ll oo 0,750y + @5 | Lo (0,7 L2 (0,73 12y + [V s L2 0,7;12)
+ ||(53(%))1/2V¢6||L2(0,T;L2) +|vsllz2 0,y < C. (8.34)
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Returning to (8.32]), we readily infer that
HBé(W)HLl(o,T;Ll(aQ)) <C, (8.35)
while by the Sobolev embedding H! C L® and (8.34) it follows that
T T
| 195 vilua dt < [ 19 slRalvls dt < lsleqorm Vol ram < C:

A similar argument together with (8.25) shows that ¢sI'y is bounded in L?(0, T’ L%). Then,
from (5.5b)) we obtain

||at(p5||L2(07T;(H1)*) + Hdiv(()oévts)HLZ(O,T;L?’/2) <C. (8.36)
Furthermore, we find that the mean value (p5)q satisfies
1
10:(ps)al = 9] ‘/ Tu(vs,05) — sy (s, 05) — Vs - vs da| € L*(0,T),
Q
and so

I (ws)allmzromr) < C. (8.37)

In particular, by the fundamental theorem of calculus, it holds that

[(ps)a(r) = (ps)als)] =

/ "auen)al) dt‘ < Clr— 8|1, (8.38)

8.2.4 Estimates for the mean value of the chemical potential

In order to pass to the limit 6 — 0 rigorously, it remains to derive uniform estimates for s,
Bs(ps) and ps in L2(0,T;L?). To do so we appeal to the method introduced in [88] which
involves first deducing that the limit ¢ of ¢s has mean value strictly in the open interval (—1,1)
for all times. We first state a useful auxiliary result.

Proposition 8.13 For § € (0,1), let fiog,s denote the derivative of (8.19). Then, there exist
positive constants ¢1 and co independent of § such that

Blog,s (1) > |Prog,s(r)| —c1lr| —c2 VreR. (8.39)
Remark 8.14 The estimate (8.39)) is more refined than commonly stated estimates of the form
TPiog,5 (1) > €0|Plog,s(r)| —¢1 VreR (8.40)

with positive constant ¢y and non-negative constant ¢; that are independent of §, provided § is
sufficiently small, cf. [36, (2.12)], in which the constant & is usually not quantified.

Proof of Proposition[§13 From the definition of Bioe s in (8:19), we infer that for r > 1 —4,
5 e (0,1),
Brog,s (1)1 = Blog(1 = 8)(r = (L = 0))r + Piog(L — 0)r
> Blog(1 = 0)(r — (1= 6)) + Brog(1 — 6) = 6Bog (1 — ) (1 — (1 = 0)) — 0Biog(1 — 0)
= Brog.s(r) — 555 (r — (1= 6)) — dlog 252
2 Prog,s(r) —0(r — (1 —46)) —c
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for some positive constant ¢ independent of § € (0,1). In a similar fashion, for r < —1+ 9,
0 € (0,1), we have

Brog(6 — 1)1 = —Prog(6 — 1) + 6B1og (0 — 1) = |Brog(6 — 1)[ — ¢,
Bl/og(a - 1)(7“ - (6 - 1))T > _ﬂllog<5 - 1)(T - (6 - 1)) + (Sﬂl/og(é - 1)(T - (6 - 1))
= |Blog (6 = 1)(r — (6 = )| + 555 (r — (3 = 1)),

and when combined this yields (8.39). For the remaining case |r| < 1 — §, we employ the fact
that ﬁlog,(;(r) = ,Blog(r) and

lim (1 —7)Big(r) =0, llr%(r + 1)Biog(r) =0

r—1-

to infer the existence of a constant ¢ > 0 independent of § € (0,1) such that
Prog(r)(r—1) > —c for 0<r <1, PBiog(r)(r+1)>—c for —1<r<0.
Hence, for § € (0,1) it holds
Brog,s (1)1 = Biog (1)1 > | Brog ()| — ¢ = [Blog,6(1)| — ¢ V|r[ <1—4.
This completes the proof. O

Now, using reflexive weak compactness arguments (Aubin-Lions theorem) and Lemma m
for 6 — 0 along a non-relabelled subsequence, we infer that

s — ¢ weakly-star in H'(0,T;(H")*) N L>(0,T; H') N L*(0,T; H?),

ws — ¢ strongly in C°([0,T); L") N L*(0,T; Wh") and a.e. in Qr,
0s — 0 weakly-star in L>(0,T; H?),
Vys — &  weakly in L2(0,T; L?), (8.41)
vs — v weakly in L?(0,T; H'),
div(psvs) — 0 weakly in L?(0,T; L?)

for some limit functions & € L2(0,T;L2), 0 € L*(0,T; L?) and for all € [1,6). The interpolation
inequality || f]|g: < C||f||i/22||f|\g3, the boundedness of @5 — ¢ in L2(0,T; H?) and the strong
convergence s — @ in L>(0,T; L?) also allow us to deduce that @5 — ¢ strongly in L*(0,T; H').
Consequently, for an arbitrary test function A € L*(0,T; L?) it holds that Ags — A strongly in
L2(0,T; L?) and AVps — AV strongly in L?(0, T Lg). Using the weak convergence of vy — v
in L2(0,T; H') and the product of weak-strong convergence we obtain

T T
/ / div(psvs)A do dt — / / div(ev)Adx dt as § — 0. (8.42)
0o Jo o Ja

This implies div(psvs) — div(pv) weakly in L3(0,T;L%) as § — 0. Since L2(0,T;L2) C
L3 (0,T; L%), by uniqueness of weak limits we obtain div(¢v) = 6. Using the assumption on I,
and the above convergences, we can pass to the limit in (5.5b)) to obtain

(0:0, Q) 1 —|—/ div(ev)¢ dz = / —£-V(+T,(p,0)¢ dx (8.43)
Q Q
for a.e. t € (0,T) and for all ¢ € H!. Technically, one would multiply (5.5b]) with a function

k € C°(0,T), integrate the resulting product over (0,7, pass to the limit 6 — 0 and then
recover (8.43) with the fundamental lemma of calculus of variations.
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Now, for the obstacle potential, the uniform boundedness of ¥5(¢s) in L'(0,T;L') and
(8.15b)) imply \/gﬂdoyg((pg) is uniformly bounded in L%(0,T; L?), and so §840.5(0s) — 0 strongly

in L%(0,T; L?). However, from the definition of B4, 5 we have
r—1 ifr>1
0Bao,s(r) = g(r) : =10 if [r] <1 as § — 0, (8.44)
r+1 ifr<-1

which implies that (see [19, Proof of Thm. 2.2])

o] <1 a.e.in Qp. (8.45)

For the logarithmic potential, we use (8.20bf) and the uniform boundedness of B]ogﬁg((p(;) in
LY(0,T; L") to obtain that

/ (Jps| — 1)2 dz dt < C6.
Qr

Since 5 — ¢ a.e. in Q7 and strongly in L?(L?), passing to the limit § — 0 in the last inequality
also implies (8.45]). From this we claim that pq(t) € (—1,1) for all ¢ € (0,T). Indeed, choosing

¢ =1 in (8.43) leads to
(Opp, 1) i +/ Ve -vdr = / Ly(p,0) —¢lv(p,0) dz fora.e. t € (0,T). (8.46)
Q Q

Suppose to the contrary there exists a time ¢, € (0,7) such that pq(t.) =1 and (8.46] holds.
Due to (8.45)), this implies p(t.,z) =1 a.e. in Q and thus Vo(t., ) = 0 a.e. in . Using (8.46]
and (8.16)-(8.17), we obtain

(Orp(t), 1) 1 = /Q £o(1) = £o(1) dz < 0.

Hence, by continuity of ¢ — (©(t))q, the mean value (p(t))q must be strictly decreasing in
a neighbourhood of t,, i.e., (¢(t))q > 1 for ¢ < t, which contradicts (8.45)). Using a similar
argument and the assumption f,(—1) + fv(—1) > 0 leads to the conclusion that (p(t))q > —1
for all t € (0,T). In particular, (¢(t))q € (—1,1) for all t € (0, 7).

This allows us to derive uniform estimates on the mean value of us. Integrating (8.22bf) and
taking the modulus on both sides gives

' /Q ps(t) da

for a.e. t € (0,T). Using (8.39) and the fact

S/ |85 (5 ()] + Oclps ()] + xlos(1)] dx (8.47)
Q

|Bao,s(1)| < rBao,s(r) forallreR (8.48)

(which unfortunately does not hold for Biog s, hence the necessity of Proposition|8.13)), we deduce
that (suppressing the t-dependence)

/M& dz
Q

< / |Bdo,s (¢5)| + |Blog,s (ps)| + Oclws| + x|os| dz,
Q

< / ©5Bdo,5(¢s) + ©5Bog,6 (ps) + (€1 + Oc)|ps| + xlos| + 2 dz
Q

- / 8B5(05) + (1 + ©0)ls] + Xlos| + ez da.
Q



8.2 The Brinkman model 211

Together with the identity

Vst +/ Bs(ps(t))ps(t) — xo5(t)ps(t) do = / ps(£)s(t) + Oclps (1) du
Q Q

obtained from testing (8.22b|) with ( = @5, we see that

/Q ws(t) de

Now, let f5 € HZ N L% be the unique solution to the Neumann-Laplace problem

< /Q us(Dps(t) da + C (L+ lps ()32 + los(B)]13) (8.49)

—Afs = ps(t) — t in
fs=0s5(t) = (ps(t)o in €, (8.50)
Vfs-n=0 on Of).
Using Poincaré’s inequality, it holds that
sl < ClIVs (@)l (8.51)
Testing with fs, integrating by parts and rearranging yields
/Qua(t)%(t) = —(Owps(t), fo) g — /Q (div(ps(t)vs(t)) — Ty (ws(t), 05(t))) f5 da
+((palt)a = (@O + (@) [ st da.
Plugging in this identity into and rearranging again, we deduce that
(1 = [(e®)al — sup [(¢s(t) — <ﬂ(t))9|> / ps(t) dz
te(0,T) Q
< C (llos@®))122 + les®)ll72) — (Deps(), fo)
= [ (ivtes(tva(t) = Tolos(t),o3(0) fs do (8.52)
Q

for a.e. t € (0,T). Recalling (8.37)-(8.38]), we have the equiboundedness and equicontinuity of
{(¢s)a}tse(o,1) so that by the Arzela—Ascoli theorem,

(ps(t))a — (¢(t))q strongly in C°([0,T]) asd — 0

along a non-relabelled subsequence. Then, one can find an index d3 € (0,1) such that for all
0 < min(ds,d,) =: 44, where d, is defined after (8.33)), it holds

sup | (s(t) — ¢(t)al < 5 sup (1 - |(¢(t))al)-
te(0,T) te(0,T)

Since |(p(t))a| < 1forallt € (0,T) and pq is continuous on [0, T, the prefactor on the left-hand
side of is bounded away from 0 uniformly in ¢. As the right-hand side of is uniformly
bounded in L?(0,T) by previously established uniform estimates, we obtain that {(us)a }tse(0,5,)
is bounded in L?(0,T), and the Poincaré inequality gives

lusllz20,7;2) < C. (8.53)

Let us mention that if instead of (8.39)) we employ the less refined estimate (8.40), we arrive at

wsPs(ps) > min(1, &)|Bs(¢s)| — ¢1,
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and ultimately

t
0l <o
min(1, &) Q
Since ¢ is usually not quantified, we may not be able to rule out the situation where ¢, < 1

which may imply that the prefactor 1 — % is negative.

The uniform estimate (8.53)) for ps allows us to infer further estimates for 85(ps) and ps. Indeed,
testing (8.22b]) with SBs(ps) yields

1s(08) 2 + / B (05) Vs dar = / (5 + 15 + x03)Bs(05) dl.
Q Q

Integrating this identity in time from 0 to T, using the non-negativity of 55(-), (8.34]) and (8.53),
it follows that

| Bao,s (@s)ll L2 0,7;12) + [|Brog,s (ws) || L2(0,1;2) < C. (8.54)

For the pressure ps, we invoke Lemma to deduce the existence of a solution qs € H' to the
problem

div(qs) = ps in Q,
as = ﬁ pr(; dx)n on 09,

such that
lasllar < Cllps| 2 (8.55)
for a positive constant C' depending only on Q. Then, testing (8.22c|) with ® = g5 yields

Ipslzz < 2v/aln'/?(9s)DvsllLz [DaslLe + M|y (ps, 5)] 22 llps | 2
+lvsliellasle + [[(us + xo5) 2| Vepsllez | aslle-

Applying Young’s inequality and using the uniform estimates (8.24)), (8.34)), (8.53)) and (8.55)
leads to

Ipsllzz(0,7;r2) < C. (8.56)

8.2.5 Passing to the limit

Let us first consider the double obstacle case. In addition to the convergence statements in

(8.41)), we further obtain

ps — p weakly in L*(0,T; H'),
Bao,s(ps) — 7 weakly in L*(0,T;L?),
ps —p weakly in L2(0,T;L?)

for some limit function 7 € L2(0,7T; L?). Moreover, due to we have & = Vu which allows
us to fully recover in the limit. To obtain (5.54), (5.5d) and (8.1a) in the limit, the
arguments are exactly the same as in Chapter [5| It remains to show is recovered in the limit
0 — 0 from . By arguing as in Sec. 5.2], using the weak convergence fqo.5(ps) — 7
in L2(0,T; L?), the strong convergence s — ¢ in L?(0,T; L?), and the maximal monotonicity
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of the subdifferential OI|_; ;; we can infer 7 is an element of the set 3]1[_171](90) which implies
that for any ¢ € K and a.e. t € (0,7),

/ 7(1)(C — (1)) dz < 0.
Q

Hence, testing (8.22b|) (where 15 = 10q0,5) With ( — ¢ and passing to the limit 6 — 0 allows us
to recover (8.4). This completes the proof of Theorem for the double obstacle potential.

For the logarithmic case, the additional estimate for Biog5(¢s) in L?(0,T; L?) allow us to infer,
by the arguments in [36, Sec. 4] or [94, Sec. 3.3], that the limit ¢ satisfies the tighter bounds
lo(x,t)] <1 a.e. in Q.

Furthermore, by the almost everywhere convergence of 5 to ¢ we have Biog s(¢s) — Biog ()
a.e. in Q.

Meanwhile, the inequality is obtained from integrating over (0,t) for t € (0,7) and
then passing to the limit with the compactness assertions 7 weak lower semicontinuity, and
Fatou’s lemma. This completes the proof of Theorem for the logarithmic potential.

8.3 The Darcy model (Proof of Theorem 8.9

We can adapt most of the arguments and estimates from the proof of Theorem [8.3] The main
idea is to consider a weak solution quintuple (s, ps, 05, Vs, ps) to the Cahn-Hilliard-Brinkman

model ([8.1)-(8.2]) with stress tensor
Ts(vs,ps) := 20Dvs + ddiv(vs)I — psI,

where we have set n(-) = A(-) = 6. Proceeding as in the proof of Theorem we obtain the
uniform estimates (8.24)), (8.25)) and

195 (25) | o< 0,151y + @5 Loo (0,1 5y L2 0,73 2y + [V 5] 22 0,7;12) (857)
8.57
+ I/ B5(2s) Vsl 20,72y + Vsl z2,rz ) + VDVl L2012y < C,

div

where in the above ¥s and (s denote the approximations to either singular potentials and
the derivatives of the corresponding convex part. Multiplying (8.22b)) with —Ays, using the
convexity of s and arguing as above, it holds that

1As][72 < ClIV (15 + x06) |2 € L*(0,T),
and by elliptic regularity we infer

sl Lo, 12y < C. (8.58)

Moreover, by the Gagliardo—Nirenberg inequality we find that

T 8 4 4 8
/0 Vs 'V6||zg dt < C”@é”im(o,T;Hl)||S06||24(07T;H2)||V6||22(07T;L2) <C,

so that from (5.5b)) and previous uniform estimates we arrive at

192511 5 (0 sgirryey + 1V 25 Vsl 13 o 18y < C (8.59a)
1ep5 + divesvs)llz2 (0,7 + [(@s)allys o 0y < (8.59b)

[(p5)a(r) — (ps)al(s)| < Clr —s|8 Vr,s e (0,T). (8.59¢)
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Let us mention that the sum ;s 4+ div(vpsvs) has better temporal integrability than each of its
constituents, a fact which will play an important role for deriving uniform estimates for (us)qa
below.

By reflexive weak compactness arguments and Lemma [2.36] for § — 0 along a non-relabelled
subsequence, it holds for any r € [1,6) that

ps — ¢ weakly-star in Wl’%(O,T; (HHY*)N L>(0,T; H')n L*(0,T; H?),
ws — ¢ strongly in C°([0,T); L") N L*(0,T; W) and a.e. in Qr,
o5 — o weakly-star in L>(0,7T; H?),
vs — v weakly in L?(0,T; L?),

div(psvs) — 6 weakly in L (0,T;L?)

for a limit function § € L5(0,T; L3). The identification § = div(¢v) follows analogously as in
Section where the assertion (8.42)) now holds for arbitrary A € L*(0,T; L®) by the strong
convergence Vs — Vo in L4(0,T; L) and the weak convergence vs — v in L?(0, T; L?).

In order to obtain uniform estimates for the chemical potential us in L2(0,T; L?), we again
follow the argument in Section Namely, we pass to the limit § — 0 in to obtain
(8-43), and use the uniform boundedness of 15(ps) in L' (0,7T; L') from to obtain that
the limit ¢ satisfies the pointwise bound . Choosing ( =1 in leads to and
we obtain by a contradiction argument that (¢(t))q € (—1,1) for all t € (0,7).

Let us consider the double obstacle case where 15 = 4,5, and define fs € H% N L as the

unique solution to (8.50) satisfying (8.51). Then, the right-hand side of (8.52)) can be estimated
as

RHS < C(Jlos()22 + los @32 ) + T (0s(t), as(E) 22l
1905 (8) + div (s (v () ey s

which is bounded in L2(0,7) by (8.59b)). This modification allows us to infer that (us)q is
uniformly bounded in L?(0,T), whereas simply using (8.59a) would only give the uniform
boundedness of (u5)q in L3 (0,T). Hence, we recover the uniform L2(0, T’; L?)-estimate (8.53)

for ps and also (8.54) for Bao,s(s).-

The argument for the logarithmic potential is entirely analogous, as the only modification is
(8.60), and thus we skip the details. To complete the proof of Theorem we still require
uniform estimates on the pressure ps. From the above paragraphs we have

(8.60)

sl L2010y + 185 (5) | L2(0,7;22) < C. (8.61)

From Lemma there exists a solution qs € H' to the problem

div(qs) = ps in Q,
a5 = ﬁ(fgp(; dx)n on 09,

satisfying for a positive constant C' depending only on 2 the estimate
lasllm < Cllps| - (8.62)
Then, testing (8.22c|) with ® = q4 yields

Ipsll7> < 26[|DvsllLz[[Dasllez + 8|7y (s, 05) [l 2 |ps |l 22
+ v|vsllrzllas|lnz + llws + xosl 23| Vs ||Lz |l as|Le-
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Applying Young’s inequality and using the uniform estimates (8.24)), (8.57)), (8.61)) and (8.62))
leads to

IpsllL20,r;L2) < C. (8.63)
Then, in addition to the above compactness assertions, we further deduce that

ps — o weakly in L*(0,T; H'),
ps —p weakly in L2(0,T;L?).

The arguments to recover ((5.5b), (5.5d) and (8.4) (resp. (8.5)) for the double obstacle (resp. log-

arithmic) case in the limit § — 0 proceed as in the proof of Theorem whereas recovery of
(8-11));, (8.11)),, the improved regularity p € LE(O, T; H') and the boundary condition (8.10)
follow from similar arguments as outlined in Chapter [0}

8.4 Proof of Proposition 8.6/ — Stationary solutions

As with the time-dependent case, we extend b, and f, from [—1,1] to R such that f, €
C%(R) N L*(R), b, € C°(R) N L>*(R) is non-negative and fulfil (8.16), (8.17) and (8.21) with
fr()=0,by(-) =0.

8.4.1 Basics for nonlinear monotone operators

Since the proof of Proposition [8.6]is based on the theory of nonlinear monotone operators, we
need the following definition that can be found in, e.g., [139 Def. 25.2., 26.1., 27.5.]:

Definition 8.15 Let X be a real Banach space and let A: X — X* be an operator.

(i) We call A monotone iff

(Au— Av,u—v)x >0 Yu,veX.

(ii) We call A hemicontinuous iff the real function
t— (A(u+ tv),w)x
is continuous on [0, 1] for all u, v, w € X.

(iii) We call A strongly continuous iff

U, ~u inX asn—oo=— Au, - Au in X* asn — co.

(iv) We call A coercive iff
(Au,u) x

1m = +o00.
lullx—~+o0  [Jullx

(v) We call A pseudomonotone iff

up —=u inX asn—oo and limsup (Au,,u, —u)x <0
n—oo
implies
(Au,u —w)x <liminf (Au,,u, —w)x VYVwe X.

n—oo
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Furthermore, we need the following lemma, see [139, Prop. 27.6.(f), Thm. 27.A] for a proof:

Lemma 8.16 Let X be a real Banach space and let A, B: X — X* be operators. Then, the
following statements hold true:

(i) if A is monotone and hemicontinuous and B is strongly continuous, then A + B is
pseudomonotone.

(ii) if A is pseudomonotone, bounded and coercive, then, for each b € X* there exists u € X
such that Au = b in X*.

8.4.2 Approximation scheme

We consider a smooth function g : R — [0, 1] such that g(r) =1 for r > 3 and g(r) = 0 for r < 2,
and define F : L%(Q2) — R as

F(v) == Crg(gyllvlize) for ve L*(Q),

where Cr is a positive constant to be specified later. We reuse the notation s to mean g, s
for the double obstacle and 1og s for the logarithmic potential. Furthermore, we denote by
~(r, s) the function

(1, s) := =T'u(r, s).

Then, we seek for a solution ¢s5 € H of the approximating system

V6Bs(ws) + Flps) s + A(Aps — 5(ps) + x05) = —v(ws,05)  in Q, (8.64)
Vs -n=V(Aps + xos5) n=0 on 09,
where 05 € H? is the unique non-negative solution to the nutrient subsystem
0=Aos—h in Q,
o~ hlgs)os —in (8.65)
Vos-n=K(1—o0s5) on 0.

We aim to use pseudomonotone operator theory, akin to the methodology used in 88|, to deduce
the existence of at least one solution @5 € H3 to (8.64) for each § € (0,1). Then, we derive
enough uniform estimates to pass to the limit § — 0 in order to prove Proposition

8.4.3 Preparatory result

For u € H%, let 0, denote the unique solutions to the nutrient subsystem (8.65) corresponding
to ps = u.

Lemma 8.17 For each § € (0,1), the operator A: H3, — (H%)* defined as

(Au, C>H12v = /Q —xVo, - V{+7(u,0,)¢ dz

is strongly continuous.

Proof. Let {u,}nen C H% be a sequence of functions such that u,, — u in H% and denote by
o, the corresponding unique solutions to the nutrient subsystem ({8.65) where ¢s5 = w,. Then,
we easily infer that

lonllgz < C, o0, €[0,1] a.e. in
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for a positive constant C' independent of n. Hence, for fixed ¢ € (0, 1), there exist a function
0. € H?(Q), such that along a non-relabelled subsequence, o,, — o, in H? as n — co. It is
clear that o, is the unique solution to corresponding to u. By Rellich’s theorem and the
assumptions on f,, by, it is easy to see that

/ XVn - V4 Yt o)C dz / \Vou VA o)Cde Ve B
Q Q

This shows that A is strongly continuous. O

8.4.4 Existence of approximate solutions

We fix § € (0,1), and define operators Ay, Ay : H3 — (H%)* by
(v, Qg = [ VBBs(u)C + AuAC da
(Aqu, C>H12\7 = /Q (F(u)u+y(u,04))¢ + V(¥5(u) — xou) - V( da.

Then, @5 € H% is a weak solution to if (A1 + A2)ps, )z =0 forall ¢ € HE,.

Since B§ is bounded and f5 has sublinear growth, we deduce that the operator A; is monotone
and hemicontinuous. On the other hand, Lemma [8.17] together with the continuity and sublinear
growth of ¢, and the continuity and boundedness of F' imply that A, is strongly continuous.
Then, by Lemma the sum A = Ay + A, is a pseudomonotone operator. We now claim that
A is additionally coercive on H%. Indeed, using the estimate ||o, ||z < C, the assumptions on
by, f, along with Holder’s and Young’s inequalities, it follows

(Au,u) o = / F(u)lu® + V6Bs(u)u + |Aul? + B5(uw)|Vul? — 0. Vul? dx
N Q
+/ —xVu - Vo, +uy(u,0,)) da
Q
> / Fu)lul? + V885 (w)u + 3 Auf? + L (w)|Vul? dz
Q

—C (14 |ull:) (8.66)

for a positive constant C' independent of u and . Recalling that F(u) = CF for ||ul|2, > 3|9,
and so, choosing C'r = 2C' gives

(Au,u>H12V > / V85 (u)u + 1CFIu? + 3|Aul? dz — C > c||ul|}. — C
)

for ||ul|2. > 3|2| which in turn implies coercivity of A.

Invoking Lemma we deduce for every § € (0,1) the existence of a solution ps € Hy to
Aps =01in (H%)*. Setting

s = —Aps +Y5(9s) — X045 (8.67)
we see that the equation Aps =0 in (H%)* implies
/ s AC dz = / fsCdx V(e H% (8.68)
Q Q

with right-hand side

fs = VoBs(0s)ps + Fps)ps — (s, 05).
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Thanks to the regularity ps € H%, 05 € H?, and the linear growth of 35, we easily infer that
fs € L?(22). On the other hand, choosing ¢ = 1 in implies that fs € LZ(Q). Then, by
arguing as in [88, Sec. 3.1], we obtain that us € H% for all 6 € (0,1). Again using elliptic
regularity theory, and the boundedness of o5 € H2, we infer that p; € H*. A comparison
argument in implies that V(Aps + x0p,) -1 =0 a.e. on €.

8.4.5 TUniform estimates

From (8.64) and (8.68)), the pair (ps, us) € HZ x H3; satisfies
0= [ (Flgs)os + VBBilis) + 2(s,05) ~ Aps)G (5.692)
Q
0= / (B5(05) — Octps — s — xo5 — Aps )¢ dz (8.69b)
Q

for all ¢ € L?. Returning to the proof of the coercivity of the operator A, replacing u with g

in (8.66) gives
AF(¢5)|¢6|2 +V6Bs(ps) s + 385(0s) I Veos|® + L Aps> < LCrlpsll3> + C, (8.70)

where we used that Aps = 0 in (H%)*. If ||ps||32 > 3|92, then as before we have

/Q VBs(0s)es + B4(08) | Vigs|? da + [l s %2 < C. (8.71)

If |l¢s]12. < 3|Q, then adding |¢s]/2. to both sides of (8.70) and neglecting the non-negative
term F'(5)]ps]? on the left-hand side yields the uniform estimate (8.71)). Hence, {¢5}se(0,1) is
bounded in H%, and along a non-relabelled subsequence, it holds that

Y5 =@, 05 = 0y in H> asd — 0,

where o, is the unique solution to the nutrient subsystem (8.65) with data ¢. Convexity of 35
and 85(0) = 0 imply the inequality

A

Bs(s) < Bs(s)s for all s € R.

For the double obstacle potential, we use (8.15b) and (8.71]) to deduce that

52 / o s (05)[? d < 26 / Baos(ips) da < 26 / B5(9s)ps da < CVG.
Q Q Q

Hence, §840,6(0s) — 0 in L? as § — 0, and by (8.44) we deduce that the limit ¢ satisfies

o] <1 a.e.in Q.

For the logarithmic potential, we use (8.20b)), (8.71) and the inequality Bg(s) < Bs(s)s for all
s € R to deduce that

0 / (5] — 12 de < 4 / Brog.s(s) da < 46 / Brog.s(5)¢s d < CVB.
Q Q Q

Since 5 — @ strongly in L? and a. e. in ©Q, the limit § — 0 yields |¢| < 1 a.e. in Q. In particular,
we have |2, < |Q|. Using the norm convergence ||¢s]|2: — ||¢||%2, we then infer the existence
of 05 > 0 such that [¢s||2. < 2|Q| for § € (0,05). Consequently, F(ps) = 0 for 6 € (0,35), and
in the sequel we will neglect the term F(p5)ps.
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Choosing ¢ = —Apgs in (8.69b)), ¢ = Bs(¢s) and also { = —Ap; in (8.69a)) yields after summation
and integrating by parts that

IVisll3> + V6|Bs(es)l12 < /QW(%% 05)(Aps — Bs(ws)) — V(Ocps + x05) - Vs dx
1
<C+ §||VM5H%2 (8.72)

on account of the boundedness of p5 and o5 in H?, and with the same estimates for the term
v(¢s,05)Ps(ws) as above. Consequently, it holds

IVsliEe + VallBs(ps)lI72 < C (8.73)
which implies
IV355(ps)[122 < CVE — 0 as 6 — 0,

and so V0B5(ps) — 0 in L?(2). Then, choosing ¢ = 1 in (8.694), using that us; € H% and
passing to the limit 6 — 0 yields

0= /Qv(cp,o') dx. (8.74)

Then, we infer from and (8.74) that the limit ¢ has mean value pg € (—1,1). Indeed,
substituting ¢ = 1 or —1 in (8.74)) leads to a contradiction on account of , and as |¢| <1
a.e. in ©, we have that pqo € (—1,1).

Arguing as in the time-dependent case we can derive a uniform estimate on the mean value of
s, and consequently

1|z + 1| Brog,s (9s) | 22 + [ Bao,s(ws)ll L2 < C,
where the boundedness of Siog,5(¢s) in L?(2) implies the tighter bounds

o] <1 a.e. in Q.

8.4.6 Passing to the limit

In (8.69a)) we take ¢ € H' and integrate by parts to get
o:/ (VB5(5) — Tg)C + Vs - VC dz V¢ € HY.
Q

Passing to the limit § — 0 then yields
/ V- V¢ dr = / Tu(p,0)¢de V(e H
Q Q

Since this holds for all ¢ € H' and since I'y,(p, o) € L?, we deduce that u € H% with bounded

norm and (8.8)) holds. Meanwhile, (8.4)) or (8.5 can be recovered in the limit § — 0 from (8.69b))
in a fashion similar to the time-dependence case, as with the recovery of (8.1€) and (8.2bf), and

thus the triplet (¢, i, o) is a stationary solution in the sense of Definition Moreover, from
the above estimates and weak lower semicontinuity of norms, we know that

ellaz + lullez + llollmz < C (8.75)

which completes the proof.
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An optimal control problem

In this chapter we analyse an optimal control problem for tumour growth, i.e., we aim to
minimise a certain cost functional under constraints which are given by a system of PDEs
describing the evolution of the tumour.

Optimal control problems may give valuable insights into the response of cancer cells to drug
therapy and they may serve as a basis to design patient specific treatment strategies. Although
this treatments may not fully eliminate the tumour, they can help to reduce the tumour to a
certain size which is ideally suited for further treatments like, e. g., surgery. Mathematically,
we describe the therapeutic objectives by including a final treatment target ¢y and a desired
tumour evolution ¢4 in the cost functional via the terms

X1

Xp 2
z0 T) — d
5 /Qlw( ) —@fl” de + 5

/ o — pal? da dt,
Qr

where g and «; are non-negative constants which will be specified later.

Moreover, we aim to analyse the influence of cytotoxic drugs, i.e., drugs that specifically detect
cancer cells and kill them while not causing too much harm to the surrounding normal tissue.
Well known examples are anti-cancer T cells or natural killer cells (NK cells), see, e. g., Chap.
20]. The influence of cytotoxic drugs can be modelled by an additional term —ul(p) where w is
the dose of a certain type of cytotoxic drugs and h(-) is a function that interpolates between
h(—1) =0 and hh(1) = 1.

Although cytotoxic drugs mainly affect cancer cells, they can still cause harm to the patient. It
has been reported in Chap. 6.6.1] that the cytotoxic therapy may cause diseases like, e. g.,
myelodysplastic syndrome (MDS) and acute myeloid (AML). In order to avoid those harmful
consequences, we extend the cost functional by incorporating an additional term

E/ |u|? da dt for k >0
2 Jaor

that penalises high drug doses administered to the patient.

In the following we will carefully introduce the mathematical setting for the optimal control
problem. The results are based on .

221
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9.1 Introduction of the optimal control problem

We study an optimal control problem with the state system given by

div(v) = (Po — A)h(yp) in Qr, (9.1a)

—div(T(v,p)) + vv = (u+ xo)Vy in Qr, (9.1b)

O + div(ev) = mAu + (Po — A —u)h(p) in Qr, (9.1c)

(CHB) p=—eAp+e 1 (p) - xo f)n Qr, (9.1d)
—Aoc + h(p)o =B(op —0) in Qrp, (9.1e)
Vie-n=Veo-n=Vo-n=0 on Xp, (9.1f)
T(v,p)n=10 in X, (9.1g)

©(0) = o in Q, (9.1h)

where the viscous stress tensor is defined by
T(v,p) = 2nDv + Adiv(v)I — pI,
and the symmetric velocity gradient is given by
Dv := Z(Vv+ (Vv)T).

The model is a modification of — with constant viscosities, permeability and
mobility.

In , we have an additional term B(op — o) describing the nutrient supply of a pre-existing
vasculature. By op we denote the nutrient concentration in the pre-existing vasculature and B
is a positive constant related to the blood-tissue transfer. Hence, the term B(op — o) models
the nutrient supply from the blood vessels if o > ¢ and the nutrient transport away from the
domain for o < ¢ and acts to balance the differences in nutrient concentration between the
tumour and its vascular system. In the avascular growth case it holds B = 0 and we refer to,
e.g., [25[84L/137] for more details regarding this term. Furthermore, the term —ulh(y) in (9.1c)
models the elimination of tumour cells by cytotoxic drugs and the function v will act as our
control. Since it does not play any role in the analysis, we set ¢ = 1.

We investigate the following distributed optimal control problem:

Xo

.. X1 K
Minimize  I(p,u) = S p(T) — psll3a + e — @alliacan + 5 Nl

subject to the control constraint
ueU:={ueL*L? | a(z,t) < u(z,t) < b(x,t) for almost every (z,t) € Qr}

for box-restrictions a,b € L?*(L?) and the state system (CHBJ). Here, o, ; and  are non-
negative constants such that oo + &1 + x > 0.

The optimal control problem can be interpreted as the search for a strategy how to supply a
medication such that a desired evolution ¢q and a therapeutic target ¢y are achieved in the
best possible way without causing harm to the patient (expressed by both the control constraint
and the last term in the cost functional). The ratio between the parameters oy, o1 and & can
be adjusted according to the importance of the individual therapeutic targets. In general, it is
possible to include additional terms in the cost functional, see for example [58].

In the case when h(—1) = 0, the term —ulh(p) models the elimination of tumour cells by a
supply of cytotoxic drugs represented by the control w. This specific control term has been
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investigated in [58] and also in [84] where a simpler model was studied in which the influence of
the velocity v is neglected. However, in some situations it may be more reasonable to control,
for instance, the evolution at the interface and one has to use a different form for Th(-), see
Remark below. Therefore, we allow h(-) to be rather general.

We now give a short overview on this chapter.

In Section[9.2] we prove the existence of a control-to-state operator that maps any admissible con-
trol u € U onto a corresponding unique strong solution of the state equation . Furthermore,
we show that this control-to-state operator is Lipschitz-continuous, Fréchet differentiable and
satisfies a weak compactness property. In particular, we establish the fundamental requirements
for calculus of variations.

In Section we investigate the adjoint system. Its solution, that is called the adjoint state or
the costate, is an important tool in optimal control theory as it provides a better description
of optimality conditions. We prove the existence of a control-to-costate operator which maps
any admissible control onto its corresponding adjoint state. Then, we show that this control-to-
costate operator is Lipschitz continuous and Fréchet differentiable.

Eventually, in Section[0.4] we investigate the above optimal control problem. First, we show that
there exists at least one globally optimal solution. After that, we establish first-order necessary
conditions for local optimality. These conditions are of great importance for possible numerical
implementations as they provide the foundation for many computational optimization methods.
We also present a second-order sufficient condition for strict local optimality, a globality criterion
for critical controls and a uniqueness result for the optimal control on small time intervals.

9.1.1 Preliminaries

First, we introduce the function spaces
Vi = (H'(L*) N L™ (H?) N L*(H")) x (L*(L*) N L?*(H?)) x L>°(H?) x L}(H?) x L}(H"),
Vy == L¥(L?) x L¥(H") x L*(L?) x (L*(L?) N L*(H?)) x L*™(L?),
Vs = (H'((H")*) N L>®(H") N L*(H?)) x L*(H") x L*(H?) x L*(H?) x L*(H"),
Vyi=H' x L*(L%°) x L*(H") x L*(L?) x L*(H') x L*(L?)
endowed with their standard norms.

Assumptions 9.1 For the rest of this chapter, we make the following assumptions.

(A1) The domain Q C R, d = 2,3, is bounded with C*-boundary Q. Moreover, the initial
datum ¢o € H% and op € C([0,T]; L?) are given functions.

(A2) The constants T, n, v, m, B are positive and the constants P, A, \, x are non-negative.

(A3) The non-negative function b belongs to C3(R), i. e., b is bounded, three times continuously
differentiable and its first, second and third-order derivatives are bounded. Without loss of
generality, we assume that |h| < 1.

A4) The function 1 is the smooth double-well potential, i.e., 1(s) == + (s> — 1 2 for all s € R.
1

Remark 9.2 (a) In principle, it would be possible to consider more general potentials ().
However, since the double-well potential is the classical choice for Cahn—Hilliard type
equations (apart from singular potentials like the logarithmic or double-obstacle potential)
and to avoid being too technical, we focus on the above choice for .
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(b) For the function h(-), there are two choices which are quite popular in the literature. In,
e.g., [82,87], the choice for h is given by

h(¢) = max (0,min (1,3(1+¢))) Ve €eR,

satisfying h(—1) = 0, (1) = 1. Other authors preferred to assume that h is only active
on the interface, i.e., for values of ¢ between —1 and 1, which motivates functions of the
form

h(yp) =max (0,3 (1 —¢?)) or h(yp) = 3 (cos(rmin (1, max (¢, —1))) + 1),

see, e. g., [103,[106]. Surely, we would have to use regularised versions of these choices to

fulfil .

9.2 The control-to-state operator and its properties

We consider the system as presented at the beginning. The first step is to define a set
of controls that are admissible for our problem. Then, we show that each of these admissible
controls induces a unique strong solution (the so-called state) of the system . Thus, we
can define a control-to-state operator which maps any admissible control onto its corresponding
state. We show that this operator has several important properties that are essential for calculus
of variations: it is Lipschitz-continuous, Fréchet-differentiable and weakly compact in some
suitable sense.

9.2.1 The set of admissible controls
The set of admissible controls is defined as follows:

Definition 9.3 Let a,b € L?(L?) be arbitrary fixed functions with a < b almost everywhere in
Q7. Then, the set

U:={ue L*(L?) | a(z,t) < u(z,t) < b(z,t) for almost every (z,t) € Qr}

is referred to as the set of admissible controls. Its elements are called admissible controls.

Note that this box-restricted set of admissible controls U is a non-empty, bounded subset of
the Hilbert space L?(L?) since for all u € U,

llull 22y < llallz2z2y + bl L2(z2) +1 =: R.
This means that
UCUr with Ug:={ue L*(L?) | |ull2(r2) < R}.
Obviously, the set U is also convex and closed in L?(L?). Therefore, it is weakly sequentially
compact (see [135, Thm. 2.11]).
9.2.2 Strong solutions and uniform bounds

We can show that the system (CHBJ) has a unique strong solution for every control u € Ug:
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Proposition 9.4 Let u € Ui be arbitrary. Then, there exists a strong solution quintuple

(Qus s Oy Vi, Pu) € V1 Of @ in the sense that (pu, fu, Ou, Vu, Pu) fulfils (@) almost
everywhere in the respective sets. Moreover, every strong solution (pu, fhu, Ou, Vu, Dy) Satisfies

the bounds
(s s Ty Vi, ) [y, < Ch (9.2)

for a constant Cy > 0 independent of (pu, hu, Cus Vi, Pus U)-

Proof. The assertion follows with slight modifications in the proofs of Theorems [5.5 and [5.11]
The estimates can be derived rigorously within a Galerkin scheme where the control u has to
be approximated by a sequence {u, }nen € CO([0,T]; L?) such that u,, — u in L?(L?). For a
better readability, we drop the index n and we sketch the main differences to the proofs of
Theorems [5.5] and in the following:

Step 1: Testing with o, using , the non-negativity of h(-) and Hélder’s and Young’s
inequalities, we obtain

/|VU|2 derB/ lo|?dz < §/ lo|> + |op|? dz,
Q Q 2 Ja

lolla < Cllos|| L. (9.3)

meaning

Testing (9.1¢) with p + xo, it turns out that we have to estimate an additional term given by
— Joul(p)(pu+ xo) dz. Using Hélder’s, Young’s and Poincaré’s inequalities, we obtain

[ b+ x0) da
Q

/ ubi() (1 + x0 — (152 — x00)) dz + (g2 + x00) / uh(y) dz
Q Q

1
< 5@ z=llulzz + SCEIV (1 + x0)[E2 + [0 + xoal ()| 1] 22 lu] L2 (9-4)

for 6 > 0 arbitrary, where C'p is the constant arising in Poincaré’s inequality. Testing (9.1d])
with 1, using (9.1f) and the assumptions on v (-), we obtain

lna + xoal < C 1+ [[¢(e)Lr).

Applying this inequality and (9.3)) in (9.4)), using the boundedness of h(-) and Young’s inequality,
we obtain

/Qulh(w)(wrxa) do| < Cs (1+ [lullZ2) 1+ ¥ 21) + CslloslZs + 20C3 [V ullz-.

Then, the first two terms on the right-hand side of this inequality can be controlled via a
Gronwall argument, whereas the last term can be absorbed into the left-hand side of an energy
identity. Then, with exactly the same arguments as in the proofs of Theorems [5.5] and it
follows that

el a ey ynns (aynpaa2yncz sy + ol oy + el c2aynca ey
i (evllzaee) + V] gy + P2y < © (9.5)
with a constant C' independent of n € N

Step 2: Now, we establish higher order estimates. Using elliptic regularity theory, the assump-

tions on h(-) and op, (9.1€¢))-(9.1g), (9.3) and (9.5), it is easy to check that

||U||Loo(H2) <C. (9.6)
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Together with the boundedness of h(-) and the Sobolev embedding H? C L, this implies
ol oo (roey + 1div(V) [ oo (o) + (PO — A)(p)]| o (po) < C- (9.7)

Testing (9.1d) with A2y, (9.1d) with mA3¢p, integrating by parts and summing the resulting
identities, we obtain

ETe) / |Ap|? dz + m/ |A2p|? dz = / (Po — A—u)h(p) — div(pv)) A% da
Q
+ / mA@ (p) — xo)A%p dz. (9.8)
Q
Here, we used Corollary [9.5] below to deduce that

A? =—= [ |Ay? T
/Q(?t(p o dz dt2/| pl“dz Vte(0,T).

Due to Hélder’s and Young'’s inequalities and (9.5)-(9.7), the Sobolev embedding H' C LS and
elliptic estimates, it follows that

< C 1+ ullZe) + Clvli (1+ 1A¢]Z2)

/Q ((Po — A —u)h(p) — div(ev) — mxAc) A’y dz

m
+ Z||A2<P||2L2~
Now, we observe that
AW (9)) =" ()| Vel + 9" (0) Ap

Using Holder’s, Young’s and Gagliardo—Nirenberg’s inequalities, the assumptions on 1)(+), elliptic
regularity theory and (9.5, we obtain

m
/ mAW (9)A%pdz| < C (14 [[el= + 2l l1VelLs) (14 [A¢]72) + 5 1A%Z:
m
<O+ lelie) O +1A¢]7:) + S 1A% 7.

Invoking the last two inequalities in , recalling (9.5) and using elliptic regularity theory, a
Gronwall argument yields

[l Lo (mr2) + llpllL2caey < C.
Then, using the equation for p given by (9.1d]) yields

|1l oo (L2ynr2 a2y < C.
Employing the relation (9.1c|) for 9;p gives
||8t90||L2(L2) S C

Using the previous estimates, the assumptions on h(-) and Gagliardo—Nirenberg’s inequality, it
is easy to check that

[(Po — A)h(p) sy < C, (1 + x0)Vel sz < C.
Due to Proposition 2.50} this implies
[vllzs@z) + llpllLsary < C

which completes the proof. O
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The following corollary shows that the p-component of a strong solution quintuple has a
representative that is continuous in Q.

Corollary 9.5 Let u € Ug and po € H%,(2) be arbitrary and let (py, fu, Ou, Vu, pu) denote the
strong solution of the system (@) Then, @, satisfies

Pu € C([O,T],HZQV), Pu € C(QiT) with ||(‘0“||C([O,T];H2)OC(E) < C2
for some constant Co > 0 independent of ., and u.

Proof. We define the functional J: L? — R by

LAV + v)? de ifve HZ,
j(v):{zfﬂ [+ o A
+00 else.

Since 1 [, |Av|? + |[v|? dz defines a norm on H% C L?, it is straightforward to check that J is
convex, lower semi-continuous and proper on L?. Define n = A%p, + ¢, € L*(L?). We claim
that n(t) € 0T (pu(t)) for a.e. t € (0,T) which is equivalent to

T (pult)) +/Q?7(t)(y —pu(t) dz < J(y) VyeL®andace. te(0,T). (9.9)

If y € L?\H%, this is trivial. If y € HZ,, integrating by parts and using ¢,, Ay, € H3; for a.e.
t € (0,T), after rearranging we observe that is equivalent to

AA@u(t)Ay +ou(t)y de < T(y) + T(pu(t)) Yy € Hy and a.e. t € (0,7).

Using the definition of J together with Holder’s and Young’s inequality, this implies .
Applying [23, Lemma 3.3], we deduce that J(p,(+)) € C°([0,7]) and

T (pu(t)) = /Ot Orpu (D% + ) do + T (po) Vit e[0,T].
Hence, using elliptic regularity theory, ¢o € H% and (9.2)), it follows that ¢, € C°(H?) and
loullcomzy < C.
As H? is continuously embedded in C(€), it directly follows that ¢, € C(Qr) with
leullo@r) = leullLe =) < Collpull Lo 2y < CoCr =: Cs

for some constant Cy > 0 independent of ¢, and u. This means that the second assertion is
established. O

Furthermore, we can show that any control v € Ug induces a unique strong solution of the

system (CHB):

Theorem 9.6 Let u € Ug and ¢o € H% () be arbitrary and let (pu, fiu, Vu, Tu, pu) denote the
corresponding strong solution as given by Proposition[9.4} Then, this strong solution is unique.

Proof. Let u,u € Ug be arbitrary and let C denote a generic non-negative constant that may
change its value from line to line. For brevity, we set

(QO,/,L,V,O',p) = (‘pua,uuvvuaauvpu) - ((pﬂ7/~‘l’ﬁvvﬁagﬂapﬂ)a
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where (@, tiy, Vi, 0w, pu) and (g, ha, Va, 0a, Pa) are strong solutions of (CHBJ) to the controls
w and @. In particular, this means that both strong solutions satisfy the initial condition (9.1h)),
i.e., ©u(+,0) = @a(-,0) = o holds almost everywhere in €.

Then, the following equations are satisfied:
div(v) = Poh(py) + (Poz — A)(Ih(py) — h(ea)) in Qp,  (9.10a)

—div(T(v,p)) + vv = (u+ x0)Vou + (ua + xoa) Ve in Qp, (9.10b)
Orp + div(p,v) + div(pvg) = mAp — (ulh(py,) — th(psz))

+ Poh(p,) + (Pozg — A)(h(p,) —h(pg)) inQr,  (9.10c)

p=—Dp+ (' (pu) = 9'(a)) — xo in Qp,  (9.10d)

—Ac + Bo + h(py)o = —oca(lh(py) —hipsz)) in Qr,  (9.10e)
Ve-n=Vo-n=Vo-n=0 on Xy, (9.10f)
T(v,p)n=20 on Xy, (9.10g)

0(0)=0 in Q. (9.10h)

Our aim is to show that ||(p, 1, v,0,p)|lv, = 0 if w = 4. The argumentation is split into two
steps.

Step 1: First, we show that the following inequalities hold: for any ¢ > 0 and all u,@ € U,

|(ub(pu) — @h(pa),¢) .| < Cllu—all7z + Cllellzz + Cllall el i, (9.11)
|(ub(py) — @h(pa),Ap) | < C5 " lu—allFz + C5 |a]l 72 llel 3
+ 20[|Agl32 + || VAp|3z. (9.12)

To prove ([9.11)) and (9.12) we use that uh(p,) — @h(ps) = (v — @)h(p,) + @(h(p.) — h(ea)).
From ||h(¢y)||z= < C we deduce that

|((u = @)h(pu) @)zl < C (llu—allf> + llelZ),
and, by Young’s inequality with § > 0,
|((w — @)h(pu), Ap) 12| < C61 u—all72 + 8| Ap|Z..
Moreover, we have
[(@(h(pu) = (pa)), @) 2| < Cllalle llelzs < Cllale lelin,

and, using Gagliardo—Nirenberg’s and Young’s inequalities together with the Sobolev embedding
H! C LP, p € [1,6], we obtain that

| (@(h(pu) = h(pa)), A¢) o | < Cllalle [@llzs [ApllLe
< CslallzzlleliEn + 6 (|1 AglZe + IVAQIIL)

for § > 0 to be chosen. Invoking the last four estimates, we obtain (9.11))-(9.12). Multiplying
(19.10¢]) with o, integrating by parts and using (9.101), it follows that
/ |Vo|? + Blo|? + h(py)|o|? dz = —/ oa(h(vw) — h(ps))o da.
Q Q

Using the assumptions on h(-), Proposition and Holder’s and Young’s inequalities, it is
therefore easy to check that
lollar < Cllellze.
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Then, we can follow the arguments in the proof of Theorem [5.7] to deduce that

ol s (mryynns (avynrz sy + gl L2y + ol 2y + 1VIizaany + 12l e2)
< CHu—fLHL2(L2). (9.13)

Step 2: We now prove higher order estimates. Using elliptic regularity theory, Proposition
(19.13) and the assumptions on h(-), it is easy to check that

||0’||Loo(H2) < CH’LL—’&”Lz(Lz). (9.14)
Multiplying (9.10c) with A%p and inserting the expression for u given by (9.10d)), we obtain
d1
5 [ 186 dotm [ (8% dr = [ (Pohe,) + (Pow — A)B(e.) - hlen)) A% do
- / (div(pyv) + div(pva)) AP da
Q
[ A (00) = /(n)) ~ x0) A% do
- / (ulh(py) — @h(pa)) A% dz, (9.15)
Q
where we used that, for almost every t € (0,7,

d1
/3t<pA2<pdx:a§/|A<p|2dx Vo e H* (L)) NL*(H"), Vy-n=VAp-n=0on .
Q Q

Using Proposition and (9.13)-(9.14)) together with Holder’s and Young’s inequalities, it
follows that

[ (Pob(o) + (Pos = A)(bi.) = ) = div(puv) - div(pva) — mxAa) A% do
Q
< O (vl + ol Ivallie + ol + I¢l2:) + 2 1A%, (9.16)

Using the Sobolev embedding H? C L™, Proposition (19.13), the assumptions on h(-) and
the elliptic estimate

lellmz < C(lele: + 1Allz2) Vo € HY,

we obtain

/Q (uh(w)i — h(pa)) A% da

/Q ((u— D)(p) + a(B(pw) — hlpa))) A% dr
< C(lu— g2 + Nl (lellze + 1A]z2)) [A2] 2
< (lu—al2s + a2 (lgl2s + 1Ag]22))
+ %HA?@H%Q. (9.17)

Now, we observe that

AW (pu) = V' (0a)) = ¥ (u) Ap + Apa (¥ (0u) — " (va))
+ 9" (pu) (Vou + Vi) (Vou — Voa) + (0" (0u) = 9" (¢a)) [Veal*.
Due to the assumptions on 9 (-) and because of Proposition it is straightforward to check
that

/Q 9" (0u) Agl* + | Apa (¥ (0u) — ¥ (pa))I* dz < C (llellZ: + [A¢lZ2)
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where we used the Sobolev embedding H? C L* and elliptic regularity theory. With similar
argument, using the Sobolev embedding H! C L° and the assumptions on 9(-), we obtain

/Q 19" (pu) (Vou + Vea) (Vou = Voa) 2+ (0" (pu) = 9" (pa) P Val* da
< C(llele + AplZ:) -
From the last two inequalities we obtain
IA® (pu) =" (@a))llZ: < C (lelle + [Ap]Ze) - (9.18)

Therefore, we have

‘m/ﬂ AW (pu) — ¥ (0a)) A% dz| < C (lell32 + |1 A¢l32) + %HA%H%Z- (9.19)

Employing (9.16])-(9.19)) in (9.15)), we obtain

d _
T 16 do s m [ 1A% do < O (Il + laliallelEs + vl o)

+C (llollzz + vl + llu—allZ2)
+C (14 [[alZ2) [ ApllZ-

Invoking Proposition and eq. (9.13) and using elliptic regularity theory, a Gronwall argument
yields

ol vy ynnee (m2ynr2 a3y + 1A@l 22y + pll2 ) + llolloee 2y + IVIL2 @) + |pllz2(22)

Using and , invoking equation implies
[l Lo (p2)nrzm2) < Cllu — @l z2(r2)-
Together with elliptic regularity theory and 7 7 we therefore obtain
lollp2(rrsy < Cllu — @l p2(z2).-
From the previous two bounds along with the relation for 9, we infer that
10cpll 22y < Cllu — @l L2(L2)-
Using the last three estimates and , we obtain

el (L2ynne (m2ynrz ey + |1l Lo (2ynn2 a2y + ol Lo a2y + (VI 2@y + 1Pl 22(n2)
< C||ufﬁ||L2(L2). (9.21)

Together with the assumptions on h(-) and Gagliardo—Nirenberg’s inequality, it follows that
1div(v)llzs ) < Cllu = @llz2(z2), (|14 Xx0)Vu + (1a + Xx0a)Vellrswe) < Cllu — il z2(z2).
Then, an application of Proposition yields
IVllizsaz) + [IPlzs ) < Cllu — all2(z2).-
Together with , this implies that
(. 1,0, v, p)llvy < Cllu— il 2(z2).- (9.22)

Hence, setting u = % completes the proof. O
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Due to Proposition [0.4 and Theorem [0.6] we can define an operator that maps any control
u € Ug onto its corresponding state.

Definition 9.7 For any u € Ui we write (¢, fbu, Ou, Vu, Pu) to denote the corresponding unique
strong solution of (CHBJ) given by Proposition Then, the operator

S: Up = Vi, urS(u) := (Qus s Ous Vs D)
is called the control-to-state operator.

Remark 9.8 The control-to-state operator is defined not only for admissible controls but
for all controls in Ugr. This will be especially important in subsection 3.4 because Fréchet
differentiability is merely defined for open subsets of L2(L?). Unlike the open ball Ug, the set U
is closed and its interior is empty. Therefore, it makes sense to investigate the control-to-state
operator on the open superset Ur instead.

In the following we establish some properties of the control-to-state operator that are essential
for the treatment of optimal control problems.
9.2.3 Lipschitz continuity

The proof of Theorem does actually provide more than uniqueness of strong solutions of
(CHBJ). In fact, we have showed the Lipschitz-continuity of the control-to-state operator.

Corollary 9.9 The control-to-state operator S: Ug — V; is Lipschitz continuous, i. e., for all
u,u € Ug it holds

1S(u) = S(@)[lv, < Lallu —alz2L2) (9-23)

for a positive constant L1 > 0 independent of u and 4.

Proof. The assertion follows directly from (9.22)). O

9.2.4 A weak compactness property

As the control-to-state operator is nonlinear, the following result will be essential to prove
existence of an optimal control:

Lemma 9.10 Suppose that (ug)ren C U converges weakly in L?(L?) to some limit u € U. Then,
as k — oo,

Oup — Pz N HI(LZ) OLQ(H‘l)7 Oup, = P In C([O,T];Wl””) ﬂC(m), r € [1,6),
. —Vva in L?(H?),

— 0g m LQ(HZ), Duy, — Da in Lz(Hl)

My, — Ha in Lz(H2)a Vu

Oy

after extraction of a subsequence, where the limit (va, la, 0a, Va, Pa) s the strong solution of

(@) to the control u € U.

Proof. Using the uniform bounds that were established in Proposition [0.4] and standard com-
pactness arguments, we can conclude that there exist functions ¢, v, u, ¢ and p having the
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desired regularity such that

Ou, =@ in HY(L*) N L®(H?) N L*(HY), g, —p in L*(H?),
—g in L*(H?), v, —v inL*(H?), p., —p inL*(H')

Uuk k

up to a subsequence. The Aubin-Lions lemma (see Lemma implies that H'(L?) N L>(H?)
is compactly embedded in the space C'([0, T]; W), r € [1,6), and thus the convergence ¢, — ¢
in C([O, T]; Wl”"), r € [1,6), directly follows after subsequence extraction. In particular, by the
Sobolev embedding W™ c C°(Q), r € (3,6), we obtain that ¢,, — ¢ in C°(Q7), whence

V' (pu,) = U () and hip,,) —h(p) inC°Qr) ask— oo (9.24)

It remains to show that the quintuple (¢, v, 1, 0, p) is a strong solution of the system
according to the control w which means it is equal to (¢az, pa,0a, va, pa). Due to the above
convergence properties, all linear terms in are converging weakly in L?(L?) to their
respective limit. The nonlinear terms must be treated individually. From , we can easily
conclude that

ou h(py,) = oh(p) and wuiph(p,,) — uh(p) in L2(QT) as k — oo

since ||]h((p)||Loo(QT) < C, ||uk||L2(L2) < R and ”UukHL?(L?) < Cy. Recalling that ¢,, — ¢ in
C°([0, T); W) NC°(Q7) and v, — v in L2(H?) as k — oo, by the product of weak-strong
convergence it follows that

div(pu, Vu,) — div(ev) in L2(Qr) as k — oo.

Now, let ¢ € C§°(Q27) be arbitrary. Then, since C§°(Qr) C L?(Qr), we obtain

/Q (Owp — div(pv) — mAp — (Po — A—a)h(p)) ¢ dz dt

= lim (aﬂowc - div(‘ﬂukvuk) - mA/U'uk - (Pouk —A- uk)ﬂl(<puk)) ¢ dx dt =0,

k— o0 Qr

and consequently
Opp — div(ev) = mAp+ (Po — A—u)h(p) a.e. in Q.

We proceed analogously with the remaining equations of (CHBJ). This proves that (¢, i, o, v, p)
is a strong solution of the system (CHB]) to the control @ and thus, because of uniqueness, we
have (¢, p, 0,v,p) = (a, fa, 0a, Va, Pa) almost everywhere in Q. O

Remark 9.11 This result actually means weak compactness of the control-to-state operator
restricted to U since any bounded sequence in U has a weakly convergent subsequence according
to the Banach—Alaoglu theorem. However, this property can not be considered as weak continuity
as the extraction of a subsequence is necessary.

9.2.5 The linearised system
We want to show that the control-to-state operator is also Fréchet differentiable on the open

ball Ur (and therefore especially on its strict subset U). Since the Fréchet derivative is a linear
approximation of the control-to-state operator at some certain point v € Ug, it will be given by
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the linearisation of (CHB])

div(v) = Poh(py) + (Poy, — AL/ (py)¢ + Fi in Qr, (9.25a)
—div(T(v,p)) + vv = (ptu + X0u)Ve + (1 + x0)Vy + F in Q7, (9.25b)

O +div(puv + ovy) = mAp + (Poy, — A — u)h'(pu)p
+ Poh(py,) + Fo in Qp, (9.25¢)
(LIN) p=—0p+Y"(p,)p — xo + F3 in Qr, (9.25d)
—Ao + Bo +h(py)o = —h'(p.)poy, + Fy in Q7, (9.25¢)
Vie-n=Veo-n=Vo-n=0 on X, (9.25f)
T(v,p)n=20 on X7, (9.25g)
0(0) =0 inQ, (9.25h)

where F; : Qr - R, 1 <i <4 and F: Qp — R? are given functions that will be specified later
on. A strong solution of this linearised system is defined as follows:

Definition 9.12 Let u € Ug be arbitrary. Then, a quintuple (¢, i, o, v, p) is called a strong
solution of (LIN) if it lies in V; and satisfies (LIN]) almost everywhere in the respective sets.

We now establish existence and uniqueness of strong solutions to the linearised system.

Proposition 9.13 Let u € Uy be any control and let (p, u,0,v,p) denote its corresponding
state. Moreover, let (F, Fy, Fy, F3, Fy) € Vo be arbitrary. Then, the system has a unique
strong solution (@, u,o,v,p) € V1. Moreover, it holds that

(e, 1y 0, v, D)lv, < C|(F, Fr, Fy, s, Fy)llv, (9.26)

for a constant C > 0 independent of (@, 1,0, v,p,u).

Proof. The prove is divided into several steps.

Step 1: Galerkin approximation First, we remark that technically we would have to
approximate the given functions (F, Fy, Fy, F3, Fy) € Vo and (@u, fbu, Ou, Vi, Pu) € V1 with
functions that are continuous in time. This could be done with similar arguments as in the proof
of Proposition [0.4] To keep the notation clear, we will omit the corresponding approximation
parameter in the following.

We construct approximate solutions by applying a Galerkin approximation with respect to ¢
and p and at the same time solve for o, v and p in the corresponding whole function spaces. As
Galerkin basis for ¢ and p, we will use the eigenfunctions of the Neumann-Laplace operator
{w;}ien and we choose wy; = 1. We fix k£ € N and define W, := span{wy, ..., wg }. Our aim is to
find functions of the form
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satisfying for all v € W}, the following approximation problem

Oyprvde = | —mVug - Vo + ((Pau — A —uw)'(p,)r + Porh(p,) + Fg)v dz
Q Q
- / (div(puvi) + div(prva))v dz, (9.27a)
Q
/ pupv doe = / Vi - Vv + (V' (gu)pr — xor + F3)v dz, (9.27b)
Q Q
¢x(0,) =0, (9.27¢)

where the nutrient concentration oy is defined as the unique strong solution of

0= —Aocy + Boy + ]h'(gou)gokau + ]h((pu)O'k —Fy in Q, (927d)
Vo, -n=0 on 092, (9.27¢)

and the velocity v and the pressure p are defined as the strong solutions of

—div(T(Vg,pr)) + vvie = (p + X0u)Vor + (pi + xX0k) Vo, + F in €, (9.27f)
div(vy) = Porh(py) + (Poy, — AL (0u)pr + Fi in Q, (9.27g)
T(vi,pr)n =0 on O0f. (9.27h)

Using the continuous embedding H%, — L, the assumptions on h(-), F, Fy and Proposition
it is straightforward to verify that ((1u +x0u)Veor+ (uk +x0k) Ve, + F) € L? and (Pogh(eu) +
(Pow — AW (pu)er + F1) € H'. Therefore, by Lemma we obtain that (vg,pg) €
H? x H' and — are fulfilled almost everywhere in the respective sets. After some
straightforward calculations, it can be verified that is equivalent to a linear system of
k ODEs in the k unknowns (af,...,a¥)T = a;. Due to the assumptions on ¢(-), h(-), the
stability of (9.27d)-(9.27¢) and (9.27%)-(9.27h) under perturbations, and Proposition the
theory of ODEs (see Lemma [2.29)) yields the existence of a unique a, € W1([0, T;;); R¥) for
each k£ € N on some maximal existence interval T3} which may depend on k& € N. Then, we
first define o, as the unique strong solution of — and then by, = (b}, ...,bﬁ)T
using . Hence, the Galerkin scheme yields the existence of a unique solution triple
(ks k) € (WHL([0,T7); H3 N HY))? o € L?*(0,T;; H?). Finally, we can define (v,py)
as the solution of the subsystem (0.27f)-(0.27h) and, with similar arguments as above, it
follows that vi(t) € H? and pi(t) € H' for almost every t € [0,7}). We remark that
(¢r, ) € (CO[0,TF); HE, N HY))? and (9:27a)-([0-270), (©.27d)-(©-27¢), (©-271)-(0-27h) are
fulfilled almost everywhere in (0,7}).

Step 2: In the following we establish a priori estimates for the solutions of (9.27a)-(9.27h)). In
particular, the uniform estimates will guarantee that 7}; = T' for each £ € N. We use a generic
constant C' which may change it’s value from one line to another, but has to be independent of
k € N, and we frequently use Holder’s and Young’s inequalities.

Applying Lemma [2.39] there exists a solution wy € H' of

div(wy) = Poph(py) + (Poy, — AW (o) ek + F1 in Q,

1
wi = (|3Q| / Poyh(pu) + (Pow — AW (@u)er + F1 dﬂﬂ) n  ondQ,
Q
satisfying
Wil < ClPorh(eu) + (Pouw — AW (wu)or + Fill 2. (9.28)

Then, multiplying (9.27f) with vi —wy, choosing v = a¥ (\jw; +w;) in (9.27a), v = ma¥\; (A\jw; +
w;) in (9.27bf), summing the resulting identities over ¢ = 1,...,k, integrating by parts and
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adding the resulting equations, we obtain
d1
dt 2

= m/ V(" (pu)or — xok + F3) - VApy dz + / (div(pyvi) + div(pgvy) — F2)Apy dz
Q Q

/ (k]2 + [Veor]? da +m / A2 + [VA@P do + / DVl + vlvil de
Q Q Q

- /Q (Pow — A—u)l'(pu)pr + Porh(ew)) Apr — m(y" (pu)pr — xox, + F3) Ay, dz

+ /Q ((uu +x0u)Vepr + (ke + Xok)Viou + F) (Vi — Wi) + 2nDvy: Vwy + vvy - wy do

+ /Q ((Poy — A—u)l'(pu)pr + Porh(ow) + Fo — div(euvi — ©rva)) ek dz, (9.29)
where we used (9.27g)-(9.27h). In what follows, we will estimate the terms on the right-hand
side of individually.

Due to the boundedness of ¥ (p,), ¥ (pu) € L®(Qr) and Vi, € L>®(L°) and the Sobolev
embedding H! C L3, we calculate

‘m/ V@ (pu)er) - VApy dx
Q

m
< C(lerllsVeoullus + IVerlee) IVAprllLe < CllerlF + EHVAQOk”iZ- (9.30a)

/Q(w/"(wu)wkv% + 9" (u) V) - VA dz

For the next two terms, we obtain

/ mV (F5 — xor) - VAgy, dx
Q

m
< C(IVEs|R2 + IVorli-) + TGHVA%II@ (9-30b)

Since ¢ € H%, we know that |[Apg||r2 < ||V<pk||£/22||VAgok||£/22. Applying the boundedness of
0y € L®(H?), we conclude that

/ div(pyvi)Apy da
Q

m
< 01 [[villEn + ClVerleaVAGk e < dillvilltn + ElIIVARIE: + CVierlz:  (9:30c)

/(un Vi + @udiv(vi)) Ay dz| < Cllou || g2 ||Vella: |Avk| L2
Q

with d; > 0 to be chosen later. Using the Sobolev embeddings H' ¢ L3, H' ¢ LS and H2 C L*°,
we infer that

< C(IVerllezIvallLe + llerllzs [div(va)l ze) Akl L2

/ div(prpvy)Apy d
Q

m
< Clvallme ekl l|Agel e < Cllvallgellenllzn + 15 1A¢% e (9-30d)

Since h(py), ' (py), ¥ (pu) € L®(Qr), 0, € L>®(L°) with bounded norm, we easily obtain
that

/Q (= Fy = (Pou — AW (¢u)er — Poph(eu) + m@" (u)er — xor + F3)) Mgy dz

m
< C(lenllzr + lloklze + 1F2 )22 + 15 ]1Z2) + 5 AwxllZe- (9-30¢)

With similar arguments and using the Sobolev embedding H' C L*, it follows that

/Q (Pow — A = u)l(pu)pr + Porh(pu) + Fa )i da

< C (1 +Nullze) lerltn + € (lowlZz + [1F20Z:) - (9-30f)
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Again using the boundedness of h/(p,) € L>®(Qr), the Sobolev embedding H! C L°® and
Gagliardo—Nirenberg’s inequality, we calculate

/ Wb () o Agi dz| < Clullz2 x| Al o
Q

< Cllullzellorleoll Al (1Agel}s + 1920 IL)

< s, 55 llull 22 lloklTe + 02l Aprll7e + 03[ Aokl 2 [V A 12

< Cs, g lullZ2l@rlZs + (82 + 83) 1 A¢kll72 + 5 VAR
with d2,d3 > 0 arbitrary. Then, choosing 5, d3 sufficiently small, we conclude that

m

< Cllullzzlierlze + 75 (1A¢klZ + [VAPK[IL2) - (9-30g)

/ ul' (o) Ay, do
Q

Due to the Sobolev embeddings H' C LP, H' C LP, p € [1,6], and the boundedness of
oy € L°(H'), we obtain

/Q (div(euve) + div(ervy)) ek do

< C (leullm Ivelle lorllm + Ivalle loeliZ)
< Sallvallze + Cs, (1+ [vallin) lowlZ (9.30h)

with d; > 0 to be chosen later. Next, we apply the Sobolev embeddings H' C LP, H' C LP for
p € [1,6], H?> C L™ and the boundedness of ¢, € L>(H?) to get

/ (ttu + x0)Vipr + (11 + x00) Vipu + Fa) - (Vi — w) da
Q
< C (|ppw + xOull 2kl 5 + ik + x| 2 + | FllL2) Vi — Wi |
< Csy (1w + xoullF2llonll T + e + xoull72 + IFlf2 + Wellfn) + 05l vellin  (9.301)

with 85 > 0 to be chosen later. We recall that the L2-orthogonal projection P; onto Wj is
continuous on H'. Consequently, choosing v = (b¥ + x(o,w;)2)w; in (9.27h), summing the

resulting identities over ¢ = 1,--- , k, using the boundedness of " (p,) € L*(Qr) and the
elliptic estimate ||Apg|/rz < ||V<pk||i/22||VAg0kHié2, it follows that

e + xol122 < 180kl L2 |tk + xkllz2 + Cllgrllz + | Fallz2) | + xonl 12
1/2 1/2
< IVerl L IV Al ok + xonllz2 + Cllerllzz + | Fallz2 )ik + xoul| 2

1
< <66msok||m + 20 IVarlce +C (ol + ||F2||Lz>) e+ xowl22,
and therefore
1 .
Ik + xowllLe < <56|VA<Pk||L2 + T%HV%HW + C (||lgkllz2 + ||F2||L2)) (9.305)

for §g > 0 arbitrary. For the remaining term on the right-hand side of (9.29)), we obtain

/ 2DVi: Vwy + vve - wi de| < Cll w2 + 07| ve |2 (9.30K)
Q

for 07 > 0 to be chosen. Employing the bounds (9.30)) in (9.29), using Korn’s inequality and
chosing 9;, i € {1,4,5,6, 7}, sufficiently small, we obtain that

d
a”%”%ﬁ + |1 A¢kll72 + VAR + [[Velf

3
< BONer®lE +C (IIUkII%n +lwilln + IVEs[IE: + [IFIIE- + ZFilliz> ;o (931)

=2
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where B(t) = C (1 + [[vu()|lF2 + [[#u(t) + xou(®)]132 + [[u(t)]|32). Due to the definition of Ug
and using Proposition it follows that 3 € L'(0,T). From the boundedness of h(,, ),/ (¢.) €
L*(Q7), 0, € L*(L5) and due to (9.28)), we infer that

[willer < C (lowllz> + llerllar + [1F1llz2) - (9.32)

Multiplying (9.27d)) with o, integrating by parts and using (9.27€)), the boundedness of I/ (,,) €
L*(Q7), 0, € L*°(L5) and the non-negativity of h(-) yields

IVor|ie + Blowlli: = ’/Q (Fa = ' (p)erou)or do| < dsllowllFn + Cs, (loellZs + [ Fall72)

for dg > 0 arbitrary. Choosing dg sufficiently small, this implies that

okl < C (lerllze + [ Fallz2) - (9-33)

Applying (9.32)-(9.33) to (9.31)), we end up with

d
&”S@@H%{l + [Apkll7z + [VA@k[E: + Vil
4
< Bkt +C (IIVFalia +FL. + ZlIFz‘IIiz> ~
i=1
Recalling (9.27¢) and using elliptic regularity theory, an application of Gronwall’s lemma gives
4
ekl oo (rrynrz ey + IVellLz@ny < C <||VF3L2(L2) + [|F[[z2(w2) +Z|Fi||L2(L2)> . (9:34)
i=1

Step 3: Using (9.30j) and (9.33)), from (9.34]) we obtain

4
okl + lpkllzze) < C <||VF3||L2(L2) + IF |20 re) +ZF1‘||L2(QT)> - (9.35)

i=1

Now, choosing v = \;b¥w; in (9.27b]), summing the resulting identities over i = 1,...,k, and
integrating by parts, we have

IV pxllz> =

/ V(= Apr + 0" (pu)r — xok + F3) - Vg, da
Q

3 (IV (=2pr + 9" () o1 — xon + F3)l22 + [ VinllZe2)

IN

which implies
IVurlge < (IV (= Apk + 9" (0u)or — X0k + F3)|12) -
Integrating this inequality in time from 0 to T and using (9.34)-(9.35)), we obtain

i=1

4
||Vuk||L2(L2) <C <||VF3||L2(L2) + ||FHL2(L2) + Z||F1”L2(L2)> . (9.36)
Step 4: To get an estimate for the pressure, we test (9.27f) with q, € H! where q; satisfies

. , 1
div(qe) =pr InQ, qp= (m/Pk dx) n ondQ, and |qxllm < Clpkllre. (9:37)
Q

Therefore, using the boundedness of y,, + xo., € L>(L?), Vi, € L°°(H'), we obtain that

Ilpellze < C (IvellEn + IVerllLs + lak + xorllz + L) -
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Integrating this inequality in time from 0 to T" and using (9.34)-(9.36)), we get

4
[pkllz2(rey < C <||VF3|L2(L2) + | F[l 22y + ZFiHLZ(LZ)) : (9.38)

i=1
Summarising (9.34)-(9.38) gives

ekl (mynrzcmey + ikl 2y + llokllczcany + Vel ez + lpkllzzee

4
<C <|VF3||L2(L2) + | Fll p2 w2y + Z||Fi|L2(L2)> . (9.39)

=1

Step 5: We want to establish higher order estimates for ¢y, pr and or. With (9.27d])-(9.27¢])
and elliptic regularity theory, it follows that

okl < C (W' (eu)eroullLe + [ FallL2) -

Due to the assumptions on h(-), using Proposition and ((9.39) implies

3
lollpee 2y < C (||VF3||L2(L2) +Fl 2wy + > _IFllr2 e + ||F4||L°°(L2)> : (9.40)
i=1
Now, choosing v = a¥ \2w; in (0.27d), v = —mafA3w; in ([9.270), integrating by parts and
summing the resulting equations over j = 1,...,k, we obtain
d1

77/ Ayl da + m/ A%, 2 do = / (Pow — A — u)(pu)pi + Poh(py) + F2) A% da
- / (div(pyvi) + div(erva)) A%py dz
Q
+ m/ A(w”(gou)gok — X0k + Fg)AQgpk dz. (9.41)
Q

Using Proposition the assumptions on h(-), (9.39)-(9.40) and the Sobolev embeddings
H' C LS, H' ¢ L%, H? C L, we have

/ ((Pau — A (pu)pr + Porh(p,) + Fo — div(e,v) + diV((kau))AQQOk dx
Q
m
< C (14 vallzrz) ekl +C (llowllfe + Ivellfn + [1F2l72) + §||A2<Pk||2L2~ (9.42a)

Furthermore, it is straightforward to check that

m
‘m/ A( — X0k + FS)AQ@]C dz| < C (HakH%ﬂ + ||F3||?{2) + §HA24PI¢”2L2~ (9.42b)
Q

Now, using elliptic regularity theory, the Sobolev embedding H? C L°°, the assumptions on ()
and Proposition [0.4] we calculate

< Clullellokllz2 | A%l 2

/ ul/ () prA% gk da
Q

m
< Ollullze (loklze + [Aprllz2) + gllﬁzwklliz~ (9.42¢)
Next, we observe that

AW (eu)er) = VW (00)[Veu 2o + 0" (0u) Apupr + 20" (0u)Vou - Vo + 0" (0u) App.
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Using the Sobolev embeddings H' c LS, H? c L*, H' C LS the assumptions on v(-),
Proposition and elliptic regularity theory again, we obtain

1AW (pu)ee)lIZ: < C (lollfs + [ApkllZ) (9-42d)

Consequently,

\m | 8w o0 a%e da
Q

m
< CIAW (p)en)ll3e + F 1Al

m
< C(lenllze + 1AweklIze) + 1A%l 22 (9.42¢)
Employing the estimates (9.42) in (9.41)), we obtain

d1 m

— 5 [ [AgPdz+ - [ [A%p? d

T3 sl a5 [ at R ar

< C (14 IVallte) el +C (loelifs + Vel + 12032 + 1 Fal%)
+O (14 lullka) (leeli3e + 1Age]32)

Integrating this inequality in time from 0 to T, using (9.39)-(9.40]), Proposition and elliptic
regularity theory, a Gronwall arguments yields

0kl Loo (rr2ymr2 (ars) + 1A% 0xll 22y + ikl L2y + okl Lo a2y + Vel L2y + el 22

2
<C <||F||L2(L2) + ) Bl L2 z2) + | Fsll 2y + ||F4||L°°(L2)> : (9.43)
i=1
Now, using elliptic regularity theory, (9.43), the relation (9.27b)) for . yields
2
bkl 22y < C <||F||L2(L2) + Y IIFill 222y + | Fsll 2y + ||F4||L°°(L2)> : (9.44)
i=1

Furthermore, using Proposition the assumptions on v (-) and ([9.43)), using (9.27b)) yields

el oo 22y < CCF, (9.45)
where
2
Cr = <|F||L2(L2) + ZHFiHLZ(LZ) + | F3|| oo (L2)nL2 (m2) + ||F4||Loc(Lz)> .
i=1
Invoking the relation (9.27b)) for 0;p) together with (9.43))-(9.44]) gives

[0epkllL2(L2) < C Cr. (9.46)
Summarising (9.43)-(9.46), it holds that

lorllr(22ynLee (m2yne sy + 1A%kl 22y + ikl L 22)ne2a2)
+ okl Lo a2y + [IVEllL2 @y + 1Pkl 2 (r2) < C Cr. (9.47)

Step 6: Now, we prove higher order estimates for v; and pg. Using Proposition the
assumptions on h(-) and (9.34)), a straightforward calculation shows that

[Poh(pu) + (Pow — AW (pu)@ll sy < C Cr.

Using Gagliardo-Nirenberg’s inequality, we have the continuous embedding L°°(L?) N L?(H?) —
L3(L?) which, together with Proposition[9.4] (9-47) and the Sobolev embedding H! C LS, implies
that

| (ks + XOu)Vor + (tx + x0k)VoullLsw2y < C Cr.
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Invoking the last two inequalities in conjunction with (9.47), an application of Lemma to

(19.271)-(9.27h) yields

ekl L2y (m2)nLe sy + 1A%kl L2 w2y + [kl Lo (L2)nz2 (a2
+ lokll Lo a2y + Vel L2y + 1Pkl )y < C Cr|(F, Fu, Fy, Fs, Fy)lly,. (9.48)

Step 7: Due to (9.36]), we can pass to the limit in the Galerkin scheme to deduce that (LIN])
holds. The initial condition is attained due to the compact embedding H((H')*) N L>®(H') —

C([0,T]; L?) (see Lemma [2.36]). Moreover, the estimate ([9.48)) holds for the solution quintuple
(¢, u, 0,v,p) due to weak-star lower semicontinuity of norms. Therefore, we can apply elliptic

regularity theory in to deduce that
lellLe ) < C Cr||(F, Fy, Fa, F3, Fy)|lv, -
Together with for (o, 1,0, v, p), this implies
(o, 1,0, v, p)llvy, < CII(F, Fy, Fa, F3, Fy)lv,

which shows (9.26)). Finally, uniqueness follows from linearity of the system together with (9.26]).
Indeed, it can be checked that all the estimates carried out above can also be deduced on the
continuous level where, instead of testing with mA3y, the relation for p is used.
This completes the proof. O

9.2.6 Fréchet differentiability
Now, the last result can be used to prove Fréchet differentiability of the control-to-state operator.
Proposition 9.14 The following statements hold:

(i) the control-to-state operator S is Fréchet differentiable on Ug, i.e., for any u € Ug there
exists a unique bounded linear operator

S,(u) : LQ(LQ) =V, he— S/(U)[h] = ((p;,,u;,v;,a;m;)[h]

such that
[S(u+ h) —S(u) = S'(w)[A][lv,
Al 222y

—0 as Hh||L2(L2) — 0.

For anyu € Ug and h € L?(L?), the Fréchet derivative (), iil,, V%, 0, ply) [h] is the unique
strong solution of the system with

Fl,Fg,F4:0, F=0 and ngfh]h(@u)

(ii) the Frechet-derivative is Lipschitz continuous, i. e., for any u,@ € Ug, it holds that
[S"(u) = S'(@) || c(z2(L2)v) < Lollu — L2 L2y (9.49)

with a constant Lo > 0 independent of u and 4.

Proof. Let C' denote a generic non-negative constant which may change its value from line to
line.

Proof of (i): To prove Fréchet differentiability we must consider the difference

(@?“707‘,717) = ((pu-i-hhu’u-i-hvvu-‘rha O-u-‘rhapu-‘,-h) - ((pu7/~‘bu7 Uu7vuapu)
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for some arbitrary u € Ug and h € L?(L?) with u + h € Ug. Therefore, we assume that
|22 (r2) < 6 for some sufficiently small 6 > 0. Now, we Taylor expand the nonlinear terms in

(CHB) to pick out the linear contributions. We obtain that

h(pu+n) = h(pu) = ' (pu)p + R,
Ournl(@urn) — oulh(py) = olh(py) + Ju]h/(‘PU)‘P + Ra,
(u+ h)h(puin) — uh(pu) = ul'(pu)e + hh(pu) + Rs,
(Hutn + XOutn)VOurn — (fu + XOu)Vou = (pu + X0u) Ve + (1 + X0) Vo, + Ra,
div(pu+nVusrn) — div(puvy) = div(pvy) + div(e,v) + Rs,
¢l(80u+h) - ¢l(§0U) = "/}H(Sou)@ + R,

where the nonlinear remainders are given by

R1 = 30" () (Putn — u)?)

Ra := (0utrn — ou)(h(putn) —h(py)) + %Uu]h”(O(Qoquh - @u)zv
R3 = %U]h//(g)(@u+h - <Pu)2 + h(]h(wu+h) - Ih(sﬁu))v

Ry = [(pusn — pu) + X(Ourn — 0u)| (Vourn — Veou),

Rs := div[(Qutn — u) Vutn — va)],

R = 39" () (Putn — ¢u)’

with ¢ = Yuin + (1 —9)py and € = 0y + (1 — 0)¢p, for some 9,60 € [0,1]. This means that
the difference (¢, u, 0, v, p) is the strong solution of (LIN]) with

F1 = PRg - ARl, F = R4, F2 = PRQ - ARl —Rg - R5 — h]h(g@u), F3 = R6, F4 = —Rg.

By a simple computation, one can show that these functions have the desired regularity. Now,
we write (", ul vh o ph) to denote the strong solution of (LIN|) with

Fl,Fg,F4:0, F=0 and ngfhlh((pu),
and (o, pufh v ol pl) to denote the strong solution of (LIN|) with
F, = PRQ — ARl, F = R4, Fy = PRQ — ARl — R3 — R5, Fg = RG, F, = 77?/2. (950)

Because of linearity of the system (LIN|) and uniqueness of its solution, it follows that

(@%»M%»V%W%»p%) = (@u+hvﬂu+hvvu+ha Uu+h7pu+h) - (SouJLuv quvuapu)
- (@Zaﬂﬁavﬁao—ﬁvpﬁ)' (951)

We conclude from Proposition that ¢ and ¢ are uniformly bounded. This yields
DOl <C V1i<i<4, and [hD(()llp=,) <C V1< <3
Moreover, since h(+) is Lipschitz continuous, it holds that
[h(purn) = h(pw)llze@r) < Cllvurn — PullLe ) < CllhllL2L2)-
Together with the Lipschitz estimates from Corollary we obtain that

“Ri||L2(L2) S C ||hH%2(L2)’ (S {172a3a6}7
[Rill oo 2y < CllRlIZ2(z2), @€ {1,2,6}.
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Moreover, we have

IV(©urn = ©u) - (Vusn = V) llLz22y < IV(Qurn — @u)llLoe sy [Vasrn — Vullz2(Ls)

< Clousn — Pullpoomry IVutn — VullLzy,  (9:52)

and then Corollary [0.9] yields

[R5l r2(r2)
< Cllputn — SOuHLOO(QT)HVu-&-h - VU||L2(H1) + CIV(putn — Veou) - (Vugn — Vu)||L2(L2)
< CHhH%z(Lz).

Due to the continuous embedding L>°(H') N L?(H3) — L¥(L°) resulting from Gagliardo—
Nirenberg’s inequality, an application of Corollary [0.9] gives

[Rallzsrzy < Cllhl72(r2)- (9.53)
Furthermore, we have

VRl r2(12)
< C|VEllLoe (18 1utn — Pullioe(roy + C NIV (0urn = @u)ll 223y lutrn — ull Loz
< CIVE| oo ) 1Putn = PullZoo (1) + C llurn — @ullL2y [0usn = oull Lo ey
< C |l (z2

and
1ARelz2z2y < C (14 1B arn) ) Iouen = @ulliqarny < C 1hl2a ey
From the last two inequalities and elliptic regularity theory, we infer that
IRsllz2(rr2) < C llZ2(12)-
Now, we first observe that

VR swey < IOV (Purn — u)?llzs@e) + 12ROV (0usn — Pu) (Putrn — u)llLswe)
< CIIV¢| oo ey leurnllFoe oy + ClIV (Purn — @)l oo ey |0usn = Pull o (19)
< C R ay-

With similar arguments, it follows that

IV (oulh” () (Pusn — 0u)?) s @2y < Vo (O)(0utn — @u)?ll w2y + 1200 VR || s 12)
< ClIVaul = wo)llputnllioore) + Clloull L@ VR s w2y
< CllhllZ2(z2)-

From the Lipschitz-continuity of h/(-), we deduce that

IV ((Gutrn — ou)(@urn) —h(ew))) 5@y < Cllowrn — oull w2y leurn — Qull Lo (2
< Clhll72(re)-

The last two inequalities imply

IRill sy < C IRl (2, i€ {1,2}.
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This finally yields
|(F, Fy, Fa, Fs, Fy)|lv, < CllAl172(12),
where F; denote the functions given by . Hence, due to we obtain that
(6%, s o, ViRs PR )1 < C llRlI72 (22
which completes the proof of (i).
Proof of (ii): In the following we write
(s 18,0, v,0) = (@ oy 005 Vi 00) [R] = (05, 1, 0 Vi P) (D).
Then, using the mean value theorem, a long but straightforward calculation shows that
div(v) = Poh(p,) + (Po, — AW (p.)p + F1  in Qp, (9.54a)

—div(T(v,p)) + vv = (p + X0u)Ve + (1 + x0)Ve, +F  in Qp, (9.54b)
O + div(p,v) +div(pvy,) = mAp + (Po, — A — u)h'(¢.)e

+ Pcoh(py,) + Fo in Qr, (9.54c)

p=—8p+¢"(pu)p — xo + F3 in Qr, (9.54d)

—Ao + Bo + 1 (oy)poy +h(p,)o = Fy in Qp, (9.54e)
Vie-n=Vyo-n=Vo-n=0 on X, (9.54f)
T(v,p)n=20 on X7, (9.54g)

0(0)=0 inQ,  (9.54h)

where

Fy = Poy[h](h(pu) — hipa)) + (Poa — A)pg [ (§) (0w — wa) + Peghl(ow — oa)h'(¢u),
F = @i [h]((su + x0u) = (13 + x0a)) + (5[0 + x05[h]) (Veu — Vea),
Fy = F1 — ¢g[hl(u — @)h'(pu) — al'(§) (0w — 9a) — h(h(pu) — h(pa))
— div((¢u — @a)valh]) — div(eg [h](ve — va)),
Fz = @ [h]Y" (§) (pu — ¢a),
Fy = —og[h](h(eu) — h(pa)) — ¢5lh] (0w — o)/ (0u) + oalt’ () (pu — ¥a)).

Using the Lipschitz-continuity of h(-) together with (9.2]), (9.23) and (9.26]), a straightforward
calculation shows that

| Eill 22y < CllhllLzeyllu — @llp2rey, 1< <4, (0.55)
IF 222y < Cllhllz2 2y llu — @l 222y

With similar arguments, it follows that
[Fillrsr2) < Cllhllpzcze llu — @l z2cr2).
Using the assumptions on h(-), , and , we obtain
IV s 2y < Cllhllr2 ez llv — @l L2 (r2).-

Now, using the continuous embedding L>(H') N L2(H3) < L¥(L*>°) resulting from Gagliardo—
Nirenberg’s inequality along with (9.23]) and (9.26]) yields

IF[lLswey < Cllhllpz(r2)llu — @llL2(z2).
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From the Lipschitz-continuity of I(-) and the boundedness of I'(-), applying (9.2)), (9.23]) and
(9-26) yields

| Fall oo 2y < Cllog[h]ll oo 22yl — all Lo ()
+ Cllilhlll e 2y (llow = gl @r) + 0w = Pall Lo @r))
< Clhllrzzellu — @l zzz2).-
Invoking the last four inequalities and (9.55)), we obtain
IFllzsz) + [ Full sy + [[Fellzzzz) + ([ Fallze (z2y < CllhllLzrellu — @llp2pey. (9-56)

It remains to estimate the term F3. Using the boundedness of "' (£) € L (Qr), (9.23) and
(9.26), we deduce that

1 Fs| oo (22) < Cllwa ]l o= ) lleu — @allLe @) < CllhllL2weyllu — all L2 L2y

Using the assumptions on (-) and the Sobolev embeddings H' ¢ L?, H! C L, p € [1,6],

thanks to (9.2)), (9.23) and (9.26) we have
IVEs|[12(L2)
= | ValhlY" (€)(0u — ¢a) + R (€)VE(Pu — wa) + @GR )V (pu — va)ll2we)
< ClipalhlllLos (z2)llon — @all Lo (m2)
< Cllhllz2(p2)llu — @l 2(r2)-
With similar arguments, it follows that
||AF3HL2(L2) < C||h||L2(L2) ||u - ﬂ”LZ(LZ).

Invoking the last three inequalities together with and elliptic regularity, we obtain
[1Fsl| Lo (p2)nr2(m2) < CllhllL2p2)llu — @22 (r2).-

Together with , an application of Proposition yields
1(, 0, v, p)llvy < Cllhl[L2L2)llu = @llL2(z2),

hence (9.49) holds. This completes the proof. O

Remark 9.15 Since the Fréchet derivative S'(u) maps again into the space V; and is also con-
tinuous with respect to the operator norm on £(L?(L?); V), we conjecture that the procedure
of Proposition can be repeated arbitrarily often provided that v, h, ¢g, o and 02 are
smooth. Then, it was possible to show that the control-to-state operator is actually smooth.

Assuming that the control-to-state operator was at least twice continuously Fréchet differentiable,
we could use this property to derive an alternative second-order sufficient condition for local
optimality. However, we decided to use a different approach which is based on Fréchet differ-
entiability of the control-to-costate operator (see below) as we prefer the resulting optimality
condition.

9.3 The adjoint system and its properties

In optimal control theory, it is a standard approach to use adjoint variables to express the
optimality conditions suitably. They are given by the adjoint system which can be derived by
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formal Lagrangian technique. It consists of the following equations:

div(w) =0 in Qp,  (9.57a)
—nAw +vw = —Vq+ ¢, Vo in Qr,  (9.57b)
¢+ Vo vy =—(Poy, — A—u)h'(p,)¢ — ' (pu)oupt

=" (0u)T + AT + V(py + X0u) - W

+ (Po, — AW (04)q — &1 (00 — ©a) inQr, (9.57¢)

(ADJ) T =V, W+ mAg¢ in Qp, (9.57d)

Ap —Bp =h(pu)p — xT + Ph(pu) (¢ — @) + XVouw in Qr,  (9.57e)

Vé-n=Vp-n=0 onXp, (9.57f)

0= (2nDw — ¢I + ¢, ¢I)n on X, (9.57g)

V7-n=¢vy -n— (g, +xo,)w-n on Xr, (9.57h)

O(T) = ao(u(T) — ¢y) in Q. (9.571)

9.3.1 Existence and uniqueness of weak solutions

A weak solution of this system is referred to as an adjoint state or costate and is defined as
follows:

Definition 9.16 Let u € Ug be any control and let (py, iy, 0u, Vu, pu) denote its corresponding
state. Then, (¢, 7, p,w,q) is called a weak solution of the adjoint system (ADJ]) if

¢ € H'(HY)NL®(H")NL*(H?), Te€L*(H'), pelLl*H"), welL*H"), qeL*L?

such that
d(T) = ao(pu(T) — ¢5) a.e. in ), (9.58a)
div(w) =0 a.e. in Qr, (9.58b)
and
/QT(W, q): Vw +vw-wdz = — /Q OV pu W + P, div(w) de, (9.58¢)

(06,8, = — /Q (Pow — AW (00)(d — 0) — () (1 — 0up)) & da
+ / (édiv(v) — 0" ()T — 01 (00 — ) & da
Q
+ / (¢Vu — (fty + XOu )W — V7T) - Vo dz, (9.58d)
Q
/ 77 dx = / Vo, -wi —mVe¢- V7 da, (9.58¢)
Q Q
- / Vp- Vi + Bpp da = / (—x7 + Ph(pu)d + XVepu - w) j da
Q Q
+ / (—Ph(pu)q + h(pu)p) p da (9.581)
Q
for a.e. t € (0,T) and all ¢, 7, p € H', W € H' where T(w, q) := 2Dw — ¢L.

To prove existence and uniqueness of solutions for (ADJ|), we will use the following lemma:
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Lemma 9.17 Let u € Ui be any control and let (u, fiu, Ou, Vu, pu) denote its corresponding
state. Furthermore, let (Go, G1,G2,Gs,G1,Ga) € Vy be arbitrary. Then, there exists a unique
solution (¢, T, p,w,q) € V5 solving

div(w) =0 a.e.in Qr, (9.59a)

—nAw +vw = —Vq+ ¢, Vo + Gy a.e. in Qp, (9.59b)

T =V, W+mA¢p+ Gz a.e.in Qp,  (9.59¢)

Ap—Bp —T(py)p = —xT + Ph(p.)d + xVeouw —Ph(p,)g+ Gz a.e inQp, (9.59d)
Vo n=Vp-n=0 a.e. on X, (9.59e)

0= (2nDw — ¢qI + v, ¢I)n a.e. on X,  (9.59f)

o(T) = Go a.e. in €, (9.59g)

and

(00, 0) s = — / (Pow — AW (o) (¢ — q) = I (0u) (ugp — gup)) 6 da

Q

+ /Q (pdiv(vy) — " (pu)T — G1) ¢ da
+ / (Vi — (ftu + XOu)W — VT + G3) - Vo dz (9.59h)
Q

fora.e. t € (0,T) and all 6 € H'. In addition, it holds that
(0,7, p, W, q)|lvs < C[[(Go, G1,G2,Gs,G1, Ga)llv, (9.60)

for a constant C > 0 independent of (¢, T, p, W, q,u).

Proof of Lemma[9.17 We will only show a priori estimates for the solutions of . The
justification can be carried out rigorously within a Galerkin scheme similar as in the proof of
Proposition In particular, equation is satisfied by the Galerkin solutions with the
duality product replaced by the L2-scalar-product and Gy replaced by PGy where P denotes
the L2-orthogonal projection onto the k-dimensional subspaces spanned by the eigenfunctions of
the Neumann—Laplace operator. In the following we will suppress the subscript k.

Holder’s and Young’s inequalities will be frequently used as well as a generic constant C' which
does not depend on the approximating solutions deduced within the Galerkin scheme. The
approach will be split into several steps.

Step 1: We define 7 := ¢ — ¢, ¢. Then, from (9.59a))-(9.59b), (0.59f), we see that (w, ) is for
almost every ¢ € (0,7T) a solution of

—nAwW +vw + Vr =f a.e. in €,
div(w) =0 a.e. in Q,
(2nDw —7I)n =0 a.e. on 01,

where f := —¢Vp, + G. Applying Lemma we obtain (for a.e. t € (0,7))
[wllg2 + |7l < Cf] 2
In particular, by the definition of 7 and f and using that

[9VpulLz < Cllopullar,

we have
Wiz + gz < C (el + [|G1llL2) -
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Hence, we have to estimate the first term on the right-hand side of this equation. Using the
boundedness of ¢,, € L>(H?) N L*(Qr) and the Sobolev embedding H* C L3(2), we obtain

lpudllar < C([pudllLz + 19VeullLz + llpuVelL2)
< C(leullz=lollzz + IVeullLsllglis + lpullz< IV ollL2)
< Cllollar-

Employing the last two bounds, we infer that
[wllaz + llallzr < C([[8]ar + [|GallLz) - (9.61)
Step 2: Choosing 7 = xp in (9.59¢), p = —p in (9.59d)), integrating by parts, using (9.59¢)) and

summing the resulting identities, we obtain

/ V2 dz+ B / pf? da + / h(p)|pPdz = - / (Ph(gu)é — Phipu)g + Gs)p de
Q Q Q Q
Ggp —mV¢ - Vpdz.

Using the boundedness of h(y,) € L>°(2r), the non-negativity of h(-) and (9.61)), this implies
that
lpllar < C (I8l + G2l + 1Gsl2 + [|Galle2) - (9.62)

Choosing 7 = 7 in (9.59¢)), integrating by parts, using the boundedness of Vi, € L>(L3) and
(19.61)), we obtain
Il =| [ (Vo w+ mos Gojr i
Q

< C(IVeullwsllwllLe + [[AGl[ L2 + |Gal[L2) [I7]| 22

<Collez +11Gallez + [|Adl L2 + GellL2) 17l 2,
where we applied (9.59€¢)). Consequently, we have

72 < C(¢llzz + Al L2 + |GallLz + |Gzll2) - (9.63)

Step 3: Choosing ¢ = A¢ — ¢ in (9.50L), integrating by parts, inserting the equation for 7
given by (9.59¢) and summing the resulting identities, we obtain

1d

— 5 (1613 + IV61E2) +m (1A6]2: + IVAGIZ:)

/ (Pow — A (9,)(é — @) + B (9u)oup + 0" (9u)7 + G1) (6 — Ag) da

+ / div(vy) + ul’ (@u))¢(A¢) -9+ (¢Vu = (. + XOW)W + GQ) (VA¢ —V¢) dz

ZO

/ (Vou W)+ VGs) - VA + (Vo - W+ G2) A¢ da. (9.64)

D

Using the boundedness of h'(p,),v"(0.) € L*®(Qr), 0, € L*°(L%) and (9.61))-(9.62), we
calculate

[ (=AW ()0 =) + W)+ Ga) (0= A9) da
<O (l9l32 + lIpl2e + llallz= + G112 g ) + 16 (186132 + IVAGE:)
< C (1183 + 1612 g + IGll3z + I Gall3z + IGalz )
+ 12 (1861132 + VA1) (9.650)
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Using the boundedness of I/ (p,,) € L*(Qr), 0, € L>®(2r) and yields
‘/Qpaulhl(sﬂu)w —q)(¢ — A¢) dz| < C([|¢llL> + llgllz2) (4]l L2 + [|A¢] £2)
< C (I9ll3n + llall2=) + 751200
<O (I8l +11GulZe) + g Adlze  (965b)
Furthermore, using the boundedness of " (¢,) € L= (1), and the inequality

1AG)172 < IVe[L2 VA2 Ve H?, Vo mn=0 a.e ond,

we obtain

/ B ()76 — DY) da
Q

< C(lI8llZ: + 1G1lz + 1GallZ:) + ClIAG]Z:

< C(lIgllZ: + 1G1liz + [GallZz) + ClIV L [VAG)|Le
m
< C(llolf + 1Gallte + 1Gallze) + 161 VAG|L: (9.65¢)

From the Sobolev embeddings H' C L3, H' c LS, we obtain

< [[div(va) e l[@llLs ([0l L2 + |A¢] £2)

[ divvo(d0 - 0) da
Q

m
< C (L [valltee) el + 7514607 (9.65d)

Using the Sobolev embeddings H! ¢ L%, H! c L3, H? c L>°, (9.61)) and the boundedness of
o + X0y € L®(L?), we calculate

\ /Q (6Va — (1 + X0u)W + Go)-(VAG — Vo) da

< (Iollzellvullus + llpu + xoullz2 [WlLee +[1G2llLz) (IVllL2 + [VAS|L2)
m
< O+ vallin +1GEe) 17 + C (IGalle + [1G2lle) + G IVASIE..  (9.65¢)

With similar arguments and using the boundedness of Vi, € L>(L°), we obtain

/ VG- VA + (Vi - W+ G2)A¢ dz
Q

< VG2 [[VAQ[lLz + ([Veullws Iwlls + [|G2llz2) [Ad] 2>
m
< C(I9liFn + Gl + 1G1lT2) + 6 (1Agll7= + [VAG|L:) - (9.65f)
Now, with exactly the same arguments as used for (9.30g)), we get

[ b t)oa0 = 0) do

It remains to analyse the term

m
< C (L4 Jlulze) 19l + 75 (1261122 + [VASIIE) . (9.65¢)

/ V(Vy W) -VA¢ dx = / (V2o w) - VAG + (VWTV,) - VA¢ dz.
Q Q

For the first term, we apply the Sobolev embedding H? C L, the boundedness of ¢, € L>(H?)

and ((9.61) to obtain

/Q(V%uW) VA do| < [[VPpullpz [ wlLe | VAS| L2

< C(lellm +[1Gilee) [VASre
m
< C (I8l +1GulE:) + 15 IVAGE:. (9.65h)
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With similar arguments and using the Sobolev embeddings H' ¢ LS, H' C L3, we infer that

/Q (VW) - VA da| < |[Vpuluelwime || VAS s
m .
<C (sl +1GilEz) + 15 IVAS[-- (9.651)

Using the estimates ((9.65)) in (9.64]), we obtain

1d

—5 7 (813 + IV 0l122) + 2 (180122 + IV AGIE2) < BBl 3 + 5a(0),

where
Bi(t) = C (1 + Vu®liFre + 1+ x0) Ol + GOl + [u(®) 2 + leu(®)s)
Balt) = C (IG1I2 g + 1Galldn + 1Gsli3a + [GalE)

Due to Proposition it is easy to check that (1, B2 € L'(0,T). Therefore, integrating the
last inequality in time from s € (0,7) to T' and using that ¢, € C°([0,T]; H') with bounded
norm, a Gronwall argument yields

0|l oo (1 ynr2 3y < Cl(Go, G, G2, G3,G1, Ga)|lv,. (9.66)

Together with (9.61))-(9.63)), this implies
ITllL2 @) + llpllze ) + IWllee g2y + llallzz ) < Cll(Go, Gi, Ga, Gs, Gr, Ga)llv,- - (9.67)

Step 4: We now take 7 = —Ar in (9.59¢) and integrate by parts to get
IV7|;: = / (VZpuw) + (VW Vo,) + mVA$ + VGs) - V7 da. (9.68)
Q
For the last two terms on the right-hand side of this identity, we easily obtain

1
< C(IVAGIIE: + 1Gallf) + 7 IVTIILe.

/ (mVA¢+ VGs) - V1 dz
Q

For the other terms, we use the Sobolev embeddings H' ¢ L6, H' ¢ L3, H2 C L>, and the
boundedness of ¢, € L>(H?) to deduce

1
[ (FPouw) + (TwTV0,) - Vr da| < Cllwlie + V7]
Q

Invoking the last two inequalities in (9.68)), we obtain
IV7lE: < C(IVAGIL: + Gl [1WllEe2) -

Integrating this inequality in time from 0 to 7', using the boundedness of ¢, € L?(H*) and

— (9.67), we infer that

||VT||L2(L2) S CH (Go, Gl, GQ, Gg, Gl, Gz) ||V4- (969)
The relation for 9;¢ given by (9.59h|) together with (9.66))-(9.67)) and (9.69) gives
10:0l L2 (1)) < Cll(Go, G1, G2, G3,G1, Ga)l|y, (9.70)

Using elliptic regularity theory in (9.59d))-(9.59€¢)), we obtain

ol g2 < Clh(pu)p — xT + Ph(py)¢ + XV -w — Ph(py)g + Gs 2.
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Invoking the boundedness of V¢, € L>(L?) and the Sobolev embedding H' C LS, we calculate
IVou - wllze < ClIVeu[usllwiLe < Cflwllmr.

Therefore, using (9.66)-(9-67) and the boundedness of h(y,) € L>(€r) yields
[pll2(z2) < Cll(Go, G1, G2, G, G1, G2)||v,.-

Together with (9.66)-(9.67) and (9.69)-(9.70), this implies

||(¢,T,p7W>Q)”V3 S C”(GOa G17 G27 G37 le G2)HV4'

Step 5: Employing the last estimate, we can pass to the limit in the weak formulation of

(19.59al)-(9.59h)) to obtain the existence of solutions. In particular, we infer that (9.59al)-(9.591))
are fulfilled almost everywhere in the respective sets. We notice that (9.59¢) is fulfilled due to

the compact embedding H((H')*) N L>®(H') c C([0,T]; L?), see Lemma Moreover, the
estimate results from the weak(-star) lower semicontinuity of norms. Finally, uniqueness
follows by linearity of the system and because of . O

Corollary 9.18 Let u € Ug be any control and let (Qu, fhus Ou, Vu, Pu) denote its corresponding
state. Then, there exists a unique weak solution (Pu, Ty, Pus Wu, @) € Vs of in the sense

of Definition [9-16
Proof. This follows from an application of Lemma [9.17] with the following choices:
G1=0, G2=0, Go=oxo(pu(T) =), Gi1=o(pu—pda), G2=0, G3 =0.

Since ¢, € C(H?), it follows that ¢, (T) € H! with bounded norm. Hence, it is easy to check
that (Go, G1, G2, Gs, Gy, G2) € V4 with bounded norm. Moreover, using (9.59al)-(9.59¢)), it is
straightforward to check that (9.58a)-(9.58c) and (9.58¢)-(9.581) are fulfilled. This completes
the proof. O

Similar to the definition of the control-to-state operator, we can define an operator that
maps any control v € Ug onto its corresponding adjoint state.

Definition 9.19 We define the control-to-costate operator A: Ur — V3 as the operator
assigning to every u € Ug the unique weak solution (¢, Tu, Pu, Wu,qu) € V3 of the adjoint

system (ADJ)).
9.3.2 Lipschitz continuity

In the following we show that the control-to-costate operator is Lipschitz-continuous.

Proposition 9.20 For all u,u € Ug, it holds that
[A(@) — Au)llvy < Lslla — ullp2(r2) (9.71)

with a constant L3 independent of u and .

Proof. We first define
(¢,T7 P, W, Q) = A(a) - A(’U’) = ((bﬂm Tiy Py Way Qﬂ) - (¢u7 Tuy Puy Wuy QU)

and introduce the variable
™= q — dulPa — Pu)-
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Then, the quintuple (¢, 7, p, w, ) fulfils (9.59) with

G1 = —9aV(va — Pu),
Go = ¢a(va — Vi) — Wa((a + Xx0a) = (ftu + X)),
Go = ao(pa(T) — pu(T)),
G1 = ¢al(P(oa — ou) — (@ — u)) W (pu)] + da(Pog — A — @) (lh’(wu) I (pu))
+ pa (' (pu) (05 — 0u) + oa(b'(pa) — (¢ ))) + " (pa) — " (pu))7a
- qd[P(Uﬂ - Ju)]h/( w) + (Pog — A)(h ( a) — /( u))] (Pou - A)]h/(@u)¢a(90a - Pu)
— ¢gdiv(vg — vy) + x1(0a — Qu),
G2 = V(pa — u) - Wa,
Gs = pa(h(pa) — h(pw)) + Poa(h(pa) — hipw)) + xV(pa — pu) - Wa
— Ph(pu)da(va — ¢u) — Paa(h(pa) —hipy)).

Using , and the mean value theorem, it is easy to check that
W”(@a) - 1///(80u)||Loc(L°o) + H]hI(‘Pa) - ]h’(@u)HLoo(Loo) < Cllpa— <Pu||Loo(Loo)~

Then, using Proposition Corollaries and a straightforward calculation shows that

(Go,G1,G2,G3,G1,Ga)llv, < Cllt —ul|2(r2).
Consequently, the estimate implies that

(¢, 7, p, W, m)|lvy < Cll(Go, G1,Ga, Gs, G1, Go)|lv, < Ot — ullp2(r2).
Recalling the definitions of m and V3, it remains to show that
pa(pa — pulllLzmry < Clla — ullL2(r2).
However, this is another easy consequence of Corollaries and Therefore, it follows that
(&, 70, W, @)|lvs < Cll — ullp2(r2)

which completes the proof. O

9.3.3 Fréchet differentiability
We can also show that the control-to-costate operator is continuously Fréchet differentiable.

Proposition 9.21 The following statements hold:

(i) the control-to-costate operator A is Frechét-differentiable on Ug, i.e., for any u € Ug
there exists a unique bounded, linear operator

A'(u): L(L?) = Vs, h—= A (u)[h] = (¢, 70, 0y Wiy 43 [R]
such that

[A(u+h) — A(u) — A" (u)[h]]lv,
Al 222y

—0 as ||hHL2(L2) — 0.
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For any u € U and h € L*(L?), the Fréchet-derivative (¢.,, 7!, pl,, W', q,)[h] is the unique
solution of (9.59) with

Go = Xogl, [h](T)’
Gi = (Poy — A —u)h"(pu) ¢, [h]du + 1 (pu)(Poy, [h] — 1),

(1h'(<pu) LR+ 1 (00) @ [Row) pu + 0P (0u) @l (]

— (Pay [R]W (py) + (Pow — AL (pu) @, [1]) gu — dudiv(vy [A]) + oy, [R],

Ga = Vi, [h] - Wy,
Gz = (pu) @y [ pu + P (0u) gy, [Pdu + xVE,[R] - W — Ph(0u) ey, [P]qu,
G1 = ¢, [NV,
Go = ¢u v, [h] — (uy [h] + x0, [R]) W,

and (9.591)) replaced by

(2nDw — qI + @, L + ¢! [h]p,I)n =0 a.e. on Xr. (9.72)

(ii) the Frechet-derivative is Lipschitz continuous, i. e., for any u,@ € Ug it holds that
A (u) — A (@)l £(z2(22);vs) < Lallu — @l r2(r2) (9.73)

with a constant Ly > 0 independent of u and 1.

Proof. The proof proceeds similarly to the proof of Proposition [9.14]

Proof of (i): Existence of a solution to (9.59) with the above choices for Go, G1, G2, G3, Gy
and Gy follows from a simple pressure reformulation argument. Indeed, let us define

G1= -0, V¢,[h], G =G~ (Poy— AN (pu)e,[h]du,
Gg = G3 — 'P]h(gou)gou[ ]¢u> Go = Go, Gg = GQ, GQ = GQ.

By Propositions and and Lemma we can check that (Go, G1, G2, G3,G1,G3) € Vy
with bounded norm. Therefore, there exists a unique weak solution (¢, 7, p,w, ) € V3 of (9.59)
with (Go, Gl, GQ, G3, Gl, Gg) = (éo, Gl, ég, 63, Gl, Gg) S V4. We now define

q =71+ @y [hdy.

Using Proposition and Lemma it holds that ¢! [h]¢, € L?*(H') with bounded
norm. Therefore, the quintuple that (¢,7,p,w,q) € V3 is a weak solution of with
(Go, G1,G2,G3,G1, Gy) as above and replaced by . Uniqueness of solutions of this
system follows due to linearity of the system and estimate .

In the following we define

(¢Ra TRa pR> WRa QR) (Duths Tuths Pustts Waurkhs Quih) = (Pus Tus Pus Wy i)

= (@ [h], Ti[h], pulh], wi,[h], gu[R).
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Moreover, we recall that the definition of (¢f%, uf%, v o, ph) given by (9.51). Then, we can
check that (¢f, 7, p W', k) is the solution of ([9.59) with

Go = aopi(T),
Gy = (Po, —A—u) {h/,(@u)@% + %lh(g) (&) (Pusrn — qu)Q] Du + 7)07}%1}1/(<Pu)¢u
+ [P(Uu+h - UU) - h](]h/((pu+h) - ]h/(@u))(bu
+ (Pusn — du) [(Pgu -A- u)(]h/(SDquh) - ]h/(@u» + (P(Uu+h —0y) — h)]hl(goquh)]
+ pu [ W)k + 3HOEO i — ) o]
+ Pu []h/((Pu)O';LZ + (]hl(gau-l-h) - ]h/(wu))(o'u-ﬁ-h - Uu)]
+ (Puth = Pu) [(]h/(@wh) - ]h/(SDU))Uu + ]h/(SOqu)(Jquh - Uu)]
+ 7 [UP @)k + VDO @urn = 9u)?] + (Rurn = ) (V" (Gurn) = 9" (00))
— (Po, — A) |:]h//(§0u)<pl712 + %]h(g) (&) (Pusn — @u){l qQu — PU’]/LZ]h/(QOu)Qu
— P(0utn — 0u) (W (Purn) — ' (0n))qu
— (quan — qu) [(Poy — A)(h/(‘Pu+h) - ]h,(sau)) +P(Outn — Uu)]h/(@quh)]
- ‘budiv(v%) - (¢u+h - ¢u)div(vu+h - Vu) + Wl@%,
G2 = VSO;LQ “ Wy + V(@u-‘rh - Qau) : (Wu-‘rh - Wu)a

Gs = [ (pu) ok + %]h//(f)(@wh = 0u)’1pu + (M(putn) — (pu)) (Push — pu)

FPI (Pl + 5O Purn — 00 (60— )

+ P(h(putn) = (ouw) [(Putn — Pu) = (Gurn — Gu)]

+ XV‘P% “(Wugh = Wo) + XV (Putrh = Pu) - (Wurn — Wa),
G1 = ¢RVou + (Putnh — Pu)V(Gurn — ),
Gy = duvih + (purn — Gu) Vurn — Vu) — (Wh + XOR)Wy

= [(Butn + XOutn) = (ta + XOu) | (Wautn — Wa),

and (9.591f) replaced by
(2')7DW —ql+ ol + gp%qﬁul + (Puth — Pu) (Gutn — ¢u)I) n=0 a.e. on Xr. (9.74)

We now introduce a new pressure

ﬂ—% = q;L% + @%d’u + (Puth — Pu)(Putn — Pu)

and we define

G1 = —0u Vel — (burn — 0u)V(Putn — ©u),

G1=G1— (Poy — AN (0u) [P Ou + (Putn — 0u) (Busn — Du)]
GS = G3 — Ph(p,) [‘P%¢u + (Puth = Pu)(Purn — ¢u)] )

Go =Gy, Go=Gy Gy =Go.

Then, we can check that (¢, 72, ol wh 7)) solves ([9.59) with (Go, G1,G2,G3,G1,Gs) =
(G03G17G27G37G17G2)-

Using Propositions [9.4 and Corollaries [0.9] and and Lemma it can be checked
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that
||(¢%,T%,p%,W%,7T%)HV3 < CH(GYO?Gl’éQvG&Gl’G2)||V4 < C”h“Hiz(LZ)

Employing this inequality together with Corollaries[9.9]and [0.18] Proposition[0.14and Lemmal[9.1
recalling the definition of V3 and the expression for 777}12, it follows that

a2y < Imllzz ey + Gullnoe () 1% | oo (ar2) + I Pusn — Gull Lo () | Putn — Gull Lo a2y
< OlIbl 2212

In summary, we obtain

”((bzll%v T’I’%a p%v W’}Il%’ q’}llz)”Vs < C”h”%Z(Lz)

Proof of (ii): Since the operator S'(:)[h]: Ugr — V; is Lipschitz-continuous for all h € L?(L?),
the proof follows with similar arguments as the proof of Proposition [9.20] O

9.4 The optimal control problem

In this section we analyse the optimal control problem that was motivated in the introduction:
We intend to minimize the cost functional

Xo 051 K
1(o,0) 1= Z2e(T) = sll3 + FH 0 = palldais) + Slulldaes
subject to the following conditions:

e y is an admissible control, i.e., u € U,

e (o, p,0,v,p) is a strong solution of the system (CHB) to the control w.

Using the control-to-state operator we can formulate this optimal control problem alternatively
as

Minimize J(u) s.t. we€ U, (9.75)
where the reduced cost functional J is defined by
J(w) == I([S(w)]1,u) = I(py,u) YueU (9.76)

with [S(u)]; denoting the first component of the control-to-state operator. A globally/locally
optimal control of this optimal control problem is defined as follows:

Definition 9.22 Let u € U be any admissible control.

(a) We call u a (globally) optimal control of the problem (9.75) if J(u) < J(u) for all
uc U.

(b) We call u a locally optimal control of the problem (9.75)) if there exists some § > 0
such that J(u) < J(u) for all u € U with [ju — @[[z2(z2) < 4.

In this case, S(u) is called the corresponding globally /locally optimal state.
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9.4.1 Existence of a globally optimal control

Of course, the optimal control problem ((9.75)) does only make sense if there exists at least one
globally optimal solution. This is established by the following theorem:

Theorem 9.23 The optimization problem (9.75) possesses a globally optimal solution.

Proof. This result can be proved by the direct method of calculus of variations. Obviously, the
functional J is bounded from below by zero. Therefore, the infimum m := inf,cy J(u) exists
and we can find a minimizing sequence (ug) C U with J(ux) — m as k — oo. As the set U is
weakly sequentially compact, there exists 4 € U such that uy — u in L?(L?) after extraction of
a subsequence. Now, according to Lemma [9.10] we obtain that

Yu, = @a in HY(L*)NL*(HY), @u, —pa nC([0,T;W")NC(Qr), rell,6),
. —va in L2(H?),
Ou, — 0y in L?(H?), Pu, — pa  in L*(HY)

My, — Ha in Lg(H2)a Vu

after another subsequence extraction (in particular, it follows that ¢y, (T) — ¢a(T) in L?).
Furthermore, Lemma [9.10] yields that

S(ﬂ) = (QO@, K, Uﬁavﬁ7pﬁ)7

hence (u,S(u)) is an admissible control-state pair. From the weak lower semicontinuity of the
cost functional J we can conclude that

J(u) < liminfJ(ug) = lim J(ug) =m,
k—o0 k—o0

and J(u) = m immediately follows by the definition of the infimum. This means that @ is a
globally optimal control with corresponding state S(@) = (@a, fa, Tas Vau, Pa)- O

9.4.2 First-order necessary conditions for local optimality

Obviously, Theorem does not provide uniqueness of the globally optimal control u. As
the control-to-state operator is nonlinear we cannot expect the cost functional to be convex.
Therefore, it is possible that the optimization problem has several locally optimal controls or
even several globally optimal controls. In the following, since numerical methods will (in general)
only detect local minimizers, our goal is to characterize locally optimal controls by necessary
optimality conditions.

Since the control-to-state operator is Fréchet differentiable according to Proposition [9.14] Fréchet
differentiability of the cost functional easily follows by the chain rule. If u € U is a locally
optimal control, it must hold that J'(u)[u — a] > 0 for all uw € U. The Fréchet derivative J'(u)
can be described by means of the so-called adjoint state that was introduced above.

In the following we characterize locally optimal controls of by necessary conditions which
are particularly important for computational methods. The adjoint variables can be used to
express the variational inequality in a very concise form.

Theorem 9.24 Let u € U be a locally optimal control of the minimization problem (9.75)). Then,
u satisfies the variational inequality

T (@) — @] = /Q (it — bu h(pa)] (u — @) de dt >0 for allu € U. (9.77)
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Proof. In Proposition [0.14] we have shown that the control-to-state operator is Fréchet differen-
tiable with respect to the norm on V;. Fréchet differentiability of the reduced cost functional J
immediately follows. Its derivative can be computed by the chain rule. Hence, if u is a locally
optimal control, the following inequality must hold:

0 < J'(@)u— ] = oco/

[ (ealT) = op)ehlu—a(T) do+ o [ (pu el =7 da

Qr

+ /QT ku(u — ) dx. (9.78)

Therefore, it remains to show that the sum of the first two terms on the right-hand side of (9.78))
is equal to — fQT ¢ah(vz)(uw — w) dz. For brevity and to reduce the amount of indices we write
h:=wu—u and

((Pwu'vo'vvvp) = ((Pﬂnu’ﬂao—ﬂavﬂvpﬁ)v ((bv T, P, W, C]) = (¢ﬂ77ﬂapﬂvwﬁvqﬂ)v

(SDMU’?U?V?p) = (@%[u - ’L_l,], M%[u - ’(TLL J:i[u - I_L], V;’L[u - ﬂ]v p%[u - ﬂ])

In the following the strategy is to test the weak formulations of the linearised system (which
produces the Fréchet derivative) with the adjoint variables. Using ¢ as a test function in (9.25¢])
with Fy = —hh(yp) yields

T
0:/ (0,8 dt + | mVj- Ve dz dt
0 Qrp

+ /Q [div(¢V) + div(¢v) — (Po — A — u)h'()g + hh(p) — Ph(p)s] ¢ dz dt.  (9.79)

Since both ¢ and ¢ lie in H' ((H')*) N L?(H") integration by parts with respect to ¢ is permitted.
We obtain

T T
/ (0, B dt = / HT)(o(T) — of) da / (006, it
0 Q 0

because of the initial condition ¢(0) = 0 and the final condition ¢(T') = xo(¢(T) — @) which
are satisfied almost everywhere in 2. The term 0;¢ can be replaced using the weak formulation
(19.58d)) tested with ¢. We obtain that

O:“O/¢(T)(@(T)—<pf) dz + V7 -Vo+ (u+ xo)Ve-wde dt
Q Qr
+ /Q W (9)opd + 1" (9)76 — (Po — AW (9)a + o (0 — a) @ dz di

+ ¢ div(ev) — Ph(p)ap + hh(p)p + mVi - Ve dz dt.
Qr

Since div(w) = 0 almost everywhere in Qp, we have T(v,p) : Vw = 29DV : Vw = 2nDw : Vv.
This identity, the weak formulation (9.25b) tested with w and the weak formulation (9.58¢))
tested with v can be used to deduce that

0= T ,p) : Vw+vvw — (u+ x0)V@-w — (i + x5)Ve - w dz dt
Qr

= / [qdiv(¥) — ¢V - ¥ — ¢ div(V) — (u+ x0)VE - w — (i + X&)V - w]| dz dt.
Qr



9.4 The optimal control problem 257

Proceeding similarly with the remaining linearised equations and adjoint variables gives

0= /Q AT — " (0)pT + X617 — VP - Vr dz dt

T
= /Q Vo -wi—mVeo-Vi—y"(p)pr + x67 — V- Vrde di,

T

0= /Q —qdiv(v) + P5h(p)q + (Po — A)h'(¢)@q dz dt,
T

0=— V& -Vp+ Bop+h'(p)pop+h(p)ap dr dt

Qr

= Ph(p)ps + xV - wés — Ph(p)qs — x76 — b/ (p)@op dx dt.
Qr

Adding up the the last five identities, we ascertain that a large number of terms cancels out.
We obtain

0= cxo/Q (o(T) — ¢5)@(T) dz + / (¢ — @a)p do dt + / h(¢)ph dzx dt.

T Qr

Together with (9.78) this completes the proof. O

As our set of admissible controls is a box-restricted subset of L?(L?), a locally optimal
control u can also be characterized by a projection of % ¢z h(pz) onto the set U provided that
k> 0.

Corollary 9.25 Let u € U be a locally optimal control of the minimization problem (9.75)) and
let Kk > 0. Then, u is given implicitly by the projection formula

1
w(z,t) = Pla(e,t),b(w,t)] </§ oa(z,t) ]h(cpu(x,t))> for almost all (x,t) € Qp, (9.80)
where the projection P is defined by
Pre,q(s) = max {c, min{d, s}}

for any ¢, d, s € R with ¢ < d. This constitutes another necessary condition for local optimality
that is equivalent to condition (9.77).

Since this is a well-known inference of the necessary optimality condition provided by the
variational inequality, we omit the proof. For a similar proof we refer to [135] pp. 71-73].

Remark 9.26 The necessary optimality conditions (9.77) and (9.80) are equivalent (cf. [135}
pp. 71-73]).

9.4.3 A second-order sufficient condition for strict local optimality

We also want to establish a sufficient condition for (strict) local optimality. Since the control-to-
state operator S : Ug — V7 and the control-to-costate operator A : Ugr — Vs are continuously
Fréchet differentiable, so is the cost functional J due to chain rule.

Therefore, we can easily establish a sufficient condition for strict local optimality: Let u € U
satisfy the variational inequality (9.77) (or the projection formula (9.80)) respectively) and we
assume that J”(u) is positive definite, i.e.,

J"(@)[h,h] > 0 (9.81)



258 9 An optimal control problem

for all directions h € L?(L?)\ {0}. Then, u is a strict local minimizer of .J on the set U.

However, this condition is far too restrictive as it suffices to require only for a certain
class of critical directions. Such a condition for optimal control problems with general semilinear
elliptic or parabolic PDE constraints was firstly established in |34]. Meanwhile, it can also be
found, for instance, in the textbook [135] pp. 245-248]. We proceed similarly and define the cone
of critical directions as follows:

Definition 9.27 Let u € U. We say that h € L?(L?) is a critical direction if the following
condition is satisfied:

>0, t a
< ,t) = bz, t), (9.82)

0)
= Ov m](x,t) - (bﬂ(xzt) ]h(goﬁ)(xat) 7& 0.

We define the cone of critical directions as

for allmost all (x,t) € Qp:  h(x,t)

C(u) = {h € L?(L?): h satisfies condition (9.82)} (9.83)

Now, we can use the cone C(u) to formulate a sufficient condition for strict local optimality.

Theorem 9.28 Let u € U be any control satisfying the variational inequality (9.77) and let
k > 0. Moreover, we assume that J"(u@)[h,h] > 0 which is equivalent to

/Q (¢ [h B(oa) + da b (0a) ylh]) b da dt < wl|h|32(y  for all b € C(a)\ {0}.  (9.84)

Then, u satisfies a quadratic growth condition, i. e., there exist §,0 > 0 such that for all u € U
with ||U — 'EJHL?(LQ) < (5,

0 _

In particular, this means that u is a strict local minimizer of the functional J on the set U.

For the proof of Theorem [9.28] we need the subsequent lemma:

Lemma 9.29 The following statements hold true:

(i) for any sequences (ux) C U and (hy) C L?(L?) with uy — @ and hy, — h in L?>(L?) as
k — o0, it holds that

J' (ug)[hi] = J'(@)[h)] as k — oo.
(ii) for any sequence (hy) C L*(L?) with hx — h in L?*(L?) as k — oo, it holds that
B(hg, b)) — B(h, h) as k — 0o
up to subsequence extraction, where the bilinear form B is defined by

B: L*(L%) x L*(L?) = R, (hy,h) — i (04[] h(pa) + da b (pa)@y[hi]) he dz dt.

Proof. Proof of (i): Let (uy) C U and (hy) C L?(L?) with uy — u and hy — h in L?(L?) be
arbitrary. Recall that the first-order Fréchet derivative of J is given by

J'(u)[h] = /Q [ku— ¢y h(py)| hdxdt, welU, heL*(L?).
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Since ki — ¢z h(pz) lies in L?(L?) it directly follows that J'(u)[hx] — J'(@)[h]. Furthermore,
we can use the Lipschitz estimates from Corollary and Proposition to conclude that

Kk — u, W(ou,) = K —¢ah(ps) in L*(L?) as k — oc.
Now, since (hy) is uniformly bounded in L?(L?), we obtain that
| (ug)[h] = T"(@)[hi]| < [|wur = Gu, hi(pu,) — w0+ dab(pa)|], |[hr]l, = 0 ask — oco.
Consequently,
I ()] — I (@[] = I () [he] — T @) [he] + I @[] — S @A) — 0 as b — oo
which proves (i).

Proof of (ii): The proof is very similar to the proof of (i). Let (hy) C L?(L?) with hy — h in
L?(L?) be any sequence. As ¢%[h]h(pa) + ¢a b/ (pa)h[h] lies in L2(L?), we have B(h, hy) —
B(h, k). Moreover, due to Propositions and and the compact embeddings

HY L) NL>®(H?*) — C(Qr) and H'((HY*)nL*(H?) — L*(L?),
we obtain that
lgalhe] = @alhlllper=) =0 and [|¢5[he] — ¢5[R]llL2(r2) = 0 as k — oo
after extraction of a subsequence. Hence, we can conclude that
¢glhi] () + da b (wa)l[he] = ¢G[hh(pa) + ¢al'(pa)py[h]  in L*(L?) as k — oo
by means of Holder’s inequality. As (hg) is a bounded sequence in L?(L?), it follows that
|B(hi, hie) — B(h, hy)|
< || @5lhe] b(pa) + ¢a ' (9a) @i lhi] — ¢5lhl h(pa) — da b (pa)eulhl]], [|hxll, — 0

as k — oo, and thus

B(hk,hk) — B(h, h) = B(hk,hk) — B(h, hk) + B(h,hk) — B(h,h) —0 ask— o,

which proves (ii). O
Now, we can proceed with the proof of Theorem [9.28
Proof of Theorem [9.28, The second-order Fréchet derivative of .J is given by

I @)1 hal = (i ha) 1 ) — /Q (641h] B pa) + du I (0a)galha]) ho dz dt (986

T

for all hy, hy € L?(L?). Thus, condition (9.84) is equivalent to
J"(@)[h,h] >0 for all h € C(u) \ {0}. (9.87)

Following the strategy presented in [34] and applied in |108], we now argue by contradiction.
Assume that condition ([9.85]) was not satisfied. Then, there exists a sequence (ux)ren C U\{u}
such that

1
up —u in L*(L?) ask— oo, J(u)+ EHuk —all72 g2y > J(ur) VkeN. (9.88)
Moreover, we define
_ 1 _
dy = |lug — @l|2(z2y, hi = a(uk —u) VkeNlN

Since ||Agl|z2(r2) = 1 for all k € N, by weak reflexive compactness we can extract a subsequence
(again labelled by k) such that, as k — oo, hy — h in L*(L?) for some h € L*(L?).
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Step 1: We claim that J'(u)[h] = 0. Using the mean value theorem, we obtain
J(uk) = J(u) + diJ' (i) [e]

for an intermediate point vj, € L?(L?) between 4 and uy. Rearranging and invoking ([9.88)) yields

_ 1 _ 1 _
(J(uk) — J(u)) < —Huk — u||L2(L2) = %Huk — uHLz(Lz).

T@li] = o

d.

Since uy — @ in L?(L?) as k — oo, it also holds that vj, — u in L?(L?) as k — oo, since vy, is an
intermediate point between u and ug. Then, invoking Lemma (i), and the last inequality,
we obtain )
J’(ﬂ)[h] = lim J/(’Uk)[hk] S lim 7||’LL]€ — ﬁ”L?(L?) =0.
k—o0 k—oo k

For the reverse inequality, we use (9.77)) to deduce that

(@) ] = dik /Q (it — ba ()] (up — @) da dt > 0.

Again using Lemma [9.29] (i), taking the limit ¥ — oo in this inequality yields J'(u)[h] > 0, and
therefore J'(u)[h] = 0.

Step 2: We claim that h € C(u). To this end, we define

K(i) = {u € L*(L?)

For almost all (z,t) € Qr:
u(z,t) > 0if u(z,t) = a(z, t) A u(z,t) <0if u(z,t) = b(z,t). |’

which is a closed and convex subset of L?(L?). Therefore, K(u) is also weakly closed. By
definition of U, it follows that ur, —u € K(u) for all & € N and therefore the same holds for hy,.
Since K(u) is weakly closed, this implies h € K(u).

Now, let us consider points (x,t) € Qr where xu(z,t) — ¢a(z, t)h(pz(x,t)) > 0 or equivalently
u(z,t) > Lpg(z, t)h(pa(z,t)). Then, by the projection formula we get @(x,t) = a(z,t) and
along with h € K(u), this yields h(x,t) > 0. In the case ku(x,t) — da(z, t)h(pa(z,t)) < 0, we can
argue analogously to obtain h(x,t) < 0. In particular, (ku(x,t) — ¢a(z, t)h(pa(x,t)))h(z,t) >0
holds for almost all (z,t) € Q. Moreover, from the first step we obtain

/ (5t — pah(pg))h dz dt = J'(a)[h] = 0.
Qrp
Since the integrand is non-negative for almost all (z,t) € Qr, we deduce that
(ku(z,t) — dalz, t)h(pa(x,t)))h(x,t) =0 for almost all (z,t) € Q.
Consequently, for almost all (z,t) € Qp it holds h(z,t) = 0 if ku(x,t) — ¢g(x, t)h(pz(x,t)) # 0.

Together with the fact that h € K(u), this implies h € C(u).

Step 3: We claim that h = 0. Recalling (9.87)), it suffices to show that J”(u)[h,h] < 0. A
second-order Taylor expansion shows that

J(uk) = J(ﬂ) + ko/(ﬂ)[hk} + inJ"(wk)[hk,hk]
= J(ﬂ) + dk.]/(ﬂ)[hk} + inJN(ﬂ)[hk,hk] + d?z (J//(wk)[hk,hk] — J”(ﬂ)[hk,hk]) VkeN,

where wy, € L?(L?) is an intermediate point between u, and @. After rearranging, this gives

IWMMM=%Ww%ﬂw—iﬂwm—UWMMMFfWWMW-
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For the second term on the r.h.s., the variational inequality (9.77)) yields
J(u u)|up — U .
I k 2 k 2

Invoking (9.88)), we have
2 _ 2 _ 2
E(J(Uk) —J(u) < @Huk —al]® = 5

Moreover, using Propositions and along with ||hg|[z2(z2) = 1 for all k € N, it follows
that

| T (wi) [y P] = I (@) [y h]| < [y, = @212 < d,
where we used that wy, is an intermediate point between u and 4. From the last four inequalities,

we obtain

2
J" (@)[hg, h] < ot d2 =0 ask— oo, i.e limsupJ”(@)[hy,hs] <O0. (9.89)

k—o0

Now, using hy — h weakly in L?(L?) along with Lemma (i), (9.86) and weak lower

semi-continuity of norms, we obtain
J"(@)[h, h] = [|h|72(12) — B(h, h) < klim inf||hg |72y + lim inf(=B(hg, hi.))
k—o0 k—o0

<limsup J”(@)[hg, hi] <0,

k—oc0

where B is defined as in Lemma Using (9.87) and h € C(u), this implies h = 0.

Step 4: Using (9.86)), , Lemma [9.29] (ii), and the fact that hy — h =0 in L?(L?) and
di — 0 as k — oo, it follows that

2
rllhillgz 2y < P d? 4+ B(hg, hy) — B(h,h) =0 as k — oo.

Therefore, we obtain hy — 0 strongly in L?(L?). Since ||hg|[r2(z2) = 1 for all k € N, this is a
contradiction which completes the proof. O

9.4.4 A condition for global optimality of critical controls

Even if a control u € U satisfies the sufficient optimality condition from Theorem [9.28]it is not
clear whether this control is globally optimal. However, we will establish a globality criterion
for controls which satisfy the variational inequality or the equivalent projection formula. In the
following these controls will be referred to as critical controls.

The technique we are using was firstly introduced in [7] for optimal control problems constrained
by a general semilinear elliptic PDE of second order. Recently it has also been adapted for
optimal control of the obstacle problem, see [§]. Our globality condition will be proved similarly
and reads as follows:

Theorem 9.30 Suppose that oy > 0 and k > 0 and let C; and Ly, denote the constants from
Proposition[9.4 and Corollary[9.9. Moreover, we set

7= sup||vulleo < C1.
uelU

We assume that the control u € U satisfies the variational inequality (9.77) (or the projection
formula (9.80)) and that one of the following conditions holds:
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(G1) it holds that

> [H(P% — A)(ba — qa) — oapa — Udallrr o) D" || Lo m) LT

| x

+ [Imall ey 19" || oo (mrey LT + ldall 222y W] oo ) L | - (9.90)

(G2) there exists a real number 0 > 0 such that

2660 > || all7 (1) 1" [| L (m) (9.91a)
and
(X— —
71 > |[(Poa — A)(9a — qa) — 0apa — udal| oo (poo) 1" || Lo ()
+ 17all poo ooy 19" [ poe (=) + 9||¢ﬁ||2Loo(Loo)||]h/||2L<>o(R)- (9.91b)

Then, @ is a globally optimal control of problem (9.75)).

In addition, the globally optimal control u is unique if one of the following conditions holds:

(U1) condition (G1) is satisfied and holds with “>7 instead of “>7,
(U2) condition (G2) is satisfied and (9.91a)) holds with “>" instead of “>".

Remark 9.31
(a) Of course, for the double-well potential 1), we have ¥"'(s) = 6s and thus
19" Lo ([—r.r) = 6.

(b) The conditions (G1) and (G2) will be satisfied if the adjoint variables ¢z, 74, pz and gz
are sufficiently small in the occurring norms.

(c) Since the state and adjoint variables are sufficiently regular, the right-hand side of
is at least always finite. However, is seems very difficult to verify the condition (G1) by
numerical methods as the Lipschitz constant L; which depends on the domain 2 has to
be determined.

(d) Condition (G2) has the advantage that all occurring quantities except for ||t || oo ((—r.r))
can be computed very easily. However, the constant r can hardly be determined explicitly.

To overcome this disadvantage, one can use a modified version s of the double-well
potential such that ¢; € C*1(R) with ¢ = 15 on [—4, ] for some § > 1 and ¥}’ bounded
and Lipschitz continuous with a constant Ls. It is not difficult to see that all other results
in this chapter remain true after this replacement (cf. Remark [9.2)(a)).

Of course, if § > r the values of the state and costate variables will not change if 1 is
replaced by 5. Various numerical results for the Cahn—Hilliard equation have shown that
1 <7 < 2 can be expected, i.e.,  is usually very close to one (see, e.g., [101]).

We will show a possible construction of such a potential 5 in the following example.

Example. Let us consider the function 15 given by
D(8) +9'(8)(s = 6) + 59" (8) (s — 8)* + " (8) (s — 8)° for s >4,

¥s(s) = S b(s) for |s| <4,
PY(6) + ' (—=6) (s +0) + 39" (—8)(s + 0)? + &' (=0) (s + 6)% fors < —d
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for 6 > 1. Then, it is easy to check that s € C*!(R) with Lipschitz constant Ls = 6 and

195" | Lo ) = [¢"(£0)| = 60.

Furthermore, 15 fulfils the Assumptions of, e. g., [58], and thus the results in this chapter remain
"

true after replacing ¢ with 5. The Lipschitz continuity of 1§’ is needed in order to establish
Corollary We plot the function s for § € {1,1.25}, see Figure

Figure 9.1: Plot of 15 for § € {1,1.25} and comparison with the double-well potential.

We will now present the proof of our theorem

Proof of Theorem[9.30. To prove global optimality of the control @, we intend to show that
J(u) — J(u) >0 for all w € U\ {u}. The proof is divided into three steps.

Step 1: Let u € U be arbitrary. Recall that
(ml,u - ﬂ)LQ(LQ) > 7((;571 Ih(gpﬁ) y U — ﬁ)LQ(LZ)
due to the variational inequality (9.77)). Then, by a straightforward computation, we obtain that
_ [0.%) 041 K _

T(u) = J(@) > < lleu(T) = a(D)7e + 5 lpw = @alliz(e) + gllu = @lee) + R, (9.92)
where
R = (7] (@E(T) - @fﬁ‘)ou(T) - @ﬂ(T))Lz +aq ((Pﬂ — PdPu — @ﬂ)Lz(Lz)_ (¢ﬂ ]h(%pﬂ) y U — 17,) L2(L2)"
Our aim is to show that

X1 P K 12 _
IR] < Sllou — palldaqua + 5 lu = lldagzs, forallu € U {a} (9.93)

if condition (G1) or condition (G2) is fulfilled. Then, (9.92)) yields J(u) > J(u) and global
optimality of u directly follows.

Step 2: The idea is to express the remainder R by the adjoint variables. For brevity, we write

(QO,,U,O',V,p) = (¢u7/JJU7O'U7vu7pu) - (@ﬂvﬂﬁaaﬂvvﬁapﬁ)'
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This means that (@, fi,5,V,p) is a solution of (9.10). In the following, the strategy is to test
the equations of the system (9.10) with the adjoint variables. Testing (9.10c) with ¢z and
integrating by parts with respect to ¢ yields

0= /Q [&@ + div(p, V) + div(pvy) — mAfL — Peh(p,) — (Pog — A) (h(vw) — h(pa))
+ (uh(p.) — ih(pa) | ¢ do dt
B / div(puV)da + div(pva)da — mAfL ¢z — Polh(p,)dy da dt
Qr

- / (Pow — A) (h(pw) — h(pn)) én d dt

T
+ /SZT ulh(py)pa — ulh(py)gy do dt +/ o(T) ¢a(T) do — /0 (Orda, @) g dt.

Q

Now, the term (0:¢z,9) g1 can be expressed by (9.58d]) with test function é = ¢. We obtain
that

0= /Q (div(puV) — Poh(py) — (Pog — A) (h(ew) — h(pa)) + uh(py) — ah(pg))da dz dt
+ Q—mAﬂ da+ (Pog — A— ) (0z)dap + W' (pa)oapap do dt

+ / o1 (pa — pa)P + (Ha + x0a)Wa - VP + Vg - Vo da dt
Qr

+ [ W pu)mad — (Pow — AN (pn)ga da dt + / H(T) 6a(T) da. (9.94)
Qr Q

Furthermore, testing (9.10b)) with w; yields
0= / —diV(T(\?,ﬁ)) ~wg +vv-wg — (i + x0)Veou - wa — (pa + x0z)V@ - wg de dt
Qr

= / 2nDwg : VvV +vv-wg — (i 4+ x6)Vou - wa — (pa + xoz) Ve - wg do dt
Qr

due to the definition of T'(v,p) and the fact that div(wgz) = 0. The term 2nDwy : VV can be
expressed by choosing w = ¥ in ((9.58c)). Thus,

0= / div(V)qa — ¢aVou - V — ¢apudiv(v) — (i 4+ x6)Vou - Wi — (ug + xoa) V@ - wg da dt.
Qp
Proceeding similarly with the other equations of (9.10) gives

0= Viu - Wa i + mAfL ¢y — V@ - Vg — (V' (pu) — ¥ (@a)) e + x07a da dt,
Qr

0= /Q —div(V)ga + Ph(pu)ga + (Pouw — A) (h(py) — hipa))qa dz dt,

0= i P&h(eu)(da — qa) — xTad + X6 Vou - Wi — oapa (h(py) — hipz)) da dt.

Adding up the last four identities and (9.94]), we ascertain that a large number of terms cancels
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out. We end up with

0= / ¢ (T ) dz + o /Q (pa — pa)p do dt + /Q (u—w)h(py)py do dt

+ /QT(Pau — A)((pw) - higa) — W (00)@) (ga — ¢a) do di

+/QT oapa(h(pw) — hipa) — ' (p,)@) dz dt

B /QT (V' (pu) — ¥/ (a) — ¥ (pa)@)Ta do dt

+ /QT u(h(pu) —h(ea) = ' (0a)@)du + (u— @) (h(pu) — h(pa))da dz dt.  (9.95)

Since ¢u(T) = oto(pa(T) — ¢y), the first three terms on the right-hand side of (9.95) are equal
to R. Moreover, using Taylor expansion, we can find ¢, &, 6 € [0, 1] such that

h(p,) — h(pa) = h'(¢c) @ with ¢ = a + ((pu — ¢

S
N

h(pu) —h(pa) — W (pu)g = b (pe) 2* with e = pa + &(pu — pa),
V' (pu) =¥ (0a) = ¥ (0u)@ = ¥ (00) 3" with g = pa + 0(pu — va).
Hence, it follows that
R = [(PU& — A)(Pa — qu) — oupa — 12(;5@] b (¢¢)@? do dt

Qr

+ / a0 (pg)@* da dt + / (u—u)pah’ ()@ dz dt.
Qr Qr

Step 3: Now, we will use the identity for R to prove estimates in the fashion of (9.93). A
simple computation gives

R| < {H(P% — A)(¢a — qa) — oapa — Uall 1 @ 0| L ®) LT
+ 17all Lt o) 19" Nl oo ((=rt) L3 + 19all 22 @) 1| 2o Ry Ll} [ — @120y

since |@g| (@) < 7. Furthermore, using Young’s inequality with 6, the remainder R can also
be bounded by

IR| < |[[(Poa — A)(¢a — qa) — capa — Udall Lo (@) I || Lo (m)
+ 17all Lo () 19" | oo (—r.r) + 9||¢ﬁl|2L°°(QT)H]h/HQLOO(R)} 121172 ()

+ @||¢ﬂ||2Lw(QT)HH1/||2Lw(R)||U — all72 -

Hence, if condition (G1) or (G2) is satisfied, we can use one of the previous two estimates to
conclude that

K _
R < H<P|\L2(L2 5””‘“”%2@2)»

and inequality (9.92)) implies that @ is a globally optimal control. If, in addition, either condition
(U1) or (U2) is satisfied, it even holds that

X1 - K _
R| < ?H<PH%2(L2)+§||U*U||%2(L2)-

Then, (9.92)) implies that
J(u) > J(u) forallu e U\ {u},

and uniqueness of the globally optimal control u follows. O
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9.4.5 Uniqueness of the optimal control on small time intervals

Finally, we present a condition on 7" which ensures uniqueness of the optimal control. A similar
result was established, e.g., in [107,[108]. The idea behind the approach is as follows. If we
choose the final time T sufficiently small, the state equation will differ only slightly from its
linearisation. In the case k > 0, a linearised state equation would produce a strictly convex cost
functional and the corresponding optimal control would be unique. If T" is small enough, we
can expect that this property transfers to our problem. On the other hand, if the parameter
k is large, the strictly convex part of the cost functional J will be more dominant. Thus, it is
not surprising that the size of the time interval on which the optimal control is unique will also
depend on k.

In our theorem, we use the following notation: for any p € [1, 6], let cq(p) > 0 denote a constant
for which Sobolev’s inequality

o]l 2o (@) < ca(p) l[v]lar (@), for allv € H' ()
is satisfied.

Theorem 9.32 Suppose that k > 0 and let u € U be a locally optimal control of problem (9.75]).
Let p,q € [3, 6] with % + % =1 be arbitrary.

Moreover, we assume that

4/3

V3K
T . 9.96
= <2(L3+\@L169(p) ca(q)l|¢allLoe ) ||]h'||L°o(R))> (5.96)

Then, u is the unique locally optimal control.
Proof. Let us assume that there exists another locally optimal control w. Then, it holds that
t
lpu(t) = pa(®)ll7 < 2/ 10s0u(s) — Ospa(s)llz lpuls) — pals)ll L2 ds
0

<2Vt pu — pallmr(12) 19w — PallL= L2y < 2L3VE|Ju — 7212y
Integrating by parts, we also obtain the estimate
t
IVeu(t) = Vea(®)|7e < 2/ 10s0u(s) = Ospa(s)llL2 [|Apu(s) — Apa(s) L2 ds
0
< 2Vt ||pu — wallmr 2y lou — @allpe a2y < 203Vt ||lu — a||2L2(L2)'
Consequently, we have
2v/2 _
Htpu — (pﬂllLQ(Hl) < W L1 T3/4 ||u — uHLz(Lz). (997)

In the same fashion, we can derive the estimate

T
pu(t) — da(®)Z: = Z/t (Ospu(s) = Osuls), Pu(s) — Puls))ur ds

<2Vt pu — Sull )y ldu — Pall Loy < 2L3VT —tllu — al 712,

and thus

2 _
H(bu — ¢ﬂ||L2(L2) S —— L3 T3/4 ||U — u||L2(L2). (998)

&
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Furthermore, we know from Corollary [0.25 that both u and u satisfy the projection formula
(19.80). A straightforward computation yields

1
Ju(w, t) = a(z, 1) < [l oo @) Pu(,1) = dal@, )] + [Pa(z, O D[] e =) [pu (@) = pal,t)]

for almost all (x,t) € Qr, and, recalling that |/h||z-®) < 1 and using along with (9.98]),
we conclude that

_ 1 1
lu—allz2z2) < ~lou = dallzacs) + —ldallze(wr) 1’|l Lo ) l9w = wallL2(za

1 1
< —lléw = dallzwz) + —ca)ldall e ) W[l e @) ca(@)llou = wall 2o

2
V3K
However, if is satisfied we have

2
V3K

Therefore, the above inequality can hold true only if [|u — | z2(z2) = 0 which means uniqueness
of the locally optimal control. O

IN

T3/4 (Lg + V2L1ca(p) ca(q)||dall L= m) ||]h'||Loc(R)> lu —allr2(L2)-

T (Ls + VaLica() ca(@)ldall ) 1|1~ s) ) < 1.

Remark 9.33 We can also interpret as a condition for k. Indeed, for arbitrary but fixed
T > 0, condition is fulfilled provided x > 0 is large enough. This means that, for a
sufficiently high penalisation of the medication dose, a locally optimal control u € U of problem

(9.75) is unique.
The above theorem in particular yields the following:

Corollary 9.34 Suppose that T > 0 and k > 0 satisfy the assumption of Theorem .
Then, there exists a unique globally optimal control w of problem (9.75)).

In this case, each of the equivalent necessary optimality conditions (9.77)) and (9.80)) is a sufficient
condition for global optimality.

Proof. Theorem [9.23] ensures the existence of at least one globally optimal control u € U. Of
course, 1 is also locally optimal. Hence, since assumption holds, Theorem implies
that w is the unique locally optimal control. It follows immediately that « is the unique globally
optimal control.

Moreover, 4 satisfies the equivalent necessary optimality conditions (9.77) and (9.80]). Because
of Theorem it is also the only control satisfying these conditions. Hence, (9.77) (or (9.80)
respectively) is a sufficient condition for global optimality. O
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