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ABSTRACT 

 Recent estimates revealed a significant decrease in oyster populations worldwide. This 

drastic decrease has detrimental effects on coastal and estuarine ecosystems. Two environmental 

stressors that are thought to be contributing to the oyster population decline are hypoxia and 

excess freshwater intrusion. In this study, effects of hypoxia and low salinity on oysters were 

investigated using a combination of laboratory and field-based methods. In the laboratory, 

oysters were exposed to 2, 4, or 8 days of hypoxia (< 2 mg/L dissolved oxygen) followed by 6 

days of recovery in normoxic conditions. At the same time, caged oysters were exposed to a 

naturally occurring hypoxic event in the field. After 8 days, laboratory-exposed oysters showed 

evidence of immunosuppression indicated by significant downregulation of the immune-related 

gene thymosin-β4 (Tβ-4) and a significant decrease in total circulating hemocytes compared to 

controls. However, in field oysters exposed to a naturally occurring hypoxic event, no effect on 

total hemocyte counts and an upregulation of Tβ-4 was observed. In a second field study, to 

investigate how oysters respond to prolonged freshwater exposure, caged oysters were placed on 

23 April 2019 at six reef sites in the Mississippi Sound along with in situ water quality sensors. 

One-hundred percent mortality of caged oysters occurred at four of the six sites. Of the 6 six 

sites, Henderson Point Reef and Kittiwake Reef showed some caged oyster survival. At 

Henderson Point, where higher mortality was observed compared to Kittiwake, a significant 

increase in lipid peroxidation was detected. Analysis of mRNA expression of surviving caged 

and native oysters revealed downregulation of genes involved in immune function, low oxygen 

response, and osmoregulation. These results show possible evidence of energetic depression 
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which inhibits adequate adaptation to low salinity conditions. Energetic depression and increased 

oxidative damage could have contributed to higher oyster mortality. Dredge sampling of native 

oysters at the all Mississippi Sound field sites on 27 September 2019, following recovery to ~15 

ppt salinity, still indicated 100% native oyster mortality due to the prior prolonged freshwater 

exposure. Continued monitoring of western Mississippi Sound oyster reefs is crucial to observe 

recovery of oyster populations.  
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CHAPTER 1 INTRODUCTION 

1.1 Oyster Background  

1.1.1 Oysters  

Oysters are a type of shellfish that typically inhabit estuarine or marine environments. 

Oysters belong to the class Bivalvia alongside mussels and clams. Bivalvia is nested in the 

phylum Mollusca, and further nested into the superfamily Ostreoidea. There are several different 

species of oysters, some commonly known species include the Eastern oyster (Crassostrea 

virginica) of the eastern United States and Gulf of Mexico, the Pacific oyster (Crassostrea gigas) 

of the western United States, and the Pearl oyster (Pinctada albina) which is known for the rare 

and valuable pearl that members of this species produce. Commonly identified by their bilateral 

shells composed of calcium carbonate, also known as valves, oysters use their valves as defense 

mechanisms against predation as well as against rapidly changing environmental conditions. 

Oysters form large colonies called reefs that act as habitat for many other organisms including 

crabs, snails, and mussels. Oyster reefs are generally seen in two types of environments, 

intertidal regions which experience tidal fluctuations exposing oyster reefs to open air from time 

to time, and subtidal regions. Oysters are known not only as a valuable economic resource but 

also for the important ecosystem services which they provide. Due to these ecosystem services, 

oysters earn the title of keystone species (Sanjeeva Raj, 2008) 
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1.1.2 Ecosystem services  

Oysters are considered ecosystem engineers. These invertebrates play an important part 

in supporting estuarine ecosystems around the world. Ecosystem services provided by oysters 

not only benefit other estuarine organisms, but humans as well. While filter feeding, oysters 

remove contamination, suspended sediments, and toxic algae from the water. By cleaning up 

estuarine waters, oysters make waters safer for both humans and other marine organisms. Oyster 

reefs also act as buffers against incoming wave energy by providing large three-dimensional 

structures that are raised above the seafloor. This in turn prevents shoreline erosion and 

destruction of important coastal ecosystems and valuable coastal real estate (Cressman et al., 

2003; Tunnell, 2017). Another ecosystem service that oyster reefs provide is fisheries habitat. 

Reefs provide structures for other marine organisms to reside, thus creating healthier and more 

productive fisheries. Finally, oysters are an important economic resource for many coastal 

economies. In the past, oyster harvests have supplied coastal economies with substantial 

economic benefits through the sale of oysters as a delicacy in restaurants around the world. 

Previous oyster harvests in the Chesapeake Bay were valued at around $60.1 million in 1980 

(National Research Council, 2004) and have dropped to roughly $28 million in 2014 (NOAA 

Chesapeake Bay Office, 2019).  

 

1.1.3 Worldwide reduction in oyster reefs  

Despite the many ecosystem services that oysters provide, the worldwide oyster 

population has drastically declined in recent years. One study that utilized data collected from 

commercial oyster harvests as well as fisheries survey data from roughly 140 bays and 
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ecoregions around the world estimated a roughly 85% reduction in oyster reefs worldwide (Beck 

et al., 2011). If accurate, this estimation classifies oyster reefs as one of the most heavily 

impacted ecosystems in the entire world. Recently, large efforts have been made to restore oyster 

reefs to historic population levels, however success in these restoration efforts has lagged far 

behind that of other coastal ecosystems (Grabowski et al., 2012). There is an increasing need to 

research estuarine ecosystems so that we may improve the way we understand, maintain, and 

restore them.  

 

1.1.4 Environmental stressors  

There are several possible contributing factors to the massive reduction in worldwide 

oyster populations. Due to their proximity to land, estuarine ecosystems are constantly faced 

with many biotic and abiotic challenges. Contaminants from stormwater, industrial, and sewage 

runoff contaminate estuarine waters and bioaccumulate in filter feeding organisms (Lau et al., 

2018). Sources of freshwater intrusion can cause rapid and drastic fluctuations in salinity in 

many estuaries. Organisms in these areas, especially benthic invertebrates, must be able to 

quickly acclimate to large fluctuations in salinity. With freshwater intrusion often comes a large 

influx of excess nutrients from untreated agricultural and sewage runoff. These nutrients trigger 

algal blooms that can be detrimental to estuarine systems (Ansari et al., 2011). Harmful algal 

blooms (HABs) inhibit sunlight from reaching bottom dwelling plants, as well as release toxins 

that can be harmful to humans and estuarine organisms. Eutrophication can also induce hypoxia 

(Ansari et al., 2011). Microbes that decompose dead algae consume oxygen, causing dangerously 

low dissolved oxygen concentrations (Rabalais et al., 2006). Extended hypoxic events, in turn, 

can cause mass mortalities of estuarine organisms (Altieri et al., 2017). On top of all of these 
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environmental stressors, overharvesting of oysters can prevent reefs from recovering to previous 

population sizes (Jackson et al., 2001). It is estimated that 75% of harvested oysters come from 

just five North American regions (Beck et al., 2011). Lastly, disease plays a large role in the 

decline of oyster populations. Increased incidences of dermo disease (Perkinsus marinus), 

amongst other diseases, have caused substantial mortality in the Eastern oyster populations 

(Powell, 2017). Although these stressors each have the capability to individually impact oyster 

reefs, it is likely that oysters are challenged by a combination of these stressors simultaneously. 

Studying how theses stressors impact oyster reefs individually, as well as in combination with 

each other, is important in determining their true impacts on oyster reefs. 

 

1.1.5 Oyster immune system   

Because oysters are sessile organisms for a majority of their life and are unable to escape 

non-ideal environmental conditions, they must be able to efficiently acclimate to large 

fluctuations in conditions. In addition to fluctuating environmental conditions, oysters inhabit 

very pathogen rich environments. Oysters must rely on a strong immune response to defend 

themselves against the many pathogens such as Haplosporidium nelsoni, the causative parasite 

for multinucleated sphere X (MSX) disease, and Perkinsus marinus which causes dermo disease. 

It is well known that molluscs, unlike humans and other vertebrates, possess only an innate 

immune response (Wang et al., 2018). The oyster innate immune response is divided into a 

cellular response and humoral response. The cellular response involves phagocytic cells called 

hemocytes, which are specialized cells that engulf and break down pathogens via enzyme 

activity and/or reactive oxygen species (ROS). The humoral response utilizes antimicrobial 

peptides (AMPs) (Tincu and Taylor, 2004). These peptides bind to pathogens and can then 
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disrupt membrane structure ultimately killing the pathogen. Several studies have investigated 

invertebrate immunomodulation by measuring hemocyte parameters including total hemocyte 

counts, phagocytic ability of hemocytes, and hemocyte ROS production. Hypoxic conditions 

inhibit hemocyte ROS production in oysters, causing immunosuppression (Boyd & Burnett, 

1999). Total hemocyte counts in mussels are significantly reduced following exposure to 

hypoxia thus weakening immunosurveillance (Sui et al., 2016). Immunomodulation was also 

observed in oysters exposed to polycyclic aromatic hydrocarbons through the evaluation of 

hemocyte parameters such as phagocytic ability of hemocytes, total hemocyte counts, and 

hemocyte mortality (Croxton et al., 2012). With the increased incidence of disease amongst C. 

virginica populations (Powell, 2017), knowing how environmental stressors impact oyster 

immune function is vital for the selection of adequate restoration sites and reef management. 

Weakened immune function could open up the possibility of mass mortalities. In this study, total 

hemocyte counts were used as a measure of immune health in terms of immunosurveillance. 

 

1.1.6 Thymosin-β4 

First extracted from calf thymus, thymosins are a family of intracellular proteins with 

molecular masses ranging from 1-14 kDa and 40-45 amino acid residues in length. There are 

three defined groups of thymosins, α, β, and γ, each differentiated by their isoelectric point (Huff 

et al., 2001). Of these three groups, beta thymosins are the most conserved members among 

different species and the most abundant members in most cell types (Hannapple and Van 

Kampen, 1987). Functions of Tβ-4 in vertebrates include cell migration, attachment and 

spreading of endothelial cells, and stimulation of hormone releasing factor (Grant et al., 1995; 

Rebar et al., 2019). Tβ-4 plays a role in host defense, for example, human Tβ4 acts as an 
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antimicrobial peptide in platelets (Tang et al., 2002). In invertebrates, not much is known about 

how Tβ4 functions. In the Hong Kong oyster (Crassostrea hongkongensis), Tβ4 is involved in 

the production and mobilization of hemocytes (Li et al., 2016). Tβ4 isolated from the Pacific 

oyster (Crassostrea gigas) has antimicrobial activity through its ability to inhibit bacterial 

growth (Nam et al., 2015), and is heavily involved in the immune response of the disk abalone 

(Haliotis discus) (Kasthuri et al., 2013). Furthermore, through expressed sequence tag analysis, 

Tβ-4 was identified as a potential immune effector in C. virginica (Jenny et al., 2002). In this 

study, C. virginica Tβ-4 mRNA expression was studied as a potential biomarker of 

immunomodulation in oysters to see how expression changes in response to the environmental 

stressors hypoxia and low salinity/freshwater intrusion. 

  

1.1.7 Hypoxia inducible factor 

Hypoxia inducible factor (HIF) is a critical mediator in the adaptive response to low 

oxygen stress. HIF is a redox sensitive transcription factor composed of an α and β subunit and is 

also known as the aryl hydrocarbon receptor nuclear translocator (ARNT). The α subunit is 

tightly regulated by the environmental concentration of oxygen and has an extremely short half-

life in the presence of oxygen (Wang & Semenza, 1995). A study that investigated HIF-1α 

mRNA expression in response to exposure to different concentrations of dissolved oxygen found 

that HIF-1α was significantly up-regulated following exposure to hypoxia (Piontkivska et al., 

2011). Additionally, an increase in HIF-1α protein levels and mRNA expression in C. gigas was 

observed during exposure to air and following 48 hours of exposure to hypoxia (Kawabe & 

Yokoyama, 2012). In this experiment, HIF-1α mRNA expression was assessed as a biomarker of 

hypoxic stress.  
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1.1.8 Heat shock protein 70  

Heat shock proteins (HSPs) are highly conserved in all living organisms and are known 

for their larger role in the stress response. Some of the main functions of heat shock proteins 

include refolding of denatured proteins, cell cycle signaling, and protecting cells from damage 

and apoptosis (Bukau et al., 2006). HSPs are activators of the innate immune system (Tsan & 

Gao, 2004). Expression of the HSP-70 protein in molluscs is induced following exposure to 

xenobiotics (Snyder et al., 2001). Additionally, in an exposure experiment, hydrocarbon 

contamination caused significantly higher HSP-70 protein levels compared to control oysters 

(Boutet et al., 2004). Due to HSPs role in the stress response of many different organisms, it is 

commonly utilized as a biomarker for environmentally induced stress. In this study mRNA 

expression of HSP-70 was measured to assess stress induced by hypoxia in the laboratory 

exposure. However, because HSP-70 is post-transcriptionally regulated, mRNA measurement is 

not a reliable measurement of HSP-70 stress response (Theodorakis and Morimoto, 1987). For 

this reason, data on HSP-70 mRNA is only included in the appendix of this thesis (Appendix Fig. 

16)  

 

1.1.9 Na+/K+ ATPase 

Due to large changes in salinity in estuarine environments, oysters have the capacity to 

acclimate to extreme changes in salinity. In molluscs, low salinity stress induces an osmotic 

gradient between their external environment and extracellular fluid causing swelling of the 

tissue. In order to counteract this swelling, water and solutes including sodium, potassium, and 

free amino acids are expelled from the cell.  Na+/K+-ATPase (NKA) plays an essential role in 
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this recovery process by facilitating the transport of solutes out of the cell (Horisberger, 2004). 

The NKA complex is composed of three subunits, two essential and one non-essential. The alpha 

subunit contains the binding sites for Na+, K+, and ATP; the beta subunit is believed to be 

involved in the attachment of the alpha subunit to the cell membrane. Lastly, the gamma subunit 

is thought to modulate Na+, K+, and ATP binding affinities (Jorgensen et al., 2003). Analysis of 

NKA-α mRNA expression in the crab, Pachygrapsus marmoratus, revealed significant up-

regulation of NKA-α following 48 hours of exposure to 10‰ salinity (Jayasundara et al., 2007). 

Similarly, differential transcript analysis of  the Sydney rock oyster (Saccostrea glomerata) 

revealed that oysters exposed to reduced salinities showed upregulation of NKA-α compared to 

control oysters (Ertl et al., 2019). These data reveal the importance of this protein complex in 

osmoregulation. Due to the extreme freshwater event that occurred during our 2019 field study, 

mRNA expression of NKA-α was measured to quantify salinity stress in oysters from different 

field sites in Mississippi Sound.  

 

1.1.10 Lipid peroxidation 

Reactive oxygen species (ROS) are produced in living organisms as a byproduct of 

several endogenous processes. Even though ROS are important for some physiological functions, 

the over-production of ROS can cause cellular damage (Bardaweel et al., 2018). Oxidative 

radicals, due to their highly reactive nature, can often cause damage to cellular components such 

as DNA, proteins, and lipid membranes (Lobo et al., 2010). Lipid peroxidation describes the 

oxidative degradation of lipids. ROS react with lipids forming reactive peroxyl radicals, which in 

turn, causes more lipid peroxidation (Lobo et al., 2010). This destructive chain reaction can 

disrupt the structure of cell membranes sometimes causing irreversible cell damage and in some 
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cases cell death. Often, during environmental stress, an increase in oxidative damage is observed. 

Measurement of oxidative damage in the Hong Kong oyster (C. hongkongensis) revealed a 

positive correlation between oxidative damage and concentrations of heavy metals (Chan and 

Wang, 2019). It is common to use oxidative damage as a marker of environmentally induced 

stress (Ringwood et al., 1999). As part of the 2019 field study, lipid peroxidation was measured 

to assess environmentally-induced stress in caged oysters deployed in the Mississippi Sound 

during a larger than usual freshwater inflow event.  

 

1.2 Oysters in the Mississippi Sound 

1.2.1 Decreased oyster harvest  

Compared to other regions around the world, the northern Gulf of Mexico has been 

classified as one of the regions where large scale oyster reef restoration is actually feasible (Beck 

et al., 2011). Historically, the Gulf of Mexico has been known to be extremely productive with 

respect to oysters and other seafood. With recent events such as hurricane Katrina (2005), the 

Deep-Water Horizon Oil Spill (2010), and the back to back opening of the Bonnet Carré 

Spillway (2018 & 2019), these estuarine systems have experienced a high frequency of 

environmental stress. Along the Mississippi Gulf coast, the Mississippi Department of Marine 

Resources (MDMR) Shellfish Bureau reports commercial oyster harvests reaching record low 

numbers. Harvests have gone from being as high as 400,000-500,000 sacks (1 sack ≈ 100 

oysters) in 2004 to as low as 20,000 – 50,000 sacks in 2016 (https://dmr.ms.gov/shellfish/). With 

this drastic decline in annual oyster harvest, Governor Phil Bryant formed the Governor’s Oyster 

Council in 2015, to work towards restoring reef populations back to historic levels. 4 
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1.2.2 Bonnet Carré Spillway 

The Bonnet Carré Spillway (Fig. 1) is located in Louisiana, just north of New Orleans. This 

river control structure, built by the Army Corps of Engineers, stretches roughly a mile and a half 

along the east bank of the Mississippi River, and diverts flood waters from the Mississippi River 

into Lake Pontchartrain, a brackish estuary. The spillway consists of about 350 bays/floodgates 

that are manually opened when floodwaters reach potentially harmful levels. When freshwater is 

released through the spillway, it first flows through the floodway, which runs six miles from the 

Mississippi River to Lake Pontchartrain, eventually making its way into the Gulf of Mexico and 

Mississippi Sound. This structure was originally built in response to ‘The Great Mississippi 

Flood of 1927’ when floodwaters inundated roughly 27,000 square miles with approximately 30 

feet of water (Ambrose, 2001). Construction of the spillway was necessary to protect cities along 

the river and prevent future catastrophic flooding. Before 2019, the spillway had only opened 13 

times since its construction. In 2019, for the first time in the history of the spillway, unusually 

large amounts of flooding of the Mississippi River warranted two spillway openings in the same 

year. The first opening occurred in late February and lasted until early April (44 days), and the 

second opening happened in early May and lasted until late July (79 days). These back to back 

Figure 1. Bonnet Carré Spillway. A) Aerial view of the Bonnet Carré spillway (Photo by-Gerald Herbert, 

Sun Herald). B) Close up view of the spillway showing individual floodgates. 

A B 
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openings released an unprecedented amount of freshwater (Fig. 2; US Army Corps of Engineers, 

New Orleans District, 2019) into areas that are typically saltwater estuaries with salinities usually 

ranging from about 10-30 ppt (Berrigan et al., 1991). The impacts of the freshwater inflow on 

estuarine systems is a topic of much debate (Turner, 2006). Some studies suggest that high 

freshwater intrusion into the Mississippi Sound had a negative impact on oyster production 

(Butler & Engle, 1950). On the other hand, some studies conclude that there is no substantial 

data to support the conclusion that there is a negative relationship between freshwater inflow and 

oyster productivity, stating that freshwater influx helps mitigate predation and disease amongst 

oyster populations to a greater degree than we think (Loftin et al., 2011). Following the 2019 

spillway opening, MDMR reported oyster mortalities as high as 100% at some reefs in the 

Mississippi Sound (Gulf Coast Research Lab, 2019). There is an ever increasing need to research 

these affected areas in order more closely understand how these massive freshwater inflows 

really impact our very valuable estuarine environments in our coastal waters. Figure 2 shows the 

Figure 2. Discharge and the number of bays open during of both 2019 spillway openings. 
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length of and the discharge rates of the spillway during the 2019 spillway openings.  

Because the Mississippi River Basin is so vast and drains such an expansive area, runoff 

water has the potential to carry contamination into the Mississippi River. If massive releases 

from the Bonnet Carré Spillway flush this contamination into the Mississippi Sound, this could 

contribute to severe eutrophication and hypoxia and further negatively impact the estuarine 

systems in the Mississippi Sound and Gulf of Mexico.  
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CHAPTER 2 LABORATORY/FIELD HYPOXIA EXPOSURE STUDY (2018) 

2.1 Introduction  

In recent decades, hypoxia, an indirect effect of eutrophication, has been increasingly 

affecting estuarine environments (Breitburg et al., 2018). Hypoxia occurs when the dissolved 

oxygen (DO) concentration drops below 2 mg/L (Rabalais et al., 2006, Vaquer-Sunyer & Duarte, 

2008). Hypoxia negatively impacts the microbiomes of adult oysters, affecting their energy 

dynamics and increases their vulnerability to pathogens (Khan et al., 2018). Long-term hypoxic 

events can kill large numbers of marine organisms, including oysters, but even short-term 

hypoxic events can cause detrimental sub-lethal impacts to oysters such as lowered fecundity, 

growth rates, and immunosuppression, particularly at early life history stages (Baker & Mann, 

1992; Johnson et al., 2009, Sui et al., 2016; Shumway, 1996).   

In this study, the effects of hypoxia on the Eastern oyster (Crassostrea virginica) were 

studied by deploying caged oysters in the Mississippi Sound, during which oysters experienced a 

natural hypoxic event, and by exposing oysters in a laboratory setting to three different durations 

of hypoxia (< 2 mg/L dissolved oxygen), followed by a 6 day normoxic (>8 mg/L dissolved 

oxygen) recovery period. Effects were measured by analyzing mRNA expression of hypoxia 

inducible factor-1α (HIF1-α), which is known to be up-regulated under hypoxic stress (Kawabe 

& Yokoyama, 2012). Immune function was assessed by analyzing mRNA expression of 

thymosin-beta-4 (Tβ-4), which is involved in hemocyte production and mobilization (Li et al., 

2016). We hypothesized that oysters subjected to longer durations of hypoxia would have 

enhanced HIF1-α and suppressed immune function through downregulation in mRNA 

expression of Tβ-4 and reduced total hemocyte counts compared to controls. 
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2.2 Materials and Methods  

2.2.1 Oyster collection and maintenance 

Oysters (C. virginica) used in both laboratory and field experiments were obtained from 

the Auburn University Shellfish Laboratory’s farm in Bayou La Batre (Dauphin Island, AL) in 

early July 2018. The oysters were transported to the Gulf Coast Research Laboratory (GCRL) 

Halstead campus (Ocean Springs, MS) and placed in flow-through holding tanks supplied with 

water from Davis Bayou, where salinity and temperature was similar to their site of collection. 

Oysters were fed ad libitum each day with Shellfish Diet 1800 (Reed Mariculture, Campbell, 

CA, USA). Oysters were kept in holding tanks for approximately one week before being 

transferred to exposure aquaria at GCRL’s Cedar Point campus (Ocean Springs, MS) to begin 

both the laboratory and field experiment. 

 

2.2.2 Experimental design  

2.2.2.1 Field component  

Following transport to GCRL, 20 oysters were randomly selected from holding aquaria 

and 10 oysters were placed in each of two oyster sensor platforms, and submerged off of the 

dock near GCRL (Marsh Point, MS:  30˚23’31.488”N, 88˚48’27.226”W) for 3 weeks (20 July -

10 August 2018). The sensor platforms were equipped with water quality sensors (HOBOware® 

loggers) that measured dissolved oxygen, conductivity, and temperature for the duration of 

deployment, and housed oysters on trays enclosed within crates on each platform, with 

perforations to allow adequate water flow (Fig. 3). Oysters were sampled from the sensor 

platforms following 14 days (T-1) and 21 days (T-2) of deployment. Upon sampling, five oysters 

were sacrificed and gill tissue was extracted for analysis of mRNA expression. At the beginning 
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of the experiment, five oysters were taken directly from GCRL holding tanks and used as time-

zero (T-0) oysters. 

 

2.2.2.2 Laboratory component  

Oysters were randomly selected from holding tanks, transferred into exposure tanks, and 

allowed to acclimate for 2-3 days. Treatment groups were subjected to one of three durations of 

hypoxia (DO < 2 mg/L): 2, 4, or 8 days (short, medium, and long, respectively; Fig. 4), 

beginning on 14 July 2018. Each treatment was then followed by a 6-day recovery period in 

normoxic conditions (DO  ≥ 8 mg/L). The control group was maintained in normoxic conditions 

Figure 4. Experimental design of the laboratory experiment. Oysters were exposed to three durations 

of hypoxia, followed by 6 days of recovery in normoxic conditions. Control tanks remained normoxic 

for the duration of the experiment. Each tank (n = 3 per treatment) started with 20 oysters, with two 

oysters sampled on each sampling day (represented by black dots). A similar number of oysters was 

removed from all tanks on each sampling day to maintain a consistent oyster density in each tank for 

the duration of the experiment. 

Figure 3. – Images of sensor platforms containing oysters. 
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for 14 days. Each of the 4 treatments consisted of 3 replicate 65 L tanks kept at a temperature of 

18C and salinity of 151 ppt. Each tank started with 20 oysters, and 2 oysters were removed 

from all tanks on each sampling day so that oyster density remained consistent across tanks on 

each day of the experiment. Hypoxic conditions were created by bubbling N2 gas into treatment 

water in a header tank. Fig. 4 depicts the experimental design. Upon removal from exposure 

tanks, gill and hemolymph samples were taken from sacrificed oysters for analysis of mRNA 

expression and total hemocyte counts, respectively. 

 

2.2.3 RT-qPCR - mRNA expression   

Following gill tissue collection, tissue was placed in RNAlater™ (Invitrogen) and stored 

at -80°C until processing. RNA isolation was achieved using TRIzol™ reagent (Invitrogen 

#A33251) and RNase-Free DNase set (Qiagen #74004) according to the manufacturer’s protocol. 

RNA extract was quantified and assessed for purity using a NanoDrop 2000 spectrophotometer. 

Following quantification, cDNA sub-stocks were prepared via reverse transcription PCR to 

achieve a final concentration of 10µg/µL. Real-time Quantitative polymerase chain reaction RT-

qPCR was performed using an Applied Biosystems 7200 using SYBR™ Green PCR Master Mix 

(Applied Biosystems #4309155) with the following parameters: 95°C for 10 min, then 40 cycles 

of 95°C for 15 sec and 60°C for 1 min, followed by 95°C for 15 sec, 60°C for 1 min, and 95°C 

for 15 sec to generate a dissociation curve. Primer optimization was completed using the same 

instrumentation and procedure. Primer sequences and efficiencies are listed in Table 1. All 

samples were screened in duplicate and evaluated using the 2-ΔΔCT method (Livak and 

Schmittigen, 2001). 18s (laboratory experiment) and elongation factor 1-α (EF1-α) were utilized 

as reference genes for mRNA expression analysis. 
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Table 1. Laboratory/field study primer names and sequences. R2 of optimization regression 

and calculated primer efficiency depicted as well.  

 
Gene Acession Primer sequence r

2 Efficiency %

F: 5'- TCT GTG ATT GTG GGC TGT GTT- 3'

R: 5'- TGG TGG GTA GAG GGT TCT TCT- 3'

F: 5'- ACC AGT GAC GCC CTG TTC TC- 3'

R: 5'- ACA GAC TCG GTG CGA CCA A- 3'

F: 5'- CGC AGT GTT TTT GGG AGT CAG T- 3'

R: 5'- CCA TTC TCT TGG CGA TCA GTG- 3'

F: 5'- GGT ATC TCG GCA AAC GGA CA- 3'

R: 5'- TTC GTT GAA ACG GCT CTC AC- 3'

F: 5'- CCG TCC GTT TTG GTG ACT CT- 3'

R: 5'- CCT TGG ATG TGG TAG CCG TT- 3' 

0.995 101.01LOC111123286 Tβ-4

Hif-1α

18s EU660792

NKA-α XM_022468233

EF1-α XM_022472315

96.06

XM_022475425 0.999 94.67

0.991

0.999 103.60

100.760.99
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2.2.4 Total hemocyte counts    

Hemolymph was extracted from the pericardial cavity of each oyster using a sterile 16-

gauge syringe and transferred to a 1.7 mL centrifuge tube. Hemolymph was diluted 1:1 with 10% 

formalin for preservation. Hemocyte counts were performed using a Benchtop B3 series 

FlowCAM® particle imaging system (Fluid Imaging Technologies, Inc., Yarmouth, ME, USA). 

The FlowCAM® was equipped with a 300 µm flow cell and a 20x objective lens, and was set to 

auto-image mode, in which photographs were taken of cells at 20 frames per second at a constant 

flow rate of 0.01 mL/min. Two technical replicates were counted for each sample (100 μL each) 

and averaged to obtain a final count for each individual oyster. 

2.2.5 Data analysis  

Prior to data analysis, data were tested for normality and equal variance using Shapiro-

Wilk’s and Brown-Forsythe’s tests, respectively, in SigmaPlot version 14.0. Field data (mRNA 

expression and hemocyte counts) were analyzed using one-way analyses of variance (ANOVA) 

(n=5 per time point) followed by Tukey’s post hoc tests, if appropriate. For laboratory 

experiment data, mRNA expression and hemocyte counts were analyzed using two-way 

ANOVAs with time and treatment as factors, followed by Tukey’s post hoc tests, if appropriate. 

Control oysters were not sampled on the first day of recovery, but to evaluate acute changes in 

mRNA expression, treated oysters at 24 h of recovery were compared to those from the final 

hypoxic time point using unpaired t-tests. Hemocyte counts were also analyzed using unpaired t-

tests to compare exposed oysters to controls (n = 2-3 tanks per treatment) on each day. 
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2.3 Results 

2.3.1 Field deployment  

2.3.1.1 In situ water quality measurements 

An oyster sensor platform was deployed for three weeks near Marsh Point, MS from 20 

July to 10 August 2018, which overlapped with the laboratory experiments. During deployment, 

the in situ water quality sensor data (Fig. 5) indicated fluctuating diel DO concentrations for the 

first 10-12 days of deployment. On day 12, DO dropped below 2 mg/L and remained near or 

below the hypoxic threshold for the remainder of the deployment. There was a concurrent 

decrease in salinity to a minimum of 4 ppt during the hypoxic event, with a subsequent return to 

12-15 ppt near the end of the deployment, even while DO remained low.  

  

Figure 5. Dissolved oxygen (mg/L) and salinity (ppt) measured by in situ sensors on oyster sensor 

platform near Marsh Point, MS, during three-week field deployment (20 July -10 August 2018). Note 

the natural hypoxic event that occurred when DO fell below the hypoxic threshold (<2 mg/L) on day 

12. Oysters were sampled prior to deployment (T-0), on day 14 (T-1) and on day 21 (T-2).   
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2.3.1.2 mRNA expression  

As predicted, gill HIF1-α mRNA expression showed a significant response to the natural 

hypoxic event (1-way ANOVA, F2 = 4.219, p = 0.044; Fig. 6), with significant up-regulation on 

day 21 (after 9 days of hypoxia; T-2) compared to T-0 oysters (Tukey’s post-hoc test, p = 0.022 

and 0.032 for T-0 vs. T-2 and T-1 vs. T-2, respectively). Tβ-4 mRNA expression did not vary 

between oysters sampled at T-0 and T-1 (day 2 of hypoxia), but showed a significant 2-fold up-

regulation in oysters following 9 days of exposure to a natural hypoxic event (1-way ANOVA, 

F2 = 9.08, p = 0.005; Fig. 6; Tukey’s post-hoc test, p = 0.388 and 0.004, for T-0 vs. T-1 and T-0 

vs. T-2, respectively).  

 

 

 

Figure 6. Relative mRNA expression of HIF1-α, Tβ-4 of oysters sampled prior to deployment (T-0), 

on day 14 (T-1), and on day 21 (T-2) in the field deployment. A natural hypoxic event occurred on 

day 12 and lasted for the remainder of the deployment (Fig. 2). Bars represent means + standard error 

(n = 5 oysters per time). Significant differences between time points for each gene were determined 

using one-way ANOVA, followed by a Tukey’s post hoc test. Letters denote times that were 

significantly different from each other (p < 0.05). 
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2.3.1.3 Total hemocyte counts  

No significant differences in total circulating hemocyte counts were found among oysters 

collected over the course of the field deployment (; 1-way ANOVA, F2 = 0.23, p = 0.798, Fig. 7). 

  

Figure 7. Total hemocyte counts from oysters sampled prior to deployment (T-0), on day 14 (T-1), 

and day 21 (T-2) of the field deployment. A natural hypoxic event occurred on day 12 and lasted for 

the remainder of the deployment (Fig. 5). Bars represent means + standard error (n = 5 oysters per 

time).  
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2.3.2 Laboratory experiment 

2.3.2.1 mRNA expression  

Effects on oyster gill HIF1-α expression were measured after different durations of 

hypoxia exposure, followed by 6 days of recovery in the laboratory. It is important to note that in 

the control treatment, HIF1-α and Tβ-4 expression varied significantly over time (Fig. 8). During 

the 2-day exposure, there was a significant main effect of time (2-way ANOVA; p = 0.019) and 

treatment (p < 0.001) on HIF1-α expression (Fig. 8A; Table 2). In the 4-day exposure treatment, 

HIF1-α mRNA expression (Fig. 8B) showed a significant interaction between time and treatment 

(p = 0.022). During the longest hypoxic exposure (8 days), HIF1-α expression (Fig. 8C) had a 

significant time by treatment interaction (p = 0.01), and expression was significantly up-

regulated in treated oysters compared to controls on day 14 (i.e., after 8 days of hypoxia and 6 

additional days of recovery) (p < 0.001; Appendix Table 5c). Post hoc tests revealed a significant 

up-regulation of HIF1-α in treated oysters on day 6 of exposure compared to those on day 14, 

after 6 days of return to normoxia (p = 0.013). Acute changes were not observed in HIF1-α 

expression in oysters following 24 h in normoxic conditions after hypoxia exposures of any of 

the three treatment durations (unpaired t tests, p > 0.05).  

After 2 days of hypoxic exposure, Tβ-4 expression (Fig. 8D) showed a significant time by 

treatment interaction (p < 0.022; Table 2), with down-regulation compared to controls during 

each sampling point in the recovery phase (days 6 and 8; Appendix Table 5a). In the 4-day 

exposure, Tβ-4 mRNA expression (Fig. 8E) exhibited main effects of both treatment (p = 0.040) 

and time (p = 0.003). In the longest hypoxic exposure (8 days), Tβ-4 gill expression showed a 

significant time by treatment interaction (p = 0.013) and was significantly downregulated 



23 
 

compared to controls on days 6 and 8 (Appendix Table 5d). Within 24 hours of return to 

normoxia, mRNA expression was similar to control levels (Fig. 8F).  

Figure 8. Oyster gill mRNA expression following different durations of hypoxia exposure (DO < 2 

mg/L), followed by a 6-day recovery period (DO > 8 mg/L). HIF-1α mRNA expression during (A) 2, 

(B) 4, and (C) 8-day hypoxic exposures, and Tβ-4 mRNA expression during (D) 2, (E) 4, and (F) 8-

day hypoxic exposures. Bars represent means ± standard errors (n = 3 tanks per treatment). Grey 

background represents hypoxia period, white background represents recovery period. Asterisks 

denote significant differences between control and treatment determined via two-way ANOVA 

followed by a Tukey’s post hoc test (p < 0.05, Appendix Tables 5a-d). 
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Treatment Respose/Factor df F p Figure Respose/Factor df F p Figure 

mRNA expression

HIF1-α expression 8a Hemocyte counts 9a

treatmet 1 43.23 <0.001* treatmet 1 1 0.251

time 3 4.208 0.019* time 2 3 0.095

treatment x time 3 1.959 0.154 treatment x time 2 1 0.383

Tβ-4 expression 8d

treatmet 1 41.87 <0.001*

time 3 2.811 0.067

treatment x time 3 5.32 0.008*

HIF1-α expression 8b Hemocyte counts 9b

treatmet 1 0.445 0.513 treatmet 1 6 0.035*

time 3 11.02 <0.001* time 2 0 0.925

treatment x time 3 4.027 0.022* treatment x time 2 0 0.805

Tβ-4 expression 8e

treatmet 1 4.856 0.04*

time 3 6.478 0.003*

treatment x time 3 1.198 0.337

HIF1-α expression 8c Hemocyte counts 9c

treatmet 1 26.19 <0.001* treatmet 1 11 0.007*

time 4 17.34 <0.001* time 3 4 0.03*

treatment x time 4 4.236 0.01* treatment x time 3 1 0.311

Tβ-4 expression 8f

treatmet 1 2.137 0.157

time 4 0.957 0.45

treatment x time 4 4.025 0.013*

8 day hypoxic 

exposure 

4 day hypoxic 

exposure 

2 day hypoxic 

exposure 

Physiological endpoints 

Table 2. ANOVA table showing significant main effects as well as significant interaction effects of mRNA 

expression endpoints as well as hemocyte counts from the laboratory experiment. 
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2.3.2.2 Total hemocyte counts  

In the 2-day hypoxic exposure, total circulating hemocyte counts did not differ across 

days or treatments (Fig. 9A; Table 2). Total hemocyte counts were significantly lower in exposed 

compared to control oysters after 4 days of hypoxic exposure (Fig. 9B, p = 0.035), but there was 

no significant time or interaction effect (Table 2). In contrast, during the 8-day exposure 

treatment (Fig. 9C), hemocyte counts showed significant main effects of both treatment (p = 

0.007) and time (p = 0.03), but no significant interaction (Table 2). In the longest hypoxic 

exposure, there was a significant reduction in total hemocyte counts in treated oysters compared 

to controls on days 6 and 8 of exposure to hypoxia (unpaired t-tests, p = 0.037 and 0.009, 

respectively).  
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Figure 9. Total circulating hemocyte counts from hemolymph collected from oysters exposed to (A) 

2, (B), 4, and (C) 8 days of hypoxia (DO < 2 mg/L), followed by a 6-day recovery period (DO > 8 

mg/L). Bars represent means + standard errors (n = 2-3 tanks per treatment) grey background 

represents hypoxia period, white background represents recovery period. Asterisk denotes significant 

differences between treated and control oysters on that day, as determined using t-tests (p < 0.05).  
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2.4 Discussion  

Worldwide, hypoxic events are occurring in estuarine environments for longer durations 

and on larger spatial scales than ever before (Rabalais et al., 2006; Breitburg et al., 2018). Long 

term hypoxia has the potential to cause detrimental effects on aquatic organisms including 

suppressed immune function, decreased reproduction, and increased susceptibility to predation 

(Vaquer-Sunyer & Duarte, 2008; Long, et al.  2014). If oyster reefs are negatively impacted by 

hypoxia, amongst other environmental stressors such as disease, freshwater inflow, and 

eutrophication, this can have negative effects on entire ecosystems. In this study, in situ water 

quality sensors deployed in the Mississippi Sound captured the occurrence of a hypoxic event 

during the final nine days of the deployment (Fig. 5), which likely continued following the 

retrieval of the sensor platforms. The capture of this small-scale hypoxic event recognizes the 

relevance of persistent hypoxia as an environmental stressor in the Mississippi Sound and shows 

that these hypoxic events can last several days at a time.  

Previously, studies have demonstrated the use of HIF1-α as a relevant biomarker for 

hypoxic exposure. Significant upregulation of HIF1-α mRNA expression was observed 

following ≥ 6 days of exposure to hypoxia (Kawabe & Yokoyama, 2012). Although similar 

results were observed in our field deployed oysters, which showed significant upregulation of 

HIF1-α following 9 days of exposure compared to time zero, oysters in the laboratory exposure 

did not yield the same results. Laboratory oysters showed no significant up-regulation of HIF1-α 

compared to controls during or following any of the hypoxic exposures. This result is potentially 

explained by the large amount of variance observed in our control treatment; it is likely that 

exposed oysters were experiencing a similar effect, which may have skewed our results.  
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 Another aim of this study was to assess the effects of hypoxia on oyster immune function. 

Tβ-4 plays an important role in immune function in that it regulates the production and 

mobilization of phagocytic immune cells called hemocytes (Li et al., 2016). Additionally, 

expressed sequence tag analysis indicated Tβ-4 as a biomarker of immune function in the Eastern 

oyster (Jenny et al., 2002). In this study, we hypothesized that oysters exposed to hypoxia would 

show signs of immunosuppression through the downregulation of Tβ-4 in conjunction with a 

reduction in the amount of total circulating hemocytes. In the laboratory exposure, oysters 

exposed to just two days of hypoxia showed no significant down regulation of Tβ-4 during or 

following exposure to hypoxia, however on days six and eight, which were during the recovery 

period, significant differences in Tβ-4 expression were observed between control and treated 

oysters (Fig 8d). Despite this significant difference in Tβ-4 expression, no significant differences 

in circulating hemocytes were observed in the two-day exposure treatment (Fig. 9a). In the 

longest hypoxic exposure treatment (8 days), exposed oysters showed signs of significant 

downregulation of Tβ-4 compared to control on day six and day eight of exposure to hypoxia 

(Fig. 8f). Interestingly, upon analysis of total hemocyte counts in oysters sampled from the 

longest exposure, a significant decrease in total circulating hemocytes was observed on day six 

and day eight of exposure to hypoxia (Fig. 9c) followed by a return to levels similar to controls 

during the recovery period. The reduction in circulating hemocyte counts observed in the eight-

day exposure, but not the two-day exposure, could indicate that longer periods of hypoxia are 

necessary to induce observable physiological effects.  

 In contrast to the result of our laboratory study, oysters exposed to hypoxia in the field 

showed a significant increase in expression of Tβ-4 compared to time zero following nine days 

of exposure to hypoxia. Additionally, no significant effect on total circulating hemocytes were 
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observed in field deployed oysters. Inconsistencies in laboratory and field deployed oysters could 

be explained by vastly different environmental conditions between field and laboratory settings. 

Oysters in the field experienced a drastic fluctuation in dissolved oxygen as well as salinity, 

additionally the higher microbial abundance of the field site compared to the laboratory setting 

may have induced an immune response in oysters deployed in the field.
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CHAPTER 3 MISSISSIPPI SOUND FIELD STUDY (2019) 

 

3.1 Introduction  

Historically, Mississippi has been one of the leading producers of seafood in the United 

States. With the occurrence of Hurricane Katrina (2005), the Deep-Water Horizon Oil Spill 

(2010), and two back to back freshwater inflow events from by the Bonnet Carré Spillway 

(2019), the Gulf Coast and the Mississippi Sound have experienced greater than usual 

environmental stress. With this increased environmental stress, the Mississippi seafood industry 

has suffered a massive decline in productivity. Mississippi commercial oyster harvest data 

reveals a greater than 300,000 sack decrease (1 sack = 100 oysters) in the number of oysters 

harvested in 2017 compared to 2008 (https://dmr.ms.gov/shellfish/).

The Bonnet Carré Spillway, built in 1931, was designed and built for the purpose of 

mitigating flooding of the Mississippi River, and protecting rural and agricultural regions from 

Figure 10. Map depicting the location of the Bonnet Carré Spillway (red arrow) in relation to our study 

sites (red box). Image from Google Earth. 

Spillway 

Lake Pontchartrain 

https://dmr.ms.gov/shellfish/
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catastrophic flooding. Since its construction, the spillway has only been opened 13 times. In late 

February 2019, flooding of the Mississippi River reached heights great enough to warrant 

opening the spillway for a duration of 44 days, finally closing in early April. Approximately one 

month later, Mississippi River flood levels again reached dangerous heights warranting a second 

spillway opening in early May. The second opening lasted 79 days at an average flow rate of 

120,641 ft3/s (US Army Corps of Engineers, New Orleans District, 2019). These two openings 

marked the first time in the history of the spillway that it was opened twice in the same year. The 

spillway releases allowed the flow of an unprecedented volume of freshwater into the Gulf of 

Mexico and the Mississippi Sound. Oyster reef sampling by the Mississippi Department of 

Marine Resources (MDMR) in the Mississippi Sound on 10 June 2019, 32 days following the 

second spillway opening, found oyster reef mortality as high as 100% at historically productive 

reefs (Gulf Coast Research Lab, 2019). 

This study was designed to assess the impacts of the long-term freshwater event caused 

by the opening of the Bonnet Carré Spillway on oysters in the Mississippi Sound. We 

hypothesized that extended freshwater exposure would have negative impacts on important gene 

expression pathways that are critical to oyster survival. This was assessed by deploying caged 

oysters in the field prior to the second 2019 spillway opening. Effects were measured by 

assessing caged and native oyster mortality at each of six field sites, and quantitating mRNA 

expression of stress-related biomarkers throughout the duration of the study. HIF-1α was 

measured as an indicator of oxygen deprivation stress, Tβ-4 was used as an indicator of 

immunosuppression, and Na+/K+ ATPase-α subunit, involved in osmoregulation, was assessed as 

an indicator of low salinity stress. Throughout the study, water quality measurements were 
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recorded using a handheld YSI multimeter as well as through in situ long-term monitoring via 

sensor platforms equipped with dissolved oxygen, temperature, and conductivity sensors.  

 

3.2 Materials and Methods 

3.2.1 Oyster collection and maintenance  

Oysters (C. virginica) were obtained from the Auburn University Shellfish Laboratory’s 

farm in Bayou La Batré (Dauphin Island, AL) in early April 2019. Oysters were transported to 

the Gulf Coast Research Laboratory’s (GCRL) Halstead campus (Ocean Springs, MS) and 

placed in a flow-through holding tank supplied with water from Davis Bayou, where salinity and 

temperature was similar to their site of collection. Oysters were held overnight in the tank before 

being placed into sensor platforms and deployed in the field on 23 April 2019.  
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3.2.2 Study design and field sites  

Twenty oysters were placed in each of 12 sensor platforms, and placed at six different 

sites, in duplicate, in the Mississippi Sound and the Bay of St. Louis (Fig. 11a). All study sites, 

excluding our No Reef site (Site 1), were selected based on prior knowledge of oyster reefs 

existing at the site. The sensor platforms were equipped with water quality sensors 

(HOBOware® loggers; Onset Computer, Bourne, MA, USA) that measured dissolved oxygen, 

conductivity, and temperature for the duration of deployment, and housed oysters on trays 

enclosed within crates on each platform, with holes to allow adequate water flow. Following 

sensor platform deployment on 23 April 2019, oysters were taken directly from the holding tank 

at GCRL and sampled as time-zero (T-0) oysters. Oysters were sampled from the platforms on 

day 13 (6 May 2019: T-1) and day 31 (24 May 2018: T-2) of deployment and mortality of caged 

oysters was recorded. During T-2 and T-3 sampling, dredge pulls were conducted in order to 

retrieve native oyster samples from local reefs and assess reef mortality and population density. 

Figure 11. (A) Timeline of field deployment as it relates to the second Bonnet Carré 

Spillway opening. (B) Map depicting all field sites where sensor platforms were placed 

in the Mississippi Sound and the Bay of St. Louis. (C) Reef names and latitude and 

longitude coordinates of sensor platform placement.  

B

) 

A

) 

C

) 

 

Site/name  Coordinates  

Site 1 

No Reef  

30.351007   

 -89.35467 

Site 2 

TNC reef 

30.345059    

-89.294855 

Site 3 

St. 

Stanislaus 

reef 

30.300747 

-89.319644 

Site 4 

Waveland 

reef  

30.272957 

-89.370245 

Site 5 

Henderson 

point reef  

30.292643 

-89.271125 

Site 6 

Kittiwake 

reef  

30.332443 

-89.165184 

 

C

) 

Site/name Coordinates 

Site 1 30.351007

No Reef -89.35467

Site 2 30.345059

TNC Bay St. Louis Reef -89.294855

Site 3 30.300747

St. Stanislaus reef -89.319644

Site 4 30.272957

Waveland reef -89.370245

Site 5 30.292643

Henderson point reef -89.271125

Site 6 30.332443

Kittiwake reef -89.165184 
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At each sampling period, a subset of native and deployed oysters were sampled and placed in a 

bucket of site water to be transferred back to the lab. Oysters were sacrificed and gill tissue was 

extracted for analysis of mRNA expression. 

 

3.2.3 Water quality measurements  

A YSI™ Professional Plus handheld multimeter was used to measure water quality at 

each site on every sampling day. First, the probe was submerged just below the surface of the 

water to obtain surface water quality readings. Next, the probe was sunk to the bottom to obtain 

bottom water quality measurements. Measurements included temperature, conductivity, 

dissolved oxygen, salinity, and pH (Table 3). In addition to YSI measurements, in situ salinity 

was recorded using a HOBOware® conductivity logger (item #: U24-002-C) (Fig. 12). Data was 

extracted from sensors as specific conductance and converted to salinity using calibration points 

collected using the multimeter data from Table 3.  

 

3.2.4 Native oyster collection by dredge 

Three dredge pulls were conducted at each field site except for site 5 where six dredge 

pulls were conducted due to larger reef size. Each dredge pull (i.e., transect) was 305 m (1000 ft) 

long by 0.61 m wide. Following each dredge pull, the number of live and dead juvenile oysters 

(spat) were counted along with the number of live and dead adults. Oysters that were gaping, had 

both valves attached, and would not close valves were counted as dead. Results were reported in 

percent living adults or spat (Fig. 13) and living oysters per square meter (Appendix, Fig. 17). 

Maps and coordinates of dredge transects completed at each field site are depicted in Appendix 

Fig. 18-22.   
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3.2.5 Lipid peroxidation  

Lipid peroxidation was measured in oyster gill tissue using the Thiobarbituric Acid 

Reactive Substances (TBARS) colorimetric assay kit (Cayman Chemicals, # 10009055). The 

assay was carried out in accordance with the manufacturer’s protocol. A BioTek® Synergy2 

plate reader was used to measure absorbance of each well at 532 nm.  

  

3.2.6 RT-qPCR – mRNA expression 

Following collection of approximately 1 mm2 of gill tissue removed using stainless steel 

forceps and dissecting scissors, the gill tissue was placed in RNAlater™ (Invitrogen #AM7021) 

and stored at -80°C until processing. RNA isolation was achieved using TRIzol™ reagent 

(Invitrogen #A33251) and RNase-Free DNase kit (Qiagen #74004) according to the 

manufacturer’s protocol. RNA was quantified and assessed for purity using a NanoDrop 2000 

spectrophotometer. Following quantification, cDNA sub-stocks were prepared via reverse 

transcription PCR to achieve a final concentration of 10 µg/µL. qPCR was performed using an 

Applied Biosystems 7200 using SYBR™ Green PCR Master Mix (Applied Biosystems 

#4309155) with the following parameters: 95°C for 10 min, then 40 cycles of 95°C for 15 sec  

and 60°C for 1 min, followed by 95°C for 15 sec, 60°C for 1 min, and 95°C for 15 sec to 

generate a dissociation curve. Primer optimization was completed using the same 

instrumentation and procedure. Primer sequences and efficiencies are listed in Table 1 All 

samples were screened in duplicate and fold-change was calculated using the 2-ΔΔCT method 

(Livak and Schmittigen, 2001). 18s was utilized as a reference gene for mRNA expression 

analysis. 
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3.2.7 Data analysis 

 Prior to data analysis, data were tested for normality and equal variance using Shapiro-

Wilk’s and Brown-Forsythe’s tests, respectively, in SigmaPlot version 14.0. Lipid peroxidation 

results from caged oysters at Henderson Point Reef (Site 5) were analyzed using an unpaired t-

test to compare mean MDA concentrations of oysters from time zero and 13-days post 

deployment. Kittiwake Reef (Site 6) lipid peroxidation results were analyzed using a one-way 

ANOVA to compare MDA concentrations from oysters collected at time zero, 13-days, and 31-

days post deployment.  

All gene expression data was normalized to time 0 oysters and was analyzed using a one-

way ANOVA to compare sites and timepoints within deployed and native oysters separately. 

Significant ANOVAs were followed by Tukey’s post hoc tests to identify significant differences 

between groups. 
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3.3 Results 

3.3.1 Water quality measurements 

Sites 1-4 all showed extremely low salinities during the study from 23 April 2019 to 25 May 

2019 ranging from as low as 0.18 to as high as 0.67 parts per thousand (ppt). The two field sites  

 

furthest in position from the spillway, five and six, both showed the highest salinity 

measurements at the beginning of the study of 3.14 and 4.12 ppt, respectively. Despite starting 

out higher, sites five and six still showed a steady decrease in salinity over time reaching 

concentrations as low as 0.18 and 0.48 ppt, respectively by 31 days post-deployment.  

Measurements obtained on 27 September 2019, 63 days following the second closing of the 

spillway, showed complete recovery to normal salinity concentrations (15-18 ppt) at all sites 

(Table 3). Processing of in situ water quality data revealed that salinity measurements obtained 

via in situ sensors were in concordance with YSI™ multimeter measurements. Deployed sensors 

measuring salinity from site 2 (TNC Bay St. Louis) showed extremely low salinity conditions, ≤ 

Site/depth Parameter 

Salinity 0.67 ppt 0.4 ppt 0.39 ppt 0.18 ppt 0.18 ppt

temperature 21.7 °C 21.5 °C 24.4 °C 24.3 °C 27.2 °C 27.2 °C

  No reef site Dissolved Oxygen 9.84 mg/L 9.06 mg/L 7.66 mg/L 7.2 mg/L 7.14 mg/L 7.04 mg/L

 4.4 ft pH 7.4 7.49 7.33 7.28 7.12

Salinity 0.54 ppt 0.64 ppt 0.64 ppt 0.14 ppt 0.19 ppt 15.3 ppt 15.3 ppt

temperature 22 °C 21.5 °C 24.7 °C 24.6 °C 27.4 °C 27.4 °C 28.3 °C 28.4 °C

TNC Bay St. Louis Reef Dissolved Oxygen 10.71 mg/L 10.03 mg/L 7.5 mg/L 7.41 mg/L 7.36 mg/L 7.23 mg/L 8.55 mg/L 7.9 mg/L

4.9 ft pH 8.5 7.61 7.6 7.07 6.94 7.7 7.8

Salinity 0.4 ppt 0.33 ppt 0.35 ppt 0.24 ppt 0.19 ppt 16.8 ppt 16.88 ppt

temperature 21.2 °C 21 °C 24.7 °C 24.1 °C 29.4 °C 28.6 °C 28.9 °C 28.6 °C

St. Stanislaus Reef Dissolved Oxygen 9.71 mg/L 9.6 mg/L 7.92 mg/L 7.1 mg/L 9.29 mg/L 8.15 mg/L 9.1 mg/L 7.16 mg/L

6.2 ft pH 8.5 7.98 7.72 7.58 8.18 7.91 7.92 7.86

Salinity 0.32 ppt 0.25 ppt 0.33 ppt 0.18 ppt 0.19 ppt 16.39 ppt 16.34 ppt

temperature 21.2 °C 21.1 °C 24.8 °C 24.5 °C 29.7 °C 28.9 °C 30.6 °C 28.6 °C

Waveland Reef Dissolved Oxygen 9.54 mg/L 9.42 mg/L 7.55 mg/L 7.08 mg/L 9.21 mg/L 7.76 mg/L 10.2 mg/L 6.88 mg/L

 8.4 ft pH 7.4 7.68 7.56 7.52 8.14 7.51 8.16 7.93

Salinity 3.14 ppt 1.24 ppt 1.3 ppt 0.18 ppt 0.18 ppt 17.2 ppt 17.3 ppt

temperature 21.1 °C 21.6 °C 25 °C 24.9 °C 28.5 °C 28.1 °C 29.7 °C 28.7 °C

Henderson Point Reef Dissolved Oxygen 12.5 mg/L 9.7 mg/L 8.17 mg/L 7.96 mg/L 7.38 mg/L 7.57 mg/L 12.25 mg/L 8.3 mg/L

10 ft pH 8.8 8.8 7.89 8 7.6 7.59 8.21 8.07

Salinity 4.21 ppt 2.31 ppt 2.45 ppt 0.48 ppt 0.48 ppt 18.9 ppt 21.06 ppt

temperature 22.1 °C 21.7 °C 26 °C 25.8 °C 28.3 °C 28.2 °C 29.4 °C 28.5 °C

Kittiwake Reef Dissolved Oxygen 12.75 mg/L 11.6 mg/L 8.11 mg/L 7.9 mg/L 8.29 mg/L 7.76 mg/L 11.23 mg/L 4.19 mg/L

7.4 ft pH 8.88 8.74 8.45 8.42 7.72 7.73 8.11 7.74

9/27/2019

Site 6 

 Day 0 

Surface Bottom Bottom Surface 

5/6/2019 5/24/2019 4/23/2019

13 days post deployment 31 days post deployment

Surface Bottom Bottom Surface 

Site 1

Site 5

Site 2

Site 3

Site 4

Table 3. Oceanographic data from all sites on each sampling day  

 

 

Table 4. Oceanographic data from all sites on each sampling day  
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2 ppt, sustained for approximately three months with a large peak in salinity occurring in early 

July when Hurricane Barry hit the Gulf of Mexico. Following the second closing of the Bonnet 

Carré Spillway on 27 July 2019, our data showed a gradual increase back to normal salinity 

concentration taking about 60 days (Fig. 12).  

 

3.3.2 Caged oyster mortality  

Caged oysters deployed at sites one through four all exhibited 100% mortality following 

13 days in the field. Sites five and six had the highest salinities and the highest deployed oyster 

survival at 37.5% and 72.5%, respectively. Due to higher mortality at site five relative to site six, 

all caged oysters at site five were sampled 13 days post-deployment. Of the oysters that remained 

at site six 14.3% of them had died upon T-2 sampling on day 31 of deployment in the field 

(Table 4).    

Figure 12.  In situ salinity recorded using a HOBOware conductivity sensor at site 2. Data shows 

recovery to normal salinity concentrations following the second closing of the Bonnet Carré 

spillway. Highlighted portion denotes the occurrence of Hurricane Barry.   

 

Figure 12.  In-situ salinity recorded using a HOBOware conductivity sensor at site 2. Data shows 

recovery to normal salinity concentrations following the second closing of the Bonnet Carré 

spillway. Highlighted portion denotes the occurrence of Hurricane Barry.   
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3.3.3 Native oyster collection by dredge 

Dredge sampling on 26 May 2019 revealed that sites two, four, and six suffered the 

highest native oyster mortalities. At site two, 100% of adult oyster collected were dead while and 

77.8% of collected spat was dead. Of the adult oysters collected at site four, 98% were dead 

while 86.4% of spat collected were dead. At site six there was 100% mortality of both adults and 

spat. Surprisingly, at site three, despite 100% mortality of caged oysters, dredge sampling 

revealed 77% of adult oysters sampled were dead and just 32.9% of collected spat were dead. 

Site five was found to be the most successful reef with just 9.6% dead adults and 7.5% dead spat 

(Fig. 13). Follow-up dredge sampling on 27 September 2019 indicated recovery of salinities 

back to ≥ 15 ppt at all six sites (Table 3) but still 100% native oyster mortality. Calculated 

population densities are shown in Appendix Fig. 17.  

Table 4. Mortality of caged oysters recorded at each site throughout 

the duration of the field study.  

 

Table 5. Mortality of caged oysters recorded at each site throughout 

the duration of the field study.  

# dead # alive mortality 

Site 1 20 0

  No reef site 20 0

Site 2 20 0

 TNC Bay St. Louis Reef 20 0

Site 3 20 0

St. Stanislaus Reef 20 0

Site 4 20 0

Waveland Reef 20 0

Site 5 12 8

Henderson Point Reef 13 7

Site 6 5 15

Kittiwake Reef 6 14

# dead # alive site % mortality 

Site 6 1 7

Kittiwake Reef 1 5
14.3%

13 days post deployment    

(5/6/2019)

31 days post deployment    

(6/25/2019)

100.0%

100.0%

100.0%

100.0%

62.5%

27.5%

 



40 
 

 

 

 

  

Figure 13. Native oyster mortality at each field site on 5/24/2019. Data obtained by 

conducting three 308 m (1000 ft) by 0.61 m (2 ft) dredge pull transects at all sites except 

site five where six dredge pulls were conducted due to larger reef size. Numbers above each 

bar represent total number of spat or adult oysters collected. Data is not shown for 

Kittiwake Reef (Site 6) because only one dead oyster was collected there.  
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3.3.4 Lipid peroxidation 

Analysis of lipid peroxidation in oyster gill tissue from site five (Henderson Point Reef), 

the site with higher deployed oyster mortality relative to site six, revealed a significant increase 

in lipid peroxidation following 13 days in the field compared to time zero (T-test, p = 0.009). In 

contrast to site five, oysters from Site 6 (Kittiwake Reef), the site with the lower caged oyster 

mortality, did not show a statistically significant increase in lipid peroxidation following 13 or 31 

days in the field (Fig. 14).  

  

 

  

Figure 14. Lipid peroxidation measured from caged oyster gill tissue from sites five and 

six. Bars represent group means ± SEM. Asterisk denotes significant difference from 

Day 0 determined by a t-test to compare means (n = 7-15 oysters per bar, NM = not 

measured). 

 

Figure 14. Lipid peroxidation measured from oyster gill tissue from sites five and six. 

Bars represent group means ± SEM. Asterisk denotes significance determined by a T-test 

to compare means (n = 7-15, NM = not measured). 
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3.3.5 RT-qPCR – mRNA expression 

Analysis of HIF-1α mRNA expression of caged oysters deployed at sites five and six for 

13 and 31 days revealed significant differences between sites and time points. Oysters sampled 

from site five, the site with higher caged oyster mortality compared to site six, exhibited a 

significant down regulation of HIF-1α compared to time zero oysters (Tukey’s post-hoc test, F = 

16.640, p = 0.007; Fig 15a) and site six oysters following 13 days in the field (p < 0.005).  

Following 31 days of deployment in the field, site six oysters had a significant downregulation of 

HIF-1α compared to time zero oysters and oysters deployed for 13 days (p < 0.001). Native 

oysters collected from sites three and five showed no significant changes between time points or 

sites (Fig 15a).  

Analysis of Tβ-4 mRNA expression in oysters deployed in the field also exhibited 

significant differences between time points. After 13 days of deployment, oysters sampled from 

both sites five and six exhibited no significant differences in Tβ-4 mRNA expression compared 

to time zero (Tukey’s post hoc test, p = 0.330, Fig 15b). Following 31 days of deployment, there 

was significant down regulation of Tβ-4 in site six caged oysters compared to time zero controls 

(p = 0.025), but expression was not significantly different than in oysters from either site after 

only 13 days (p = 0.067). Similar to HIF-1α mRNA expression, Tβ-4 expression in native oysters 

collected from sites three and five exhibited no significant differences when compared between 

sites or time points (Fig 15b).  

One-way ANOVA revealed no significant difference in oyster NKA-α expression from 

sites five and six following 13 days of deployment (Tukey’s post hoc test, p = 0.141, p = 0.189 

site five and six, respectively) (Fig. 15c). However, caged oysters at site 6 sampled after 31 days 

of deployment showed a statistically significant downregulation of NKA-α compared to time zero 
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oysters (p < 0.001) but not significantly different than day 13 oysters from site 6 (p = 0.256). 

Native oysters exhibited no significant differences between sites or time points however 

constitutive NKA-α expression was lower in native compared to deployed oysters (Fig 15c).  

 

 

  

Figure 15. mRNA expression of HIF-1α (A), Tβ-4 (B), and NKA-α (C) in caged and native 

oysters. Bars represent standard error of the mean. Letters represent significant differences 

between groups determined by one-way ANOVA followed by a Tukey’s post hoc test. (n = 6-

8 oysters per bar, NM = not measured) 
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3.4 Discussion  

Oysters can tolerate a wide range of salinities ranging from roughly 5 to 40 ppt with an 

optimal range of 14 to 28 ppt (Galtsoff, 1964). During the present study, caged oysters were 

exposed for up to one month to an extreme freshwater intrusion event, which induced 

environmental salinities well below their known optimal range, dropping as low as 0.18 to 4.21 

ppt. Recorded mortalities of caged oysters revealed that the lowest mortality (Table 4) occurred 

at the two sites furthest away from the Bonnet Carré Spillway, Henderson Point Reef and 

Kittiwake Reef, where salinities at the beginning of the study were highest (Table 4). 

Furthermore, Kittiwake Reef, with the highest salinity, showed a 35% lower caged oyster 

mortality than Henderson Point Reef following 13 days of deployment in the field. Following 31 

days in the field, despite the fact that salinity continued to drop to < 1 ppt, caged oyster mortality 

at Kittiwake Reef was further reduced from 27.5% to 12.3%. Reduced mortality at Kittiwake 

Reef suggests that oysters were able tolerate extremely low salinities due to the steady decline in 

salinity to < 1 ppt over time at this site. On the other hand, if salinity rapidly dropped to <1 ppt 

oysters were not able to acclimate, shown by the 100% mortality at sites 1-4 where salinities 

were < 1 ppt at the on 23 April 2019 at the beginning of the study. These results are consistent 

with one study in which oysters were placed in exposure tanks and salinity was gradually 

reduced to < 1 ppt over a period of 48 hrs. Oysters in low salinity treatments showed no 

significant difference in mortality compared to control oysters following three weeks of exposure 

to freshwater (La Peyre et al., 2003).  

In order to assess environmentally-induced stress in caged oysters, lipid peroxidation was 

measured in oyster gill tissue. Similar oxidative stress biomarkers were measured in oysters to 

determine the effects of environmental contaminants such as heavy metals and PAHs (Ringwood 
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et al., 1999). In the present study, caged oysters sampled from site five (Henderson Point Reef) 

exhibited significantly higher lipid peroxidation following 13 days in the field compared to time 

zero. Caged oysters at Kittiwake Reef (site 6), which had 35% lower percent mortality than 

Henderson Point Reef (site 5), showed no significant increase in lipid peroxidation. The increase 

in oxidative damage shows evidence that high volumes of freshwater influx that caused a rapid 

decrease in salinity can potentially impact oysters by inhibiting the ability of oysters to deal with 

increased oxidative stress. This result is similar to results observed in two studies, one involving 

the ark shell (Scapharca broughtonii) and one involving three species of clam (Venerupis 

philippinarum, Venerupis corrugate, and Venerupis decussata), where exposure to hyposaline 

conditions ranging from 0-7 ppt increased oxidative damage in the form of lipid peroxidation 

(An & Choi, 2010; Carregosa et al., 2014). In the present study, the increase in lipid peroxidation 

could be due to reduced energy allocation to the production of antioxidant enzymes which 

normally defend against oxidative damage.  

To further assess the effects of the extended Bonnet Carré freshwater release on caged 

and native oysters, mRNA expression was utilized as an endpoint to measure oxygen deprivation 

stress (HIF-1α), immunosuppression (Tβ-4), and salinity stress (NKA-α). Oysters can respond to 

rapidly changing environmental conditions through the closure of their valves, while 

simultaneously depressing their energy usage. Valve closure results in reduced oxygen intake 

from the surrounding environment, in turn, activating pathways involved in the response to low 

oxygen. The response to low oxygen following valve closure is demonstrated in a study where 

oysters subjected to open air exposure induced HIF-1α mRNA expression (Kawabe & 

Yokoyama, 2012). In the present study, oysters sampled from site five showed significant down 

regulation of HIF-1α compared to time zero and site six oysters. High mortality at site five along 
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with a significant downregulation of HIF-1α could indicate metabolic depression to a point at 

which oysters were not able to activate important adaptive pathways. Analysis of HIF-1α 

expression in native oysters indicated a similar response to the caged oysters, suggesting that 

native oysters at sites three and five were experiencing a similar metabolic depression as caged 

oysters. 

Due to the very microbe rich environment that oysters inhabit, it is vital that that oysters 

have strong immune function to fight invading pathogens. Determining how extended freshwater 

exposure impacts oyster immune function was a central aim of this study. Tβ-4 is an 

antimicrobial peptide that is important to the oyster immune response. The antimicrobial activity 

of Tβ-4 has been demonstrated by its ability to inhibit the growth of three different strains of 

bacteria (Nam et al., 2015). Tβ-4 also plays an important role in the mobilization of phagocytic 

hemocytes, and is indicted as a biomarker for immune function (Li et al., 2016; Jenny et al., 

2002). Upon analysis of Tβ-4 mRNA expression, caged oysters collected following 31 days of 

deployment at site 6 exhibited significant down regulation of Tβ-4 compared to time zero. 

Similarly, native oysters showed, on average, a 3-4-fold down-regulation of Tβ-4. Down 

regulation of this important immune related pathway suggests that long term exposure to 

freshwater can inhibit oyster immune defense mechanisms leading to possible pathogen infection 

and increased mortality.  

In addition to mechanisms that allow oysters to adapt to hypoxic and microbe rich 

environments, osmoregulation is extremely important to the oyster’s response to changes in 

salinity. One of the main mechanisms for responding to changes in salinity is by transporting 

solutes in and out of the cell to eliminate the solute gradient (Yancey et al., 1982). One 

transporter that oysters use to facilitate this is the Na+/K+ ATPase. Sydney rock oysters 
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(Saccostrea glomerata) exposed to low salinity stress show significant upregulation of NKA-α 

compared to control oysters (Ertl et al., 2019). Similarly, a study done on a species of crab 

(Pachygrapsus marmoratus) which found significant upregulation of this transporter subunit 

following exposure to low salinity. In contrast to previous results in different species, the results 

from the present study found a significant down-regulation in deployed and native oysters. This 

result further supports the hypothesis that oysters in the Mississippi Sound were experiencing 

energetic depression thus inhibiting oysters from activating important adaptive pathways 

necessary for acclimation and survival. Additionally, in both mentioned studies from literature, 

salinity concentrations were not < 1 ppt at any point as they were in the present study. It is also 

possible that different results were achieved due to the longer duration of freshwater exposure in 

the present study.  

 To determine native oyster reef population density and mortality, dredge sampling was 

completed on 25 May 2019. Dredge pulls revealed that Henderson Point Reef (Site 5) and St. 

Stanislaus Reef (Site 3) were among the more successful reefs with Henderson Point Reef 

showing a large proportion of living adults and spat, despite the long-term exposure to 

freshwater. Gene expression analysis showed evidence of energetic depression, indicating that 

oysters at both sites, although alive, were not adequately acclimating to the extremely low 

salinity conditions in the Sound. Upon return to the field sites on 27 September 2019, when 

salinity had recovered to > 15 ppt at all field sites (Table 4), our hypothesis of inadequate 

adaptation to low salinity was confirmed when dredge sampling revealed near 100% oyster reef 

mortality at all field sites where living oysters had been previously collected.   

 With large volumes of freshwater being flushed into the Mississippi Sound each year it is 

vital that we learn how these freshwater events impact the native oyster population and other 
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commercially relevant species in the Mississippi Sound. In situ sensors deployed in the Bay of 

St. Louis during the entire second spillway opening, captured a large portion of the freshwater 

event. Salinity remained extremely low, less than 2 ppt, for approximately 3 months, with 

recovery to ~ 15 ppt taking approximately two months following the second closing of the 

spillway (Fig. 12).  

The results of this study have demonstrated some of the negative effects of the chronic 

freshwater event caused by the 2019 openings of the Bonnet Carré Spillway. Extended 

freshwater exposure caused an increase in lipid peroxidation, in unison with down-regulation of 

three vital adaptive pathways. The combination of these may have contributed to the mortality of 

the caged and native oysters. Lastly, the finding of near 100% native oyster mortality on 27 

September 2019 shows that extended freshwater exposure caused a mass mortality of oyster 

reefs in the Mississippi Sound. Continued monitoring of Mississippi Sound oyster reefs is 

necessary to observe recovery of the oyster population, if any.  
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CHAPTER 4. CONCLUSION 

Hypoxia and freshwater inflow are two very prevalent anthropogenic stressors that are 

occurring in the Mississippi Sound on larger scales and more frequently than in the past 

(Rabalais et al., 2006; Breitburg et al., 2018). Studying the occurrence of these events and their 

impacts on marine organisms is crucial to the management of these important ecosystems. As 

humans, we take on the role of ecosystem managers. It is our responsibility to protect and 

maintain the many important ecosystems around the world so that they will continue to provide 

critical ecosystem services. This thesis investigation focused on studying the adverse outcomes 

in oysters that result from hypoxia and freshwater intrusion.

Following eight days of hypoxic exposure in a laboratory setting, potential negative 

effects on oyster immune function were demonstrated by decreased mRNA expression of the 

immune related gene thymosin-β4 compared to control. In conjunction with the down-regulation 

of Tβ-4 expression, oysters also exhibited a reduction in phagocytic immune cells, hemocytes, 

that are vital to host defense. The immunosuppression induced by hypoxia suggests that oysters 

will be more susceptible to disease during and following a hypoxic event. In conjunction with 

this lab-based study, we wanted to see if we would observe the same effect in nature during a 

hypoxic event. As expected in the caged oysters, hypoxia inducible factor-1α mRNA expression 

was upregulated significantly in response to the hypoxic event. In contrast to the laboratory 

study, thymosin-β4 mRNA expression was significantly upregulated. This result was possibly 

caused by the naturally high microbial abundance of the field as compared to laboratory 
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conditions. Thus, field deployed organisms may have elicited an immune response which may 

explain the difference in laboratory and field responses to hypoxia. One of the more complicated 

issues involved in exposure research is the difficulty of mimicking field conditions in the  

laboratory. Oysters are constantly being exposed to several different stressors at once and 

determining what these stressors are and replicating these conditions in a laboratory setting is 

extremely difficult.  

 The results of my laboratory study reinforce the importance of limiting the occurrence of 

hypoxic events in the Mississippi Sound. Low oxygen environments can potentially cause 

immunosuppression in oysters and make them more susceptible to diseases such as dermo. 

Further studies need to be done that involve exposing oysters to these pathogens to determine 

how these environmental stressors affect the susceptibility to and the progression of disease 

amongst oyster populations.  

 In the Mississippi Sound field study, we aimed investigated the impacts of a chronic 

freshwater event on caged and native oysters in the Mississippi Sound. Dredge sampling results 

from sites with previously productive oyster reefs showed that the oyster population in the 

western Mississippi Sound and the Bay of St. Louis were completely decimated following the 

unprecedented freshwater release from the Bonnet Carré Spillway. Analysis of mRNA 

expression indicated that this mass mortality of oysters may have been due to energetic 

depression that inhibited induction of important adaptive pathways including those involved in 

host defense, osmoregulation, and low oxygen stress response. Oysters were not able to 

sufficiently acclimate to new conditions during the long-term freshwater event, causing mass 

oyster mortalities in both juvenile and adults at both historic reefs and reefs undergoing recent 

restoration efforts. Inadequate acclimation was also indicated in caged oysters deployed at 
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Henderson Point Reef through significantly increased gill lipid peroxidation suggesting oxidative 

damage plays a role in freshwater-mediated oyster mortalities.  

In the past, the oyster reefs in the western Mississippi Sound were among the most 

productive reefs in the Gulf of Mexico. These reefs are extremely important to the estuarine 

ecosystem as well as the economy of the Mississippi Gulf Coast. Although it appears that these 

reefs have been severely impacted by very stressful environmental conditions, it is important that 

their populations recover at least to a fraction of what they once were in order to provide their 

ecosystem services. While restoration efforts focused on areas in the eastern Mississippi Sound 

may be more critical in the short term, continued monitoring of western Mississippi Sound reefs 

is needed to assess the extent to which these reefs are able to recover naturally. Despite the 100% 

mortality of adult and juvenile oysters at all field sites in this study, we also determined that the 

hard substrate of historic oyster reefs remains at some of these sites. This means that oyster 

larvae, if they encounter these reefs, will be able to settle upon the remaining dead oyster shells 

that are located there, given that water quality is suitable for their survival. Additionally, if 

restoration efforts are successful in other locations in the Sound, they could potentially help 

increase larval recruitment by providing larval spillover given that restored sites facilitate reef 

connectivity in the Mississippi Sound. 

To further facilitate successful restoration efforts in the Mississippi Sound, it is necessary 

that we realize the importance of using scientific research to fuel our decision making when it 

comes to questions such as when, where, and how to best restore oyster reefs. Because hypoxia 

and extended freshwater inflow are proven to negatively impact oysters, we must conduct long-

term water quality monitoring to identify areas that are less impacted by these stressors and focus 

restoration efforts there. For example, this thesis investigation has clearly demonstrated the 
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widespread decimation of oyster reefs caused by the extended freshwater release from the 

Bonnet Carré Spillway. Both Henderson Point Reef and Kittiwake Reef, the two sites furthest 

from the spillway, seemed to be differentially affected by the freshwater inflow event, showing 

higher salinity at the beginning of the study and higher caged oyster survival compared to the 

rest of the field locations. Ultimately, if extended freshwater events are going to be common 

occurrences in the Mississippi Sound, focusing restoration efforts at sites that are farthest away 

from the Bonnet Carré spillway will likely be most successful. If the eastern Mississippi Sound is 

not as heavily impacted by long freshwater releases from the Spillway, focusing restoration 

efforts there will likely increase the chances of restoration success. Locating areas in the 

Mississippi Sound that are less affected by excessive freshwater intrusion will be more effective 

for focused restoration efforts (e.g. cultch and oyster seed/spat deployments) and will help ensure 

longer term success of needed and ongoing restoration efforts.  
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Table 5: Results of pair-wise post-hoc tests for treatment x time interactions from 2-way 

ANOVAs for the Hypoxia-recovery laboratory experiment (a) Tß-4 mRNA expression after 2 

days of hypoxia exposure, (b) HIF1- α mRNA expression after 4 days of hypoxia exposure, (c) 

HIF1- α and (d) Tß-4 mRNA expression after 8 days of hypoxia exposure. 

 

 

 

 

 

 

 

 

Control day 6 Control day 8 Control day 12 Control day 14 Treated day 6 Treated day 8 Treated day 9 Treated day 12 Treated day 14

Control day 6

Control day 8

Control day 12

Control day 14

Treated day 6 0.023

Treated day 8 0.005

Treated day 9

Treated day 12

Treated day 14

8 day exposure 

(Tβ-4)

Control day 2 Control day 6 Control day 8 Treated day 2 Treated day 3 Treated day 6 Treated day 8

Control day 2

Control day 6 0.016

Control day 8

Treated day 2

Treated day 3

Treated day 6 <0.001

Treated day 8 0.005

2 day exposure 

(Tβ-4)

Control day 4 Control day 8 Control day 10 Treated day 4 Treated day 5 Treated day 8 Treated day 10

Control day 4

Control day 8

Control day 10 <0.001 0.005

Treated day 4

Treated day 5

Treated day 8

Treated day 10

4 day exposure 

(HIF1-α)

Control day 6 Control day 8 Control day 12 Control day 14 Treated day 6 Treated day 8 Treated day 9 Treated day 12 Treated day 14

Control day 6

Control day 8

Control day 12

Control day 14 <0.001 <0.001 <0.001

Treated day 6

Treated day 8

Treated day 9 0.039

Treated day 12

Treated day 14 <0.001 0.013

8 day exposure 

(HIF1-α)

A) 

 

A) 

B) 

 

B) 

C) 

 

C) 

D) 
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 Figure 16. mRNA expression of HSP-70 during the 2-day (A), 4-day (B), and 8-day (C) 

exposure. Bars represent mean ± standard error.  

 

 Figure 16. Graphs depicting mRNA expression of HSP-70 during the 2-day (A), 4-day (B), 

and 8-day (C) exposure. Bars represent mean ± standard error.  
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Figure 17. Dredge sampling data from all field sites in the Mississippi Sound on 25 May 

2019, reported as live oysters per meter squared. Bars represent mean ± standard error.  

 

Figure 17. Dredge sampling data from all field sites reported as live oysters per meter 

squared. Bars represent mean ± standard error.  
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Start 30° 20.937 89° 17.690

End 30° 20.711 89° 17.504

Start 30° 20.769 89° 17.492

End 30° 20.825 89° 17.676

Start 30° 20.659 89° 17.569

End 30° 20.828 89° 17.664

Pull 1

Pull 2 

pull 3 

Site 2 dredge transects

Figure 18.  Map of TNC Bay St. Louis Reef (Site 2) (A) and starting and ending dredge coordinates (B). 

A) 

B) 
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  Figure 19. Map of St. Stanislaus Reef (Site 3) with starting and ending dredge coordinates. 

Figure 20. Map of Waveland Reef (Site 4) with starting and ending dredge coordinates. 
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Figure 21. Map of Henderson Point Reef (Site 5) with starting and ending dredge coordinates. 

Figure 22. Map of Kittiwake Reef (Site 6) with starting and ending dredge coordinates. 
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