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ABSTRACT

In this work, we study the decays of heavy hadrons that contain the 1 quark. We study the

decay modes � → � (∗)g−āg, Λ1 → Λ2g
−āg and � → -2g

−āg and analyze the effects of beyond

the standard model new physics in various observables of these decay modes. This is important

since the measurements of the decay � → � (∗)g−āg deviate from the standard model predictions

and this points to physics beyond the standard model. We also study CP violation in the angular

distribution of the decay � → �∗(→ �c)`−ā` and use it as a way to differentiate various new

physics scenarios. Finally we focus on the muon (6 − 2) anomaly and study a solution to this

anomaly that relates it to all other �-meson anomalies. This leads to a lot of interesting signals that

can be probed in the current and future experiments.

ii



DEDICATION

To my lovely parents, my wonderful sisters, Gilnaz, Fariba,

Fahimeh, and my awesome brothers, Farzad and Masoud.

iii



ACKNOWLEDGEMENTS

I would like to thank every one who helped me during my journey of my graduate studies.

First, I would like to thank my advisor Alakabha Datta who has always been supportive and helpful.

His constant encouragement and guidance was very helpful during all ups and downs of my studies

and researchworks. I would like to thankmy committeemembers Luca Bombelli, Lucien Cremaldi,

Richard Gordon and Donald Summers for their insight and helpful comments.

I would like to specially thank Luca Bombelli and Emanuele Berti who have always been

supportive of me during all steps of my studies. I want to thank the Department of Physics and

Astronomy at the University of Mississippi for supporting me and also the Graduate School and the

College of Liberal Arts at the University of Mississippi for partially supporting my research. I also

want to thank all the faculty and nonfaculty members of the physics department at the University

of Mississippi who made my life and work here, joyful.

I had the opportunity to work with great collaborators. I would like to thank Jonathan

Feng for his collaboration and support. I would also like to thank David London, Bhubanjyoti

Bhattacharya, Stefan Meinel and Ahmed Rashed for their collaborations.

This work was in part supported by the National Science Foundation under Grant No. PHY-

1414345. I would like to acknowledge the hospitality of the Department of Physics and Astronomy

at the University of California, Irvine; and the Lawrence Technological University where part of

the work was done.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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and satisfy B(�2 → g−āg) ≤ 30%. The allowed regions of the parameter space

when combining all constraints are highlighted with a black mesh. . . . . . . . . . 32

2.10 Constraints on the Y3 and [3 leptoquark models when considering one coupling at

a time. Here, 8 = 1, 2 denotes the electron and muon neutrinos. We require that the

couplings reproduce the measurements of ''0C8>
�

and ''0C8>
�∗ in Eqs. (2.5) and (2.6)
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−āg differential

decay rate (1/Γ0)3Γ/3�g, including the QCD O(UB) and 1/<21 correction in the SM

contribution only. Each plot shows the observable in the Standard Model and for

two allowed values of the new-physics couplings. . . . . . . . . . . . . . . . . . . . 52

3.5 The effect of individual new-physics couplings on the � ratio, including the QCD

O(UB) and 1/<21 correction in the SM contribution only. Each plot shows the

observable in the Standard Model and for two allowed values of the new-physics

couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 The effect of individual new-physics couplings on the � → -2g
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−āg. Each plot shows the observable in the Standard Model

and for two allowed values of the NP couplings. The red curves correspond to

633
3!
623∗
3!

= −0.062−0.0288, 632
3!
623∗
3!

= 0.031−0.0058, 631
3!
623∗
3!

= 0.013−0.0038, and

the blue curves correspond to 633
3!
623∗
3!

= −0.062−0.0288, 632
3!
623∗
3!

= 0.003−0.0318,

631
3!
623∗
3!

= 0.052 − 0.0548, respectively, while the green curves correspond to the

Standard Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiii



3.12 The effects of the[3 leptoquark model on the differential decay rates (1/Γ0)3Γ/3@2,

(1/Γ0)3Γ/3�g; the ratio of differential rates �; and the forward-backward asymme-

try (���) of � → -2g
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CHAPTER 1

INTRODUCTION

Laws of nature are governed by four fundamental forces: gravity, electromagnetic, weak

and strong. We have been able to quantize the electromagnetic, weak and strong forces and give

a consistent description of their behavior at the quantum level. This is formulated in the Standard

Model (SM) of particle physics where the three forces are described by the (* (3) × (* (2) ×* (1)

gauge group. The elementary particles of the SM are fermions (spin 1/2 particles), gauge bosons

(spin 1 particles) and the Higgs boson (a fundamental spin zero particle). In the SM, the gauge

bosons are described as force carriers that make the interactions between various fermions, possible.

The Higgs boson is the only spin zero elementary particle in the SM and is responsible for the

non-zero mass of other elementary particles.

Despite its many great successes, there are several reasons to believe that SM is incomplete

and we need to add more structure to it. Here we name some of the main problems that we still

do not have any answer to. One of the most important and fundamental ones is that the SM does

not describe gravity. There are still intense efforts to build a quantum theory of gravity with many

fundamentally different approaches. This includes loop quantum gravity and spin foam formalism,

causal sets and string theory. Another important reason for looking for beyond the SM physics

is the huge gap between the weak scale and the Planck scale. This problem, which is known

as the hierarchy problem, is explicitly seen in quantum corrections to the Higgs mass which are

quadratically divergent. Generically, it is expected that new physics (NP) will show up at the TeV

scale to remedy this behavior and in some models, such as supersymmetry, there are extra, beyond

the SM particles that compensate for the large corrections to the Higgs mass in the Standard Model.

Any new physics that might be present at this scale, can affect the phenomena at lower energy
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processes. This can most easily be seen in the framework of an effective field theory where the

effect of particles at a particular scale can be seen at a much lower scale through operators of higher

dimensions (dimension ≥ 4). This is one of the main motivations to study low energy processes

and make precision measurements. By comparing these measurements with SM predictions, we

can see if any significant deviation shows up and if this is the case, we may have indirect evidence

for physics beyond the SM.

Recently, there have been some anomalies in the measurements of the �-meson decays and

this has caused a lot of interest and activity in the particles physics community. These anomalies

are related to the semileptonic decays of the �-meson, �→  (∗)ℓ+ℓ− and �→ � (∗)ℓaℓ. The decay

� →  (∗)ℓ+ℓ− is an example of a Flavor Changing Neutral Current (FCNC) transition where the

flavor of the quark changes but its charge remains the same. The underlying quark level transition

in this decay mode is 1 → B. In the SM, FCNC transitions can not happen at tree level, but they

can happen via higher order loops such as penguin or box diagrams, so they are highly suppressed.

Consequently, it is expected that we see the effects of beyond the SM physics in FCNC processes

where particles in higher mass scales can compete with the SM contributions. This fact makes

the anomaly in � →  (∗)ℓ+ℓ− quite interesting. On the other hand, the decay � → � (∗)ℓaℓ, is a

charged current transition that can happen in the SM at tree level. The quark level transition of this

decay mode is 1 → 2 where the bottom quark decays to a charm quark and a, boson. Any new

physics (NP) that is supposed to contribute to this decay mode should have a large contribution in

order to be able to compete with the tree level contribution from the SM. In this work, our main

focus is on the anomalies in these � decays. Before we present the details of our work, in the

following, we describe briefly the outline of this dissertation.

Regarding the � → � (∗) transitions, the measured observable that we are interested in, is

'(� (∗)) which is defined as

'(� (∗)) = B(�→ � (∗)ga)
B(�→ � (∗)ℓa)

, (1.1)

where ℓ = `, 4.
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These ratios have several advantages over the absolute branching fractions. They are

relatively less sensitive to form factor variations since the uncertainties in the form factors cancel

largely in the ratio. Besides, most of the experimental uncertainties as well as the dependence on

the value of |+21 | cancel in the ratio. On the other hand, we may view these observables as lepton

flavor universality observables since in the numerator we have the much heavier lepton, the g, and

in the denominator we have the light leptons, 4 and `. We can view the probes of these observables

as tests of lepton flavor universality in the SM. In the SM, the gauge interactions are universal for all

lepton generations. This means that the gauge bosons couple to all leptons with the same strength

irrespective of their generations. So, the experimental deviations of the above observables from the

SM predictions are signs of lepton flavor nonuniversality which requires NP beyond the SM.

These obsevables have been measured by BaBar [2, 3], Belle [4, 5, 6] and LHCb [7, 8]

collaborations. By averaging these measurements, the Heavy Flavour Averaging Group (HFLAV)

finds [9],

'(�)exp =0.407 ± 0.039 ± 0.024 (1.2)

'(�∗)exp =0.306 ± 0.013 ± 0.007 , (1.3)

where the first uncertainty is statistical and the second is systematic. The SM predictions are

[10, 11, 12, 13],

'(�)SM = 0.299 ± 0.003 (1.4)

'(�∗)SM = 0.258 ± 0.005. (1.5)

Combining the two measurements with their correlations, the deviation from SM predictions be-

comes ∼ 4 f [9]. Recently, a new measurement by the Belle collaboration [14], using semileptonic

tagging, has been reported,
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'(�)Belle = 0.307 ± 0.037 ± 0.016 (1.6)

'(�∗)Belle = 0.283 ± 0.018 ± 0.014 . (1.7)

Including this measurement, HFLAV finds

'(�)exp,new = 0.340 ± 0.027 ± 0.013 (1.8)

'(�∗)exp,new = 0.295 ± 0.011 ± 0.008 , (1.9)

which reduces the deviation from the SM predictions to ∼ 3.1 f [9] 1 . This discrepancy is very

interesting and it is worth a detailed study.

In the next three chapters of this dissertation, we probe the '(� (∗)) anomalies in other decay

modes that are related to the � → � (∗) via the same quark level transition. These decay modes

are the semileptonic decay, Λ1 → Λ2gag and the inclusive semileptonic decay � → -2gag. In

the numerical calculations, we use the ratio of the experimental results to their corresponding SM

predictions,

'(�)Ratio = '(�)
exp

'(�)SM
, (1.10)

'(�∗)Ratio = '(�
∗)exp

'(�∗)SM
. (1.11)

Since we are interested in Lepton Flavor Universality Violation (LFUV) and in view of the fact

that the mass of the g lepton is much larger than the electron or muon, we usually consider NP to

be present in the 1 → 2ga decay only. Here we follow the same approach and consider NP only in

the g mode.
1There has been new measurements of '(� (∗) ) at the time of writing the dissertation. Since our results and

phenomenology do not change by including these new measurements, we will use the published results in presenting
our works.
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Next, we present a study of the charge-parity (CP) violation in the decay � → �∗`a and show

its usefulness in distinguishing different NP models that are capable of explaining the '(� (∗))

anomalies. For this purpose, we calculate the full angular distribution of the decay � → �∗(→

�c)`a and extract the CP violating triple product terms. Since these CP violating terms are absent

in the SM, any measurement of these terms, will be a clear sign of physics beyond the SM. We will

elaborate more on this in chapter 5.

Finally we move on to a study of the longstanding anomaly, the muon (6 − 2). We will

discuss a solution to this anomaly and its possible relation to the �-meson anomalies. These

�-meson anomalies include '(� (∗)) (as we discussed above) and the anomalies in the FCNC decay

�→  (∗)ℓ+ℓ−. For this decay mode, we can define a similar observable,

'( (∗)) = B(�→  (∗)`+`−)
B(�→  (∗)4+4−)

, (1.12)

where like in the '(� (∗)) case, we can view '( (∗)) as a lepton flavor universality observable.

Generally, it is very desirable to have a minimal, simplified model, in which all anomalies are

resolved. In chapter 6, we present a model which addresses the muon (6 − 2) and all � anomalies,

simultaneously. As we will see, this model has very interesting signals that can be probed in current

and future experiments.

In summary, the dissertation is organized as follows. In chapter 2, we present our study on

the semileptonic Λ1 → Λ2 transition. In chapters 3 and 4, we present our study on the inclusive

� decay and in chapter 5, we present our study of CP violation in the angular distribution of the

decay � → �∗(→ �c)`a`. In chapter 6, we present our study of the muon (6 − 2) anomaly and

its relation to all other � anomalies. Finally, in chapter 7, we present our conclusion.
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CHAPTER 2

NEW PHYSICS IN Λ1 → Λ2gāg USING LATTICE QCD CALCULATIONS

2.1 Introduction

In this chapter we present our study of the decay mode Λ1 → Λ2gā as was done in Ref.

[15]. This decay mode is useful in addressing the '(� (∗)) anomalies since it has the same quark

level transition as in '(� (∗)), which is 1 → 2. In the SM, this transition can happen at tree level

where the bottom quark decays to a charm quark and a , boson which subsequently decays to a

charged lepton and a neutrino as shown in Fig. 2.1. Generically, we can have new physics (NP)

contributions to this decay: a new particle that can effectively play the role of the , boson in the

SM as shown in Fig. 2.1. At quark level, the exact same transition happens in the � → � (∗)ga

decay mode and the only difference with the baryonic mode is the hadronization effects. Therefore,

any new physics that is required to explain the '(� (∗)) anomalies, can affect the Λ1 → Λ2gag

decay as well. So, the Λ1 → Λ2 transition is very useful in exploring '(� (∗)) anomalies and as

we will see later in this chapter, it can help differentiate various NP models.

In this chapter we study the effects of NP operators with different Lorentz structures on the

semileptonic decay Λ1 → Λ2gā. We consider both model-independent NP and specific classes of

models that are proposed to address the '(� (∗)) anomalies. For themodel-independent analysis, we

consider the most general dimension-6 NP operators that contribute to this decay mode. Then, we

constrain the parameters of each operator by '(� (∗)) measurements and use the allowed parameter

space to make predictions for the semileptonicΛ1 → Λ2 decaymode. The decayΛ1 → Λ2gā in the
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Figure 2.1: The semileptonic decay Λ1 → Λ2ℓa

SM and with NP, has been discussed in various works [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

Similar to the definition for '(� (∗)), we calculate the lepton flavor universality observable in our

analysis, '(Λ2) = �'[Λ1→Λ2gā]
�'[Λ1→Λ2ℓā] where ℓ = 4, `. We also present the results for the differential and

angular observables. We calculate the @2 distribution 3Γ/3@2, the ratio of differential distributions,

�Λ2 (@2) =
3Γ[Λ1 → Λ2gā]/3@2
3Γ[Λ1 → Λ2ℓā]/3@2

, (2.1)

and the forward-backward asymmetry defined as

��� (@2) =
∫ 1

0
(32Γ/3@23 cos \g) 3 cos \g −

∫ 0

−1 (3
2Γ/3@23 cos \g) 3 cos \g

3Γ/3@2
. (2.2)

Here @2 is the momentum transfer @2 = ?Λ1 − ?Λ2 , ℓ = `, 4 and \g is the angle between the

momenta of the g lepton and Λ2 baryon in the dilepton rest frame, as shown in Fig. 2.2.

For the numerical calculations, we use the phenomenological SM predictions for '(�) [28]

and '(�∗) [29],

'(�)SM =0.305 ± 0.012 ,

'(�∗)SM =0.252 ± 0.003 , (2.3)
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Figure 2.2: Definition of the angle \g in the decay Λ1 → Λ2gag

which are based on form factors extracted from the experimental data for the � → � (∗)ℓāℓ decay

distributions using heavy-quark effective theory.

The averages of '(�) and '(�∗) measurements evaluated by the Heavy-Flavor Averaging

Group, are

'(�)exp =0.397 ± 0.040 ± 0.028,

'(�∗)exp =0.316 ± 0.016 ± 0.010, (2.4)

where the first uncertainty is statistical and the second is systematic. '(�) and '(�∗) exceed the

SM predictions by 3.3 f and 1.9 f, respectively and the combined analysis of '(�) and '(�∗),

taking into account measurement correlations, finds that the deviation from the SM prediction is

≈ 4 f [30]. We also construct the ratios of the experimental results (2.4) to the phenomenological
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SM predictions (2.3):

'Ratio
� =

'(�)exp
'(�)SM

= 1.30 ± 0.17, (2.5)

'Ratio
�∗ =

'(�∗)exp
'(�∗)SM

= 1.25 ± 0.08 . (2.6)

We use these ratios to put constraints on the NP parameters and find their allowed parameter space.

This chapter is organized in the following manner: In Sec. 2.2, we introduce the effective

Lagrangian to parameterize the NP operators and give the expressions for the decay distribution

in terms of helicity amplitudes. The model-independent phenomenological analysis of individual

new-physics couplings is discussed in Sec. 2.3, while explicit models are considered in Sec. 2.4.

We conclude in Sec. 2.5.

2.2 Formalism

2.2.1 Effective Hamiltonian

In the presence of NP, the effective Hamiltonian for the quark-level transition 1 → 2g−āg

can be written in the form [31, 32]

H4 5 5 =
��+21√

2

{[
2̄W` (1 − W5)1 + 6! 2̄W` (1 − W5)1 + 6' 2̄W` (1 + W5)1

]
ḡW` (1 − W5)ag

+
[
6( 2̄1 + 6% 2̄W51

]
ḡ(1 − W5)ag +

[
6) 2̄f

`a (1 − W5)1
]
ḡf`a (1 − W5)ag + ℎ.2

}
, (2.7)

where �� is the Fermi constant, +21 is the Cabibbo-Kobayashi-Maskawa (CKM) matrix element,

and we use f`a = 8[W`, Wa]/2. The SM effective Hamiltonian corresponds to 6! = 6' = 6( =

6% = 6) = 0. In Eq. (2.7), we have assumed the neutrinos to be always left chiral. In general,

with NP, the neutrino associated with the g lepton does not have to carry the same flavor. In the

model-independent analysis of individual couplings (Sec. 2.3) we will not consider this possibility.

But, in the leptoquark models, we consider all neutrino flavors that may couple to the g lepton.
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2.2.2 Decay process

The process under consideration isΛ1 (?Λ1 ) → Λ2 (?Λ2 )+g−(?g)+āg (? āg ).Wecalculate the

decay rate using the helicitymethod [33] where one builds the helicity amplitudes by contracting the

hadronic and leptonic currents with the polarization of the intermediate particles. The differential

decay rate for this process can be represented as

3Γ

3@23 cos \g
=

�2
�
|+21 |2

2048c3

(
1 −

<2g

@2

)√
&+&−

<3
Λ1

∑
_Λ2

∑
_g

|M_g
_Λ2
|2, (2.8)

where

@ = ?Λ1 − ?Λ2 , (2.9)

&± = (<Λ1 ± <Λ2 )2 − @2 , (2.10)

and the helicity amplitudeM_g
_Λ2

is written as

M_g
_Λ2

= �(%
_Λ2 ,_g=0

+
∑
_

[_�
+�
_Λ2 ,_

!
_g
_
+

∑
_,_′

[_[_′�
())_Λ1
_Λ2 ,_,_

′!
_g
_,_′ . (2.11)

Here, (_, _′) indicate the helicity of the virtual vector boson (see Appendix A), _Λ2 and _g are the

helicities of the Λ2 baryon and g lepton, respectively, and [_ = 1 for _ = C and [_ = −1 for _ = 0,±1.

The scalar-type, vector/axial-vector-type, and tensor-type hadronic helicity amplitudes are

defined as

�(%
_Λ2 ,_=0

= �(
_Λ2 ,_=0

+ �%
_Λ2 ,_=0

,

�(
_Λ2 ,_=0

= 6( 〈Λ2 | 2̄1 |Λ1〉 ,

�%
_Λ2 ,_=0

= 6% 〈Λ2 | 2̄W51 |Λ1〉 , (2.12)
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�+�_Λ2 ,_
= �+_Λ2 ,_

− ��
_Λ2 ,_

,

�+_Λ2 ,_
= (1 + 6! + 6') n∗` (_) 〈Λ2 | 2̄W`1 |Λ1〉 ,

��
_Λ2 ,_

= (1 + 6! − 6') n∗` (_) 〈Λ2 | 2̄W`W51 |Λ1〉 , (2.13)

and

�
())_Λ1
_Λ2 ,_,_

′ = �
()1)_Λ1
_Λ2 ,_,_

′ − �
()2)_Λ1
_Λ2 ,_,_

′ ,

�
()1)_Λ1
_Λ2 ,_,_

′ = 6) n
∗` (_)n∗a (_′) 〈Λ2 | 2̄8f`a1 |Λ1〉 ,

�
()2)_Λ1
_Λ2 ,_,_

′ = 6) n
∗` (_)n∗a (_′) 〈Λ2 | 2̄8f`aW51 |Λ1〉 . (2.14)

The leptonic amplitudes are defined as

!_g = 〈gāg | ḡ(1 − W5)ag |0〉 ,

!
_g
_

= n ` (_) 〈gāg | ḡW` (1 − W5)ag |0〉 ,

!
_g
_,_′ = −8n ` (_)n a (_′) 〈gāg | ḡf`a (1 − W5)ag |0〉 . (2.15)

Above, n ` are the polarization vectors of the virtual vector boson (see Appendix A). The explicit

expressions for the hadronic and leptonic helicity amplitudes are presented in the following.

2.2.2.1 Hadronic helicity amplitudes

Here, we use the helicity-based definition of the Λ1 → Λ2 form factors, which was intro-

duced in [34]. The matrix elements of the vector and axial vector currents can be written in terms
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of six helicity form factors �+, �⊥, �0, �+, �⊥, and �0 as follows:

〈Λ2 | 2̄W`1 |Λ1〉 = D̄Λ2

[
�0(@2) (<Λ1 − <Λ2 )

@`

@2

+�+(@2)
<Λ1 + <Λ2

&+
(?`
Λ1
+ ?`

Λ2
− (<2Λ1 − <

2
Λ2
) @

`

@2
)

+�⊥(@2) (W` −
2<Λ2

&+
?
`

Λ1
−
2<Λ1

&+
?
`

Λ2
)
]
DΛ1 , (2.16)

〈Λ2 | 2̄W`W51 |Λ1〉 = −D̄Λ2W5
[
�0(@2) (<Λ1 + <Λ2 )

@`

@2

+�+(@2)
<Λ1 − <Λ2

&−
(?`
Λ1
+ ?`

Λ2
− (<2Λ1 − <

2
Λ2
) @

`

@2
)

+�⊥(@2) (W` +
2<Λ2

&−
?
`

Λ1
−
2<Λ1

&−
?
`

Λ2
)
]
DΛ1 . (2.17)

The matrix elements of the scalar and pseudoscalar currents can be obtained from the vector and

axial vector matrix elements using the equations of motion:

〈Λ2 | 2̄1 |Λ1〉 =
@`

<1 − <2
〈Λ2 | 2̄W`1 |Λ1〉

= �0(@2)
<Λ1 − <Λ2
<1 − <2

D̄Λ2DΛ1 , (2.18)

〈Λ2 | 2̄W51 |Λ1〉 =
@`

<1 + <2
〈Λ2 | 2̄W`W51 |Λ1〉

= �0(@2)
<Λ1 + <Λ2
<1 + <2

D̄Λ2W5DΛ1 . (2.19)
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In our numerical analysis, we use <1 = 4.18(3) GeV, <2 = 1.27(2) GeV [35]. The matrix elements

of the tensor currents can be written in terms of four form factors ℎ+, ℎ⊥, ℎ̃+, ℎ̃⊥ [15],

〈Λ2 | 2̄8f`a1 |Λ1〉 = D̄Λ2
[
2ℎ+(@2)

?
`

Λ1
?a
Λ2
− ?a

Λ1
?
`

Λ2

&+

+ℎ⊥(@2)
(<Λ1 + <Λ2

@2
(@`Wa − @aW`) − 2( 1

@2
+ 1

&+
) (?`

Λ1
?aΛ2 − ?

a
Λ1
?
`

Λ2
)
)

+ℎ̃+(@2)
(
8f`a − 2

&−
(<Λ1 (?

`

Λ2
Wa − ?aΛ2W

`)

−<Λ2 (?
`

Λ1
Wa − ?aΛ1W

`) + ?`
Λ1
?aΛ2 − ?

a
Λ1
?
`

Λ2
)
)

+ℎ̃⊥(@2)
<Λ1 − <Λ2
@2&−

(
(<2Λ1 − <

2
Λ2
− @2) (W`?aΛ1 − W

a?
`

Λ1
)

−(<2Λ1 − <
2
Λ2
+ @2) (W`?aΛ2 − W

a?
`

Λ2
) + 2(<Λ1 − <Λ2 ) (?

`

Λ1
?aΛ2 − ?

a
Λ1
?
`

Λ2
)
)]
DΛ1 .

(2.20)

The matrix elements of the current 2̄8f`aW51 can be obtained from the above equation by using the

identity

f`aW5 = −
8

2
n `aUVfUV. (2.21)

In the following, only the non-vanishing helicity amplitudes are given. The scalar and

pseudo-scalar helicity amplitudes associated with the new physics scalar and pseudo-scalar inter-

actions are

�(%
1/2,0 = �06(

√
&+

<1 − <2
(<Λ1 − <Λ2 ) − �06%

√
&−

<1 + <2
(<Λ1 + <Λ2 ), (2.22)

�(%
−1/2,0 = �06(

√
&+

<1 − <2
(<Λ1 − <Λ2 ) + �06%

√
&−

<1 + <2
(<Λ1 + <Λ2 ). (2.23)
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The parity-related amplitudes are

�(
_Λ2 ,_#%

= �(
−_Λ2 ,−_#% ,

�%
_Λ2 ,_#%

= −�%
−_Λ2 ,−_#% . (2.24)

For the vector and axial-vector helicity amplitudes, we find

�+�
1/2,0 = �+(1 + 6! + 6')

√
&−√
@2
(<Λ1 + <Λ2 )

−�+(1 + 6! − 6')
√
&+√
@2
(<Λ1 − <Λ2 ), (2.25)

�+�
1/2,+1 = −�⊥(1 + 6! + 6')

√
2&− + �⊥(1 + 6! − 6')

√
2&+, (2.26)

�+�
1/2,C = �0(1 + 6! + 6')

√
&+√
@2
(<Λ1 − <Λ2 )

−�0(1 + 6! − 6')
√
&−√
@2
(<Λ1 + <Λ2 ), (2.27)

�+�−1/2,0 = �+(1 + 6! + 6')
√
&−√
@2
(<Λ1 + <Λ2 )

+�+(1 + 6! − 6')
√
&+√
@2
(<Λ1 − <Λ2 ), (2.28)

�+�−1/2,−1 = −�⊥(1 + 6! + 6')
√
2&− − �⊥(1 + 6! − 6')

√
2&+, (2.29)

�+�−1/2,C = �0(1 + 6! + 6')
√
&+√
@2
(<Λ1 − <Λ2 )

+�0(1 + 6! − 6')
√
&−√
@2
(<Λ1 + <Λ2 ). (2.30)

We also have the relations

�+_Λ2 ,_F
= �+−_Λ2 ,−_F ,

��
_Λ2 ,_F

= −��
−_Λ2 ,−_F . (2.31)
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The tensor helicity amplitudes are

�
())−1/2
−1/2,C,0 = −6)

[
− ℎ+

√
&− + ℎ̃+

√
&+

]
, (2.32)

�
())+1/2
+1/2,C,0 = 6)

[
ℎ+

√
&− + ℎ̃+

√
&+

]
, (2.33)

�
())−1/2
+1/2,C,+1 = −6)

√
2√
@2

[
ℎ⊥(<Λ1 + <Λ2 )

√
&− + ℎ̃⊥(<Λ1 − <Λ2 )

√
&+

]
, (2.34)

�
())+1/2
−1/2,C,−1 = −6)

√
2√
@2

[
ℎ⊥(<Λ1 + <Λ2 )

√
&− − ℎ̃⊥(<Λ1 − <Λ2 )

√
&+

]
, (2.35)

�
())−1/2
+1/2,0,+1 = −6)

√
2√
@2

[
ℎ⊥(<Λ1 + <Λ2 )

√
&− + ℎ̃⊥(<Λ1 − <Λ2 )

√
&+

]
, (2.36)

�
())+1/2
−1/2,0,−1 = 6)

√
2√
@2

[
ℎ⊥(<Λ1 + <Λ2 )

√
&− − ℎ̃⊥(<Λ1 − <Λ2 )

√
&+

]
, (2.37)

�
())+1/2
+1/2,+1,−1 = −6)

[
ℎ+

√
&− + ℎ̃+

√
&+

]
, (2.38)

�
())−1/2
−1/2,+1,−1 = −6)

[
ℎ+

√
&− − ℎ̃+

√
&+

]
. (2.39)

The other non-vanishing helicity amplitudes of tensor type are related to the above by

�
())_Λ1
_Λ2 ,_,_

′ = −�
())_Λ1
_Λ2 ,_

′,_. (2.40)

2.2.2.2 Leptonic helicity amplitudes

In the following, we define

E =

√
1 − <

2
g

@2
. (2.41)
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The scalar and pseudoscalar leptonic helicity amplitudes are

!+1/2 = 2
√
@2E, (2.42)

!−1/2 = 0, (2.43)

the vector and axial-vector amplitudes are

!
+1/2
±1 = ±

√
2<gE sin(\g), (2.44)

!
+1/2
0

= −2<gE cos (\g), (2.45)

!
+1/2
C = 2<gE, (2.46)

!
−1/2
±1 =

√
2@2E (1 ± cos(\g)), (2.47)

!
−1/2
0

= 2

√
@2E sin (\g), (2.48)

!
−1/2
C = 0, (2.49)

and the tensor amplitudes are

!
+1/2
0,±1 = −

√
2@2E sin(\g), (2.50)

!
+1/2
±1,C = ∓

√
2@2E sin(\g), (2.51)

!
+1/2
C,0

= !
+1/2
+1,−1 = −2

√
@2E cos(\g), (2.52)

!
−1/2
0,±1 = ∓

√
2<gE (1 ± cos(\g)), (2.53)

!
−1/2
±1,C = −

√
2<gE (1 ± cos(\g)), (2.54)

!
−1/2
C,0

= !
−1/2
+1,−1 = 2<gE sin(\g). (2.55)

Here—as in the hadronic case—for the leptonic tensor amplitudes, we have the relation

!
_g
_,_′ = −!

_g
_′,_. (2.56)
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The angle \g is defined as the angle between the momenta of the g lepton and Λ2 baryon in the

dilepton rest frame as shown in Fig. 2.2.

2.2.3 Differential decay rate and forward-backward asymmetry

From the twofold decay distribution (2.8), we obtain the following expression for the

differential decay rate by integrating over cos \g [15]:

3Γ(Λ1 → Λ2gāg)
3@2

=
�2
�
|+21 |2

384c3

@2
√
&+&−

<3
Λ1

(
1 −

<2g

@2

)2 [
�+�1 +

<2g

2@2
�+�2 +

3

2
�(%3

+2
(
1 +

2<2g

@2

)
�)4 +

3<g√
@2
�+�−(%
5

+ 6<g√
@2
�+�−)6

]
, (2.57)

where

�+�1 = |�+�
1/2,1 |

2 + |�+�
1/2,0 |

2 + |�+�−1/2,0 |
2 + |�+�−1/2,−1 |

2,

�+�2 = |�+�
1/2,1 |

2 + |�+�
1/2,0 |

2 + |�+�−1/2,0 |
2 + |�+�−1/2,−1 |

2 + 3|�+�
1/2,C |

2 + 3|�+�−1/2,C |
2,

�(%3 = |�(%
1/2,0 |

2 + |�(%
−1/2,0 |

2,

�)4 = |�
())1/2
1/2,C,0 + �

())1/2
1/2,−1,1 |

2 + |� ())1/2−1/2,C,−1 + �
())1/2
−1/2,−1,0 |

2 + |� ())−1/2
1/2,0,1 + �

())−1/2
1/2,C,1 |

2

+ |� ())−1/2−1/2,−1,1 + �
())−1/2
−1/2,C,0 |

2,

�+�−(%
5

= Re(�(%∗
1/2,0 �

+�
1/2,C + �

(%∗
−1/2,0 �

+�
−1/2,C),

�+�−)6 = Re[�+�∗
1/2,0(�

())1/2
1/2,−1,1 + �

())1/2
1/2,C,0 )] + Re[�+�∗

1/2,1(�
())−1/2
1/2,0,1 + �

())−1/2
1/2,C,1 )]+

Re[�+�∗−1/2,0(�
())−1/2
−1/2,−1,1 + �

())−1/2
−1/2,C,0 )] + Re[�+�∗−1/2,−1(�

())1/2
−1/2,−1,0 + �

())1/2
−1/2,C,−1)] . (2.58)

Here, �+�
1

and �+�
2

are the (axial-)vector non-spin-flip and spin-flip terms respectively, �(%
3

and �)
4

are the pure (pseudo-)scalar and tensor terms respectively; and �+�−(%
5

and �+�−)
6

are interference
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terms. The scalar-tensor interference term is proportional to cos \g and vanishes after integration

over cos \g. For the forward-backward asymmetry (2.2), we have [15]

��� (@2) =

(
3Γ

3@2

)−1 �2
�
+2
21

512c3

@2
√
&+&−

<3
Λ1

(
1 −

<2g

@2

)2 [
�+�1 +

2<2g

@2
�+�2 +

4<2g

@2
�)3 +

2<g√
@2
�+�−(%4 + 4<g√

@2
�+�−)
5

+ 4�(%−)6

]
, (2.59)

where

�+�1 = |�+�
1/2,1 |

2 − |�+�−1/2,−1 |
2,

�+�2 = Re[�+�∗
1/2,C�

+�
1/2,0 + �

+�∗
−1/2,C�

+�
−1/2,0],

�)3 = |�
())−1/2
1/2,0,1 + �

())−1/2
1/2,C,1 |

2 − |� ())1/2−1/2,−1,0 + �
())1/2
−1/2,C,−1 |

2,

�+�−(%4 = Re[�(%∗
1/2,0�

+�
1/2,0 + �

(%∗
−1/2,0�

+�
−1/2,0],

�+�−)
5

= Re[�+�∗
1/2,C (�

())1/2
1/2,−1,1 + �

())1/2
1/2,C,0 )] + Re[�+�∗

1/2,1(�
())−1/2
1/2,0,1 + �

())−1/2
1/2,C,1 )]

+ Re[�+�∗−1/2,C (�
())−1/2
−1/2,−1,1 + �

())−1/2
−1/2,C,0 )] − Re[�+�∗−1/2,−1(�

())1/2
−1/2,−1,0 + �

())1/2
−1/2,C,−1)],

�(%−)6 = Re[�(%∗
1/2,0(�

())1/2
1/2,−1,1 + �

())1/2
1/2,C,0 )] + Re[�(%∗

−1/2,0(�
())−1/2
−1/2,−1,1 + �

())−1/2
−1/2,C,0 )] . (2.60)

There is no contribution from pure (pseudo-)scalar operators to the forward-backward asymmetry,

but all possible interference terms are present.

In this work we use Λ1 → Λ2 form factors computed in lattice QCD. For a detailed

discussion of the computation of the vector and axial-vector form factors for the transitionΛ1 → Λ2

in lattice QCD, see [1]. The tensor form factors for this process in lattice QCD are discussed in

[15].
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2.3 Model-independent analysis of individual new-physics couplings

In this section we consider one new-physics coupling at a time. We first compute the

constraints from the existing measurements with mesons, and then study the impact of a future

measurement of '(Λ2).

2.3.1 Constraints from the existing measurements of '(�), '(�∗), and g�2

We require the NP couplings to reproduce the measurements (2.5 and 2.6 ) of ''0C8>
�

and

''0C8>
�∗ within the 3f range. The coupling 6( (6%) only contributes to ''0C8>�

(''0C8>
�∗ ) while the other

couplings contribute to both channels. If only 6! is nonzero, the SM contribution gets rescaled by

an overall factor |1 + 6! |2, so that

''0C8>� = ''0C8>�∗ = ''0C8>Λ2
= |1 + 6! |2. (2.61)

Note that in the 6!-only scenario the forward-backward asymmetry (2.2) is unmodified, ��� = �SM�� .

The measured lifetime of the �2 meson, g�2 = 0.510(9) ps [35], provides an upper bound

on the �2 → g−āg decay rate, which yields a strong constraint on the 6% coupling [36, 37, 38].

According to SM calculations using an operator product expansion [39], only about 5% (for the

central value) of the total width of the �2, Γ�2 = 1/g�2 , can be attributed to purely tauonic and

semi-tauonic modes. This can be relaxed as the parameters in the calculations are varied. In our

analysis, we use an upper limit of �2 → gāg ≤ 30% to put constraints on the new-physics cou-

plings. Obviously stronger bounds can be considered but herewe consider the conservative bound of

30%. For the decay constant of �2 we use 5�2 = 0.434(15) GeV from lattice QCD calculations [40].

In Fig. 2.3, we present the constraints on the new-physics couplings coming from the

measurements of ''0C8>
�

, ''0C8>
�∗ , and g�2 . We see that g�2 puts a strong constraint on the coupling

6%. It does not have any significant effect on the other couplings. The 6) coupling is strongly
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Figure 2.3: Constraints on the individual new-physics couplings from the measurements of ''0C8>
�

,
''0C8>
�∗ , and g�2 . We require that the couplings reproduce the measurements of ''0C8>

�
and ''0C8>

�∗ in
Eqs. 2.5 and 2.6 within 3f, and satisfy B(�2 → g−āg) ≤ 30%.

constrained by ''0C8>
�∗ and only weakly constrained by ''0C8>

�
.

Example values of the ratios '(Λ2) and ''0C8>Λ2
= '(Λ2)/'(Λ2)SM for representative allowed values

of theNP couplings are given in Table 2.1. The standard-model prediction for '(Λ2) is 0.333±0.010

[1]. We find that large deviations from this value are possible with the present mesonic constraints.

In Table 2.2, we present themaximum andminimum allowed values of ''0C8>
Λ2

= '(Λ2)/'(Λ2)SM in

the presence of each individual new-physics coupling, and the corresponding values of the coupling

at which these occur.

Figure 2.4 shows the effect of representative values of the individual NP couplings on the

Λ1 → Λ2gāg differential decay rate (evaluated assuming |+21 | = 0.041) as well as �Λ2 (@2) [defined

in Eq. (2.1)] and ��� (@2). In all cases, except for the strongly constrained pure 6% coupling,
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6( only 6% only 6! only 6' only 6) only
−0.4 0.3 −2.2 −0.044 0.4

'(Λ2) 0.290 ± 0.009 0.342 ± 0.010 0.479 ± 0.014 0.344 ± 0.011 0.475 ± 0.037
''0C8>
Λ2

0.872 ± 0.007 1.026 ± 0.001 1.44 1.033 ± 0.003 1.426 ± 0.100
−1.5 − 0.38 0.4 − 0.48 0.15 − 0.38 0.08 − 0.678 0.2 − 0.28

'(Λ2) 0.384 ± 0.013 0.346 ± 0.011 0.470 ± 0.014 0.465 ± 0.014 0.404 ± 0.021
''0C8>
Λ2

1.154 ± 0.008 1.040 ± 0.002 1.412 1.397 ± 0.005 1.213 ± 0.050

Table 2.1: The values of '(Λ2) and ''0C8>Λ2
for two example choices (real-valued and complex-

valued) of the new-physics couplings. The standard-model value of '(Λ2) is 0.333 ± 0.010 [1].
The uncertainties given are due to the form factor uncertainties.

Coupling '(Λ2)<0G ''0C8>
Λ2 ,<0G

coupling value '(Λ2)<8= ''0C8>
Λ2 ,<8=

coupling value
6( only 0.405 1.217 0.363 0.314 0.942 −1.14
6% only 0.354 1.062 0.658 0.337 1.014 0.168

6! only 0.495 1.486 0.094 + 0.5388 0.340 1.022 −0.070 + 0.3958
6' only 0.525 1.576 0.085 + 0.7938 0.336 1.009 −0.012
6) only 0.526 1.581 0.428 0.338 1.015 −0.005

Table 2.2: The maximum and minimum values of '(Λ2) and ''0C8>Λ2
allowed by the mesonic

constraints for each new-physics coupling, and the coupling values at which these extrema are
reached.
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substantial deviations from the SM predictions are allowed. We notice that ��� is typically above

the SM prediction in the presence of 6' or 6) , while it is typically below the SM prediction in the

presence of 6(. Hence, it is possible to use ��� to distinguish between the different couplings.

2.3.2 Impact of a future '(Λ2) measurement

In this subsection, we present the effect of possible future measurements of '(Λ2) on

the NP couplings constraints. We consider two cases, one in which the measured value is near

the SM prediction and one with the measured value far from the SM. For the first case we take

''0C8>
Λ2

= 1 ± 3 × 0.05, and for the second case ''0C8>
Λ2

= 1.3 ± 3 × 0.05 (the same central values as

''0C8>
�

). Note that we take the 1f uncertainty as 0.05. Figures 2.5 and 2.6 show the allowed regions

of the parameter space for the first and second case, respectively. We observe the following when

adding the ''0C8>
Λ2

constraints to the mesonic constraints:

• For '(Λ2) near the SM (Fig. 2.5), the allowed regions for (6! , 6', 6) ) are reduced signifi-

cantly, the allowed region for 6( shrinks only slightly, and the allowed region for 6% remains

the same (as it is dominantly constrained by g�2 ).

• For '(Λ2) far from the SM (Fig. 2.6), most of the previously allowed region for 6( becomes

excluded by '(Λ2). Even more importantly, the 6%-only scenario becomes ruled out. In

this case, '(Λ2) also provides strong constraints on (6! , 6', 6) ), but these constraints still

overlap with the mesonic constraints.

2.4 Leptoquarks as Models of New Physics

Many beyond the SM models, motivated by unifying matter, predict existence of new

particles that decay into a lepton and a quark. These particles, known as leptoquarks (LQ), carry

both baryon and lepton number. There are ten models in which the LQ couples to SM particles

through dimension ≤ 4 operators [35]. These include five scalar and five vector LQs. Six of these

can contribute to 1 → 2g−āg [28]. Three have fermion-number-conserving couplings and three
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Figure 2.4: The effect of individual new-physics couplings on the Λ1 → Λ2gāg differential decay
rate (left), the ratio of the Λ1 → Λ2gāg and Λ1 → Λ2ℓāℓ differential decay rates (middle), and
the Λ1 → Λ2gāg forward-backward asymmetry (right). Each plot shows the observable in the
Standard Model and for two representative values of the new-physics coupling (one real-valued
choice and one complex-valued choice). The bands indicate the 1f uncertainties originating from
the Λ1 → Λ2 form factors.
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Figure 2.5: Constraints on individual new-physics couplings from a possible '(Λ2) measurement
(shown in blue), assuming that ''0C8>

Λ2
= 1± 3× 0.05 where the 1f uncertainty is 0.05. Also shown

are the mesonic constraints as in Fig. 2.3.
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Figure 2.6: Constraints on individual new-physics couplings from a possible '(Λ2) measurement
(shown in blue), assuming that ''0C8>

Λ2
= 1.3 ± 3 × 0.05 where the 1f uncertainty is 0.05. Also

shown are the mesonic constraints as in Fig. 2.3.
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Figure 2.7: An example of*1 leptoquark contribution to 1 → 2gāg

have fermion-number-violating couplings. An example of a LQ contribution to the 1 → 2g−āg

mode is given in Fig. 2.7. The Lagrangian that generates the contributions to 1 → 2g−āg is given

by

LLQ = LLQ
�=0
+ LLQ

�=−2 ,

LLQ
�=0

= (ℎ8 9
1!
&̄8!W

`! 9 ! + ℎ8 91' 3̄8'W
`ℓ 9 ')*1` + ℎ8 93!&̄8! ®fW

`! 9 ! · ®*3`

+ (ℎ8 9
2!
D̄8'! 9 ! + ℎ8 92'&̄8!8f2ℓ 9 ')'2 + ℎ.2.,

LLQ
�=−2 = (68 9

1!
&̄28!8f2! 9 ! + 6

8 9

1'
D̄28'ℓ 9 ')(1 + (6

8 9

3!
&̄28!8f2®f! 9 !) · ®(3

+ (68 9
2!
3̄28'W`! 9 ! + 6

8 9

2'
&̄28!W`ℓ 9 ')+

`

2
+ ℎ.2. (2.62)

Here & and ! represent left-handed quark and lepton (* (2)! doublets, respectively; D, 3 and

ℓ represent right-handed up-type quark, down-type quark and charged lepton (* (2)! singlets,

respectively. The indices 8 and 9 are the quark and lepton generations and k2 = �k̄) is a charge-

conjugated field. The (* (3) × (* (2) ×* (1) quantum numbers of these LQs are summarized in

Table 2.3.
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spin (* (3)2 (* (2)! * (1).=&−)3
(1 0 3∗ 1 1/3
Y3 0 3∗ 3 1/3
'2 0 3 2 7/6
+2 1 3∗ 2 5/6
*1 1 3 1 2/3
[3 1 3 3 2/3

Table 2.3: Quantum numbers of scalar and vector leptoquarks.

The interaction Lagrangian (Eq. 2.62) generates the following couplings in Eq. (2.7):

6( (`1) =

√
2

4��+21

(
�S1 (`1) + �S2 (`1)

)
, (2.63)

6% (`1) =

√
2

4��+21

(
�S1 (`1) − �S2 (`1)

)
, (2.64)

6! =

√
2

4��+21
� ;V1 , (2.65)

6' =

√
2

4��+21
� ;V2 , (2.66)

6) (`1) =

√
2

4��+21
�T (`1), (2.67)

where the Wilson coefficients in the leptoquark models are given by

�SM = 2
√
2��+21 , (2.68)

� ;V1 =
3∑
:=1

+:3

[
6:;
1!
623∗
1!

2"2
(1

−
6:;
3!
623∗
3!

2"2
Y3

+
ℎ2;
1!
ℎ:3∗
1!

"2
*1

−
ℎ2;
3!
ℎ:3∗
3!

"2
[3

]
, (2.69)

� ;V2 = 0 , (2.70)

� ;S1 =
3∑
:=1

+:3

[
−
26:;

2!
623∗
2'

"2
+2

−
2ℎ2;

1!
ℎ:3∗
1'

"2
*1

]
, (2.71)

� ;S2 =
3∑
:=1

+:3

[
−
6:;
1!
623∗
1'

2"2
(1

−
ℎ2;
2!
ℎ:3∗
2'

2"2
'2

]
, (2.72)

� ;T =
3∑
:=1

+:3

[
6:;
1!
623∗
1'

8"2
(1

−
ℎ2;
2!
ℎ:3∗
2'

8"2
'2

]
. (2.73)
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TheseWilson coefficients are defined at the energy scale ` = "- , where - represents a leptoquark.

Above,+:3 denotes the relevant CKMmatrix element, where the 3 corresponds to the bottom quark.

In the following, we neglect the CKM-suppressed contributions from : = 1 and : = 2 in the sums.

Because the neutrino is not observed, we have ; = 1, 2, 3. Note that there is a Standard-Model

contribution for ; = 3 but not for ; = 1, 2; hence, the constraints for different ; will be different.

The renormalization-group running of the scalar and tensor Wilson coefficients from ` =

"- to ` = `1, where `1 is the mass scale of the bottom quark, is given by

�S1,2 (`1) =
[
UB (<C)
UB (`1)

]− 12
23

[
UB (<LQ)
UB (<C)

]− 4
7

�S1,2 (<LQ) , (2.74)

�T (`1) =
[
UB (<C)
UB (`1)

] 4
23

[
UB (<LQ)
UB (<C)

] 4
21

�T (<LQ) , (2.75)

where UB (`) is the QCD coupling at scale `. Because the anomalous dimensions of the vector and

axial-vector currents are zero, the Wilson coefficients forV1,2 are scale-independent. The different

leptoquarks produce different effective operators as summarized below:

• The (1 leptoquark with nonzero (61! , 6∗1') generates �
;
V1 , �

;
S2 , and �

;
T , with the relation

� ;S2 = −4�
;
T .

• The '2 leptoquark with (ℎ2! , ℎ∗2') generates �
;
S2 and �

;
T with the relation � ;S2 = 4�

;
T .

• The+2 leptoquark generates � ;S1 and is tightly constrained, so we do not consider this model.

• The*1 leptoquark with nonzero (62! , 6∗2') generates �
;
S1 and �

;
V1 .

• The Y3 and[3 leptoquarks with nonzero values of (63! , 6∗3!) and (ℎ3! , ℎ
∗
3!
) generate � ;V1 .

The leptoquark couplings can also be constrained using 1 → Baā decays. As pointed out in

Ref. [41], the exclusive decays �̄ →  aā and �̄ →  ∗aā provide more stringent bounds than the

inclusive mode � → -Baā. The *1 and '2 leptoquarks do not contribute to 1 → Baā, while the

left-handed couplings of (1, Y3, and [3 do. (The +2 leptoquark also contributes to 1 → Baā, but
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we do not consider this model.) The BaBar and Belle Collaborations give the following 90% C.L.

upper limits [42, 43]:

B(�+ →  +aā) ≤ 1.7 × 10−5 ,

B(�+ →  ∗+aā) ≤ 4.0 × 10−5 ,

B(�0 →  ∗0aā) ≤ 5.5 × 10−5 . (2.76)

In Ref. [44], these are compared with the SM predictions

BSM
 ≡ B(�→  aā)SM = (3.98 ± 0.43 ± 0.19) × 10−6 ,

BSM
 ∗ ≡ B(�→  ∗aā)SM = (9.19 ± 0.86 ± 0.50) × 10−6 . (2.77)

Taking into account the theoretical uncertainties [44], the 90% C.L. upper bounds on the NP

contributions are
BSM+NP
 

BSM
 

≤ 4.8 ,
BSM+NP
 ∗

BSM
 ∗

≤ 4.9 . (2.78)

Following Ref. [28], the 1 → Ba 9 ā8 process can be described by the effective Hamiltonian

�4 5 5 =
4��√
2
+C1+

∗
CB

[(
X8 9�

(SM)
!
+ �8 9

!

)
$
8 9

!
+ �8 9

'
$
8 9

'

]
, (2.79)

where the left-handed and right-handed operators are defined as

$
8 9

!
=( B̄!W`1!) (ā 9 !W`a8!) ,

$
8 9

'
=( B̄'W`1') (ā 9 !W`a8!) .

(2.80)

The SMWilson coefficient � (SM)
!

receives contributions from box and /-penguin diagrams, which

yield

�
(SM)
!

=
U

2c sin2 \,
- (<2C /"2

, ) , (2.81)
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where the loop function - (GC) can be found e.g. in Ref. [45]. The leptoquarks that we consider

produce contributions to �8 9
!
which, to leading order, are equal to [28]

�
8 9

!
= − 1

2
√
2��+C1+

∗
CB


638
1!
6
2 9∗
1!

2"2

(
1/3
1

+
638
3!
6
2 9∗
3!

2"2

(
1/3
3

−
2ℎ28

3!
ℎ
3 9∗
3!

"2

*
−1/3
3

 . (2.82a)

We obtain common coefficients for 1 → 2gā; and 1 → Bag ā; processes,

� ;3! = −
1

2
√
2��+C1+

∗
CB


63;
1!
623∗
1!

2"2

(
1/3
1

+
63;
3!
623∗
3!

2"2

(
1/3
3

−
2ℎ2;

3!
ℎ33∗
3!

"2

*
−1/3
3

 . (2.83a)

Hence, for ; = 3 we obtain

BSM+NP
 

BSM
 

=
BSM+NP
 ∗

BSM
 ∗

=

�����3� (SM)
!
+ �33

!

3�
(SM)
!

�����2 , (2.84)

while for ; = 1, 2 we have

BSM+NP
 

BSM
 

=
BSM+NP
 ∗

BSM
 ∗

=

����� � ;3
!

3�
(SM)
!

�����2 . (2.85)

When considering nonzero values only for one coupling at a time (; = 1, 2, 3), the experimental

measurements of ''0C8>
�

, ''0C8>
�∗ , g�2 , and B(� →  (∗)aā) yield the constraints shown in Figures

2.8, 2.9, and 2.10. The cases with 638
3!
623∗
3!

in the Y3 model, 638
1!
623∗
1!

in the (1 model, and ℎ28
3!
ℎ23∗
3!

in

the[3 model are ruled out for 8 = 1, 2.

Allowing all relevant couplings in each model to be nonzero simultaneously, we obtain the

coupling regions sampled by the random points in Figs. 2.11 and 2.12. The corresponding allowed

regions in the ''0C8>
Λ2

− ''0C8>
�

and ''0C8>
Λ2

− ''0C8>
�∗ planes are shown in Fig. 2.13. Since the Y3 and

[3 leptoquarks produce only the vector coupling 6! , all ratios get rescaled by the common factor

of |1 + 6! |2. The Y3 and [3 models are tightly constrained and only small effects are allowed.

The other leptoquark models can produce substantial effects in ''0C8>
Λ2

, with varying degrees of
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Figure 2.8: Constraints on the (1 and '2 leptoquark models when considering one coupling at
a time. Here, 8 = 1, 2 denotes the electron and muon neutrinos. We require that the couplings
reproduce the measurements of ''0C8>

�
and ''0C8>

�∗ in Eqs. (2.5) and (2.6) within 3f, satisfyB(�2 →
g−āg) ≤ 30%, and are consistent with the upper bounds on B(� →  (∗)aā) at 90% C.L. The
allowed regions of the parameter space when combining all constraints are highlighted with a black
mesh. 31
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Figure 2.9: Constraints on the *1 leptoquark model when considering one coupling at a time.
Here, 8 = 1, 2 denotes the electron and muon neutrinos. We require that the couplings reproduce the
measurements of ''0C8>

�
and ''0C8>

�∗ in Eqs. (2.5) and (2.6) within 3f and satisfy B(�2 → g−āg) ≤
30%. The allowed regions of the parameter space when combining all constraints are highlighted
with a black mesh.
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Figure 2.10: Constraints on the Y3 and [3 leptoquark models when considering one coupling at
a time. Here, 8 = 1, 2 denotes the electron and muon neutrinos. We require that the couplings
reproduce the measurements of ''0C8>

�
and ''0C8>

�∗ in Eqs. (2.5) and (2.6) within 3f, satisfyB(�2 →
g−āg) ≤ 30%, and are consistent with the upper bounds on B(� →  (∗)aā) at 90% C.L. The
allowed regions of the parameter space when combining all constraints are highlighted with a black
mesh.
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Figure 2.11: Allowed regions for the couplings of the '2, Y3, and [3 leptoquark models in the
case that all relevant couplings in each model are included simultaneously. We require that the
couplings reproduce the measurements of ''0C8>

�
and ''0C8>

�∗ in Eqs. (2.5) and (2.6) within 3f,
satisfy B(�2 → g−āg) ≤ 30%, and are consistent with the upper bounds on B(� →  (∗)aā) at
90% C.L (the latter is only relevant for the left-handed couplings in the Y3 and[3 models).

correlation between the mesonic and baryonic observables.

The values of '(Λ2) and ''0C8>Λ2
for two typical allowed combinations of the couplings in eachmodel

are given in Table 2.4. In Fig. 2.14, we present plots of the observables (3Γ/3@2, �Λ2 , ���) for

the same values of the couplings.

2.5 Conclusions

The baryonic decay Λ1 → Λ2gāg has the potential to shed new light on the '(� (∗)) puzzle.

In this chapter, we studied the phenomenology of Λ1 → Λ2gāg in the presence of new-physics
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Figure 2.12: Allowed regions for the couplings of the (1 and*1 leptoquark models in the case that
all relevant couplings in each model are included simultaneously. We require that the couplings
reproduce the measurements of ''0C8>

�
and ''0C8>

�∗ in Eqs. (2.5) and (2.6) within 3f, satisfyB(�2 →
g−āg) ≤ 30%, and are consistent with the upper bounds on B(�→  (∗)aā) at 90% C.L (the latter
is only relevant for the left-handed couplings in the (1 model).
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Figure 2.13: The allowed regions in the ''0C8>
Λ2

− ''0C8>
�

and ''0C8>
Λ2

− ''0C8>
�∗ planes for each

leptoquark model, given the allowed regions for the couplings from Figs. 2.11 and 2.12.
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Model Case Couplings '(Λ2) ''0C8>
Λ2

(1 1

633
1!
623∗
1'

= 0.332 + 0.4038,
638
1!
623∗
1'

= 0.417 − 0.3118,
633
1!
623∗
1!

= 0.015 − 0.0378,
638
1!
623∗
1!

= −0.079 − 0.0028

0.343 ± 0.011 1.032 ± 0.004

(1 2

633
1!
623∗
1'

= 0.064 − 0.1428,
638
1!
623∗
1'

= −1.05 + 0.6388,
633
1!
623∗
1!

= 0.116 − 0.0438,
638
1!
623∗
1!

= 0.018 + 0.1048

0.549 ± 0.020 1.648 ± 0.025

'2 1 ℎ23
2!
ℎ33∗
2'

= 0.373 − 0.1188,
ℎ28
2!
ℎ33∗
2'
= −0.846 − 0.1918 0.445 ± 0.016 1.337 ± 0.016

'2 2 ℎ23
2!
ℎ33∗
2'

= 0.753 − 0.1998,
ℎ28
2!
ℎ33∗
2'
= 0.897 − 0.0318 0.485 ± 0.018 1.455 ± 0.025

*1 1

ℎ23
1!
ℎ33∗
1'

= −0.115 − 0.0218,
ℎ28
1!
ℎ33∗
1'

= 0.049 + 0.1598,
ℎ23
1!
ℎ33∗
1!

= −1.468 + 0.2718,
ℎ28
1!
ℎ33∗
1!
= 1.116 + 0.7448

0.605 ± 0.019 1.818 ± 0.008

*1 2

ℎ23
1!
ℎ33∗
1'

= −0.059 + 0.2368,
ℎ28
1!
ℎ33∗
1'

= 0.234 + 0.1058,
ℎ23
1!
ℎ33∗
1!

= −2.002 + 0.8548,
ℎ28
1!
ℎ33∗
1!
= −0.135 + 0.9408

0.553 ± 0.018 1.663 ± 0.005

Y3 1
633
3!
623∗
3!

= −0.035 + 0.0328,
638
3!
623∗
3!

= 0.061 + 0.0418 0.342 ± 0.010 1.027

Y3 2
633
3!
623∗
3!

= −0.049 − 0.0388,
638
3!
623∗
3!

= −0.01 − 0.0198 0.345 ± 0.011 1.037

[3 1
ℎ23
3!
ℎ33∗
3!

= −0.032 − 0.0148,
ℎ28
3!
ℎ33∗
3!
= 0.003 + 0.0028 0.349 ± 0.011 1.047

[3 2
ℎ23
3!
ℎ33∗
3!

= −0.014 − 0.0068,
ℎ28
3!
ℎ33∗
3!
= 0.017 − 0.0078 0.340 ± 0.010 1.022

Table 2.4: The values of the '(Λ2) and ''0C8>Λ2
ratios for two representative cases of the couplings of

the different leptoquark models. Above, the index 8 = 1, 2 denotes the electron and muon neutrinos.
The Standard-model value of the ratio is '(Λ2) = 0.333 ± 0.010 [1]. The uncertainties given are
due to the Λ1 → Λ2 form factor uncertainties.
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Figure 2.14: The effects of the different leptoquark models on the Λ1 → Λ2gāg differential
decay rate (left), the ratio of the Λ1 → Λ2gāg and Λ1 → Λ2ℓāℓ differential decay rates (middle),
and the Λ1 → Λ2gāg forward-backward asymmetry (right), for two representative choices of the
couplings. The red and blue curves correspond to the couplings from Cases 1 and 2 in Table 2.4,
respectively, while the green curves correspond to the Standard Model. Because the Y3 and [3
leptoquarks produce only the vector coupling 6! , the forward-backward asymmetry remains equal
to the Standard Model in those cases. The bands indicate the 1f uncertainties originating from the
Λ1 → Λ2 form factors. 38



couplings with all relevant Dirac structures where we used lattice QCD results for the Λ1 → Λ2

form factors for all possible currents.

In the first part of our phenomenological analysis, we considered individual new-physics

couplings in the effective Hamiltonian in a model-independent way. After constraining these

couplings using the '(� (∗)) measurements and the �2 lifetime, we calculated the effects of the

NP couplings in Λ1 → Λ2gāg decays, focusing on the observables '(Λ2), �Λ2 (@2), and ��� (@2).

Measurements of these observables can help in distinguishing among the different NP operators.

For instance, the forward-backward asymmetry ��� (@2) tends to be mostly above the SM value in

the presence of right-handed (6') or tensor (6) ) couplings, but is lower than the SM value for most

allowed values of the scalar (6() coupling. To illustrate the impact of a future '(Λ2) measurement,

we presented the constraints on all couplings resulting from two possible ranges of '(Λ2). The

baryonic decay can tightly constrain all of the couplings 6! , 6', 6(, 6%, and 6) . For example, we

have shown that if ''0C8>
Λ2

= '(Λ2)/'(Λ2)(" is observed to have a value around 1.3, the scenario

with only 6% becomes ruled out by the combined constraints from '(Λ2) and g�2 .

In the second part of our phenomenological analysis, we considered the leptoquark models

in which multiple NP operators are present.

We have demonstrated that some of the leptoquark models can produce large effects in the

Λ1 → Λ2gāg observables, in particular through scalar and tensor couplings. We have presented

correlation plots of ''0C8>
�

and ''0C8>
�∗ versus ''0C8>

Λ2
, which may be helpful in discriminating among

the various models.
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CHAPTER 3

NEW PHYSICS IN INCLUSIVE �→ -2gāg DECAY IN LIGHT OF '(� (∗))

MEASUREMENTS

3.1 Introduction

In this chapter we study new physics (NP) effects in the inclusive � → -2gā decay. As

we mentioned in the introduction, this decay mode is interesting since it has the same quark-level

transition as in '(�) and '(�∗). Assuming that NP is present only in 1 → 2gāg, we make

predictions for the ratio of total decay rates '(-2) = Γ(�→-2gāg)
Γ(�→-2ℓāℓ ) , with ℓ = 4, `, the differential

decay rates, 3Γ

3@2
and 3Γ

3�g
, the forward-backward asymmetry ��� (defined in Sec. 3.3), and the ratio

of the differential decay rates �(@2) = 3Γ(�→-2gāg)/3@2
3Γ(�→-2ℓāℓ )/3@2

. While we add the NP effects at tree level,

we include the perturbative O(UB) and nonperturbative (1/<2
1
) corrections in the SM contribution

in all observables that we consider here. Adding the O(UB) correction to the forward-backward

asymmetry ��� is less trivial than other observables since one has to consider the tree-body and

four-body decays separately. We first implement our analysis in a model-independent approach

and consider the most general dimension-6 set of NP operators that contribute to the 1 → 2gāg

decay. We then consider several leptoquark models where in some of these models more than one

NP coupling at a time is present.

The theoretical prediction of the inclusive decay rate is rather precise in the SM. The

differential decay rate can be expanded systematically both in terms of perturbative and nonpertur-
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bative QCD corrections. Perturbative QCD corrections of O(UB) to the differential decay rate were

calculated in [46, 47, 48, 49]. For our purpose, the calculations in [49] are more useful, where

the corrections to the five hadronic structure functions are given and the formulas for the virtual

and real gluon corrections are given separately. This allows us to calculate the correction to the

phenomenological aspects of the inclusive B decay such as @2 and �g distributions, the ratio of the

differential decay rates �(@2) = 3Γ(�→-2gāg)/3@2
3Γ(�→-2ℓāℓ )/3@2

and the forward-backward asymmetry, ���.

Nonperturbative corrections to the inclusive semileptonic decay, which is an expansion in

Λ&��/<1, are calculated in the context of operator product expansion (OPE) and heavy quark

effective theory (HQET); see [50, 51, 52, 53], and [54]. Here <1 is the heavy quark mass (the

bottom quark) and Λ&�� is the nonperturbative scale parameter of the strong interactions. In the

limit<1 →∞, we recover the free quark decay and theΛ&��/<1 correction vanishes. The leading

order nonperturbative correction is of order Λ2
&��
/<2

1
and is parametrized by two hadronic matrix

elements, _1 and _2, which are related to the kinetic energy and the spin interaction energy of the 1

quark in the � meson, respectively. We will elaborate more on nonperturbative corrections in the

next chapter where we include these corrections in the NP parts.

Higher order O(U2B ) corrections to the total rate are known in the SM, but it turns out that

even at order O(UB), the radiative corrections to �→ -2g
−āg and �→ -2ℓ

−āℓ are correlated and

cancel out largely in the ratio of the decay rates '(-2) = Γ(�→-2gāg)
Γ(�→-2ℓāℓ ) [55]. So we only consider the

order O(UB) correction in the ratios of the total/differential decay rates as well as in the definition

of the forward-backward asymmetry. The second order QCD corrections to semileptonic 1 → 2

inclusive transitions, not considered here, can be important for the rates and the absolute differential

rates [55, 56] and so the ratios should be considered cleaner probes of new physics.

For the SM predictions for '(� (∗)) in this chapter, we use the results of the fits given by [10]

and [13] for '(�) = 0.299 ± 0.003 and '(�∗) = 0.255 ± 0.004 respectively. The experimental

averages of '(�) and '(�∗) measurements evaluated by the Heavy-Flavor Averaging Group are
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[9]

'(�)4G? = 0.407 ± 0.039 ± 0.024, (3.1)

'(�∗)4G? = 0.304 ± 0.013 ± 0.007. (3.2)

The combined analysis of '(�) and '(�∗), taking into account measurement correlations, finds

that the deviation is at the level of 4.1 f from the SMprediction [9]. In our calculations, we construct

the ratios of the experimental results (3.1) and (3.2) to the phenomenological SM predictions,

'(�)'0C8> =
'(�)4G?
'(�)("

= 1.36 ± 0.15,

'(�∗)'0C8> =
'(�∗)4G?
'(�∗)("

= 1.19 ± 0.06. (3.3)

We use the values in Eq. (3.3) to find the allowed parameter space of the NP models. By taking

one operator at a time, we fix the size of the operators by fitting to the measurements in Eq. (3.3)

and then we make predictions for several observables in the inclusive decay.

This chapter is organized as follows: The effective Hamiltonian of the NP interactions and

helicity amplitudes of the inclusive B decay are presented in Sec. 3.2. In Sec. 3.3, the power

correction and the radiative correction of order O(UB) are discussed. The model-independent

phenomenological analysis of individual new-physics couplings is considered in Sec. 3.4, and

leptoquark models are considered in Sec. 3.5. And finally we conclude in Sec. 3.6.
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3.2 Formalism

3.2.1 Effective Hamiltonian

The effective Hamiltonian of the NP operators for the quark-level transition 1 → 2g−āg can

be written in the form

H4 5 5 =
��+21√

2

{[
2̄W` (1 − W5)1 + 6! 2̄W` (1 − W5)1 + 6' 2̄W` (1 + W5)1

]
ḡW` (1 − W5)ag

+
[
6( 2̄1 + 6% 2̄W51

]
ḡ(1 − W5)ag +

[
6) 2̄f

`a (1 − W5)1
]
ḡf`a (1 − W5)ag + �.2.

}
,

(3.4)

where �� is the Fermi constant, +21 is the CKM matrix element, and we use f`a = 8[W`, Wa]/2.

When 6! = 6' = 6( = 6% = 6) = 0, the above equation produces the SM effective Hamiltonian.

Here, we consider only the active neutrinos which are left chiral. In the presence of new physics,

in general, the g lepton can be associated with any neutrino flavor. To allow for lepton universality

violation, we assume NP to dominantly affect the third generation leptons.

3.2.2 Decay process

In this section we present the calculations of the inclusive B decay at the free quark level

with new-physics contributions. The process under consideration is

1(?1) → g−(?g) + āg (? āg ) + 2(?2).

The differential decay rate is

3Γ =
1

2<1

�2
�
|+21 |2

4

∑
_2

∑
_g

|M_g
_2
|23Φ3, (3.5)
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where 3Φ3 is the three-body phase space which can be written as

3Φ3 =

√
_(<2

1
, <22 , @

2)

256c3<2
1

(
1 −

<2g

@2

)
3@23 (cos \g), (3.6)

with

@ = ?1 − ?2, (3.7)

_(0, 1, 2) = 02 + 12 + 22 − 201 − 202 − 212 . (3.8)

The angle \g is defined as the angle between the momenta of the g lepton and the 1 quark in the

dilepton rest frame.

The helicity amplitudeM_g
_2

is written as [57]

M_g
_2

= �(%
_2 ,_=0

!_g +
∑
_

[_�
+�
_2 ,_

!
_g
_
+

∑
_,_′

[_[_′�
())_1
_2 ,_,_

′!
_g
_,_′ . (3.9)

Here, (_, _′) indicate the helicity of the virtual vector boson, _2 and _g are the helicities of the

2 quark and the g lepton, respectively, and [_ = 1 for _ = C and [_ = −1 for _ = 0,±1. The

explicit expressions for the hadronic (�_2 ) and leptonic (!_g ) helicity amplitudes are presented in

Appendix B.

3.3 QCD correction to differential decay rates and forward-backward asymmetry

From the twofold decay distribution (3.5), one may obtain expressions for various ob-

servables at the free quark level. These expressions in terms of hadronic helicity amplitudes are

presented in Appendix D.

Here we shortly discuss the inclusion of QCD corrections to the differential rates. In [49], the

hadronic tensor of the transition 1 → 2 is parametrized in terms of five hadronic structure func-

tions. The QCD corrections to these structure functions are calculated to O(UB) and generic BLM

(U=B V=−10
) order, and numerical results are given in the massless lepton case. This correction con-
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sists of two parts: loop correction, which is the virtual part and has the same kinematics as the

three-body decay, and the real gluon emission (four-body decay) which has an infrared divergence

that cancels out with the divergence in the loop contribution.

Here, using the results of [49], we add the O(UB) correction to the differential decay rates and

forward-backward asymmetry in the case where the final lepton is massive. To add the O(UB) cor-

rection, one should find the appropriate integration intervals for the three-body (four-body) decay

in the case of loop correction (real gluon emission). Since the correction to the triple differential

distribution for 1 → 2;ā; is given as a function of the lepton energy, it is more convenient to

introduce the definitions of the forward and backward terms in the forward-backward asymmetry

(���) [Eq. (3.12)] in terms of the lepton energy rather than the g scattering angle \g. Therefore,

the integration is done over the lepton energy rather than the angle \g.

In Appendix C, we find the relation between the g energy �g, which is defined in the 1

quark’s rest frame, and the angle \g defined in the dilepton’s rest frame. A comprehensive study of

decay kinematics is given in [58].

For the energy �g in four-body decay we find (see Appendix C)

�g =
1

4<1@
2

[
(<21 + @

2 − A2) (<2g + @2) − (@2 − <2g)
√
_(<2

1
, @2, A2) cos(\g)

]
, (3.10)

where @2 and A2 are the invariant masses of the dilepton and the charm-quark/gluon systems,

respectively. For three-body decay A2 reduces to <22 . From the above equation we can find the

bounds on the g energy by cos(\g) = ±1,

�±g =
1

4<1@
2

[
(<21 + @

2 − A2) (<2g + @2) ± (@2 − <2g)
√
_(<2

1
, @2, A2)

]
. (3.11)

Using this equation we can easily calculate the forward-backward asymmetry by performing the

integration over �g instead of cos(\g). We therefore define the forward-backward asymmetry in
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Parameter Value
<1 4.71 ± 0.05 �4+
X<12 3.40 ± 0.02 �4+
_1 −0.30 �4+2 ± 25%
_2 0.12 �4+2 ± 25%
UB 0.218+0.065−0.040

Table 3.1: Parameters used in numerical results.

the case of four-body decay as

��� =

∫
(
∫ �0g

�−g
3Γ

3@23A23�g
3�g −

∫ �+g
�0g

3Γ

3@23A23�g
3�g)3A2

3Γ

3@2

, (3.12)

where �0g =
(<2

1
+@2−A2) (<2g+@2)

4<1@
2 . Note that the integration over A2 appears only in the case of the

four-body decay.

3.4 Model-independent analysis of individual new-physics couplings

In this section we consider one NP coupling at a time. Constraints on NP parameters

are considered from the existing measurements of '(�) and '(�∗) mesons and from the �2

lifetime. The �2 measurement does not have any significant effect on the constraints except for the

6% coupling. (In general, NP couplings are taken to be complex. Nevertheless, in the numerical

analysis of '(-2), Fig. 3.1 and Tables 3.3 and 3.4, we take these couplings to be real for simplicity.)

We require the NP couplings to reproduce the measurements of ''0C8>
�

and ''0C8>
�∗ within

the 3f range. The coupling 6( (6%) only contributes to ''0C8>
�
(''0C8>

�∗ ) while the other couplings

contribute to both channels. The constraint due to �2 has been considered before in [38, 36, 37].

Here we follow the same procedure and use an upper limit of B(�2 → g−āg) ≤ 30%, and we take

5�2 = 0.434(15) GeV from lattice QCD [40], to impose this constraint on the NP coupling 6%. For

numerical inputs we use the 1( mass scheme for the quark masses (see [59, 60] and [54]). We use

the parameters as given in [54], and they are presented in Table 3.1.
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The SM prediction for the ratio of decay rates becomes

'(-2)(" =
B(�→ -2gā)
B(�→ -2ℓā)

= 0.221 ± 0.005, (3.13)

which is comparable with the central value of '(-2)(" = 0.222 given in [37] and '(-2)(" = 0.223

in [54, 61] where they add in addition the O(U2B ) correction to the total rate.

Power correction of order 1/<3
1
to this decay rate has been calculated in [62]. Taking into account

this correction will result in a reduction of∼ 7% in '(-2) which is a noticeable effect. Nevertheless,

in order to be consistent throughout this work we do not consider this correction for our numerical

study and we present all observables calculated up to the same perturbative and nonperturbative

order.

We now consider the effect of NP models on the total inclusive decay rate. There is an ALEPH

measurement [63]

B(1 → -g−āg)4G? = (2.43 ± 0.32) × 10−2, (3.14)

where - = -2 + -D are all possible states from 1 → 2 and 1 → D transitions. In some part of our

analysis we will use the above measurement as an experimental input. When we do that we will

set the ALEPH measurement to the inclusive rate for B(�→ -2g
−āg). The ALEPH measurement

represents the inclusive decays of a mixture of 1 hadrons and in the leading order in the heavy quark

expansion all 1 hadrons have the same width. Moreover, we will neglect the small 1 → -Dg
−āg

transition.

Using the world average for the semileptonic branching ratio into the light lepton [9],

B(�→ -2ℓ
−āℓ)4G? = (10.65 ± 0.16) × 10−2, (3.15)

we can find for the ratio

'(-2)4G? = 0.228 ± 0.030. (3.16)

In Fig. 3.1 we plot the effect of the new physics scenarios on the ratio of total inclusive decay rates
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Figure 3.1: The effect of real NP couplings on the ratio of total decay rates '(-2) (blue lines).
The pink shaded areas are the allowed regions within 1f of the central value for '(-2)4G? and the
green shaded areas are constraints on the couplings due to measurements of '(�) and '(�∗) and
the branching ratio of �2.

'(-2) (blue lines) by taking the NP couplings to be real. The pink shaded areas show the allowed

range of measured '(-2), within 1f using (3.16) and the green shaded areas are constraints (on the

couplings) due to the measurements of '(�) and '(�∗) within a 3f interval and the branching

ratio of �2. As we can see from the figure, for the 6(, 6! and 6) couplings, the experimental (1f)

bounds on '(-2) can reduce the allowed parameter space for the NP couplings. This effect is more

pronounced for the 6! and 6) couplings where a significant part of the allowed coupling values

are excluded by '(-2). The allowed values of the couplings are given in Table 3.2. On the other

hand if the ALEPH result is not used as an input, large deviations from the SM are possible for the

inclusive rate. As an illustration, in Tables 3.3 and 3.4 we present maximum and minimum values

of '(� (∗)) in each model by considering the measurements of '(� (∗)) and the branching ratio of

�2 as constraints, and we compare them with the corresponding values when we add the inclusive

measurement as another constraint.

Now we consider differential rates and we first consider effects of perturbative and non-

perturbative corrections to the differential rates in the SM. In Fig. 3.2 we plot the differential

distributions, 1
Γ0

3Γ

3@2
and 1

Γ0

3Γ
3�g

, the ratio of the differential decay rate � = 3Γ(�→-2gāg)/3@2
3Γ(�→-2ℓāℓ )/3@2

, and
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Coupling Allowed value
6( (−1.89,−1.42) and (−0.07, 0.33)
6% (0.09, 0.73)
6! (−2.07,−2.01) and (0.01, 0.07)
6' (−0.05,−0.01)
6) (−0.04, 0)

Table 3.2: Allowed values of the coupling constants taken from Fig. 3.1.

Max/Min Values
Without (With) Inclusive Constraint

6( or 6%

Max/Min Values
Without (With) Inclusive Constraint

6!

'(�)'0C8>
1.83/0.90 (1.75/0.90)

0C 6( = −1.92 or 0.43 / −1.42 or −0.07
(6( = −1.89/−1.42 or −0.07 )

1.38/1.01 (1.14/1.01)
0C 6! = −2.17 or 0.17 / −2 or 0.005
(6! = −2.07 or 0.07 / −2 or 0.005)

'(�)
0.545/0.269 (0.523/0.269)

0C 6( = −1.92 or 0.43 / -1.42 or -0.07
(6( = −1.89/−1.42 or −0.07)

0.410/0.301 (0.340/0.301)
0C 6! = −2.17 or 0.17 / −2 or 0.005
(6! = −2.07 or 0.07 / −2 or 0.005)

'(�∗)'0C8>
1.10/1.01 (1.10/1.01)
0C 6% = 0.726/0.087
(6% = 0.726/0.087)

1.38/1.01 (1.14/1.01)
0C 6! = −2.17 or 0.17 / −2 or 0.005
(6! = −2.07 or 0.07 / −2 or 0.005)

'(�∗)
0.281/0.257 (0.281/0.257)
0C 6% = 0.726/0.087
(6% = 0.726/0.087)

0.351/0.257 (0.290/0.257)
0C 6! = −2.17 or 0.17 / −2 or 0.005
(6! = −2.07 or 0.07 / −2 or 0.005)

Table 3.3: Comparing maximum and minimum values of '(� (∗)) by using measurements of
'(� (∗)) and the branching ratio of �2 without (with) adding the inclusive measurement as a
constraint.
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Max/Min Values
Without (With) Inclusive Constraint

6'

Max/Min Values
Without (With) Inclusive Constraint

6)

'(�)'0C8>
0.99/0.90 (0.99/0.90)
0C 6' = −0.006/−0.05
(6' = −0.006/−0.05)

1.41/0.95 (1.00/0.97)
0C 6) = 0.365/−0.058
(6) = −0.002/−0.038)

'(�)
0.295/0.269 (0.295/0.269)
0C 6' = −0.006/−0.05
(6' = −0.006/−0.05)

0.421/0.283 (0.298/0.288)
0C 6) = 0.365/−0.058
(6) = −0.002/−0.038)

'(�∗)'0C8>
1.09/1.01 (1.09/1.01)
0C 6' = −0.05/−0.006
(6' = −0.05/−0.006)

1.38/1.01 (1.23/1.01)
0C 6) = 0.365 or −0.058 / 0.309 or −0.002

(6) = −0.038/−0.002)

'(�∗)
0.278/0.257 (0.278/0.257)
0C 6' = −0.05/−0.006
(6' = −0.05/−0.006)

0.351/0.257 (0.314/0.257)
0C 6) = 0.365 or −0.058 / 0.309 or −0.002

(6) = −0.038/−0.002)

Table 3.4: Comparing maximum and minimum values of '(� (∗)) by using measurements of
'(� (∗)) and the branching ratio of �2 without (with) adding the inclusive measurement as a
constraint.

the forward-backward asymmetry ��� in Eq. (3.12) in the SM at leading and next-to-leading order

and with the 1/<2
1
correction. We normalize these observables to Γ0 where

Γ0 =
�2
�
|+21 |2<51
192c3

. (3.17)

As shown, the radiative correction to � and ��� is not as effective as in the case of 3Γ/3@2 or

3Γ/3�g. In general, we expect higher order perturbative corrections to affect the @2 and the �g

distributions by larger amounts compared to the � and the ��� observables which involve ratios of

differential quantities. The 1/<2
1
correction has a considerable effect on all observables except the

ratio of differential branching ratios, �. In this observable the power correction becomes noticeable

only close to the end point region. In general however, one should be careful when interpreting the

power corrections locally as the OPE breaks down near the end points.

In Figures 3.3 - 3.6we present the effects of different NP couplings on the observables 1
Γ0

3Γ

3@2
,

1
Γ0

3Γ
3�g

, �, and ��� by considering one coupling at a time. In these plots, the SM uncertainties to the

observables are shown as error bars. To calculate these uncertainties we use the numerical values

in Table 3.1 and propagate the uncertainties for each observable. To account for O(U2B ) corrections
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Figure 3.2: The differential decay rates (1/Γ0)3Γ/3@2 and (1/Γ0)3Γ/3�g, the ratio of the differ-
ential decay rates �, and forward-backward asymmetry ��� at leading (solid line), next-to-leading
(dashed line) and next-to-leading order with 1/<2

1
correction (dashed-dotted line) for the process

�→ -2g
−āg.

for each observable, we use the calculations in [55] where the O(UB) and O(U2B ) orders contribute

to the total decay rate with the amount of about 10% and 6% of the leading order, respectively.

Therefore, we assume the unknown higher order contributions in the differential distributions to

follow the same ratios. We estimate the errors due to O(U2B ) corrections to be ±70% of the O(UB)

correction and add this estimate as an uncertainty to the differential decay rates. For the two

observables � and ���, we see that these uncertainties are considerably smaller.

Except for the 6% coupling which is tightly constrained by �2, we see that NP models can have

considerable effects on these observables in general. In particular we see that ��� can have zero

crossings and take negative values unlike the SM for some NP couplings.

3.5 Leptoquark model results

In this sectionwe introduce leptoquarkmodels that can be the origin of the general couplings

in the effective Hamiltonian (3.4). In the last chapter we considered these models in detail. To be

self-contained, here we briefly describe how these models generate the couplings in the effective

Hamiltonian (3.4). The Lagrangian that generates the contributions to 1 → 2g−āg is given by
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Figure 3.3: The effect of individual new-physics couplings on the �→ -2g
−āg differential decay

rate (1/Γ0)3Γ/3@2, including the QCD O(UB) and 1/<21 correction in the SM contribution only.
Each plot shows the observable in the StandardModel and for two allowed values of the new-physics
couplings.
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Figure 3.4: The effect of individual new-physics couplings on the �→ -2g
−āg differential decay

rate (1/Γ0)3Γ/3�g, including the QCD O(UB) and 1/<21 correction in the SM contribution only.
Each plot shows the observable in the StandardModel and for two allowed values of the new-physics
couplings.
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Figure 3.5: The effect of individual new-physics couplings on the � ratio, including the QCD
O(UB) and 1/<21 correction in the SM contribution only. Each plot shows the observable in the
Standard Model and for two allowed values of the new-physics couplings.
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Figure 3.6: The effect of individual new-physics couplings on the �→ -2g
−āg forward-backward

asymmetry ���, including the QCD O(UB) and 1/<21 correction in the SM contribution only. Each
plot shows the observable in the Standard Model and for two allowed values of the new-physics
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LLQ = LLQ
�=0
+ LLQ

�=−2 ,

LLQ
�=0

= (ℎ8 9
1!
&̄8!W

`! 9 ! + ℎ8 91' 3̄8'W
`ℓ 9 ')*1` + ℎ8 93!&̄8! ®fW

`! 9 ! · ®*3`

+ (ℎ8 9
2!
D̄8'! 9 ! + ℎ8 92'&̄8!8f2ℓ 9 ')'2 + ℎ.2.,

LLQ
�=−2 = (68 9

1!
&̄28!8f2! 9 ! + 6

8 9

1'
D̄28'ℓ 9 ')(1 + (6

8 9

3!
&̄28!8f2®f! 9 !) · ®(3

+ (68 9
2!
3̄28'W`! 9 ! + 6

8 9

2'
&̄28!W`ℓ 9 ')+

`

2
+ ℎ.2. . (3.18)

After integrating out the LQs and performing the convenient Fierz transformations we find that

these models can generate scalar (6(, 6%); vector (6!); and tensor (6) ) couplings as follows:

• The Y3 and[3 triplet scalar and vector leptoquarks generate the vector coupling 6! .

• The*1 singlet vector leptoquark generates scalar (6(, 6%) and vector (6!) couplings.

• The '2 doublet scalar leptoquark generates scalar (6(, 6%) and tensor (6) ) couplings.

• The (1 singlet scalar leptoquark generates scalar (6(, 6%), vector (6!) and tensor (6) ) cou-

plings.

The leptoquark Lagrangian generates these couplings in the following way:

6( =

√
2

4��+21

3∑
:=1

+:3

[
−
26:;

2!
623∗
2'

"2
+2

−
2ℎ2;

1!
ℎ:3∗
1'

"2
*1

−
6:;
1!
623∗
1'

2"2
(1

−
ℎ2;
2!
ℎ:3∗
2'

2"2
'2

]
, (3.19)

6% =

√
2

4��+21

3∑
:=1

+:3

[
−
26:;

2!
623∗
2'

"2
+2

−
2ℎ2;

1!
ℎ:3∗
1'

"2
*1

+
6:;
1!
623∗
1'

2"2
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+
ℎ2;
2!
ℎ:3∗
2'

2"2
'2

]
, (3.20)

6! =

√
2

4��+21

3∑
:=1

+:3

[
6:;
1!
623∗
1!

2"2
(1

−
6:;
3!
623∗
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2"2
Y3

+
ℎ2;
1!
ℎ:3∗
1!

"2
*1

−
ℎ2;
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3!

"2
[3

]
, (3.21)

6' = 0, (3.22)

6) =

√
2

4��+21

3∑
:=1

+:3

[
6:;
1!
623∗
1'

8"2
(1

−
ℎ2;
2!
ℎ:3∗
2'

8"2
'2

]
, (3.23)
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where 68 9 and ℎ8 9 are the leptoquark couplings with 8( 9) indicating the generation of quarks

(leptons) and "’s are leptoquark masses with the subscripts corresponding to the leptoquark type.

One should run these couplings down to the 1 quark mass scale as they are defined at the leptoquark

mass scale (∼ 1 )4+). Here +:3 corresponds to the CKM matrix element, with 3 referring to the

bottom quark. We neglect the CKM-suppressed contributions from : = 1 and : = 2.

The leptoquark couplings can also be constrained by 1 → Baā decays, so we also consider

the exclusive � →  (∗)aā decays in our analysis. Following Ref. [28], the 1 → Ba 9 ā8 process can

be described by the effective Hamiltonian,

�4 5 5 =
4��√
2
+C1+

∗
CB

[(
X8 9�

(SM)
!
+ �8 9

!

)
$
8 9

!
+ �8 9

'
$
8 9

'

]
, (3.24)

where the left-handed and right-handed operators are defined as

$
8 9

!
=( B̄!W`1!) (ā 9 !W`a8!) ,

$
8 9

'
=( B̄'W`1') (ā 9 !W`a8!) .

(3.25)

The SMWilson coefficient� (SM)
!

receives contributions from the box and the /-penguin diagrams,

which yield

�
(SM)
!

=
U

2c sin2 \,
- (<2C /"2

, ) , (3.26)

where the loop function - (GC) can be found e.g. in Ref. [45]. Leptoquarks produce contributions

to �8 9
!
which, to leading order, are equal to [28]

�
8 9

!
= − 1

2
√
2��+C1+

∗
CB

[
638
1!
6
2 9∗
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2"2
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2 9∗
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(3

−
2ℎ28
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ℎ
3 9∗
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]
. (3.27a)
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Now we obtain the common coefficients for the 1 → 2gā; and 1 → Bag ā; processes,

� ;3! = −
1

2
√
2��+C1+

∗
CB

[
63;
1!
623∗
1!

2"2
(1

+
63;
3!
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2"2
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"2
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]
. (3.28a)

Hence, for ; = 3 we obtain

BSM+NP
 

BSM
 

=
BSM+NP
 ∗

BSM
 ∗

=

�����3� (SM)
!
+ �33

!

3�
(SM)
!

�����2 , (3.29)

while for ; = 1, 2 we have

BSM+NP
 

BSM
 

=
BSM+NP
 ∗

BSM
 ∗

=

����� � ;3
!

3�
(SM)
!

�����2 . (3.30)

Now we apply leptoquark models to the inclusive decay � → -2g
−āg. In leptoquark models in

general, we can have all neutrino generations coupled to the g lepton as NP effects. We impose the

constraints on all the leptoquark couplings simultaneously from the experimental measurements of

'(�) and '(�∗) within a 3 f confidence level, as well as g�2 and B(� →  (∗)aā). Then, we

substitute the allowed values of the couplings in the calculations of ''0C8>
�

, ''0C8>
�∗ , and ''0C8>

-2
to

demonstrate the allowed regions of these observables in the presence of each leptoquark model.

The results are presented in Fig. 3.7.

Since in leptoquark models in general, there can be multiple NP couplings present (as

opposed to model independent scenarios where one coupling at a time is considered), in Figs. 3.8

- 3.12, we present the effect of different leptoquark models ((1, '2, *1, Y3, [3) for some allowed

values of the model parameters on the inclusive decay �→ -2g
−āg observables. Y3 and[3 models

are tightly constrained and only small effects are possible, while other models can have large effects

on the considered observables. This can be seen in the correlation plots in the ''0C8>
-2
− ''0C8>

�
and

''0C8>
-2
− ''0C8>

�∗ planes where in the Y3 and[3 models we see small deviations of the ' values from
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Figure 3.7: The allowed regions in the ''0C8>
-2
−''0C8>

�
and ''0C8>

-2
−''0C8>

�∗ planes for each leptoquark
model where the couplings are constrained by measurements of '(�) and '(�∗), the branching
ratio of �2 → g−āg, and are consistent with the upper bounds on B(�→  (∗)aā) at 90% C.L.
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Figure 3.8: The effects of the (1 leptoquark model on the differential decay rates (1/Γ0)3Γ/3@2,
(1/Γ0)3Γ/3�g; the ratio of differential rates �; and the forward-backward asymmetry (���)
of � → -2g

−āg. Each plot shows the observable in the Standard Model and for two allowed
values of the NP couplings. The red curves correspond to 633
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the SM predictions while large deviations are possible with the other leptoquarks. The differential

distributions can have different shapes from the SM and ��� can have zero crossings and take

negative values for certain leptoquark models. The pattern of deviations from the SM can also be

different for the different leptoquark models. Hence the careful measurements of these observables

can point to the presence of leptoquarks and give clues to their structures.

3.6 Conclusions

Recent measurements of '(� (∗)) that show large deviation from the SMmight be providing

hints of lepton nonuniversal NP. The underlying transition in these decays 1 → 2g−āg can also be

probed in other decays and in this chapter we considered one such process which is the inclusive

decay �→ -2g
−āg. Inclusive decays suffer from less hadronic uncertainties than exclusive decays

and so these decays offer good tests of the SM. In this chapter we considered NP effects in the
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Figure 3.9: The effects of the '2 leptoquark model on the differential decay rates (1/Γ0)3Γ/3@2,
(1/Γ0)3Γ/3�g; the ratio of differential rates �; and the forward-backward asymmetry (���) of
� → -2g

−āg. Each plot shows the observable in the Standard Model and for two allowed values
of the NP couplings. The red curves correspond to ℎ23
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Figure 3.10: The effects of the*1 leptoquark model on the differential decay rates (1/Γ0)3Γ/3@2,
(1/Γ0)3Γ/3�g; the ratio of differential rates �; and the forward-backward asymmetry (���)
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Figure 3.11: The effects of the Y3 leptoquark model on the differential decay rates (1/Γ0)3Γ/3@2,
(1/Γ0)3Γ/3�g; the ratio of differential rates �; and the forward-backward asymmetry (���) of
� → -2g

−āg. Each plot shows the observable in the Standard Model and for two allowed values
of the NP couplings. The red curves correspond to 633

3!
623∗
3!

= −0.062 − 0.0288, 632
3!
623∗
3!

= 0.031 −
0.0058, 631

3!
623∗
3!

= 0.013 − 0.0038, and the blue curves correspond to 633
3!
623∗
3!

= −0.062 − 0.0288,
632
3!
623∗
3!

= 0.003−0.0318, 631
3!
623∗
3!

= 0.052−0.0548, respectively, while the green curves correspond
to the Standard Model.

inclusive decay � → -2g
−āg with the NP parameters constrained by the '(� (∗)) measurements.

We first adopted a model independent approach where the NP is expressed in terms of higher

dimensional operators with various Lorentz structures. Considering one NP operator at a time, we

considered the effect of NP on the inclusive decay. In the SM, the inclusive decays were calculated

to perturbative O(UB), and nonperturbative 1/<2
1
corrections. Several observables including rates

as well as differential distributions were discussed with a particular focus on the ratio of rates

'(-2) = B[�→-2g− āg]
B[�→-2ℓ− āℓ ] . ALEPH has a measurement of 1 → -g−āg which we converted into

a measurement of � → -2g
−āg under certain assumptions. Using this as an input we showed

that this measurement further constrained the NP couplings introduced to address the '(� (∗))

anomalies. Not including the ALEPH measurement we found that large deviations from the SM in

'(-2) are possible with the present '(� (∗)) measurements. This highlights the importance of a

precise measurement of the inclusive rate as a sensitive probe of NP. We then considered explicit

models of NP with leptoquarks and for various models of leptoquarks studied their effects in the
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Figure 3.12: The effects of the[3 leptoquark model on the differential decay rates (1/Γ0)3Γ/3@2,
(1/Γ0)3Γ/3�g; the ratio of differential rates �; and the forward-backward asymmetry (���) of
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−āg. Each plot shows the observable in the Standard Model and for two allowed values of
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inclusive decay. We found that large deviations are possible in certain models of leptoquarks and

the patterns of these deviations are different for different models. Therefore, careful measurements

in the inclusive decay can not only point to the presence of leptoquarks but can give clues about

their structure.
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CHAPTER 4

NEW PHYSICS IN INCLUSIVE SEMILEPTONIC B DECAY INCLUDING

NONPERTURBATIVE CORRECTIONS

4.1 Introduction

In the previous chapterwe discussed the effects of newphysics (NP) operators in the inclusive

semileptonic B decay. There, we considered NP contributions at tree level and nonperturbative

corrections of order O(1/<2
1
) were included only in the SM part. In this chapter which is based

on Ref. [64], we carry out the calculations of nonpertubative effects for all NP Dirac structures

and present the effect of these corrections numerically. In particular, we study the effect of these

corrections on the lepton flavor universality observable '(-2) = B(�̄→-2g− āg)
B(�̄→-2ℓ− āℓ )

and compare the

results for this observable with and without power corrections in the NP contributions. We will

see that the order of these corrections are at the percent level and in the parameter region of our

interest, they are mostly noticeable in the scalar and tensor parts.

This chapter is organized as follows: In section 4.2, we briefly describe the inclusive � decay

process and present the results of our calculations. In section 4.3, we present the numerical results

and in section 4.4, we finish this chapter with a conclusion.

4.2 Inclusive B decay

The inclusive semileptonic � decay rate can be calculated systematically by an expansion

in terms of perturbative and nonperturbative corrections. The leading terms in this expansion
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reproduce the free quark decay rate while higher order terms are written as double expansions

in terms of short distance perturbative effect which is an expansion in UB, and long distance

nonperturbative effect which is an expansion in Λ&��/<1.

Nonperturbative corrections are calculated in the context of operator product expansion

(OPE) and heavy quark effective theory (HQET). The techniques to calculate these corrections are

known well (see e.g. [50, 51, 52, 53, 54, 65, 66]). The expansion is basically written in terms

of operators with increasing dimensions where the higher dimension operators are suppressed by

powers of 1/<1. A convenient method to calculate these corrections to arbitrary order in 1/<1, is

presented in [67]. In this chapter, we extend the SM results by adding the scalar, pseudo-scalar,

vector and tensor currents as NP effects. We consider the effective Hamiltonian,

H4 5 5 =
��+21√

2

{[
2̄W` (1 − W5)1 + 6! 2̄W` (1 − W5)1 + 6' 2̄W` (1 + W5)1

]
ḡW` (1 − W5)ag

+
[
6( 2̄1 + 6% 2̄W51

]
ḡ(1 − W5)ag +

[
6) 2̄f

`a (1 − W5)1
]
ḡf`a (1 − W5)ag + ℎ.2.

}
,

(4.1)

where�� is the Fermi constant and+21 is theCabibbo-Kobayashi-Maskawa (CKM)matrix element.

When 6( = 6% = 6! = 6' = 6) = 0, the above equation produces the SM effective Hamiltonian.

To calculate the differential decay rate for �̄→ -2g
−āg, we use the optical theorem to find

the imaginary part of the time ordered products of the charged currents,

∫
34G4−8@.G 〈� |){O†(G),O(0)}|�〉, (4.2)

where O consists of SM and NP currents,

O = (1 + 6!)2̄W` (1 − W5)1 + 6' 2̄W` (1 + W5)1 + 6( 2̄1 + 6% 2̄W51 + 6) 2̄f`a (1 − W5)1. (4.3)

The time ordered product can then be written as an operator product expansion where a
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series of operators with increasing dimensions appear. Then, using the heavy quark effective theory,

we can separate the residual momentum of the heavy quark in the hadron (which is of order Λ&��)

and define the matrix elements of the nonrenomalizable operators in the operator expansion. This

procedure leads to the determination of hadronic form factors. After contracting with the leptonic

currents, we can calculate the three-fold differential decay rate 3Γ

3@23�g3�a
. Here the kinematic

variable @2 is the dilepton invariant mass and �g and �a are the energies of the g lepton and the

corresponding neutrino in the rest frame of the � meson. The explicit expression of the three-fold

decay distribution in terms of the invariant quantities is provided in Appendix E. The leading order

result is the free quark decay distribution and the first nonperturbative correction appears at order

Λ2
&��
/<2

1
. This correction is proportional to two hadronic parameters _1 and _2 (or `2c and `2

�
)

which correspond to the kinetic energy and the spin interaction energy of the 1 quark in the hadron,

respectively.

After integrating over the energies of the charged lepton and the neutrino, we can find the @2

distribution as [64],

3Γ

3@̂2
=# (@̂2)

[
( |1 + 6! |2 + |6' |2)

3Γ

3@̂2

����
("

+ Re(6∗' (1 + 6!))
3Γ

3@̂2

����
!'

+ |6( |2
3Γ

3@̂2

����
(

+ Re(6∗( (1 + 6! + 6'))
3Γ

3@̂2

����
(!'

+ |6% |2
3Γ

3@̂2

����
%

+ Re(6∗% (1 + 6! − 6'))
3Γ

3@̂2

����
%!'

+ |6) |2
3Γ

3@̂2

����
)

+ Re((1 + 6!)6∗) )
3Γ

3@̂2

����
!)

+ Re(6'6∗) )
3Γ

3@̂2

����
')

]
, (4.4)

where # (@̂2) = �2
�
|+21 |2<51 (1−<̂

2
g/@̂2)2

96c3
√
_(1,@̂2,d2)

and _(0, 1, 2) = 02 + 12 + 22 − 201 − 202 − 212. The various

terms on the right hand side of the above equation are presented in the following, with subscripts

that correspond to contributions of SM, NP and interference terms,
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3Γ

3@̂2

����
("

=

(
1 + _1

2<2
1

)
_(1, @̂2, d2)

{[
(1 − d)2 + @̂2(1 + d) − 2(@̂2)2

]
+
<̂2g

@̂2

[
2(1 − d)2 − @̂2(1 + d) − (@̂2)2

]}
+ 3_2
2<2

1

{[
(1 − d)3(1 − 5d) − @̂2(1 − d)2(1 + 5d)

− 3(@̂2)2(5 + 6d + 5d2) + 25(@̂2)3(1 + d) − 10(@̂2)4
]

+
<̂2g

@̂2

[
2(1 − d)3(1 − 5d) − @̂2(5 − 9d − 21d2 + 25d3)

+ 3(@̂2)2(1 + 2d + 5d2) + 5(@̂2)3(1 + d) − 5(@̂2)4
]}
, (4.5)

3Γ

3@2

����
!'

= − 12√d@̂2
(
1 + _1

2<2
1

)
_(1, @̂2, d2) + 4√d 3_2

2<2
1

{[
2(1 − d)3 − 3@̂2(1 − d)2

+ 12(@̂2)2(1 + d) − 7(@̂2)3
]
+
4<̂2g

@̂2

[
(1 − d)3 − 3@̂2d(1 − d) − 3d(@̂2)2 + (@̂2)3

]}
, (4.6)

3Γ

3@̂2

����
(

=
3@̂2

4
((1 + √d)2 − @̂2)

[(
1 + _1

2<2
1

)
_(1, @̂2, d2)

+ 3_2
2<2

1

(
(1 − √d)2(1 + 6√d + 5d) − 2@̂2(1 − 2√d + 5d) + 5(@̂2)2

)]
, (4.7)

3Γ

3@̂2

����
(!'

=
3<̂g

2
(1 − √d) ((1 + √d)2 − @̂2)

[(
1 + _1

2<2
1

)
_(1, @̂2, d2)

+ 3_2
2<2

1

(
(1 − √d)2(1 + 6√d + 5d) − 2@̂2(1 − 2√d + 5d) + 5(@̂2)2

)]
, (4.8)
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3Γ

3@̂2

����
%

=
3@̂2

4
((1 − √d)2 − @̂2)

[(
1 + _1

2<2
1

)
_(1, @̂2, d2)

+ 3_2
2<2

1

(
(1 + √d)2(1 − 6√d + 5d) − 2@̂2(1 + 2√d + 5d) + 5(@̂2)2

)]
, (4.9)

3Γ

3@̂2

����
%!'

=
3<̂g

2
(1 + √d) ((1 − √d)2 − @̂2)

[(
1 + _1

2<2
1

)
_(1, @̂2, d2)

+ 3_2
2<2

1

(
(1 + √d)2(1 − 6√d + 5d) − 2@̂2(1 + 2√d + 5d) + 5(@̂2)2

)]
, (4.10)

3Γ

3@̂2

����
)

= 8(1 +
2<̂2g

@̂2
)
[(
1 + _1

2<2
1

) (
2(1 − d)4 − 5@̂2(1 − d)2(1 + d) + (@̂2)2(3 + 2d + 3d2)

+ (@̂2)3(1 + d) − (@̂2)4
)
+ 3_2
2<2

1

(
2(−1 + d)3(3 + 5d) + @̂2(3 + 17d + 5d2 − 25d3)

+ (@̂2)2(3 + 14d + 15d2) + 5(@̂2)3(1 + d) − 5(@̂2)4
)]
, (4.11)

3Γ

3@̂2

����
!)

= 36<̂g
√
d

[(
1 + _1

2<2
1

) (
(−1 + d)3 + @̂2(1 + 2d − 3d2) + (@̂2)2(1 + 3d) − (@̂2)3

)
+ _2

2<2
1

(
(1 − d)2(1 + 15d) + @̂2(3 + 10d − 45d2) + (@̂2)2(19 + 45d) − 15(@̂2)3

)]
, (4.12)

3Γ

3@̂2

����
')

= − 36<̂g
[(
1 + _1

2<2
1

) (
(−1 + d)3 − @̂2(−3 + 2d + d2) − (@̂2)2(3 + d) + (@̂2)3

)
+ _2

2<2
1

(
(1 − d)2(5 + 11d) + @̂2(1 − 18d − 15d2) − (@̂2)2(13 + 3d) + 7(@̂2)3

)]
. (4.13)
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Parameter Value [30] Parameter Value [75]
(1( scheme) (kinetic scheme)

<1(
1

4.691 ± 0.037 �4+ <:8=
1

4.561 ± 0.021 �4+
_1 −0.362 ± 0.067 �4+2 <2 1.092 ± 0.020 �4+
d1 0.043 ± 0.048 �4+3 `2c 0.464 ± 0.067 �4+2
g1 0.161 ± 0.122 �4+3 d3

�
0.175 ± 0.040 �4+3

g3 0.213 ± 0.102 �4+3 `2
�

0.333 ± 0.061 �4+2

Table 4.1: Values of the parameters used for the numerical results. The correlation matrices are
taken from the references mentioned in the table.

Here we have defined the normalized quantities, @̂2 = @2/<2
1
, d = <22/<21 and <̂g =

<g/<1. Note that there is no scalar-pseudoscalar and (pseudo)scalar-tensor interference terms in

the @2 distribution. For 6( = 6% = 6! = 6' = 6) = 0, we reproduce the SM results and for

6( = 6% = 6! = 6' = 0 we reproduce the results given in [68].

4.3 Numerical Results

In this section, we present the numerical results of our calculations in two mass schemes

for the quarks masses: the 1( mass scheme [59, 60] and the kinetic scheme [69, 70, 71, 72]. In the

1( scheme, we follow [73, 74] to write the rate in terms of the nonperturbative parameters, <1, _1

at O(1/<2
1
) and d1, g1 and g3 at O(1/<31), and we use the numerical results of the fit together with

the correlations between the parameters from Ref. [30]. In the kinetic scheme the nonperturbative

parameters are <1 and <2, `2c and `2
�
at O(1/<2

1
) and d3

�
at O(1/<3

1
). The numerical values of

these parameters together with their correlation matrix are presented in Refs. [72, 75]. We present

the numerical inputs in table 4.1. The correlation matrices of these parameters are taken from the

references mentioned in the table and we do not repeat them here.

In our numerical results we also include the O(1/<3
1
) correction in SM which is derived

in [62]. Besides nonperturbative effects, we include the O(UB) perturbative corrections in SM

calculated in [47, 49]. The effects of higher order perturbative corrections are very small in the

observables where the ratio of rates are calculated [55, 76], so we include only O(UB) corrections.

We find for the ratio of branching ratios in SM, '(-2)(" = B(�→-2g
− āg)("

B(�→-2ℓ− āℓ )(" , in the 1( scheme,
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'(-2)1((" = 0.216 ± 0.003 , (4.14)

and in the kinetic scheme,

'(-2):8=(" = 0.213 ± 0.004 . (4.15)

Adding the NP effects, we can find in the 1( scheme,

'(-2)1(

'(-2)1(("
' 1 + 1.147

(
|6! |2 + |6' |2 + 2Re(6!)

)
+ 0.031|6% |2 + 0.327|6( |2 + 12.637|6) |2

− 0.714Re((1 + 6!)6∗') + 0.096Re((1 + 6! − 6')6∗%) + 0.493Re((1 + 6! + 6')6∗()

+ 5.514Re(6'6∗) ) − 3.402Re((1 + 6!)6∗) ), (4.16)

and similarly in the kinetic scheme,

'(-2):8=

'(-2):8=("
' 1 + 1.266

(
|6! |2 + |6' |2 + 2Re(6!)

)
+ 0.042|6% |2 + 0.351|6( |2 + 13.969|6) |2

− 0.744Re((1 + 6!)6∗') + 0.120Re((1 + 6! − 6')6∗%) + 0.525Re((1 + 6! + 6')6∗()

+ 6.094Re(6'6∗) ) − 3.462Re((1 + 6!)6∗) ). (4.17)

There is a measurement of the inclusive rate by ALEPH [63],

B(1 → -g−āg)4G? = (2.43 ± 0.32) × 10−2 , (4.18)

where - = -2 + -D are all possible states from 1 → 2 and 1 → D transitions. This

measurement is dominated by the 1 → 2 mode since |+D1 ||+21 | = 0.083 ± 0.006, as measured by LHCb

[77]. On the other hand the 1 → D mode has a larger phase space compared to the 1 → 2 mode.

We estimate the contribution of the 1 → D mode to this measurement by,
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B(1 → -g−āg)4G? ≈ B(1 → -2g
−āg)4G? (1 +

|+D1 |2
|+21 |2

× 2.8), (4.19)

where the factor 2.8 is due to the larger phase space in the 1 → D mode. This estimation which is

consistent with the one given in [37] leads to,

B(1 → -2g
−āg)4G? = (2.38 ± 0.32) × 10−2. (4.20)

Note that the ALEPH measurement represents the inclusive weak decay for a mixture of 1

hadrons and to leading order in the heavy quark expansion, all 1 hadrons have the same width. So

this measurement can be considered as the branching ratio for each individual 1 hadron.

Using the world average for the semileptonic branching ratio into the light lepton [30],

B(�→ -2ℓ
−āℓ)4G? = (10.65 ± 0.16) × 10−2, we can find an experimental value for the ratio,

'(-2)4G? = 0.223 ± 0.030. (4.21)

In Fig. (4.1) we present the results (in the 1( scheme) for the observable '(-2) when we

turn on one NP coupling at a time. We consider two cases: the first case is when the NP contribution

is considered only at parton level (dashed red curves), and the second case is when we add the

subleading 1/<1 corrections to these NP contributions (solid red curves). The gray and brown

bands correspond to the uncertainties of this observable when we vary the values of the parameters

within their uncertainties. The green bands are the constraints on the couplings when we consider

the measurements of '(� (∗)) within 3f. For the 6% coupling, it is well known that the �2 lifetime

leads to a strong constraint [36, 37, 38]. We use B(�2 → g−āg) ≤ 30% as in [15], to include this

constraint on the 6% coupling which is included in the green band in the plot. The pink band, is the

value of '(-2)4G? within 1f.

In the parameter space of interest, adding the 1/<1 corrections to the NP contributions causes a

change of '(-2) that is numerically at the percent level. This change is mostly noticeable in the 6(
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Figure 4.1: The ratio of decay rates '(-2) (in 1( scheme) when one coupling at a time is present.
The dashed red curves correspond to the case when the NP contribution is added at parton level
while the solid red curves correspond to the case when power corrections are included in the NP
contributions. Green bands are the constraints on the couplings due to '(� (∗))4G? within 3f and
�2 lifetime. The pink band is '(-2)4G? within 1f.

and 6) case where the maximum correction, in the parameter space that is favored by '(� (∗)), is

≈ 5%.

4.4 Conclusions

Recent measurements of '(� (∗)) show large deviations from SM predictions and this could

be a signal of nonuniversal NP. The quark level transition in this observable is 1 → 2g−āg and

we can probe this transition in other decay modes such as the inclusive decay � → -2gag. In

the last chapter, we studied this decay mode when we add all possible NP Dirac structures to it.

There, we considered the NP contributions at tree level. In this chapter, we extended this study

by including the effects of 1/<1 corrections in the NP Dirac structures. We presented the results

of our calculations for the differential decay rate 3Γ

3@2
as well as the three-fold decay distribution

and presented some numerical results of the effects of these power corrections on the observable

'(-2). By constraining the NP parameters by the existing '(� (∗)) measurements, we presented

the favored parameter region by these measurements to illustrate if the power corrections in the
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NP part are important. We found that, in the parameter range of interest, these corrections are

generically at the percent level (except for the 6% coupling which is very small) and the maximum

effect of these corrections is in the 6( and 6) part which is ≈ 5%.
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CHAPTER 5

CP VIOLATION IN �̄0 → �∗+`−ā`

5.1 Introduction

The observed anomalies in the semileptonic � → � (∗)ℓaℓ transition have caused a lot of

activity in the field and there are numerous works in the literature that examine the nature of the

new physics (NP) required to explain these anomalies. These include both model-independent and

model-dependent analyses. Therefore, there are many possibilities for the NP. In this chapter which

is based on Ref. [78], we focus on the CP-violating observables as a means of differentiating the

NP scenarios. More specifically, we focus on CP violating triple products (TP) [79, 80, 81, 82, 83]

that appear in the angular distribution of the decay �̄0 → �∗+(→ �0c+)`−ā`.

Generically, triple products take the form v1 · (v2 × v3) where v8 can be the polarization or

momentum of the final state particles. These terms are kinematical effects and hence they require

an interference of two amplitudes with different Lorentz structures. This fact will help distinguish

different NP explanations of the '(� (∗)) anomalies. An important feature of TPs is that they do not

require hadronic (CP conserving) phases. This is in contrast to direct CP violation where besides

weak phase differences, one also needs strong phase differences which are usually very hard to

calculate or estimate. This is particularly useful in our case where the only hadronic transition is

�̄ → �∗ and therefore the hadronic phase remains the same among different amplitudes. So the

main CP-violating effects in �̄0 → �∗+(→ �0c+)`−ā` appear as CP-violating asymmetries in the
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angular distributions (TPs).

In this chapter we present the calculation of the full angular distribution of the decay

�̄0 → �∗+(→ �0c+)`−ā` and investigate how the CP-violating angular asymmetries help us

distinguish various NP models. To do so, we begin in Sec. 5.2 with a derivation of the angular

distribution both in the SM and with the addition of NP. In Sec. 5.3, we consider several LQ

models and the implications of the CP-violating angular asymmetries for these models and finally

we conclude in Sec. 5.4.

5.2 Angular Analysis

In this section we discuss the kinematics of the decay �̄→ �∗(→ �c)ℓ−āℓ and define the

angular observables in the process using transversity amplitudes. The total decay amplitude for

this process can be expressed as a sum over several pairs of effective two-body decays. Here we

begin by examining the SM contribution and then continue to discuss NP parts.

5.2.1 Transversity amplitudes: SM

The decay �̄→ �∗ℓ−āℓ is considered to be �̄→ �∗,∗−, where the on-shell �∗ decays to

�c and the off-shell,∗− decays to ℓ−āℓ. Its amplitude is given by

M(<;=) (�→ �∗,∗) = n
∗`
�∗ (<)"`an

∗a
,∗ (=) , (5.1)

where n `
+∗ (<) is the polarization of a vector particle (�

∗ or,∗). Here <, = = ±1, 0 and C represent

the transverse, longitudinal and timelike polarizations, respectively. (Only the off-shell,∗− has a

timelike polarization.)

In the �-meson rest frame we write the polarizations of the two vector particles as

n
`

�∗ (±) = (0, 1,±8, 0)/
√
2 , n

`

�∗ (0) = (:I, 0, 0, :0)/<�∗ , (5.2)

n
`

,∗ (±) = (0, 1,∓8, 0)/
√
2 , n

`

,∗ (0) = −(@I, 0, 0, @0)/
√
@2 , n

`

,∗ (C) = @
`/

√
@2 ,
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where :` = (:0, 0, 0, :I) and @` = (@0, 0, 0, @I) are the four momenta of the �∗ and ,∗, respec-

tively, both written in the rest frame of the �. The polarization vectors of the off-shell ,∗ satisfy

the following orthonormality and completeness relations:

n
∗`
,∗ (<)n,∗ ` (<

′) = 6<<′ ,∑
<,<′

n
∗`
,∗ (<)n

a
,∗ (<

′)6<<′ = 6`a , (5.3)

where 6<<′ = diag(+,−,−,−) for < = C,±, 0. For the on-shell �∗, these relations are

n
∗`
�∗ (<)n�∗` (<

′) = −X<<′ ,∑
<,<′

n
∗`
�∗ (<)n

a
�∗ (<

′)X<<′ = −6`a + :
`:a

<2
�∗

. (5.4)

Since the � meson has spin 0, of the 12 combinations of �∗ and ,∗ polarizations, only 4

are allowed, producing the following helicity amplitudes:

M(+;+) (�→ �∗,∗) = A+ ,

M(−;−) (�→ �∗,∗) = A− ,

M(0;0) (�→ �∗,∗) = A0 ,

M(0;C) (�→ �∗,∗) = AC . (5.5)

One may also go to the transversity basis by writing the amplitudes involving transverse

polarizations as

A | |,⊥ = (A+ ± A−)/
√
2 . (5.6)
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The full amplitude for the decay process �→ �∗(→ �c)ℓ−āℓ can now be expressed as

M(�→ �∗(→ �c),∗(→ ℓ−āℓ)) (5.7)

∝
∑

<,<′=±,0
nf�∗ (<) (?�)f 6<<′ n

∗d
�∗ (<

′) "da

∑
=,=′=C,±,0

n∗a,∗ (=
′) 6=′= n `,∗ (=) (D̄ℓW`%!E āℓ ) .

Here we have made explicit use of the fact that nf
�∗ (?�∗)f = n

f
�∗ (?� + ?c)f = 0, so that �(�∗ →

�c) ∝ nf
�∗ (?� − ?c)f = 2n

f
�∗ (?�)f. In the above amplitude, one can project out the relevant

helicity components to obtain

M(�→ �∗(→ �c),∗(→ ℓ−āℓ))

∝
∑

<,<′=±,0

∑
=,=′=C,±,0

nf�∗ (<) (?�)f 6<<′M(<′,=′) (�→ �∗,∗) 6=′= n `,∗ (=) (D̄ℓW`%!E āℓ )

∝ −
∑
<=±,0

∑
==C,±,0

6==H�∗ (<) M(<,=) (�→ �∗,∗) L,∗ (=) , (5.8)

where

H�∗ (<) = n�∗ (<) · ?� , L,∗ (=) = n `,∗ (=) (D̄ℓW`%!E āℓ ) . (5.9)

The notation of Eq. (5.8) can be simplified by defining a timelike polarization for the �∗: H�∗ (C) ≡

H�∗ (0). In this case, the helicities of Eq. (5.5) becomeM(<;<) (�→ �∗,∗) = A< and

M(�→ �∗(→ �c),∗(→ ℓ−āℓ)) ∝ −
∑

<=C,±,0
6<<A<H�∗ (<) L,∗ (<) . (5.10)

Written in this form, the differential decay rate can now be constructed from the helicity

amplitudes and the Lorentz-invariant quantities H�∗ and L,∗ . The spin-summed square of the

amplitude is

|M|2 ∝
∑

<,<′=C,±,0
6<<6<′<′

(
A<A∗<′

) (
H�∗ (<)H ∗�∗ (<′)

) ∑
spins
L,∗ (<)L∗,∗ (<′) . (5.11)

The leptonic part of the above squared amplitude is given in the appendix in Eq. (F.2).
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5.2.2 New Physics

From Eq. (5.10), we see that, in the SM, the decay amplitude can be written as the product

of a hadronic pieceH�∗ (<), a leptonic piece L,∗ (<), and a helicity amplitudeA<, summed over

all helicities <. As we will see, this same structure holds in the presence of NP. We can consider

separately the NP leptonic and hadronic contributions. We begin with the leptonic piece.

In the SM, we have �̄→ �∗,∗−, where the,∗− decays to ℓ−āℓ via a (+ − �) interaction.

If NP is present, there are several possible differences. First, there may also be scalar and/or tensor

interactions. Second, the decay products may include a ā of a flavour other than ℓ. In what follows,

we assume that neutrinos are left-handed, as in the SM. Regarding the ā flavour, technically we

should write ā8 and sum over all possibilities for 8 (since the ā is undetected). However, this makes

the notation cumbersome, and does not change the physics. For this reason, for notational simplicity,

we continue to write āℓ, though the reader should be aware that other ā flavours are possible. Thus,

in the presence of NP, the relevant two-body processes to consider are �̄ → �∗#∗−(→ ℓ−āℓ),

where # = (−%,+ − �,) represent left-handed scalar, vector and tensor interactions, respectively.

In what follows, we label these (%, +� and ) . (The +� contribution includes that of the SM.)

Turning to the hadronic piece, we note that the underlying decay is 1 → 2ℓ−ā. For each

of the leptonic (%, +� and ) Lorentz structures, we introduce NP contributions to the 1 → 2

transition. The effective Hamiltonian is

H4 5 5 =
��+21√

2

{[
(1 + 6!) 2̄W` (1 − W5)1 + 6' 2̄W` (1 + W5)1

]
ℓ̄W` (1 − W5)aℓ

+ [6( 2̄1 + 6% 2̄W51] ℓ̄(1 − W5)aℓ + 6) 2̄f`a (1 − W5)1ℓ̄f`a (1 − W5)aℓ + ℎ.2.
}
. (5.12)
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5.2.3 Transversity amplitudes: NP

Including all possible contributions (SM + NP), the amplitude for the process can be

expressed as

MSM+NP ∝
∑

<,<′=±,0
n a�∗ (<) (?�)a 6<<′ n

∗`
�∗ (<

′) "(%
` (D̄ℓ%!E āℓ )

+
∑
<,<′

nf�∗ (<) (?�)f 6<<′ n
∗d
�∗ (<

′) "+�
da

∑
=,=′

n∗a+� (=
′) 6=′= n `+� (=) (D̄ℓW`%!E āℓ )

+
∑
<,<′

n
V

�∗ (<) (?�)V 6<<′ n
∗d
�∗ (<

′) ")
d,fU

×
∑
=,=′

n∗f) (=
′) 6=′= n `) (=)

∑
?,?′

n∗U) (?
′) 6?′? n a) (?) (D̄ℓf`a%!E āℓ ) . (5.13)

The vector part is identical to the SM with the SM coupling replaced by possible NP couplings in

the hadronic amplitudes.

As in the vector-current case, we can define hadronic amplitudes by contracting the currents

with polarization vectors of the intermediate states. The scalar, vector, and tensor amplitudes are

M(%
(<) (�→ �∗(%∗) = n

∗`
�∗ (<) "

(%
` ,

M+�
(<;=) (�→ �∗+�∗) = n

∗`
�∗ (<) "

+�
`a n

∗a
+� (=) ,

M)
(<;=,?) (�→ �∗)∗) = 8n

∗d
�∗ (<) "

)
d,fU n

∗f
) (=) n

∗U
) (?) . (5.14)

Using the above definitions we can now rewrite the total amplitude of Eq. (5.13) as

MSM+NP ∝ −
∑
<=±,0

H�∗ (<)
{
M(%
(<) L(% +

∑
==C,±,0

6==M+�
(<;=) L+� (=)

+
∑

=,?=C,±,0
6== 6??M)

(<;=,?) L) (=, ?)
}
, (5.15)
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where the leptonic amplitudes have been defined as

L(% = D̄ℓ%!E āℓ ,

L+� (=) = n
`

+�
(=) D̄ℓW`%!E āℓ ,

L) (=, ?) = −8n `
)
(=) n a) (?) (D̄ℓf`a%!E āℓ ) . (5.16)

Since the decaying � meson is a pseudoscalar, conservation of angular momentum leads to

the relationships < = 0 for the scalar part, < = = for the vector part and < = = + ? for the tensor

part. In addition, since the tensor current is antisymmetric under the interchange of = and ?, the

amplitudes corresponding to = = ? automatically vanish. Thus, similar to Eq. (5.5), the non-zero

helicity amplitudes in the full angular distribution are given by

M(%
(0) (�→ �∗(%∗) = A(% ,

M+�
(+;+) (�→ �∗+�∗) = A+ ,

M+�
(−;−) (�→ �∗+�∗) = A− ,

M+�
(0;0) (�→ �∗+�∗) = A0 ,

M+�
(0;C) (�→ �∗+�∗) = AC ,

M)
(+;+,0) (�→ �∗)∗) =M)

(+;+,C) (�→ �∗)∗) = A+,) ,

M)
(0;−,+) (�→ �∗)∗) =M)

(0;0,C) (�→ �∗)∗) = A0,) ,

M)
(−;0,−) (�→ �∗)∗) =M)

(−;−,C) (�→ �∗)∗) = A−,) . (5.17)

Using the definitions for the �→ �∗ form factors given in Refs. [28, 84], we can find these
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hadronic helicity amplitudes as,

A(% = −6%

√
_(<2

�
, <2

�∗ , @
2)

<1 + <2
�0(@2) ,

A+ = (1 + 6! − 6') (<� + <�∗)�1(@2) − (1 + 6! + 6')

√
_(<2

�
, <2

�∗ , @
2)

<� + <�∗
+ (@2) ,

A− = (1 + 6! − 6') (<� + <�∗)�1(@2) + (1 + 6! + 6')

√
_(<2

�
, <2

�∗ , @
2)

<� + <�∗
+ (@2) ,

A0 = −(1 + 6! − 6')
(<� + <�∗) (<2� − <2�∗ − @2)

2<�∗
√
@2

�1(@2)

+ (1 + 6! − 6')
_(<2

�
, <2

�∗ , @
2)

2<�∗ (<� + <�∗)
√
@2
�2(@2) ,

AC = −(1 + 6! − 6')

√
_(<2

�
, <2

�∗ , @
2)√

@2
�0(@2) ,

A0,) = 6)
1

2<�∗ (<2� − <2�∗)

(
(<2� − <2�∗) (<2� + 3<2�∗ − @2))2(@2) − _(<2�, <2�∗ , @2))3(@2)

)
,

A±,) = 6)

√
_(<2

�
, <2

�∗ , @
2))1(@2) ± (<2� − <2�∗))2(@2)√

@2
, (5.18)

where _(0, 1, 2) = 02 + 12 + 22 − 201 − 202 − 212.

The differential decay rate is proportional to the spin-summed amplitude squared. We have

��MSM+NP��2 = |M(% |2 + |M+� |2 + |M) |2

+ 2Re
[
M(%M∗+� +M(%M∗) +M+�M∗)

]
. (5.19)

The individual terms are given by
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1.

|M(% |2 ∝
∑

<,<′=±,0
M(%
(<)M

(%∗
(<′)H�∗ (<) H ∗�∗ (<)

∑
spins
L(% L∗(% ,

= |A(% |2 |H�∗ (0) |2
∑
spins
L(% L∗(% . (5.20)

2. |M+� |2 is given in Eq. (5.11).

3.

|M) |2 ∝
∑

<,<′=±,0

(
H�∗ (<) H ∗�∗ (<′)

) ∑
=,=′,?,?′=C,±,0

6== 6=′=′ 6?? 6?′?′

×
(
M)
(<;=,?)M

)∗
(<′;=′,?′)

) ∑
spins
L) (=, ?) L∗) (=′, ?′) . (5.21)

4.

M(%M∗+� ∝
∑
<=±,0

H�∗ (0) H ∗�∗ (<)
∑
==C,±,0

6==M(%
(0)

×M+�∗
(<;=)

∑
spins
L(% L∗+� (=) . (5.22)

5.

M(%M∗) ∝
∑
<=±,0

H�∗ (0) H ∗�∗ (<)
∑

=,?=C,±,0
6== 6??M(%

(0)

×M)∗
(<;=,?)

∑
spins
L(% L∗) (=, ?) . (5.23)

6.

M+�M∗) ∝
∑

<,<′=±,0
H�∗ (<) H ∗�∗ (<′)

∑
=,=′,?′=C,±,0

6== 6=′=′ 6?′?′M+�
(<;=)

×M)∗
(<′;=′,?′)

∑
spins
L+� (=) L∗) (=′, ?′) . (5.24)
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The leptonic contributions to
��MSM+NP

��2 are given in the Appendix F.
For the vector currents we introduced the transversity amplitudes above. In the samemanner

we can define the transversity amplitudes for the tensor currents as,

A | |,) = (A+,) + A−,) )/
√
2 ,

A⊥,) = (A+,) − A−,) )/
√
2 . (5.25)

In what follows, we will present the angular distribution in the transversity basis where the

amplitudes are A(%, A0, AC , A | |, A⊥, A0,) , A | |,) and A⊥,) .

5.2.4 Angular Distribution

In the previous subsection, we computed the square of the full amplitude for �̄ → �∗(→

�c)ℓ−āℓ. Using the results from appendix F, this can be expressed as a function of the final-state

momenta. In this section, we obtain the angular distribution of the decay.

To this end, we use the formalism of helicity angles defined in the rest frames of the

intermediate particles, as shown in Fig. 5.1. We have chosen the I-axis to align with the direction

of the �∗ in the rest frame of the �. With this choice of alignment, the helicity angles \∗ and c− \ℓ

respectively measure the polar angles of the � and the charged lepton in the rest frames of their

parent particles (�∗ and #∗, respectively), and j is the azimuthal angle between the decay planes

of the two intermediate states. For the CP-conjugate decay, the helicity angles are defined in the

same way. Thus, in comparing the decay and the CP-conjugate decay, \̄∗ = \∗, \̄ℓ = \ℓ, and j̄ = j.

Using the above definitions we can express the four momenta of the � and the ℓ− in the rest

frames of their respective parent particles as follows:

?
`

�
= (�� , | ®?� | sin \∗, 0, | ®?� | cos \∗) ,

?
`

ℓ
= (�ℓ, | ®?ℓ | sin \ℓ cos j, | ®?ℓ | sin \ℓ sin j,− | ®?ℓ | cos \ℓ) , (5.26)

where �- and ®?- (- = �, ℓ) represent the energy and the three-momentum of - in its parent rest
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Figure 5.1: Definition of the angles in the �̄→ �∗(→ �c)ℓ−āℓ distribution.

frame. The complete angular distribution can then be written as [78]

34Γ

3@2 3 (cos \ℓ) 3 (cos \∗) 3j
=

3

8c

�2
�
|+21 |2(@2 − <2ℓ )

2 | ®?�∗ |
28c3<2

�
@2

× B(�∗ → �c)
(
#1 +

<ℓ√
@2
#2 +

<2
ℓ

@2
#3

)
, (5.27)

where @ = ?ℓ + ? āℓ , and | ®?�∗ | =
√
_(<2

�
, <2

�∗ , @
2)/(2<�), with _(0, 1, 2) = 02 + 12 + 22 − 201 −

202 − 212, is the 3-momentum of �∗ in the �-meson rest frame. For #1, #2 and #3, the angular

functions associated with the various (combinations of) helicity amplitudes are given in Tables 5.1,

5.2 and 5.3, respectively.

5.2.5 CP Violation and Triple Products

The components in the angular distribution that particularly interest us are those whose

coefficients are Im(A8A∗9 ), where A8, 9 are two different helicity amplitudes. These are the terms

that are used to generate CP-violating asymmetries. Note that they are all proportional to sin j or

sin 2j = 2 sin j cos j and they change sign under the transformation j→ −j.

As we mentioned earlier, technically, these angular components are not, by themselves,
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Amplitude in #1 Angular Function
|A0 |2 4 sin2 \ℓ cos2 \∗
|A⊥ |2 2 sin2 \∗(cos2 j + cos2 \ℓ sin2 j)
|A‖ |2 2 sin2 \∗(cos2 \ℓ cos2 j + sin2 j)
|A‖,) |2 32 sin2 \ℓ sin2 \∗ cos2 j
|A⊥,) |2 32 sin2 \ℓ sin2 \∗ sin2 j
|A0,) |2 64 cos2 \ℓ cos2 \∗
|A(% |2 4 cos2 \∗
Re(A‖A∗⊥) −4 cos \ℓ sin2 \∗

Re(A0A∗‖) −
√
2 sin 2\ℓ sin 2\∗ cos j

Re(A0A∗⊥) 2
√
2 sin \ℓ sin 2\∗ cos j

Re(A‖,)A∗(%) 8
√
2 sin \ℓ sin 2\∗ cos j

Re(A0,)A∗‖,) ) 16
√
2 sin 2\ℓ sin 2\∗ cos j

Re(A0,)A∗(%) 32 cos \ℓ cos2 \∗

Im(A⊥A∗0) −
√
2 sin 2\ℓ sin 2\∗ sin j

Im(A‖A∗⊥) 2 sin2 \ℓ sin2 \∗ sin 2j
Im(A(%A∗⊥,) ) −8

√
2 sin \ℓ sin 2\∗ sin j

Im(A0A∗‖) −2
√
2 sin \ℓ sin 2\∗ sin j

Table 5.1: Terms in the #1 part of the angular distribution.

CP-violating observables. Suppose that the helicity amplitudes A8 and A 9 had the same weak

phase but different strong phases. Im(A8A∗9 ) would then be nonzero, but this would not indicate

CP violation, since the weak-phase difference vanishes. This would be a fake signal. Suppose

instead that A8 and A 9 had the same strong phase but different weak phases. Im(A8A∗9 ) would

again be nonzero, and in this case it would be a true CP-violating signal. In order to distinguish

true and fake signals, one must compare the same quantity in the decay and the CP-conjugate decay.

For a true signal, the angular component will be the same in both decays. This is because, in going

from process to antiprocess, the weak phases change sign and the azimuthal angle j → −j. A

fake signal will be indicated if the angular component changes sign. Thus, in the general case, to

obtain a true CP-violating signal, one must add the angular distributions for the decay and the CP-

conjugate decay. (Even though we are adding the distributions, these are referred to as CP-violating

asymmetries.)

Now, as argued in the introduction, in the case of �̄ → �∗(→ �c)ℓ−āℓ, the SM and NP
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Amplitude in #2 Angular Function
Re(A0A∗0,) ) −32 cos2 \∗

Re(A0,)A∗C ) 32 cos \ℓ cos2 \∗
Re(A0A∗(%) −8 cos \ℓ cos2 \∗
Re(ACA∗(%) 8 cos2 \∗
Re(A‖A∗⊥,) ) 16 cos \ℓ sin2 \∗

Re(A‖,)A∗⊥) 16 cos \ℓ sin2 \∗
Re(A‖A∗‖,) ) −16 sin2 \∗

Re(A⊥A∗⊥,) ) −16 sin2 \∗

Re(A0A∗⊥,) ) −8
√
2 sin \ℓB8=2\∗ cos j

Re(A0,)A∗⊥) −8
√
2 sin \ℓ sin 2\∗ cos j

Re(A‖,)A∗C ) 8
√
2 sin \ℓ sin 2\∗ cos j

Re(A‖A∗(%) −2
√
2 sin \ℓ sin 2\∗ cos j

Im(A0A∗‖,) ) 8
√
2 sin \ℓ sin 2\∗ sin j

Im(A‖A∗0,) ) −8
√
2 sin \ℓ sin 2\∗ sin j

Im(ACA∗⊥,) ) −8
√
2 sin \ℓ sin 2\∗ sin j

Im(A⊥A∗(%) −2
√
2 sin \ℓ sin 2\∗ sin j

Table 5.2: Terms in the #2 part of the angular distribution. These are suppressed by <ℓ/
√
@2.

contributions all basically have the same strong phase. That is, there is no strong-phase difference

between any pair of transversity amplitudes. In this case, the angular components whose coefficients

are Im(A8A∗9 ) are signals of CP violation.

In Tables 5.1, 5.2 and 5.3, one finds, respectively, four, three and four of these CP-violating

observables. However, one must be careful here. These do not all involve different factors of

Im(A8A∗9 ) – some combinations of helicity amplitudes appear in more than one Table. Also, these

observables involve only three angular functions, so there can be a number of different contributions

to a single observable. In addition, the angular components listed in the three Tables are not all

the same size. Compared to Table 5.1, the observables in Tables 5.2 and 5.3 are suppressed by

<ℓ/
√
@2 and <2

ℓ
/@2, respectively. Typically, one has @2 = $ (<2

�
), so these suppression factors

are significant. However, if the angular distribution can be measured in that region of phase space

where @2 = $ (<2
ℓ
), useful information can be obtained from the CP-violating observables in these

Tables. Finally, the helicity amplitudes all get contributions from the NP operators in Eq. (5.12),

so if a particular NP operator is nonzero, several helicity amplitudes may be affected.
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Amplitude in #3 Angular Function
|AC |2 4 cos2 \∗
|A0 |2 4 cos2 \ℓ cos2 \∗
|A⊥ |2 2 sin2 \ℓ sin2 \∗ sin2 j
|A‖ |2 2 sin2 \ℓ sin2 \∗ cos2 j
|A‖,) |2 32 sin2 \∗(cos2 \ℓ cos2 j + sin2 j)
|A⊥,) |2 32 sin2 \∗(cos2 j + cos2 \ℓ sin2 j)
|A0,) |2 64 sin2 \ℓ cos2 \∗
Re(A0A∗C ) −8 cos \ℓ cos2 \∗

Re(A0A∗‖)
√
2 sin 2\ℓ sin 2\∗ cos j

Re(A‖A∗C ) −2
√
2 sin \ℓ sin 2\∗ cos j

Re(A0,)A∗⊥,) ) 32
√
2 sin \ℓ sin 2\∗ cos j

Re(A0,)A∗‖,) ) −16
√
2 sin 2\ℓ sin 2\∗ cos j

Re(A‖,)A∗⊥,) ) −64 cos \ℓ sin2 \∗

Im(A‖A∗⊥) −2 sin2 \ℓ sin2 \∗ sin 2j
Im(ACA∗⊥) 2

√
2 sin \ℓ sin 2\∗ sin j

Im(A⊥A∗0)
√
2 sin 2\ℓ sin 2\∗ sin j

Table 5.3: Terms in the #3 part of the angular distribution. These are suppressed by <2ℓ/@
2.

In Table 5.4 we present all the information about the CP-violating angular observables:

the contributing helicity amplitudes, the angular functions, the suppression factor, and the NP

couplings probed. This allows us to interpret possible future measurements.

For example, suppose that the angular distribution is measured using the full data set. In

this case, the measurements are dominated by the unsuppressed contributions of Table 5.1. This

angular distribution contains both CP-conserving and CP-violating pieces, and both can be affected

by NP. We focus on the CP-violating observables of Table 5.4.

• Suppose that the angular distribution is found to include the component sin 2\ℓ sin 2\∗ sin j.

This indicates that Im(A⊥A∗0) ≠ 0, which implies that 6' ≠ 0, and that it has a different

(weak) phase than (1 + 6!). In this case, one expects to also observe nonzero coefficients for

the other two angular functions in Table 5.4, sin2 \ℓ sin2 \∗ sin 2j and sin \ℓ sin 2\∗ sin j.

• The third angular function, sin \ℓ sin 2\∗ sin j, receives an additional contribution from

Im(A(%A∗⊥,) ). But if it has been established that 6' ≠ 0, one cannot tell if 6% and 6) are
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Not suppressed Coupling Angular Function
Im(A⊥A∗0) Im[(1 + 6! + 6') (1 + 6! − 6')∗] −

√
2 sin 2\ℓ sin 2\∗ sin j

Im(A‖A∗⊥) Im[(1 + 6! − 6') (1 + 6! + 6')∗] 2 sin2 \ℓ sin2 \∗ sin 2j
Im(A(%A∗⊥,) ) Im(6%6∗) ) −8

√
2 sin \ℓ sin 2\∗ sin j

Im(A0A∗‖) Im[(1 + 6! − 6') (1 + 6! + 6')∗] −2
√
2 sin \ℓ sin 2\∗ sin j

Suppressed by <ℓ/
√
@2 Coupling Angular Function

Im(A0A∗‖,) ) Im[(1 + 6! − 6')6∗) ] 8
√
2 sin \ℓ sin 2\∗ sin j

Im(A‖A∗0,) ) Im[(1 + 6! − 6')6∗) ] −8
√
2 sin \ℓ sin 2\∗ sin j

Im(ACA∗⊥,) ) Im[(1 + 6! − 6')6∗) ] −8
√
2 sin \ℓ sin 2\∗ sin j

Im(A⊥A∗(%) Im[(1 + 6! + 6')6∗%] −2
√
2 sin \ℓ sin 2\∗ sin j

Suppressed by <2
ℓ
/@2 Coupling Angular Function

Im(A‖A∗⊥) Im[(1 + 6! − 6') (1 + 6! + 6')∗] −2 sin2 \ℓ sin2 \∗ sin 2j
Im(ACA∗⊥) Im[(1 + 6! + 6') (1 + 6! − 6')∗] 2

√
2 sin \ℓ sin 2\∗ sin j

Im(A⊥A∗0) Im[(1 + 6! + 6') (1 + 6! − 6')∗]
√
2 sin 2\ℓ sin 2\∗ sin j

Table 5.4: The CP-violating terms in the angular distribution, their corresponding NP couplings,
and the angular functions to which they contribute.

also nonzero. This is where the CP-conserving observables come into play. From Table 5.1,

we see that both |A(% |2 and |A⊥,) |2 can be determined from the angular distribution, so in

principle we will know if they are nonzero (though we will have no information about their

phases).

• If it is found that the coefficients of the first two angular functions are ' 0, this implies that

6' ' 0 (or that its phase is the same as that of (1 + 6!)). In this case, the measurement of a

nonzero coefficient of the third angular function will point clearly to Im(A(%A∗⊥,) ) ≠ 0.

Finally, suppose that the angular analysis reveals no unsuppressed CP-violating observables.

To probe other such observables, it will now be necessary to reconstruct the angular distribution for

the data with @2 = $ (<2
ℓ
). If this is possible, one can see if the angular function sin \ℓ sin 2\∗ sin j

has a nonzero coefficient in the data suppressed by <ℓ/
√
@2. If it does, this indicates that 6)

or 6% (or both) is nonzero. As noted above, one can perform a cross-check by measuring CP-

conserving observables. In particular, from Table 5.1, we see that the angular distribution can give

us information about new tensor and scalar interactions.
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5.3 Leptoquarks as New-Physics Models

In the previous section, we derived the angular distribution for �̄→ �∗(→ �c)ℓ−āℓ in the

presence of NP. This applies to ℓ = 4, `, g. In this section, we examine the leptoquark (LQ) models

that can generate nonzero CP-violating observables in �̄0 → �∗+`−ā`.

In the SM, the decay 1 → 2ℓ−ā is due to the tree-level exchange of a, . In order to generate

a significant discrepancy with the SM, the NP contributions to this decay must also take place at

tree level. This can occur in the presence of leptoquarks [28, 85, 86].

Below we examine whether CP-violating observables can be generated with LQs. Specif-

ically, we determine which of the NP parameters 6!,',(,%,) [Eq. (5.12)] can be generated. Here,

our main goal is to examine the implications of the measurement of CP-violating observables

in �̄0 → �∗+`−ā`. As such, these LQ models are not complete. That is, there may be con-

straints from other measurements that are not taken into account here. For example, because

'
`/4
�∗ /('

`/4
�∗ )SM = 1.00±0.05, anyNP that contributes to 1 → 2`−ā`must equally affect 1 → 24−ā4.

But it is well known that a LQ that couples to both ` and 4 will be constrained by ` → 4W and

1 → B4` [87]. Should a CP-violating observable be measured in �̄0 → �∗+`−ā` suggesting the

presence of LQs, these constraints must be taken into account at the model-building stage. Now

we discuss the implications of CP violation for LQ models of our interest.

In previous chapters, we discussed how LQs contribute to the decay �̄0 → � (∗)ℓ−āℓ. Here

we repeat the discussion to be self-contained. There are ten models in which the LQ couples to

SM particles through dimension ≤ 4 operators [35]. These include five spin-0 and five spin-1 LQs.

Six of these can contribute to 1 → 2`−ā` [28]. Three have fermion-number-conserving couplings

and three have fermion-number-violating couplings. The interaction Lagrangian that generates the
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contributions to 1 → 2`−ā` is given by

LLQ = LLQ
�=0
+ LLQ

�=−2 ,

LLQ
�=0

= (ℎ8 9
1!
&̄8!W

`! 9 ! + ℎ8 91' 3̄8'W
`ℓ 9 ')*1` + ℎ8 93!&̄8! ®fW

`! 9 ! · ®*3`

+ (ℎ8 9
2!
D̄8'! 9 ! + ℎ8 92'&̄8!8f2ℓ 9 ')'2 + ℎ.2.,

LLQ
�=−2 = (68 9

1!
&̄28!8f2! 9 ! + 6

8 9

1'
D̄28'ℓ 9 ')(1 + (6

8 9

3!
&̄28!8f2®f! 9 !) · ®(3

+ (68 9
2!
3̄28'W`! 9 ! + 6

8 9

2'
&̄28!W`ℓ 9 ')+

`

2
+ ℎ.2. (5.28)

Here & and ! represent left-handed quark and lepton (* (2)! doublets, respectively; D, 3 and

ℓ represent right-handed up-type quark, down-type quark and charged lepton (* (2)! singlets,

respectively. The indices 8 and 9 are the quark and lepton generations and k2 = �k̄) is a charge-

conjugated field.

For all six models, we integrate out the LQ to form four-fermion operators. We then perform

Fierz transformations to put these operators in the form of Eq. (5.12). In this way, we determine

which LQs contribute to which 6!,',(,%,) coefficients.

In Table 5.5 we summarize the contributions of all the LQs to the 6!,',(,%,) coefficients of

Eq. (5.12).

Model 6! 6' 6( 6% 6)

*1
1
2
ℎ22
1!
ℎ32∗
1!

0 −ℎ22
1!
ℎ32∗
1'

−ℎ22
1!
ℎ32∗
1'

0
*3 − 1

2
ℎ22
3!
ℎ32∗
3!

0 0 0 0
'2 0 0 1

4
ℎ22
2!
ℎ32∗
2'

− 1
4
ℎ22
2!
ℎ32∗
2'

1
16
ℎ22
2!
ℎ32∗
2'

(1 − 1
4
632
1!
622∗
1!

0 1
4
632
1!
622∗
1'

− 1
4
632
1!
622∗
1'

− 1
16
632
1!
622∗
1'

(3
1
4
632
3!
622∗
3!

0 0 0 0
+2 0 0 −622∗

2'
632
2!

−622∗
2'
632
2!

0

Table 5.5: Contributions of the various LQs to the 6!,',(,%,) coefficients of Eq. (5.12). All entries
must be multiplied by 1/(

√
2��+21"

2
LQ).
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5.3.1 CP Violation

As shown in Table 5.4, theCP-violating observables involve any pair of {(1+6!), 6', 6%, 6) }.

Above we have seen that most LQ models contribute to 6! . It must be pointed out that, in

1 → 2`−ā`, 6! cannot be large. This is because it is the coefficient of the (+ − �) × (+ − �)

operator 2̄W` (1−W5)1 ¯̀W` (1−W5)a`, which is related by (* (2)!×* (1). to the 1 → B`+`− operator

B̄W` (1 − W5)1 ¯̀W` (1 − W5)` [88]. In order to explain the anomalies in the 1 → B`+`− observables,

we require [89]

6! =
U

2c
(−0.68 ± 0.12) = $ (10−3) . (5.29)

In (1 + 6!), this is negligible.

Most NP models proposed to explain the '� (∗) and '�/k experimental data contribute only

to 6! (in 1 → 2g−āg). As such, they predict no CP-violating effects. Should a nonzero CP-violating

observable be measured, this would rule out these models, or at least force them to be modified.

Conclusions about the type of NP present depend on which nonzero observables are mea-

sured:

• If the angular distribution is found to include the components sin 2\ℓ sin 2\∗ sin j and

sin2 \ℓ sin2 \∗ sin 2j (the top two entries in Table 5.4), this requires a nonzero 6'. This

can only arise in a,′ model, and so excludes all LQ models.

• If the sin 2\ℓ sin 2\∗ sin j and sin2 \ℓ sin2 \∗ sin 2j components do not appear in the angular

distribution, but sin \ℓ sin 2\∗ sin j (the third entry in Table 5.4) does, this indicates that 6%

and 6) are nonzero, and that they have a relative phase. This can only occur in a model with

two LQs. 6) can come from a '2 or (1 LQ, while 6% can be due to a*1, '2, (1 or +2 LQ (but

the two LQs must be different).

• If none of the above three angular functions are present in the angular distribution, this

implies that 6' and one of 6% and 6) are zero (or that there is no phase difference). There

can still be a CP-violating observable in the data suppressed by <ℓ/
√
@2 (entries 5-8 in Table
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5.4). If this is found to be nonzero, this indicates that one of 6) or 6% (or both, if they have

the same phase) is nonzero. The 6% option is particularly interesting. The *1 LQ is a very

popular NP choice (for example, see Ref. [90]), and it can generate 6%, but not 6) . If this is

the only nonzero CP-violating observable found, this would be strong support for the*1 LQ.

• There is also information from the CP-conserving observables. The full angular distribution

has components proportional to |A‖,) |2, |A⊥,) |2, |A0,) |2 and |A(% |2. Measurements of

these quantities also gives information about which of 6) and/or 6% is or is not nonzero.

5.4 Conclusions

At the present time, the anomalies in the measurements of '� (∗) and '�/k suggest the

presence of new physics in 1 → 2g−ā decays. A number of different NP explanations have been

proposed, as well as several methods for differentiating these NP models. In this chapter, we

explored the possibility of using CP-violating observables to distinguish the various NP scenarios.

The angular distribution in �̄0 → �∗+(→ �0c+)g−āg can be used to provide CP-violating

asymmetries. Now, the reconstruction of this angular distribution requires the knowledge of the

3-momentum of the g. The problem here is that ®?g cannot be measured since its decay products

include ag, which is undetected. Thus, while our ultimate goal is to compute the complete angular

distribution, including information related to the decay products of the g, here we took a first step

by focusing on the decay �̄0 → �∗+`−ā`. Here ®?` is measurable, so the angular distribution can

be constructed. In addition, NP that contributes to 1 → 2g−ā may well also affect 1 → 2`−ā.

In the SM, the hadronic 1 → 2 current is purely LH. In the presence of NP, there can be

additional contributions to this LH current, parametrized by 6! , as well as other Lorentz structures:

RH (6'), scalar (6(), pseudoscalar (6%) and tensor (6) ) currents. We computed the angular

distribution of �̄ → �∗ℓ−āℓ in terms of the helicity amplitudes �8, both in the SM and with NP.

We identified the CP-violating angular asymmetries, proportional to Im[�8�∗9 ], and showed how

all CP-violating observables depend on any pair of {(1 + 6!), 6', 6%, 6) }.

We then examined various LQ models that contribute to 1 → 2`−ā`. While LQ models do
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not contribute to 6', they can contribute to all other couplings, namely 6! , 6% and 6) .

The most popular explanations of the � anomalies involve NP that contributes only to 6! .

Should any nonzero CP-violating observable be measured, this would rule out these models, or

at least require them to be modified. In addition, there are CP-violating asymmetries that depend

on (1 + 6!)-6', 6%-6) , (1 + 6! + 6')-6% and (1 + 6! − 6')-6) interference. By measuring all of

these, along with the CP-conserving components of the angular distribution, it will be possible to

distinguish several LQ models.
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CHAPTER 6

B ANOMALIES AND THE MUON (6 − 2)

6.1 Introduction

So far, we have been mainly concerned with � anomalies and the new-physics effects in

� decays. Another anomaly in low energy measurements that has persisted for a long time is the

muon (6−2). In this chapter which is based on Ref. [91], we explain all the �-meson and the muon

(6 − 2) anomalies in a concrete model: a two-Higgs-doublet model (2HDM) extended to include

TeV-scale leptoquarks and a light scalar ( with mass <( ∼ 10 − 200 MeV. We find solutions that

depend on only a small number of parameters and show that these explanations motivate interesting

new searches, particularly for rare meson decays to diphoton final states and Higgs boson decays

to four photons.

The anomalousmagnetic moment of themuon is a longstanding anomaly in particle physics.

A recent evaluation of the standard model (SM) prediction [92] finds a 3.7 f discrepancy with the

experimental measurement [93]:

(6 − 2)4G?` − (6 − 2)SM
` = 27.4(2.7) (2.6) (6.3) × 10−10 , (6.1)

where the first two uncertainties are theoretical and the last is experimental.

The � anomalies that we have been concerned with so far, were in the charged current (CC)

processes, 1 → 2g−āg. There are also many measurements in the neutral current (NC) processes

(1 → Bℓ+ℓ−) that show deviations from SM predictions. Similar to '(� (∗)), the lepton universality

ratio ' ≡ B(�+ →  +`+`−)/B(�+ →  +4+4−) [94, 95] has been precisely measured by LHCb

[96], which finds

'
exp
 
= 0.846 +0.060−0.054

+0.016
−0.014 , 1 ≤ @

2 ≤ 6.0 GeV2 , (6.2)
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where @2 = <2
ℓ+ℓ− . This is lower than the SMprediction 'SM

 
= 1.00±0.01 [97] by 2.5f. The related

ratio ' ∗ ≡ B(�0 →  ∗0`+`−)/B(�0 →  ∗04+4−) has been measured by LHCb to be [98]

'
exp
 ∗ =


0.66 +0.11−0.07 ± 0.03 , 0.045 ≤ @2 ≤ 1.1 GeV2 (low @2)

0.69 +0.11−0.07 ± 0.05 , 1.1 ≤ @2 ≤ 6.0 GeV2 (central @2) .
(6.3)

These are also lower than the SM predictions [97] 'SM
 ∗ = 0.906 ± 0.028 (low @2) and 'SM

 ∗ =

1.00 ± 0.01 (central @2) by 2.3f and 2.5f, respectively. Taken together, the general consensus

is that these � decay branching ratios differ significantly from SM predictions, and theoretical

hadronic uncertainties [99, 100, 101] alone may not explain the data.

An interesting question, then, is whether the � anomalies have a common explanation in

terms of new physics. Early work on the simultaneous explanation of the CC and NC anomalies [88,

102, 103, 104] has been followed by many model calculations; an incomplete list can be found in

Refs. [105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 89, 117, 118, 119, 120, 121, 122,

123, 124, 125, 126, 127, 41, 128, 90, 129, 130, 131, 132, 133, 134]. Remarkably, there appears

to be a rather simple explanation for both the CC and NC anomalies in terms of a single vector

leptoquark * with SM quantum numbers (3, 1, 2
3
) that couples dominantly to left-handed quarks

and leptons. For a mass <* ∼ 1 TeV and O(1) couplings to the third generation, the * leptoquark

can explain the '(� (∗)) and '( (∗)) anomalies, at least for the central @2 data. Weak-scale states

do not fully resolve the low @2 discrepancy, since a larger effect is required to modify the larger SM

widths near the photon pole, but the * leptoquark does also reduce the discrepancy for the low @2

data to roughly 1.7f [89].

However, the* leptoquark does not resolve the (6−2)` anomaly; it contributes at one-loop,

but this contribution is too small. We must therefore introduce additional particles if we are also to

explain the (6 − 2)` discrepancy. To do this, we consider a weakly coupled light scalar particle (

with mass<( ∼ 10−200MeV that is an extension of the standard Type II 2HDMmodel. The scalar

(, which we will often refer to as the dark Higgs boson, couples to both leptons and quarks, but

with couplings that are suppressed both by Yukawa couplings and a small mixing parameter sin \.
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At the one-loop level, its contribution to (6 − 2)` is too small to resolve the anomaly. However,

motivated by the leptoquark solution to the � anomalies, we note that leptoquarks (as well as other

TeV-scale particles) will generically induce an (WW coupling, and this can resolve the (6 − 2)`

anomaly through a two-loop Barr-Zee diagram (Fig. 6.4). In this way, the solutions to the (6 − 2)`

and � anomalies proposed here are connected. As an aside, for values of <( just below 2<`, this

model can also completely remove the discrepancy in the low @2 of ' ∗ measurement, following a

possibility noted previously in Ref. [135].

In addition to resolving longstanding anomalies, the proposed explanation predicts new

signals. In particular, given the light state ( and its couplings to electrons and photons, the model

predicts new meson decays, such as � →  ( and  → c(, followed by ( → 4+4−, WW, leading

to di-lepton and di-photon signals that could be discovered in current and near-future experiments.

The model also predicts exotic Higgs boson decays ℎ → (( → WWWW, which may appear in

detectors as a contribution to the ℎ→ WW signal.

This chapter is organized as follows. In Sec. 6.2, we present the model, including the

new fields and the relevant model parameters. In Sec. 6.3, we determine the parameter values

that resolve the (6 − 2)` anomaly. In Sec. 6.4, we then discuss constraints on the model from

hadronic physics and show that a resolution to the (6 − 2)` and � constraints exists in a viable

region of parameter space. The interesting implications for exotic �,  , and Higgs boson decays

are discussed in Sec. 6.5. In Sec. 6.6, we conclude this chapter with a short summary.

6.2 The Model

Our model is an extension of the Type II 2HDM. The Type II 2HDM contains two Higgs

doublets �D and �3 , which get vacuum expectation values (vevs) ED and E3 and give mass to the

up-type and down-type fermions, respectively. We extend this by adding a singlet scalar q, which
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couples to the Higgs doublets through the portal interactions [91]

+portal = � (�†D�3 + �†3�D)q +
[
_D�

†
D�D + _3�†3�3 + _D3 (�

†
D�3 + �†3�D)

]
qq , (6.4)

where CP conservation is assumed. In this extension, we consider parameters such that �D and �3

get vevs, but q doesn’t. After electroweak symmetry breaking, then, the trilinear scalar couplings

mix the new scalar with the Higgs bosons of the 2HDM, and the quartic scalar couplings contribute

to new Higgs boson decays ℎ→ qq and to the mass of the q.

More precisely, to determine the physical states of the theory, we minimize the full Higgs

potential and diagonalize the mass matrices; for details, see Appendix G. In the end, the physical

states include the SM-like Higgs boson ℎ and the heavy Higgs bosons �, �, and �± of the 2HDM,

but also a new real scalar, the dark Higgs boson (, with Lagrangian [91]

L( =
1

2
(m`()2−

1

2
<2((

2− sin \ tan V
∑
5=3,;

< 5

E
5̄ 5 ( − sin \′cot V

∑
5=D

< 5

E
5̄ 5 ( − 1

4
^(�`a�

`a, (6.5)

where E ' 246 GeV and tan V = ED/E3 . The couplings to fermions are inherited from the mixing

of the dark Higgs boson with the 2HDM Higgs bosons: they are suppressed by Yukawa couplings,

and the down-type couplings are enhanced by tan V, while the up-type couplings are suppressed

by cot V. In addition, they are modified by the mixing angles sin \ and sin \′. For weak portal

interactions � � <ℎ and large tan V, these mixing angles can be written in terms of the physical

Higgs boson masses. As shown in Appendix G, the results are

sin \ ≈ − E�
<2
�

, sin \′ ≈ −2E�
<2
ℎ

(
1 −

<2
ℎ

2<2
�

)
. (6.6)

The last term of Eq. (6.5) is an (WW coupling governed by the parameter ^, which has dimensions

of inverse mass. This coupling is generically induced by heavy states, such as leptoquarks, as will

be discussed in Sec. 6.3.
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Finally, as discussed in Sec. 6.1, we add a vector leptoquark* with SM quantum numbers

(3, 1, 2
3
) and Lagrangian

L* = −
1

4
�*`a�

*`a − <2**`*` −
[
ℎ*8 9

(
&̄8!W

`! 9 !
)
*` + H.c.

]
− 6<*(*`*` . (6.7)

The* leptoquark’s couplings to left-handed quarks and leptons resolve the �meson anomalies. The

leptoquark’s couplings to right-handed quarks and leptons are constrained to be small [136]. We

have also included the leptoquark’s couplings to (. This interaction is allowed by all symmetries,

but will not play an important role in any of the phenomenology discussed below. As we will

discuss later, we consider the* leptoquark coupling to photons to be the same as the one between

the , boson and photons. Since the leptoquark is colored, it couples to gluons also [137]. This

coupling leads to their pair production at high energies but it does not affect our phenomenology

here.

In summary, the model we consider consists of a 2HDM model extended to include a light

dark Higgs boson ( and a leptoquark *. The leptoquark’s couplings ℎ*
8 9
are chosen to resolve the

� anomalies [41]. In addition to these, the parameters of the theory that are most relevant for the

phenomenology we discuss below are

<(, tan V, sin \, <� , ^ , (6.8)

where tan V, sin \, and <� fully determine sin \′ and the ( couplings to fermions, and ^ determines

the ( couplings to photons. We will be primarily interested in the parameter ranges <( ∼ 10 −

200 MeV, moderate to large tan V ∼ 10 − 60, small mixing angles sin \ ∼ 0.005, <� ∼ 1 TeV, and

^ ∼ (1 TeV)−1.

6.3 Resolving the Muon Magnetic Moment Anomaly

Given a 2HDM extended to include a dark Higgs boson ( and a vector leptoquark* through

the Lagrangian terms of Eqs. (6.5) and (6.7), respectively, we can now calculate the beyond-the-SM
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Figure 6.1: Contribution of the effective (WW coupling to (6 − 2)`.

contributions to (6 − 2)`.

6.3.1 Dark Higgs Boson Contribution from Effective (WW Coupling

Let us first consider the dark Higgs boson contribution from the (WW effective coupling

shown in Fig. 6.1. This contribution is dominated by the log-enhanced term [138]

Δ(6 − 2)(WW` ≈ 1

4c2
sin \ tan V

<2`

E
^ ln

(
Λ

<(

)
, (6.9)

where Λ is the cutoff scale, which we may take to be of the order of the mass of the particles

that induce the effective (WW coupling. Parameters required to resolve the (6 − 2)` anomaly are

presented in Fig. 6.2. For dark Higgsmixing angle sin \ ∼ 0.005 and tan V ∼ 10−60, we see that the

effective coupling required is ^ ∼ (1 TeV)−1. In our calculations we also include the contribution to

the lepton anomalous magnetic moment at the one-loop level, which has been calculated to be [139]

X0
(1-loop)
ℓ

=
62
ℓ

8c2

∫ 1

0

3I
(1 + I) (1 − I)2
(1 − I)2 + A−2I

, (6.10)

where A = <ℓ/<( and, in our case, 6ℓ = sin \ tan V(<ℓ/E).
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Figure 6.2: The region of the (tan V, ^) plane where an effective (WW coupling induces a Barr-Zee
contribution to (6 − 2)` that enhances the theoretical prediction to be within 1f of the measured
value. The sub-dominant 1-loop contribution from a virtual ( has also been included. We fix
sin \ = 0.005, Λ = 2 TeV, and show results for <( = 100 MeV and 200 MeV, as indicated.
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6.3.2 Dark Higgs Boson Contribution from (WW Coupling Induced by + Leptoquarks

How could such values of ^ be induced? As an example, motivated by the effectiveness

of leptoquarks for explaining the � anomalies, we consider adding #LQ vector leptoquarks +8,

8 = 1, . . . , #LQ, with Lagrangians

L+8 = −
1

4
�+8`a�

+8`a − <2+8+8`+
`

8
−

[
ℎ+9 :

(
&̄ 9 'W

`!:'
)
+8` + H.c.

]
− 6+8<+8(+8`+

`

8
, (6.11)

where for simplicity we add only leptoquarks with SM quantum numbers (3, 1, 5
3
) and assume that

their couplings to right-handed quarks and leptons are identical.

Assuming small couplings ℎ+
9 :
, the leading way in which these +8 leptoquarks contribute to

(6 − 2)` is by inducing an (WW coupling, which then contributes through a Barr-Zee diagram. The

Barr-Zee contribution to (6 − 2)` with a, boson in the loop has been calculated in Ref. [140] in

the context of 2HDMs. As leptoquarks are not gauge bosons, there might be ambiguities in the

leptoquark two loop contribution. For an $ (1) estimate of this contribution, we model the effect

of this leptoquark loop by the , loop. We find that the leptoquark contributions to (6 − 2)` are

always positive, that is, in the right direction, and they induce an effective (WW coupling parameter

^ =
UEM
4c

#LQ∑
8=1

#2&26+8

<+8
�, (4<2+8/<

2
() , (6.12)

where UEM ' 1/137, #2 = 3 and & = 5
3
are the number of colors and electric charge of the

leptoquarks +8, respectively, 6+8 parameterizes the (+8+8 coupling in Eq. (6.7), and �, is a loop

function defined in Ref. [141].

For large leptoquark masses <+8 � <(, the loop function is �, ' 7. In the simple case

where we have #LQ copies of degenerate leptoquarks with mass <+8 = <LQ and coupling 6+8 = 6+ ,

Eq. (6.12) reduces to

^ ' 0.034
#LQ 6+

<LQ
. (6.13)

Setting 6+ = 3 and requiring ^ ≈ TeV−1, the mass and number of leptoquarks required to resolve
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the (6 − 2)` anomaly are related by <LQ ≈ #LQ (100 GeV). The required parameters are shown

graphically in Fig. 6.3.

We see that it is not difficult to induce an effective (WW coupling large enough to resolve

the (6 − 2)` anomaly. For the tan V = 60 case shown, with even just #LQ = 5 leptoquarks with

mass <LQ = 2 TeV, which is currently viable, one can reduce the discrepancy in (6 − 2)` to 1f.

Alternatively, one can achieve the same result with #LQ = 10 leptoquarks with mass <LQ = 4 TeV,

which is likely challenging even for searches at the High Luminosity LHC. For the tan V = 40

case shown, one requires roughly twice as many leptoquarks, but the number is still not very large.

Generically, One might be able to directly see leptoquarks. First generation scalar leptoquarks have

been excluded below 1435 GeV and 1400 GeV in LHC pair production searches by CMS [142] and

ATLAS [143], respectively. Higher energy hadron [144, 145] and lepton [146, 147, 148] colliders

may be able to extend the search.

In our model, the assumed new physics that is necessarily light is the dark Higgs boson (.

This will have interesting observable consequences, as we discuss in Sec. 6.5.

6.3.3 * Leptoquark Contribution

In addition to the contributions to (6−2)`mediated by the darkHiggs boson and independent

of the * leptoquark, there are also the contributions that depend on the * leptoquark shown in

Fig. 6.4. These include the two-loop Barr-Zee contribution from a (WW coupling mediated by the*

leptoquark, similar to those discussed above for + leptoquarks in Sec. 6.3.2, and also two one-loop

contributions independent of the dark Higgs boson.

The two-loop Barr-Zee diagram’s contribution is as discussed above. The contribution of a

single* leptoquark with mass ∼ TeV is not sufficient to raise the theoretical prediction for (6− 2)`

to the experimental value.

In addition, however, there are the one-loop contributions from the coupling of * to the

muon and down-type quarks, ℎ*
8`
3̄8!W

a`!*a, where 8 = 3, B, 1. These contributions to (6 − 2)`
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Figure 6.3: The region of the (<LQ, #LQ) plane where #LQ vector leptoquarks +8 with mass <LQ
and SM quantum numbers (3, 1, 5

3
) induce an effective (WW coupling that resolves the (6 − 2)`

anomaly. In all panels, we set <( = 100MeV. In the upper and lower panels, we fix (sin \, tan V) =
(0.01, 60) and (0.005, 40), respectively. For the left panels, we set 6+ = 3 and show the bands
where the (6−2)` discrepancy is reduced to 1f. For the right panels, we consider the several values
of 6+ indicated and plot the lines on which the theoretical prediction for (6 − 2)` exactly matches
its experimentally measured value. (In the upper and lower right panels, the induced couplings are
^ ' (3.2 TeV)−1 and (0.9 TeV)−1, respectively.)
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Figure 6.4: * leptoquark contributions to (6 − 2)`. Left: two-loop Barr-Zee diagram involving
also the dark Higgs boson (. Center and right: one-loop diagrams that are independent of the dark
Higgs boson.

are [149]

Δ(6 − 2)*` =
∑
8=3,B,1

−
#2 (ℎ*

8`
)2

16c2

(
4<2`

3<2
*

&8 −
5<2`

3<2
*

&*

)
, (6.14)

where #2 = 3 is the number of colors, and &8 = − 13 and &* = −
2
3
are the electric charges of the

down-type quarks and the * leptoquark. Substituting these charges and the value for the muon

mass, we find

Δ(6 − 2)*` =
∑
8=3,B,1

−1.4 × 10−10(ℎ*8`)2
(
TeV
<*

)2
. (6.15)

This contribution is of the wrong sign to explain the (6−2)` anomaly and depends on the couplings

ℎ*
8`
. In particular, the couplings ℎ*

1`
and ℎ*B` contribute to 1 → B`+`− and are used to explain the

'( ∗) and 1 → B`+`− anomalies [41, 90]. As we show in the next section, however, the couplings

ℎ8` have small enough values that we can ignore the one-loop contribution to (6−2)`. In summary,

then, the* leptoquark contributions to (6 − 2)` are negligible in our model and do not modify our

discussion about the + leptoquark requirements to resolve the (6 − 2)` anomaly.

6.4 Resolving the � Anomalies and Hadronic Constraints

6.4.1 The* Leptoquark and � Anomalies

The couplings of the* leptoquark in Eq. (6.7) can resolve all the � anomalies. Let us start

with the 1 → B`+`− anomalies, which include the ' and ' ∗ measurements. The procedure

to fit for new physics is the following. The 1 → B`+`− transitions are defined via an effective
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Hamiltonian with vector and axial vector operators:

�eff = −U��√
2c
+C1+

∗
CB

∑
0=9,10

(�0$0 + �′0$′0) ,

$9(10) = [B̄W`%!1] [ ¯̀W` (W5)`] , (6.16)

where the +8 9 are elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and the primed

operators are obtained by replacing ! with '. The Wilson coefficients include both SM and new

physics contributions: �0 = �0, SM + �0,NP. One now fits to the data to extract �0,NP. There

are several scenarios that give a good fit to the data, and the results of recent fits can be found

in Refs. [136, 137, 150, 151, 152, 153]. One of the popular solutions is �``
9,NP = −�

``

10,NP, which

can arise from the tree-level exchange of the * leptoquark in Eq. (6.7). Following the results of

Ref. [136], fitting to the 1 → B`+`− data constrains the central values of the* couplings to satisfy

ℎ*1` ℎ
*
B` = 8 × 10−4 . (6.17)

The framework to explain all the � anomalies, including both theCC and theNC anomalies, involves

the * leptoquark coupling to the third generation quarks and leptons in the gauge basis with $ (1)

coupling, ℎ*
1g
∼ 1 [41]. As one moves from the gauge to the mass basis, for the quarks and leptons,

the couplings ℎ*
1`

and ℎ*B` are generated. Hence one has the hierarchy ℎ*1g ∼ 1 > ℎ
*
1`
> ℎ*B` > ℎ

*
3`
.

Using the allowed values of ℎ*
1`
∼ 0.1−0.6 [41] and Eq. (6.17), we see the one-loop* contribution

to (6 − 2)*` in Eq. (6.15) cannot resolve the (6 − 2)` discrepancy. The (6 − 2)` anomaly therefore

requires additional new physics, such as the ( boson discussed in Sec. 6.3 .

6.4.2 Hadronic Constraints

In this model the ( boson inherits its couplings from the Higgs boson, and so necessarily

couples to both leptons and hadrons. The lepton couplings, specifically the muon coupling, are

desired to resolve the (6 − 2)` anomaly. Here we begin to examine the implications of the hadronic

couplings, which may either constrain the model or lead to predictions of interesting new signals.
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Particularly stringent are constraints on FCNC processes, since couplings like 1B( are in-

duced through a penguin loop. Integrating out the,-top loop induces the effective 1B( vertex [154]

L1B =
sin \′

E tan V
3
√
2��<

2
C +
∗
CB+C1

16c2
<1 B̄%'1( + H.c. , (6.18)

where the factor sin \ ′
E tan V comes from the top quark coupling to (. By the same loop process, but

replacing 1 and B quarks by B and 3 quarks, respectively, the B3( vertex is also generated. Note

that the FCNC amplitude depends on the mixing angle sin \′ in Eq. (6.6), which is suppressed by

<2
ℎ
, while the (6 − 2)` in Eq. (6.9) is controlled by the mixing angle sin \ in Eq. (6.6), which is

suppressed by<2
�
. If a higher value of<� is compensated by a larger value of the mixing parameter

� to keep the same sin \, then sin \′ can become too large and be inconsistent with FCNC data.

The FCNC interactions will induce two-body decays � →  (∗)( and  → c(. To

determine the signature of these processes, it is important to determine how the ( decays. For<( ∼

10 − 200 MeV, the possible decays are ( → 4+4−, WW. In Figs. 6.5 and 6.6, we show the ( lifetime

and branching fraction to 4+4−, respectively. We see that for most of the parameters of interest,

the ( flight distance (excluding the boost factor) is 2g0 ∼ 1 mm, and so the ( decay is effectively

prompt. We also see that the dominant decay is to di-photons, with �'(( → 4+4−) ∼ 10−5 − 10−3

in the parameter region of interest.

We now determine the rates for the two-body decays � →  (∗)( and  → c(. For the

two-body decays �→  (∗)( we have [155, 156]

�'(�→  () =
62
1B
5 2
0
(<2

(
) (<2

�
− <2

 
)2 | ®? |g�

32c<2
�
(<1 − <B)2

(6.19)

and

�'(�→  ∗() =
62
1B
�2
0
(<2

(
) | ®? ∗ |3g�

8c(<1 + <B)2
, (6.20)

where <1 and <B are the bottom and strange quark masses, respectively, 50 and �0 are form

factors, which are taken from Refs. [157, 158], and 61B is the flavor-changing 1 → B coupling
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Figure 6.5: Contours of constant flight distance (excluding the boost factor) (30 = 2g0) of the light
scalar ( in the (<(, ^) plane. We fix sin \ = 0.005 and tan V = 40. In the pink shaded region, the
(6 − 2)` anomaly is reduced to 1f.
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Figure 6.6: Contours of constant branching fraction �'(( → 4+4−) in the (<(, ^) plane. We fix
sin \ = 0.005 and tan V = 40. In the pink shaded region, the (6 − 2)` anomaly is reduced to 1f,
and in the purple shaded region, �'(�→  ∗4+4−) is within 1f of its measured value.
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Observable New scalar contribution
sin \ = 0.005, tan V = 40 Existing constraints/measurements

�'(�→  () 1.7 × 10−4 < 10%
�'(�→  ∗() 1.7 × 10−4 < 10%
�'(�B → `+`−) 4.2 × 10−14 (3.0 ± 0.4) × 10−9
�'(�B → WW) 7.4 × 10−11 < 3.1 × 10−6
Δ"#(

�B
−2.5 × 10−17 GeV < 1.7 × 10−12 GeV

Δ"#(
 

−6.3 × 10−24 GeV < 5.9 × 10−18 GeV
�'( + → `+a4+4−) 3.3 × 10−14 (7.81 ± 0.23) × 10−8
�'( ± → c±4+4−) 8.7 × 10−11 (3.11 ± 0.12) × 10−7
�'( ( → WW) 3.3 × 10−16 (2.63 ± 0.17) × 10−6
�'( ! → WW) 3.2 × 10−14 (5.47 ± 0.04) × 10−4
X(6 − 2)4 6.3 × 10−14 (−87 ± 36) × 10−14

Table 6.1: Values of the contribution of the new scalar ( to various meson observables. We fix the
dark scalar mass to <( = 100 MeV. References for the experimental constraints are given in the
text.

with the normalization L1B = 61B B̄%'1(. Given the prompt ( decays to 4+4− and WW, we have

�'(� →  (∗)4+4−) dominantly coming from �'(� →  (∗)()�'(( → 4+4−) and �'(� →

 (∗)WW) dominated by �'(�→  (∗)()�'(( → WW). One can extend this to  decays also.

We now discuss constraints from � and  decays on this model. In this subsection, we will

consider a variety of non-leading constraints and show that they are far from excluding the favored

parameter space of this model. These observables are listed in Table 6.1 and are the following:

• � Total Decay Width: In the first two rows of Table 6.1, we require that �'(�→  (∗)() not

exceed the uncertainty in the SM prediction of the width of the � meson, which we take to

be around 10% [159].

• �B Decay: The process �B → `+`− is mediated by an B-channel dark Higgs boson (, where

the matrix element isM�B→`+`− =
61B6`

<2
�B
−<2

(

( B̄%'1) ( ¯̀`). We use flavio [160] to calculate

the contribution of the light scalar ( to this decay mode. The branching ratio of this decay

is measured to be (3.0 ± 0.4) × 10−9 [35]. The process �B → WW is also mediated by an

B-channel (. The SM prediction for �'(�B → WW) is around 5× 10−7 [161], and there exists

an experimental upper bound of 3.1 × 10−6 [35] for this observable. The branching ratio of
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the decay in terms of the effective (WW coupling ^ is

�'(�B → WW) = |61B |
2 |^ |2

64c

5 2
�B
<7
�B

<2
1
(<2

�B
− <2

(
)2
g�B . (6.21)

• �B and  Mixing: In the SM, the �B mass difference is Δ"SM
�B

= (17.4 ± 2.6) ps−1 [41]. We

require that the new scalar contribution not exceed the SM uncertainty. The expression for

the mass difference due to the new scalar is [162, 156]

Δ"NS
�B
= − 5

24

62
1B

<2
�B
− <2

(

5 2�<�B . (6.22)

We use a similar equation for the  −  ̄ mixing mass difference and use the experimental

value Δ"exp
 

= (52.93 ± 0.09) × 108 s−1 [35].

•  Decay: The rare decay  + → `+a4+4− has been measured by the NA48/2 Collaboration

to be �'( + → `+a4+4−) = (7.81±0.23) × 10−8 [163], where the measurement is restricted

to the kinematic region with <4+4− ≥ 140 MeV. To study this decay mode, we calculate the

branching ratio of the decay  → `a`(, where the scalar particle ( is radiated off the muon

leg [164]. The total branching ratio is then determined through

�'( + → `+a`4
+4−) = �'( + → `+a`()�'(( → 4+4−) . (6.23)

The  ± → c±4+4− mode also has been measured by the NA48/2 Collaboration to be

�'( ± → c±4+4−) = (3.11±0.12) × 10−7 [165]. For this process we find the two-body decay

rate  ± → c±(, and the branching ratio of the desired process is determined by

�'( ± → c±4+4−) = �'( ± → c±()�'(( → 4+4−) . (6.24)

•  (,! Decays: The decays  (,! → WW are mediated through B-channel dark Higgs bosons (,
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just as in the case �B → WW discussed above. The new contributions to these decay modes

and their Particle Data Group values [35] are presented in Table 6.1.

• Last, although not a hadronic constraint, we also list the model prediction for (6 − 2)4. Just

as there is a Barr-Zee contribution to (6−2)`, there is an analogous Barr-Zee contribution to

(6−2)4. In contrast to the muon case, the measured value for (6−2)4 is smaller than the SM

prediction, and so our model’s contribution to (6−2)4 is in the wrong direction. However, as

can be seen in Table 6.1, the contribution to (6 − 2)4 is very small, and does not significantly

worsen the agreement between theory and experiment.

We see that none of the constraints listed in Table 6.1 is a significant constraint on the

model. In the next section, we will consider the leading constraints, which do constrain parts of

the model parameter space, but also provide interesting predictions for signals that could be seen

in the near future.

6.5 New Signals of the Model

6.5.1 �→  (∗)4+4−

As noted above, the model contributes to the decay �→  (∗)4+4− with branching fraction

�'(�→  (∗)4+4−) = �'(�→  (∗)()�'(( → 4+4−). The region of the (<(, ^) parameter space

that is consistent with the measured value of �'(�→  (∗)4+4−) = (3.1+0.9−0.8
+0.2
−0.3 ±0.2) × 10

−7 [166]

is shown in Fig. 6.6, along with the region in which the (6 − 2)` anomaly is resolved. We see that

the existing constraint on �'(�→  (∗)4+4−) excludes the very lowest values of<( ∼ 10MeV, but

most of the parameter space is allowed. Futuremeasurements of �'(�→  (∗)4+4−)with increased

sensitivity may therefore see a deviation predicted by this model. There is also a measurement of

the inclusive �→ -B4
+4− decay [167] for 0.1 < <2

4+4− < 2.0GeV2, but this is outside the<( range

we consider and so cannot be used to constrain our model.
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Figure 6.7: The values of the branching fractions for the decays � →  (∗)WW and  + → c+WW.
The branching fractions for � →  WW and � →  ∗WW are essentially identical. The dashed
bands correspond to the 2f variations of the � →  (∗) form factors. We fix sin \ = 0.005 and
<( = 100 MeV.

6.5.2 �→  (∗)WW

As the ( decays almost always to di-photons, another important signal for the ( state is from

�→  (∗)WW decays. In Fig. 6.7 we show the predictions for �→  (∗)WW. The predictions depend

on the � →  (∗) form factors 50 and �0 mentioned above. We show the range of the predictions

as we vary the form factors within 2f of the quoted uncertainty. It should be noted that the form

factors are not from first principle QCD calculations, and so one should keep that in mind when

discussing uncertainties in the form factors. The predictions for � →  WW and � →  ∗WW are

almost identical, and range from roughly 1 × 10−4 to 3 × 10−4 for tan V = 40.

Because the WW comes from a light (, for a sufficiently low <(, the two W may be collinear

and look like a single W. One of the W may also be soft, in which case again the 2W will look like

a single W. Hence, experimentally one should check the � →  (∗)W signal carefully to look for

signs of a di-photon resonance. We should also point out that our predictions for the � →  ∗WW

rates should be considered as ballpark estimates, as one can choose a more general 2HDM model

to relax the branching ratio predictions. If the mass of the ( is close to the c0 mass, the final states
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for � →  (∗)c0 and � →  (∗)(, with both c0 and ( decaying to WW, are the same, and one will

have to consider carefully adding the two contributions. As nonleptonic decays are very difficult to

calculate it will be difficult to detect the presence of the ( particle in this case or obtain constraints

on the model from the � →  (∗)c0 measurement. In the SM, the non-resonant decay � → -BWW

has a branching ratio around 4×10−7 [161], where the photons are required to have an energy greater

than 100 MeV. Also, in Ref. [168], a study of the short distance effects in � →  (∗)WW decays,

together with the resonant contributions, is presented. At present, the observed �→  (∗)WW signals

come only from known resonances, but analyses of the currently unexplored non-resonant regions

could yield signals of the dark Higgs boson (.

6.5.3  → cWW

In Fig. 6.7 we also show the predicted branching ratios for  + → c+WW. For tan V = 40, the

prediction is approximately 6× 10−7. If the ( mass is near the c0 mass, the  + → c+WW decay will

be swamped by the  + → c+c0 decay, which has a branching ratio of about 21% [35]. Away from

the c0 resonance, there is a measurement of the non-resonant  + → c+WW decay with branching

ratio (1.01 ± 0.06) × 10−6 [35], but this measurement is obtained by combining measurements

made for di-photon invariant masses above the range of ( masses we consider. The predictions of

this model could be tested by future measurements with this sensitivity, but for di-photon masses

between 10 and 200 MeV.

For the neutral kaons, the model predictions for sin \ = 0.005, tan V = 40, and <( =

100 MeV are �'( ! → c0() = 4 × 10−7 and �'( ( → c0() = 4 × 10−9. The much smaller

branching ratio for  ( is largely due to the  ( having a much shorter lifetime than  ! , while the

 + and  ! lifetimes are of the same order. The measured branching ratios are �'( ! → c0WW) =

(1.273±0.033) × 10−6 and �'( ( → c0WW) = (4.9± 1.8) × 10−8 [35]. Again, the model predictions

are not far from current sensitivities and predict a sharp signal with di-photon mass equal to <(.
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6.5.4 ℎ→ WWWW and Implications for ℎ→ WW

Themodel discussed heremay alsomodifyHiggs boson decays through the process ℎ→ ((,

followed by ( → WW.1 Since the SMHiggs boson is much heavier than the scalar (, the two photons

from ( decay are boosted and highly collimated. Therefore, the decay ℎ → ((→ WW)((→ WW)

contributes to the ℎ→ WW signal [169]. We can calculate the couplings appearing in the 1
2
6ℎ((ℎ((

interaction in terms of the parameters of the potential and mixing parameters. The resulting

branching ratio is

�'(ℎ→ (() =
62
ℎ((

32c<ℎΓℎ

√√
1 −

4<2
(

<2
ℎ

. (6.25)

The signal strengths measured by CMS and ATLAS are `WW = 1.18+0.17−0.14 [170] and `
WW =

1.06+0.14−0.12 [171], respectively. By a naive combination of these two measurements, we find `WW =

1.11 ± 0.10. (We averaged the CMS and ATLAS measurements to `WW = 1.18 ± 0.16 and `WW =

1.06 ± 0.13, respectively.)

In the parameter region of our interest in the model, we can find values for parameters of

the potential such that the addition of the process ℎ→ (( → WWWW to the SM rate of ℎ→ WW does

not exceed the measured signal strength. As an example, for sin \ = 0.005 and tan V = 40, and

taking <3D = 200 GeV, _1 = 0.6, _2 = 0.3, _345 = 2.8, _3 = −0.3, _D = 0.0005, and _D3 = 0.005,

the signal strength becomes `WW ≈ 1.08. Of course, this also implies that as the experimental

constraints on `WW become more precise, a deviation from the SM expectation may appear.

6.6 Conclusions

In this chapter, we have proposed a concrete model that resolves both the (6 − 2)` and �

meson anomalies, which are currently among the leading discrepancies between SM predictions

and experimental data. The model is a Type II 2HDM model, such as the Higgs sector of the

minimal supersymmetric model, extended to include a light dark Higgs boson (, a leptoquark *,

and additional leptoquarks + . The * leptoquark resolves the � anomalies, and the + leptoquarks

1The model also predicts heavy Higgs boson decays � → ((, but the branching ratio for this is very small, of the
order of 10−6.
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generate a (WW coupling. This coupling induces a two-loop Barr-Zee contribution to (6 − 2)`,

which is shown in Fig. 6.1.

For dark Higgsmass<( ∼ 100MeV and dark Higgsmixing angle sin \ ∼ 0.005, tan V ∼ 40,

and #LQ ∼ 10 + leptoquarks with masses at the TeV scale, the correction resolves the (6 − 2)`

anomaly. The introduction of a new light scalar ( has many possible effects on SM meson

phenomenology. We have checked that all current bounds on  and � properties, as well as the

current constraint on (6 − 2)4, are respected for the parameters that solve the (6 − 2)` and � meson

anomalies; see Table 6.1.

In the near future, however, there are measurements that could uncover beyond-the-SM

effects and provide evidence for this model. In particular, the dark Higgs boson is light enough

to be produced in meson decays, and it then decays through ( → 4+4−, WW. The ( boson has

2g ∼ 0.01 − 1 mm, and so for most model parameters the decay is indistinguishable from prompt,

yielding interesting new di-electron events from � →  (∗)4+4− with <4+4− = <( and di-photon

signals from � →  (∗)WW and  → cWW with <WW = <(. The branching ratios for some

of these modes are shown in Figs. 6.6 and 6.7. In all cases, the predicted branching ratios

are not far from current sensitivities, although current measurements typically explore ranges of

<4+4− and <WW outside the considered range of <(. As examples, the model predicts values

�'(� →  (∗)WW) ∼ 10−4 and �'( + → c+WW), �'( ! → c0WW) ∼ 10−6. Provided the ( is

not too degenerate with the neutral pion c0, these signals could be observed above background in

the near future, for example, at Belle II, providing a motivation to look for these exotic di-photon

modes and an avenue for testing this model. More generally, these decay modes test many models

where the (6 − 2)` anomaly is resolved by a two-loop Barr-Zee contribution generated by a light (

with an (WW coupling.

In addition, there are potentially observable contributions to exotic Higgs decays ℎ→ (( →

WWWW, which, given that the ( is very light, typically lead to signals indistinguishable from ℎ→ WW.

For typical energies of the photons in the boosted ( → WW decay, �W = 30 GeV, the opening angle

of the photons is approximately 0.2◦. Taking the distance from the beam to the electromagnetic
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calorimeter to be ∼ 1.2m (which is the case for CMS), the separation of the photons would become

∼ 4 mm which is too small. On the other hand, CMS has a silicon tracker with a mass of about

a tenth of a radiation length. So for four 30 GeV photons, there is a 40% chance that one of the

photons pair produces in the silicon and we might be able to distinguish each photon.

In all decay modes with photons in the final states, while the main signals are the ones with

two photons in the final states, one or both of these photons can convert internally to 4+4− Dalitz

pairs which can be searched for in experiments.
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CHAPTER 7

CONCLUSIONS

There are a lot of opportunities in exploring beyond the Standard Model (SM) physics

in hadronic systems that contain heavy quarks. The ideal hadrons for this purpose are the ones

that contain the 1 quark which is the heaviest quark that can hadronize. Interestingly, there has

been many measurements of the �-meson decays that deviate from their SM predictions. These

measurements are grouped into two main categories: charged current decays � → � (∗)ℓaℓ, and

neutral current decays � →  (∗)ℓ+ℓ−. The theoretically clean observables related to these decay

modes are '(� (∗)) = B(�→�
(∗)ga)

B(�→� (∗)ℓa) and '( 
(∗)) = B(�→ 

(∗) `+`−)
B(�→ (∗)4+4−) , where ℓ = 4, `. '(�

(∗)) has been

measured by BaBar [2, 3], Belle [4, 5, 6, 14] and LHCb [7, 8]. The average of these measurements

deviate from the SM predictions by ∼ 3.1 f [9]. '( (∗)) has been measured by LHCb [96, 98]

where these measurements deviate from the SM predictions by ∼ 2.5 f. These deviations point

to the lepton flavor universality violation which is absent in the SM. These anomalies have been

our main focus in this dissertation. We have studied new physics (NP) effects in the decay mode

Λ1 → Λ2gag. This decay mode is important in diagnosing the '(� (∗)) anomalies since it has the

same quark level transition, 1 → 2gag. We have calculated various differential decay distributions

including all possible NP Lorentz structures that can contribute to this decay mode. Taking the

allowed values of the couplings from '(�∗) measurements, we have studied how '(Λ2) as well

as the differential observables, deviate from their SM predictions. We have explored how future

measurements of '(Λ2) can help differentiate NP models responsible for the '(� (∗)) anomalies.

We have also studied the leptoquark models that can explain these anomalies and how they can

affect various observables related to the decay mode Λ1 → Λ2gag.
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Another decay mode that has the same quark level transition as '(� (∗)) is the inclusive

decay � → -2ℓaℓ. We have studied this decay mode in the presence of all possible NP Lorentz

structures, both model-independently and with all possible leptoquark models that can contribute

to this decay mode. We have also carried out the calculation of non-perturbative corrections to

this decay mode both in the SM and when all possible NP Lorentz structures are included. This

calculation leads to a more precise prediction for this decay mode when NP is added to SM.

An important component of particle physics is CP violation as it is known that the observed

amount of CP violation is not enough to explain the baryon asymmetry of the universe. As a

consequence, we should look for new sources of CP violation. We have studied the angular dis-

tribution of the decay �̄0 → �∗+(→ �c)`−ā` in search of CP violating triple products. These

triple products are constructed with the momenta and/or polarizations of the final state particles.

Observation of CP violation in the angular distribution of this decay mode is a definite sign of

NP, since in the SM, we do not expect any CP violation in this decay mode. We can also use this

angular distribution to distinguish various NP models. We have used the angular distribution of

this decay mode to determine which couplings are necessary to produce certain (CP conserving

or CP violating) angular terms. This can also be used to distinguish different explicit NP models.

We have used this angular distributions to study various leptoquark models some of which are very

plausible candidates to address the '(� (∗)) and '( (∗)) anomalies.

Finally, in the last chapter, we have presented a study of the muon (6 − 2) anomaly and its

possible connection with the � anomalies. (6 − 2)` is a longstanding anomaly in particle physics

and there has been a lot of efforts to address it with new physics models. Here, we introduced a

simplified model to resolve this anomaly together with the �-meson anomalies. The model consists

of a weakly coupled light scalar particle ( in the framework of the two Higgs doublet model

(2HDM) of type II. This scalar particle which is usually called the dark Higgs boson, couples to

both leptons and quarks through its mixing with the neutral Higgses of the 2HDM. This means that
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these couplings are further suppressed by mixing angles when we compare them with the neutral

Higgses couplings to fermions in the 2HDM. In this model, the light scalar further couples to two

photons ((WW). In general, this coupling can be induced by the coupling between ( and TeV scale

charged particles and here we have considered leptoquarks as these heavy particles. The effective

(WW coupling can then contribute to the (6 − 2)` through a two-loop Barr-Zee diagram and this

contribution can resolve the (6 − 2)` anomaly. In this model, we see that to explain the (6 − 2)`

anomaly, we need a large coupling between the light scalar ( and two photons and this leads to

interesting signals in the � and  , as well as the SM Higgs decays to photons.
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−āℓ form factors from

lattice QCD with relativistic heavy quarks,” Phys. Rev. D92 no. 3, (2015) 034503,
arXiv:1503.01421 [hep-lat].

[2] BaBar Collaboration, J. P. Lees et al., “Evidence for an excess of �̄→ � (∗)g−āg decays,”
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D92 no. 5, (2015) 054018, arXiv:1506.08896 [hep-ph].

[62] T. Mannel, A. V. Rusov, and F. Shahriaran, “Inclusive semitauonic � decays to order
O(Λ3

&��
/<3

1
),” Nucl. Phys. B921 (2017) 211–224, arXiv:1702.01089 [hep-ph].

[63] ALEPH Collaboration, R. Barate et al., “Measurements of �'(1 → g−āg-) and
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APPENDIX A

HELICITY SPINORS AND POLARIZATION VECTORS

In this appendix, we give explicit expressions for the spinors and polarization vectors used

to calculate the helicity amplitudes for the decay Λ1 → Λ2gāg.

A.1 Λ1 rest frame

To calculate the hadronic helicity amplitudes, we work in the Λ1 rest frame and take the

three-momentum of the Λ2 along the +I direction and the three-momentum of the virtual vector

boson along the −I direction. The baryon spinors are then given by [172]

D̄2(± 12 , ?Λ2 ) =
√
�Λ2 + <Λ2

(
j
†
±,
∓|pΛ2 |

�Λ2 + <Λ2
j
†
±

)
,

D1(± 12 , ?Λ1 ) =
√
2<Λ1

©­­«
j±

0

ª®®¬ , (A.1)

where j+ =
©­­«
1

0

ª®®¬ and j− =
©­­«
0

1

ª®®¬ are the usual Pauli two-spinors. The polarization vectors of the

virtual vector boson are,

n `∗(C) =
1√
@2
(@0; 0, 0,−|q|) ,

n `∗(±1) =
1
√
2
(0;±1,−8, 0) ,

n `∗(0) =
1√
@2
( |q|; 0, 0,−@0) , (A.2)
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where @` = (@0; 0, 0,−|q|) is the four-momentum of the virtual vector boson in the Λ1 rest frame.

We have

@0 =
1

2<Λ1
(<2Λ1 − <

2
Λ2
+ @2) , (A.3)

|q| = |pΛ2 | =
1

2<Λ1

√
&+&− , (A.4)

where

&± = (<Λ1 ± <Λ2 )2 − @2. (A.5)

A.2 Dilepton rest frame

In the calculation of the lepton helicity amplitudes, we work in the rest frame of the virtual

vector boson, which is equal to the rest frame of the gāg dilepton system. We define the angle \g

as the angle between the three-momenta of the g and the Λ2 in this frame.

The lepton spinors for pg pointing in the +I direction and pāg pointing in the −I direction

are

D̄g (± 12 , ?g) =
√
�g + <g

(
j
†
±,
∓|pg |
�g + <g

j
†
±

)
,

E āg ( 12 , ? āg ) =
√
�a

©­­«
j+

−j+

ª®®¬ . (A.6)

We then rotate these about the H axis by the angle \g so that after the rotation, the three-momentum

of the Λ2 points in the +I direction. The two-spinors transform as

j′± = 4−8\gf2/2j±

=
©­­«
cos(\g/2) − sin(\g/2)

sin(\g/2) cos(\g/2)

ª®®¬ j±, (A.7)
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and

j
′†
± = j

†
±
©­­«

cos(\g/2) sin(\g/2)

− sin(\g/2) cos(\g/2)

ª®®¬ , (A.8)

and the full lepton spinors after the rotation are

D̄g (+ 12 , ?g) =
√
�g + <g

(
cos(\g/2), sin(\g/2),

−|pg |
�g + <g

cos(\g/2),
−|pg |
�g + <g

sin(\g/2)
)
,

D̄g (− 12 , ?g) =
√
�g + <g

(
− sin(\g/2), cos(\g/2),

−|pg |
�g + <g

sin(\g/2),
|pg |

�g + <g
cos(\g/2)

)
,

E āg ( 12 , ? āg ) =
√
�a

©­­­­­­­­«

cos(\g/2)

sin(\g/2)

− cos(\g/2)

− sin(\g/2)

ª®®®®®®®®¬
. (A.9)

The polarization vectors of the virtual vector boson in this frame are

n `∗(C) = (1; 0, 0, 0) ,

n `∗(±1) =
1
√
2
(0;±1,−8, 0) ,

n `∗(0) = (0; 0, 0,−1) . (A.10)

The three-momentum and energy of the g lepton in this frame can be written as

|pg | =
√
@2 E2/2,

�g = |pg | + <2g/
√
@2, (A.11)

where

E =

√
1 − <

2
g

@2
. (A.12)
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APPENDIX B

HELICITY AMPLITUDES

In general for the process � → -2g
−āg, the scalar-type, vector/axial-vector-type, and

tensor-type hadronic helicity amplitudes are defined as

�(%
_2 ,_=0

= �(
_2 ,_=0

+ �%
_2 ,_=0

,

�(
_2 ,_=0

= 6( 〈-2 | 2̄1 |�〉 ,

�%
_2 ,_=0

= 6% 〈-2 | 2̄W51 |�〉 , (B.1)

�+�_2 ,_ = �+_2 ,_ − �
�
_2 ,_

,

�+_2 ,_ = (1 + 6! + 6') n∗` (_) 〈-2 | 2̄W`1 |�〉 ,

��
_2 ,_

= (1 + 6! − 6') n∗` (_) 〈-2 | 2̄W`W51 |�〉 , (B.2)

and

�
())_1
_2 ,_,_

′ = �
()1)_1
_2 ,_,_

′ − � ()2)_1_2 ,_,_
′ ,

�
()1)_1
_2 ,_,_

′ = 6) n
∗` (_)n∗a (_′) 〈-2 | 2̄8f`a1 |�〉 ,

�
()2)_1
_2 ,_,_

′ = 6) n
∗` (_)n∗a (_′) 〈-2 | 2̄8f`aW51 |�〉 , (B.3)
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where n ` is the polarization vector of the virtual vector boson. The leptonic amplitudes are defined

as

!_g = 〈gāg | ḡ(1 − W5)ag |0〉 ,

!
_g
_

= n ` (_) 〈gāg | ḡW` (1 − W5)ag |0〉 ,

!
_g
_,_′ = −8n ` (_)n a (_′) 〈gāg | ḡf`a (1 − W5)ag |0〉 . (B.4)

When we consider the process as a free quark decay, we simply use the quark spinors without

hadronic expectation values. So the matrix elements for the hadronic vector and axial vector

currents will become

〈-2 | 2̄W`1 |�〉 → D̄2W
`D1, (B.5)

〈-2 | 2̄W`W51 |�〉 → D̄2W
`W5D1, (B.6)

for the scalar and pseudoscalar currents

〈-2 | 2̄1 |�〉 → D̄2D1,

〈-2 | 2̄W51 |�〉 → D̄2W5D1, (B.7)

and for the tensor currents

〈-2 | 2̄8f`a1 |�〉 → D̄28f
`aD1,

〈-2 | 2̄8f`aW51 |�〉 → D̄28f
`aW5D1 .

(B.8)

The hadronic and leptonic helicity amplitudes of the process 1 → 2g−āg in the presence of

scalar and pseudoscalar, vector and axial-vector, and tensor NP operators are below.
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B.1 Hadronic helicity amplitudes

Below, we present only the nonvanishing hadronic helicity amplitudes and use the definitions

&± = (<1 ± <2)2 − @2.

The scalar and pseudoscalar helicity amplitudes associated with the new physics scalar and

pseudoscalar interactions are

�(%
1/2,0 = 6(

√
&+ − 6%

√
&− ,

�(%
−1/2,0 = 6(

√
&+ + 6%

√
&− . (B.9)

The parity-related amplitudes are

�(
_2 ,_#%

= �(
−_2 ,−_#% ,

�%
_2 ,_#%

= −�%
−_2 ,−_#% . (B.10)

For the vector and axial-vector helicity amplitudes, we find

�+�
1/2,0 = (1 + 6! + 6')

√
&−√
@2
(<1 + <2) − (1 + 6! − 6')

√
&+√
@2
(<1 − <2) ,

�+�
1/2,+1 = −(1 + 6! + 6')

√
2&− + (1 + 6! − 6')

√
2&+ ,

�+�
1/2,C = (1 + 6! + 6')

√
&+√
@2
(<1 − <2) − (1 + 6! − 6')

√
&−√
@2
(<1 + <2) ,

�+�−1/2,0 = (1 + 6! + 6')
√
&−√
@2
(<1 + <2) + (1 + 6! − 6')

√
&+√
@2
(<1 − <2) ,

�+�−1/2,−1 = −(1 + 6! + 6')
√
2&− − (1 + 6! − 6')

√
2&+ ,

�+�−1/2,C = (1 + 6! + 6')
√
&+√
@2
(<1 − <2) + (1 + 6! − 6')

√
&−√
@2
(<1 + <2) . (B.11)
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We also have the relations

�+_2 ,_F = �+−_2 ,−_F ,

��
_2 ,_F

= −��
−_2 ,−_F . (B.12)

The tensor helicity amplitudes are

�
())−1/2
−1/2,C,0 = −6)

[
−

√
&− +

√
&+

]
,

�
())+1/2
+1/2,C,0 = 6)

[√
&− +

√
&+

]
,

�
())−1/2
+1/2,C,+1 = −6)

√
2√
@2

[
(<1 + <2)

√
&− + (<1 − <2)

√
&+

]
,

�
())+1/2
−1/2,C,−1 = −6)

√
2√
@2

[
(<1 + <2)

√
&− − (<1 − <2)

√
&+

]
,

�
())−1/2
+1/2,0,+1 = −6)

√
2√
@2

[
(<1 + <2)

√
&− + (<1 − <2)

√
&+

]
,

�
())+1/2
−1/2,0,−1 = 6)

√
2√
@2

[
(<1 + <2)

√
&− − (<1 − <2)

√
&+

]
,

�
())+1/2
+1/2,+1,−1 = −6)

[√
&− +

√
&+

]
,

�
())−1/2
−1/2,+1,−1 = −6)

[√
&− −

√
&+

]
. (B.13)

The other nonvanishing helicity amplitudes of tensor type are related to the above by

�
())_1
_2 ,_,_

′ = −� ())_1_2 ,_
′,_ . (B.14)
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B.2 Leptonic helicity amplitudes

In the following, we define

E =

√
1 − <

2
g

@2
. (B.15)

The scalar and pseudoscalar leptonic helicity amplitudes are

!+1/2 = 2
√
@2E,

!−1/2 = 0, (B.16)

while the vector and axial-vector amplitudes are

!
+1/2
±1 = ±

√
2<gE sin(\g),

!
+1/2
0

= −2<gE cos (\g),

!
+1/2
C = 2<gE,

!
−1/2
±1 =

√
2@2E (1 ± cos(\g)),

!
−1/2
0

= 2

√
@2E sin (\g),

!
−1/2
C = 0, (B.17)
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and the tensor amplitudes are

!
+1/2
0,±1 = −

√
2@2E sin(\g),

!
+1/2
±1,C = ∓

√
2@2E sin(\g),

!
+1/2
C,0

= !
+1/2
+1,−1 = −2

√
@2E cos(\g),

!
−1/2
0,±1 = ∓

√
2<gE (1 ± cos(\g)),

!
−1/2
±1,C = −

√
2<gE (1 ± cos(\g)),

!
−1/2
C,0

= !
−1/2
+1,−1 = 2<gE sin(\g). (B.18)

Here we have the relation

!
_g
_,_′ = −!

_g
_′,_. (B.19)
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APPENDIX C

FOUR-BODY DECAY KINEMATICS

In this appendix we derive the expression for the lepton’s energy in the 1 quark rest frame

�ℓ, in terms of the scattering angle in the dilepton’s rest frame \ℓ. Consider the four-body decay

1(?1) → ℓ−(?ℓ) + āℓ (? āℓ ) + 2(?2) + 6(?6), (C.1)

where 6 is the real gluon. A four-body decay can be described in five invariants; here we present

three of them which are relevant to our discussion. We have

A2 =(?2 + ?6)2 = (?1 − ?ℓ − ?a)2, (C.2)

@2 =(?ℓ + ?a)2 = (?1 − ?6 − ?2)2, (C.3)

B2 =(?1 − ?ℓ)2 = (?6 + ?2 + ?a)2. (C.4)

The expressions on the right-hand side above are written using 4-momentum conservation.

By expanding Eq. (C.4) in the dilepton’s rest frame we have

B2 = <21 + <
2
ℓ − 2�

ℓa
1 �

ℓa
ℓ + 2%

ℓa
1 %

ℓa
ℓ 2>B(\ℓ), (C.5)

where �ℓa
1
, �ℓa

ℓ
, %ℓa

1
and %ℓa

ℓ
refer to the energies and momenta of the 1 quark and the massive

lepton in the dilepton’s rest frame. In order to find for these values in terms of invariants we expand

Eq. (C.2), and using Eq. (C.3) we find

�ℓa1 =
<2
1
+ @2 − A2

2
√
@2

. (C.6)
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One can also find

�ℓaℓ =
<2
ℓ
+ @2

2
√
@2

. (C.7)

Using the above expressions for energies we can easily find the corresponding momenta

%ℓa1 =

√
_(<2

1
, @2, A2)

2
√
@2

, (C.8)

%ℓaℓ =
@2 − <2

ℓ

2
√
@2

, (C.9)

where _ is defined as _(0, 1, 2) = 02 + 12 + 22 − 201 − 202 − 212. Finally by expanding Eq. (C.4)

again, but this time in the 1 quark’s rest frame, and using Eq. (C.5) we find the expression for the

lepton’s energy as

�ℓ =
1

4<1@
2

[
(<21 + @

2 − A2) (<2ℓ + @
2) − (@2 − <2ℓ )

√
_(<2

1
, @2, A2)2>B(\ℓ)

]
. (C.10)

In the case of three-body decay 1(?1) → ℓ−(?ℓ) + āℓ (? āℓ ) + 2(?2), A2 reduces to <22 .
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APPENDIX D

RESULTS FOR VARIOUS OBSERVABLES

For the twofold distribution 3Γ

3@23�ℓ
, one finds from Eqs. (3.5) and (3.3)

3Γ

3@23�ℓ
=

�2
�
|+21 |2@2(1 − <2ℓ/@

2)
256<2

1
c3

[
�+�1 +

<2
ℓ

@2
�+�2 + �

(%
3

+�)4 +
<2
ℓ

@2
�)5 +

4<ℓ√
@2
�+�−(%6 + 8<ℓ√

@2
�+�−)7 + �(%−)8

]
(D.1)

where the � terms are
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�+�1 = (1 + cos \)2 |�+�
1/2,1 |

2 + (1 − cos \)2 |�+�−1/2,−1 |
2 + 2 sin \2 |�+�−1/2,0 |

2 + 2 sin \2 |�+�
1/2,0 |

2,

�+�2 = sin \2 |�+�
1/2,1 |

2 + sin \2 |�+�−1/2,−1 |
2 + 2|�+�

1/2,C + cos \�+�
1/2,0 |

2

+ 2|�+�−1/2,C + cos \�+�−1/2,0 |
2,

�(%3 = 2|�(%
1/2,0 |

2 + 2|�(%
−1/2,0 |

2,

�)4 = 8 cos \2 |� ())1/2
1/2,0,C + �

())1/2
1/2,1,−1 |

2 + 4 sin \2 |� ())1/2−1/2,−1,C + �
())1/2
−1/2,0,−1 |

2

+ 4 sin \2 |� ())−1/2
1/2,C,1 + �

())−1/2
1/2,0,1 |

2 + 8 cos \2 |� ())−1/2−1/2,0,C + �
())−1/2
−1/2,1,−1 |

2,

�)5 = 8 sin \2 |� ())1/2
1/2,0,C + �

())1/2
1/2,1,−1 |

2 + 4(1 − cos \)2 |� ())1/2−1/2,−1,C + �
())1/2
−1/2,0,−1 |

2

+ 4(1 + cos \)2 |� ())−1/2
1/2,0,1 + �

())−1/2
1/2,C,1 |

2 + 8 sin \2 |� ())−1/2−1/2,0,C + �
())−1/2
−1/2,1,−1 |

2,

�+�−(%6 = '4[(cos \�+�
1/2,0 + �

+�
1/2,C)�

(%∗
1/2,0] + '4[(cos \�+�−1/2,0 + �

+�
−1/2,C)�

(%∗
−1/2,0],

�+�−)7 = (1 + cos \)'4[(� ())−1/2
1/2,0,1 + �

())−1/2
1/2,C,1 )�

+�∗
1/2,1] − (1 − cos \)×

'4[(� ())1/2−1/2,−1,C + �
())1/2
−1/2,0,−1)�

+�∗
−1/2,−1] − '4[(�

())1/2
1/2,0,C + �

())1/2
1/2,1,−1) (�

+�∗
1/2,0 + cos \�+�∗

1/2,C)]

− '4[(� ())−1/2−1/2,0,C + �
())−1/2
−1/2,1,−1) (cos \�+�∗−1/2,C + �

+�∗
−1/2,0)],

�(%−)8 = − 8 cos \'4[�(%∗
1/2,0(�

())1/2
1/2,0,C + �

())1/2
1/2,1,−1)] − 8 cos \'4[�(%∗

−1/2,0(�
())−1/2
−1/2,0,C + �

())−1/2
−1/2,1,−1)],

(D.2)

with

cos \ =
(<2

1
− <22 + @2) (@2 + <2ℓ ) − (4<1@

2�ℓ)
√
&+&−(@2 − <2ℓ )

. (D.3)

From relation (D.1), one can conveniently find the distribution for @2 or �ℓ. Nonperturbative

corrections to these distributions (for SM) are presented elsewhere (see [52], [54] and [50]) and we

do not repeat them here.
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The forward-backward asymmetry can be written as the sum of tree level �0
��

and nonperturbative

�
O(1/<2

1
)

��
terms,

��� = �
0
�� + �

O(1/<2
1
)

��
, (D.4)

with

�0�� = ( 3Γ
3@2
)−1

�2
�
|+21 |2

512c3

@2
√
&+&−

<3
1

(
1 −

<2
ℓ

@2

)2 [
�+�1 +

2<2
ℓ

@2
�+�2 +

4<2
ℓ

@2
�)3 +

2<ℓ√
@2
�+�−(%4 + 4<ℓ√

@2
�+�−)
5

+ 4�(%−)6

]
, (D.5)

where

�+�1 = |�+�
1/2,1 |

2 − |�+�−1/2,−1 |
2,

�+�2 = Re[�+�∗
1/2,C�

+�
1/2,0 + �

+�∗
−1/2,C�

+�
−1/2,0],

�)3 = |�
())−1/2
1/2,0,1 + �

())−1/2
1/2,C,1 |

2 − |� ())1/2−1/2,−1,0 + �
())1/2
−1/2,C,−1 |

2,

�+�−(%4 = Re[�(%∗
1/2,0�

+�
1/2,0 + �

(%∗
−1/2,0�

+�
−1/2,0],

�+�−)
5

= Re[�+�∗
1/2,C (�

())1/2
1/2,−1,1 + �

())1/2
1/2,C,0 )] + Re[�+�∗

1/2,1(�
())−1/2
1/2,0,1 + �

())−1/2
1/2,C,1 )]

+ Re[�+�∗−1/2,C (�
())−1/2
−1/2,−1,1 + �

())−1/2
−1/2,C,0 )] − Re[�+�∗−1/2,−1(�

())1/2
−1/2,−1,0 + �

())1/2
−1/2,C,−1)],

�(%−)6 = Re[�(%∗
1/2,0(�

())1/2
1/2,−1,1 + �

())1/2
1/2,C,0 )] + Re[�(%∗

−1/2,0(�
())−1/2
−1/2,−1,1 + �

())−1/2
−1/2,C,0 )] . (D.6)
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Also, the O(1/<2
1
) correction is

�
O(1/<2

1
)

��
=

( 3Γ
3@2

)−1�2
�
|+21 |2(1 − <2ℓ/@

2)2

384c3<5
1
@2

{
_1 [(<2ℓ<

2
1 − <

2
ℓ<

2
2 − (@2)2) (3(<21 − <

2
2)2

+@2(2<21 − 6<
2
2 + 3@2))] + _2 [9<61<

2
ℓ − 45(<

2
2 − @2)2(<22<2ℓ + (@

2)2)

+<41 (−63<
2
2<

2
ℓ + 3@

2(2<2ℓ + 9@
2)) + 3<21 (33<

4
2<

2
ℓ + 2<

2
2@
2(−8<2ℓ + 3@

2)

+(@2)2(3<2ℓ + 14@
2))]

}
. (D.7)
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APPENDIX E

THE THREE-FOLD DIFFERENTIAL DISTRIBUTION

In this appendix we present the three-fold differential rate for the inclusive decay in terms

of invariant quantities. We write the distribution in the presence of all NP couplings in the form,

33Γ

3G3
=
�2
�
|+21 |2

8c3

{
|1 + 6! |2

33Γ

3G3

����
("

+ |6' |2
33Γ

3G3

����
'

+ |6( |2
33Γ

3G3

����
(

+ |6% |2
33Γ

3G3

����
%

+ |6) |2
33Γ

3G3

����
)

+ '4((1 + 6!)6∗')
33Γ

3G3

����
!'

+ '4((1 + 6! + 6')6∗()
33Γ

3G3

��
(!'

+ '4((1 + 6! − 6')6∗%)
33Γ

3G3

����
%!'

+ '4((1 + 6!)6∗) )
33Γ

3G3

����
!)

+ '4(6'6∗) )
33Γ

3G3

����
')

+ '4((6( − 6%)6∗) )
33Γ

3G3

����
(%)

}
, (E.1)

where the three independent variables are usually taken to be 3G3 = 3@23�g3�a or 3G3 =

3@23�g3@.E, E being the four velocity of the � meson. Each contribution to the differential

rate can be written as,

33Γ

3G3

����
�

=
1

Δ0

33Γ

3G3

����(1)
�

+ 1

Δ2
0

33Γ

3G3

����(2)
�

+ 1

Δ3
0

33Γ

3G3

����(3)
�

. (E.2)

Here we have definedΔ0 = ?2−<22 with ? = <1E− @. The contributions (E.2) to the decay

distribution are given by the substitutions [65, 50],
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1

Δ0
→ X(?2 − <22)

1

Δ2
0

→ −X′(?2 − <22)

1

Δ3
0

→ 1

2
X′′(?2 − <22). (E.3)

In the following we present various contributions to this distribution.

The SM contribution is given as,

33Γ

3G3

����(1)
("

=
4

3<1

[
6<1? · ?g?a · E + (_1 + 3_2) (2?g · ?a − 5?g · E?a · E)

]
(E.4)

33Γ

3G3

����(2)
("

=
4

3<1

[
2(_1 + 3_2) (−2? · ?a + 5? · E?a · E)? · ?g + 2<1_1(2? · E?g · E − 5? · ?g)?a · E

+ 6<1_2(? · E?g · ?a − ? · ?a?g · E)
]

(E.5)

33Γ

3G3

����(3)
("

=
32_1

3

[
? · ? − (? · E)2

]
? · ?g?a · E . (E.6)

The � = ' contribution is derived from SMpart by the substitutions ?g → ?a and ?a → ?g,

33Γ

3G3

����(8)
'

=
33Γ

3G3

����(8)
("

(?g ↔ ?a) 8 = 1, 2, 3. (E.7)

For � = ( we have,
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33Γ

3G3

����(1)
(

=
1

2<2
1

[
2<21 (? · E + <2) + (<1 + <2) (_1 + 3_2)

]
?g · ?a (E.8)

33Γ

3G3

����(2)
(

= − (_1 + 3_2)
3<1

[
3<1 (? · E + <2) − 3<2? · E + 2? · ? − 5(? · E)2

]
?g · ?a (E.9)

33Γ

3G3

����(3)
(

=
4_1

3
(? · E + <2)

[
? · ? − (? · E)2

]
?g · ?a , (E.10)

while the � = % case can be derived from � = ( case by the substitution <2 → −<2,

33Γ

3G3

����(8)
%

=
33Γ

3G3

����(8)
(

(<2 → −<2) 8 = 1, 2, 3. (E.11)

For � = ) we find,

33Γ

3G3

����(1)
)

=
16

3<1

[
6<1 (2? · ?a?g · E + 2? · ?g?a · E − ? · E?g · ?a)

+ 5(_1 + 3_2) (?g · ?a − 4?g · E?a · E)
]

(E.12)

33Γ

3G3

����(2)
)

= − 32

3<1

[
(_1 + 3_2) (8? · ?g? · ?a − 2? · ??g · ?a + 5(? · E)2?g · ?a − 10? · ?a? · E?g · E

− 10? · ?g? · E?a · E) + 2<1 (5_1 − 3_2) (? · ?a?g · E + ? · ?g?a · E)

− 3<1 (_1 − _2)? · E?g · ?a − 8<1_1? · E?g · E?a · E
]

(E.13)

33Γ

3G3

����(3)
)

= − 128_1
3

[
? · ? − (? · E)2

] [
? · E?g · ?a − 2? · ?a?g · E − 2? · ?g?a · E

]
(E.14)
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For � = !',

33Γ

3G3

����(1)
!'

= − 4<2
<2
1

(
2<21 + _1 + 3_2

)
?g · ?a (E.15)

33Γ

3G3

����(2)
!'

=
8<2

<1

[
− (_1 + 3_2)? · E?g · ?a + <1 (_1 + _2)?g · ?a − 4<1_2?g · E?a · E

]
(E.16)

33Γ

3G3

����(3)
!'

= − 32<2_1
3

[
? · ? − (? · E)2

]
?g · ?a (E.17)

For � = (!',

33Γ

3G3

����(1)
(!'

=
<g

<2
1

[
2<21 (? · ?a + <2?a · E) + (_1 + 3_2) (? · ?a − <1?a · E)

]
(E.18)

33Γ

3G3

����(2)
(!'

= − 2<g
3<1

[
(_1 + 3_2) (−3? · ?a? · E + 3<1<2?a · E − 5<2? · E?a · E + 2<2? · ?a)

+ <1 (5_1 + 3_2)? · ?a − 2<1 (_1 − 3_2)? · E?a · E
]

(E.19)

33Γ

3G3

����(3)
(!'

=
8<g_1

3

[
? · ? − (? · E)2

] (
? · ?a + <2?a · E

)
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For � = %!' we have,

33Γ

3G3

����(8)
%!'

=
33Γ

3G3

����(8)
(!'

(<2 → −<2) 8 = 1, 2, 3. (E.21)

For � = !) ,

33Γ

3G3

����(1)
!)

= − 48<g<2
(
?a · E

)
(E.22)

33Γ

3G3

����(2)
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<1

[
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33Γ

3G3

����(3)
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]
(?a · E) (E.24)
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For � = ') ,

33Γ

3G3

����(1)
')

=
24<g

<2
1

[
2<21? · ?a + (_1 + 3_2) (? · ?a − <1?a · E)

]
(E.25)

33Γ

3G3

����(2)
')

= − 16<g
<1
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33Γ
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For � = (%) ,
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����(2)
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APPENDIX F��MSM+NP
��2 LEPTONIC CONTRIBUTIONS

Here we present the leptonic parts of the angular distribution,

1. |M(% |2:

∑
B?8=B

L(% L∗(% = Tr[(/?ℓ +mℓ)PL/? āPR] , (F.1)

where @ = ?ℓ + ? āℓ .

2. |M+� |2:

∑
spins
L+� (=)L∗+� (=

′) = n
`

+�
(=) n∗a+� (=

′) Tr
[
D̄ℓW`%!E āℓ Ē āℓWa%!Dℓ

]
. (F.2)

3. |M) |2:

∑
spins
L) (=, ?) L∗) (=′, ?′)∗ = Tr

[
(/?ℓ + <ℓ)f`a%! /? āℓfUV%'

]
× n `

)
(=) n a) (?) n

∗U
) (=

′) n∗V
)
(?′) . (F.3)

4. M(%M∗+�:

∑
spins
L(% L∗+� (=) = Tr[(/?ℓ + <ℓ)%! /? āℓW`%!]n

∗`
+�
(=) . (F.4)
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5. M(%M∗) :

∑
spins
L(% L∗) (=, ?) = 8Tr

[
(/?ℓ + <ℓ)%! /? āℓf`a%'

]
n
∗`
)
(=) n∗a) (?) . (F.5)

6. M+�M∗) :

∑
spins
L+� (=) L∗) (=′, ?′) = 8Tr

[
(/?ℓ + <ℓ)W`%! /? āℓfUV%'

]
× n `

+�
(=)n∗U) (=

′)n∗V
)
(?′) . (F.6)
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APPENDIX G

CALCULATION OF ( COUPLINGS IN TERMS OF 2HDMMODEL PARAMETERS

We now explicitly calculate the parameters in the Lagrangian in Eq. (6.5), following the

analysis of Ref. [173]. We start with the Type II 2HDM with the Yukawa couplings

− L. = !̄0.04 �340' + &̄
0.03�33

0
' + &̄

0.0D �̃D*
0
' + H.c. (G.1)

Here the superscript means the quantities are in flavor space.

We write the scalar potential as

+ (�3 , �D, q) = +2HDM(�3 , �D) ++q (q) ++portal(�3 , �D, q) , (G.2)

where

+2HDM = <233�
†
3
�3 + <2DD�†D�D − <23D (�

†
3
�D + �†D�3) +

_1

2
(�†

3
�3)2 +

_2

2
(�†D�D)2

+_3(�†3�3) (�
†
D�D) + _4(�†3�D) (�

†
D�3) +

_5

2

[
(�†

3
�D)2 + (�†D�3)2

]
(G.3)

+q = �q + 1
2
<20q

2 +
�q

2
q3 +

_q

4
q4 (G.4)

+portal = � (�†D�3 + �†3�D)q +
[
_D�

†
D�D + _3�†3�3 + _D3 (�

†
D�3 + �†3�D)

]
qq . (G.5)

After each doublet obtains a vev, we write the neutral real components of the doublets as

�8 = E8 + d8, where 8 = 3, D. After expanding the potential, the elements of the mass matrix of the
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CP-even scalars in the (d3 , dD, q) basis are

"2
11 = <23D tan V + _1E2 cos2 V (G.6)

"2
22 = <23D cot V + _2E2 sin2 V (G.7)

"2
12 = −<23D + _345E

2 cos V sin V (G.8)

"2
13 = E� sin V (G.9)

"2
23 = E� cos V (G.10)

"2
33 = <20 + E

2_3 cos V2 + E2_D sin V2 + 2E2_D3 cos V sin V , (G.11)

where _345 = _3 + _4 + _5, and E3 and ED are the vevs of the two doublets �3 and �D, with

tan V = ED/E3 and E23 + E
2
D = E

2 = (246 GeV)2.

We assume � � E, <3D, so we can consider the portal terms as small perturbations. In this

case we diagonalize the mass matrix perturbatively where the non-perturbed mass matrix is the

usual 2HDM mass matrix. We define the mixing matrix that diagonalizes the mass matrix as

©­­­­­«
d3

dD

q

ª®®®®®¬
≈

©­­­­­«
− sinU cosU X13

cosU sinU X23

X31 X32 1

ª®®®®®¬
©­­­­­«
ℎ

�

(

ª®®®®®¬
, (G.12)

where X8 9 are small mixing angles that mix the light scalar with the other two scalars of the 2HDM.

When we diagonalize the mass matrix of the 2HDM, the parameter U satisfies the usual equation

tan 2U =
2"2

12

"2
11
− "2

22

, (G.13)

and the masses of the two �%-even Higgs bosons are given by

<2ℎ,� =
1

2

[
"2
11 + "

2
22 ∓

√
("2

11
− "2

22
)2 + 4("2

12
)2

]
. (G.14)
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To determine expressions for the X8 9 , we write the mass matrix as

"2 =

©­­­­­«
"2
11

"2
12

0

"2
12

"2
22

0

0 0 "2
33

ª®®®®®¬
+

©­­­­­«
0 0 E� sin V

0 0 E� cos V

E� sin V E� cos V 0

ª®®®®®¬
, (G.15)

where the second matrix is considered as a small perturbation. Below, we use the shorthand

notation BV = sin V and 2V = cos V.

We require the lighter Higgs ℎ to have SM-like couplings to gauge bosons and fermions, so

that we have V − U = c/2. Assuming "33 � <ℎ, <� , and writing U = V − c/2, we find that the

small mixing parameters are

X13 = −
2E�B3

V

<2
ℎ

[
<2
ℎ

2<2
�

+ cot2 V

(
1 −

<2
ℎ

2<2
�

)]
X23 = −2E�

<2
ℎ

B2V2V

[
1 −

<2
ℎ

2<2
�

(1 − cot2 V)
]

X31 =
E�B2V

<2
ℎ

X32 = −
E�22V

<2
�

. (G.16)

In the Yukawa sector after rotating to the mass basis and defining the mass matrices of

fermions, the interaction terms between the physical light scalar ( and the fermions become

− L 5 5 ( =

(
X13

E2V
4̄"44 +

X13

E2V
3̄"33 +

X23

EBV
D̄"DD

)
( , (G.17)

where the " 5 ’s are the diagonal mass matrices of the fermions. To better compare with SM Higgs

couplings, we write these couplings as

− L 5 5 ( =
∑
5=ℓ,3,D

b 5
< 5

E
5̄ 5 ( . (G.18)
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Then using the expressions for the mixing parameters in Eq. (G.16), we find that the couplings of

the scalar ( to fermions are

bℓ,3 = −
2E�B2

V

<2
ℎ

tan V

[
<2
ℎ

2<2
�

+ cot2 V

(
1 −

<2
ℎ

2<2
�

)]
(G.19)

bD = −
2E�B2

V

<2
ℎ

cot V

[
1 −

<2
ℎ

2<2
�

(
1 − cot2 V

)]
, (G.20)

where the couplings to down-type quarks and leptons are enhanced by tan V and the couplings to

up-type quarks are suppressed by cot V. In the limit of large tan V, we may take V → c/2 and

U → 0 so that BV → 1 in the equations above, and we can write the couplings purely in terms of

tan V.

We can find the couplings of ( to the weak gauge bosons by expanding the kinetic terms of

the two scalar doublets. We find

− L++( = b+
1

E

(
2<2,,

†
`,

` + <2//`/ `
)
( , (G.21)

where the coupling is the same for both, and / ,

b,,/ = 2VX13 + BVX23 =
−2E�B3

V
2V

<2
ℎ

(
1 + cot2 V

)
. (G.22)

In the large tan V limit we write cos V ≈ cot V and sin V → 1 so that we can write this coupling in

terms of cot V only:

b,,/ =
−2E� cot V

<2
ℎ

(1 + cot2 V) . (G.23)
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In summary we have the following couplings in terms of tan V:

bℓ,3 = −2E�
<2
ℎ

tan V

[
<2
ℎ

2<2
�

+ cot2 V

(
1 −

<2
ℎ

2<2
�

)]
(G.24)

bD = −2E�
<2
ℎ

cot V

[
1 −

<2
ℎ

2<2
�

(1 − cot2 V)
]

(G.25)

b,,/ = −2E�
<2
ℎ

cot V (1 + cot2 V) . (G.26)
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APPENDIX H

COUPLING TO TWO PHOTONS

To calculate the scalar coupling to two photons, we use expressions from Ref. [174], where

the decay width for Higgs to two photons is given in terms of generic spin-1, spin- 1
2
, and spin-0

particles in the loop. Although the contribution to ( → WW is dominated by the effective coupling

^ in the parameter region we are interested in, we include all other possible particles in the loop for

completeness. In our case, there are only spin-1 and spin- 1
2
particles in the loop, so the rate can be

written as

Γ(( → WW) =
U2EM<

3
(

1024c3

���� 4cUEM ^ + 6(++<2
+

#2,+&
2
+ �1(A+ ) +

26( 5 5̄

< 5

#2, 5&
2
5 �1/2(A 5 )

����2 , (H.1)

where A8 = 4<28 /<2(. + and 5 represent spin-1 and spin- 1
2
particles, respectively, & and #2 are the

particle’s electric charge and number of colors, and the expressions for �1 and �1/2 are given in

Ref. [174].
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