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ABSTRACT

Signal detection in cognitive radio involves the determination of presence or absence

of a primary user signal so that the secondary user may opportunistically gain access when

the spectrum is unoccupied. In decentralized sensing scheme, two or more secondary users

sense the spectrum, process individual observation and then pass the quantized data to a

fusion center where a decision with regard to which hypothesis being true, that is, a signal

being present or absent, is made.

In the first part of thesis, we study the error performance in a parallel network consist-

ing of two sensors. In the parallel configuration, each sensor quantizes it’s own observation

into a single-bit and transmits them to the fusion center. At the fusion center, the perfor-

mance of AND and OR rules are examined by assuming the observations at the two sensors

are jointly Gaussian, with specific means, variances and correlation coefficient, under hy-

pothesis H1, whereas the observations under H0 are still Gaussian with specific means and

variances but are statistically independent. The optimum quantizers at each sensor are found

by minimizing the probability of error at the fusion center. We use a genetic algorithm (GA)

to find a sub-optimal solution. It was observed that, when prior probabilities of hypotheses

are equal, AND performs at least as well as OR.

In the second part of the thesis, we study Bayes error performance of two-sensor tan-

dem network designed to detect the presence or absence of deterministic signals in correlated

Gaussian noise. Hence, the correlation coefficient remains identical under both hypotheses.

Specifically, we address the question of which sensor ought to serve as the fusion center

for optimal detection performance. In the process of this query, we draw some inference

parallel to the Good, Bad and Ugly signal regions formulated originally for the two-sensor

one-bit-per-sensor parallel fusion network by Willet,et.al. In the tandem Good region, nu-
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merical results conclusively show that the strategy of placing better sensor, i.e the sensor

with higher signal to noise ratio, serving as the fusion center is preferred for better detection

performance.
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CHAPTER 1

INTRODUCTION

Recently, signal processing with distributed sensors has been gaining importance. The

relatively low cost of sensors, the inherent redundancy possible with multiple sensors, the

availability of high-speed communication networks, and increased computational capability

have encouraged research in this topic [1]. In cognitive radio (CR) networks, spectrum

detection is widely used to specify which frequency channel is being used by primary radio

(PR) users, hence finding spectrum availability (a.k.a spectrum holes) is important [2]. Once

a spectrum hole is detected, it is available for the secondary user to occupy the spectrum.

There are two main types of methods used for making detection in the cooperative detection

systems: Centralized Detection (CD) ([3]-[4]) and Decentralized Detection (DD) ([5]-[6])

DD makes processed data from each sensor available to a Fusion Center (FC) whereas

in CD, all the sensors provide raw data to FC based on which a decision is delivered by the

FC. Bandwidth limitations and high data costs prompted system designers to quantize the

data at each sensor before it is relayed to the FC. This results in the degradation of overall

performance of the system. Hence, it is important to understand the interplay of data

compression, resource allocation, and the performance of distributed detection systems.

The works in [5] - [7] studied the case of sensors in a correlated sensing environment

where the sensor sends a 1-bit decision to the FC (See Fig 1.1). By using a person-by-

person optimization technique, a sub-optimal quantization rule at each sensor is arrived

at by minimizing the probability of error (Pe). The works [5] and [6] use AND, OR and

XOR rules at the fusion center, whereas [7] used the majority rule (for more than two

sensors) at FC. For optimal detection performance, a likelihood ratio test (LRT) based on
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Figure 1.1. Parallel network with two sensors

received information is optimal at the FC. In [7], the authors addressed the problem of having

correlated sensing data at the sensors under the assumption that the marginal distribution

of observations at the sensors are identical. It has been accepted that correlation degrades

system performance, but more recently, [8] shows how strong correlation can be helpful in a

centralized detection system for a large class of signal sets.

In a study of DD of testing of one of the two hypotheses, say H0 and H1, where the

noise corrupted signals at two sensors are bi-variate Gaussian conditioned on hypothesis,

[5] explained the unexpected performance behavior of fusion of one-bit decisions from each

sensor formulated as a Boolean logic. For this signal model, they identified three regions on

the two-D signal plane, each axis denoting the signal level received by that particular sensor,

where the behavior of the system performance can be characterized as good, bad, or ugly.

A good region is where, for an optimized AND (or OR) Boolean fusion rule, each sensor

employs a LRT and gives a decision favoring one of the two hypotheses by comparing the

ratio of the likelihoods of two hypotheses with a threshold value that is optimized for that

particular sensor. For the model in [5], likelihood ratio (LR) based on a sensor observation is

2



monotonic in observation. Hence, quantization of LR is equivalent to quantizing the sensor

observations. In the bad region, either one of the sensors is ignored while the other sensor

has a semi-infinite quantization interval for deciding H1, or at least one of the sensors decides

H1 based on its received observation falling in one of two or more unconnected intervals of

observation. In the first situation, an optimal system would never ignore any information

available to it, even though it is optimal for the given (AND or OR) Boolean logic fusion

rule. In the second situation, when the sensor has two or more unconnected quantization

intervals, complexity increases in finding the best-unconnected intervals. In either case,

this region is termed a bad region. As numerical results have suggested, any decision rule,

AND, OR or XOR (exclusive OR) can be optimal depending on the correlation coefficient

and signal levels [5]. For optimal results, the sensors would employ multiple unconnected

quantization intervals. In the ugly region, XOR is the best rule in several cases involving

signal level, correlation coefficient and prior probability. In the sequel, when needed, we

will simply refer to this paper as the GBU paper [5]. If the observations at the sensors are

conditionally independent, then XOR will be a non-monotonic fusion rule and, thus, will

never be optimal [1]. However, for dependence case and unequal signal levels at the sensors,

for a distributed sensing system with correlated observation and a one-bit hard decision at

each sensor, Pe → 0 as ρ→ 1, when the decision rule at the FC is XOR [9].

For the serial configuration of sensors, the first sensor passes it’s one-bit decision V

to the second sensor and the second sensor makes a decision W based on the decision it

received, and it’s own observation (see Fig 1.2). [10] shows that with two sensors, the serial

configuration outperforms the two sensor parallel configuration, when the observations are

conditionally independent on the hypothesis. This result holds true even if the observations

are conditionally dependent. Papastrav and Athens [11] examined the two sensor serial

configuration, the tandem network, and concluded that it is not always true to have the

better quality sensor at the bottom of hierarchy when the observations at the sensors are

conditionally independent under both hypotheses. Here, the better sensor is defined as the

3



Figure 1.2. Tandem network with two sensors

one receiving the stronger of the two available signals. However, in a practical scenario,

independence between the sensors may not exist and sensor observations may be correlated.

Akofer and Chen established that for sensors in additive Gaussian noise, we get a better

performance when the better sensor serves as FC for weak signal conditions [12]. For condi-

tionally independent case, Akofer and Chen considered a modified form of tandem network,

termed as interactive fusion [13]. In this form, the bottom sensor feeds back its decision to

the top sensor, which then delivers the final decision using this decision and its own obser-

vation. The authors found that in general, feedback improves performance. However, for an

asymptotically large number of independent samples drawn at the two sensors, the feedback

shows no improvement in performance under Neyman-Pearson criterion [14]. In this thesis,

we do not address interactive feedback.

1.1 THESIS WORK

As mentioned above, an earlier work looked at two sensors parallel network for the

detection of deterministic signals in correlated Gaussian noise [5]. In this thesis, we consider

the case where the signals at two sensors are independent under H0 but not under H1 for a
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parallel network and numerically study the performance of AND and OR decision rules at

the FC. Another contribution of this thesis is the partition of the signal plane into different

regions for a tandem network for the case of GBU signal model. The goal is to identify

good signal regions and design decision rules at the top and bottom sensors in good region,

which will guarantee optimum performance. We find through numerical study that for the

good region it is best to put the better quality sensor at the FC. For one, this configuration

provides slightly better performance as compared to the reverse configuration. Second, the

optimum performance is sensitive to the threshold of the top sensor if the better quality

sensor were placed at the top, but not when the weaker quality sensor is placed at the top.

1.2 ORGANIZATION OF THESIS

The rest of the thesis is organized as follows. In chapter 2, we present the system

model and concepts that are essential in understanding quantizer design and an analysis of

the numerical results for parallel network of two sensors. This numerical study is for an

extension of the model of [5] to the case of independent sensor observations under no signal

hypothesis. Results are obtained through numerical investigation. In chapter 3, we present

the system model of tandem network. We present the optimal decision rules at each sensor

and identify the good and possible bad regions in signal plane. Numerical results are then

analyzed in chapter 3. In chapter 4, we summarize and discuss the contributions of this work.

Throughout the thesis, we consider only the minimization of Bayes error as the optimization

criterion and did not consider the alternative Neyman-Pearson criterion. Recommendations

for further research are also included in chapter 4.
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CHAPTER 2

PARALLEL NETWORK PERFORMANCE ANALYSIS

Consider a set of two sensors sensing the presence of a PR in a frequency band by using

a parallel network configuration given in Fig (1.1). Each sensor qauntizes it’s information

to single-bit and sends it to the FC. The physical channels between the sensors and the PR

user, called sensing channels, are assumed to be additive noise channels, that are assumed

to be independent of the signals present.

2.1 SYSTEM MODEL

The hypothesis to be tested is the presence of the PR (hypothesis H1) over the channel

versus the absence of the PR (hypothesis H0). Hence, the model under H1 can be defined

as:

X1 = Y1 + V1

X2 = Y2 + V2

where X1, X2 are the sensor observations at the two sensors, V1, V2 are zero mean i.i.d

Gaussian noise with variance σ2
0 < 1 and Y1, Y2 are jointly Gaussian signals with means

s1 and s2, variances σ2
y1

= σ2
y2

= 1 − σ2
0, and correlation coefficient ρ. Hence, the densities

under each hypothesis can be defined as:

H0 : X1, X2 ∼ N


0

0

 ,
σ2

0 0

0 σ2
0
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H1 : X1, X2 ∼ N


s1

s2

 ,
1 ρ

ρ 1


 (2.1)

After the sensors sense the channel, each sensor quantizes its own observation to either 1

( i.e PR is present: H1) or 0 ( i.e PR is absent : H0), according to the quantization rule

Ui, i = 1, 2. The quantization rule decides 1 if xi falls in the interval Ri
1 and decides 0 when

it falls in the interval Ri
0 = R̄i

1. Hence Ui can be written as:

Ui =


1, if xi ε R

i
1

0, if xi ε R
i
0

(2.2)

Note that Ri
1

⋂
Ri

0 = φ and Ri
1

⋃
Ri

0 = R the measure space of Xi. After a decision is

made at the sensors, each sensor sends its decision to the FC on a reporting channel that

is orthogonal and independent from other sensor’s reporting channel. Based on the received

decisions from every sensor, FC makes a global decision D = 1 (i.e H1 is true) or D = 0 (i.e

H0 is true). The decision rule at the FC can be any Boolean logic rule, such as AND, OR

or XOR.

2.2 MINIMUM PROBABILITY OF ERROR

In making a decision in any binary hypothesis testing problem, we can have the following

four possibilities:

(a) H0 is the true hypothesis, fusion center output is D = 0

(b) H1 is the true hypothesis, fusion center output is D = 1

(c) H0 is the true hypothesis, fusion center output is D = 1

(d) H1 is the true hypothesis, fusion center output is D = 0

The first two correspond to correct decisions, whereas the last two indicate errors. In statis-

tical literature, (c) is known as Type I error (or probability of false alarm) and (d) is known

as Type II error (or probability of miss). The optimization problem is to design the decision

7



rules at sensor 1 and sensor 2 so that the overall Bayes cost C (or risk) is minimized. Let

us consider the AND rule at the FC. We consider only uniform cost in this thesis, so the

Bayes cost becomes the probability of error, Pe. Hence, the probability error of the decision

system is given as following:

Pe = π0P (D = 1|H0) + π1P (D = 0|H1) (2.3)

where

P (D = 1|H0) =

∫
R2

1

∫
R1

1

p(x1, x2|H0)dx1dx2

P (D = 0|H1) =

∫
R2

0

∫
R1

0

p(x1, x2|H1)dx1dx2 (2.4)

Decision regions Ri
j, (i ε (1, 2), j ε (0, 1)) could be semi-infinite region or a union of disjoint

intervals. [5] showed the conditions for the good region, where the decision region would be

semi-infinite region when the observations at the sensors are correlated with same correlation

coefficient under both hypotheses. However, numerical results are obtained here for the

model given by equation (2.1) where the correlation coefficient is zero under H0.

As a reasonable solution to finding the optimum decision rules at the sensors, we use the

Genetic Algorithm (GA) proposed in [9]. A GA in general yields locally optimum solution

but initiations at several starting points could lead to a solution that is close to the optimum

solution. Alternatively, using results in [12], we can observe that decide H0 regions for both

sensors in AND fusion rule will be of the form: decide H0 if ti1 < xi < ti2 (i = 1, 2).

However, for optimum result (i.e minimum Pe), (ti1, ti2, i = 1, 2) needs to be searched using

a numerical procedure. See section (3.3) for a comment in a tandem case. The adopted GA

has the following steps:

1. Generate a set K of solutions (i.e., a generation/set of chromosomes). In this work,

we choose K = 12.

8



2. Evaluate the fitness function for each solution in K (i.e., 1-Pe of each solution).

3. Take a number of solutions that have the highest fitness function values from K and

directly place them into the next generation of K. In this work, the chosen number of

solutions is |K|
2

.

4. Choose |K|
4

pairs from the current K according to their fitness value by using the

roulette wheel selection method. Then, perform c number of random crossovers be-

tween each pair to generate two new solutions. Doing this for all |K|
4

chosen pairs

produce |K|
2

new solutions. These new solutions are used to fill the second half of the

next generation (i.e., the K of the next iteration).

5. Perform mutation on the new solutions resulted from step 4 by flipping each bit with

probability ε
100

. We used ε = 5.

6. Repeat steps 2-5 for 6000 number of iterations.

7. Take the highest fitness valued solution from the resulting K as the final solution.

The author, Hadi Kasasbeh, generously shared his GA program with me to carry out this

research. We present the results in the next section.

2.3 NUMERICAL RESULTS

In this section, we provide some of the numerical results obtained and study the perfor-

mance of the system. In the GA optimization procedure, once the optimum decision regions

at each sensors are found, Pe is computed numerically by solving the joint probability den-

sities given in equation (2.4). In the tables shown below, I represents the sensor observation

is ignored (i.e sensor always decides either H1 (in AND rule) or H0 (in OR rule), irrespective

of the observation), S represents that particular sensor has a semi-infinite decision region

and M represents the sensor decision region that has a union of multiple disjoint intervals.

9



Table 2.1. Performance comparison of two-sensor parallel configuration for AND and OR
fusion rules, central LRT, better sensor as single sensor, when the correlation coefficient
ρ = 0.3, noise variance σ2

0 = 0.9, π0 = 0.5

AND Rule Central LRT Better Sensor as Single Sensor OR Rule

s0 s1 t1 t2 Pe Pe Pe Pe t1 t2

0.2 1.5 I S 0.2207 0.2206 0.2206 0.2207 I S

0.1 1 I S 0.3039 0.303 0.3037 0.3039 I S

1 3 I S 0.0618 0.0582 0.0618 0.0618 I S

1.5 2 S S 0.1339 0.1131 0.1523 0.1482 S S

3 2 S S 0.0544 0.0409 0.0618 0.06 S S

0.5 1 S S 0.2976 0.2925 0.3037 0.3039 I S

1 1.5 S S 0.2072 0.1904 0.2206 0.2197 S S

0.5 2 I S 0.1524 0.1505 0.1523 0.1524 I S

2 2 S S 0.1068 0.0870 0.1523 0.1231 S S

2 4 S S 0.0192 0.0147 0.02 0.0201 I S

Table 2.2. Performance comparison of two-sensor parallel configuration for AND and OR
fusion rules, central LRT, better sensor as single sensor, when the correlation coefficient
ρ = 0.5, noise variance σ2

0 = 0.9, π0 = 0.5

AND Rule Central LRT Better Sensor as Single Sensor OR Rule

s1 s2 t1 t2 Pe Pe Pe Pe t1 t2

0.2 1.5 I S 0.2207 0.2184 0.2206 0.2207 I S

0.1 1 I S 0.3039 0.299 0.3037 0.3039 I S

1 3 I S 0.0618 0.0603 0.0618 0.0618 I S

1.5 2 S S 0.1299 0.1182 0.1523 0.1524 I S

2 2 S S 0.1027 0.0929 0.1523 0.1364 S S

3 2 S S 0.0534 0.0466 0.0618 0.0618 S I
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Table 2.2 continued from previous page

AND Rule Central LRT Better Sensor as Single Sensor OR Rule

0.5 1 S S 0.2892 0.289 0.3037 0.3039 I S

1 1.5 S S 0.2011 0.1946 0.2206 0.2207 I S

0.5 2 I S 0.1524 0.1509 0.1523 0.1524 I S

2 4 S S 0.019 0.0165 0.02 0.0201 I S

Table 2.3. Performance comparison of two-sensor parallel configuration for AND and OR
fusion rules, central LRT, better sensor as single sensor, when the correlation coefficient
ρ = 0.9, noise variance σ2

0 = 0.9, π0 = 0.5

And Rule Central LRT Better sensor as Single Sensor OR rule

s0 s1 t1 t2 Pe Pe Pe Pe t1 t2

0.2 1.5 S S 0.2106 0.156 0.2206 0.2207 I S

0.1 1 S S 0.2808 0.2002 0.3037 0.2889 S S

1 3 S S 0.0589 0.0513 0.0618 0.0618 I S

1.5 2 S S 0.1156 0.1055 0.1523 0.1524 I S

3 2 S S 0.0474 0.0439 0.0618 0.0618 S I

0.5 1 S S 0.258 0.2154 0.3037 0.3039 I S

1 1.5 S S 0.1778 0.1614 0.2206 0.2207 I S

0.5 2 S S 0.1444 0.1189 0.1523 0.1524 I S

2 2 S S 0.0884 0.0850 0.1523 0.1524 S I

2 4 S S 0.0178 0.0164 0.02 0.0201 I S
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Table 2.4. Performance comparison of two-sensor parallel configuration for AND and OR
fusion rules, central LRT, better sensor as single sensor, when the correlation coefficient
ρ = 0.7, noise variance σ2

0 = 0.9, π0 = 0.9

AND Rule Central LRT Better Sensor as Single Sensor OR rule

s0 s1 t1 t2 Pe Pe Pe Pe t1 t2

0.2 1.5 M S 0.0958 0.0793 0.0847 0.1 I I

0.1 1 M S 0.0995 0.0914 0.0971 0.1 I I

1 3 S S 0.0291 0.0287 0.0303 0.0317 I S

1.5 2 S S 0.0496 0.0474 0.0657 0.073 I S

3 2 S S 0.0228 0.021 0.0303 0.0317 S I

0.5 1 M I 0.1 0.0874 0.0971 0.1 I I

1 1.5 S S 0.0695 0.0689 0.0847 0.1 I I

0.5 2 S S 0.0636 0.0612 0.0657 0.073 I S

2 2 S S 0.0408 0.0354 0.0657 0.0730 S I

2 4 S S 0.009 0.0086 0.0105 0.0107 I S

3 5 S S 0.0021 0.0017 0.0028 0.0028 I S

4 5 S S 0.0017 0.000951 0.0028 0.0028 I S

Table 2.5. Performance comparison of two-sensor parallel configuration for AND and OR
fusion rules, central LRT, better sensor as single sensor, when the correlation coefficient
ρ = 0.5, noise variance σ2

0 = 0.9, π0 = 0.1

AND Rule Central LRT Better Sensor as Single Sensor OR rule

s1 s2 t1 t2 Pe Pe Pe Pe t1 t2

0.2 1.5 I I 0.1 0.0801 0.0895 0.0858 S S

0.1 1 I I 0.1 0.0918 0.0994 0.0946 S S

1 3 I S 0.0334 0.0322 0.0324 0.0334 I S

1.5 2 I S 0.0768 0.0648 0.0702 0.0757 S S
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Table 2.5 continued from previous page

AND Rule Central LRT Better Sensor as Single Sensor OR rule

3 2 S I 0.0334 0.0271 0.0324 0.0334 S S

0.5 1 I I 0.1 0.0963 0.0994 0.1 M I

1 1.5 I I 0.1 0.0883 0.0895 0.0998 M S

0.5 2 I S 0.0768 0.0671 0.0702 0.0739 S S

2 2 I S 0.0768 0.0531 0.0702 0.0675 S S

2 4 I S 0.0113 0.0098 0.0112 0.0113 S S

3 5 I S 0.003 0.002 0.003 0.003 S S

4 5 I S 0.003 0.001 0.003 0.0027 S S

In Tables 2.1-2.2, we notice that when the prior probabilities are equal, AND rule per-

forms at-least as well as OR rule for all values of ρ and σ2
0. From Tables 2.1-2.3, we can

notice that with increasing ρ, for AND rule, the probability of error decreases somewhat,

whereas for the OR rule, correlation has no effect on the system performance. In Tables

2.4-2.5, we observe that when prior probabilities are not equal, there are certain cases where

information from both sensors is ignored at the FC for both the AND and OR rules. For

example, looking at the signal pair (0.2, 1.5) in Table 2.4, under the OR fusion rule, the

information from both the sensors is ignored, whereas for the AND rule at the FC, under

the same conditions, the weaker sensor quantization has multiple interval regions and the

stronger sensor implements a single threshold LRT. However, under the same conditions,

the performance of the better sensor as a single sensor outperforms the performance of AND

and OR as FC decision rules. Also, if we look at the signal pair (0.5, 2) in Table 2.5, the

performances of AND and OR are worse as compared to the single sensor performance of

the better sensor. This means that the GA ended up in a sub-optimal solution as the GA

algorithm failed to pick the AND rule having the weaker sensor always deciding H1 and the

better sensor implementing a single threshold LRT. Based on the above observations, we can
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conclude the following:

1. For equal prior probabilities, the AND rule performs at-least as well as the OR rule.

2. For equal prior probabilities and AND rule, the probability of error decreases gradually

as ρ→ 1. However, under the same conditions, the performance of the OR rule is about

the same as the standalone performance of the better sensor as single sensor.
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CHAPTER 3

TANDEM NETWORK PERFORMANCE ANALYSIS

Consider a set of two sensors in tandem network monitoring a region of interest to

determine the presence or absence of a signal. The first sensor qauntizes it’s observation

to a signal bit and passes it to the second sensor. The second sensor makes a final decision

regarding which one of the two hypotheses is true, based on it’s own observation and the

single bit it had received.

3.1 SYSTEM MODEL

Let H0 be the null hypothesis (no signal is present) and H1 be the alternative hypothesis

(signal is present) with prior probability, π0 and π1, respectively. The signals are assumed

to be deterministic and are received in additive Gaussian noise. The received signal under

both hypotheses are shown below

H1 : X = S + K

H0 : X = K

(3.1)

where XT = [X1, X2], ST = [s1, s2]. Noise K is assumed to be a bivariate Gaussian with zero

means, unit variances and correlation coefficient ρ. Since s1, s2 can take either positive or

negative values, without any loss of generality, we can restrict ρ to be between [0, 1]and also

assume variances to be unity. Hence, the probability density functions under each hypothesis

is given as:

H1 : X ∼ N(s1, s2, 1, 1, ρ)

H0 : X ∼ N(0, 0, 1, 1, ρ) where 0 ≤ ρ ≤ 1

(3.2)
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The tandem network configuration of these two sensors is shown in Fig 1.2. The top sensor,

which receives the signal X1, is denoted as sensor 1, whereas the bottom sensor, denoted

as sensor 2, acts as the fusion center. Sensor 1 decision, denoted as V , is passed on to the

sensor 2, which then combines V with its own observation X2 and delivers the final decision

W regarding which one of the two hypothesis is true. We assume both the sensors use a

single bit to represent their own decisions [6]. When sensor 1 (sensor 2) decides in favor of

H1, V = 1 (W = 1). Similarly, V = 0 (W = 0) denotes sensor 1 (sensor 2) deciding in favor

of H0.

3.1.1 MINIMUM PROBABILITY OF ERROR

The optimization problem is to design the decision rules at sensor 1 and sensor 2 (serving

as a fusion center) so that the overall Bayes cost C (or risk) is minimized. In this thesis, we

consider the minimum probability of error criterion, which is the minimization of Bayes cost

with 0-1 cost function. It is assumed that signal levels at the sensors, namely s1, s2, prior

probabilities of each hypothesis (π0, π1) and ρ are known. The probability of error, denoted

as C(W ) in order to show its explicit dependence on the final decision W, can be written as

:

C(W ) = π0P (W = 1|H0) + π1P (W = 0|H1) (3.3)

3.1.2 OPTIMUM DECISION RULE AND IDENTIFICATION OF GOOD REGION

In this section, we derive the nature of the decision rules at both the sensors so that the

probability of error at sensor 2 (C(W )) is minimized. Similar decision regions were derived

for the random signals when the sensor noises were considered to be independent under both

hypotheses [12]. However, no such derivations exist for deterministic signals in a correlated

Gaussian noise environment. Furthermore, by studying the nature of those rules, we arrive

at the good region for the two-sensor configuration, where decision rules that decide H1 are

semi-infinite intervals on the real line, i.e., sensor 1 decides V = 1 if X1 falls within a semi-

infinite interval and sensor 2 decides W = 1 when its observation falls over one semi-infinite
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region, when V = 1 and another semi-infinite region, when V = 0. For simplicity, let us

use the following convention and notations for both the sensors: decision region favoring

hypothesis H1 is denoted as R with a subscript denoting whether it is the decision region of

sensor 1 or sensor 2. The complement of this region Ω − R belongs to the decision region

deciding H0 for each sensor. For sensor 2, an additional subscript on R will indicate if sensor

1 variable V is either 1 or 0. Let P (V = 1|H0) = pf (probability of false alarm of top sensor),

P (V = 1|H1) = pd (probability of detection of top sensor). Probability density notations

are p(x) for a marginal density, p(x, y) for a joint density, and p(x|y) for a conditional joint.

Since C(W ) is a function of both V and W, by optimizing C(W ) with respect to both V and

W , given the other variable is fixed, we obtain necessary conditions that yield the minimum

error probability C(W ), as shown in the Appendix A. The results from the analysis provide

the following decision rules. These rules are person-by-person optimal solutions [5].

RW |V=1 =

{
x2 : L(x2) ≡

∫
RV=1

p(x1|x2,H1)p(x2|H1)dx1∫
RV=1

p(x1|x2,H0)p(x2|H0)dx1
≥ π0

π1
(3.4)

RW |V=0 =

{
x2 : L(x2) ≡

∫
RV=0

p(x1|x2,H1)p(x2|H1)dx1∫
RV=0

p(x1|x2,H0)p(x2|H0)dx1
≥ π0

π1
(3.5)

RV =

{
x1 : L(x1) ≡

∫
RW |V=1

p(x2|x1,H1)p(x1|H1)dx2−
∫
RW |V=0

p(x2|x1,H1)p(x1|H1)dx2∫
RW |V=1

p(x2|x1,H0)p(x1|H0)dx2−
∫
RW |V=0

p(x2|x1,H0)p(x1|H0)dx2
≥ π0

π1
(3.6)

Equations (3.4) and (3.5) show the decision rules for sensor 2 and (3.6) shows the decision

rule for sensor 1.

3.2 GOOD SIGNAL REGION

As mentioned earlier, in the good region, each decide H1 region for the two sensors

specified by equations (3.4) through (3.6) become equivalent to semi-infinite interval on the

real lines, i.e partitions of x2 for (3.4) and (3.5) and a partition of x1 for (3.6).

Let us first consider the decision region (3.4) of sensor 2. The likelihood ratio L(x2) is

similar to the likelihood ratio L(x1) defined in equation (12) of the GBU paper. Following
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GBU, we can easily show that

∂L(x2)

∂x2

=
L(x2) [s2 − ρs1 + ρ(µ1(x2|H1)− µ0(x2|H0))]

1− ρ2
(3.7)

where for j = 0, 1,

µj(x2|Hj) =

∫
RV=1

x1p(x1|x2, Hj)dx1∫
RV=1

p(x1|x2, Hj)dx1

Irrespective of the nature of RV region, i.e whether it is a semi-infinite interval or a union

of multiple disjoint intervals, the partial derivative L(x2) is non-negative, if both, s2 ≥

ρs1 and s1 ≥ ρs2 are satisfied. Note that this is a sufficient but not necessary condition as

there can be certain sets of parameters for which the partial derivative could be non-negative

as well. In general, it is difficult to identify those parameters. The sufficiency condition is

identical to the sufficiency condition for the AND rule in [5]. Therefore, when this sufficiency

condition, for the good region for the tandem network is met, the test in (3.4) is equivalent

to a test of the form RW |V=1 : x2 ≥ tw1 when (s1, s2) lie in the first quadrant and it is of

the form RW |V=1 : x2 ≤ tw1 when (s1, s2) lie in the third quadrant. Similarly, for (3.5), the

same conditions on signal points (s1, s2) lead to semi-infinite intervals for RW |V=0 (replacing

thresholds tw1 with tw0). To show monotonicity of L(x1) with respect to x1, we can rewrite

this function as

L(x1) =
p(x1|H1)

(∫
RW |V=1

p(x2|x1, H1)dx2 −
∫
RW |V=0

p(x2|x1, H1)dx2

)
p(x1|H0)

(∫
RW |V=1

p(x2|x1, H0)dx2 −
∫
RW |V=0

p(x2|x1, H0)dx2

) (3.8)

We note here that, X2 conditioned on X1 = x1 is Gaussian distributed with mean ρx1 and

variance (1 − ρ2) under H0 and under H1, the variance remains the same while the mean

is (s2 + ρ(x1 − s1)). Also the ranges of the integrals are semi-infinite intervals in the good
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region of signals (s1, s2) in the first quadrant. Hence, we can further simplify (3.8) as :

L(x1) =
p(x1|H1)

p(x1|H0)

Q

(
tw1−s2−ρ(x1−s1)√

1−ρ2

)
−Q

(
tw0−s2−ρ(x1−s1)√

1−ρ2

)
Q

(
tw1−ρx1√

1−ρ2

)
−Q

(
tw0−ρx1√

1−ρ2

) (3.9)

where Q(.) represents the upper tail of standard Gaussian distribution. This equation is of

the same form as equation (11) in [5]. Hence, L(x1) is monotonically increasing with x1 as

long as ρs1 ≤ s2 ≤ s1
ρ

. Similarly, a good region in the third quadrant exists if s1
ρ
≤ s2 ≤ ρs1.

We can simplify (3.4) and obtain the following equivalent decision regions, using the fact

that a conditional distribution of two jointly Gaussian variable is Gaussian and region RV

for signals (s1, s2) in the good region of first quadrant is of the form RV : x1 ≥ t1,

RW |V=1 =

{
x2 : e

−s22
2 ex2s2

Q

(
t1−s1−ρx2+ρs2√

1−ρ2

)
Q

(
t1−ρx2√

1−ρ2

) ≥ π0
π1

(3.10)

Similarly (3.5) simplifies as :

RW |V=0 =

{
x2 : e

−s22
2 ex2s2

1−Q
(
t1−s1−ρx2+ρs2√

1−ρ2

)
1−Q

(
t1−ρx2√

1−ρ2

) ≥ π0
π1

(3.11)

For the good region, using (3.10) and (3.11), it will be easy to find the required thresholds,

tw1 and tw0, using a simple numerical procedure since the expressions to the left of the

inequalities are monotonic in x2. Equations similar to (3.10) and (3.11) can be derived for

signals in the third quadrant, namely s1
ρ
≤ s2 ≤ ρs1 ≤ 0. The results can be described

graphically as a division of the signal plane (s1, s2) into two regions: confirmed good and a

portion possibly bad (see Fig 3.1)

3.3 IDENTIFICATION OF BAD REGION

The good region includes all the pairs of (s1, s2) such that convergence to a single-interval

decision regions for both sensors in the optimal system is guaranteed. This can be pictured
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Figure 3.1. Division of the signal plane (s1, s2) into good regions. Unmarked regions are
possibly bad regions.

as all (s1, s2) where 0 ≤ ρs1 ≤ s2 ≤ s1
ρ

in the first quadrant and s1
ρ
≤ s2 ≤ ρs1 ≤ 0 in

the third quadrant. We define the bad region as the complement of the good region. Two

possible behaviors were concluded for bad region in [5] for the parallel AND (or OR) rule.

1. One sensor has a single-interval quantization region and the other sensor is ignored.

2. At least one sensor has a non-single interval quantization region.

For the case of detection of a common Gaussian signal in independent noise, it was proved

in [12] that the decision region for each sensor where they decide H0 respectively are of the

general form Ω−RV = t1 < x1 < t2 , Ω−RW |V=1 = tw11 < x2 < tw12, Ω−RW |V=0 = tw01 <

x2 < tw02. This was concluded by showing the convexity of the likelihood functions, similar

to those in (3.4) through (3.6), for random signals. Unfortunately, convexity of (3.4) through

(3.6) cannot be established for the case of deterministic signals in the correlated Gaussian

model (3.1). Thus, by assuming an initial sensor rule for the top sensor, equations (3.4)
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through (3.6) need to be solved iteratively to obtain a locally optimum solution. Then several

initial sensor rules need to be considered in order to obtain a possible, best solution. Such

a solution obtained is not guaranteed to be globally optimum, but only a reasonable good

solution. Alternatively, a sub-optimal solution, such as those based on genetic algorithm,

can be employed. Hence, we term all regions that are not in confirmed good as indeterminate

although it is possible that some could be good. We defer the investigation of performance

analysis in bad region to a future study.

3.4 PROCEDURE TO FIND OPTIMUM THRESHOLD IN GOOD REGION

Let us illustrate the procedure to find the optimum thresholds for each sensor in good

region in the first quadrant. A similar procedure can be applied to find thresholds in good

region in the third quadrant.

1. Consider a particular π0 value and a ρ value over 0 ≤ ρ < 1. Pick signal levels, s1, s2

such that ρs1 ≤ s2 ≤ s1
ρ

.

2. A minimization algorithm can search for minimum C(W ) as a function of threshold

t1. Assume t1 over (−∞,∞).

3. Given t1, using (3.10), find the value of x2 = tw1, which will attain equality in (3.10).

Similarly, use (3.11) for finding tw0.

4. To calculate C(W ) in (3.3), compute the conditional probabilities given below and

then compute C(W ).

P (W = 1|H0) =

∞∫
tw1

∞∫
t1

p(x1, x2|H0)dx1dx2 +

∞∫
tw0

t1∫
−∞

p(x1, x2|H0)dx1dx2

P (W = 0|H1) =

tw1∫
−∞

∞∫
t1

p(x1, x2|H1)dx1dx2 +

tw0∫
−∞

t1∫
−∞

p(x1, x2|H1)dx1dx2
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5. Minimization routine provides minimum C(W ) and the corresponding t1, tw1 and tw0

for the chosen signal levels and correlation coefficient.

6. As needed, go to step 1 and choose different prior probabilities, signal levels and

correlation coefficient.

3.5 SUB-OPTIMAL CASE

In this section, when the first sensor decision region where the sensor decides H1 is forced

to be a single threshold region, we find the good regions for sensor 2. That is, within the

restriction of sensor 1 decision to be a single threshold region, we identify good regions for

sensor 2, so that minimization of Pe is possible with a simple numerical procedure. Detailed

derivation is given in Appendix B. The results show the good region for sensor 2 as in Fig.

3.2.

Figure 3.2. Division of the signal plane into good regions for the bottom sensor when the
top sensor decision is forced to be a single threshold LRT, unmarked regions correspond to
possibly bad regions
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3.6 SYSTEM PERFORMANCE AS ρ→ 1

We know from [8], for the central LRT and number of sensors equal to two, that for ρ

exceeding a threshold value ρ∗ given below, the probability of error decreases with increasing

ρ. Here,

ρ∗ =


s1
s2
, if s1

s2
< 1

s2
s1
, otherwise

(3.12)

For s1 6= s2, if ρ > ρ∗, Pe will decrease monotonically and approach 0, as ρ → 1 for the

central LRT test.

For the tandem network, let us consider the following cases,

(a) The better sensor is at the FC

In this case, s1
s2
< 1 and ρ∗ = s1

s2
for a given (s1, s2) value. Hence, if ρ = ρ∗ + h, where

0 < h ≤ 1− ρ∗. Since s2 = s1
ρ∗

, we have

s2 =
s1

ρ− h

>
s1

ρ

This implies, when the better sensor is at the bottom, ρ > ρ∗, (s1, s2) will be in bad region.

(b) Better sensor at top

In this case, s2
s1
< 1 and ρ∗ = s2

s1
for a given (s1, s2) value. Hence if ρ = ρ∗ + h , where

0 < h ≤ 1− ρ∗. Since s2 = ρs1, we have

s2 = s1(ρ− h)

< ρs1

In this case also, (s1, s2) will be in the bad region for ρ > ρ∗. The identification of good region

allows for easy identification of globally optimal tests at the sensors. However, as we see in

cases (a) and (b) presented above, for a given set of signals (s1, s2), increasing correlation
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ρ > ρ∗ puts the signal point in bad region. It can be expected that as ρ → 1, Pe → 0 for

the optimal tandem test, based on inference from [9]. Hence, a study of probability of error

performance for the signal in the bad region becomes important.

3.7 NUMERICAL RESULTS

Using the procedure stated in section 3.4, we studied the performance of the two-sensor

tandem network in the good signal region of the first quadrant for the following cases:

(i) Weaker sensor as the FC

(ii) Better sensor as the FC

The performance of tandem network for cases (i) and (ii) listed above, and the perfor-

mance of central LRT are listed in Tables 3.1-3.4. We can notice from Tables 3.1-3.4 that

case (ii) outperforms case (i) when we compare the optimized (i.e minimum) probability of

error achieved by choosing the corresponding optimum t1 values in each case. However, the

difference between minimum errors in (i) and (ii) is minimal.

Table 3.1. Performance comparison of tandem network configuration and central LRT for
correlation coefficient ρ = 0.3, π0 = 0.5

s1 s2

Tandem Pe

(Better Sensor as FC)

Tandem Pe

(Weaker sensor as FC)

Central LRT

Pe

0.5 1 0.306 0.3084 0.3047

1 2 0.1552 0.1585 0.1535

1.5 4 0.0225 0.0228 0.0224

2 3 0.0578 0.0628 0.054

3 5 0.0049 0.0059 0.0044
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Table 3.2. Performance comparison of tandem network configuration with central LRT for
correlation coefficient ρ = 0.5, π0 = 0.5

s1 s2

Tandem Pe

(Better Sensor as FC)

Tandem Pe

(Weaker sensor as FC)

Central LRT

Pe

0.3 0.5 0.4009 0.4013 0.4007

1 1.5 0.2238 0.2262 0.2225

2 3 0.0644 0.0665 0.0633

3 5 0.006 0.0062 0.0059

4 5 0.0046 0.0053 0.0041

Table 3.3. Performance comparison of tandem network configuration with central LRT for
correlation coefficient ρ = 0.3, π0 = 0.3

s1 s2

Tandem Pe

(Better sensor as FC)

Tandem Pe

(Weaker sensor as FC)

Central LRT

Pe

0.3 0.5 0.2951 0.2955 0.2948

1 1.5 0.1854 0.1899 0.1815

2 3 0.0517 0.0560 0.0484

3 4 0.0143 0.0164 0.0122

4 5 0.0029 0.0035 0.0022

Table 3.4. Performance comparison of tandem network configuration with central LRT for
correlation coefficient ρ = 0.5, π0 = 0.3

s1 s2

Tandem Pe

(Better Sensor as FC)

Tandem Pe

(Weaker sensor as FC)

Central LRT

Pe

0.3 0.5 0.2958 0.2958 0.2957

1 1.5 0.1918 0.1936 0.1907
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Table 3.4 continued from previous page

s1 s2

Tandem Pe

(Better Sensor as FC)

Tandem Pe

(Weaker sensor as FC)

Central LRT

Pe

2 3 0.0576 0.0594 0.0566

3 5 0.0055 0.0056 0.0054

4 5 0.0042 0.0048 0.0037

In Figs. 3.3-3.8 we show the variation of probability of error C(W ), as a function of

threshold of sensor 1, t1, for the cases (i) and (ii). We can observe from Figs. 3.3-3.8 that

the minimum probability of error is sensitive to threshold t1 in case (i), whereas when the

better sensor is at FC, the minimum probability of error is only very slightly dependent on

t1, i.e. it is not sensitive to threshold t1 of first sensor. Also, in the Figs 3.9-3.11, we can

see the error performances of single sensor, better sensor as FC, weaker sensor as FC and

central LRT, as a function of ρ. We can observe that, at each ρ, C(W ) is minimum for central

LRT followed by the case of better sensor as FC. At ρ = 0, that is when the observations

of the sensors are statistically independent, we observe a significant difference between the

probabilities of error. The probabilities of error increase gradually with increasing ρ. In Fig

3.10, we observe that, when the difference between s1 and s2 is quite large, the performance of

tandem network when the weaker sensor is placed at the bottom is same as the standalone

better sensor performance. As observed in Figs 3.9 -3.12, better sensor as the FC is the

preferred choice for signals in the good region. This conclusion is arrived based on extensive

numerical study, for various correlation coefficients, signal levels, and prior probabilities,

even though only representative results are shown here. In Figs. 3.13 -3.15, we observe

that, when the better sensor is placed at the bottom, the error becomes maximum at the

break-point ρ∗ = s1
s2

and then starts to decrease gradually afterwards, as ρ increases further.

Again, the trend observed in Figs. 3.9-3.15 seem to be valid for many signal levels and prior

probabilities. In Figs. 3.13-3.15, curves for ρ > ρ∗ are obtained for the sub-optimal case of
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sensor 1 employing a single threshold LRT with the second sensor quantization optimized

accordingly to the results in Appendix B.

Figure 3.3. Probability of error versus threshold t1, better sensor as fusion center, s1 =
2, s2 = 3

Figure 3.4. Probability of error versus threshold t1, weaker sensor as fusion center, s1 =
3, s2 = 2
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Figure 3.5. Probability of error versus threshold t1, better sensor as fusion center, s1 =
2, s2 = 4

Figure 3.6. Probability of error versus threshold t1, weaker sensor as fusion center, s1 =
4, s2 = 2
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Figure 3.7. Probability of error versus threshold t1, better sensor as fusion center, s1 =
1, s2 = 3

Figure 3.8. Probability of error versus threshold t1, weaker sensor as fusion center, s1 =
3, s2 = 1
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Figure 3.9. Probability of error versus correlation coefficient ρ for good region, received
signals, min(S) = 1.5, max(S) = 2 prior probability π0 = 0.5

Figure 3.10. Probability of error versus correlation coefficient ρ for good region, received
signals,min(S) = 1, max(S) = 4, prior probability π0 = 0.5
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Figure 3.11. Probability of error versus correlation coefficient ρ for good region,received
signals, min(S) = 3, max(S) = 4, prior probability π0 = 0.9

Figure 3.12. Probability of error versus correlation coefficient ρ for good region, received
signals, min(S) = 1.5, max(S) = 3, prior probability π0 = 0.3
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Figure 3.13. Probability of error versus correlation coefficient ρ, when better sensor is at
fusion center

Note: ρ > s1
s2

corresponds to sub-optimal single threshold LRT at sensor 1

Figure 3.14. Probability of error versus correlation coefficient ρ, when better sensor is at
fusion center

Note: ρ > s1
s2

corresponds to sub-optimal single threshold LRT at sensor 1
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Figure 3.15. Probability of error versus correlation coefficient ρ

Note: ρ > s1
s2

corresponds to sub-optimal single threshold LRT at sensor 1
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CHAPTER 4

CONCLUSION AND FUTURE RESEARCH

In this thesis, we studied error performance of a two-sensor decentralized detection system

that detects the presence of signals in Gaussian noise. We first present an analysis of detection

of Gaussian signals in Gaussian noise using parallel fusion algorithm employing an AND or

OR fusion rule at the FC. Results show :

1. For equal prior probabilities, the AND rule performs at-least as well as OR rule.

2. For equal prior probabilities and AND rule, the probability of error decreases gradually

as ρ → 1. However, under same conditions, the performance of OR rule is about the

same as the standalone performance of better sensor as single sensor.

We also studied Bayes error performance of two sensor tandem network for detection of

deterministic signals in correlated Gaussian noise. Specifically, we identified the good region

for signal points, where the optimum tests for both sensors are single threshold tests based

on the observations at the sensors. Therefore, in good region, simple numerical computations

can be used to find the optimum decision threshold levels at each sensor. Numerical results

show that placing the sensor with better signal quality at the bottom gives a lower error

performance as compared to the reverse configuration, for all signal points located in the

good region. Notably, when the better sensor is at the top, the optimum performance is

sensitive to the threshold of the top sensor, but not when the weaker signal sensor is at the

top. We also notice that in the bad region, increasing noise correlation is expected to lead

to decreasing error. Hence, it is important to study this region.

For the tandem network with the GBU model, we have to resort to a sub-optimal search

algorithm, based on a genetic algorithm, in order to obtain quantization intervals in the bad
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signal region. We defer this to a future study. Also, changing the optimization criterion to

Neyman-Pearson may lead to different results than those obtained using the Bayes criterion.

For example, for a certain range of probability of false alarm at FC, would weaker sensor as

the FC might lead to higher probability of detection?
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APPENDIX A

DERIVATION OF DECISION REGION RULES FOR EACH SENSOR IN TW0-SENSOR

TANDEM NETWORK

In this appendix we show the derivations that lead to equations First, let us minimize

C(W ) by finding the decision region RW at sensor 2 given the decision region at sensor 1 is

already fixed. Let the whole sample space be denoted by Ω . Using the Bayes rules, we can

simplify the risk as follows:

C(W ) = π0

∫
RW

p(x2, V |H0)dx2 + π1

∫
Ω−RW

p(x2, V |H1)dx2

= π0

∫
RW

p(x2, V |H0)dx2 + π1[1−
∫
RW

p(x2, V |H1)dx2]

(A.1)

The above equation can be further simplified as :

C(W ) = π1 +

∫
RW |V=1

[π0p(x2|V = 1, H0)pf − π1p(x2|V = 1, H1)pd] dx2

+

∫
RW |V=0

[π0p(x2|V = 0, H0)(1− pf )− π1p(x2|V = 0, H1)(1− pd)]dx2.

(A.2)

To minimize C(W ), we need to minimize each integral in equation (A.2). First integral can

be minimized by assigning all those points x2 that make the term present inside the square

bracket non-positive to the region RW |V=1. Writing this out explicitly yields the collection

of all x2 points that satisfy

p(x2|V = 1, H1)pd
p(x2|V = 1, H0)pf

≥ π0

π1
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We can further simplify the numerator conditional density term on the left of the inequality

as shown below:

p(x2|V = 1, H1) =
P (x2 < X2 ≤ x2 + δx, V = 1|H1)

P (V = 1|H1)

=

∫
RV=1

p(x2, x1|H1)dx1

pd

=

∫
RV=1

p(x1|x2, H1)p(x2|H1)dx1

pd

Similarly, further simplification of the conditional probability density function in the denom-

inator to the left of the inequality leads to equation (3.4) given earlier. Similarly, we can

minimize the second integral by assigning all those points x2 that make the term present in-

side the square bracket non-positive to the region RW |V=0. Writing this out explicitly yields

the collection of all x2 points that satisfy

p(x2|V = 0, H1)(1− pd)
p(x2|V = 0, H0)(1− pf )

≥ π0

π1

We can further simplify the numerator conditional density term on the left of the inequality

as shown below:

p(x2|V = 0, H1) =
P (x2 < X2 ≤ x2 + δx, V = 0|H1)

P (V = 0|H1)

=

∫
RV=1

p(x2, x1|H1)dx1

1− pd

=

∫
RV=1

p(x1|x2, H1)p(x2|H1)dx1

1− pd

Similarly, further simplification of the conditional probability density function in the denom-

inator to the left of the inequality leads to equation (3.5) given earlier.

Next, let us minimize C(W ) by finding the decision region RV at sensor 1, given that the
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decision rules at sensor 2 is already fixed. We can write the overall cost as follows:

C(W ) = π0[P (W = 1|V = 0, H0)(1− pf ) + P (W = 1|V = 1, H0)pf ]

+ π1[P (W = 0|V = 0, H1)(1− pd) + P (W = 0|V = 1, H1)pd].

(A.3)

The above equation can be simplified as

C(W ) = π0P (W = 1|V = 0, H0) + π1P (W = 0|V = 0, H1)

+ pfπ0[P (W = 1|V = 1, H0)− P (W = 1|V = 0, H0)]

+ pdπ1[P (W = 0|V = 1, H1)− P (W = 0|V = 0, H1)].

(A.4)

The terms involving pf and pd, are the only terms that depend on the determination of RV

regions . Hence, the sum of these two terms in the above equation needs to be minimized by

appropriately choosing the decision region RV . This sum can be considered as the expected

cost, given that the decision regions RW |V=1 and RW |V=0 are already determined. Hence,

this sum is minimized by assigning all those points x1 to RV that will make the integrand

below non-positive. (Given decision regions of sensor 2 for V = 1 and V = 0 are fixed, the

probabilities involving W are constants and hence can be taken inside the integral shown

below)

=

∫
RV

[π0(P (W = 1|V = 1, H0)− P (W = 1|V = 0, H0))p(x1|H0)

− π1(−P (W = 0|V = 1, H1) + P (W = 0|V = 0, H1))p(x1|H1)]dx1

(A.5)

The above integrand can be further simplified using the results P (W = 0|V = 0, H1) =

1 − P (W = 1|V = 0, H1), P (W = 0|V = 1, H1) = 1 − P (W = 1|V = 1, H1). Writing this
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out explicitly yields the collection of all x1 points belonging to RV region as

π0(P (W = 1|V = 1, H0)− P (W = 1|V = 0, H0))p(x1|H0)

< π1(P (W = 1|V = 1, H1)− P (W = 1|V = 0, H1))p(x1|H1)

Writing out the above conditional probabilities in terms of integrals of conditional densi-

ties lead to the equation (3.6) given earlier. Designing sensors’ decision rules as given by

(3.5), (3.4) and (3.6) is a requirement for person-by-person optimal solution for minimiz-

ing C(W ). As mentioned in [5], this is a requirement for globally optimal solution as well.

Although similar derivation of decision rules at the two sensors is provided in [12] for the

detection of random signal in independent noise, the derivation provided here is much more

straightforward and simpler.
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APPENDIX B

DERIVATION OF GOOD REGION FOR SENSOR 2 IN TANDEM NETWORK FOR

THE SUB-OPTIMAL CASE OF SENSOR 1 HAVING A SINGLE THRESHOLD LRT

In this appendix we derive sufficiency condition of good region in signal plane (s1, s2)

for the sub-optimal case when sensor 1 is forced to be a single threshold LRT. We assume

decision regions of sensor 1 to be semi-infinite intervals. In (3.5), let µ1(x2)−µ0(x2) = δ ( for

simplicity, dependence on x2 is not shown explicitly) where µ1(x2) is conditional expectation

of G(s1−ρs2 +ρx2, 1−ρ2) (under H1) and µ0(x2) is conditional expectation of G(ρx2, 1−ρ2)

(under H0). Hence,

δ =

∫
A
x1f(x1 − µ)dx1∫
A
f(x1 − µ)dx1

−
∫
A
x1f(x1)dx1∫
A
f(x1)dx1

(B.1)

where f denotes a Gaussian density with mean ρx2 and variance 1− ρ2 and µ = (s1 − ρs2).

According to Lemma 1 of GBU [5], we have the following result

δ > 0 if µ > 0

δ = 0 if µ = 0

δ < 0 if µ < 0 (B.2)

We now study different cases of signal (s1, s2) regions.

1. s1 ≥ 0 s2 ≥ 0 (i.e first quadrant)

We can write the expression (3.10) when sensor 1 decision is 1 (V = 1) as

x2 : g1(x2) = e
−s22
2 es2x2

Q( t1−ρx2√
1−ρ2
− s1−ρs2√

1−ρ2
)

Q( t1−ρx2√
1−ρ2

)
≥ π0

π1

(B.3)
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Let µ∗ = s1−ρs2√
1−ρ2

, y2 = t1−ρx2√
1−ρ2

in equation (B.3) , then

g1(x2) = e
−s22
2 es2x2︸ ︷︷ ︸
h1(x2)

Q(y2 − µ∗)
Q(y2)︸ ︷︷ ︸
h2(y2)

(B.4)

Note that h1(x2) is monotonically increasing w.r.t x2 if s2 > 0. g1(x2) is monotone increasing

w.r.t x2 when h2(y2) is monotonically increasing with x2. Taking first derivative of h2(y2) in

equation (B.4) w.r.t x2 we get

dh2(y)

dx2

=
d

dy2

(
Q(y2 − µ∗)
Q(y2)

)
dy2

dx2

(B.5)

According to lemma 3 of GBU [5], Q(y2−µ∗)
Q(y2)

increases monotonically with y2 if µ∗ > 0 and

decreases monotonically if µ∗ < 0. Also, dy2
dx2

= −ρ√
1−ρ2

. Hence, dg1(x2)
dx2

> 0 when

d

dy2

Q(y2 − µ∗)
Q(y2)

< 0 (B.6)

The above condition is satisfied when µ∗ < 0. Hence, RW |V=1 is a single semi-infinite region

of the form (tw1,∞) if µ∗ < 0, or we can say when

s2 >
s1

ρ
(B.7)

Similarly, for V = 0, we have,

x2 : g0(x2) = e
−s22
2 es2x2

Φ( t1−ρx2√
1−ρ2
− s1−ρs2√

1−ρ2
)

Φ( t1−ρx2√
1−ρ2

)
≤ π0

π1

= e
−s22
2 es2x2

Φ(y2 − µ∗)
Φ(y2)

= e
−s22
2 es2x2︸ ︷︷ ︸
h1(x2)

Q(−y2 + µ∗)

Q(−y2)︸ ︷︷ ︸
h2(y2)

(B.8)
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For s2 > 0, h1(x2) is monotonic increasing with x2. g0(x2) will be monotonic increasing

w.r.t x2 when h2(y2) will be monotonically increasing with x2. This is true when −µ∗ > 0

or µ∗ < 0. The condition is same as in V = 1 or s2 >
s1
ρ

. Now, let us look another way.

Rewriting equation (3.7), we have the following

∂L(x2)

∂x2

=
L(x2)[s2 − ρs1 + ρδ]

1− ρ2
(B.9)

If s2 − ρs1 > 0 and s1 − ρs2 > 0 (equation (B.2) shows δ > 0),

∂L(x2)

∂x2

≥ 0 (B.10)

Hence, RW |V=1 and RW |V=0 are single semi-infinite regions and of the form (tw1,∞) and

(tw0,∞) and will be optimal. Hence, sufficient condition becomes

s2 > ρs1 and s1 > ρs2, or

ρs1 < s2 <
s1

ρ
(B.11)

Combining (B.11) and (B.7) we observe that the sufficient condition for the good region in

first quadrant is simply

s2 > ρs1 > 0 (B.12)

Note : From ∂L(x2)
∂x2

, both s2− ρs1 < 0 and s1− ρs2 < 0 are not possible (note ρ < 1, s1 >

0, s2 > 0). Hence, RW |V=1 and RW |V=0 cannot be of the form (−∞, tw1) and (−∞, tw0)

respectively. So, if s2 < ρs1, there is a possibility of RW |V=1 to be of the form (tw1,∞) or

a union of multiple disjoint intervals and RW |V=0 to be of the form (tw0,∞) or a union of

multiple disjoint intervals. This can be observed numerically when s2 < ρs1.

2. s1 < 0, s2 > 0 (second quadrant)

For s1 < 0, the decision region RV is of the form (−∞, t1). So, when V = 0, we have
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[since RV = (−∞, t1), V = 1 type region for s1 > 0 case becomes V = 0 for s1 < 0 case and

vice-versa],

x2 : g0(x2) = e
−s22
2 es2x2︸ ︷︷ ︸
h1(x2)

Q(y2 − µ∗)
Q(y2)︸ ︷︷ ︸
h2(y2)

≥ π0

π1

(B.13)

Since s2 > 0, conclusion in case 1 still holds. That is, if s2 >
s1
ρ

, RW |V=0 : x2 ε (tw0,∞)

and RW |V=1 : x2 ε (tw1,∞). Since s2 > 0, s1 < 0, this is satisfied for the whole of second

quadrant.

3. s1 < 0, s2 < 0 (third quadrant)

Since s1 < 0, RV is of the form (−∞, t1). For V = 0, we have,

x2 : g0(x2) = e
−s22
2 es2x2︸ ︷︷ ︸
h1(x2)

Q(y2 − µ∗)
Q(y2)︸ ︷︷ ︸
h2(y2)

≥ π0

π1

(B.14)

For s2 < 0, h1(x2) will be monotonically decreasing w.r.t x2. To make g0(x2) monotonically

decreasing w.r.t x2, we require h2(y2) to be monotone decreasing w.r.t x2. This happens

when µ∗ > 0. Thus, RW |V=0 will be of the form (−∞, tw0), if

s2 <
s1

ρ
(B.15)

When, V = 1, we have

x2 : g1(x2) = e
−s22
2 es2x2︸ ︷︷ ︸
h1(x2)

Q(−y2 − (−µ∗))
Q(−y2)︸ ︷︷ ︸
h2(y2)

≥ π0

π1

(B.16)

For g1(x2) to be monotonically decreasing w.r.t x2, we need h2(y2) to be monotonic decreasing

w.r.t x2. This happens when µ∗ > 0 or when we have,

s2 <
s1

ρ
(B.17)
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Alternatively, considering equation (B.9), for dL(x2)
δx2

< 0, sufficiency condition becomes

s1 − ρs2 < 0 and s2 − ρs1 < 0, or

s1

ρ
< s2 < ρs1 (B.18)

Putting (B.18) and (B.17) together, sufficiency condition becomes

s2 < ρs1 (B.19)

4. s1 > 0, s2 < 0 (fourth quadrant)

For s1 > 0, decision region of RV is of the form (t1,∞). For V = 1, we have

x2 : g1(x2) = e
−s22
2 es2x2︸ ︷︷ ︸
h1(x2)

Q(y2 − µ∗)
Q(y2)︸ ︷︷ ︸
h2(y2)

≥ π0

π1

(B.20)

For g1(x2) to be monotonically decreasing w.r.t x2, we require h2(y2) to decrease mono-

tonically with x2 as h1(x2) is monotonic decreasing w.r.t x2. This happens when µ∗ > 0

or s1 − ρs2 > 0. Hence, for RW |V=1 to be optimal with semi-infinite region of the form

(−∞, tw1), signals must satisfy the following condition

s2 <
s1

ρ
(B.21)

The above condition will always be satisfied in the fourth quadrant as s1 > 0, s2 < 0.

Similarly, when V = 0, we have

x2 : g0(x2) = e
−s22
2 es2x2︸ ︷︷ ︸
h1(x2)

Q(−y2 − (−µ∗))
Q(−y2)︸ ︷︷ ︸
h2(y2)

≥ π0

π1

(B.22)

We require h2(y2) to be a monotonically decreasing w.r.t x2, in order for g0(x2) to be
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monotonically decreasing w.r.t x2. If µ∗ > 0, then this condition will be satisfied and RW |V=0

will be an optimal semi-infinite region of the form (−∞, tw0). This is the same condition as

what we get for RW |V=1 in fourth quadrant of signal plane. Hence, over the entire fourth

quadrant, RW |V=1 : x2 ε (−∞, tw1) and RW |V=0 : x2 ε (−∞, tw0), will be optimal.

The result here shows that for (s1 > 0, s2 > 0) case, if the first sensor is forced to be

single threshold LRT, then the good region for sensor 2 will be valid as long as s2 > ρs1.

Hence, for a given (s1, s2) and ρ∗ = min(s1,s2)
max(s1,s2)

, ρ > ρ∗ will be in good region for sensor 2, for

both cases of weaker sensor as the FC and the better sensor as the FC. However, notice that

for globally optimum tandem network case, ρ > ρ∗ puts the first sensor test in possibly bad

region and hence, single threshold LRT at sensor 1 is not likely to be globally optimal for

ρ > ρ∗. In fact, for a globally optimal tandem network, Pe → 0 as ρ → 1 (see comments in

section 3.6). Graphs in 3.13-3.15 show for the sub-optimal case considered here in Appendix

B, Pe decreases with ρ beyond ρ∗, but never approaches zero as ρ approaches one.
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