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ABSTRACT 

Especially in higher vertebrates, astrocytes are an indispensible part of signal processing 

within the brain. Thus, the mode of action of a neuroactive peptide such as OXT cannot be 

fully understood without this integral part of the CNS. The effects of OXT on neuronal cells 

have been well characterized, while its effects on astrocytic cells, specifically on OXTR-

coupled signaling and its resulting cellular consequences, are poorly understood and might 

very well differ. To characterize the effect of OXT on astrocytic gene expression, intracellular 

signaling, as well as astrocyte-specific proteins, synthetic OXT was either administered icv in 

male Wistar rats or applied to cultured rat primary cortical astrocytes. Due to the results of this 

analysis implying an acute OXT-induced cytoskeletal remodeling and alterations to gap-

junction coupling, I next examined the underlying molecular mechanisms and cellbiological 

consequences of these alterations. Here I found that OXT led to rapid elongation and formation 

of astrocytic processes in vitro and in vivo, while simultaneously impairing astrocytic 

intercellular connectivity. Mechanistically, both of these effects were OXTR-specific, conveyed 

via PKC and, to a lesser extent, MEK1/2 signaling. Notably, OXT-induced cytoskeletal 

remodeling and impairment of gap-junctions were characteristic for OXT, since its closely 

related sister-peptide AVP did not affect the examined parameters. CLSM and STED-

microscopy following icv or ex vivo administration of OXT furthermore revealed changes to 

astrocyte-neuron spatial relationships in two brain regions associated with high 

responsiveness of astrocytic markers to OXT, i.e. PVN and hippocampus. In depth in vitro 

studies identified the previously undescribed Sp1-Gem signaling axis to be at the base of these 

effects. A combination of knockdown, knockout and overexpression experiments revealed that 

OXT drives Gem expression via the transcription factor Sp1 and that Gem is required and 

sufficient for the effects of OXT on astrocytes. The Sp1-Gem axis was differentially regulated 

by OXT in neuronal cells, identifying it as key driver in the cell type-specific response of 

astroglial cells to OXT. Based on these findings, astrocyte-specific AAV-mediated Gem or Oxtr 

shRNA knockdown vectors were established as tools for a targeted manipulation of astrocytic 

OXTR signaling and future assessment of astrocytic contribution to the physiological and 

behavioral effects of OXT. To this end, shRNA oligonucleotides were screened for knockdown 

efficiency in vitro and subsequently packaged into viral vectors providing astrocyte-specific 

expression via transcriptional control of shRNA expression under the hGFAP promoter. 
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1            INTRODUCTION 

1.1 The neuropeptide oxytocin 

Due to its various physiological and behavioral functions, there has been a growing scientific 

interest in the nonapeptide oxytocin (OXT) and its cognate receptor over the last decade. 

However, the research on OXT and its closely related sister-peptide arginine vasopressin 

(AVP) dates back more than a century. Besides a multitude of physiological functions, this 

research unraveled a remarkable degree of evolutionary conservedness of the OXT/AVP 

systems (Acher et al., 1995; Donaldson and Young, 2008; Hoyle, 1999), indicating a high 

degree of selective pressure acting on both, the genes coding for OXT/AVP homologs, as well 

as their receptors. As a result of a gene duplication of their common ancestor gene vasotocin, 

which homologs can be traced back to invertebrate phylae like annelida or mollusca, 

OXT/AVP-like neuropeptides are found in all vertebrate species. Their evolutionary 

conservation extends beyond the chemical structures of the peptides and their receptors, as it 

can also be observed in a similar anatomical distribution of the synthesizing neurons and 

receptor expression patterns (Grinevich et al., 2016; Vargas-Pinilla et al., 2015). Moreover, 

striking functional similarities exist, with OXT/AVP homologs regulating osmotic homeostasis 

and social/sexual behaviors throughout large parts of the animal kingdom (Lema et al., 2015; 

Soares et al., 2012; Van Kesteren et al., 1995).  

In mammals, OXT and AVP are mainly synthesized in magnocellular neurons of the 

paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus in a 

mutually exclusive manner (Mohr et al., 1988; Sofroniew, 1983). A detailed 

immunohistochemical analysis in rats revealed an additional expression in magnocellular 

accessory nuclei of the hypothalamus constituting around one-third of OXT/AVP-positive cells 

(Rhodes et al., 1981). An additional site of OXT synthesis is posed by parvocellular neurons 

of the PVN, but also scattered extra-hypothalamic neurons (De Vries and Buijs, 1983; 

Knobloch and Grinevich, 2014). Contrary to magnocellular neurons, these cells do not project 

to the neurohypophysis, but instead form connections with a) areas in the brain stem and spinal 

cord, where they are involved in the regulation of autonomic processes and pain perception 

(Swanson et al., 1980) and b) magnocellular neurons of the SON/PVN to regulate OXT release 

(Eliava et al., 2016).  

OXT synthesizing cells express the Oxt gene, which encodes a signal peptide (SP), the 

nonapeptide and its attached neurophysin (NP). The 4850bp gene contains three exons, two 

introns (Ivell and Richter, 1984), as well as a promoter region for which binding of various 

hormone receptors (Adan et al., 1993; Richard and Zingg, 1990; Sladek and Somponpun, 

2004) and the transcription factor CREB (Sharma et al., 2012) was identified. The newly 
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synthesized SP-OXT-NP pre-peptide is packaged into neurosecretory large dense-core 

vesicles (Tooze, 1998) where it undergoes extensive posttranslational modifications (Altstein 

and Gainer, 1988; Gainer et al., 1977). The magnocellular cells of the PVN and SON send 

axonal projections to the neurohypophysis, a neuro-hemal organ of neuronal (i.e. ectodermal) 

origin. OXT-containing vesicles are stored in and released from neuronal terminals into 

neurohypophysial capillaries, permitting entry into the peripheral blood stream (Hatton, 1990). 

Within the brain, OXT neurons project to various mesolimbic and forebrain structures like the 

bed nucleus of the stria terminalis (BNST), septal nuclei, nucleus accumbens, prefrontal 

cortex, medial and central amygdala, hippocampus and the anterior olfactory nucleus (Dolen 

et al., 2013; Grinevich et al., 2016; Sofroniew, 1980). In contrast to peripheral OXT release, 

intracerebral OXT release seems to occur non-synaptically, as neither presynaptic localization 

of OXT containing vesicles nor postsynaptic oxytocin receptors (OXTR) could be observed yet 

(Knobloch et al., 2012; Theodosis, 1985). Oxt mRNA has been detected in dendrites (Mohr 

and Richter, 2003), suggesting local synthesis of OXT and consequent dendritic release (Pow 

and Morris, 1989). Indeed, Pow and Morris were the first to describe such dendritic release of 

nonapeptides using electronmicroscopic tools (Morris and Pow, 1991). Instead of being 

transmitted synaptically, OXT is released axo-dendritically at axonal projection sites, or 

somato-dendritically within the PVN/SON. These diffusion-like neuropeptide actions led to the 

view of OXT as neuromodulator, rather than neurotransmitter (Landgraf and Neumann, 2004; 

Leng and Ludwig, 2008). The anatomical distribution of OXT projections and release sites is 

summarized in Fig. 1. 

Figure 1. Projections and release sites of the OXT system in an anatomical scheme of the rat brain (sagittal slice). 
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OXTergic projections originating from the PVN/SON are depicted as black lines, connecting OXTR expressing brain 
areas. Brain regions where OXT release has directly been shown are highlighted in yellow. AON, anterior olfactory 
nucleus; OB, olfactory bulb; OT, olfactory tubercle; Nac, nucleus accumbens; OVLT, organum vasculosum laminae 
terminalis; SON, supraoptic nucleus; PVN, paraventricular nucleus of the hypothalamus; PP, posterior pituitary; 
PFC, prefrontal cortex; CC, cingulate cortex; MPOA, medial preoptic area; BNST, bed nucleus of the stria terminalis; 
LS, lateral septum; CPu, caudate putamen;PV, paraventricular nucleus of the thalamus; CeA, central amygdala; 
MeA, medial amygdala; BLA, basolateral amygdala; VTA, ventral tegmental area; LC, locus coeruleus; PBN, 
parabrachial nucleus; DRN, dorsal raphe nucleus; PAG, periaqueductal gray; SN, substantia nigra; HPC, 
hippocampus; HDB, nucleus of the horizontal limb of the diagonal band. Scheme adapted from (Jurek and 

Neumann, 2018). 

Interestingly, peripheral and central release can occur coordinated or independently, 

increasing the response specificity of the OXT system to external stimuli. Stimuli triggering 

simultaneous release include parturition, lactation (suckling), physical and emotional stress, 

as well as osmotic challenge, mating and social interaction (reviewed in(Jurek and Neumann, 

2018). It should, however, be noted that differences in temporal dynamics of central and 

peripheral release do still exist for these stimuli. An examples for a stimulus triggering 

independent central OXT is the anorexic neuropeptide α-melanocyte stimulating hormone (α-

MSH). While α-MSH induced OXT release within the SON, it inhibited release into the 

bloodstream (Sabatier et al., 2003). 

Dependent on the stimulus and site of release, OXT drives an adequate physiological or 

behavioral response, including the modulation of physiological parameters such as pain 

perception, appetite and HPA axis activity, but also the regulation of complex social behaviors 

and emotionality. A large body of literature has demonstrated that the endogenous OXT 

system promotes learning and memory functions, maternal behavior, sexual aggression, social 

preference and bonding (reviewed in Jurek and Neumann, 2018). Moreover, its robust 

anxiolytic, anti-stress, and pro-social effects have brought the brain OXT system up for 

discussion as a potential therapeutic target for psychopathologies such as anxiety disorders 

(Labuschagne et al., 2010; Landgraf and Neumann, 2004; MacDonald and Feifel, 2014), major 

depressive disorder or autism spectrum disorder (Bakermans-Kranenburg and van Ijzendoorn, 

2014). In this context, a detailed understanding of the mode of action of OXT is of particular 

relevance and might contribute to the identification of new treatment options.  

 

1.2 The OXTR and its downstream effectors 

On a cellular level, OXT mediates its functions mainly via the OXTR. In the periphery, the Oxtr 

gene displays a widespread expression pattern, including the renal cortex, adrenal medulla, 

heart, retina, skin, fat tissue, the enteric nervous system, bones and taste buds (Colaianni et 

al., 2014; Deing et al., 2013; Eckertova et al., 2011; Gutkowska and Jankowski, 2012; Halbach 

et al., 2015; Ostrowski et al., 1995; Taylor et al., 1989). In the brain, Oxtr expression is found 

in all above mentioned brain areas (for review, see(Jurek and Neumann, 2018) and various 
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non-neuronal cell types (Di Scala-Guenot and Strosser, 1992a; Yuan et al., 2016). OXTR-

positive cells display a wide range of properties that in some cases are even co-characteristic. 

For example, Oxtr expressing neurons within the PVN are exclusively glutamatergic, whereas 

within the BNST OXTR-positive neurons are of GABAergic nature (Dabrowska et al., 2013). 

The highly conserved 17kb Oxtr gene consists of four exons and three introns and codes for a 

389 amino acid 7-transmembrane domain (TM) G protein-coupled receptor (GPCR) (Kimura 

et al., 1992; Rozen et al., 1995). The first three extracellular loops of the OXTR are most critical 

for OXT binding by interacting with the tertiary structure of the peptide (Postina et al., 1996). 

OXT does not exclusively bind to OXTRs (Ki =0.79nM), but also to the vasopressin receptors 

V1a (Ki =120nM), V1b (Ki=1.782nM) and V2 (Ki =1.544nM), although with lower affinity (Akerlund 

et al., 1999). This fact makes it both difficult and important to validate OXTR specificity in any 

OXT-dependent effect to be studied. 

Oxtr expression is under tight transcriptional and post-transcriptional control, strongly 

enhancing the regulatory capacity of the OXT-OXTR system. This is reflected by binding sites 

for various transcription factors/repressors like Sp1, AP1/2, c-Myb, NF-κB, estrogen receptors, 

C/EBP and Peg3 in the Oxtr sequence (Frey et al., 2018; Terzidou et al., 2006)and reviewed 

in(Blanks et al., 2007), as well as additional epigenetic and miRNA-based mechanisms (Beery 

et al., 2016; Choi et al., 2013). Moreover, the availability of the ligand itself seems to be able 

to affect OXTR quantities, since both chronic intracerebroventricular (icv), as well as repeated 

intranasal administration reduced Oxtr mRNA expression in various brain regions (Huang et 

al., 2014; Peters et al., 2014). Extracellular signals regulating Oxtr expression include labor-

induced mechanical stretch and interleukin-β release (Terzidou et al., 2011; Terzidou et al., 

2005), as well as estrogen and progesterone (Quinones-Jenab et al., 1997; Schumacher et 

al., 1990).  

Once the receptor is expressed and trafficked to its subcellular localization, the biochemical 

environment of the plasma membrane and interaction partners within the membrane are able 

to alter both signal perception, i.e. affinity, and activation patterns of downstream effectors 

(Busnelli et al., 2016; Gimpl and Fahrenholz, 2001; Reversi et al., 2006; Romero-Fernandez 

et al., 2013; Wiegand and Gimpl, 2012; Wrzal et al., 2012). Additionally, the coupled signaling 

cascades will determine the cellular and, later on, network output. Due to its major role in 

uterine contractions during birth, these cascades were initially mainly studied in myometrial 

cells.  

The first level of signal processing following ligand binding is characterized by the respective 

subforms of Gα/Gβ/Gγ proteins immediately coupled to the receptor, which can vary dependent 

on the cell type and physiological state. For example, the OXTR is coupled to the inhibitory Gα 

protein subforms Gαi1-3, GαoA and GαoB  in myometrial cells (Busnelli et al., 2012), whereas 
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coupling to the activating Gq/11 subform and subsequent phospholipase C (PLC) activation was 

described in myometrial membranes (Ku et al., 1995). Another example is the Gq/11–mediated 

increased contractility of myometrial cells of non-pregnant rats vs. the Gβγ-dependent decrease 

of contractility in myometrial cells of pregnant rats (Zhou et al., 2007).  As exemplified here, 

such differential coupling can in consequence lead to a contrary response to the same signal, 

reflecting the highly context-dependent nature of OXTR signaling.  

As a general characteristic of GPCRs, the second level of signal processing is an activation of 

second messengers by either the activated G proteins or direct interactions. This mechanism 

provides an enormous amount of amplification, enabling small quantities of a ligand to trigger 

a significant response. The main second messenger recruited by G proteins is Ca2+, which can 

be released from internal stores and/or enter cells from the extracellular space. Gq/11 coupled 

OXTR signaling activates phospholipase C, which in turn leads to the cleavage of 

phosphatidylinositol 4,5-bisphosphate to inositol-3-phosphate (IP3) and diacylglycerol (DAG). 

IP3 binding to IP3 receptors located in the endoplasmatic reticulum subsequently triggers Ca2+ 

release from intracellular stores (for review see(Mikoshiba, 2007). In cells of the central 

nervous system, this has been described for both neuronal (Ayar et al., 2014) and astrocytic 

cells (Di Scala-Guenot et al., 1994) in the context of OXT. In contrast, OXT led to a decrease 

of intracellular calcium in lipopolysaccharide-challenged microglial BV-2 cells (Yuan et al., 

2016). The full extent of signal amplification additionally requires Ca2+ influx from the 

extracellular space via calcium channels. For OXT, the involvement of various transient 

receptor potential cation channels (TrpC; specifically TrpC1/TrpC3-6;(Chung et al., 2010; 

Murtazina et al., 2011; Shlykov et al., 2003; Ulloa et al., 2009))and transient receptor potential 

vannilloid channels (TrpV; specifically TrpV2/TrpV4;(van den Burg et al., 2015; Ying et al., 

2015), as well as voltage operated channels (Sanborn, 2007) has been reported. That this 

aspect of OXTR signaling is of critical relevance at the behavioral level was demonstrated in 

2015 by van den Burg et al., as pharmacological blockade of TrpV2 within the PVN prevented 

the acute anxiolytic effect of OXT by inhibiting downstream activation of the mitogen activated 

protein kinase (MAPK) pathway that had been previously shown to mediate this effect (Blume 

et al., 2008; Jurek et al., 2012). Other Ca2+-dependent downstream effectors of the OXTR are 

the calmodulin dependent kinases II/IV (Jurek et al., 2015), calcineurin (Pont et al., 2012) and 

protein kinase C (PKC; (Devost et al., 2008a). We recently found that OXT induces de novo 

protein synthesis in neuronal cells in a PKC-dependent manner by stimulating the translational 

activator eukaryotic elongation factor 2 (Martinetz et al., 2019). Notably, one of the newly 

synthesized proteins, neuropeptide Y receptor Y5, was sufficient and necessary for the 

anxiolytic effect of acute OXT within the PVN. In a broader picture, this demonstrates an 

intracellular feed-forward mechanism of OXT, supporting its own effect on gene expression 

(see below) by facilitating the translation of the newly transcribed mRNAs. 
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The third level of signal transduction is additionally shaped by downstream effectors not 

dependent on increased cellular Ca2+ levels. The transactivation of the epidermal growth factor 

receptor (EGFR) and subsequent activation of MAPK pathways studied both in myometrial 

cells and neurons, is a link of OXTR signaling to such effectors (Blume et al., 2008; Lin et al., 

2012; Zhong et al., 2003). Although the direct signal transducer is yet unknown, OXTR-coupled 

signaling triggers the auto-phosphorylation activity of the EGFR tyrosine kinase domains, 

which subsequently recruits the membrane-bound GTPase Rat sarcoma (Ras). Full MAPK 

activation is then accomplished by a phosphocascade of [c-Raf-1(Map3k)/Map2k/ERK1/2], 

although ERK1/2 independent signaling was observed for the Map2k family member MEK1/2 

in some cases (Fischmann et al., 2009; Jurek et al., 2015; Jurek et al., 2012; Kim et al., 2015). 

OXT-induced phosphorylation peaks for c-Raf and ERK1/2 have been described as early as 

5min or 10min, respectively (Blume et al., 2008), however the timecourse of ERK1/2 

phosphorylation in particular seems to be cell type-dependent (Terzidou et al., 2011). Other 

members of the MAPK family that have been linked to OXTR signaling in myometrial cells are 

p38 and ERK5 (Brighton et al., 2011; Devost et al., 2008b; Kim et al., 2017). In general, MAP 

kinases are involved in the regulation of a wide variety of cellular processes ranging from cell 

differentiation and migration, apoptosis to regulation of gene expression in response to 

external stimuli. In the context of OXT, exertion of such transcriptional control has been mainly 

studied for two distinct transcriptional regulators. First, the transcription factor CREB was found 

to mediate OXTR/MAPK-induced spatial memory formation during motherhood (Tomizawa et 

al., 2003), hippocampal long-term potentiation (Lin et al., 2012), as well as Crf expression 

(Jurek et al., 2015). Second, the myocyte enhancer factor 2 (MEF-2) was activated by OXT in 

myometrial (Devost et al., 2008b) and neuronal cells (Meyer et al., 2018), leading to neurite 

outgrowth in the latter. In general, OXT seems to have profound effects on the formation and 

elongation/retraction of cellular processes. While OXT caused less ramification in hippocampal 

glutamatergic neurons ex vivo (Ripamonti et al., 2017), it induced process elongation in human 

neuroblastoma and glioblastoma cells (Lestanova et al., 2016; Lestanova et al., 2017). The 

latter effect was accompanied by a variety of changes in the expression of genes associated 

with cytoskeletal dynamics. In line, OXT was found to increase myometrial contractility via 

activation of the RhoA/ROCK signaling pathway, most pronounced during late pregnancy 

(Gogarten et al., 2001; Tahara et al., 2002). The GTPase RhoA and its effector ROCK belong 

to the major regulators of the cellular cytoskeleton and as such are involved in cellular 

migration, morphology, adhesion, motility and smooth muscle contraction. (Van Aelst and 

D'Souza-Schorey, 1997). ROCK targets Ser19 of the myosin light chain (MLC;(Totsukawa et 

al., 2000), while simultaneously inhibiting myosin light chain phosphatase (MYPT) via 

phosphorylations at threonines 696 and/or 853 (Feng et al., 1999; Kawano et al., 1999) and, 

in consequence, increases F-actin contractility.  
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Finally, the desensitization of the OXT-OXTR signaling axis is initiated via OXTR 

phosphorylation by the G protein-coupled receptor kinase 2 and is already initiated 4s following 

ligand binding (Hasbi et al., 2004). This phosphorylation enables subsequent binding of β-

arrestin2, which in turn uncouples the receptor from its G proteins and simultaneously acts as 

an adapter for clathrin-mediated endocytosis (Goodman et al., 1996; Smith et al., 2006). The 

endocytotic vesicles are stored intracellulary, and the receptor is reinserted into the membrane 

around 4h after the initial internalization (Conti et al., 2009). In addition, β-arrestin provides a 

negative feedback mechanism by inhibiting insertion of TrpV channels into the plasma 

membrane (Ying et al., 2015). Interestingly, β-arrestin additionally seems to play a role in the 

nuclear translocation of the OXTR, a process so far exclusively described in osteoblasts (Di 

Benedetto et al., 2014). A potential secondary negative feedback mechanism is the prevention 

of prolonged calcium influx via TrpC3/5 channels by inhibitory phosphorylation of these 

channels by PKC (Venkatachalam et al., 2003). 

Taken together, the high degree of regulatory capacity, from ligand over receptor to the cell 

type-specific identity of coupled downstream effectors, enable the OXT-OXTR system to bring 

about physiological and behavioral responses, which are diverse and highly specific at the 

same time. In the brain, OXT actions are not restricted to neurons, which makes an 

understanding of these actions on other cell types of the CNS imperative. 

 

1.3 Astrocytes – Maintenance of CNS homeostasis and active participation in neuronal 

communication 

The first description of a neural cell that would later be classified as glia cell dates back to 1851 

(Müller, 1851). Heinrich Müller had described cells of the retina, which were later named Müller 

cells, while six years later Karl Bergmann described radial like cells of the cerebellum (later 

named Bergmann glia;(Bergmann, 1857). Carl Frommann coined the term glia cell (from 

greek: γλία, glue), when describing ‘Leim erfüllte Interstitien’ (glue-filled 

interstitiae;(Frommann, 1867). Based on their star-shaped appearance with processes 

pointing in all directions, Michael von Lenhossék was the first to use the term ‘astrocyte’ in 

1895 (Lenhossék, 1895). This term was later on popularized by Santiago Ramón y Cajal, who 

developed the first astroglia-specific staining technique based on gold and mercury chloride-

sublimate staining (Garcia-Marin et al., 2007). These anatomical studies fostered speculations 

on the physiological functions of these cells, some of them turning out to be surprisingly correct 

when examined experimentally later on. Such examinations were enabled by 

electrophysiological experiments in the late 1950s providing the first evidence of neuron-glia 

interactions (Hertz, 1965; Hild et al., 1958; Orkand et al., 1966). The establishment of purified 
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cultures by Jean de Villis allowed research to provide insights into astroglial biology on a single-

cell level (Morrison and de Vellis, 1981). The findings of the following decades (see below) 

even led some researchers to call for a shift from a neurocentric to a gliocentric view of the 

brain. The glia cells that populate the CNS (neuroglia) are characterized by form, function and 

developmental origin. Neuroglia are subdivided into macro and microglia, with the first 

including cells of neuroectodermal origin (astrocytes, oligodendrocytes, ependymal cells), 

while the latter are of mesodermal origin and originate from macrophages invading the brain 

during early development (Sierra et al., 2014).  

Evolutionary, neuro-supportive glial cells could be traced back to higher Platyhelminthes, with 

support of neuronal cells by ‘proto-astrocytes’ first observed in Nemathelmintes (Golubev, 

1988; Oikonomou and Shaham, 2011). Neuroglia were then found in all higher taxa including 

Arthropoda, Mollusca and Annelida (Hartline, 2011), as well as vertebrates with a general trend 

for increased glia to neuron-ratios throughout the course of evolution (Friede, 1954; 

Reichenbach, 1989). This increase follows the increase in brain thickness, as well as neuronal 

energy expenditure and reflects the resulting elevated demand for metabolic support and 

homeostatic maintenance. Moreover, the complex astrocyte-neuron interplay on the synaptic 

level (for a more detailed description see 1.4) allowed for a progressive increase in the 

computational power of the CNS, which is also reflected by large increases in astrocytic size, 

complexity and signal procession speed particularly seen in humans. This has been 

remarkably demonstrated by engraftment of human glial progenitor cells (hGPCs) into 

neonatal mice. Chimeric mice devoloped mature hominid astrocytes, which caused sharp 

enhancements of LTP, as well as improved learning capabilities in a variety of behavioral tests 

(Han et al., 2013). Despite significant advances in the identification of astrocytes (see below), 

their exact abundance, especially in relation to other cell types, is still under debate. In rodents, 

the glia to neuron ratio is around 0.3 – 0.4, with 10-20% of CNS cells being astrocytes (Sun et 

al., 2017), whereas the glia-neuron ratio in higher mammals increases to around 1.5-2.0 

(Pelvig et al., 2008; Sherwood et al., 2006). However, of these glia cells only ~20-40% where 

found to be astrocytes, while oligodendrocytes make up ~50% and microglia ~5-10% 

(Mittelbronn et al., 2001). Verkhratsky and Nedergaard (2018) describe astrocytes throughout 

the course of evolution as ‘highly opportunistic supportive cells that tailor their form and 

function to match the demands of progressively changing nervous tissue. In this context, the 

CNS evolved through division of functions between cell types: the neurons become mostly 

responsible for rapid propagation of signals associated with action potential and chemical 

synapses, whereas neuroglia assumed the responsibility for homeostasis and defense’. In 

case of astrocytes, these homeostatic functions are manifold and include ionostasis, pH 

buffering, H2O homeostasis and thereby regulation of extracellular space volume, reactive 

oxygen species homeostasis, neurotransmitter uptake and recycling, neurovascular coupling, 
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clearance of waste products, systemic energy homeostasis, regulation of food intake and 

nutrient shuttling to neurons. This homeostatic focus is reflected by a broad variety of 

membrane transporters, ion channels and metabolic enzymes being the most highly expressed 

astrocytic genes (Cahoy et al., 2008). Hence, astrocytes are indispensable to maintain a stable 

molecular environment within the CNS and thereby support vital neuronal functions.  

Developmentally, astrocytes, in contrast to microglia, originate from neuroepithelium-derived 

neuronal progenitors (Kriegstein and Alvarez-Buylla, 2009) and differentiate to astrocytes after 

the neurogenic period of the CNS, in which early neurons populate neuronal layers. In rodents, 

the subsequent gliogenic switch, characterized by the expression of gliogenic transcription 

factors like NFIA or Sox9 (Deneen et al., 2006; Freeman, 2010), occurs on embryonic day (E) 

12 in the spinal cord and around E16-18 in the cortex. Neurons and astrocytes born in the 

same region will generally develop together, and by that give rise to regional specificity (Gao 

et al., 2014; Magavi et al., 2012). However, the described embryonic astrogliogenesis accounts 

only for a part of adult CNS astrocytes. In rodents, the number of non-neuronal cells increases 

from 4 million to over 140 million during the second and third postnatal weeks (Bandeira et al., 

2009), whereas in cats the astrocyte-to-neuron ratio almost doubles from ~0.8 in young kittens 

to ~1.48 in adult animals (Brizzee and Jacobs, 1959). An important factor in this postnatal 

increase is most likely the retained (low) proliferative capacity of astrocytes, which 

distinguishes them from the majority of neurons (Ge and Jia, 2016).  

The identification of astrocyte-specific markers facilitated the understanding of astroglial 

biology to a great extent. However, even today, specific identification and targeting of 

astrocytes is not trivial and topic of ongoing debates, since the high degree of morphological 

and transcriptomic heterogeneity rendered identification of an universal astrocytic marker 

impossible to the date. Therefore, only a combination of techniques and markers led to a more 

concise picture. Early on, classical histological techniques based on Cajal’s sublimated gold-

chloride staining accomplished labeling of astroglial filaments and endfeet. Later, glial fibrillary 

acidic protein (GFAP) within the CNS was identified to be exclusively expressed in astrocytes 

and has been the most commonly used astrocytic marker since. GFAP is an intermediate 

filament of the astrocytic cytoskeleton (Bignami et al., 1972; Hol and Pekny, 2015; Ludwin et 

al., 1976), which displays a subpopulation and region-specific heterogenic expression in vivo. 

For example, 60% of astrocytes in the adult hippocampus are GFAP positive, while this holds 

true for only 12% of astrocytes in the mouse entorhinal cortex. GFAP seems to be generally 

upregulated in reactive astrocytes in vivo (Bushong et al., 2002; Nolte et al., 2001; Ogata and 

Kosaka, 2002; Walz and Lang, 1998), while almost all astrocytes are GFAP positive in vitro 

(Walz, 2000; Yeh et al., 2013). Even though GFAP stains the astrocytic cytoskeleton, its use 

for this purpose is somewhat limited by its lack of localization to finer and distal processes 
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(Connor and Berkowitz, 1985). Other proposed markers are the calcium binding protein S100B 

(Savchenko et al., 2000), the glutamate transporters EAAT1 and EAAT2 (Jungblut et al., 2012), 

the enzyme glutamine synthetase (Anlauf and Derouiche, 2013), the intermediate filament 

vimentin (Pekny et al., 1999), the water channel aquaporin 4 (Nielsen et al., 1997), the 

transcription factor Sox9 (Sun et al., 2017), the foliate metabolism enzyme aldehyde 

dehydrogenase 1 family member L1 (ALDH1L1;(Cahoy et al., 2008) and the gap-junction 

proteins Cx30/Cx43 (Dermietzel et al., 1991; Nagy et al., 1999). All of these markers provide 

distinct advantages and disadvantages in terms specificity, inclusiveness and subcellular 

distribution depending on the specific aim of the study and therefore have to be chosen 

carefully beforehand (for a concisive review see(Verkhratsky and Nedergaard, 2018).  

Additionally, astrocytes can be visualized by either dye-loading with a patch pipette or 

expression of a fluorescent protein/calcium indicator, e.g. EGFP, under the promoter of an 

astrocytic marker gene like Gfap. Due to the subcellular distribution of fluorescent dyes or 

proteins to even fine astrocytic processes, these techniques allow for a more detailed analysis 

of the morphology of astrocytes and their spatial relationship to neighbouring cells. The 

application of the above mentioned markers and approaches led to the identification of a 

variety of astrocytic subpopulations. First, protoplasmic astroglia represent the major 

population of astrocytes in the grey matter of the brain and spinal cord. These cells possess a 

small soma (~10µm in diameter) with 5-10 primary processes (~50µm in length) that branch to 

a dense peripheral arborization underlying their spongiform appearance. A single protoplasmic 

astrocyte in the rodent cortex may contact 4-8 neurons, surround ~300-600 neuronal dendrites, 

and interact with 20,000-120,000 synapses residing within its domain (Bushong et al., 2002; 

Halassa et al., 2007b). Second, fibrous astrocytes populate the white matter of the CNS and 

are organized in rows between the axonal bundles. Their arborization is less complex than that 

of protoplasmic astrocytes, and their overlapping processes reflect the absence of domain 

organization characteristic for protoplasmic cells. The processes of fibrous astrocytes establish 

several perivascular endfeet and send numerous long (up to 100µm) extensions that contact 

axons at nodes of Ranvier (Lundgaard et al., 2014). 

The morphological heterogeneity of astrocytes seems to be mirrored by a remarkable degree 

of molecular heterogeneity (Chai et al., 2017), which is believed to play a role in their ability to 

specifically accompany distinct neuronal circuits despite their high spatial overlap (Martin et 

al., 2015). Fluorescence activated cell sorting with subsequent RNA sequencing revealed that 

astrocytes are especially enriched in transcripts of genes involved in cellular metabolism 

compared to neurons (Lovatt et al., 2007). Later studies showed a strong increase in 

expression of phagocytotic genes in mature (17-30d) vs. immature (7-8d;(Cahoy et al., 2008) 

astrocytes, further supporting the involvement of astroglia in synaptic pruning (Chung et al., 
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2013). In conditions of CNS injury and disease, astrocytes switch to a so-called reactive state, 

which is characterized by alterations in the astrocytic gene expression profile (Zamanian et al., 

2012). Specifically, this state is more directed towards interactions with the immune system 

and cytoskeletal motility. Notably, astrocytes cultured in vitro display a similar transcriptome to 

such a reactive state, stressing the importance to validate in vitro findings under non-reactive, 

more physiological conditions, i.e. in vivo. In contrast, astrocytes show very similar 

electrophysiological properties in all brain regions, a feature for which the above mentioned 

heterogeneity of astrocytes is not observed (Du et al., 2016). In general, astroglia possess a 

hyperpolarized resting potential (~80mV) and low input resistance, which is reflected by an 

almost linear current to voltage relationship (Chvatal et al., 1995; Dallerac et al., 2013; Mishima 

and Hirase, 2010). 

 

1.4 Astrocytic networks and their regulation 

A characteristic feature of astrocytes is their high degree of intercellular connectivity via gap-

junctions. In a variety of tissues these specialized subcellular areas allow a tightening of the 

intercellular cleft to ~2-3nm (Evans and Martin, 2002), and the connexons residing within these 

areas permit intercellular transport of ions, second messengers, nucleotides, siRNA and 

metabolites smaller than 1kDa (Harris, 2007; Tabernero et al., 2006; Valiunas et al., 2005). In 

the grey matter, two neighbouring astrocytes are connected with about 230 gap-junctions on 

average. Injection of Lucifer yellow or biocytin into a single astrocyte results in staining of ~50–

100 adjacent astroglial cells. The concept of a panglial syncytium connecting all macroglia into 

a single functional network, which has been described in invertebrates (Mugnaini, 1986), does 

not fully apply to the mammalian CNS. In many brain regions anatomically segregated 

astroglial networks follow anatomical structures (Giaume et al., 2010; Roux et al., 2011) and 

even coupling between adjacent astrocytes is not always present, as 15-20% of neighbouring 

astrocytes were found to be uncoupled (Houades et al., 2006; Meme et al., 2009). Thus, 

astroglial coupling is not only defined by spatial proximity, and astroglial networks may 

represent a non-binary second level of information processing parallel to that formed by 

neurons.  

A single gap-junction is composed of two adjacent (homo-or heteromeric) connexons that are 

assembled from six connexin (Cx) subunits. The Cx gene family has 21 members in humans 

coding for 4-TM proteins with differing molecular mass which also underlies their nomenclature 

(e.g. Cx26, Cx43) (Dermietzel et al., 1990; Saez et al., 2003). Several hundred connexons 

form so-called gap-junctional plaques between two coupled cells in a homo-or heterocellular 

manner (e.g. astrocyte-oligodendrocyte or astrocyte-neuron;(Altevogt and Paul, 2004; 

Alvarez-Maubecin et al., 2000). Homocellular astrocytic gap-junctions are formed by 
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Cx26,Cx30 and Cx43, with Cx43 being the most abundant, ubiquitously expressed isoform 

(Giaume et al., 1991; Kunzelmann et al., 1999; Nagy et al., 2004). Cx30 is most prominently 

found within the thalamus and leptominges, but not in the white matter (Sohl et al., 2004), while 

Cx26 expression is restricted to subcortical areas like the hypothalamus and subthalamic 

nuclei (Nagy et al., 2011). The expression of connexins seems to be regulated by neuronal 

factors, since co-culturing neurons with astrocytes upregulates Cx43 and triggers Cx30 

expression. Without exposure to neuronal factors, cultured astrocytes show detectable levels 

of Cx30 only in a mature state (21d onwards;(Koulakoff et al., 2008). The biophysical properties 

of connexons are regulated by multiple factors including pH, transjunctional or membrane 

voltage (Herve and Derangeon, 2013), subunit composition, intracellular calcium levels and 

phosphorylation state, which is controlled by protein kinases A, C, and G, as well as MAPK 

signaling (Ek-Vitorin et al., 2006). Phosporylation of Cx43 at Ser368 by PKC or at 

Ser279/Ser282 by MAPK signaling can additionally lead to internalization and possible 

subsequent degradation of the gap-junction which involves internalization into a specific 

doublemembrane vacuole termed annular junction or connexosome (Kjenseth et al., 2010). 

These regulatory mechanisms contribute to the high turnover rate of connexins with a half-life 

of several hours. In addition, connexons can act as gated pores, known as hemichannels 

(Esseltine and Laird, 2016), which have been identified in astrocytes in vitro and in vivo and 

can be formed by all three types of astrocytic connexons (Giaume et al., 2013). Generally, 

hemichannels are in a closed state, but their opening can be triggered by low external calcium 

concentration, substantial depolarization, specific intracellular Ca2+ signals or exposure to 

proinflammatory agents (Orellana et al., 2012; Orellana et al., 2009). Hemichannels are 

discussed to be one of the major ways for astroglial secretion of neuroactive substances (see 

the concept of gliotransmission and the tripartite synapse below). 

Notably, recent studies have demonstrated a variety of non-channel functions for astrocytic 

connexins, including synapse invasion (Pannasch et al., 2014), synaptic glutamate clearance 

(Pannasch et al., 2019), cellular migration and adhesion (Ghezali et al., 2018). These functions 

seem to be accomplished by close interactions with other membrane proteins (e.g. glutamate 

transporters) or adapter proteins like ezrin (Dukic et al., 2017; Pidoux et al., 2014), which 

connect connexins to the cytoskeleton of its harboring cell and, thereby, form a membrane 

bound signaling hub capable of integrating signals from different cellular compartments. 

 

1.5 The tripartite synapse 

With their perisynaptic astrocytic processes (PAPs), astrocytes are in contact with at least half 

of all neuronal synapses. PAPs express high levels of glutamate transporters, as well as ezrin 

and radixin, which anchor them to the astrocytic cytoskeleton and may be at the base of the 
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rapid morphological plasticity that has been described for astrocytic processes (Derouiche and 

Frotscher, 2001; Hirrlinger et al., 2004; Lavialle et al., 2011). Furthermore, PAPs have an 

extremely high surface to volume ratio and express a barrage of receptors, ion channels and 

transporters that couple astrocytic homeostatic functions to neuronal activity (Grosche et al., 

2002). Together with the concept of ‘gliotransmission’ describing that astroglia release 

neuroactive substances (Araque et al., 2014), these observations led to the model of the 

tripartite synapse (Araque et al., 1999; Halassa et al., 2007a), in which astrocytes are not 

merely seen as passive housekeeping cells, but are acknowledged as active participants of 

signal transduction in the brain (Fig.2). At its core this concept is based on a bidirectional 

communication between synaptic elements and PAPs, by which neuronal activity is sensed by 

astrocytes and triggers rapid alterations in synaptic coverage, as well as release of neuroactive 

substances. The first will in turn affect the efficiency of neurotransmitter reuptake and, thus, 

availability of neurotranmsitters in the synaptic cleft, while the latter directly shapes synaptic 

communication (Dityatev and Rusakov, 2011). In addition, findings that astrocytes are critical 

for synapse formation, maturation, maintenance, as well as elimination further stress their 

important role in shaping neuronal communication. Exemplary, this was demonstrated by a 

reduction of synaptic density and dendritic spines following disruption of direct astrocyte-

neuron contacts (Lippman Bell et al., 2010; Nishida and Okabe, 2007). In consequence, altered 

spatial relationships between astrocytes and neurons may affect higher cognitive processes, 

as suggested by Ostroff et al. (2014). Here, rapid retraction of astroglial processes from 

synapses in the lateral amygdala was found to be a prerequisite for synaptic remodeling 

associated with memory consolidation during Pavlovian fear conditioning (Ostroff et al., 2014). 

In general, synaptic coverage by astrocytes is highly dynamic and dependent on the brain 

status. During sleep, for example, synaptic coverage is decreased, while in wakefulness the 

opposite is observable (Bellesi et al., 2015). 
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Figure 2. Neuron-astrocyte interactions at the tripartite synapse. At the synaptic cleft, thin terminal structures of 

highly arborized astrocytic processes form perisynaptic processes (PAPs) and are in close contact with synaptic 
boutons. PAPs modulate the synaptic environment by uptake of ions and neuroactive substances, whereas 
gliotransmitters released from PAPs actively alter synaptic communication. In parallel, astrocytes maturate and 
maintain synapses via contact-dependent mechanisms. The highly plastic spatial relationship between neurons and 
astrocytes determines the efficiency of all of these functions and is dependent on physiological states and neuronal 
activity. Illustration created on BioRender.com. 

 

1.6 Neuron-glia interactions in the OXT system 

The above described ability of astrocytes to rapidly respond to an altered environment of 

neuroactive substances is provided by the expression of numerous ionotropic and 

metabotropic receptors. Astrocytes monitor synaptic transmission by brain regionspecific 

expression of receptors for almost all neurotransmitters and neuromodulators (Cahoy et al., 

2008; Neary et al., 2004; Verkhratsky and Nedergaard, 2018). The hypothalamic SON has 

emerged as an important model system to study the plasticity of such neuron-glia interactions.  

Pioneering studies observed a (reversible) reduction in glial coverage of SON OXT neurons 

during pregnancy and lactation, a physiological condition associated with hyperactivity of the 

OXT system (Theodosis et al., 1986a). In consequence, the surfaces of ~50% of all OXTergic, 

but not AVPergic, neurons become directly juxtaposed and, in some cases, form ‘shared-

synapses’ in which two presynaptic boutons were observed to target a single postsynaptic 

element. A direct involvement of OXT was further suggested by identical observations 

following administration of chronic OXT icv via osmotic minipumps for 6d (Theodosis et al., 

1986b). Interestingly, AVP administration had no effect on SON remodeling. Follow-up studies 
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demonstrated that these changes occur only in rats undergoing a prolonged diestrus and are 

dependent on the concomitant actions of progesterone and estradiol (Montagnese et al., 

1990). Mechanistical work in acute SON slices of pregnant rats (PD19) further characterized 

the effect of OXT (100nM) as OXTR-specific, Ca2+- and GABA-dependent, as well as requiring 

de novo protein synthesis (Langle et al., 2003). The resulting consequences of this neuron-

glia remodeling for neuronal communication are increased glutamate availability and release 

probability (Oliet et al., 2001), as well as an elevated glutamate spillover from uncovered to 

neighboring synapses (Piet et al., 2004), which in turn leads to a stronger depression of 

GABAergic transmission via activation of presynaptic mGluRs. Moreover, the gliotransmitter 

D-serine, an endogenous co-agonist at NMDA receptors and, therefore, critical for the 

induction of long-term potentiation is less available at synapses lacking glial coverage 

(Panatier et al., 2006).  

On an intracellular level, ERK1/2 has been implicated in OXT-induced retraction of astrocytic 

processes in acute SON slices of lactating rats, as pre-incubation with the MEK1/2 inhibitor 

U0126 decreased miniature EPSC frequency and prevented OXT-evoked (10pM) neuronal 

bursts, as well as neuronal F-actin dynamics. Notably, differential ERK1/2 activation patterns 

were observed as early as 5min post-application, as OXT increased cytosolic pERK1/2 levels 

in neurons, whereas it triggered an elevation of nuclear pERK1/2 in astrocytes (Wang and 

Hatton, 2007). Furthermore, bath application of 10pM, but not 1nM, OXT reduced levels of 

GFAP in acute SON slices of both lactating female rats and virgin male rats independently 

from neuronal activity (Wang et al., 2017; Wang and Hatton, 2009).  

To this date, it remains unclear, whether the above described findings are due to direct action 

of OXT on astrocytes. In support of this hypothesis are the findings of Di-Scala Guenot and 

Strosser (1992a, 1992b, 1994), who demonstrated reversible binding of the radio-iodinated 

OXTR antagonist [125I]OTA to cultured hypothalamic and hippocampal astrocytes (Di Scala-

Guenot and Strosser, 1992a). In contrast to neurons, astrocytes displayed both low and high 

affinity binding sites. Follow-up studies with synthetic OXT revealed that Mg2+-dependent 

binding of OXT dose-dependently (starting at 10nM) triggers Ca2+ release from astrocytic 

intracellular stores, with some cells showing Ca2+ oscillations (Di Scala-Guenot et al., 1994; Di 

Scala-Guenot and Strosser, 1992b). Astrocytic Oxtr expression seems to be regulated by 

intercellular interactions, as TGF-β1/2 released from neuronal cells increased Oxtr mRNA in 

cultured astrocytes, whereas direct contact decreased OXTR binding and simultaneously 

increased Oxtr mRNA (Mittaud et al., 2002). However, the exact type of regulation might be 

exerted by a combination of released and contact-dependent factors, since contact to neuronal 

membranes alone decreased both [125I]OTA binding, as well as Oxtr mRNA (Mittaud et al., 

2002). Notably, the Oxtr expressed by cultured astrocytes is in fact identical to the transcripts 
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expressed in neuronal and uterine cells (Strosser et al., 2001). In the context of development, 

prolonged exposure of rat neural progenitor cells to OXT drove them more into a neuronal 

lineage than into the astrocytic/oligodendrocytic fate (Palanisamy et al., 2018). However, the 

molecular and physiological consequences of astrocytic OXTR signaling remain largely 

unknown and might be, at least partially, different from neuronal OXTR signaling due to the 

cell type-specific gene expression profile and physiological roles of astrocytes. 

In addition to effects of OXT on astrocytes, direct actions of astrocytes on OXT neurons have 

been reported. This was suggested by findings that icv administration of the gliotoxin L-

aminoadipic acid (L-AAA) suppressed OXT neuronal activity in SON slice preparations and 

blocked the occurrence of the milk ejection reflex, which essentially depends on OXT secretion 

into blood (Wang and Hatton, 2009). It should, however, be mentioned that gliotoxins such as 

L-AAA have recently been criticized for lacking astrocyte specificity and inducing non-

physiological effects. 

 

1.7 The small GTPase Gem as a potential mediator of OXT actions on astrocytes 

Due to its preferential expression in astrocytes (Piddini et al., 2001; Zhang et al., 2014) and its 

significant upregulation within the PVN following icv administration of OXT for 30min in a RNA 

microarray study (Martinetz et al., 2019), one such cell type-specific molecular link may be the 

protein Gem (GTP binding protein overexpressed in skeletal muscle). As a member of the RGK 

(Rad/Rem/Rem2/Gem/Kir) monomeric GTPases, Gem belongs to the Ras-superfamily and 

hence displays a Ras-like core domain, in which GTPase activity is located (Correll et al., 2008; 

Splingard et al., 2007). However, unlike most GTPases, RGKs are not predominantly regulated 

as nucleotide-dependent molecular switches. In most cases, their GTPase activity is below 

detection level, and GTP binding does not induce conformational changes characteristic for 

Ras-like GTPases (Cohen et al., 1994; Opatowsky et al., 2006; Sasson et al., 2011). Instead, 

atypical extensions of both N- and C-terminus provide additional binding and phosphorylation 

sites for regulatory proteins and downstream effectors. In the periphery, RGKs are widely and 

differentially found in a variety of tissues, with Gem being predominantly expressed in the gall 

bladder, urinary bladder, heart, kidney, lung, testes, uterus and adrenal glands (Maguire et al., 

1994). The expression of Gem is specifically induced by mitogenic and cytokine stimuli. For 

example, the PKC activator PMA and, to a greater extent, the acetylcholine analog carbachol 

both triggered Gem expression in neuroblastoma cells (Leone et al., 2001). In blood T cells, 

increased quantities of Gem were detected following exposure to either fetal bovine serum 

(FBS) or PMA (Maguire et al., 1994). Interleukin-1α, TNFα and LPS stimulation of porcine 

aortic endothelial cells, but not thymus, spleen or lymph cells, yielded similar results (Vanhove 
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et al., 1997). Transcriptional control of the Gem gene was so far only studied in blood T cells, 

in which Gem expression is driven by the transcription factors Tax and CREB (Chevalier et al., 

2014).  

Functionally, two main roles have been described for Gem. First, the majority of studies 

demonstrate profound effects on cytoskeleton-dependent processes, like cellular migration, 

cell division, adhesion and elongation/ramification of cellular extensions. In a variety of cell 

types, overexpression of Gem induces cellular elongation, cell flattening, loss of stress fibres 

and focal adhesions, as well as increased migration (Chevalier et al., 2014; Leone et al., 2001; 

Piddini et al., 2001; Ward et al., 2002). Gem is exerting its effects through direct and indirect 

interactions with the RhoA/ROCK pathway and actin filaments/microtubules. Binding to its 

effector Gem interacting protein (Gmip) triggers the Rho GTPase activating protein (RhoGAP) 

activity of Gmip, which in turn distinctly inhibits RhoA, but not other members of the Rho-

GTPase family (Hatzoglou et al., 2007). The Gem-Gmip complex is recruited to the plasma 

membrane by the active (i.e. phosphorylated) form of the membrane-cytoskeletal linker ezrin. 

Additionally, inhibition of Gem-binding to its interaction site in ROCK1 alters the substrate 

specificity of ROCK1 and specifically prevents downstream phosphorylation of the ROCK 

substrates MLC/MYPT (Ward et al., 2002) independent of RhoA. This not only plays a role in 

cellular morphology/migration, but was shown to be critical for vesicular transport and 

exocytosis. JFC1 vesicles are able to recruit Gmip to locally inhibit RhoA and by that transverse 

cortical actin structures that otherwise inhibit exocytosis (Johnson et al., 2012). Second, Gem 

inhibits the Cav1.2 subunit of the voltage gated L-type calcium channel (L-VGCC) by 

sequestering its pore-forming β-subunit in the cytoplasm and immobilizing its voltage sensor 

(Yang et al., 2012). This inhibition was shown to be critical for Ca2+-dependent growth homone 

release from neurosecretory cells (Beguin et al., 2001) and activity dependent arborization of 

mouse neurons (Krey et al., 2013).  

A finely balanced posttranslational control involving various phosphorylation sites in the N- and 

C-terminal domains of Gem, as well as binding of the regulatory proteins CaM and 14-3-3 

governs the two main functions of Gem. In its unbound form, Gem is imported into the nucleus 

via the importin α5, whereas either CaM or 14-3-3 binding localize Gem to the cytoplasm 

(Mahalakshmi et al., 2007a; Mahalakshmi et al., 2007b) and stabilize the protein (Ward et al., 

2004). This cytoplasmatic localization is required for binding of Gem to the β-subunit of the L-

VGCC and the subsequent inhibition of the channel. Simultaneously, the cytoskeletal effects 

of Gem are inhibited by conjunct CaM and 14-3-3 binding through inhibition of its interaction 

with Gmip and possibly ezrin (Beguin et al., 2005; Hatzoglou et al., 2007). In response to 

phosphorylations at S289/S261 in its C-terminal domain by PKC and/or cdc42, 14-3-3 binding 
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is prevented which shifts the balance in favor of cytoskeletal regulation through ezrin/Gmip and 

subsequent RhoA/ROCK inhibition (Ward et al., 2004). 

Despite its well-described regulation, only a single study has examined the physiological role 

of Gem. Gem knockout mice are glucose intolerant and have an impaired glucose-stimulated 

release of insulin, as well as abnormal pancreatic β-cell Ca2+ signaling (Gunton et al., 2012). 

Given the multitude of cellular effects exerted by Gem, it is likely that its physiological role 

extends far beyond that. Despite its high expression in astrocytes, the specific role of Gem in 

the brain is largely unclear.  

 

1.8 Aims and objectives 

The neuropeptide OXT exerts manifold regulations of physiological and emotional processes. 

Its modes of action on neuronal cells have been well characterized. However, its effects on 

astrocytic cells, specifically on OXTR-coupled signaling cascades and the expression of 

astrocytic genes, are poorly understood and might very well differ from those on neurons. 

Astrocytes are increasingly appreciated as indispensable components of the CNS that actively 

shape information processing. Thus, the biology of a neuroactive signaling peptide like OXT 

cannot be fully understood without a more holistic and integrative approach to the CNS. 

Therefore, the first aim of my thesis was to characterize the effects of OXT on astrocytic 

signaling cascades and gene expression in vitro and to compare the resulting activation pattern 

to published data of neuronal cells. In this context, I furthermore aimed to examine the acute 

effect of centrally administered OXT on astrocyte-specific proteins in brain regions associated 

with actions of the OXT system. To this end, synthetic OXT was either administered icv in male 

Wistar rats or applied to cultured rat primary cortical astrocytes, and the effects on the above 

mentioned parameters were analyzed by either (phospho-specific) immunoblotting, qPCR or 

immunostainings.  

Based on my findings of rapid OXT-induced alterations of astrocytic cytoskeletal dynamics and 

gap-junction coupling, the second aim of my thesis was to examine the underlying mechanisms 

and cellbiological consequences of the observed effects. In this context, I further aimed to 

examine potential OXT-induced changes in astrocyte-to-neuron spatial relationships in two 

brain regions, i.e., the PVN and hippocampus, which had shown the highest responsiveness 

of astrocytic markers to OXT. To achieve this, I applied a combined approach of CLSM/STED-

microscopy following icv and ex vivo administration of OXT, as well as various genetic and 

pharmacological manipulations in vitro.  
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Based on these findings, the third aim of my thesis was to establish astrocyte-specific AAV-

mediated shRNA knockdown vectors as tools for a targeted manipulation of astrocytic OXTR 

signaling and future assessment of astrocytic contribution to the physiological and behavioral 

effects of OXT. For this purpose, shRNA nucleotides targeted against candidates identified in 

the second part of my thesis were screened for knockdown efficiency in vitro and subsequently 

packaged into viral vectors providing astrocyte-specific expression.  

Overall, this thesis aims to provide a) a better understanding of the effects and underlying 

mechanisms of OXT actions on astrocytes and b) a tool to study the involvement of astrocytes 

in the physiological and behavioral effects of OXT.  
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2            MATERIALS AND METHODS 

2.1         Animals 

The examination of the effects of central OXT infusion and astrocyte-specific knockdown of 

Gem or OXTR was performed in adult male Wistar rats (250-300g; Charles River, Sulzfeld, 

Germany) housed under standard laboratory conditions. After surgery, rats were single-

housed in polycarbonate observation cages five days before biological sample isolation. 

Experiments were performed in the light phase between 0800 and 1200 hour, in accordance 

with the Guide for the Care and Use of Laboratory Animals of the Government of Oberpfalz 

and the guidelines of the NIH. 

Due to the advantages of transgenic animals, connexin knockout studies were performed in 

acute slices derived from adult male C57BL/6 mice (Connexin30 knockout (Cx30KO), 

Connexin43 knockout (Cx43KO) and wild type C57BL/6;(Pannasch et al., 2014) housed under 

standard laboratory conditions in accordance with the regulations of the guidelines of the 

European Community Council Directives of January 1st 2013 (2010/63/EU) and of the local 

animal welfare committee (certificate A751901, Ministère de l’Agriculture et de la Pêche). All 

efforts were made to reduce the number of animals used, as well as their suffering. 

 

2.2          Cannula Implantations  

For implantation of guide cannulas, rats were anesthesized with isoflurane (Isofluran Baxter, 

Baxter Germany GmbH, Unterschleißheim, Germany) and fixed into a stereotactic frame. For 

icv infusions, unilateral, stainless steel cannulas (21G, 12mm long, Injecta GmbH, Klingenthal, 

Germany) were implanted 2mm above the right lateral ventricle (Fig.3; AP: -1.0mm bregma, 

ML: +1.6mm lateral, DV: +1.8mm below the surface of the skull;(G Paxinos, 2008). The guide 

cannula was fixed with two stainless steel screws using dental cement. After surgery, an 

antibiotic (100µl, 2.5% Baytril®, Bayer Vital GmbH, Klingenthal, Germany) was administered 

subcutaneously to avoid post-surgical infections. The guide cannula was kept feasible with a 

dummy cannula, which was cleaned every day during handling. Rats were handled daily for 5 

days to reduce non-specific stress responses during experiments. 

 

2.3            Microinfusions 

For examination of the effects of central OXT infusion on astrocytes, rats received an icv 

infusion of either vehicle (Veh, sterile Ringer solution, pH 7.4, 5µl) or synthetic OXT (1 nmol/5 

µl;(Blume et al., 2008). For this, an infusion cannula (30G, 14 mm) connected to a Hamilton 

syringe via polyethylene tubing was lowered into the guide cannula (Fig.3) and infusions were 
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slowly performed over 1min. Marks on the tubing allowed precise control of the volume 

administered. Following the infusion, the system was left in place for at least 10s to allow 

diffusion to occur. After withdrawal of the infusion cannula, the stylette was again inserted into 

the guide cannula. After termination of the experiment, rats were killed by CO2-exposure 

followed by cervical translocation. In order to control for correct for cannula placement, 2µl ink 

were injected and brains were harvested. Next, coronal sections were prepared using a 

razorblade and only animals with ink distribution were included in the statistical analysis 

 

Figure 3. Placement of guide cannula (thick black line) and infusion cannula (thin black line) for icv administration 

of OXT. Coordinates for stereotactic implantation of the guide cannula used were AP: -1.0mm bregma, ML: +1.6mm 
lateral, DV: +1.8mm. Torquise circle marks point of infusion. Illustration adopted from Paxinos and Watson (2006). 

 

For the establishment of astrocyte-specific knockdown of either Oxtr or Gem mRNA within the 

PVN, rats received local bilateral intra-PVN microinfusions of AAV6-GFAP::shRNA constructs 

or a control vector expressing a scrambled RNA oligonucleotide (Custom designed on 

www.vectorbuilder.com; Fig.4; all combinations of 70/280/560nl volume and 108/1010/102 

GC/ml were tested; For more detailed information on the used vectors see Appendix 1). The 

transfected shRNAs were priorly screened in vitro for sufficient knockdown efficiency (see 

2.5.1, Fig.4 and 3.4). In order to accomplish cell type specificity, first, an AAV6 capsid was 

selected for viral packaging. Among available adenoviral capsids, AAV6 packaged vectors 

show the highest tropism for astrocytes compared to other cell types of the CNS (Schober et 

al., 2016). Second, the shRNA expression is driven by the full-length promoter fragment of the 

human GFAP (hGFAP) gene, thereby further increasing cell type specificity. In the applied 

vectors, the co-expressed mCherry protein was used as a fluorescent reporter. To examine 

transfection specificity (ratio mCherry+/GFAP+ cells) and perturbance (ratio GFAP+/mCherry+ 

cells), rats were transcardially perfused three weeks post-transduction to analyze brains 

immunohistologically (see 2.10). Briefly, rats were anaesthetized by CO2-exposure to prevent 

anaesthesia-induced changes to astrocytes (Thrane et al., 2012) and the left ventricle was 

cannulated. Next, the right atrium was cut to ellow efflux of the perfusate and 0.01M PBS was 
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transcardially perfused for 5min at a rate of 20ml/min by a multi-speed pump. Last, the 

perfusion solution was changed to 4% Paraformaldehyde (PFA) in 0.01M PBS and perfused 

for 15min at a rate of 20ml/min. Subsequently, brains were processed as described in 2.10. In 

order to assess knockdown efficiency, RNA was isolated from PVN micropunches (see 2.6) 

and quantified by RT-PCR as described in 2.6.1. 

 

 

 

 

 

2.4            Preparation of acute hippocampal ex vivo slices 

Mice were decapitated and both hippocampi were fixed to a small block of agar on which acute 

slices (350µM) were prepared in a vibratome in oxygenized ACSF. Following bath application 

of either Veh (ACSF) or OXT (500nM) for 10min, slices were fixed in 4% PFA in PBS for 2h 

followed by 2h of blocking in PBS containing 2g gelatine/l and 1% Triton-X and stained under 

the conditions described in 2.10/2.12 for morphological analysis, as well as 3D-reconstruction 

and determination of astrocyte-synapse spatial relationship. 

 

2.5           Cells 

Primary rat cortical astrocytes.  Cells isolated from newborn pups (adapted from(Schildge 

et al., 2013); post-natal day 1-3) were used for all in vitro experiments on astrocytes. For 

dissection, the pup was decapitated and the scalp was cut by performing a midline incision 

from caudal to rostral. Next, two diagonal cuts inferior to the cerebellum were performed, and 

the skull was cut along the sutura sagittalis from caudal to rostral. Using this procedure, four 

Figure 4. Adenoviral vectors used for astrocyte-specific knockdown of either Oxtr or Gem mRNA within the rat 

PVN. In both vectors shRNA, as well as mCherry expression is driven by the long fragment of the hGFAP 
promoter. A) Adenoviral vector expressing a shRNA targeted against the rat Gem mRNA. B) Adenoviral vector 
expressing a shRNA targeted against the rat Oxtr mRNA. 

 

 

 

# 
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brains were harvested with a micro spatula and transferred into a dissection dish containing 

ice-cold Hanks balanced salt solution (HBSS; Invitrogen, Carlsbad, USA). Here, the cortex 

hemispheres were separated from the remaining parts of the brain, as well as from the 

meninges to prevent later contamination of the cultures with meningeal cells. The eight 

hemispheres were transferred into a second dissection dish containing 3ml ice-cold HBSS, in 

which they were cut into small pieces with a razorblade. Cortex pieces were transferred into a 

50-ml falcon tube containing 20ml of a 0.2% trypsin solution and were subsequently incubated 

at 37°C for 30min while shaking them thoroughly every 10min. After centrifugation for 5min at 

180g, the tissue suspension was aspirated ad 15ml and resuspended to obtain a single cell 

suspension. Subsequently, the suspension was filtrated through a 70-µm cell strainer (Corning, 

New York, USA; 352350) into a fresh 50-ml tube and centrifuged at 180g for 5min. After 

resuspending the cell pellet in 10ml of astrocyte growth medium ((Dulbecco’s Modified Eagle’s 

Medium – (DMEM, high glucose) Sigma-Aldrich, St. Louis, USA; D6429) containing 10% foetal 

bovine serum (FBS), 1% Penicillin/Streptomycin (Life Technologies, Darmstadt, Germany), 1% 

Mem non-essential Amino acid solution (100x, Sigma-Aldrich) and 1% Glutamax (Life 

Technologies; 35050038), the mixed cortical cells were seeded in a T75 cell culture flask 

(Sarstedt, Nürnbrecht, Germany) previously coated with 15ml of a poly-D-lysine solution 

(0.01% poly-D-lysine in H2O, Sigma Aldrich; P7886). The flasks were incubated at 37°C and 

5% CO2, and the medium was first changed after two days and subsequently every four days. 

After 7-8 days in culture, when the mixed cultures had reached confluence, the flasks were 

shaken on an orbital shaker for 30min at 37°C and 180rpm. After aspirating the supernatant 

containing microglial cells, fresh growth medium was added, and the cells were again shaken 

for 6h at 240 rpm to remove oligodendrocyte precursor cells. The remaining adherent astrocytic 

layer was trypsinated and seeded into two new TC75 cell culture flasks. After 7 or 14 days in 

culture, cells are seeded for experiments and treated as described below. 

 

H32 neuronal cell line. The immortalized foetal rat hypothalamic cell line H32 (Mugele et al., 

1993) was cultured at 37 °C and 5% CO2 in DMEM F-12 Ham (Sigma Aldrich; D8437) 

containing 10% FBS and 1% penicillin/streptomycin. 

 

2.5.1           Transfection of Astrocytes by Electroporation 

In order to study the involvement of different proteins of interest in astrocytic OXTR signaling, 

astrocytes were transfected with various siRNA oligonucleotides (Cx43 (Gja1) siRNA, sc-

60008, Santa Cruz Biotechnology, Dallas, USA; Sp1 siRNA, Santa Cruz, sc-61895; Gem 

siRNA, Origene, Rockville, USA, SR507514) or a Gem overexpression plasmid (Fig. 5a, 
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VectorBuilder) by electroporation (Neon™ Transfection System, ThermoFisher; MPK5000). In 

another set of experiments, cells were transfected with a plasmid expressing a shRNA 

oligonucleotide under control of the long fragment of the hGFAP promoter targeted against 

Gem (Fig.5b) or Oxtr (Fig.5c) mRNAs to screen for knockdown efficiency in vitro. For detailed 

conditions of electroporation, please see Tab.1. In case of siRNAs, a scrambled 

oligonucleotide (scrRNA) served as a control transfection, while a plasmid expressing solely 

the fluorescent reporter protein EGFP (Fig.5d, VectorBuilder) served as a control condition for 

plasmid transfections. Conditions of EGFP/scrRNA transfections were always identical to the 

respective transfection of interest. For more detailed information on the used DNA plasmids 

see Appendix 2. 

 

 

 

 

 

 

 

 

Figure 5. DNA plasmids used for in vitro transfections. A) Gem overexpression plasmid expressing the Gem 

open reading frame (NCBI RefSeq NM_001106637.1) under the control of the long fragment of the hGFAP 
promoter and EGFP under the CMV promoter. B-C) DNA plasmids expressing a shRNA and EGFP under the 
control of the long fragment of the hGFAP promoter targeted against (B) the rat Gem mRNA or (C) the rat Oxtr 
mRNA. D) Control vector expressing solely EGFP under the control of the CMV promoter. 
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Table 1. Conditions of electroporation of primary astrocytes for oligonucleotides or plasmids tested during the 

establishment process. Resulting cell viability was rated on a scale from + to +++, with + representing poor viability 
and +++ representing viability similar to non-transfected cells. Conditions which were consequently applied in 
experiments are shown in bold letters, conditions assessed during establishment of transfections are shown in non-
bold letters. 
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48-well 

plate 

Gem 

Overexpr

ession 

PDL 3×104 0.5  10 µl 250 

µl 

72 h Various  

settings 

V:1100   1100  1300 

    ms:20     30      10 

 #2          1        3 

Settings shown 

above provided best 

transfection and 

viability rates 

 

 

24-well 

plate/ 4-

chamber 

object 

slide 

Gem 

Overexpr

ession 

PDL 6×104 0.5  10 

µl 

500 

µl 

48 h V:1200 

ms:10 

#3 

Viability: +++ 

Significant 

overexression 

Gem 

siRNA 

 

PDL 7×104  10 

nM 

10 

µl 

500 

µl 

48 h V:1300 

ms:20 

#2 

Viability: ++ 

Significant 

knockdown 

Sp1 

siRNA 

PDL 7×104  10 

nM 

10 

µl 

500 

µl 

48 h V:1300 

ms:20 

#2 

Viability: ++ 

Significant 

knockdown 

Gem 

shRNA 

PDL 6×104 0.5  10 µl 500 

µl 

24 h V:1200 

ms:10 

#3 

ICC against GFP 

revealed +70% 

transfection rate 

Oxtr 

shRNA 

PDL 6×104 0.5  10 

µl 

500 

µl 

80 h V:1200 

ms:10 

#3 

Viability: +++ 

Significant 

knockdown 

Gem 

shRNA 

PDL 6×104 0.5  10 

µl 

500 

µl 

48 h/1 

W 

V:1200 

ms:10 

#3 

Expression 

increased after 48h 

and remained 

unchanged after 7d 

 

35-mm 

Petri dish 

Gem 

overexpr

ession 

PLL 4×105 2.5  100 

µl 

1 

ml 

12 d V:1100 

ms:20 

#2 

Viability: +++ 

Not confluent enough 

for GJIC 

Gem 

overexpr

ession 

PLL 8×105 2.5  100 

µl 

1 

ml 

7 d V:1100 

ms:20 

#2 

Viability: +++ 

Confluency suitable 

for GJIC 

 

6-well 

plate 

Sp1 

siRNA 

PDL 8×105  10 

nM 

100 

µl 

3 

ml 

48 h V:1100 

ms:20 

#2 

Viability: +++ 

Significant 

knockdown 

Gem 

shRNA 

PDL 8×105 5  100 

µl 

3 

ml 

80 h V:1200 

ms:10 

#3 

Viability: +++ 

Significant 

knockdown 

Oxtr 

shRNA 

PDL 8×105 5  100 

µl 

3 

ml 

80 h V:1200 

ms:10 

#3 

Viability: +++ 

Significant 

knockdown 
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Gem 

overexpr

ession 

PDL 8x105 5  100 

µl 

3 

ml 

48h V:1100 

ms:20 

#2 

Viability: +++ 

Significant 

overexpression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60-mm 

Petri dish 

Gem 

overexpr

ession 

PDL 1.1×106 5  100 

µl 

10 

ml 

72 h V:1100 

ms:20 

#2 

Viability: +++ 

Significant 

overexpression  

Gem 

siRNA 

 

PDL 1.5×106  10 

nM 

100 

µl 

10 

ml 

48 h V:1300 

ms:20 

#2 

Viability: ++ 

Significant 

knockdown 

Sp1 

siRNA 

PDL 1.5×106  10 

nM 

100 

µl 

10 

ml 

48 h V:1300 

ms:20 

#2 

Viability: ++ 

Significant 

knockdown 

Cx43 

siRNA 

 

PDL 1.1×106  10 

nM 

100 

µl 

10 

ml 

24 h V:1100 

ms:20 

#2 

Viability: +++ 

No knockdown 

Cx43 

siRNA 

 

PDL 1x106  10 

nM 

100 

µl 

10 

ml 

24 h V:1300 

ms:20 

#2 

Viability: ++ 

Significant knockdown 

Cx43 

siRNA 

 

PDL 1x106  10 

nM 

100 

µl 

10 

ml 

48 h V:1300 

ms:20 

#2 

Viability: ++ 

Significant knockdown 

Cx43 

siRNA 

 

PDL 1x106  20 

nM 

100 

µl 

10 

ml 

48 h V:1700 

ms:20 

#1 

Viability: +++ 

No knockdown 

Cx43 

siRNA 

 

PDL 1.5×106  10 

nM 

100 

µl 

10 

ml 

24 h V:1300 

ms:20 

#2 

Viability: ++ 

Significant knockdown 

scrRNA PDL 1.5×106  10 

nM 

100 

µl 

10 

ml 

24 h V:1300 

ms:20 

#2 

Viability: ++ 

 

CX43 

siRNA 

 

PDL 1.5×106  10 

nM 

100 

µl 

10 

ml 

24 h V:1300 

ms:20 

#2 

Viability: ++ 

Significant knockdown 

scrRNA 

 

PDL 1.5×106  10 

nM 

100 

µl 

10 

ml 

48 h V:1300 

ms:20 

#2 

Viability: ++ 

 

CX43 

siRNA 

 

PDL 1.5×106  50 

nM 

100 

µl 

10 

ml 

48 h V:1300 

ms:20 

#2 

 

Viability: ++ 

Significant 

knockdown 
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2.6           RNA-Isolation 

From cells.  Cells were trypsinized at ~90% confluency, and pellets were lysed in 1ml of 

peqGold® TriFast (peqLab, Erlangen, Germany). Keeping the cells on ice during the whole 

procedure prevented degradation of RNA. RNA was extracted according to the manufacturer’s 

protocol. Briefly, the lysate was mixed with 200µl chloroform and centrifuged for 20min at 

17000g and 4°C. Following collection of 500µl of the RNA containing upper aqueous phase in 

a fresh cup, RNA was precipitated with 466µl isopropanol overnight at -20°C. After 

centrifugation at 17000g for 30min, the RNA pellet was washed twice with 80% ethanol and 

air-dried for 10min. To minimize contamination with genomic DNA, a subsequent DNA 

digestion was performed. To this end, the RNA was resuspended in 7µl RNAse-free sterile 

H2O and 2µl DNAseI (ThermoFisher; EN0521), as well as 1µl 10x DNAseI reaction buffer 

(ThermoFisher; B43). Following incubation at 37°C at 1000rpm for 30min, 1µl of 50mM EDTA 

solution was added to inhibit DNAse activity. Last, DNAse denaturation was carried out at 65°C 

at 1000rpm for 10min. RNA quantity and quality were determined at 260/280nm and 

230/260nm using a NanoDrop spectrophotometer (Thermo Scientific, Waltham, USA).  

 

From rat brain tissue.  Animals were killed as described in 2.3 and brains were rapidly 

removed. A coronal razor cut was made through the brain rostral to the cerebellum and the cut 

surfaces were placed on a microtome specimen plate containing Leica Tissue Freezing 

Medium (Leica, Wetzlar, Germany) and frozen on dry ice. Next, 300-µM thick coronal frozen 

sections were prepared in a cryostat at -4°C. Sections were placed on chilled slides, placed 

under a stereomicroscope where micropunches of the PVN were prepared using a stainless 

steel cannula (diameter 1µM). PVN location was determined according to coordinates of (G 

Paxinos, 2008), as well as using neuroanatomical landmarks such as the ventricles and 

midline. Consequently, RNA isolation was performed as described for cultured cells (see 

above). 

 

2.6.1     Reverse Transcriptase PCR (RT PCR), Endpoint PCR and 

quantitative PCR (qPCR) 

RNA was reverse transcribed into cDNA by adding random primers (3 μg/μl) and dNTPs (final 

concentration 0.5mM; Life Technologies) to 1μg of total RNA. The mix was filled ad 15µl with 

RNAse-free sterile H2O and incubated for 5min at 65 °C for primer annealing. To initiate 

reverse transcription, 5xFirstStrandBuffer, Dithioerythritol (DTT; final concentration 5mM), 1µl 

RNase OUT (40U/μl) and the reverse transcriptase Super Script IV (200U/μl; Life 

Technologies) were added to a final volume of 21μl. Before addition of the reverse 

transcriptase, 3µl of each reaction mix were transferred into a fresh cup. These samples served 
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as a negative control (-RT) in endpoint or qPCRs to control for contamination with genomic 

DNA. cDNA synthesis was performed in a Mastercycler® nexus X2 (Eppendorf, Wesseling-

Berzdorf, Germany) at 42°C for 50min and consequently stopped by degradation of the 

enzyme at 70°C for 15min. 

For endpoint PCR, 1µl cDNA, 2pmol of each forward and reverse primers (Metabion, Germany; 

for a list of PCR-Primers used in this thesis, please see Table 2) and RNAse-free sterile H2O 

were added to DreamTaq™ Master Mix (Thermo Scientific), containing dNTPs (final 

concentration 0.2mM each) and DreamTaq™ polymerase, to a final reaction volume of 25μl. 

Negative controls consisted of respective –RTs or H2O. The PCR was run for 40 amplification 

cycles with an initiating denaturation step at 95°C for 5min, while primer-annealing was 

performed at 60°C for 15s followed by elongation at 72°C for 30s. The PCR cycler was 

programmed to run a final elongation at 72°C for 10 additional min. The PCR-products were 

then loaded onto a 1.5% agarose gel run at 140V for 45min. After electrophoresis, cDNA was 

detected with Roti®-Gel Stain (Carl Roth GmbH, Karlsruhe, Germany) and visualized at UV-

light with a ChemiDoc XRS+ Imager (Bio-Rad). 

qPCR was performed with the QuantStudio 3 and QuantStudio 5 Real Time PCR Systems 

(ThermoFisher). One reaction mixture contained 5µl PowerUp™ SYBR® Green Master Mix 

(ThermoFisher; A25743), 9μl RNAse-free DEPC-treated H2O and 2μl of both forward and 

reverse primers (4pmol, Tab.2), as well as 2µl cDNA reverse transcribed from 1µg RNA and 

diluted 1:2 in RNAse-free H2O. To reduce pipetting errors, each sample was pipetted in 

triplicates and the mean Ct values were used in the final analysis. In a first step, the Uracil-

DNA-Glycosylase is activated at 50°C for 2min, followed by the hot-start activation of the Dual-

Lock DNA polymerase at 95°C for 2min. Next, a denaturation (95°C, 3s) and 

annealing/extension (60°C 30s) step are repeated for 40 cycles. The detection dye SYBR® 

Green binds to double stranded DNA while emitting a fluorescence signal at 522nm 

proportional to the amount of PCR amplicons during the elongation step of the PCR . Following 

amplification, a melting curve of the PCR product is calculated by gradually heating the sample 

from 60°C to 95°C, while constantly measuring SYBR® Green fluorescence. The temperature 

at which fluorescence is not detectable anymore marks the melting point of the double stranded 

DNA. Detection of multiple melting points indicates the amplification of non-specific 

byproducts, which was additionally verified in an agarose gel electrophoresis. The 

housekeeping genes Gapdh and Rpl were used as internal reference controls and RNA 

expression was quantified by comparative ΔΔ
 Ct-method . 
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Table 2. Primers with their respective PCR product size used in PCR and qPCR experiments 

Target Forward primer (5’-3’) Reverse primer (5’-3’) Product size 

(bp) 

Gem (pair1) ACAGCCTTAGACTGCGGAAC 

 

GGCGCATGGTGACGTTATTC 

 

145 

Gem (pair2) ACCGAGTGGTGCTTATTGGG 

 

CAAGCTCTCCCTTCTGACACA 

 

400 

Gem (pair3) TGTGTCAGAAGGGAGAGCTTG 

 

CAAGGGGACATCTGGACGAC 

 

315 

Gem (pair4) GTGTCTGTGTCAGAAGGGAGA GCCGCGTCTTAACAATGCTT 

 

394 

Gem (pair5) GAATAACGTCACCATGCGCC 

 

GAGCCATTCATTCTCCCCCTTA 

 

415 

Gem (pair6) CACTCCACTGCTCCCGATG CTCCCTTCTGACACAGACACTTC 

 

485 

Oxtr CTGGAGTGTCGAGTT GGACC 

 

AGCCAGGAACAGAAT GAGGC 

 

136 

Gja1 TTCATTGGGGGAAAGGCGTG 

 

CTGGGCACCTCTCTTTCACTT 

 

173 

Gjb6 TTCCAGTTCACCTCACACGG 

 

GGCAGTGGGAATGTCACCTTT 

 

99 

Gjb2 GGAACGAGACTCAGGAGCGT 

 

CGGGGAAGAAGTGGTCGTAG 

 

236 

Slc1a2 GTGGACTGGCTGCTGGATAG 

 

AGTTGTGTGCGGCATAGACA 

 

223 

Slc1a3 GGTGTGGACAAACGCATCAC 

 

TCGGAGGCGGTCCCTTATTG 

 

162 

Sp1 AAACACCCCAGGTGATCATGG 

 

CATGAATGGCCTCTCCCCTG 

 

307 

Dao AGGCCCCTTGGATAAAGCAC 

 

GCCAGTGAGTTCACCCATGA 

 

227 

Gapdh TGATGACATCAAGAA GGTGG 

 

CATTGTCATACCAGG AAA TGAG 

 

185 

Rpl ACAAGAAAAAGCGGA TGGTG 

 

TTCCGGTAATGGATC TTTGC 

 

172 

Amigo2 TAGACCGACGGCTGGCTAAG 

 

GCCTCCCACCAATCTGGTAA 

 

382 

Gfap GCGAAGAAAACCGCATCACC TTTGGTGTCCAGGCTGGTTT 

 

77 

Gat1 CTATTAGGCCGCAAAGCTGC 

 

GAGAGGAACACCCGCAAAGA 

 

385 

Gat3 ATCTGTGCGGGCATCTTCAT 

 

TTAACGGTCACCATCCGTGG 

 

263 
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2.7             Protein Extraction 

Proteins were either isolated from fresh brain tissue punches prepared identically as described 

under 2.6 (from PVN, whole amygdala and whole Hippocampus) or cell culture. 

Pellets/punches were resuspended in RIPA lysis buffer (Sigma Aldrich) and incubated on ice 

for 45min under regular vortexing. Following centrifugation (13200g, 4°C), the supernatant 

containing the protein lysate was transferred into a fresh cup. Next, protein concentration was 

measured with a colorimetric BCA protein assay kit (Pierce TM BCA Protein Assay Kit, Thermo 

Scientific) according to the manufacturer’s guidelines. Briefly, 10µl of seven different solutions 

containing a defined protein concentration (2µg - 0.025µg Albumin) are mixed with 200µl of 

BCA solution to obtain a standard curve. In parallel, 2µl of protein lysate are treated identically. 

After 30min of incubation at 37°C, the resulting luminescent reaction was quantified using an 

optical density reader (FLUOstar OPTIMA, BMG Labtech, Ortenberg, Germany). To reduce 

pipetting errors, each sample was pipetted in duplicates and the mean values were used for 

concentration calculations.  

 

2.8            SDS-PAGE and Western Blot Analysis 

For determination of protein expression and phosphorylation levels, 20-30 μg of proteins were 

mixed with 4xLaemmliBuffer (see Appendix 3) and denatured at 95°C for 5min. Next, 

separation by molecular weight was performed on a 12.5% Criterion™ TGX Stain-Free™ Gel 

(Bio-Rad) for 20min at 70V followed by 2h at 100V. After crosslinking the trihalo components 

of the gel with tryptophan residues of the separated proteins in an UV-induced reaction, the 

proteins were then transferred to a nitrocellulose membrane (Bio-Rad) for 5-30min (for detailed 

blotting protocols see Tab. 3) using the Trans-Blot Turbo System (Bio-Rad; 1704150). In order 

to visualize the total amount of protein blotted, the fluorescence of the crosslinked trihalo-

tryptophan components was imaged at UV-light with the ChemiDoc XRS+ Imager (Bio-Rad). 

The picture of the total lane protein served as an internal reference control during the analysis. 

To cover all non-specific binding sites, an appropriate blocking solution was applied to the 

membrane for 90min (for detailed conditions see Tab. 3). Next, the membrane was incubated 

over night with the diluted primary antibody under the conditions shown in Table 3, washed 

extensively in Tris-buffered saline containing 0.001% Tween-20 (TBST) to remove all unbound 

primary antibody and incubated with respective secondary antibodies conjugated with 

horseradish peroxidase (Tab. 3). Following a second washing step to remove all unbound 

secondary antibody, the membranes were incubated for 5min with developer solution (Bio-

Rad; Tab.3) and the protein/antibody complexes were then visualized by capturing 
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luminescence with the ChemiDoc XRS+ Imager. The images were analyzed with ImageLab 

software (Bio-Rad) that was specifically created for the ChemiDoc Imager.  

In some cases the blots were stripped to remove bound antibody complexes (Re-Blot Plus 

Strong Solution 10x; Millipore, Darmstadt, Germany), blocked twice for 10min with the 

appropriate blocking solution and reprobed with fresh primary antibodies. Wash steps, 

incubation with secondary antibody and detection were carried out as described above. 

Table 3. List of antibodies used in immunoblotting experiments with their respective application protocols. 

Primary antibody Secondary 

antibody 

Blotting 

protocol 

Blocking 

solution 

Developer solution 

pCREB (Ser133) Milipore 

06519 

1:5000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:5000 in 5% BSA 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

(Bio-Rad) 

pCamKII (Thr286) 

cs12716S 

1:1000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in 5% BSA 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

Sp1 Milipore 07645 

1:1000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:5000 in 5% MP 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

Cx43 cs3512S 

1:1000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

pCx43 (Ser282) Thermo 

PA5-64641 

1:500 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% BSA Super SignalTM West Dura 

Extended Duration Substrate 

(ThermoFisher) 

pCx43 (Ser279) Thermo 

PA5-64777 

1:500 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:2000 in 2% BSA 

StandardSD 

(30min) 

5% BSA Clarity Max™ Western ECL 

Substrate (Bio-Rad) 

pCx43 (Ser368) cs3511S 

1:1000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

Cx30 Thermo 71-2200 

1:250 in 5% MP 

 

Samples heated to 70°C 

for 15min 

 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% MP Super SignalTM West Dura 

Extended Duration Substrate 

MYPT1 cs2634S 

1:1000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% BSA Clarity Max™ Western ECL 

Substrate 

pMYPT1 (Thr696) 

cs4563S 

1:500 in 5% MP 

Anti-rabbit lgG, 

7074S 

1:1000 in 3% MP 

StandardSD 

(30min) 

5% MP Clarity Max™ Western ECL 

Substrate 
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pSAPK/JNK 

(Thr183/Tyr185) cs9251S 

1:5000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:5000 in TBS-T 

StandardSD 

(30min) 

5% BSA Super SignalTM West Dura 

Extended Duration Substrate 

pAkt (Thr308) cs13038S 

1:1000 in 5% MP 

Anti-rabbit lgG, 

7074S 

1:5000 in 5% MP 

StandardSD 

(30min) 

5% MP Clarity Max™ Western ECL 

Substrate 

Gem A-3 sc-514497 

1:2000 in 5% BSA 

m-lgGκ BP-HRP 

sc-516102 

1:2000 in TBS-T 

Low MW 

(5min) 

5% BSA Clarity Max™ Western ECL 

Substrate 

peEF2 (Thr56) cs2331 

1:000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% MP Clarity™ Western ECL Substrate 

ROCK1 cs4035 

1:2000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:2000 in TBS-T 

StandardSD 

(30min) 

5% BSA Super SignalTM West Dura 

Extended Duration Substrate 

pAMPK (Thr172) cs2535 

1:2000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:2000 in TBS-T 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

EAAT1 sc515839 

1:400 in 5% BSA 

m-lgGκ BP-HRP 

sc-516102 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% BSA Super SignalTM West Dura 

Extended Duration Substrate 

EAAT2 sc365634 

1:10000 in 5% BSA 

m-lgGκ BP-HRP 

sc-516102 

1:2000 in TBS-T 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

pp38 (Thr180/Tyr182) 

sc17852 

1:1000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

Mixed MW 

(7min) 

5% BSA Clarity™ Western ECL Substrate 

pERK1/2 cs9101 

1:5000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

ERK1/2 cs9102 

1:1000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

pERK5 (Thr218/Tyr220) 

Millipore 07-507 

1:5000 in 3% MP  

Anti-rabbit lgG, 

7074S 

1:5000 in 3% MP 

StandardSD 

(30min) 

3% MP Clarity Max™ Western ECL 

Substrate 

GFAP cs12389 

1:5000 in 5% BSA 

Anti-rabbit lgG, 

7074S 

1:2000 in TBS-T 

StandardSD 

(30min) 

5% BSA Clarity™ Western ECL Substrate 

Beta-Tubulin cs2146 

1:1000 in 5% MP 

Anti-rabbit lgG, 

7074S 

1:1000 in TBS-T 

StandardSD 

(30min) 

5% MP Clarity™ Western ECL Substrate 

pEzrin (Thr567) ab47293 

1:1000 in 5%BSA 

Anti-rabbit lgG,  

1:1000 in 5%BSA 

StandardSD 

(30min) 

5% BSA Super SignalTM West Dura 

Extended Duration Substrate 
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2.9                Immunocytochemistry 

H32 cells or astrocytes (14d post-enrichment) were seeded in four-chamber glass slides (7x105 

cells/chamber; Corning; 354104). After 1h of serum starvation, cells were stimulated with 

varying concentrations of OXT for 10min or 3h. For fixation, 4% PFA was added to the medium 

(1:1) for 2min, whereafter the medium was aspirated and 0.5ml of 4%PFA was added for 

10min. Next, chambers were washed three times with PBS-T and consequently rinsed with 

PBS. After blocking for 30min (0.1% TritonX-100 (Sigma Aldrich), 1% FBS, 10% normal goat 

serum in PBS), cells were incubated with primary antibodies (Tab.4) diluted in PBS containing 

0.5% TritonX-100 and 3.3% FBS for 2h at RT. Following a second blocking step in 3% BSA 

for 10min, appropriate secondary antibodies (Tab.3) were applied for 2h at RT in the dark to 

prevent photobleaching. Finally, the slides were covered with ProLong® Gold containing DAPI 

(Cell Signaling Technology, Princeton, USA; cs8961) and incubated overnight at RT in the 

dark. Images were taken with a Leica SP8 confocal laser scanning microscope and quantified 

as described in 2.12 with ImageJ software (Version 1.52e). 

Table 4. List of primary antibodies with their respective dilutions and secondary antibodies used in 

immunocytochemistry experiments.  

 

 

 

Primary antibody  Secondary antibody 

(All ThermoFisher) 

 

GFAP cs12389 

1:1000 

 goat-anti rabbit AlexaFluor488 

1:1000 

ZO1 ThermoFisher 

1:100 

 goat anti-mouse AlexaFluor594 

1:1000 

Gem A-3 sc-514497 

1:100 

 goat anti-mouse AlexaFluor594 

1:1000 

pMLC(Ser19) cs3671 

1:50 

 goat anti-rabbit AlexaFluor594 

1:1000 

GFP ThermoFisher PA1-980A 

1:200 

 goat-anti rabbit AlexaFluor488 

1:1000 

AlexaFluor488 Phalloidin cs8878 

1:20 

 - 

AlexaFluor594 Phalloidin cs8953 

1:20 

 - 
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2.10               Immunohistochemistry 

Ten or 20min after icv OXT administration rats were transcardially perfused with 4%PFA in 

PBS (see 2.3), and the brains were harvested and post-fixed in 4%PFA for 3h followed by 

cryo-protection in 30% sucrose for 2 days and consequent snap-freezing in isopentane. Frontal 

40-µM sections were prepared with a cryostat, washed three times in PBS for 20min and 

blocked in PBS containing 2%goat serum and 1%TritonX-100 for 1h at RT. Consequently, 

slices were incubated with primary antibody solutions (Tab.5) at 4°C overnight. After three 

washing steps with PBS, appropriate secondary antibodies (Tab.5) diluted in blocking solution 

were added to the slices for 2h at RT. The sections were mounted on object slides using 

ProLong® Gold containing DAPI (Cell Signaling) and imaged using a Leica SP8 confocal laser 

scanning microscope.  

Table 5. List of primary antibodies with their respective dilutions and secondary antibodies used in 

immunohistochemistry experiments.  

Primary antibody  Secondary antibody 

(All ThermoFisher) 

 

GFAP cs12389 

1:500 

 goat-anti rabbit AlexaFluor488 

1:1000 

GFAP ab50738 

1:500 

 goat-anti chicken AlexaFluor488 

1:1000 

Gem A-3 sc-514497 

1:100 

 goat anti-mouse AlexaFluor594 

1:1000 

mCherry abcam 167453 

1:800  

 goat anti-rabbit AlexaFluor594 

1:1000 

Homer1 SySy 160 003 

1:250 

 donkey anti-rabbit AlexaFluor647 

1:500 

Vglut1 Sysy 135 311 

1:250 

 goat anti-mouse AlexaFluor594 

1:500 

GFP Aves AB_2307313 

1:500 

 goat-anti chicken AlexaFluor488 

1:500 

OXT-Neurophysin clone PS38 kindly provided by 

Dr. Harold Gainer 

1:500 

 goat anti-mouse AlexaFluor555 

1:1000 

 

CNP1 SySy 355 004 

1:500 

  

goat anti-guinea pig AlexaFluor488 

1:1000 

MAP2 SySy 188 006 

1:500 

 goat anti-chicken AlexaFluor647 

1:1000 

NeuN MAB377 

1:500 

 goat anti-mouse AlexaFluor555 

1:1000 
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2.11               Gap-junctional intercellular communication (GJIC) 

In order to investigate the effects and mechanisms of OXT on the degree of astrocytic 

intercellular coupling, scrape loading dye transfer experiments were performed. To this end, 

8x105 primary astrocytes of different age (7d, 14d) were seeded in poly-D-lysine coated 35-

mm TC dishes (3x105 cells/dish; Corning; CLS3294) 2d prior to the experiments. After 1h of 

serum starvation, OXT (1nM–1µM) or AVP (1nM-100nM) was added to the medium for various 

timepoints (5-180min). To investigate the underlying signaling cascades, cells were 

preincubated with one of various pharmacological inhibitors (1µM U0126; 10µM Gö6983; 1µM 

L368,889; 1µM Carbenoxolone, Sigma Aldrich; C4790) or Veh (Ringer’s solution) 1h prior to 

stimulation. After the respective treatments, the medium was aspirated, and the dishes were 

rinsed three times with Ca2+-free PBS to remove remaining stimulants and prevent uncoupling 

of the cells. Next, 1ml of pre-warmed (37°C) lucifer yellow (1mg/ml in Ca2+-free PBS, Sigma 

Aldrich; L0259) or, in case of EGFP expressing cells, Biocytin (1mg/ml in Ca2+-free PBS, Sigma 

Aldrich; B4261) was added to the dish, and three cuts were made through the cell layer with a 

rounded surgical blade, allowing the fluorescent solution to diffuse within the astrocytic 

network. After 10min of incubation at 37°C, cells were washed three times with PBS and fixed 

with 0.5ml 4% PFA. For Biocytin experiments, an AlexaFluor594-conjugated Streptavidin 

(ThermoFisher; S32356) was used to visualize Biocytin diffusion. The fluorescence signal was 

viewed using an epifluorescence microscope (Leica dm5000b) and images of each cut were 

taken. The fluorescent dye spread area was quantified with ImageJ software (Version 1.52e). 

 

2.12                Bioimaging and Image Analysis 

For all experiments, microscopy settings as well as image analysis settings were kept identical 

within one experiment. In vitro experiments were replicated at least three times. 

 

Morphological analysis in vitro, in vivo and ex vivo 

Astrocytes were stained for GFAP and DAPI as described above and images were taken with 

either a Leica SP8 (for in vitro and in vivo) or SP6 (for ex vivo) confocal laser scanning 

microscope. In case of cultured cells, five pictures throughout one culture chamber 

(1024x1024) were acquired per treatment condition and analyzed with ImageJ software 

(Version 1.52e) as depicted in Fig.6a. For in vivo and ex vivo analyses, three z-sections per 

animal (in vivo: 30µM, 0.5µM/z-section, 1024x1024, PVN and hippocampus (CA1 region); ex 

vivo: 30µM, 0.5µM/z-section, 1024x1024, hippocampus (CA1 region)) were acquired and 

analyzed with ImageJ software (Version 1.52e) as described in Fig.6b. 
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3D-reconstruction of GFP-expressing astrocytes 

In order to analyze OXT-induced changes to volume and surface area of astrocytes, animals 

received unilateral intrahippocampal (CA1 region) infusions of 1µl vector plasmid solution 

containing AAV2/5-GFAP-GFP in PBS (titer 1x1013 GC/ml, kindly provided by Dr. Nathalie 

Rouach). After 14 days, hippocampi were harvested and acute slices (350µM) were prepared 

as described under 2.4. 3D-reconstruction was accomplished using IMARIS software (Version 

9.3, Bitplane AG, Zürich, Switzerland). In detail, two astrocytes per z-section were randomly 

selected (Fig.7a), and a region of interest (ROI) was created in 3D around each of these cells 

(Fig.7b-c). Next, a 3D object was generated within these ROIs (Fig.7d-e), allowing 

quantification of both cellular surface and volume. 

Figure 6. Quantification of length (red lines) and number (yellow dots) of primary GFAP+ processes of astrocytes 
in vitro and in vivo using ImageJ. A) Primary rat cortical astrocytes stained for GFAP/DAPI and analyzed for length 
of longest primary process, as well as number of primary processes. B) Rat hippocampal (CA1 region) astrocyte 

stained for GFAP and analyzed for length of longest primary process, as well as number of primary processes. 
Lengths were measured from the edge of the nucleus indicated by DAPI staining to the end of the process of 
interest. 

 

 

 

 

# 

 



 

[43] 
 

 

Figure 7. 3D reconstruction of GFP-expressing hippocampal astrocytes in acute ex vivo slice preparations using 
IMARIS. A) Astrocyte of interest depicted in a 2D image of the z-section. Lower/lateral panels show position of the 
cell in the context of the z-section. B-C) Generation of a 3D ROI around the cell of interest. D-E) Generation of a 

3D object resembling the original shape of the astrocyte. 
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Determination of astrocyte-synapse spatial relationship by STED nanoscopy 

STED nanoscopy was performed on acute ex vivo slice preparations (see 2.4) using a costum 

built STED-microscope (Abberrior/Scientifica). Synaptic distance to the closest astrocytic 

element was quantified with a Fiji-Plugin (provided by Philippe Mailly, CIRB imaging facility, 

College de France, Paris) only including synapses that a) showed no wider distance than 

300nm between pre-and postsynaptic element and b)  contained Homer1/VGlut1 fluorescence 

maxima in both, deconvolved confocal images and STED images. 

Colocalization studies 

To assess the degree of Cx43 localization at cell/cell-contacts, the tight-junction protein ZO1   

was used as a marker for points of intercellular contact (Penes et al., 2005). The number of 

Cx43/ZO1-immunoreactive (ir) punctae was determined manually to ensure inclusion of points 

solely located at cellular contact zones. 

Intensity measurements and determination of above threshold cells in vitro and in vivo 

For immunofluorescence intensity measurements and maxima quantification, images were 

taken with a Leica SP8 confocal laser scanning microscope (63x Obj., 16-Bit, 1024x1024) and 

analyzed with ImageJ software (Version 1.52e). Following background subtraction, a ROI was 

manually generated around cells of interest and fluorescence intensity within the ROI was 

measured. Determination of above threshold cells was accomplished by use of the find maxima 

function of ImageJ on a background subtracted single image (in vitro experiments) or a sum 

z-projection (in vivo experiments; 30µM, 0.5µM/z-section, 1024x1024). Above threshold cells 

were defined as single cells marked by DAPI staining displaying at least one maximum of the 

fluorescence of interest. 

 

2.13                Statistical Analysis 

For statistical analysis, GraphPadPrism (V.8, GraphPad Software, San Diego, USA) was used. 

Data were first tested for normal distribution by Shapiro-Wilks-test. In case of normally 

distributed data, statistical hypothesis testing was carried out by two-tailed Student’s t-test, 

one-way (factor: treatment) or two-way (factors: pre-treatment and treatment) ANOVA, 

followed by a Bonferroni post-hoc analysis, whenever appropriate. Data shown in graphs 

represent mean +/- SEM; significance was accepted at p < 0.05. For non-normally distributed 

data, statistical hypothesis testing was carried out by two-tailed Mann-Whitney-U-test or 

Kruskal-Wallis-test followed by Dunn-Bonferroni post-hoc analysis whenever appropriate. 



 

[45] 
 

Here, data shown in graphs represent median + min/max and significance was accepted at p 

< 0.05.
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3            RESULTS 

3.1      Establishment of primary rat cortical astrocyte cultures 

To study OXTR-mediated signaling in astrocytes, primary rat cortical astrocytes were cultured 

(see 2.5) after a protocol adapted from (Schildge et al., 2013). As described for astrocytes 

cultured in vitro , numbers of primary processes ranged from one to seven, displaying a less 

complex cellular morphology compared to astrocytes in vivo/ex vivo (Fig.8a). Furthermore, 

96% of cells within the cultures showed GFAP expression as assessed by 

immunocytochemistry, with the remaining 4% representing either microglial/oligodendrocytical 

remainders of the isolation process or astrocytes not expressing GFAP (Fig.8b; (Morrison and 

de Vellis, 1981; Schildge et al., 2013). Endpoint PCR revealed expression of genes 

preferentially or exclusively expressed in astrocytes, including genes coding for the gap-

junction proteins Cx43 (Gja1) and Cx26 (Gjb2) , as well as genes coding for the 

neurotransmitter transport proteins EAAT1/EAAT2 (Slc1a3/Slc1a2) and GAT1/GAT3 

(Gat1/Gat3) (Fig.8c). As previously described for cultured astrocytes, Oxtr mRNA was 

detectable in RNA from six independent cultures (Fig.8c). 

Figure 8. Characteristics of primary rat cortical astrocytes used for in vitro studies. A) Representative ICC image 

performed on an exemplary astrocyte culture 14d post-enrichment. Most cultured astrocytes displayed one to seven 
primary processes and an average process length of ~30-60µM. B) Quantification of the purity of five independent 
cultures assessed by GFAP staining. C) Agarose gel showing expression of various genes preferentially or 

exclusively expressed in astrocytes, as well as Oxtr expression in six independent cultures. 
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3.2      Characterization of the effects of OXT on astrocytes 

Effects of OXT on astrocytic signaling cascades and proteins in vitro and in vivo 

To elucidate the molecular consequences of astrocytic OXTR signaling, synthetic OXT was 

either applied to primary rat cortical astrocytes (500nM for 10min) or administered icv in male 

Wistar rats. Subsequent analyses of changes in protein levels/phosphorylation state focused 

on proteins preferentially or exclusively expressed in astrocytes, as well as targets and brain 

regions previously linked to OXTR activation in other contexts (Blume et al., 2008; Devost et 

al., 2008b; Jurek and Neumann, 2018; Martinetz et al., 2019). For a summary of all examined 

targets please see Fig.9a (in vitro experiments) and Fig.9b (in vivo experiments). In primary 

astrocytes, OXT induced increases in pCreb(Ser133; t15=2.840, p=0.012), pAkt(Thr308; 

t15=2.303, p=0.036), pERK5(Thr218/Tyr220; t7=2.309, p=0.054), pCx43(Ser368; t14=3.506 

p=0.004), pCx43(Ser279; U=1, p=0.016), pCx43(P1; U=10, p=0.021), pCx43(P2; t15=2.574 

p=0.021), pEzrin(Thr567; t10=2.536, p=0.030)  and pERK1/2 phosphorylation levels (t10=2.459, 

p=0.038 pERK1; t10=4.702, p<0.001 pERK2), while decreasing peEF(Thr56; U=0, p=0.008) 

and pMYPT(Thr696; t15=2.068, p=0.056) phosphorylation. No changes were observed for 

pp38, pJNK(Thr183/Thr185) and pcamKII(Thr286). Furthermore, OXT-exposure caused 

elevated levels of the cytoskeleton-related proteins beta-Tubulin (U=2, p=0.032), ROCK1 

(t7=2.758, p=0.028), Gem (t18=2.203, p=0.041) and Sp1 (t12=2.470, p=0.030), while reducing 

GFAP (t8=2.718, p=0.026). The astrocytic glutamate transporter EAAT2 was unaffected by 

OXT stimulation. Attempts to detect OXT-induced changes in RhoA activity by means of a pull-

down assay of GTP-bound (i.e. active) RhoA, failed due to below detection limit endogenous 

activity of RhoA (data not shown). 

Within the PVN, icv OXT increased levels of the gap-junction protein Cx30 (t11=3.361, 

p=0.006), pCx43(Ser368; t11=2.244, p=0.046) and the endogenous ROCK-inhibitor Gem (U=2, 

p=0.005) 10min post-administration, while downregulating EAAT2 (t12=2.799, p=0.016) and 

the gap-junction protein Cx43 (t11=3.546, p=0.005). The changes to Cx30 (U=2, p=0.005), Gem 

(U=7, p=0.051) and pCx43(Ser368; t11=2.029, p=0.067) remained observable after 20min, 

whereas EAAT2 and Cx43 levels recovered to control levels. Within the hippocampus, 

elevated quantities of Cx30 (U=4, p=0.014) and pCx43(Ser368; t10=2.195, p=0.053), as well 

as decreased quantities of Cx43 (t12=6.664, p<0.001) were detected 10min following OXT 

administration. Here, the decrease in Cx43 persisted 20min post-administration (t12=2.707, 

p=0.019), while EAAT1 (t10=2.972, p=0.014) was downregulated. Within the amygdala, OXT 

elicited acute increases of Cx30 (U=7, p=0.051) and EAAT1 (t11=4.387, p=0.001), while 

decreasing Gem levels (t12=2.818, p=0.016). None of these differences remained significant at 

20min post-administration. However, OXT upregulated GFAP (U=4, p=0.014) and decreased 

quantities of EAAT2 (t12=2.533, p=0.026) at this timepoint. 
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Figure 9. Effects of OXT on signaling pathways and proteins of astrocytes in vitro and in vivo. A) Heatmap of 

percentage changes in protein/phosphorylation levels following exposure of primary rat cortical astrocytes to 500nM 
OXT for 10min. B) Heatmap of percentage changes of protein/phosphorylation levels 10min or 20min after icv 

administration of OXT in punches derived from three different brain regions (PVN, hippocampus, amygdala). 
Downregulations are colored in blue, while upregulations are colored in red. 

 

Effects of OXT on the expression of selected astrocytic genes  

Based on the OXT-induced changes of astrocytic proteins, the expression of genes coding for 

these proteins was analyzed in vitro following OXT stimulation (500nM) for different timepoints. 

While there was no change in Cx43 (Gja1) expression, Cx30 (Gjb6) (independent t-test; 

t9=2.134, p=0.062) and Cx26 (Gjb2) (Mann-Whitney U=4, p=0.052) expression both showed a 

trend to be decreased compared to the control group after 10min of exposure, but this 

difference did not reach statistical significance (Fig.10a). Thirty min after OXT application, an 

increase in Gja1 (t7=2.755, p=0.028) as well as Gem expression (t7=2.373, p=0.049) was 

detected, while EAAT2 (Slc1a2) expression remained unchanged (Fig.10b). The observed 

trend of decreased Gjb2 expression after 10min of stimulation became statistically significant 

at the 30min timepoint (t7=4.427, p=0.003). 
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Figure 10. Expression of astrocytic genes following exposure to OXT for three differing timespans. A) Gja1, Gjb6 
and Gjb2 mRNA levels after 10min of stimulation with 500nM OXT. B) Gja1, Gem, Slc1a2 and Gjb2 expression 
after 30 min of OXT exposure. C) Gja1, Gjb6 and Gjb2 mRNA levels following 180min of OXT application. Data 

represent mean relative expression +/- SEM for normally distributed data and median +/- min/max values for non-

normally distributed data. * p<0.05, ** p <0.01.  

 

Contrary to a shorter exposure, 180min of OXT stimulation caused a decrease in Gja1 

expression (Fig.10c; t8=2.982, p=0.018), while Gjb2 mRNA recovered to control levels. 

Following the tendency after 10min of exposure, Gjb6 expression was lowered after 180min of 

OXT application compared to Veh-treated cells (t8=2.486, p=0.039). 
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Effect of OXT on distribution of astrocytic gap-junctions and its impact on intercellular 

connectivity 

Due to protein and mRNA analyses pointing towards a downregulation of astrocytic gap-

junctions by OXT, I next tested, whether OXT affects gap-junctional intercellular 

communication (GJIC). To this end, dye-spread assays (Upham et al., 2016) were performed, 

in which the broad-range gap-junction inhibitor carbenoxolone (Rozental et al., 2001) served 

as a positive control (Fig.11a). In an initial dose-response experiment (Fig.11b), a treatment 

effect (one-way ANOVA; F4,73=6.847, p < 0.001) was observable for doses of 10nM (p=0.001), 

500nM (p=0.002), as well as 1µM (p=0.0004) of OXT with OXT acutely impairing GJIC. To 

investigate the underlying signaling mechanisms, cells were pre-treated with either 10µM of 

the MEK-inhibitor U0126, 1µM of the broad-range PKC-inhibitor Gö6983 or 1µM of the OXTR-

antagonist L368,889 prior to exposure to 500nM OXT for 10min and subsequent GJIC 

assessment (Fig.11c). Differences were found depending on pre-treatment (F3,62=5.919, 

p=0.001) and interaction (F3,62=5.574, p=0.002), but not treatment (F1,62=0.1290, p=0.7207). 

OXT treated cells showed impaired GJIC by around 20% (p=0.01), while this effect was 

blocked by each of the three pre-administered substances. Interestingly, the closely related 

sister-peptide AVP had no effect in these experiments (data not shown). Since the expression 

of gap-junctional genes varies over the time course of culture (Koulakoff et al., 2008; Li et al., 

2019), an identical experiment was performed on cells cultured for 14 days (Fig.11d) after 

enrichment, yielding similar results (pre-treatment: F2,39=5.609, p=0.007; interaction: 

F2,39=7.117, p=0.002; treatment: F1,39=1.862, p=0.1802; posthoc: p=0.002 Veh/OXT vs. 

Veh/Veh). Application of a positive control, i.e. the gap-junction blocker carbenoxolone, 

resulted in reduced GJIC by around 70% (t15=14.75, p< 0.0001).  

To visualize the impact of OXT on astrocytic gap-junctions on a single cell level, ICC of the 

most abundant astrocytic gap-junction protein Cx43  was carried out. Here, the tight-junction 

protein ZO1 was used as a marker for cell-cell contacts and Cx43/ZO1 colocalization (Fig.12a) 

was quantified following pre-treatments and treatments identical to GJIC experiments. 

 



 

[51] 
 

Figure 11. OXT impairs gap-junctional intercellular communication in a MEK, PKC and OXTR-dependent manner. 
A) Representative images of streptavidin staining visualizing the distance of biocytin diffusion within the astrocytic 
network. Middle and right panel show impaired GJIC by OXT and carbenoxolone treatment, respectively.  B) Dose-
response curve of acute OXT acting on GJIC. C) Impact of OXT on relative GJIC of astrocytes cultured for 7d 

following pre-treatment with either Veh (grey bars), U0126 (black bars), Gö6983 (dotted bars) or L368,889 (striped 
bars). D)  Same as C), but performed on cells cultured for 14d. E) Quantification of GJIC after treatment with the 

gap-junction blocker carbenoxolone. Data represent mean relative GJIC+/- SEM. * p<0.05, ** p <0.01 *** p<0.001. 
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Figure 12. OXT reduces Cx43 localization at cell-cell contacts in a PKC and OXTR-dependent manner. A) 

Representative ICC images of cells stained for Cx43 (green), ZO1 (red) and DAPI (blue) displaying high levels of 
Cx43/ZO1 colocalization in the control group (left) and reduced colocalization in OXT treated cells (right). White 
arrows indicate points of Cx43/ZO1 colocalization. B) Dose-response curve of OXT affecting Cx43 localization at 
cell-cell contacts.  C) Time-response curve of OXT (500nM) affecting Cx43 localization at cell-cell contacts.D/E) 

Impact of 15min (D) or 180min (E) of OXT exposure on Cx43/Zo1 colocalization following pre-treatment with either 
Veh (grey bars), U0126 (black bars), Gö6983 (dotted bars) or L368,889 (striped bars). Data represent mean 
absolute (D;E) or relative (B;C) Cx43/ZO1 colocalized punctae per two contacting cells +/- SEM. * p<0.05, ** p 

<0.01 *** p<0.001. 
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In a dose-response experiment (Fig.12b), a treatment effect (F5,36=8.810, p < 0.001) was 

observable for OXT doses of 100nM (p=0.001), 500nM (p=0.002), as well as 1µM (p=0.0004) 

with OXT reducing Cx43 localization at cell-cell contacts by 35-60%. The effect first became 

significant at 10min and 15min post-stimulation (Fig.12c; p=0.005, p=0.024, respectively), 

while recovering to control levels at the 30min timepoint. After a longer exposure for 180min, 

a similar reduction as for the 10min timepoint was observable (p=0.003). To investigate the 

underlying signaling cascades, cells underwent identical pre-treatment conditions as described 

for GJIC experiments prior to stimulation with 500nM OXT for 15 min or 3h and subsequent 

Cx43 localization assessment (Fig.12d). After 15min of OXT stimulation, differences were 

found depending on treatment (F1,46=13.16, p=0.001), pre-treatment (F3,46=8.029, p=0.001), as 

well as interaction (F3,46=5.267, p=0.003). OXT-treated cells displayed less Cx43 localization 

at cell-cell contacts (p=0.008), while this effect was PKC and OXTR-dependent, but not MEK- 

dependent (p=0.001). Similar to GJIC experiments, the closely related sister-peptide AVP had 

no effect (data not shown). A prolonged exposure with OXT for 180 min (Fig.12e), yielded 

similar results (pre-treatment: F2,29=0.4274, p=0.656; interaction: F2,29=5.237, p=0.011; 

treatment: F1,29=7.061, p=0.013; p=0.002 Veh/OXT vs. Veh/Veh). 

 

OXT-induced changes in astrocytic cytoskeletal dynamics and the impact on astrocyte-

neuron spatial relationships 

The modulation of neuronal communication by astrocytes highly depends on the spatial 

relationship of astrocytes and neuronal synapses, a relationship critically set by the 

astrocytic cytoskeleton. Since our studies revealed several changes of proteins associated 

with cytoskeletal dynamics, I opted to examine possible OXT- induced alterations of the 

cytoskeleton of astrocytes. In an initial dose-response experiment (Fig.13a/b) a treatment 

effect (F4,539=2.760, p=0.0272) was observable with 500nM (p=0.016) of acute (10min) OXT 

causing a rapid elongation of astrocytic processes. To investigate the underlying signaling 

mechanisms, cells were pre-treated with either 10µM U0126, 1µM Gö6983 or 1µM L368,889 

prior to exposure to 500nM OXT for 10min and subsequent analysis of primary process length 

and number. Differences in process length (Fig.13c) were found depending on pre-treatment 

(F3,646=3.421, p=0.017) and interaction (F3,646=4.480, p=0.004), but not treatment (F1,646=2.024, 

p=0.1553). OXT-treated cells showed an increase in the length of primary processes by around 

25% (p=0.008), while this effect was blocked by each of the three pre-administered 

substances. Additionally, differences in process number (Fig.13d) were found depending on 

treatment (F1,414=4.220, p=0.041), pre-treatment (F3,414=2.741, p=0.043) and interaction 

(F3,414=6.179, p=0.0004) with OXT causing a ~30% increase in primary process number 
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(p=0.002) that was MEK, PKC, as well as OXTR-dependent. Similar to gap-junction 

experiments, AVP had no effect in these experiments (data not shown).  

To assess, whether prolonged exposure to OXT induces comparable effects with a similar 

underlying signaling profile, the above described experiments were repeated with 180min of 

OXT stimulation. In the corresponding dose-response experiment (Fig.13e), a similar 

treatment effect (F5,554=3.738, p=0.002) was observable for a dose of 500nM (p=0.016). 

Differences in process length (Fig.13f) were found depending on treatment (F1,515=9.444, 

p=0.002) and interaction (F3,515=2.800, p=0.04), but not pre-treatment (F3,515=2.402, p=0.067), 

while a significant treatment (F1,450=7.111, p=0.008), pre-treatment (F3,450=7.244, p<0.001) and 

interaction (F3,450=11.97, p<0.001) effect was observed for the number of primary processes 

(Fig.13g). Stimulation for 180min increased both, the length (p=0.047) and number (p=0.018) 

of primary processes to a similar magnitude as 10min of OXT exposure.   

 

Figure 13. OXT induces elongation and formation of primary astrocytic processes in a PKC, MEK and OXTR-
dependent manner. A) Representative ICC images of astrocytes stained for GFAP (green) and DAPI (blue). OXT 
treated cells display visible cytoskeletal changes. B) Dose-response curve of OXT affecting the length of the longest 
primary process. C) Effect of 10min OXT exposure on process length following pre-treatment with either Veh (grey 
bars), U0126 (black bars), Gö6983 (dotted bars) or L368,889 (striped bars). D) Effect of 10min OXT exposure on 
the number of primary processes following pre-treatment with either Veh, U0126, Gö6983 or L368,889. e) Same as 
B), but performed with 180min of OXT stimulation. F) Same as C), but performed with 180min of OXT stimulation. 
G) Same as D), but performed with 180min of OXT stimulation. H) Representative ICC staining of DAPI (blue), 

Phalloidin (green) and pMLC(Ser19) (magenta) in astrocytes treated with either Veh (left panel) or 500nM OXT for 
3h (right panel). I) Quantification of Phalloidin immunofluorescence in OXT-treated cells compared to Veh-treated 
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cells. J) Quantification of pMLC(Ser19) immunofluorescence in OXT-treated cells compared to Veh-treated cells. 

Data represent mean absolute or relative values +/- SEM. * p<0.05, ** p <0.01 *** p<0.001. 

 

Mechanistically, this effect was again dependent on PKC and OXTR activity, but in case of 

process numbers not dependent on MEK (Fig.13g; p<0.001 U0126/Veh vs. U0126/OXT). In 

line with this finding, OXT-treated cells pre-treated with U0126 displayed a similar tendency 

toward process elongation (p=0.224 Veh/Veh vs. U0126/OXT). Since cellular process 

formation and elongation are indicators of a dampened activity of the RhoA/ROCK pathway  

and protein analyses revealed an OXT-induced increase in the endogenous RhoA/ROCK 

inhibitor Gem, F-actin (Phalloidin) and phospho(Ser19)-myosin-light-chain-kinase fluorescent 

intensity measurements were used as indirect markers of RhoA/ROCK activity (Fig.13h; 

(Totsukawa et al., 2000). OXT stimulation with 500nM OXT for 180min induced a decrease in 

F-actin stress fibres (Fig.13h/i; independent t-test; t13=3.225, p=0.007) and pMLC (Ser19) 

levels (Fig.13h/j; t12=3.136, p=0.009), both indicative of a dampened RhoA/ROCK activity. 

Taken together, these observations imply a rapid impact of OXT on the cytoskeleton of 

astrocytes in vitro.  

To validate these effects in vivo, synthetic OXT was administered icv in male Wistar rats. PVN, 

as well as hippocampal (CA1 region) astrocytes were examined for OXT-induced changes in 

cellular morphology and possible changes in resulting neuron-astrocyte spatial relationships. 

Corroborating in vitro experiments, centrally administered OXT caused astrocytic process 

elongation (Fig.14a/b; t10=3.484, p=0.006) and ramification (Fig.14a/c; t10=2.469, p=0.033) 

within the PVN 10min post-administration, leading to an increased astrocytic coverage of OXT 

neurons (Fig.14a/d; t10=3.093, p=0.011). The total amount of PVN GFAP+ cells remained 

unchanged (Fig.14e). Within the hippocampus (Fig.14f), a significant elongation of processes 

was not observable in an analysis with n=1 animal (Fig.14g; t10=1.510, p=0.162). However, 

separate analysis of all acquired optical fields revealed a significant increase in process length 

(Fig.14a/d; t29=2.342, p=0.026). The number of processes (Fig.14i), as well as the total number 

of GFAP+ cells (Fig.13j) were unaffected. 

As GFAP is not expressed throughout the entity of an astrocyte, I next used a viral vector-

based strategy to express GFP under the promoter of the hGFAP gene (Fig.15a). 3D-

reconstruction (Fig.15b) revealed an increase in astrocyte surface (Fig.15c; t20=3.302, 

p=0.004) and volume (Fig.15d; t20=2.155, p=0.046) after OXT exposure. Co-staining with pre-

/ post-synaptic markers together with STED nanoscopy (Fig.15e-g) revealed an OXT-induced 

change in the spatial relationship between astrocytes and excitatory synapses 10min post-

bath application in acute hippocampal slices (Fig.15h), suggesting an effect of OXT-induced 

cytoskeletal dynamics on neuronal communication.  
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Figure 14. OXT affects the astrocytic cytoskeleton in vivo. A) Representative IHC images of PVN astrocytes 

(GFAP; green) co-stained with Neurophysin (OXT; red) and DAPI (blue) in animals that received either Veh (left 
panel) or OXT (right panel) icv. White arrows mark points of GFAP/Neurophysin (OXT) colocalization. B-E) 

Quantification of primary process length (B), primary process number (C), GFAP/OXT-colocalization (D) and 
number of GFAP+ cells (E) within the rat PVN 10min after OXT administration. F) Representative IHC images of 

hippocampal CA1 astrocytes (GFAP; green) co-stained with DAPI (blue) 10min post-icv administration of Veh or 
OXT. G-J) Quantification of primary process length for n=1 animal (G), Quantification of primary process length for 

n=1 optical field (H), primary process number (I) and number of GFAP+ cells (J) within the CA1 region of the rat 
hippocampus 10min after administration of icv OXT. Data represent mean absolute values +/- SEM. * p<0.05, ** p 

<0.01. 

 

Figure 15. OXT alters three-dimensional features of astrocytes and neuron-astrocyte spatial relationships ex vivo. 
A) Representative confocal microscopy image of a GFP-expressing mouse hippocampal astrocyte. B) 

Representative 3D reconstructions of astrocytes created from Veh (left panel) or OXT (right panel) -treated acute 
hippocampal slices. C) Assessment of cellular surface area from 3D reconstructed astrocytes.  D) Assessment of 
cellular volume from 3D reconstructed astrocytes. E) Representative confocal microscopy image of a GFP-
expressing mouse hippocampal astrocyte. White dotted box indicates inlay for (F). F) Inlay of (E) including 

deconvolved confocal image of astrocytic element (GFP; red), as well as deconvolved STED-images of pre-synaptic 
(VGlut1; Magenta) and post-synaptic (Homer1; green) markers. G) ImageJ analysis plugin output displaying 
astrocytic elements in white and functional synapses as single colored dots. H) Quantification of average 

synapse/astrocyte distance per analyzed inlay. Data represent mean absolute values +/- SEM. * p<0.05, ** p <0.01. 
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3.3      Involvement of the Sp1 – Gem signaling axis 

The involvement of the small GTPase Gem in the effects of OXT on astrocytes 

Based on its OXT-induced in vitro and in vivo upregulation, as well as on the observed 

dampened activity of the RhoA/ROCK pathway, I hypothesized that the endogenous ROCK-

inhibitor Gem plays an important role in conveying the effect of OXT on astrocytes. To test this 

hypothesis, I applied a siRNA-based knockdown approach in vitro (Fig.16a). Gem knockdown 

(pre-treatment: F1,405=33.69, p<0.001; treatment: F1,405=2.940, p=0.087; interaction: 

F1,405=10.58, p=0.001) prevented OXT-induced process elongation (p=0.008), with 

siRNA/OXT-treated cells even displaying shortened processes compared to scrRNA/Veh-

treated cells (Fig.16b; p=0.016). Although OXT did not induce significant ramification (pre-

treatment: F1,491=29.95, p<0.001; treatment: F1,491=2.886, p=0.09; interaction: F1,491=3.204, 

p=0.074) in cells transfected with scrRNA (p=0.092), cells transfected with Gem siRNA 

displayed significantly less primary processes than scrRNA/OXT-treated cells (Fig.16c; 

p<0.001). To exclude that the cytoskeleton of cells in which Gem had been knocked down is 

uncapable to respond to external stimuli, I applied the exogenous ROCK-inhibitor (1µM for 

30min;(Liao et al., 2007) to cells transfected with Gem siRNA as a positive control. Exposure 

to y-27632 induced significant process elongation in Gem siRNA/y-27632-treated cells 

compared to Gem siRNA/Veh-treated cells (Fig.16d; U=5936, p=0.009). Furthermore, the 

previously observed OXT-induced breakdown of F-actin stress-fibres is partially Gem-

dependent, as knockdown of Gem blunted this effect (Fig.16e; pre-treatment: F1,37=21.41, 

p<0.001; treatment: F1,37=9.632, p=0.04; interaction: F1,37=0.5877, p=0.448; p=0.003 

scrRNA/Veh vs. scrRNA/OXT and p=0.063 siRNA/Veh vs. siRNA/OXT). Notably, OXT induced  

ROCK-activity solely in Gem knockdown astrocytes as assessed by pMYPT(Thr696) 

phosphorylation levels (Fig.16f; pre-treatment: F1,12=19.86, p<0.001; treatment: F1,12=15.42, 

p=0.002; interaction: F1,12=15.42, p=0.006; p=0.003 for siRNA/Veh vs. siRNA/OXT). Similar to 

OXT effects on the cytoskeleton, I found OXT-induced effects on astrocytic gap-junctions to 

be Gem-dependent. Here, Gem knockdown prevented OXT-induced impairment of GJIC 

(Fig.16g; pre-treatment: F1,59=6.837, p=0.011; treatment: F1,59=0.5326, p=0.4684; interaction: 

F1,59=9.424, p=0.003; p=0.0413 scrRNA/Veh vs. scrRNA/OXT), as well as reduction of Cx43 

localization at cell-cell contacts by OXT (Fig.16h; pre-treatment: F1,14=9.830, p=0.007; 

treatment: F1,14=42.25, p<0.001; interaction: F1,14=14.04, p=0.002; p<0.001 scrRNA/Veh vs. 

scrRNA/OXT and p=0.4316 siRNA/Veh vs. siRNA/OXT). 
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Figure 16. The in vitro effects of OXT on astrocytes are Gem-dependent. A) Validation of successful Gem 
knockdown by siRNA was performed by immunoblotting. Representative bands are shown below. B-C) 
Quantification of longest primary process (B) and primary process number (C) in cells transfected with either Gem 
siRNA or a control oligonucleotide (scrRNA) and subsequent administration of 500nM OXT for 10min. D) Length of 
longest primary process after exposure to 1µM y-27632 for 30min in cells transfected with Gem siRNA. E) Phalloidin 
immunofluorescence after Gem knockdown and subsequent OXT exposure. F) Relative phosphorylation of MYPT 
at Thr696 following Gem knockdown and subsequent OXT stimulation. Representative bands are shown below. G)  

Absolute area of lucifer yellow diffusion in dye spread experiments after Gem knockdown and subsequent OXT 
exposure. H) Impact of 15min OXT stimulation on Cx43/Zo1-colocalization following transfection with either Gem 

siRNA or a control oligonucleotide. Data represent mean relative or absolute values +/- SEM for normally distributed 
data and median +/- min/max values for non-normally distributed data. * p<0.05, ** p <0.01, *** p <0.001. 
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In a gain-of-function approach I next tested, whether overexpression of Gem (Gem OE) is able 

to mimic the effect of OXT on astrocytes. To this end, primary astrocytes were transfected with 

a plasmid expressing the ORF of the rat Gem mRNA under the control of the long promoter 

fragment of the hGFAP gene. First, successful overexpression was validated by 

immunofluorescence intensity measurements (Fig.17a/b; t14=2.539, p=0.024), as well as 

immunoblotting (Fig.17c; t8=3.137, p=0.014). qPCRs using primers binding in a region of the 

Gem mRNA not expressed by the Gem OE plasmid revealed a strong trend of decreased 

endogenous Gem mRNA (Fig.17d; t10=2.172, p = 0.055), while increased mRNA levels were 

detected when using primers binding within the plasmid-expressed ORF of the Gem mRNA 

(Fig.17e; U=0, p = 0.002). In analyses of the cytoskeleton, Gem OE caused significant process 

elongation and ramification (Fig.17f-h; pre-treatment: F1,354=4.552, p=0.037; treatment: 

F1,354=1.832, p=0.1767; interaction: F1,354=23.64, p<0.001; p<0.001 EGFP/Veh vs. EGFP/Gem 

OE) to a similar extent as OXT (p<0.001 EGFP/Veh vs. EGFP/OXT). Importantly, OXT had no 

add-on effect in Gem OE cells compared to EGFP expressing cells. Furthermore, Gem OE 

elicited significant stress fibre breakdown reminiscent of OXT treatment (Fig.17i/j; t14=4.467, p 

< 0.001), as well as a strong reduction in ROCK-activity as assessed by quantification of 

pMYPT(Thr696) phosphorylation levels (Fig.17k; t8=2.792, p=0.026). 

In GJIC experiments, Gem OE impaired astrocyte network connectivity with no add-on effect 

of OXT (Fig.18a/b; pre-treatment: F1,44=13.57, p<0.001; treatment: F1,44=4.834, p=0.033; 

interaction: F1,44=7.450, p=0.009; p<0.001 EGFP/Veh vs. EGFP/Gem OE; p= 0.018 EGFP/Veh 

vs. EGFP/OXT). On a molecular level, Gem OE altered Cx43 phosphorylation states 

(Fig.18c/d; t8=2876, p=0.021 for P0 Cx43 t7=4.090, p=0.005 for pCx43(Ser368)) and 

decreased Cx43 (Gja1) mRNA (Fig.18e; t9=2.414, p=0.039) analogously to previous OXT 

stimulations. 
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Figure 17. Overexpression of Gem is sufficient to mimic the effect of OXT on the cytoskeleton of astrocytes. A) 

Representative ICC images (EGFP, green; Gem, red) taken from cells transfected with an EGFP expressing control 
plasmid (left panel) or the ORF of the rat Gem mRNA (right panel) under the promoter of the hGFAP gene. B) 

Intensity of Gem-immunofluorescence in cells transfected with the EGFP control plasmid or the Gem OE plasmid. 
C) Validation of successful Gem OE on protein level. Representative bands are shown below. D) Assessment of 
potential compensatory effects of Gem OE on endogenous Gem mRNA by using primers binding within the 5’UTR. 
E) Validation of successful Gem OE on mRNA level by using primers binding within the ORF expressed by the 
transfected plasmid. F-H) Effects of Gem OE on the cytoskeleton of astrocytes assessed by means of quantification 

of process length (F) and process number (H). Representative ICC images taken from EGFP (left panel) or Gem 
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OE expressing cells (right panel) stained for DAPI (blue) and GFAP (red) (G). I) Representative ICC images of 
Phalloidin staining in EGFP or Gem OE transfected cells. J) Levels of Phalloidin immunofluorescence intensity in 
EGFP or Gem OE transfected cells. K) Assessment of ROCK activity by quantification of pMYPT (Thr696) 

phosphorylation levels in EGFP vs. Gem OE expressing cells. Data represent mean relative or absolute values +/- 
SEM for normally distributed data and median +/- min/max values for non-normally distributed data. * p<0.05, ** p 
<0.01, *** p <0.001. 
 

 

Figure 18. Overexpression of Gem is sufficient to mimic the effect of OXT on astrocytic gap-junctions. A) 

Representative ICC images of scrape-loading dye transfer experiments taken from cells transfected with a control 
plasmid (left panel) or the Gem OE plasmid (right panel). B) Degree of GJIC of cells transfected with either EGFP 
control plasmid or Gem OE plasmid following stimulation with 500nM OXT or Veh for 10min. C) Effect of Gem OE 

on the phosphorylation status of Cx43 with P0 representing the unphosphorylated form of Cx43 and P1/P2 
representing two distinct phosphorylation sites. D-E) Impact of Gem OE on pCx43(Ser368) phosphorylation levels 
(D), as well as Cx43 (Gja1) mRNA (E). Data represent mean relative or absolute values +/- SEM. * p<0.05, ** p 

<0.01, *** p <0.001. 
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Potential involvement of astrocytic gap-junctions in OXT-induced cytoskeletal 

remodeling 

To strengthen the link between OXT-induced regulation of astrocytic gap-junction proteins and 

altered cytoskeletal dynamics, acute hippocampal slices prepared from Cx30 or Cx43 

knockout mice, as well as wildtype mice (C57BL/6) were treated with 500nM OXT for 10min. 

Similar to experiments in rats, OXT caused increases in domain area (Fig.19a-c; t14=2.016, 

p=0.063 WT; t19=3.900, p=0.001 Cx30KO), process length (U=6, p=0.020 WT; t22=2.183, 

p=0.040 Cx30KO) and process number (t13=2.321, p=0.037 WT; t19=3.456, p=0.003 Cx30KO) 

in slices from WT and Cx30KO mice. In contrast, OXT did not alter these parameters of 

astrocytes in slices from Cx43KO mice (Fig.19d), suggesting an involvement of Cx43, but not 

Cx30 in OXT-induced cytoskeletal dynamics of astrocytes. To confirm these findings in vitro 

and subsequently study the involvement of Cx43 in OXT/Gem-induced alterations to the 

cytoskeleton of astrocytes, an siRNA-mediated knockdown of Cx43 was performed in rat 

primary cortical astrocytes (Fig. 19e; t7=4.319, p=0.004). Corroborating ex vivo results, Cx43 

knockdown prevented OXT-induced elongation of processes (Fig.19f; pre-treatment: 

F1,680=4.074, p=0.044; treatment: F1,680=3.572, p=0.059; interaction: F1,680=3.617, p=0.058; 

p=0.010 scrRNA/Veh vs. scrRNA/OXT). To examine a potential regulation of Gem by reduced 

Cx43 levels, Gem protein levels in Cx43 knockdown cells were analyzed. Transfection with 

Cx43 siRNA did not affect the total amount of Gem (Fig.19g). However, Cx43 knockdown 

significantly increased the phosphorylated (i.e. active) amount of the Gem effector ezrin 

(Fig.19h; t11=2.438, p=0.033). Here, Cx43 knockdown efficiency negatively correlated with the 

degree of ezrin phosphorylation, implying an increasing availability of active ezrin with falling 

Cx43 levels (Fig.19i; p=0.046, r2=0.582).  
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Figure 19. Cx43, but not Cx30 is involved in OXT-induced alterations of the cytoskeleton of astrocytes. A) 

Representative IHC images taken from mouse acute hippocampal slices treated with either 500nM OXT or Veh for 
10min. B-D) Assessment of domain area, process length and process number in acute hippocampal slice 

preparations from either WT (B), Cx30 knockout (C) or Cx43 knockout (D) mice treated with 500nM OXT or Veh for 
10min. E) Validation of successful Cx43 knockdown in rat primary astrocytes by means of immunoblotting. F) 
Quantification of longest primary process in cells transfected with either Gja1 siRNA or a control oligonucleotide 
(scrRNA) and subsequent administration of 500nM OXT for 10min. G) Effect of Cx43 knockdown on Gem protein 
quantities. H) Effect of Cx43 knockdown on phosphorylation of ezrin on Thr576. I) Correlation of Cx43 level in Gja1 

siRNA transfected cells with ezrin phosphorylation status. Data represent mean relative or absolute values +/- SEM. 
* p<0.05, ** p <0.01, *** p <0.001. 



 

[64] 
 

Regulation of Gem by OXT on a genomic level 

In order to investigate by which transcription factor OXT upregulates Gem expression, I first 

used a publically available database (AliBaba 2.1; http://gene-

regulation.com/pub/programs/alibaba2/index.html) for the prediction of transcription factor 

binding sites within the promoter region of the Gem gene (Tab.6). Here, the transcription factor 

Sp1 posed the highest quantity of binding sites (12 predicted binding sites vs. 1-2 binding sites 

for other transcription factors). 

Table 6. List of predicted transcription factor binding sites within the promoter region of the rat Gem gene. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Based on this in silico analysis and its OXT-induced upregulation (see 3.2), I hypothesized that 

the transcription factor Sp1 controls Gem expression and by this conveys OXT-induced Gem-

dependent alterations to the cytoskeleton of astrocytes. To test this hypothesis, I applied a 

siRNA-based knockdown approach in vitro (Fig.20a/b; t4=4.548, p=0.010 24h siRNA vs. 

scRNA and t4=4.548, p=0.010 48h siRNA vs. scrRNA; U=2, p=0.065 qPCR). Sp1 knockdown 

prevented OXT-induced process elongation (Fig.20c; pre-treatment: F1,1106=22.05, p<0.001; 

treatment: F1,1106=0.027, p=0.871; interaction: F1,1106=16.51, p<0.001; p=0.012 scrRNA/Veh vs. 

scrRNA/OXT), while reversing the effect of OXT in the Sp1 knockdown group (p=0.031 for 

Transcription factor  # of predicted binding sites within the 

promoter region of Gem 

Sp1  12 

NF-kappaB  2 

AP-2alpha  2 

AP-1  1 

HNF-1C  1 

CEPB-alpha  1 

CEPB-beta  1 

Pit-1b  1 

NF-1  1 

ETF  1 

WT1  1 

c-Fos  1 

CREB  1 

ATF  1 

E1A 12S  1 

RxR-beta  1 

c-Jun  1 

NF-kappa  1 

CRE-BP1  1 
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siRNA/Veh vs. siRNA/OXT). Importantly, knockdown of Sp1 prevented the OXT-induced 

upregulation of Gem (Fig.20d/e; pre-treatment: F1,832=5.285, p=0.022; treatment: F1,832=15.89, 

p<0.001; interaction: F1,832=22.32, p<0.001; p<0.001 scrRNA/Veh vs. scrRNA/OXT) and led to 

a decrease of Gem mRNA expression (t9=2.818, p=0.020). To exclude that these observations 

are due to an insensitivity of OXTR-coupled pathways caused by secondary effects on Oxtr 

expression, I verified that Sp1 knockdown did not affect Oxtr mRNA levels (Fig.20g). 

Figure 20. The transcription factor Sp1 conveys OXT-induced Gem expression. A-B) Validation of successful 
knockdown by immunoblotting (A) and qPCR (B). Representative bands are shown below. C) Quantification of 
longest primary process in cells transfected with either Sp1 siRNA or a control oligonucleotide (scrRNA) and 
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subsequent administration of 500nM OXT for 10min. D) Representative ICC images taken from Sp1 siRNA or 

scrRNA transfected cells subsequently exposed to OXT for 10min and stained for Gem. Quantification of above 
threshold (Gem+) cells was defined as single cells marked by DAPI/GFAP staining displaying at least one maximum 
of above threshold Gem fluorescence. E) Representative immunoblot of Gem showing noticeable OXT-induced 
increase of intensity solely in the scrRNA group. F-G) Effects of Sp1 knockdown on Gem (F) and Oxtr (G) mRNA 

expression. Data represent mean relative or absolute values +/- SEM, * p<0.05, ** p <0.01, *** p <0.001. 

 

Differential regulation of the Sp1-Gem-ROCK axis in neuronal cells 

Since OXT has contrary effects on the cytoskeleton of neuronal cells (Meyer et al., 2018), i.e. 

a retraction of neurites, I examined whether OXT differentially regulates the Sp1-Gem-ROCK 

signaling axis in neuronal cells compared to astrocytes. To this end, the neuronal cell line H32 

was exposed to 100nM of OXT for 180min. Protein analyses revealed an OXT-induced 

increase in ROCK1 (t14=3.744, p=0.002) and ROCK activity (t12=3.244, p=0.007), as well as a 

decrease in Gem (t13=3.700, p=0.003) and Sp1 (t12=8.751, p<0.001) quantities (Fig.21a-d). To 

examine whether this activation of the ROCK pathway is required for OXT-induced neurite 

retraction, neuronal cells were pre-treated with either Veh or 1µM of the ROCK-inhibitor y-

27632 and exposed to 100nM OXT for 180min. OXT caused a retraction of neurites which was 

prevented in cells pre-treated with y-27632, indicating that activation of ROCK is critical for 

OXT-induced neurite retraction (Fig.21e; pre-treatment: F1,1884=15.18, p<0.001, treatment: 

F1,1884=18.78, p<0.001, interaction: F1,1884=7.396, p=0.007, p<0.001 Veh/Veh vs. Veh/OXT). To 

validate these findings in vivo, the cellular distribution of Gem was analyzed within the 

hippocampus of rats which were previously administered Veh or OXT icv (Fig.21f). In line with 

protein analyses (see 3.2), OXT did not alter the total amount of Gem (Fig.21g). However, an 

analysis of the distribution in astrocytes (GFAP+) vs. non-astrocytic cells (GFAP-) revealed an 

OXT-induced increase of Gem-positive (Gem+) astrocytes (t10=2.771, p=0.020), as well as a 

simultaneous decrease of Gem-expressing non-astrocytic cells (t10=2.606, p=0.029). 
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Figure 21. OXT polarizes Gem expression in neurons vs. astrocytes. A-D) Quantification of Gem (A), ROCK1 (B), 

pMYPT(Thr696, C) and Sp1 (D) protein levels in H32 cells by immunoblotting following exposure to 100nM OXT 
for 180min. Represenative bands are shown below. E) Neurite length of H32 cells following pre-treatment with either 
Veh or the ROCK-inhhibitor y-27632 and treatment with either Veh or 100nM OXT for 180min. F/G) Representative 

IHC images of hippocampal astrocytes (GFAP; green) co-stained with Gem (red) and DAPI (blue) in animals that 
received either Veh or OXT icv. Quantification of above threshold (Gem+) cells was defined as single cells marked 
by DAPI/GFAP (Gem+/GFAP+) or DAPI/absence of GFAP (Gem+/GFAP-) staining displaying at least one 
maximum of above threshold Gem fluorescence. Data represent mean relative or absolute values +/- SEM. * 
p<0.05, ** p <0.01, *** p <0.001. 

 

3.4      Establishment of astrocyte-specific Oxtr/Gem-knockdown  

vectors  

To study the physiological and behavioral relevance of astrocytic OXTR signaling and its 

downstream effector Gem, I aimed to establish viral vectors providing an astrocyte-specific 

knockdown of OXTR or Gem in vivo. First, shRNAs (see 2.5.1) were screened in vitro for 

knockdown efficiency. Unexpectedly, the Oxtr-shRNA expressing plasmid led to a significant 

increase in Oxtr mRNA expression 2d days post-transfection (Fig.22a; U=4, p=0.007). 

However, a significant downregulation of Oxtr mRNA was observed after more stable shRNA 

expression for 7d (Fig.22b; U=19, p=0.018). 
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Figure 22. In vitro validation of successful shRNA-mediated knockdown of Oxtr mRNA. A/B) Oxtr mRNA levels 

analyzed by qPCR 2d (A) and 7d (B) after transfection of primary astrocytes with a plasmid expressing an shRNA 
targeted against Oxtr mRNA under the control of the long promoter fragment of the hGFAP gene. Data represent 
median +/- min/max values. * p<0.05, ** p <0.01. 

 

Successful knockdown of Gem 7d post-transfection was validated by means of fluorescence 

intensity measurements (Fig.23a/b; t23=3.723, p=0.001) and qPCR (Fig.23c; t4=4.548, p=0.010 

t10=3.506, p=0.031). Notably, Gem knockdown caused a decrease in Gja1 expression (Fig. 

23d; t10=2.443, p=0.035). 

Since both shRNAs displayed sufficient knockdown efficiency, I designed AAV6-

GFAP::shRNA vectors for the purpose of in vivo Gem or OXTR knockdown (see also 2.3 and 

Fig.4). In a preliminary experiment, I aimed to determine the optimal physical viral titer and 

volume for microinfusions of the PVN. The viral titers ranging from 108-1012 GC/ml, as well as 

the tested volumes (70/280/560nl) used in this experiment were chosen based on the literature 

of AAV-mediated transfections of the PVN (Garza et al., 2008; Koba et al., 2018; Zhang et al., 

2013). Of the tested conditions, only a titer of 1012 GC/ml resulted in a detectable, but scattered, 

expression of the fluorescent reporter protein mCherry at the injection site (Fig.24). Thus, the 

ideal injection volume cannot be determined based on this experiment. The low rate of 

successful transfection indicates an insufficient amount of available viral particles. 

Nevertheless, all successfully transfected cells were mCherry+/GFAP+ double positive, 

indicating cell type-specificity for astrocytes. 
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Figure 23. In vitro validation of shRNA-mediated knockdown of Gem mRNA. A) Representative ICC images of 

primary astrocytes transfected with a control plasmid (left panel) or an shRNA targeted against the Gem mRNA. 
B/C) Validation of successful Gem knockdown by quantification of immunofluorescence (A) and qPCR (B). D) Effect 
of Gem knockdown on Gja1 mRNA levels. Data represent mean relative or absolute values +/- SEM. * p<0.05, ** p 
<0.01, *** p <0.001. 

Figure 24. Cell type-specific targeting of PVN astrocytes with AAV6-GFAP::shRNA vectors. Representative IHC 

image taken from the PVN of animals that received unilateral microinfusions of 280nl OXTR knockdown vector at 
a physical viral titer of 1012 GC/ml. Successful transfection is indicated by the expression of the fluorescent reporter 

mCherry, while cell-type specificity is indicated by double positive immunostaining for mCherry and GFAP. 
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4     DISCUSSION 

Especially in higher vertebrates, astrocytes are an indispensible part of signal processing 

within the brain. Thus, the mode of action of a neuroactive peptide such as OXT cannot be 

fully understood without this integral part of the CNS. The effects of OXT on neuronal cells 

have been well characterized, while its effects on astrocytic cells, specifically on OXTR-

coupled signaling and its resulting cellular consequences, are poorly understood and might 

very well differ. To characterize the effect of OXT on astrocytic gene expression, intracellular 

signaling, as well as astrocyte-specific proteins, synthetic OXT was either administered icv in 

male Wistar rats or applied to cultured rat primary cortical astrocytes. Due to the results of this 

analysis implying an acute OXT-induced cytoskeletal remodeling and alterations to gap-

junction coupling, I next examined the underlying molecular mechanisms and cellbiological 

consequences of these alterations. Here I found that OXT led to rapid elongation and formation 

of astrocytic processes in vitro and in vivo, while simultaneously impairing astrocytic 

intercellular connectivity. Mechanistically, both of these effects were OXTR-specific, conveyed 

via PKC and, to a lesser extent, MEK1/2 signaling. Notably, OXT-induced cytoskeletal 

remodeling and impairment of gap-junctions were characteristic for OXT, since its closely 

related sister-peptide AVP did not affect the examined parameters. CLSM and STED-

microscopy following icv or ex vivo administration of OXT furthermore revealed changes to 

astrocyte-neuron spatial relationships in two brain regions associated with high 

responsiveness of astrocytic markers to OXT, i.e. PVN and hippocampus. In depth in vitro 

studies identified the previously undescribed Sp1-Gem signaling axis to be at the base of these 

effects. A combination of knockdown, knockout and overexpression experiments revealed that 

OXT drives Gem expression via the transcription factor Sp1 and that Gem is required and 

sufficient for the effects of OXT on astrocytes. The Sp1-Gem axis was differentially regulated 

by OXT in neuronal cells, identifying it as key driver in the cell type-specific response of 

astroglial cells to OXT. Based on these findings, I established astrocyte-specific AAV-mediated 

Gem or Oxtr shRNA knockdown vectors as tools for a targeted manipulation of astrocytic 

OXTR signaling and future assessment of astrocytic contribution to the physiological and 

behavioral effects of OXT. To this end, shRNA oligonucleotides were screened for knockdown 

efficiency in vitro and subsequently packaged into viral vectors providing astrocyte-specific 

expression via transcriptional control of shRNA expression under the hGFAP promoter.  
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4.1 Effects of OXT on astrocytic signaling cascades and proteins 

To characterize the downstream effects of OXTR-coupled signaling on astrocytic phospho-

cascades and proteins, I used cultured rat primary cortical astrocytes as a model sytem. 

Although cultured astrocytes have been shown to display a partially different gene expression 

profile as astrocytes under physiological conditions, the unique advantage of this model 

system is the absence of non-astrocytic OXTRs. Due to the exclusion of potential secondary 

effects via other OXTR expressing cells like neurons or microglia (Yuan et al., 2016), this 

allowed examination of exclusively astrocytic responses to OXT. Furthermore, administration 

of icv OXT provided, first, validation of the in vitro results and, in case of differing findings, a 

better understanding of which OXT-induced effects on astrocytes might involve other cell 

types. 

The resulting pattern of rapid OXT-induced activation of CREB, various protein kinases, such 

as the MAPKs ERK1/2 and ERK5, PKB (Akt), as well as eEF2 dephosphorylation, compares 

well to OXT effects previously described in neuronal and myometrial cells (Blume et al., 2008; 

Devost et al., 2008b; Jurek and Neumann, 2018; Klein et al., 2013; Martinetz et al., 2019). The 

activation of astrocytic CREB is particularly intriguing, since OXT facilitates LTP formation and 

spatial memory in female mice via a CREB-dependent mechanism (Tomizawa et al., 2003). 

Since both cell types are required for LTP (Henneberger et al., 2010), it should be explored, 

whether this is due to neuronal and/or astrocytic CREB activity. Moreover, the absence of JNK 

activation as well is analogous to neuronal cells. However, astrocyte-specific differences 

consisted in a lack of OXT-triggered CamKII activation (van den Burg et al., 2015) and a 

decrease in the activity of Rho-associated protein kinase (ROCK). ROCK-conveyed signaling 

is involved in various cytoskeleton-associated cellular processes like contractility or migration 

and OXT activates myometrial ROCK to increase contractility during late pregnancy (Tahara 

et al., 2002). In contrast, I found OXT exposure to dampen the activity of the ROCK pathway 

as reflected by decreased phosphorylation of the downstream ROCK targets MLC and MYPT 

(for a detailed discussion of the role of ROCK please see 4.3).  

In general, these findings point towards Ca2+ and EGFR as important upstream nodes of 

astrocytic OXTR signaling and underline the high responsiveness of astrocytes to OXT. This 

is in line with previous studies of Di Scala-Guenot et al. (1994) and (Wang and Hatton, 2007) 

in which OXT elicited rapid dose-dependent Ca2+ release from intracellular stores in cultured 

hypothalamic astrocytes or an increase of nuclear pERK1/2 in astrocytes of acute SON slice 

preparations, respectively. Moreover, identical to studies in SON slices of lactating, as well as 

virgin male rats (Wang et al., 2017; Wang and Hatton, 2009), I found a OXT-induced 

degradation of GFAP in cultured astrocytes. In contrast, icv OXT increased GFAP quantities 

of the amygdala 20min post-administration, while not affecting the intermediate filament in the 
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PVN or hippocampus. Since the exact amount of peptide reaching its target areas is hard to 

control in icv experiments, a possible explanation for the observed discrepancy between in 

vitro and in vivo experiments might be a dose-dependent differential regulation of GFAP by 

OXT. Indeed, dose-dependent differential coupling of downstream effectors has been 

described for the OXTR in HEK293 cells (Busnelli et al., 2012). However, since OXT-induced 

GFAP regulation was shown to be dose-dependent, but unidirectional (Wang and Hamilton, 

2009), possible differences in the dose of OXT seem unsuitable to explain the observed 

differential regulation of GFAP. With previous work (Wang and Hamilton, 2009) and the in vitro 

results of the present thesis suggesting the regulation of GFAP by OXT to be independent of 

neurons, this discrepancy more likely reflects brain region-specific differences in the direct 

response of astrocytes to OXT. This demonstrates the differential responsiveness of 

astrocytes in distinct brain regions and mirrors their high degree of molecular heterogeneity 

(Chai et al., 2017). As major component of the astrocytic cytoskeleton, GFAP is responsible 

for the maintenance of astrocytic structure and shape (Li et al., 2020). Its OXT-induced 

regulation is in good agreement with its well described dynamic plasticity in response to an 

altered neurochemical environment (Camacho-Arroyo et al., 2011; Kumar et al., 2018) and 

highlights the rapid responsiveness of astrocytes to OXT (for further discussion on GFAP 

please see also 4.3). 

Furthermore, central administration of OXT altered the levels of the astrocytic glutamate 

transporters EAAT1 and EAAT2. OXT transiently elevated EAAT1 in the amygdala 10min after 

the injection, while downregulating EAAT1 in the hippocampus after 20min. EAAT2 was 

reduced within the PVN and amygdala, but not the hippocampus. Since astrocytes clear ~90% 

of the available glutamate in the brain via EAAT1 and EAAT2 (Anderson and Swanson, 2000; 

Eulenburg and Gomeza, 2010), changes in the expression of these proteins can have profound 

effects on neuronal communication. EAAT2 expression positively correlates with the synaptic 

activity of glutamatergic neurons (Poitry-Yamate et al., 2002; Swanson et al., 1997), with 

glutamate acting as the main regulatory molecule for EAAT2 expression. Such an indirect, 

activity-dependent regulation of EAAT2 seems also likely in the case of OXT, since direct 

exposure of cultured astrocyted did not alter EAAT2 expression in the present thesis. OXT-

induced downregulation of EAAT2 might therefore reflect an increase in GABAergic 

transmission, a condition that has been associated with OXT in multiple studies (Bulbul et al., 

2011; Marlin et al., 2015). However, the concurrent upregulation of EAAT1 in the amygdala 

contradicts this idea. Notably, exposure of neuron-astrocyte co-cultures to excessive amounts 

of glutamate decreased EAAT2 expression, while simultaneously increasing EAAT1 levels 

(Schlag et al., 1998). In the light of this condition resulting in a similar EAAT regulatory profile 

as OXT, it might be that the exogenously applied amount of OXT elicited a supraphysiological 

degree of glutamatergic transmission. Therefore, the expression of astrocytic neurotransmitter 
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transporters should be further explored under physiological conditions of elevated OXTergic 

activity, e.g. lactation or osmotic challenge. Indeed, EAAT2 expression is decreased within the 

SON of dehydrated rats (Boudaba et al., 2003). Similar to lactation, dehydration causes 

reduction of astroglial coverage and in turn increases glutamate availability, lending support to 

the idea of glutamate, not GABA, being the main driver of OXT-induced EAAT regulation.   

 

4.2 Effect of OXT on expression and distribution of astrocytic gap-junctions and its 

impact on intercellular connectivity 

A characteristic feature of astrocytes is their intercellular connectivity via homocellular gap-

junctions composed of the connexin isoforms Cx26, Cx30 or Cx43. Cx43 is the major astrocytic 

isoform in the CNS, but is also widely expressed in the periphery in a variety of cell types 

(Andersen et al., 1993; Gros et al., 2004; Richard, 2000). So far, two studies have examined 

the regulation of Cx43 by OXT in peripheral contexts. In mouse embryonic stem cells, exposure 

to OXT for 3h induced Cx43 expression via a PKA-NF-κB/CREB/CBP signaling mechanism 

(Yun et al., 2012). A similar observation was made by Khan-Darwood et al. (1998), who found 

elevated Cx43 protein and phosphorylation levels after incubation of cultured baboon corpus 

luteum cells with OXT for two days (Khan-Dawood et al., 1998). Thus, I investigated the effect 

of OXT on astrocytic gap-junctions in vitro and in vivo. Central administration of OXT caused 

a strong and acute increase in Cx30 in all three examined brain regions, whereas it decreased 

Cx43 levels of the PVN and hippocampus. These changes were accompanied by an increase 

of Cx43 phosphorylation at Ser368. Notably, Cx43 quantities and phosphorylation were 

unaffected in the amygdala. Corroborating these results, OXT altered the phosphorylation of 

multiple sites of Cx43 in vitro. PKC-induced phosphorylation at Ser368 and MAPK-induced 

Ser279/Ser282 phosphorylation of Cx43 lead to altered permeability/selectivity, as well as 

internalization and possible subsequent degradation of the gap-junction (Fong et al., 2014; 

Nimlamool et al., 2015). Therefore, I hypothesized that OXT causes Cx43 internalization and 

consequent impairment of intercellular communication. In accordance with this idea, I found 

that OXT reduces GJIC in a PKC and MEK-dependent manner. Interestingly, the 

accompanying internalization of Cx43, as assessed by co-staining with ZO-1, was as well PKC, 

but not MEK-dependent. This suggests that OXT conveys the closure of Cx43 gap-junctions 

via the concerted activity of PKC and MAPK signaling, while it solely operates through PKC 

for the removal of Cx43 from cell/cell-contacts. The conducted dose-response experiments 

demonstrate that Cx43 internalization requires a higher dose of OXT, than impairment of GJIC. 

In comparison to the pharmacological gap-junction blocker carbenoxolone, the rather small 

degree of GJIC impairment exerted by OXT suggests more of a modulatory role in this process. 

While carbenoxolone inhibited GJIC by around 70%, the extent of OXT-induced inhibition did 
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not surpass 25% even at a high dose of 1µM. The transient recovery of Cx43 localization at 

cell/cell contacts after 30min of OXT exposure might be due to the increase of Cx43 (Gja1) 

mRNA expression detected at this timepoint and likely reflects a compensatory feedback 

mechanism. However, prolonged stimulation with OXT mimicked the effect of acute exposure 

on GJIC and was at this timepoint accompanied by decreased Gja1 expression, indicating a 

manifestation of the inhibitory effect on gap-junctions. The expression pattern of connexin-

coding genes (see 3.2) induced by OXT at varying timepoints demonstrates a highly dynamic 

and isoform-specific regulation of astrocytic gap-junctions by OXT that generally points 

towards inhibition of intercellular connectivity. However, if this is the case in vivo remains to be 

elucidated. The strong acute increase in Cx30 observed in vivo, but not in vitro, might 

compensate for the transient loss of GJIC caused by internalized/reduced Cx43 levels. Other 

than Cx43, Cx30 expression is generally induced by neurons via a contact dependent 

mechanism (Koulakoff et al., 2008) and is responsible for around 20% of astrocyte-astrocyte 

coupling (Gosejacob et al., 2011). Indeed, Cx30 has been shown to be upregulated in Cx43 

deficient mice, in which it is able to partially compensate the decreased intercellular 

connectivity caused by the loss of Cx43 (Rouach et al., 2008; Wallraff et al., 2004). Thus, future 

studies should decipher the contribution of distinct connexin isoforms to the impact of OXT on 

astrocytic gap-junctional coupling. Here, dye-coupling experiments in ex vivo slice 

preparations of Cx43 and Cx30 knockout animals would provide a more detailed picture. 

Nevertheless, alterations in the interconnectivity of astroglial networks are able to produce 

profound effects on synaptic transmission and plasticity on multiple levels. First, metabolites 

required at sites of high neuronal activity are partially trafficked via astroglial gap-junctions, 

which have been shown to undergo activity-dependent reshaping to meet this demand (Gandhi 

et al., 2009; Rouach et al., 2008). Second, both potassium and glutamate reuptake efficiency 

are enhanced in areas of coupled astrocytes, pointing toward an inhibitory role of astroglial 

networks (Pannasch et al., 2011). In turn, disconnection of astrocytes by double genetic 

deletion of Cx43/Cx30 greatly improves excitatory transmission of CA1 pyramidal neurons due 

to an increased availability of potassium and glutamate at the synapses (Pannasch et al., 

2011). Last, gliotransmission induced by neuronal activity can additionally be triggered at distal 

synapses by information spread via astroglial networks and thereby lead to secondary 

activation of neurons (Kang et al., 2005; Pannasch and Rouach, 2013; Serrano et al., 2006). 

However, due to a multitude of non-channel functions attributed to astrocytic connexins, the 

implications of their OXT-induced regulation might extend beyond the alteration of astrocyte-

astrocyte coupling. In case of Cx30, its control of synapse invasion (Pannasch et al., 2014), 

synaptic glutamate clearance (Pannasch et al., 2019) and cellular migration/adhesion (Ghezali 

et al., 2018) has recently been demonstrated. Acute upregulation of Cx30 by OXT could thus 

cause a less efficient glutamate uptake akin to the implications of OXT-induced EAAT2 
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downregulation (as discussed in 4.1.). The idea of OXT additionally acting via connexin 

functions not involved in astrocytic interconnectivity is further supported by the regulation of 

Cx26 expression found in the present thesis. Cx26 is believed to not play a role in the coupling 

of astrocytes, and rather acts as a functional hemichannel (Huckstepp et al., 2010; Rouach et 

al., 2008).  

Taken together, this thesis is the first to demonstrate the regulation of astrocytic gap-junctions 

and their forming proteins by OXT. The present findings indicate a rapid and dynamic 

remodeling of astroglial networks, potentially facilitating excitatory transmission in the affected 

brain areas. However, the consequences of OXT-elicited connexin regulation on neuronal 

communication should be addressed by work specifically targeted at this question.  

 

4.3 OXT-induced changes in astrocytic cytoskeletal dynamics and the impact on 

astrocyte-neuron spatial relationships 

Since astrocytes modulate and support neuronal function via mechanisms relying on diffusion 

of signaling molecules, ions or metabolites, the spatial arrangement and distance between 

astrocytic processes and neuronal structures are of functional importance (Reichenbach et al., 

2010). This relationship is critically set by the astrocytic cytoskeleton (Heller and Rusakov, 

2015; Zeug et al., 2018). Since my experiments had revealed several changes of proteins 

associated with cytoskeletal dynamics, such as beta-tubulin and the ROCK-pathway, I 

examined possible OXT-induced alterations of the cytoskeleton of astrocytes. Here, I found 

that OXT causes rapid process extension and ramification in vitro. Mechanistically, these 

effects were OXTR-specific, as well as PKC-dependent, while the acute induction, but not the 

maintenance, of these effects required MEK activity. These findings, for the first time, 

demonstrate an acute action of OXT on astroglial cytoskeletal remodeling that is directly 

mediated via the astrocytic OXTR and its downstream effectors. In vivo analyses confirmed 

the timepoint and directionality of these effects in the PVN and hippocampus. The dynamics 

of astrocytic processes under physiological conditions and in tissue culture are thought to be 

comparable in time, as both can elongate within a few minutes in acute slice preparations 

(Hirrlinger et al., 2004) or in cultured astrocytes (Cornell-Bell et al., 1990), respectively. 

Moreover, I found a tighter spatial relationship between PVN OXTergic neurons and GFAP-

positive branches of astrocytes following central administration of OXT. Bath application of 

OXT to mouse hippocampal slice preparations further confirmed OXT-induced elongation and 

ramification of GFAP-positive processes.   

The obtained results are in line with studies identifying OXT as a direct regulator of cellular 

morphology in different cell types (Lestanova et al., 2017; Meyer et al., 2018; Meyer et al., 
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2020; Ripamonti et al., 2017; Theodosis et al., 1986b). As outlined in the introduction, the 

directionality, i.e. retraction vs. elongation of processes, is cell type-dependent. However, the 

elongation and ramification generally observed in the present thesis seem to contradict the 

well-described retraction of terminal astroglial processes from SON OXT neurons during 

lactation (Theodosis et al., 1986a), a condition associated with high activity of the OXT system. 

A possible explanation might be a difference in the motility of the major astrocytic branches 

compared to their fine terminal processes. GFAP, used as one of the markers to visualize the 

astrocytic cytoskeleton in this thesis, solely stains the major somatic branches of astrocytes 

(Connor and Berkowitz, 1985). Since cultured astrocytes do not possess the same elaborate 

arborization as astrocytes in vivo, GFAP is suitable for the analysis of the astrocytic 

cytoskeleton in vitro, while it may not reveal a sufficiently precise picture of astrocytic 

morphology under physiological conditions (Reichenbach et al., 2010). In contrast, the 

subcellular distribution of fluorescent proteins, even to fine astrocytic processes, enables a 

more comprehensive analysis of the morphology of astrocytes and their spatial relationship to 

neighbouring cells. Indeed, I found a greater distance between synapses and GFP-expressing 

astrocytic elements in OXT treated hippocampal slices, which is consistent with the OXT-

induced decreased astroglial coverage described in the SON (Theodosis et al., 1986b). In the 

same hippocampal slice preparations, I found GFAP positive processes to be increased in 

length and number (see also 4.5.) similar to in vitro experiments. It should thus be considered 

that GFAP might serve as a valuable marker of general cytoskeletal responsiveness, but may 

be unfit to determine the directionality of astrocytic cytoskeletal remodeling. For this purpose, 

targeted expression of fluorescent proteins (as used in the present thesis) or electron 

microscopy should be applied. As 3D reconstruction of GFP expressing astrocytes additionally 

revealed acute OXT-induced swelling, the increased astrocytic volume might drive PAPs away 

from synapses. Astrocytic swelling has been shown to be an indicator of neuronal activity 

(Guldner and Wolff, 1973) and is thought to result from an increased need of reuptake of 

neuronal K+ and glutamate (Koyama et al., 1991).  The consequent osmotic entry of water from 

the extracellular space through aquaporin channels in turn causes astrocytic hypertrophy that 

can affect PAP motility (Kimelberg, 2004; Nagelhus et al., 2004). In case of the SON, the 

neurobiological consequences of reduced astroglial synaptic coverage elicited by OXT are 

increased glutamate availability and release probability (Oliet et al., 2001), as well as an 

elevated glutamate spillover from uncovered to neighboring synapses (Piet et al., 2004). This 

lends further support to the idea of a transient facilitation of excitatory transmission discussed 

in the previous paragraphs (4.1 and 4.2).  

Similar to findings in the SON (Theodosis et al., 1986b), I found no effect of AVP exposure on 

cytoskeletal dynamics in vitro, indicating a mode of action characteristic for OXT. Moreover, 

OXT-elicited astroglial uncovering of synapses within the SON is limited to OXTergic neurons 
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(Langle et al., 2003; Theodosis et al., 1986a). Eventhough the hippocampus does not contain 

OXT positive neurons, I found a similar effect in hippocampal slices ex vivo, marking this mode 

of action of OXT as more general and widespread than previously thought. Notably, 

Montagnese et al. (1990) showed that continuous icv administration of OXT for six days 

induces astrocytic cytoskeletal remodeling solely in pregnant/lactating rats or rats undergoing 

a prolonged diestrus. In animals with normal estrous cycles, the effect of OXT required 

concomitant intramuscular injections of progesterone and estradiol. The findings of the present 

thesis demonstrate that OXT alone is sufficient to induce astrocytic remodeling in male rodents, 

corroborating the concept of OXT, per se, being a general regulator of astrocytic plasticity. 

 

4.4 The involvement of the small GTPase Gem in the effects of OXT on astrocytes 

Based on its OXT-induced upregulation in vitro and in vivo, as well as on the observed 

dampened activity of the ROCK pathway, I hypothesized that the endogenous RhoA/ROCK-

inhibitor Gem plays an important role in conveying the effect of OXT on astrocytes. To test this 

hypothesis, I applied a combinational approach of siRNA-based knockdown and 

overexpression experiments in vitro. Confirming my hypothesis, I found that Gem is required 

and sufficient for the effects of OXT on cytoskeletal dynamics and gap-junctional coupling of 

astrocytes. This identifies Gem as the common link between OXT-induced cytoskeletal 

remodeling and the regulation of astrocytic connexins.  

Two main functions have been ascribed to Gem. First, the inhibition of L-VGCCs through 

interaction with the Cav1.2 subunit of the channel (Yang et al., 2012) and, second, regulation of 

cytoskeletal dynamics via inhibitory interaction with either RhoA or ROCK (Hatzoglou et al., 

2007; Ward et al., 2002). Due to the lack of Cav1.2 expression in astrocytes (Zhang et al., 2014), 

it seems likely that Gem solely acts via the latter function in this cell type. The GTPase RhoA 

and its downstream effector ROCK are major cytoskeletal regulators in many cell types (Hall, 

1998; Jaffe and Hall, 2005; Ponimaskin et al., 2007; Riento and Ridley, 2003), and as such 

have also been implicated in the control of astrocyte morphology (Holtje et al., 2005; John et 

al., 2004; Kalman et al., 1999). Hallmarks of astrocytic RhoA/ROCK activation are a 

retraction/loss of processes, whereas decreased RhoA/ROCK activity causes formation and 

outgrowth of processes, as well as a breakdown of F-actin stress-fibres. Our results show that 

in astrocytes Gem prevents the activation of RhoA/ROCK by OXT, which in other cell types, 

as well as in astrocytes with reduced levels of Gem, seems to be the default mode of OXT 

(see 4.6;(Gogarten et al., 2001; Tahara et al., 2002). This unique feature, together with the 

general dependency of OXT effects on Gem, marks Gem as a key factor in the cell type-

specific response of astroglial cells to OXT. Gem expression, as well as its function as 
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cytoskeletal regulator are facilitated by PKC (Leone et al., 2001; Maguire et al., 1994; Ward et 

al., 2004). This is well in line with the observed PKC dependency of the effects of OXT on 

astrocytic cytoskeletal parameters and suggests that OXT regulates Gem expression and 

function via PKC signaling.  

In addition to OXT-induced cytoskeletal remodeling, Gem directly governed gap-junctional 

coupling, as well as Cx43 localization and phosphorylation status. The link between the 

cytoskeleton and GJIC is still a matter of debate in the literature. While some studies report 

that disruption of the cytoskeleton impairs Cx43 trafficking to the membrane, and consequently 

GJIC (Butkevich et al., 2004; Derangeon et al., 2008; Smyth et al., 2012; Theiss and Meller, 

2002), other work suggests no such relation (Giepmans et al., 2001; Johnson et al., 2002; 

Rouach et al., 2006). Adding to this complexity, pharmacological inhibition of ROCK caused 

Cx43 degradation in rat renal cells (Gomez et al., 2019), while other work has found no effect 

of decreased ROCK activity on GJIC in ZW13-2 cells (Kim et al., 2020), or even reported 

increased GJIC following ROCK-inihibition in corneal epithelial cells (Anderson et al., 2002). 

Specifically in cultured astrocytes, ROCK-inhibition alone did not reduce GJIC (Rouach et al., 

2006). Since, in contrast, overexpression of Gem was sufficient to impair GJIC, Gem might 

thus exert its control of Cx43 via inhibition of RhoA, but not ROCK. In support of this idea, 

direct activation of RhoA was reported to impair GJIC in cardiac myocytes (Derangeon et al., 

2008) and Gem has been shown to inhibit RhoA independently of ROCK (Hatzoglou et al., 

2007). To support this hypothesis, future work should examine whether direct activation of 

RhoA is able to rescue Gem OE-induced effects on astrocytic gap-junctions. Attempts to 

directly detect OXT-induced inhibition of RhoA activity by means of a pull-down assay of GTP-

bound (i.e. active) RhoA, failed due to below detection limit endogenous activity of RhoA (data 

not shown). In situ hybridization for RhoA in the rat spinal cord has shown very low levels in 

astrocytes (Erschbamer et al., 2005). Nevertheless, evidence that even below detection limit 

Rho GTPase expression levels are relevant for physiological processes in astrocytes come 

from functional studies demonstrating that introduction of constitutively active or dominant-

negative RhoA or Rac1 can clearly affect astrocyte morphology in situ (Kalman et al., 1999; 

Nishida and Okabe, 2007).  

Notably, Langle et al. (2003) found OXT-induced astroglial remodeling within the SON to be 

dependent on newly synthesized proteins, as the protein-sythesis inhibitor anismoycin 

prevented this effect. However, the identity of these proteins remained elusive. Therefore, the 

potential involvement of Gem in astroglial plasticity of the SON should be examined. 
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4.5 Involvement of astrocytic gap-junctions in OXT-induced cytoskeletal remodeling 

To explore the possibility of an involvement of astrocytic connexins in OXT-induced 

cytoskeletal remodeling, hippocampal slices of WT, Cx30 or Cx43 knockout mice were treated 

with OXT. Similar to experiments in rats, OXT caused acute increases in domain area, process 

length and process number in slices from WT and Cx30KO mice. In contrast, OXT did not alter 

process length and number of Cx43 knockout astrocytes. Moreover, it showed a trend to 

decrease astrocytic domain area in slices from Cx43KO mice, overall suggesting an 

involvement of Cx43, but not Cx30, in OXT-induced cytoskeletal dynamics of astrocytes. Both 

Cx43 and Cx30 have been implicated in the regulation of cytoskeletal processes (Ghezali et 

al., 2018) via C-terminal interactions with components of the cytoskeleton such as tubulin and 

actin (Ambrosi et al., 2016; Qu et al., 2009; Wall et al., 2007). Cx30 not being required for OXT-

induced cytoskeletal remodeling renders its upregulation by OXT more likely to play a role in 

glutamate clearance and/or compensate for the loss of Cx43-based gap-junctional coupling 

(as discussed under 4.2). However, the involvement of Cx43 is in good agreement with a large 

body of literature (reviewed in(Kameritsch et al., 2012; Matsuuchi and Naus, 2013), identifying 

Cx43 to play an important role in cytoskeletal dynamics in a variety of cell types. For this 

purpose, Cx43 is providing a membrane-bound ‘nexus’ for proteins that subsequently induce 

cytoskeletal rearrangements required for the extension of processes or directed migration (Olk 

et al., 2010; Olk et al., 2009). These actions, which are independent of Cx43 channel functions, 

are characterized by dynamic disassembly and reassembly of cytoskeletal components. 

Besides their interaction with components of the cytoskeleton, Cx43 signaling hubs additionally 

contain transcription factors enabling them to exert downstream transcriptional control 

(Matsuuchi and Naus, 2013). Since I found both, upregulation of Gem, as well as decreased 

levels of Cx43, to be required for OXT-induced cytoskeletal remodeling, I investiged whether 

Gem levels are under regulatory control of Cx43. However, there was no direct regulation of 

Gem by reduced Cx43 levels in vitro. Notably, the ability of Gem to affect cytoskeletal dynamics 

requires the activated (i.e. phosphorylated) form of ezrin, which recruits Gem to the cell 

membrane and enables its inhibition of RhoA via the Rho-GAP Gmip (Hatzoglou et al., 2007). 

Adapter proteins like ezrin and drebrin (Butkevich et al., 2004; Dukic et al., 2017; Pidoux et al., 

2014), which connect Cx43 to the cytoskeleton of its harboring cell, are part of Cx43 signaling 

scaffolds. While not affecting Gem levels directly, Cx43 knockdown significantly increased the 

phosphorylated amount of ezrin and negatively correlated with the degree of ezrin 

phosphorylation, implying an increasing availability of active ezrin with decreasing Cx43 levels. 

Due to its preferential expression in astrocytes within the CNS (Derouiche and Frotscher, 

2001), as well as its direct interactions with Cx43 and Gem, ezrin might thus be the common 

link between Gem and Cx43-mediated cytoskeletal dynamics elicited by OXT. The 

phosphorylation of ezrin at Thr567, which is critical for its interaction with Gem, is induced by 



 

[80] 
 

PKC (Ng et al., 2001). The critical involvement of PKC-signaling in the effects of OXT further 

supports such a link. To strengthen this hypothesis, future work should address whether 

manipulation of ezrin is able to alter the effects of OXT on astrocytes. Furthermore, it would be 

of interest whether the OXT-induced increase in astrocytic volume is related to the 

downregulation of Cx43. Since astrocytic gap-junctions gate the distribution of ions and small 

molecules within astrocytic networks, their disconnection can lead to swelling due to the 

unability to equilibrate osmotically active substances (Quist et al., 2000). The resulting 

reduction in extracellular space has been shown to result in altered diffusional properties of 

neuroactive substances  (Piet et al., 2004). Notably, this regulation of cell volume is 

characteristic for Cx43, since Cx43 knockout animals, in contrast to Cx30 deficient animals 

(Pannasch et al., 2014), show astrocytic swelling (Chever et al., 2014). 

Taken together, OXT-induced cytoskeletal remodeling of astrocytes specifically involves the 

connexin isoform Cx43. This is likely mediated via C-terminal interactions of Cx43 that provide 

a link to the cytoskeleton and do not involve its channel function. Loss of Cx43 increases the 

available amount of active ezrin, a protein required the regulatory function of Gem on the 

cytoskeleton. 

 

4.6 Transcriptional regulation of Gem by OXT 

Since I had identified OXT-induced expression of Gem to play a critical role in the effect of 

OXT on astrocytes, I explored how OXT controls Gem on a transcriptional level. An initial in 

silico analysis suggested the transcription factor Sp1 as a promising candidate. In vitro 

experiments confirmed that Sp1 is required for the OXT-induced upregulation of Gem on the 

protein level and, in accordance with its regulation of Gem, for cytoskeletal remodeling by OXT. 

Moreover, Sp1 knockdown decreased Gem mRNA quantities, further supporting direct 

transcriptional control. 

Sp1 was the first mammalian transcription factor to be cloned and characterized and as such 

is the founding member of the Specificity protein/Krüppel-like factor (Sp/KLF) family of 

transcription factors (Dynan and Tjian, 1983; Kadonaga et al., 1987; Philipsen and Suske, 

1999). The DNA-binding of Sp1 is accomplished by three adjacent zinc finger domains that 

recognize GC-rich motifs (Suske et al., 2005). Due to its involvement in a wide variety of 

cellular processes, as well as its relatively stable and ubiquitous expression, Sp1 was once 

thought to serve as a constitutive activator of housekeeping genes (Tan and Khachigian, 

2009). However, recent studies revealed a highly dynamic activity profile of Sp1, regulated by 

multiple post-translational modifications (Li and Davie, 2010) and Sp1 abundance itself (Li et 
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al., 2004). In this context, both PKC and ERK1/2 have been shown to regulate Sp1 activity 

through multiple phosphorylations (Chu, 2012). 

Notably, within the brain, several studies found Sp1 to be predominantly expressed by 

astrocytes (Hung et al., 2020; Mao et al., 2009). Astrocyte-specific inducible knockout of Sp1 

in mice caused impaired outgrowth or death of hippocampal and cortical neurons and resulted 

in lower performances in object recognition and motor ability tasks (Hung et al., 2020). 

Moreover, loss of Sp1 severely altered astrocyte morphology into a less ramified and retracted 

state through unknown mechanisms (Hung et al., 2020). In contrast, I did not observe an effect 

of Sp1 knockdown alone, which might be due to remaining Sp1 activity in siRNA-transfected 

cells. However, contrary to its effect on control cells, OXT-stimulation resulted in retraction of 

processes in Sp1 knockdown cells. Since Sp1 knockdown reduced Gem levels and additionally 

prevented OXT-induced upregulation of Gem, a subsequent activation of the ROCK pathway 

by OXT, similar to observations in Gem knockdown cells, might explain this finding.  

Specifically in astrocytes, Sp1 has been shown to positively regulate P2rx7 (Garcia-Huerta et 

al., 2012), Slc1a2 (Bradford et al., 2009), Ccnd1 (Michinaga et al., 2013), Cryab (Hong et al., 

2017), Sod2 (Mao et al., 2006), as well as multiple genes of the complement system (Hung et 

al., 2020). As Sp1 controls the transcription of the Oxtr gene in ovine and mouse cell lines 

(Fleming et al., 2006; Mamrut et al., 2013), I excluded the possibility of astrocytic OXTR 

signaling being desensitized by Sp1 knockdown.  

In line with Sp1-dependent upregulation of Gem, astrocytic Sp1 is generally understood as an 

activator of expression (Mao et al., 2009), although several lines of evidence demonstrate its 

ability to function as transcriptional repressor (Dabrowska and Zielinska, 2019; Hung et al., 

2020). Transcriptional regulation of the Gem gene was so far only studied in blood T cells, in 

which Gem expression is driven by the transcription factors Tax and CREB (Chevalier et al., 

2014). Since I found that OXT activates CREB in astrocytes and Sp1 interacts with CREB and 

other transcription factors (Safe and Kim, 2004), an indirect regulation of Gem via such an 

interaction cannot be excluded. Thus, future work should validate direct binding of Sp1 to the 

promoter region of Gem by means of chromatin immunoprecipitation. Moreover, it should be 

explored, to which extent Sp1 is involved in the regulation of astrocytic gap-junctions. This is 

of particular interest, as Sp1 exerts positive transcriptional control over the genes coding for 

Cx43 and Cx30 in different cell types (Essenfelder et al., 2005; Fernandez-Cobo et al., 2001; 

Hernandez et al., 2006; Teunissen et al., 2003; Villares et al., 2009; Vine et al., 2005). Whether 

this is the case in astrocytes remains to be elucidated.   

Overall, this is the first work to link Sp1 to OXTR-coupled signaling in general and, by means 

of its regulation of Gem, identifies the previously undescribed OXTR-Sp1-Gem signaling axis 

as primary driver of OXT actions on astrocytes. 
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4.7 Differential regulation of the Sp1-Gem axis in neuronal cells 

Since OXT has contrary effects on the cytoskeleton of neuronal cells (Meyer et al., 2018; Meyer 

et al., 2020; Ripamonti et al., 2017), i.e. a retraction of neurites, I examined whether OXT 

differentially regulates the Sp1-Gem signaling axis in neuronal cells compared to astrocytes. 

In contrast to astrocytes, OXT stimulation resulted in downregulation of Sp1 and Gem, which 

was accompanied by an increase in ROCK activity. To validate these findings in vivo, the 

cellular distribution of Gem was analyzed within the hippocampus of rats following central 

administration of OXT. This revealed an OXT-induced increase of Gem-positive astrocytes, as 

well as a simultaneous decrease of Gem-expressing non-astrocytic cells. In general, two-thirds 

of Gem-positive cells were of astrocytic identity, which is in accordance with its preferential 

expression in this cell type. Even though the Gem-positive non-astrocytic cells resembled 

neurons in their appearence, their exact identity is focus of ongoing work and thus remains to 

be elucidated.  

Differential and even contrary responses to identical manipulations are well documented 

between neurons and astrocytes and might explain the observed polarization of Gem 

expression by OXT. For example, while Gq-coupled GPCR signaling activated both neurons 

and astrocytes, Gi/o-coupled GPCR signaling inhibited neurons, but activated astrocytes 

(Durkee et al., 2019). This is especially relevant in the context of OXT, since the OXTR couples 

to Gq and Gi/o proteins alike (Busnelli et al., 2012; Ku et al., 1995). Moreover, activation of the 

GPCR effector PKC increased OXTR binding activity in neurons, while it had the opposite 

effect in astrocytes (Strosser et al., 2001). Further examples are found on the transcriptional 

level, where the same transcription factor can regulate vastly different gene networks in 

neurons or astrocytes with minimal overlap (Pardo et al., 2017). In the case of Sp/KLF 

transcription factors, the exertion of transcriptional control is characterized by the cell type-

specific expression of their isoforms. While Sp1 is preferentially found in astrocytes, Sp4 is the 

dominant Sp transcription factor in mature neurons (Mao et al., 2006; Mao et al., 2009). Other 

than Sp1, Sp4 is often acting as a transcriptional repressor, particularly when expressed in the 

presence of Sp3 (Hagen et al., 1995; Mao et al., 2002; Wong et al., 2001). As shown for the 

Sod2 gene, this can result in a contrary regulation of the same target gene through binding of 

different Sp isoforms to the same binding site (Mao et al., 2006). Therefore, future work should 

investigate a potential role of Sp4 in the downregulation of neuronal Gem by OXT. 

Notably, I found OXT-induced neurite retraction of H32 cells to be dependent on ROCK activity. 

Previous studies showed that the transcription factor MEF-2A is required for the effect of OXT 

on the cytoskeleton of these cells (Meyer et al., 2018). Moreover, MEF-2A expression seems 
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to define the morphological response of some cell types to OXT. In absence of MEF-2A, OXT 

caused process elongation, while it induced the opposite effect in MEF-2A expressing cells 

(Meyer et al., 2020). Indeed, we did not detect MEF-2A expression in astrocytes in a 

preliminary analysis (data not shown). Since I found activation of the ROCK pathway to be 

involved in OXT-elicited neurite retraction of H32 cells, it should be explored whether knockout 

of MEF-2A decreases the responsiveness of the ROCK pathway to OXT. A possible underlying 

mechanism is posed by the observed downregulation of Gem in H32 cells, which should result 

in a loss of Gem-exerted inhibition of ROCK. As Gem is not degraded via the proteasome 

pathway in H32 cells (Nerb, 2020), MEF-2A might regulate a protease that degrades Gem 

upon OXT stimulation and consequently disinhibits ROCK. Alternatively, MEF-2A may induce 

expression of a transcriptional repressor of Sp1 and by this cause reduced Gem expression.  

Taken together, these findings further identify Gem as a defining factor in the cell type-specific 

response of astroglial cells to OXT. 

 

4.8 Establishment of astrocyte-specific Oxtr/Gem-knockdown vectors 

Based on my previous findings demonstrating that OXT acts directly on astrocytes and that 

these actions are conveyed by Gem, I aimed to establish astrocyte-specific Gem or Oxtr 

knockdown vectors as tools for a targeted manipulation of astrocytic OXTR signaling in vivo. 

This would enable future work to assess a potential astrocytic contribution to the physiological 

and behavioral effects of OXT.  

To this end, shRNA oligonucleotides were screened for knockdown efficiency in vitro. Despite 

a compensatory effect on Oxtr expression 2d post-transfection, both shRNA plasmids caused 

a significant knockdown of their target mRNAs after a prolonged post-transfection period of 

one week and thus were chosen for the design of AAV-based vectors. In order to accomplish 

cell type specificity, first, an AAV6 capsid was selected for viral packaging. Among available 

adenoviral capsids, AAV6 packaged vectors show the highest tropism for astrocytes compared 

to other cell types of the CNS (Schober et al., 2016), while simultaneously providing good 

perturbance (Ellis et al., 2013). Second, transcriptional control of shRNA expression is exerted 

by the hGFAP promoter. Using a viral knockdown strategy provides several advantages over 

the creation of traditional knockout animal, e.g. via the Cre/loxP system. First, it enables brain 

region-specific assessment of the involvement of astrocytic OXTR-signaling. This is of 

particular relevance in the light of brain region-dependent heterogeneity of astrocytes, as well 

as due to brain region-specific differences in physiological/behavioral effects of OXT. Second, 

it permits manipulation of astrocytic gene expression in rats, for which the creation of 

transgenic animals is cost-ineffecient and of particular technical difficulty. It should, however, 
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be mentioned that the target sequences of both used shRNAs are found in the mouse 

Gem/Oxtr mRNA sequences as well and might therefore prove suitable for an application in 

this species.  

In a preliminary experiment, I aimed to determine the optimal physical viral titer and volume 

for microinfusions of the rat PVN. Of the tested conditions, only the highest physical viral titer 

resulted in a detectable, but scattered, expression of the fluorescent reporter protein mCherry 

at the injection site. The physical viral titers ranging from 108-1012 GC/ml used in this 

experiment were chosen based on the literature of AAV-mediated transfections of the PVN 

(Garza et al., 2008; Koba et al., 2018; Zhang et al., 2013). However, the low rate of successful 

transfection indicates an insufficient amount of available viral particles. Therefore, future 

microinfusions should be assessed with a viral titer of 1013 GC/ml. 

 

4.9 Conclusion and future perspectives 

Astrocytes are increasingly appreciated as indispensable components of the CNS that actively 

shape information processing. Thus, the biology of a neuroactive signaling peptide like OXT 

cannot be fully understood without taking its interactions with non-neuronal cell types into 

account. Therefore, the present thesis aimed to provide a better understanding of the effects 

and underlying mechanisms of direct OXT actions on astrocytes. Its findings demonstrate a 

rapid OXT-induced cytoskeletal remodeling and alterations to gap-junction coupling. 

Mechanistically, both of these effects were OXTR-specific, conveyed via PKC and, to a lesser 

extent, MEK1/2 signaling. Moreover, this mode of action was characteristic for OXT, since its 

closely related sister-peptide AVP did not affect the examined parameters. In depth in vitro 

analyses identified the previously undescribed Sp1-Gem signaling axis to be at the base of 

these effects. A combination of knockdown, knockout and overexpression experiments 

revealed that OXT drives Gem expression via the transcription factor Sp1 and that Gem is 

required and sufficient for the effects of OXT on astrocytes. The Sp1-Gem axis was 

differentially regulated by OXT in neuronal cells, identifying it as key driver in the cell type-

specific response of astroglial cells to OXT. The intracellular events defining the effect of OXT 

on astrocytes are summarized in Fig.25. Their potential ramifications on the synaptic level, 

which point towards potentiation of excitatory neurotransmission by reducing astroglial 

governance over the synaptic environment, are illustrated in Fig.26.   
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Figure 25. Schematic overview of OXTR-mediated signaling and its cellbiological consequences in astrocytes. 

Binding of OXT to its receptor induces activation of the MAPK-pathway and PKC signaling. Concerted action of 
ERK1/2 and PKC is required for induction of cytoskeletal remodeling and closure of gap-junctions. Concomitant 
PKC-induced Cx43 phosphorylation causes internalization of Cx43-based gap-junctions and increases the available 
amount of active, i.e. phosphorylated ezrin. PKC and ERK signaling converge at the transcription factor Sp1, which 
drives expression of Gem. Within the cytoplasm, PKC-activated Gem initiates cytoskeletal remodeling via direct 
inhibition of ROCK and, in complex with phosphorylated ezrin and Gmip, RhoA. Inhibition of RhoA might potentiate 

the impairment of gap-junctional intercellular connectivity. Illustration created with BioRender.com. 
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Figure 26. Schematic overview of OXT actions on astrocytes and their potential ramifications on the synaptic 

level. As shown in the present thesis, OXT acutely upregulates Cx30 and Gem in astrocytes, while downregulating 
Cx43 and EAAT2. In consequence, K+ buffering via astrocytic networks and reuptake of glutamate are less efficient.  
Simultaneous astroglial cytoskeletal remodeling and swelling cause retraction of PAPs from the synaptic clefts, 
furthering the decrease in astrocytic glutamate reuptake and permitting spillover to neighbouring synapses. Thus, 
oxytocin might potentiate excitatory neurotransmission by reducing astroglial governance over the synaptic 
environment. Illustration created with BioRender.com. 

 

The present thesis provides the first overview of astrocytic OXTR-coupled signaling and its 

cellbiological consequences. By identifying cell type-specific mediators that define the outcome 

of this signaling, this work furthers our understanding of how the OXT system is able to bring 

about physiological and behavioral responses, which are diverse and highly specific at the 

same time. The astrocyte-specific Gem/Oxtr-shRNA vectors derived from this thesis might 

provide tools for a targeted manipulation of astrocytic OXTR signaling and future assessment 

of astrocytic contribution to the physiological and behavioral effects of OXT. In this way, this 

thesis might serve as a base for future studies pursuing a more integrative and holistic 

approach in OXT research.  

Finally, a number of important limitations need to be considered. Even though key findings 

were constantly validated in vivo, the majority of experiments were performed in cultured 

astrocytes. The use of this model system naturally results in the possibility of findings lacking 

biological relevance. Future work should therefore aim to further validate the described findings 

in vivo/ex vivo and demonstrate their involvement in physiological and cognitive processes. 
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Second, in all experiments OXT was applied exogenously, which might have resulted in 

supraphysiological stimulation of target cells. The described mechanisms should thus be 

further explored under physiological conditions of elevated OXTergic activity, e.g. lactation or 

osmotic challenge. In addition, their involvement in processes depending on endogenous 

release of OXT should be demonstrated.   
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Appendix 1 

a) AAV6-GFAP Gem shRNA vector 
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b) AAV6-GFAP Oxtr shRNA vector 
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Appendix 2 

 

a) CMV-EGFP control plasmid 
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b) GFAP-Gem overexpression plasmid 
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c) GFAP-Gem shRNA knockdown plasmid 

 



 

[124] 
 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

[125] 
 

 

 

 

 



 

[126] 
 

 

d) GFAP-Oxtr shRNA knockdown plasmid 
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Appendix 3 

Laemmli Sample Buffer (4×) 

Tris (1.0M, pH 6.8)    10 mL 

SDS   4.0 g 

Glycerol   20 mL 

β-Mercaptoethanol   10 mL 

Bromophenol blue   0.1 g 

dH2O   to 50 mL 
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