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ABSTRACT 

Natamycin (NT) is a front-line drug in the management of ocular fungal infections (OFI). 

An ophthalmic marketed NT suspension (Natacyn®) is currently the only FDA approved 

medication prescribed in the pharmacotherapy of OFI. Current NT pharmacotherapy requires 

frequent topical administration (every hour or 2-hours over 6-8 times in a day) due to it being 

instilled as eye-drops. This leads to higher precorneal losses and subsequent poor permeation and 

bioavailability. Therefore, in this research study, alternative ocular formulations of NT were 

investigated with an intent to improve precorneal retention and corneal permeation in comparison 

to Natacyn®.  

Chapter 1 discusses various aspects of NT such as its chemistry and pharmacology, 

antifungal spectrum and potential for development of resistance, ocular clinical evaluations, and 

specifics on Natacyn® to obtain a perspective of NT use in OFI.   

Chapter 2 reports the preparation and optimization of NT loaded surface coated PEGylated 

NLC (NT-PEG-NLC) using Box-Behnken Design. The optimized NT-PEG-NLC were found to 

have desirable physicochemical characteristics and exhibited significantly higher transcorneal 

permeation than Natacyn®, in vitro. In vivo ocular biodistribution of NT-PEG-NLC indicated that, 

despite NT load in NT-PEG-NLC (0.3%) being 1/16th of Natacyn® (5%), NT-PEG-NLC permeated 

the intact cornea to reach the inner tissues.  

To further improve ocular delivery of NT, chapter 3 reports on the development of a gelling 

system using a full factorial design in which the optimized NT-PEG-NLCs were loaded. This 

gelling system at a lower NT concentration (0.3%) compared to Natacyn® (5%), displayed superior 
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pharmacokinetic parameters in the tear film and comparable NT concentrations in the inner ocular 

tissues (in vivo) at a 16-fold lower dose; indicating its potential ocular applications.  

Chapter 4 reports on the design of Eudragit™ RLPO based ocular films for ocular delivery 

of NT using central composite design. An optimized film formulation was selected on the bases 

of the interaction plots between the independent factors and dependent variables; and, it exhibited 

significantly higher transcorneal permeation (ex vivo) and superior pharmacokinetic parameters 

(in vivo) compared to Natacyn®. These observations imply that, NT-loaded films could also be 

explored as alternative dosage forms in the management of OFI.    
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Chapter 1 

Current Perspectives on Natamycin in Ocular Fungal Infections 

 

Abstract:  

Currently, natamycin ophthalmic suspension (Natacyn®) is the only commercially available 

antifungal agent that has been approved in the treatment of superficial fungal infections of the eye 

such as fungal keratitis, blepharitis, and conjunctivitis. Despite natamycin requiring frequent 

application due to low retention at the ocular surface, it has shown efficacy in treating superficial 

ophthalmic fungal infections. This is attributed to its broad antifungal spectrum against 

filamentous fungi, safety profile, and its trans-corneal penetration capability. The ability of 

natamycin to traverse across the intact cornea and reach adjacent stromal layers has been credited 

to be one of the major factors favoring its continued use in superficial fungal infections over other 

antifungal agents such amphotericin B and azole class of antifungals, which can only penetrate the 

debrided cornea, but not intact cornea, to elicit their activity. This has led to natamycin being one 

of the front-line agents in the therapy of superficial ocular fungal infections. This chapter discusses 

various aspects of natamycin such as its chemistry and pharmacology, antifungal spectrum and 

potential for development of resistance, ocular clinical evaluations, and specifics on the marketed 

natamycin formulation (Natacyn®) to obtain a perspective of natamycin use in ophthalmic fungal 

infections.   
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1.1. INTRODUCTION 

Natamycin (NT) has been one of the mainstays in the treatment of fungal keratitis. Fungal 

keratitis is fungal infection of the eye that affects the clear corneal surface and its immediate 

associated layers (1). Currently, NT is the only commercially available antifungal agent 

(Natacyn®) that is used in the treatment of fungal keratitis. Other antifungals such as amphotericin 

B, azole and echinocandin antifungals are used off-label in fungal keratitis, albeit to a lesser extent 

than NT (2). NT has been the forerunner in fungal keratitis due to its broad spectrum of activity 

and higher penetration across the intact cornea upon topical application, compared to the other 

antifungal agents (3).  

NT shows antifungal activity against both filamentous and non-filamentous fungal species, 

with a potent and better activity against the former in comparison to the other antifungal agents. 

NT has shown potent antifungal activity against clinical cases of fungal keratitis caused by 

Aspergillus and Fusarium species, which are the most common causative organisms for fungal 

keratitis apart from Candida species (4). Additionally, NT has been shown to have higher 

penetration across the intact cornea into the immediate associated corneal layers in comparison to 

amphotericin B and the azoles, upon topical application in fungal keratitis. Hence, NT eye-drops 

have been the choice of therapy for superficial corneal infections (3, 4).  

The activity of NT against Candida species, non-filamentous fungal species which are also 

one of the major causative organisms for fungal keratitis, is weak to moderate (2, 3, 5). Hence, NT 

eye-drops alone cannot provide effective antifungal therapy against fungal keratitis caused by 

Candida species; therefore, concomitant therapy with other antifungals is frequently necessitated. 

Another major challenge that has been associated with NT ocular therapy is that, therapeutic 

concentration of NT is not reached in inner ocular tissues upon topical application, thereby 
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restricting its utility only in the superficial ocular fungal infections and not in the clinical cases of 

deep seated keratomycosis (5-7).   

Despite the challenges associated with the use of NT in ocular fungal infections, it is still 

being used clinically. This has been attributed to the clinical efficacy/safety profile of NT eye-

drops in fungal infections in which NT demonstrated lesser side-effects, ocular toxicity reactions, 

and lower incidences of resistance in comparison to the other antifungals such as amphotericin B 

and the azoles (5, 8-10). This has been one of the primary reasons favoring NT in superficial ocular 

fungal infections.  

This chapter primarily explores two aspects associated with ocular NT therapy; first, the 

various attributes of NT such as its pharmacology, chemistry, ocular clinical evaluations and 

second, the existing perspectives and challenges associated with the current therapeutic regimen 

provided by the marketed NT eye-drops (Natacyn®) in superficial ocular fungal infections. 

Discovery, origin, and production 

NT was first isolated in 1955 in the Gist-brocades Research Laboratories, the Netherlands, 

from the fermentation broth of Streptomyces natalensis bacterial culture obtained from a soil 

sample in South Africa (11). The antifungal compound that was isolated was named pimaricin; 

name later changed to natamycin. The discovery and properties of NT was published in a paper 

entitled “Pimaricin, a new antifungal antibiotic” by Struyk et al. in 1957 (12). The name pimaricin 

was changed according to a World Health Organization (WHO) regulation which stated that 

antibiotics produced by Streptomyces had to carry names ending in “-mycin”. Such a stipulation 

was mandated by WHO because they wanted the name of the organism responsible for the product 

to be reflected in the name of the product. Hence, the name pimaricin was changed to natamycin, 

which meant “obtained from Streptomyces natalensis” (13).   
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Independently, in 1959, American scientists isolated an antibiotic, tennecetin, from the 

culture medium of a Streptomyces strain, obtained from a soil sample collected in Tennessee. From 

the analytical studies and biological assays of tennecetin, it was discovered that it was identical to 

NT (14). Apart from the Streptomyces species obtained from South African and American soil, 

NT was found to be produced by Streptomyces costae, isolated from a soil sample in Spain (15). 

Industrially, NT is produced by fermentation using either Streptomyces natalensis or Streptomyces 

gilvosporeus (16). Currently there are two patents for NT commercial production and the methods 

described by both the patents are along similar lines. The broth of Streptomyces species inoculum 

is fermented for about 48-120 hours, depending on the number of cells in the inoculum, the 

medium composition, and the desired yield. The fermentation process is carried out between 25-

30°C and at pH 6-8. After the completion of fermentation process, NT is then subjected to 

extraction, filtration, and drying processes. The pH of the culture broth is adjusted first to solubilize 

the NT which is then extracted using an organic solvent, such as methanol or butanol. The extract 

containing NT is then filtered to separate the impurities from the desired NT product. The pH is 

then re-adjusted to about neutral, which causes precipitation of NT crystals which are then 

subjected to a drying step, to obtain pure NT powder (11, 17).   

Chemistry 

NT is an antifungal agent belonging to the polyene class of antifungal drugs. It has an 

empirical formula of C33H47NO13 and a molecular weight of 665.75. Figure 1 shows the structural 

formula of NT. 
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Figure 1.1: Chemical structure of NT showing, (A) tetraene chromophore, (B) mycosamine 

moiety bound to the core by an ether linkage, and (C) carboxylic group. 

NT is chemically classified as a tetraene antifungal due to the presence of four conjugated 

double bonds in its chromophore (Figure 1.1) (13). The tetraene chromophore (A) is a large 25-

carbon lactone ring that is connected to a mycosamine moiety (B) by an ether linkage and contains 

a carboxylic group (C) (13). The tetraene chromophore is known to have an all-trans conformation 

and the mycosamine ring is pyranoid with a chair conformation (18, 19). The tetraene 

chromophore containing the 25-carbon lactone ring is essential for the antifungal activity and 

stability of NT. The four conjugated double bonds in the lactone central core impart the 

lipophilicity to the molecule whereas the hydroxylated backbone provides hydrophilicity to the 

molecule. 

From Figure 1.1, it is evident that NT possesses one basic [(mycosamine) (B)] and one 

acidic [(carboxylic) (C)] group. The presence of these groups renders an amphoteric character to 

the molecule, meaning, NT would be electrophoretically neutral between pH values of 

approximately 5 to 9. The pKa of the amino group is about 8.6 whereas the pKa value for the 
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carboxyl group is reported to be around 4-4.5 (20). Hence, NT is present as a zwitterion with an 

isoelectric point at pH 6.5 (21).  

The mycosamine and the carboxyl terminal of the NT molecule is very polar, while the 

opposite terminal is very non-polar (Figure 1.1). The terminal containing the unsaturated tetraene 

chromophore is rigid and completely hydrophobic whereas the hydroxylated side is relatively 

flexible. The presence of both hydrophilic and hydrophobic regions, renders NT an amphipathic 

chemical character (21). The hydroxyl groups and the zwitterionic carboxyl group contribute to 

the relative insolubility of NT in organic solvents and the presence of unsaturated tetraene 

chromophore contributes to the aqueous insolubility of NT (21).  

NT solutions are stable at pH 5-9 when stored in the dark (13). At lower and higher pH, 

NT is known to undergo bond cleavage and saponification reactions, respectively, that lead to 

instability and loss in antifungal activity and potency (22). The solutions should be stored in dark, 

as NT is susceptible to photo-oxidation and photo-degradation via the cleaving of the chromophore 

via light absorption (23). 

Mechanism of action 

The exact mechanism of action of NT was unknown and was only elucidated in the past 

decade. NT is known to inhibit fungal cell growth by binding specifically to ergosterol without 

permeabilizing the fungal membrane (24). This mechanism is different from the other polyene 

antifungal drugs which are known to inhibit the fungal growth by binding to ergosterol and 

permeabilizing the membrane.  

Ergosterol in fungal cells is responsible for an ordering effect on the membrane, thereby 

maintaining the fungal cell integrity, and is also involved in cellular morphogenetic fusion and 

fission processes including endocytosis, exocytosis, and vacuolar fusion (25-28). Binding of 
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ergosterol is attributed to interfering with latter processes without affecting the integrity, order, 

and/or permeability of the fungal cell membrane. This interference in the afore-mentioned 

processes is responsible for inhibiting the fungal cell growth.  

NT enters the fungal cell (both, yeast and filamentous fungi) either by permeation across 

the fungal membrane or via endocytosis and inhibits the ergosterol-dependent membrane fusion 

and fission processes and endocytosis thereby eliciting cellular toxicity (29-33). It is particularly 

known to disturb the ergosterol mediated priming phase of vacuole fusion causing a fragmented 

vacuolar morphology, affecting the fungal cell growth (34-36). Inhibition of the fusion processes 

during the priming phase in the fungal cells has been attributed to being one the major modes of 

action responsible for NT antifungal activity. The priming phase consists of the re-arrangements 

of different protein complexes mediated by ergosterol and NT disturbs these protein re-

arrangements by binding to ergosterol thereby hindering the ergosterol-dependent protein 

functions, leading to inhibition of fungal growth (34). 

Furthermore, NT has been evidenced to affect the activity of ergosterol-dependent plasma 

protein transport complexes. NT has been shown to inhibit the activity of plasma proteins 

responsible for the transport of essential amino acids and sugars into the fungal cells such as 

arginine, proline, and glucose, amongst others (37-39). The cessation and/or inhibition in their 

import affects the fungal cell growth thereby eliciting antifungal activity (40).    

Spectrum of activity 

NT has a broad spectrum of antifungal activity against filamentous and a few non-

filamentous fungal species. NT has shown activity against Aspergillus, Fusarium, 

Cephalosporium, Penicillium, and Candida species. NT has demonstrated potent antifungal 

activity against 191 different isolates of Aspergilli species, with an average minimum inhibitory 
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concentration (MIC) ranging from 5-40 µg/mL; with the higher MIC values corresponding to more 

resistant fungal strains such as Aspergillus parasiticus (41). NT has exhibited a high potency in 

inhibiting the growth of Aspergillus flavus, Aspergillus fumigatus, and Aspergillus niger (41, 42). 

NT shows a potent in-vitro activity against Fusarium species with MIC ranging between 4-8 

µg/mL. This resulting MIC (4-8 µg/mL) was for 20 clinically relevant strains of Fusarium 

responsible for fungal keratitis (43). NT has also shown sporicidal activity against a few 

Aspergillus and Fusarium fungal spores (41). NT has demonstrated antifungal activity against 

Candida species, albeit the potency and MIC varying widely. NT showed potent antifungal activity 

against Candida albicans at MIC values ranging from 1-2 µg/mL and a weak activity against 

Candida parasilopsis at a MIC value as high as 150 µg/mL (44, 45). NT has also shown activity 

against Penicillium roquefortii, Penicillium rubrum, and Penicillium discolor fungal species but 

was inactive against Penicillium spores (29, 41, 42). Potent antifungal activity against 

Paecilomyces and Rhizopus species with MIC values ranging from 2-6 µg/mL, respectively, has 

also been reported (41).  

Apart from activity against the afore-mentioned clinically relevant strains of fungal species 

causing keratitis; NT shows in-vitro antifungal activity against Curvularia species, Microsporum 

species, Epidermophyton species, Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus 

neoformans, Histoplasma capsulatum, and Sporothrix schenckii at MIC values ranging between 

1-25 µg/mL (46). Table 1.1 summarizes the antifungal spectrum of NT. 
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Table 1.1: Antifungal spectrum of NT. 

Fungal species MIC (µg/mL) Reference 

Aspergillus species 5-40 (41) 

Fusarium species 4-8 (43) 

Candida species 1-2 (44, 45) 

Others 

(Curvularia species, 

Microsporum species, 

Epidermophyton species, 

Penicillium species, 

Cephalosporium species, 

Paecilomyces species, 

Rhizopus species, 

Blastomyces dermatitidis, 

Coccidioides immitis, 

Cryptococcus neoformans, 

Histoplasma capsulatum, and 

Sporothrix schenckii) 

1-25 (29, 41, 42, 46) 
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Development of resistance 

All antifungal agents are susceptible to the development of fungal resistance. In most of 

the cases the development of resistance is manifested as an increase or elevation in the MIC. 

However, in the case of NT, it is known that some species and strains, inherently have a low 

sensitivity. This is usually seen in the case of Aspergillus and Candida species like Aspergillus 

parasiticus, Aspergillus flavus, Candida parapsilosis and others, which owing to low sensitivity 

exhibit higher MICs (44, 45, 47, 48). This phenomenon has been attributed to a low concentration 

or poor access of NT to the ergosterol target in the fungal cell membrane (24, 29). 

A study was performed by Streekstra et al., to observe and evaluate the development of 

antifungal resistance against NT (49). Twenty different fungal strains were selected which 

included fungal species that caused ocular infections such as Fusarium solani, Fusarium 

oxysporum, Aspergillus terreus, Aspergillus fumigatus, Candida parapsilosis, Candida albicans, 

Candida krusei amongst others. Upon prolonged exposure to NT, a marginal, statistically non-

significant, increase in MIC (MIC range: 1.2-12.8 µg/mL versus 1.2-13.2 µg/mL) was observed. 

An increase in MIC was observed for the Aspergillus and Candida species but not for Fusarium 

species, which is consistent with all the reported data in literature (44, 45, 47-49).   

However, even though there have been a few strains that have an innately low sensitivity 

towards NT, most of the filamentous fungal species such as Fusarium, and some Aspergillus 

strains, show susceptibility and no development of resistance, thereby maintaining the continued 

utility of NT in superficial fungal infections and/or fungal keratitis.  

Ocular evaluations 

Fusarium and Aspergillus are the most pre-dominant strains responsible for fungal 

keratitis. Fusarium is the most common causative fungal species for fungal keratitis in the US 
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followed by Aspergillus and Candida species (1, 45, 50). However, globally Aspergillus species 

is the major causative fungal organism responsible for ophthalmic fungal infections (45). 

Therefore, for evaluating the ocular antifungal effectiveness of NT in fungal keratitis, NT 

antifungal evaluations have been carried out on Fusarium, Aspergillus, and Candida species 

isolated from the eye.   

In a study reported by Lalitha et al., the effectiveness of NT against 100 fungal (Fusarium 

and Aspergillus) isolates recovered from clinical cases of corneal keratitis were evaluated (47). 

The fungal species comprised of 41 Fusarium species, 32 Aspergillus flavus, 18 Aspergillus 

fumigatus, 5 Aspergillus terreus, and 4 Aspergillus niger isolates and the MIC values were 2-8 

µg/mL, 16-64 µg/mL, 1-4 µg/mL, 4-16 µg/mL, and 2-4 µg/mL, respectively. The results suggested 

that NT had good activity against both the species, with a higher MIC for Aspergillus species. 

Also, from a comparative evaluation of NT against amphotericin B, caspofungin acetate, 

itraconazole, voriconazole, and posaconazole on the fungal species isolated from corneal 

infections, it was concluded that NT was more effective than the other antifungal agents (51). 

The results from the above-mentioned study are corroborated by a study undertaken by Xu 

et al., in which NT was found to be active against 136 Fusarium (Fusarium solani, Fusarium 

moniliforme, Fusarium avenaceum, and other complexes), 98 Aspergillus (Aspergillus flavus, 

Aspergillus fumigatus, Aspergillus oryzae, Aspergillus versicolor, and other complexes), and 10 

Alternaria species (48). These isolates were obtained from ocular keratomycosis. The MIC values 

obtained for Fusarium, Aspergillus, and Alternaria alternata were 4-8 µg/mL, 4-32 µg/mL, and 4 

µg/mL respectively. The MIC values towards the higher range of 4-32 µg/mL were observed for 

Aspergillus fumigatus and Aspergillus oryzae; corroborating the higher MIC values obtained for 

Aspergillus species in the study by Lalitha et al.  
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In a study reported by Wang et al., Aspergillus species isolated from clinical fungal keratitis 

showed higher MIC values for NT than Fusarium species, and the therapeutic outcome associated 

with Aspergillus species was inferior to the clinical therapeutic outcome associated with Fusarium 

species (52). 

A comparative study by Xuguang et al., reported that NT was more effective, with 89.28% 

success rate, in comparison to other antifungal agents such as terbinafine, itraconazole, and 

fluconazole, with success rates of 68.58%, 38.18%, and 14.83%, respectively, against clinical 

isolates of Fusarium and Aspergillus species obtained from corneal infections (53). 

In another study by Kalavathy et al., topical itraconazole (1%) was compared with topical 

natamycin (5%) for the treatment of filamentous fungal keratitis caused by Fusarium, Aspergillus, 

and Curvularia species (54). The study reported that the treatment outcomes for Fusarium 

associated keratitis was significantly better for NT than for itraconazole. However, the treatment 

outcomes were similar, between NT and itraconazole treatments, for Aspergillus and Curvularia 

species. This study also demonstrated the superior efficacy of NT in treating Fusarium ocular 

infections and suggested topical itraconazole as an alternative to topical NT therapy.   

In another comparative study, comparing the clinical outcomes of treatment with topical 

NT and topical voriconazole for fungal keratitis caused by Fusarium species, a significant 

difference between the outcomes associated with both the therapies was not observed (10). 

However, in the voriconazole-treated cases perforation of the cornea was more likely to occur than 

the NT-treated cases. 

In a study reported by Pradhan et al., it was found that NT demonstrated high MIC values 

(> 16 µg/mL) against Aspergillus flavus isolated from advanced fungal keratitis; however, 

Fusarium, Acremonium, and dematiaceous fungal isolates from advanced fungal keratitis 
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remained sensitive to NT (MIC value range 1-8 µg/mL). In spite of the lower MIC values, 

approximately 50% patients required keratoplasty indicating that NT is not effective in advanced 

or deep seated fungal keratitis in comparison to its potent antifungal activity and effectiveness in 

superficial fungal keratitis and/or corneal fungal infections (55). Table 1.2 summarizes the ocular 

evaluations for NT that have been discussed in the previous section. 

Table 1.2: Summary of ocular evaluations of NT. 

Group Inference Reference 

Lalitha et 

al. 

NT was found effective against 100 fungal (Fusarium and 

Aspergillus) isolates recovered from clinical cases of corneal keratitis. 

Comparative evaluation of NT against amphotericin B, caspofungin 

acetate, itraconazole, voriconazole, and posaconazole on the fungal 

species isolated from corneal infections, concluded that NT was more 

effective than other antifungal agents. 

(47, 51) 

Xu et al. NT was found to be active against 136 Fusarium (Fusarium solani, 

Fusarium moniliforme, Fusarium avenaceum, and other complexes), 

98 Aspergillus (Aspergillus flavus, Aspergillus fumigatus, Aspergillus 

oryzae, Aspergillus versicolor, and other complexes), and 10 

Alternaria species isolated from keratomycosis. 

(48) 

Wang et 

al. 

Therapeutic outcome associated with Aspergillus species was inferior 

to the clinical therapeutic outcome associated with Fusarium species 

indicating a better efficacy of NT in treating Fusarium ocular keratitis. 

(52) 
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Group Inference Reference 

Xuguang 

et al. 

NT was more effective with higher success rate in comparison to other 

antifungal agents such as terbinafine, itraconazole, and fluconazole 

against clinical isolates of Fusarium and Aspergillus species obtained 

from corneal infections. 

(53) 

Kalavathy 

et al. 

NT is effective in treating Fusarium, Aspergillus, and Curvularia 

ocular infections and provides topical itraconazole as an alternative to 

topical NT therapy. 

(54) 

Prajna et 

al. 

Outcomes associated with NT and voriconazole therapy in Fusarium 

keratitis were similar; however, voriconazole-treated cases had higher 

chances of corneal perforations than the NT-treated cases. 

(10) 

Pradhan 

et al. 

NT is not effective in advanced or deep-seated fungal keratitis in 

comparison to its potent antifungal activity and effectiveness in 

superficial fungal keratitis and/or corneal fungal infections. 

(55) 

 

Marketed natamycin formulation: Natacyn® 

Currently, NT topical ophthalmic suspension – Natacyn® is the only FDA approved 

antifungal agent that is being used in treating the ocular fungal infections. Natacyn® is indicated 

in the treatment of fungal blepharitis, conjunctivitis, and keratitis caused by fungal species such 

Fusarium solani and other filamentous type (56). The use of Natacyn® has not been indicated in 

deeper fungal infections of the eye such as endophthalmitis due to the inability of Natacyn® to 

produce effective concentrations in the intraocular fluids upon topical administration (56). Hence, 
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Natacyn® is used in treating the fungal infections of the cornea and associated layers because 

topical application of Natacyn® leads to effective NT concentration within the corneal stroma. 

Table 1.3 details the pharmaceutical attributes and therapeutic regimen for Natacyn®. 

Table 1.3: Pharmaceutical features and therapeutic regimen for Natacyn®. 

Feature Details 

Dosage form Natamycin ophthalmic suspension (5% w/v) 

Dosage composition Active: NT 5% w/v;  

Preservative: benzalkonium chloride 0.02% w/v;  

Inactive: sodium hydroxide and/or hydrochloric acid 

(neutralized to adjust the pH to 5-7.5), and purified water. 

Dosage and administration Fungal keratitis: one drop instilled in the conjunctival sac at 

hourly or two-hourly intervals for first 3 to 4 days and then 

reduced to one drop 6 to 8 times daily for 14 to 21 days.  

Fungal blepharitis and conjunctivitis: less frequent dosage 

applications (about 4 to 6 times daily).  

Supply Supplied as a suspension in a 15 mL amber glass bottle with a 

flint glass dropper. 

Storage To be refrigerated and not frozen. Exposure to light and 

excessive heat should be avoided. 

 

The average Natacyn® therapy generally lasts for 14 to 21 days and if the medication fails 

to improve the symptoms of keratitis after 7 to 10 days then Natacyn® therapy needs to be clinically 

re-evaluated and additional laboratory tests need to be undertaken. Fungal infection due to non- or 



16 

 

less-susceptible fungal species is one of the most common reasons for the failure of Natacyn® 

therapy (56). The use of Natacyn® is generally not recommended for pediatric population, pregnant 

women, and nursing mothers due to the lack of clinical studies in establishing the safety, 

tolerability, and efficacy of Natacyn® in the afore-mentioned special category of population (56). 

The commonly reported adverse events for Natacyn® are allergic reactions, changes in vision, chest 

pain, corneal opacity, dyspnea, eye discomfort, eye edema, eye hyperemia, eye irritation, eye pain, 

foreign body sensation, paresthesia, and tearing (56). These adverse events are common to several 

ophthalmic medications and occur on prolonged continuation of the therapy.  

Natacyn® has demonstrated better efficacy and success rates in treating fungal infections 

of the eye, according to a systematic review and meta-analyses of all the fungal keratitis reports 

and database, undertaken by Qiu et al (57). Due to the efficacy of Natacyn® in treating the fungal 

infections in the eye due to Fusarium and other filamentous fungi, Natacyn® has been the front-

line therapy in the management of superficial ocular fungal infections.  

Pharmaceutical considerations of natamycin 

NT is only available as an aqueous ophthalmic suspension, and not as a solution, because 

of the challenges associated with its formulation as an ophthalmic solution such as limited aqueous 

solubility of NT, formation of lumps and agglomerates of NT powder, chemical instability of NT 

in aqueous solution, and susceptibility of NT solutions to bacterial growth (58). Hence, suspension 

eye-drops was chosen for the therapeutic delivery of NT at the fungal infection site. The suspension 

consists of a pH adjusted aqueous environment (Table 1.3) to ensure the chemical stability of NT 

– without its degradation and/or inactivation. Additionally, benzalkonium chloride is added to the 

suspension to prevent the growth of bacteria in the formulation (NT is susceptible to bacterial 

growth) (58).  
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A preservative (benzalkonium chloride) free formulation of NT is also available in some 

countries (Poland, Turkey, the Netherlands, Ireland, Czech Republic), other than the US, under the 

label Pimafucin®. It is available as a single dose suspension that is used for medical purposes such 

as oral fungal infections (59). Pimafucin®, like Natacyn®, has its pH adjusted to 5.5-7.5 to prevent 

the inactivation of NT (58).   

In a patent filed by Noordam et al, it has been reported that a chemically and microbially 

stable suspension of NT (> 14 days) could be prepared without using any preservatives, by using 

a specific pH range and thickening agents (methylcellulose, xanthan gum, carrageenan gum, 

Arabic gum and combinations) (58). However, the pH range that was found to be suitable, was 

lower than 5.  

To further improve and enhance delivery of NT to the eye, various formulation strategies 

and/or alternative dosage forms have been studied and evaluated. Use of cyclodextrins along with 

NT has been extensively studied and cyclodextrin complexes of NT demonstrated improved trans-

corneal penetration with an equivalent antifungal effectiveness in comparison to the marketed 

formulation (60, 61). In a study reported by Chandasana et al., poly-d-glucosamine (PDG) 

functionalized polycaprolactone (PCL) nanoparticles of NT were prepared for targeting corneal 

mycotic keratitis (62). The nanoparticulate formulation showed a sustained released of NT up to 8 

hours and its antifungal potency was similar to the marketed formulation. It was found that the 

optimized formulation could be dosed every 5 hours (instead of the conventional every two-hour 

dosing) to maintain NT levels in the therapeutic range. In another study by Bhatta et al., NT 

encapsulated within lecithin-chitosan mucoadhesive nanoparticles demonstrated improved 

pharmacokinetic profiles such as higher concentration, greater area under curve, and lower 

clearance in the lachrymal fluid and at the pre-corneal sites in comparison to the marketed NT 
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suspension (63). In yet another evaluation by Paradkar et al., NT niosome loaded in-situ gel could 

sustain the NT release up to 24 hours in comparison to the marketed formulation with a 

significantly higher trans-corneal penetration (64). However, all these studies report on the 

development of novel ocular carriers for NT and evaluate their effectiveness at the pre-corneal site 

(in terms of pharmacokinetic parameters) but do not investigate the ocular biodistribution of NT 

from their carriers; thereby, not completely elucidating their potential superiority/advantages over 

the marketed suspension.   

1.2. CHALLENGES IN CURRENT NATAMYCIN THERAPY 

Natamycin (Natacyn®) suspension has been the first choice in treating superficial fungal 

infections of the eye such as fungal keratitis, blepharitis, and conjunctivitis. It has been one of the 

front-line agent due to the potent antifungal activity against the Fusarium and Aspergillus species, 

which are the major causative fungal organisms for ophthalmic fungal infections, in addition to 

having lower toxicity and side-effect incidences than the other antifungal agents (8-10). However, 

one of the major challenges associated with the marketed NT suspension is the low ocular 

bioavailability (≈ 2%) through the topical route, that necessitates repeated applications (initially 

given every hour/two-hours and then tapered to 6-8 times a day) to achieve therapeutic 

concentrations, which is one the prime factors that is responsible for the reduction in patient 

compliance (2, 3, 5, 65). In many cases, concomitant oral or systemic administration of NT or 

another antifungal agent, in addition to its topical application, is frequently done (65). Although 

this co-administration provides good therapeutic outcomes, it is associated with the manifestation 

of ocular and systemic toxicities and an increase in the cost of therapy.  
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1.3. OBJECTIVE 

The overall objective of this research project was to overcome the challenges associated 

with the current NT suspension therapy, by designing and investigating alternative dosage forms 

for the therapeutic delivery of NT to the eye to improve and enhance the retention, penetration, 

and bioavailability of NT at the ocular site in the treatment of ocular fungal infections such as 

fungal keratitis, fungal endophthalmitis, blepharitis, and conjunctivitis. 

1.4. SPECIFIC AIMS 

1. Design and optimize a surface modified PEGylated nano-lipid carrier system (NT-PEG-NLCs) 

for ocular drug delivery of NT and compare their efficacy with the marketed NT formulation 

(Natacyn®), in vitro and in vivo. 

i. Optimize NT-loaded PEGylated nano-lipid carrier system (NT-PEG-NLC) using 

Design of Experiment approach using a Box-Behnken Design,  

ii. Evaluate physicochemical characteristics of the NT-PEG-NLCs, 

iii. Demonstrate four-week stability of the optimized system, 

iv. Evaluate permeation enhancing effect of the NT-PEG-NLCs across excised rabbit 

corneas, 

v. Develop a LC-MS/MS technique for the rapid quantification of NT from biosamples, 

and 

vi. Evaluate ocular biodistribution of NT-PEG-NLCs in Male New Zealand White 

Rabbits. 

2. Develop and optimize a carboxyvinyl polymer-guar gum-borate gelling system containing 

NT-PEG-NLCs (NT-PEG-NLC-GEL), evaluate their in vitro and in vivo performance and 
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compare it with Natacyn® to delineate the feasibility of carboxyvinyl polymer-guar gum-

borate gelling system as an alternative to the marketed suspension in ocular fungal 

infections (OFI).   

i. Optimize NT-PEG-NLC)-GEL using Design of Experiment approach using a 

Factorial Design,  

ii. Evaluate physicochemical characteristics of the NT-PEG-NLC-GEL, 

iii. Evaluate permeation enhancing effect of the NT-PEG-NLC-GEL across excised 

rabbit corneas and compare it to NT-PEG-NLCs and Natacyn®, 

iv. Evaluate pre-corneal tear pharmacokinetics of NT-PEG-NLC-GEL in Male New 

Zealand White Rabbits and compare it to NT-PEG-NLCs and Natacyn®, and 

v. Evaluate ocular biodistribution of NT-PEG-NLC-GEL in Male New Zealand White 

Rabbits and compare it to NT-PEG-NLCs and Natacyn®. 

3. Design and optimize NT based films (NT-film) and compare their efficacy with the 

marketed NT suspension (Natacyn®), in vitro and in vivo. 

i. Optimize NT-loaded films (NT-film) using Design of Experiment approach using a 

Central Composite Design,  

ii. Evaluate physicochemical characteristics of NT-films, 

iii. Evaluate permeation of the optimized NT-film across excised rabbit corneas and 

compare it to Natacyn®, 

iv. Evaluate pre-corneal tear pharmacokinetics of optimized NT-film in Male New 

Zealand White Rabbits and compare it to Natacyn® 
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Chapter 2  

Formulation Development, Optimization, and In vitro – In vivo Characterization of 

Natamycin Loaded PEGylated Nano-lipid Carriers for Ocular Applications 

 

Abstract: 

Current study aimed at formulating and optimizing natamycin (NT) loaded PEGylated NLCs (NT-

PEG-NLCs) using Box-Behnken Design and investigating their potential in ocular applications. 

Response surface methodology (RSM) computations and plots for optimization were performed 

using Design Expert® software, to obtain optimum values for response variables based on the 

criteria of desirability. Optimized NT-PEG-NLCs had predicted values for the dependent variables 

not significantly different from the experimental values. NT-PEG-NLCs were characterized for 

their physicochemical parameters; NT’s rate of permeation and flux across rabbit cornea was 

evaluated, in vitro; ocular tissue distribution was assessed in rabbits, in vivo. NT-PEG-NLCs were 

found to have optimum particle size (< 300 nm) narrow PDI, high NT entrapment and NT content. 

In vitro transcorneal permeability and flux of NT from NT-PEG-NLCs was significantly higher 

than Natacyn®. NT-PEG-NLC (0.3%) showed improved delivery of NT across the intact cornea 

and provided concentrations statistically similar to the marketed suspension (5%) in inner ocular 

tissues, in vivo, indicating that it could be a potential alternative to the conventional suspension 

during the course of fungal keratitis therapy. 
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3.1. INTRODUCTION 

Fungal infections of the eye are serious clinical concerns and can lead to vision loss (50, 

66-68). According to an analysis by Collier et al in Morbidity and Mortality Weekly Report for 

Centers for Disease Control and Prevention, incidence rates for keratitis were the highest amongst 

all the ocular infections, with an estimated 930,000 visits to doctor's office and outpatient clinics 

and about 58,000 emergency department visits annually with about 76.5% of keratitis visits 

requiring drug prescriptions (50). Episodes of keratitis and other ocular corneal infections 

approximated $175 million in direct health care expenditures, that included $58 million for 

Medicare patients and $12 million for Medicaid patients annually in the United States.  

Natamycin (NT) has been one of the forerunners in ocular antifungal pharmacotherapy, 

especially in the management of fungal keratitis (69). It has been used as a first line antifungal 

agent because of its action against filamentous fungi causing ocular fungal infections (OFI) and 

better ocular safety/tolerability compared to the other antifungal agents (3). However, one of the 

major challenges associated with NT is that, intravenous and subconjunctival injections do not 

lead to therapeutic concentrations in the eye (57). Upon topical application, NT shows low 

retention and a bioavailability (BA) of only 2%, necessitating frequent administration (initially 

given every hour/two-hours and then tapered to 6-8 times a day) (65). In many cases, concomitant 

oral or systemic administration of NT or another antifungal agent, in addition to its topical 

application, is frequently required (65). Although this co-administration provides good therapeutic 

outcomes, it is associated with the manifestation of ocular and systemic toxicities and an increase 

in the cost of therapy.  

Currently, NT is the only commercially available topical agent (Natacyn® eye drops), used 

for the treatment of OFI. However, as previously mentioned, these eye drops are associated with 
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two major challenges; the first being low retention and BA and the second being low penetration 

into the inner ocular tissues (57, 70). This necessitates the re-formulation of NT as a different 

dosage form to harness its antifungal activity whilst overcoming the challenges associated with its 

delivery as eye-drops.  

In search of alternative strategies for the delivery of NT, nano-lipid carriers (NLCs) were 

evaluated since, they are known to enhance both BA and penetration of drugs into deeper tissues 

(71-73). Surface modified NLCs with polyethylene glycol (PEG-NLCs) have shown enhanced 

penetration, improved BA with lower toxicity profiles, and better stability upon storage, in 

comparison to the normal NLCs (74-78). This has been abundantly evidenced in the delivery of 

anti-cancer drugs in cancer chemotherapy. Therefore, in the current study we sought to formulate 

and optimize NT loaded PEGylated NLCs (NT-PEG-NLCs) using Box-Behnken Design and 

evaluate and compare their efficacy with the marketed NT formulation (Natacyn®), in vitro and in 

vivo.  

3.2. MATERIALS AND METHODS 

Chemicals 

NT was purchased from Cayman Chemicals (Ann Arbor, MI, USA). N-(Carbonyl-

methoxypolyethylenglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt 

(mPEG-2K-DSPE sodium salt) was purchased from Lipoid (Ludwigshafen, Germany). Precirol® 

ATO 5 was a generous gift from Gattefossé (NJ, USA). Castor oil, Tween® 80, Span® 80, 

poloxamer 188, and glycerin were all purchased from Acros Organics (NJ, USA).  
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Methods 

Screening of lipid excipients 

NLCs are composed of solid and liquid lipids; hence, to select the most optimum solid and 

liquid lipids for the NT-PEG-NLCs a lipid screening study was undertaken. Three solid lipids 

(Compritol® 888 ATO, Precirol® ATO 5, and Glyceryl monostearate) and nine liquid lipids (castor 

oil, olive oil, soybean oil, sesame oil, Maisine® CC, Labrafac® Lipophile WL 1349, oleic acid, 

Miglyol® 829, and Captex® 355 EP) were screened. Briefly, 100 mg of NT was added to 100 mg 

of the molten lipid (80 ± 2°C; under continuous magnetic stirring at 2000 rpm for 10 mins) and 

the NT-lipid mix was cooled. All the NT-lipid mixes were then microscopically observed for the 

precipitation of NT and the lipids which did not show any precipitation were selected. Precirol® 

ATO 5 and castor oil were found to be the most suitable lipids in which NT showed no 

precipitation.  

Experimental design  

Box-Behnken design was employed in the experimental design where the amount of castor 

oil, Precirol® ATO 5, Span® 80, and high-pressure homogenization (HPH) time were varied at 

three levels as hypothesized by the design. In the given study, the above-mentioned four factors 

were taken as the independent factors (coded as A, B, C, and D, respectively at three different 

levels), whereas, formulation characters such particle size, polydispersity index (PDI), % drug 

entrapment, and % drug loading (DL) were considered as the response variables (dependent 

variables). Tables 2.1 and 2.2 provide the details on the Box-Behnken experimental design 

employed in this study.   
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Table 2.1: Independent factors and dependent variables with their coded levels of Box-

Behnken design. 

Factors Coded levels 

Independent factors Level 1 Level 2 Level 3 

A: Precirol® ATO 5 (mg) 150 300 450 

B: castor oil (mg) 100 150 200 

C: Span® 80 (mg) 0 20 40 

D: HPH time (mins) 5 10 15 

Dependent variables Constraints 

Y1: Particle size Optimum (< 300 nm) 

Y2: PDI Minimum 

Y3: % entrapment Maximum 

Y4: % DL Maximum 

 

Table 2.2: Box-Behnken design for the experiment. 

Run Precirol® ATO 5 

(mg) 

(A) 

castor oil 

(mg) 

(B) 

Span® 80 

(mg) 

(C) 

HPH Time 

(mins) 

(D) 

1 300 100 0 10 

2 150 150 40 10 

3 450 100 20 10 

4 300 200 0 10 

5 300 200 20 5 



26 

 

Run Precirol® ATO 5 

(mg) 

(A) 

castor oil 

(mg) 

(B) 

Span® 80 

(mg) 

(C) 

HPH Time 

(mins) 

(D) 

6 450 150 0 10 

7 300 100 20 15 

8 300 150 40 5 

9 150 150 0 10 

10 450 150 20 5 

11 450 150 20 15 

12 150 150 20 5 

13 300 100 40 10 

14 300 100 20 5 

15 450 150 40 10 

16 300 200 40 10 

17 300 150 0 15 

18 300 150 40 15 

19 150 100 20 10 

20 300 150 20 10 

21 150 150 20 15 

22 300 200 20 15 

23 300 150 0 5 

24 450 200 20 10 

25 150 200 20 10 
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The general form of the model generated from the design is given below,  

Y = β0 + β1A + β2B + β3C + β4D + β5AB + β6AC + β7AD + β8BC + β9BD + β10CD + ε 

where β0, the intercept, is the arithmetic average of all quantitative outcomes of 25 experimental 

runs, β1-β10 are the coefficients computed from the observed experimental values of Y, and A, B, 

C, and D, are the coded levels of the independent factors. The A, B, C, and D terms indicate the 

average result of changing one factor at a time from its low to high value. The interaction terms 

(AB, AC, AD, BC, BD, and CD) suggest the response changes when two factors are changed 

simultaneously. The equation aids in understanding the effect of the independent factor/s on the 

response variables after considering the intensity of coefficient and the mathematical sign it 

carries, that is, positive or negative. A positive sign indicates additive effect. Statistical validity 

was established based on ANOVA provided in the Design-Expert® software, with level of 

significance considered at p < 0.05. 

Formulation optimization 

Response surface methodology (RSM) computations including 3-dimensional (3D) RSM, 

interaction, and contour plots for the formulation optimization was performed using Design-

Expert® software (8.0.7.1), to obtain optimum values of the response variables based on the criteria 

of desirability (Table 2.1). The optimum variables were used to prepare the suggested optimum 

formulation; the predicted and experimental values for the suggested formulation were then 

compared to validate the chosen experimental design and the models. 

Preparation of NT-PEG-NLCs 

The NT-PEG-NLCs were prepared by the hot homogenization method. An aqueous phase 

was prepared using surfactants such as poloxamer 188 (0.25% w/v), Tween® 80 (0.75% w/v) and 

glycerin (2.25% w/v) in de-ionized water, was heated and added to the molten lipid phase under 
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stirring form a premix (2000 rpm, 5 min). The lipid phase consisted of NT (0.3%), Precirol® ATO 

5, castor oil, Span® 80, and mPEG-2K-DSPE sodium salt. The premix was then emulsified at 

16,000 rpm for 5 mins using T 25 digital Ultra-Turrax to form a hot pre-emulsion. The pre-

emulsion obtained was subjected to HPH (15,000 psi) using thermostated Emulsiflex C5 

(Avestin®) resulting in the formation of hot emulsion dispersion. The temperature during the entire 

process was maintained at 80 ± 2°C. The hot emulsion obtained was cooled to room temperature 

to form the NT-PEG-NLCs. 

Particle size and PDI  

The hydrodynamic radius and PDI of the NT-PEG-NLC formulations were determined by 

photon correlation spectroscopy using a Zetasizer Nano ZS Zen3600 (Malvern Instruments, Inc.) 

at 25°C and with 173° backscatter detection in disposable folded capillary clear cells. The 

measurements were obtained using a helium-neon laser and the particle size analyses data was 

evaluated based on the volume distribution. Briefly, ten microliters of the sample was diluted to 

1000 µL using de-ionized water and the particle size and PDI was measured.  

Morphological characteristics using Scanning Tandem Electron Microscopy (STEM) 

A 20 µL drop of sample was placed on a sheet of clean parafilm. A freshly glow discharged 

200 mesh copper grid coated with a thin carbon film was floated, film side down on the drop of 

sample. After 30 seconds the grid was removed from the drop and excess sample was removed by 

touching a piece of filter paper to the edge of the grid. Before complete drying, the grids were 

placed sample side down on a drop of ultra-pure water, immediately removed, excess water was 

removed and the grid, sample side down, was placed on a drop of 1% uranyl acetate. After 1 min, 

the grid was removed from the drop and excess stain was removed. The grid with sample was dried 
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completely before examination in a Zeiss Auriga® operating in STEM mode at 30kV (studies 

performed at The University of Tennessee, Knoxville). 

Powder X-ray diffraction (PXRD) analysis 

A qualitative PXRD was done (studies performed at Campbell University, North Carolina) 

to examine the physical state of NT in the formulated NT-PEG-NLC. The X-ray powder diffraction 

patterns of the samples were recorded with the Rigaku Ultima IV X-ray diffractometer using Ni-

filtered, CuKα radiation generated at 40 kV, and a current intensity of 44 mA. The diffraction angle 

range of the instrument was operated over a range of 2θ angles from 5° to 50°. 

Physio-chemical stability 

Physical and chemical stability of the optimized formulation was evaluated by analyzing 

the changes in particle size, PDI, assay and % entrapment efficiency upon storage at 4°C and 25°C 

for a period of one month. 

Natamycin content (assay), entrapment and load 

Assay: An accurately measured amount of NT-PEG-NLC (10 µL) was extracted in methanol (990 

µL), since, NT is soluble in methanol. The methanol-formulation mixture was then centrifuged at 

high speed (13,000 rpm, 15 mins) and the resulting supernatant was analyzed for NT content using 

HPLC method. The NT drug content (assay) was utilized in the determination of the % of NT 

entrapped in the nanoparticles. 

Entrapment: A measured amount of NT-PEG-NLC formulation (500 µL) was taken and placed 

in the centrifugal filter (100 kDa) and the sample was centrifuged at a high speed (13,000 rpm, 15 
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mins), following which the filtrate was collected and analyzed for free NT content. Percentage NT 

entrapped was calculated using the formula, 

% ������	���

=  
��	��� � ���� �����	���� �� ����� − �	��� � ��������� ����� ∗ 100

�	��� � ���� ����ℎ��
 

Loading: The amount of NT load in the NT-PEG-NLC formulation was determined by the 

following formula, 

% ���� ��� =
�	��� � ���� ��������� 

���� ����� ������
× 100 

Analysis of in vitro samples: NT was quantified using a validated HPLC method reported in 

literature (79). The HPLC system consisted of a Waters 717 plus auto-sampler coupled with a 

Waters 2487 Dual λ Absorbance UV detector, a Waters 600 controller pump, and an Agilent 3395 

Integrator. The mobile phase consisted of a mixture of phosphate buffer (0.2 M, pH 5.5) and 

acetonitrile (70:30) with flow rate of 1 mL/min. A C18 Phenomenex Luna® (5µ, 250 x 4.6 mm) 

column was used. The temperature for the analyses was 25°C, the injection volume was 20 µL, 

and the UV detection wavelength was set to 304 nm at AUFS 1.00. 

In vitro trans-corneal permeation  

Transmembrane permeability of NT from NT-PEG-NLC formulation was evaluated across 

isolated rabbit cornea (Pel-Freez Biologicals®) using vertical diffusion cells (PermeGear®, Inc.). 

To compare and evaluate the effect of PEGylation, NT-NLCs without the PEG component were 

prepared and their transmembrane corneal permeability was assessed (1.5% w/v of PEG was 

replaced by 1.5% w/v of Precirol® ATO 5; NT load was kept constant at 0.3% w/v).  
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The cornea was clamped in between the two half-cells with the epithelial surface facing 

upwards toward the half-cell with less volume (i.e., the donor cell containing the formulations). 

Natacyn® (5% w/v), NT-PEG-NLCs (0.3% w/v), and NT-NLCs (0.3% w/v) were used as donor 

formulations; 5% Natacyn® was diluted using Dulbecco's phosphate-buffered saline (DPBS) to 

0.3% w/v to dose normalize all three formulations. Five mL of 2.5% solution of randomly 

methylated-β-cyclodextrin (RMBCD) in DPBS was used in the receiver compartment. The 

contents of the receiver chamber were stirred continuously with a magnetic stirrer. Aliquots (200 

μL) were withdrawn from the receiver chamber at predetermined time points and replaced with an 

equal volume of 2.5% w/v RMBCD in DPBS. The study duration was 3 h. The concentration of 

NT in the receiver chamber solution was determined using the HPLC analyses method for in vitro 

samples described above. 

In vivo ocular biodistribution studies 

In vivo bioavailability of NT was determined in Male New Zealand White Albino Rabbits, 

weighing between 2 and 2.5 kg, procured from Charles River Labs. All the animal studies 

conformed to the tenets of the Association for Research in Vision and Ophthalmology statement 

on the use of animals in ophthalmic vision and research and the University of Mississippi 

Institutional Animal Care and Use Committee approved protocols. The NT formulations, namely 

the NT-PEG-NLC, NT-NLC, and Natacyn® (0.3% and 5%), were evaluated in conscious rabbits, 

in vivo (n = 4). All the above NT topical formulations (100 μL) were given as two doses (50 μL), 

every 2 hours for a 6-hour time period (t = 0, 2, and 4 hours). Two hours after the third instillation 

at t = 6 hours, the rabbits were anesthetized using a combination of ketamine (35 mg/kg) and 

xylazine (3.5 mg/kg) that was injected intramuscularly. The rabbits were euthanized with an 

overdose of pentobarbital injected through a marginal ear vein. The eyes of the rabbits were then 
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enucleated and washed thoroughly with IPBS and the intraocular tissues such as, cornea, iris-

ciliary body (ICB), aqueous (AH) and vitreous (VH) humors were separated. 

A protein precipitation technique was employed to determine the amount of NT in the 

ocular tissue homogenates. Briefly, the solid tissues: cornea and ICB (were cut into small pieces) 

and the liquid tissues: AH and VH (taken as they were) were taken and ice-cold methanol was 

added (0.6 mL) to precipitate proteins from each individual tissue. The supernatant was then 

collected via centrifugation for 0.5 h at 13,000 rpm prior to the analyses.  

Quantification of NT was performed using standard calibration curves constructed from 

various ocular tissues, such as the cornea (0.6–131.1 ng/mL), the ICB (0.6–65.5 ng/mL), the AH 

(2–400 ng/mL), and the VH (2–400 ng/mL), using the LC-MS/MS method. All the standard curves 

had a coefficient of determination r2 ⩾ 0.96. The extraction recovery (extraction efficiency) of NT 

was higher than 95% for cornea, ICB, and AH whereas was about 82% for VH. The process 

efficiency was higher than 90% for all the tissues. Interference was not observed from co-eluted 

protein residues with respect to NT peaks in any of the tissues. The limit of detection (LOD) for 

various ocular tissues was determined and corresponded to 0.13 ng/mL for all the four tissues. 

Quantification of NT in the biosamples 

For quantification of NT in the in vivo samples, a Waters Xevo TQ-S triple quadrupole 

tandem mass spectrometer with an electrospray ionization source, equipped with the ACQUITY 

UPLC® I-Class System were used (Waters Corporation, Milford, MA, USA). Data acquisition was 

performed with Waters Xevo TQ-S quantitative analysis TargetLynx software and data processing 

was executed with MassLynx mass spectrometry software. Separation operations were 

accomplished using a C18 column (Acquity UPLC® BEH C18 100 mm×2.1 m, 1.7μm particle 

size). The mobile phase consisted of water (A), and acetonitrile (B) both containing 0.1 % formic 
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acid at a flow rate of 1.0 mL/min with a gradient elution as follows: 0 min, 98 % A/2 % B held for 

0.2 minutes and in next 2.3 min to 100% B. Each run was followed by a 1-minute wash with 100 

% B and an equilibration period of 2 minutes with 98 % A/2 % B. The column and sample 

temperature were maintained at 50ºC and 10°C, respectively. The effluent from the LC column 

was directed into the ESI probe. Mass spectrometer conditions were optimized to obtain maximal 

sensitivity. The following conditions were used for the electrospray ionization (ESI) source: source 

temperature 150°C, desolvation temperature 600°C, capillary voltage 3.0 kV, cone voltage 40 V, 

nebulizer pressure, 7 bar and nebulizer gas 1100 L·h−1 N2. Argon was used as the collision gas. 

The collision energies were optimized and ranged from 10 to 15 eV for individual analytes. 

Instrument control and data processing were performed by using MassLynx software (version 4.1, 

Waters, Milford, MA, USA). Mass spectra were acquired in positive mode and multiple reaction 

monitoring (MRM) mode. The multiple reaction monitoring (MRM) mode was applied to monitor 

the transitions of quantifier ion to qualifier ions (the precursor to fragment ions transitions) of m/z 

666.2 → m/z 467.2, 485.2, 503.2 for natamycin, m/z 924.4 → m/z 107.5, 743.2, 761.4 for 

amphotericin B. Amphotericin B was used as the internal standard. Confirmation of compounds 

was achieved through three fragment ions. 

Statistical analyses 

Data is represented as the mean ± standard deviation, for a minimum of three independent 

experimental runs. Statistical comparisons of the means were performed using one-way analysis 

of variance (ANOVA) or Student’s t-test. The differences were considered to be significant when 

the p-value was < 0.05. 
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3.3. RESULTS  

Lipid screening study 

The results observed from solid and liquid lipid screening are presented in Table 2.3. On 

the bases of the following results, castor oil, and Precirol® ATO 5 were chosen as the lipids for the 

preparation of NT-PEG-NLCs and NT-NLCs.  

Table 2.3: Results from solid and liquid lipid screening (Drug and lipids added in 1:1 

ratio 80 ± 2°C; under continuous magnetic stirring at 2000 rpm for 10 mins). 

Solid/liquid Lipid Solubility 

Solid lipids 

glyceryl monostearate (-) 

Precirol® ATO 5 (+) 

Compritol® 888 ATO (-) 

Liquid lipid 

castor oil (+) 

olive oil (-) 

sesame oil (-) 

soybean oil (-) 

oleic acid (-) 

Labrafac® Lipophile WL 1349 (-) 

Maisine® CC (-) 

Miglyol® 829 (-) 

Captex® 355 EP (-) 

(+): NT is soluble in the lipid melt and does not precipitate on cooling; (-): NT is either soluble 

in the lipid but precipitates on cooling or is insoluble in the lipid. 
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Formulation development and optimization using Box-Behnken method  

The 25 NT-PEG-NLC formulations that were prepared according the Box-Behnken design 

were analyzed for particle size, PDI, % NT entrapment, and % DL. Design Expert® software was 

used to study the effect of content of lipids (castor oil and Precirol® ATO 5), Span® 80, and HPH 

time (independent factors) on the above-mentioned responses (particle size, PDI, % entrapment, 

and % DL). The extent of the effect of the independent factors on the response variables was 

determined using the regression analyses and plots that provided RSM analyses. Tables 2.4 and 

2.5 elucidate the results of the regression analyses and Figures 2.1-2.3 display the 3D RSM, 

interaction, and contour plots, respectively.   

Table 2.4: Summary of regression analyses performed by Design Expert® software for 

evaluating the effects of independent factors on the response variables. 

Response 

variable 

Model Model F-value Degree of 

freedom 

R2 values 

R2 Adjusted 

R2 

Particle size 2FI 5.27 6 0.6372 0.5163 

PDI 2FI NA NA NA NA 

% entrapment 2FI 6.75 4 0.5746 0.4895 

% DL 2FI 15.36 4 0.7544 0.7053 
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Table 2.5: ANOVA for Response Surface Reduced 2FI Model. 

Response 

variables 

Independent 

factors that 

affect the 

response 

variable 

significantly 

p-value Final equation in terms of coded 

factors fitted in 2FI model 

Particle size A 0.0058 Particle size 

= 231.07 + 28.48*A + 14.55*B – 

3.43*C – 20.928*D – 38.38*AD – 

44.45*BC (Equation 1) 

D 0.0338 

AD 0.0256 

BC 0.0114 

% entrapment A 0.0046 % entrapment 

= 91.29 – 16.07*A + 12.03*B + 

11.04*D – 21.86*BD (Equation 2) 

B 0.0268 

D 0.0401 

BD 0.0209 

% DL A < 0.0001 % DL 

= 5.89 – 2.92*A + 0.08*B +  

0.73*D – 1.49*BD (Equation 3) 

BD 0.0435 

A: Precirol® ATO 5; B: castor oil; C: Span® 80; D: HPH Time; AD: interaction between 

Precirol® ATO 5 and HPH Time; BD: interaction between castor oil and HPH Time; BC: 

interaction between castor oil and Span® 80. 
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Figure 2.1: RSM, interaction, and contour plots showing the effect of Precirol® ATO 5, castor 

oil, Span® 80, and HPH time on particle size and plot between the observed and predicted values 

of particle size. 
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Figure 2.2: RSM, interaction, and contour plots showing the effect of castor oil and HPH 

time on % entrapment and plot between the observed and predicted values of % entrapment. 
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Figure 2.3: RSM, interaction, and contour plots showing the effect of castor oil and HPH 

time on % DL and plot between the observed and predicted values of % DL. 

The optimum formulation was generated by the numerical optimization technique 

following desirability approach using the Design Expert® software. The output for the most 
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desirable formulation for NT-PEG-NLCs generated by the software is given in Table 2.6. Table 

2.6 also enlists the predicted values for the responses and the values that were observed 

experimentally for the most suitable formulation that had a desirability of 0.9835.  

Table 2.6: Composition of the most desirable formulation obtained by Design Expert® 

software with predicted and experimental values. 

Formulation composition of the 

most desirable formulation 

Predicted values Experimental values 

NT (0.3% w/v) 

castor oil (1% w/v) 

Precirol® ATO 5 (1.5% w/v) 

mPEG-2K-DSPE sodium salt 

(1.5% w/v) 

Span® 80 (0.11% w/v) 

poloxamer 188 (0.25% w/v) 

glycerin (2.25% w/v) 

Tween® 80 (0.75% w/v) 

Particle size: 225.01 

PDI: 0.410 

% entrapment: 100.00 

% DL: 7.96 

Desirability: 0.9835 

Particle size: 241.96 

PDI: 0.406 

% entrapment: 95.35 

% DL: 6.45 

NT content: 97.85% 
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Morphological characterization using STEM 

Figure 2.4 depicts the morphology of the NT-PEG-NLC which was found to be spherical 

upon STEM imaging with particle size in the range of 200 – 250 nm.  

 

Figure 2.4: STEM image for the optimized NT-PEG-NLC formulation. 
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Powder X-ray diffraction (PXRD) analysis 

Figure 2.5 represents the PXRD stacked plots. The PXRD plots revealed the absence of 

characteristic NT peaks at 2Ө values of 11.95, 15.25, 16.80, and 17.81 in the NT-PEG-NLC 

(highlighted within black circles). 

Figure 2.5: PXRD plots for B-NLC (PEG-NLC without NT), NT, and NT-PEG-NLC. 

Physio-chemical stability 

The optimized formulation did not show any particle aggregation upon visual inspection, 

until 4 weeks at both the temperature conditions. From Figure 2.6 it can be concluded that the NT- 

PEG-NLCs did not show any statistically significant changes in particle size, PDI, and % NT 

entrapment during its storage for one-month at 4°C and 25°C (p > 0.05).  
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Figure 2.6: Plots showing changes in particle size, PDI, and % NT entrapment for the 

NT-PEG-NLC formulation for one-month at 4°C and 25°C. The changes are statistically non-

significant at p > 0.05. 

In vitro trans-corneal permeation  

The trans-corneal permeability of NT from the NT-PEG-NLCs, NT-NLCs, and Natacyn® 

were observed to be (0.114 ± 0.04)×10−5, (0.06 ± 0.02)×10−5 and (0.014 ± 0.01)×10−5 cm/s, 

respectively (Figure 2.7). The trans-corneal flux of NT was approximately 2 and 7 times higher 

from NT-PEG-NLCs in comparison to NT-NLCs and Natacyn®, respectively (Figure 2.7). 

Accordingly, the trend for rate of permeation was observed to be NT-PEG-NLCs > NT-NLCs > 

Natacyn® (Figure 2.7).  
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Figure 2.7: Plot of rate (µg/min), flux (µg/min/cm2), and permeability (× 10−5 cm/s) for NT 

permeation across the cornea from NT-PEG-NLCs, NT-NLCs and Natacyn® over 3 h, (n=3). The 

data for rate, flux, and permeability shows a statistically significant difference at p < 0.05 for 

NT-PEG-NLCs, NT-NLCs, and Natacyn®. 

In vivo ocular biodistribution studies 

Based on the in vitro transcorneal permeation, the NT formulations were investigated for 

their ocular biodistribution of NT upon topical application in conscious rabbits having intact 

corneal epithelium. All the NT formulations could deliver the drug to cornea, ICB, AH and VH 

which are the most common sites for ocular fungal infections. The ocular tissue NT concentrations 

obtained from the above formulations are shown in Figure 2.8. 
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Figure 2.8: NT concentrations (µg/g) in cornea, ICB, AH, and VH from NT-PEG-NLC, NT-

NLC, and Natacyn® (0.3% and 5%) obtained after three doses; administered every 2 hours (t = 0, 

2, and 4 hours) for a 6-hour study; (*) denotes statistically significant difference at p < 0.05 (n=4, 

data represented as Mean ± Standard Error). 

In cornea, the NT concentration from Natacyn® (5%) was significantly higher than the NT-

PEG-NLC (p < 0.05). However, when Natacyn® was diluted and administered at 0.3% (dose 

normalized with NT-PEG-NLC) a significantly higher concentration was obtained for NT from 

NT-PEG-NLC in comparison to diluted Natacyn® (0.3%) (p < 0.05). Additionally, a statistically 

significant difference was found between the NT concentrations from NT-PEG-NLC and NT-NLC 

in cornea (p < 0.05).  

The concentration of NT from NT-PEG-NLC and Natacyn® (5%) in ICB was found to be 

statistically non-significant (p > 0.05). However, a statistically significant difference was found in 
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ICB for the NT concentrations from NT-PEG-NLC and diluted Natacyn® (0.3%) at their dose 

normalized concentrations. Similar to cornea, in ICB too, a statistically significant difference was 

found between the NT concentrations obtained from NT-PEG-NLC and NT-NLC. 

The concentration of NT from NT-PEG-NLC, NT-NLC, and Natacyn® (0.3% and 5%) did 

not show a statistically significant difference in AH. However, in VH a statistically significant 

difference was observed in NT concentrations obtained from NT-PEG-NLC and Natacyn® (5%), 

with higher NT concentration from NT-PEG-NLCs.  

3.4. DISCUSSION 

Currently, NT is the only marketed antifungal drug that is indicated in the management of 

ocular fungal infections like fungal keratitis and fungal endophthalmitis (80). One of the major 

challenges that is associated with the commercial NT formulation is the low BA (~ 2%) that 

necessitates the frequent ocular application (about 6-8 times a day) of the NT commercial 

formulation (65). Hence, to potentially improve its BA and enhance its permeation into the ocular 

tissues, a surface modified (using mPEG-2K-DSPE) nano-lipid carrier system for NT was 

developed. The primary objective of this investigative study was to develop, optimize, and 

characterize the optimized PEGylated lipid-based nanoparticulate dosage system for the ocular 

delivery of NT and to investigate its corneal permeation, in vitro and in vivo.  

Nano-lipid drug carriers are colloidal nanoparticulate dispersions that can be administered 

topically in the form of eyedrops. A major advantage of the nanoparticulate systems over the 

conventional drug delivery systems is that, their uptake is facilitated by epithelial cells, which 

allows for greater penetration into and from the corneal surface (81-84). Moreover, their small 

size, biocompatibility, and chemically inert nature improves their interactions and prolongs the 

pre-ocular residence time of drugs, thus enhancing drug bioavailability (85-88). Surface 
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modification of NLCs by coating with hydrophilic agents such as PEGs and PEG-derivatives, in 

addition to improving the pharmaceutical stability of the system, can further enhance ocular 

penetration, mainly increasing the cellular uptake and internalization (89-92).  

Castor oil and Precirol® ATO 5 were chosen as the liquid and solid lipids because NT had 

the highest solubility in them without causing any precipitation upon cooling the NT-lipid melt. 

Span® 80, a surfactant, was chosen to achieve the highest loading for NT, reduce the particle size, 

and obtain a narrow PDI distribution. The content of mPEG-2K-DSPE sodium salt was kept 

constant at 1.5% w/v in all the experimental trails because, in our previous studies, 1.5% w/v 

content of mPEG-2K-DSPE sodium salt was found to be the most optimum load that could 

stabilize the NLC system and enhance the corneal drug permeation upon topical instillation (78).  

In the formulation development and optimization process, the most suitable formulation 

was selected using the Design Experiment® software that utilized the Box-Behnken design. The 

Box-Behnken design was chosen over the traditional factorial design methods because, the Box-

Behnken design sharply reduces the number of experimental runs without decreasing the accuracy 

of the optimization process. Regression analyses, 3D RSM, interaction, and contour plots provided 

by the software aided in understanding the effect and/or interaction of the independent factors on 

the response variables. These effects and/or interactions served as bases in selecting the most 

optimum formulation as a predicted outcome from the software. 

In predicting the most optimum formulation from the 25 experimental trials using Design 

Expert® software; formulations were analyzed for particle size, PDI, % entrapment, and % DL. 

The optimized formulation had the constraints that it should have the highest entrapment, and % 

DL, particle size at the lower spectrum of 10-1000 nm (< 300 nm) and a narrow PDI. A higher 

entrapment and DL is sought for delivering a higher amount of drug at the ocular site and particle 
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size at the lower spectrum of 10-1000 nm with a narrow PDI is required for the penetration of the 

drug loaded nanoparticles from the ocular surface (85). 

Regression analyses, 3D RSM, interaction, and contour plots provided by the Design 

Expert® software aided in understanding the effect of the excipients and processing parameters on 

the physicochemical attributes of the NT-PEG-NLC formulation. The independent factors (amount 

of excipients and processing time) were fit into a 2FI (2 factor interaction) model and the 2FI 

models were found to be significant for particle size, % entrapment, and % DL; high F values for 

2FI models indicating a strong effect of amount excipients and processing time on the 

physicochemical attributes (particle size, % entrapment, % DL) of the final NT-PEG-NLCs (Table 

2.4). Accordingly, the content of lipids (Precirol® ATO 5 and castor oil), surfactant (Span® 80), 

and processing parameter (HPH time), individually and/or in combination, were found to affect 

the particle size, % NT entrapment and % DL of NT-PEG-NLC formulation. An in-depth 

discussion on the effect of excipients and processing parameters on the NT-PEG-NLC formulation 

characteristics has been individually elaborated in the following sections.   

The particle size of the NT-PEG-NLC was found to be significantly affected by the amount 

of Precirol® ATO 5, HPH time, and interactions between (Precirol® ATO 5 & HPH time) and 

(castor oil & Span® 80) (p < 0.05). Particle size was found to increase with an increase in the 

amount of lipid excipients (Precirol® ATO and castor oil) and decrease with an increase in the 

amount of surfactant (Span® 80) and processing time (HPH time). From Table 2.5: equation 1, it 

is observed that an increase in the amount of Precirol® ATO 5 and a shorter HPH time will lead to 

an increase in the particle size. It has been evidenced that an increase in the amount of solid lipid 

in the NLC system increases the particle size due to an increase in the lipid density (93, 94). Also, 

a shorter duration of homogenization versus a longer duration leads to the application of lower 
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shear resulting in NLCs having a higher particle size (93, 94). From the plots in Figure 2.1, the 

combined interaction of (Precirol® ATO 5 & HPH time) and (castor oil & Span® 80) could be 

explained. The effect of combined interaction of Precirol® ATO 5 and HPH time affected the 

particle size in a pattern like the effect observed for the two factors individually. The effect of the 

combined interaction of Span® 80 and castor oil was found to affect the particle size with lowest 

amounts of castor oil and highest amount of Span® 80 giving the lowest particle size. A lower 

liquid lipid results in lower density of the lipid in the system and a higher amount of surfactant 

promotes formation and stabilization of the NLC by decreasing the interfacial tension between the 

lipid and the external phase (93, 95).  

PDI was one of the response factors in deciding the most optimum formulation. However, 

a mathematical model could not be generated for it. The variation in PDI was extremely narrow 

and did not vary significantly. The absence of the mathematical model for PDI indicated that the 

hot homogenization method was robust to the changes in independent factors and hence any 

changes in the independent factors did not significantly affect the responses for PDI. 

It was found that % entrapment was significantly (p < 0.05) affected by the amount of 

Precirol® ATO 5, castor oil, HPH time, and interactions between castor oil & HPH time (Table 

2.5, equation 2). An increase in the amount of liquid lipid (castor oil), increase in the processing 

time (HPH time), and a decrease in the amount of solid lipid (Precirol® ATO 5) were found to 

improve the entrapment of NT in the NT-PEG-NLCs.  From Table 2.5: equation 2 and Figure 2.2, 

it is observed that amount of castor oil, duration of homogenization, and their combined interaction 

linearly affects the entrapment of NT. An increase in NT entrapment by increasing the amount of 

castor oil and duration of homogenization, either individually or in combination, causes an increase 

in the surface area of castor oil in presence of a surfactant (Span® 80) during the homogenization 
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process which may lead to a higher partition of NT (a lipophilic drug) into the castor oil phase 

thereby improving the drug entrapment (96). In NLCs, since the solid lipid forms the outer matrix, 

an increase in the amount of Precirol® ATO 5 (solid lipid) could lead to reduced entrapment of NT 

within the NLC core (containing the castor oil) and higher presence of NT on the surface of NLCs 

(97).  

Amount of Precirol® ATO 5 and the combination of interaction between castor oil & HPH 

time were found to have an effect on the DL. An increase in % DL was observed with a decrease 

in the amount of Precirol® ATO 5 and an increase in the HPH processing time. An increase in 

amount of solid lipids without increasing the liquid lipid amounts are reported to reduce the DL 

owing to the denser matrix provided by the solid lipids; hence, increasing the amount of Precirol® 

ATO 5 (solid lipid) without increasing the castor oil amount leads to a reduction of NT load in the 

NLC system (Table 2.5: equation 3) (97, 98). Similarly, the HPH time and the interaction factor 

involving it affect the NT load proportionally. A longer duration of homogenization leads to an 

increase in the % DL as observed from Table 2.5: equation 3 and Figure 2.3 plots. This could 

possibly occur due to the increased surface area available during the prolonged homogenization 

process that could lead to a higher drug load (93).    

Upon understanding the effects of excipients and processing parameters on the formulation 

attributes such as particle size, PDI, % entrapment, and % DL an optimized formulation was 

suggested by the Design Expert® software. Using desirability approach, the optimum formulation 

was selected and formulated and a close agreement between the predicted values and experimental 

values for particle size, PDI, % entrapment, and % DL was observed (Table 2.6).   

The particle size of NT-PEG-NLCs, using STEM, was found to be approximately in the 

range of 200 – 250 nm which was in agreement with the particle size dimensions obtained from 
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dynamic light scattering experiments (Figure 2.4). In determining the physical state of NT in NT-

PEG-NLC using a qualitative PXRD method, absence of characteristic NT peaks in NT-PEG-NLC 

(Figure 2.5), indicates a potential amorphous transition of NT and/or its entrapment within the 

lipid matrices. Physical stability of the formulation is an important characterization parameter that 

could be evaluated by the changes in particle size, PDI, and % drug entrapment (95). The 

statistically non-significant changes in the above-mentioned parameters for the optimized NT-

PEG-NLCs suggested that the nanoparticulate system was stable for one-month at 4°C and 25°C.  

The topical medications instilled into the eye majorly undergo absorption via the corneal 

route (99). Compared to Natacyn®, both NT-PEG-NLCs and NT-NLCs demonstrated significantly 

higher permeability across the cornea, in vitro. This could be attributed to the endocytosis-

mediated internalization of the NT-NLCs and NT-PEG-NLCs leading to their higher permeation 

across the cornea and lower retention within the cornea in comparison to Natacyn® (99-101). In 

case of NT-NLCs and NT-PEG-NLCs, the latter showed a higher trans-corneal permeation. The 

higher in vitro trans-corneal permeability of NT-PEG-NLCs is in agreement with the reported 

literature (PEGylated nanocarriers penetrating better across the corneal epithelium and mucosa 

than their non-PEGylated counterparts) and could be ascribed to the strong hydrophilicity provided 

by the PEG coating, that aids in the quicker diffusion of NT-PEG-NLCs in comparison to the NT-

NLCs (devoid of PEG coating) (91, 102, 103). An earlier report from our laboratory has 

demonstrated the effect of PEGylation, and also evaluated the effect of PEG chain length and PEG 

density on the transcorneal permeability (104). Thus, in this study, in terms of in vitro transcorneal 

permeability, the NT-PEG-NLCs > NT-NLCs > Natacyn®. 

A couple of studies have evaluated NT loaded nanoparticle formulations. The development 

and characterization (in vitro and in vivo) of NT loaded poly-d-glucosamine (PDG) functionalized 
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polycaprolactone (PCL) nanoparticles and NT loaded lecithin-chitosan mucoadhesive 

nanoparticles at 1% and 5% w/v of NT loading, for ophthalmic keratitis have been reported by 

Chandasana et al and Bhatta et al, respectively. In both these studies, it was found that the NT 

nanoparticles (1% and 5% w/v) demonstrated improved tear pharmacokinetic profiles such as 

higher concentration, greater area under curve, higher residence times, and lower clearance in the 

lacrimal fluid and at the precorneal sites in comparison to the marketed NT suspension (5% w/v) 

(62, 63). However, the authors did not investigate/report NT concentrations in the surface or inner 

ocular tissues. In another evaluation by Paradkar et al., the authors’ demonstrated a significantly 

higher in vitro trans-corneal NT penetration from NT niosome loaded in situ gel in comparison to 

NT marketed suspension; however, the performance of the formulation was not evaluated in vivo. 

Since, surface and inner ocular tissues (such as cornea, ICB, AH, and VH) are the major sites of 

fungal infections and the targets for NT in antifungal therapy; the current study sought to undertake 

a comparative evaluation of the concentration of NT from the optimized nano-lipid carriers and 

marketed suspension (Natacyn®) in various ocular tissues. To the best of our knowledge, this is 

the first study evaluating the effectiveness of nano-lipid carriers in the ocular delivery of NT. 

In the in vivo ocular biodistribution assessment, NT-PEG-NLC were compared to their 

non-PEGylated counterparts and to marketed Natacyn® suspension at 5% and 0.3% (diluted 

marketed formulation). The comparison of NT concentrations from NT-PEG-NLC and NT-NLC 

in the ocular tissues was undertaken to determine the effect of PEGylation on the NT loaded nano-

lipid carriers. In case of the marketed suspensions, 5% Natacyn® represented the marketed dose 

whereas the 0.3% represented the dose normalized concentration with the formulated NT-PEG-

NLCs. These comparisons at the marketed and dose normalized concentrations aided in delineating 

the effectiveness of the nanoparticle formulations in terms of ocular delivery of NT.    
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The NT-PEG-NLC exhibited significantly higher concentration (~3 folds higher) in the 

cornea in comparison to NT-NLC. The concentration of NT from NT-PEG-NLC was significantly 

higher in ICB and VH also in comparison to the NT-NLC formulation. This observation of higher 

concentrations associated with NT-PEG-NLC over the non-PEGylated counterpart is in line with 

the numerous literature reports which state that the PEG surface coating facilitates in the better 

diffusion of nano-lipid carriers across the corneal epithelium and mucosal layers (91, 102, 103).  

The dose normalized comparison of NT-PEG-NLC and diluted Natacyn® (0.3%), yielded 

a ~2 folds higher concentration of NT from NT-PEG-NLC than diluted Natacyn® (0.3%) in both 

cornea and ICB. The NT concentrations in AH and VH did not show any statistical difference, 

indicating that similar NT concentrations were obtained from NT-PEG-NLC and Natacyn® (0.3%). 

This in vivo data demonstrates that the NT-NLC are less bioavailable than their PEGylated 

counterparts (both having particle size in the range of 200 – 250 nm) and the marketed suspension 

(containing natamycin in micronized form) at dose normalized concentrations (0.3%). This is in 

contrast to the in vitro transcorneal permeation data (NT-PEG-NLCs > NT-NLCs > Natacyn®); 

however, it should be noted that the in vitro set-up conditions are significantly different (static) 

from the in vivo environment, which is very dynamic in nature and has additional precorneal 

barriers such as the mucus layer. An added advantage of PEGylation is that it allows efficient 

penetration across mucus layers (102, 103). Thus, a larger number of NT-PEG-NLC particles will 

be able to reach the corneal epithelium (penetrating through the mucus layers) compared to the 

NT-NLCs, which can get trapped in the mucus meshwork (91, 101-103). As a result, the NT-PEG-

NLCs demonstrate greater in vivo ocular bioavailability, whereas, contrary to the in vitro result, 

bioavailability from the NT-NLCs is decreased. Thus, a combination of better penetration across 
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the mucus as well as better transcorneal permeability of the nanoparticles lead to the overall 

enhanced bioavailability from these NT-PEG-NLC formulations.  

Natacyn® (5%) showed ~2 folds higher concentration in cornea in comparison to NT-PEG-

NLC. This could be attributed to a 16-fold higher dose for Natacyn® (5%; the marketed dose) when 

compared to NT-PEG-NLC (0.3%). It should be noted that the dose of the marketed formulation 

which was 16-fold higher led to only a 2-fold increase in corneal concentrations compared to the 

NT-PEG-NLC. In contrast, a non-significant difference in NT concentration levels was obtained 

from the NT-PEG-NLC and Natacyn® (5%) in the ICB and AH tissues, which again indicated that 

a 16-fold higher dose could not lead to significantly higher NT concentrations in the deeper tissues. 

In case of VH, a significantly higher NT concentration (~4 folds) was observed from NT-PEG-

NLC in comparison to Natacyn® (5%). The observation that Natacyn® (5%) produced higher 

corneal NT concentrations whereas NT-PEG-NLC delivered equivalent/higher NT concentrations 

in the AH, ICB and VH tissues could be associated with the NT-PEG-NLC penetrating better 

across the corneal epithelium and thus into the ocular tissues due to the strong hydrophilicity 

provided by the PEG coating, which aided in its faster diffusion across the corneal epithelium and 

mucosa (100, 101, 105). Additionally, the involvement of the conjunctival-scleral pathway could 

also be associated with the better penetration of NT-PEG-NLC formulations, since, the 

conjunctival-scleral pathway has been attributed to be an important factor in improving and 

enhancing the permeation of nano-lipid carrier systems in comparison to the conventional ocular 

dosage forms such as the suspensions (78, 105).   

In the in vivo evaluation, it is also interesting to note that, there was an approximately 16-

fold decrease in both BAK and NT concentrations in the marketed formulation when 5% Natacyn® 

was diluted to 0.3%. However, this 16-fold decrease in the concentration gradient and possible 
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permeation enhancer translated to only an ≈ 4-fold decrease in NT concentration in the cornea and 

a 2.5-fold decrease in NT concentrations in the iris-ciliary bodies. This indicates that, for the 

marketed formulation, the concentration of drug in the tear fluid primarily governs the 

bioavailability. It should be noted that no preservatives have been added to the NT nanoparticle 

formulations in this study, and when added, can only lead to an improvement in the ocular 

bioavailability (assuming no incompatibility exists). 

In ocular fungal infections, such as fungal keratitis, the anterior segment tissues such as 

cornea, ICB, and AH are majorly affected (106). Cornea is characterized by the debridement of its 

epithelium, which facilitates the passage of the antifungal agents such as NT through its layers and 

into the inner ocular tissues (69, 106, 107). However, as the healing of cornea begins during the 

course of antifungal therapy, the drug permeation reduces due to the restoration of the corneal 

epithelium integrity. Hence, this could pose as a potential risk for the relapse of the fungal 

infections due to sub-therapeutic drug concentrations achieved in the inner layers of ICB, AH, and 

VH during the corneal healing process. In such a case, NT-PEG-NLC could provide an alternative 

approach to the conventional NT suspension by achieving similar concentrations in the inner 

ocular tissues of ICB, AH, and VH at a markedly reduced dose (1/16th of the marketed dose).  

3.5. CONCLUSION 

This study reports the preparation and optimization of natamycin loaded surface coated 

PEGylated NLC using Box-Behnken Design, and to the best of our knowledge is the first study 

that reports the in vivo ocular biodistribution for NT from nano-lipid carriers. The optimized NT-

PEG-NLC were found to have small particle size, narrow PDI, and a high NT entrapment with a 

minimum stability of one-month. The NT-PEG-NLCs exhibited significantly higher trans-corneal 

permeation and flux than the marketed suspension (Natacyn®), in vitro. The in vivo ocular 
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biodistribution of NT-PEG-NLC indicated that the concentration of NT from Natacyn® in cornea 

was significantly higher than NT-PEG-NLC. However, it should be noted that the NT load in NT-

PEG-NLC (0.3%) was 1/16th of the marketed suspension. In spite of this, NT-PEG-NLC could 

permeate the intact cornea to reach the ICB, AH, and VH and the difference in NT concentration 

obtained from NT-PEG-NLC and marketed Natacyn® (5%) suspension was statistically non-

significant. To further evaluate the ocular suitability of the NT-PEG-NLC system, it is essential to 

determine its ocular safety and efficacy in fungal keratitis models, in vivo. Since NT-PEG-NLCs 

showed better penetration across intact cornea to reach the inner ocular tissues at a lower 

concentration, they could be a potential alternative during the ocular antifungal regimen. During 

the fungal keratitis therapy, when cornea is healing, it is essential for the drug to penetrate the 

nearly intact cornea to reach inner ocular tissues and prevent the relapse of infection. Summarizing 

the above investigation in determining the in vivo ocular biodistribution of NT from its nano-lipid 

carrier system, the NT-PEG-NLC system (at a lower NT load of 0.3%) showed increased ability 

to penetrate the intact cornea and provide concentrations statistically similar to marketed 

suspension (at a higher dose of 5%) in the inner ocular tissues, indicating that it could be a potential 

alternative to the conventional marketed suspension during the course of the therapy for fungal 

keratitis.  
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Chapter 3 

 Carboxyvinyl Polymer and Guar-Borate Gelling System Containing Natamycin Loaded 

PEGylated Nanolipid Carriers Exhibit Improved Ocular Pharmacokinetic Parameters.  

 

Abstract 

Presently, FDA has approved only natamycin (NT) ophthalmic suspension for treating ocular 

fungal infections. However, short pre-corneal residence and high pre-corneal losses/drainage have 

been the foremost challenges associated with the current ocular antifungal pharmacotherapy. In 

search of alternative strategies, this study aimed to develop carboxyvinyl polymer, guar gum and 

boric acid gelling system, that contained NT loaded PEGylated nanolipid carriers (NT-PEG-

NLCs). NT-PEG-NLCs were fabricated using homogenization technique and demonstrated 

favorable physicochemical characteristics. A 23 factorial design was utilized in the formulation 

and optimization of the NT-PEG-NLC gelling system (NT-PEG-NLC-GEL) with respect to guar 

gum, boric acid, and Carbopol® 940 concentrations. The optimized NT-PEG-NLC-GEL was found 

to exhibit shear thinning rheology, adequate firmness, and spreadability, and formed a depot that 

did not collapse immediately. Additionally, the in vitro transcorneal evaluations indicated that the 

NT-PEG-NLC-GEL exhibited a lower/slower flux and rate in comparison to Natacyn® suspension. 

NT-PEG-NLC-GEL (0.3%) exhibited mean residence time and elimination half-life that were 

comparable to Natacyn® (5%) at the pre-corneal/corneal sites, and, provided similar in vivo 
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concentrations in innermost tissues of the eye, at a 16-fold lower dose suggesting that it could be 

a probable alternative during ophthalmic antifungal therapy.  
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3.1. INTRODUCTION 

Currently, natamycin (NT) ophthalmic suspension (Natacyn® topical eye drops) is the only 

FDA approved, commercially available, formulation for the treatment of ocular fungal infections 

(OFI) (80). NT exhibits activity against filamentous fungal species, particularly Fusarium and 

Aspergillus species, common causes of OFI such as keratitis and endophthalmitis (1, 108, 109). 

NT also exhibits better safety and tolerability profiles compared to the other polyene and azole 

antifungal drugs (3), and has, thus, become a favored first line antifungal agent in treating OFI, 

particularly fungal keratitis (80, 110). 

Fungal keratitis and endophthalmitis, are characterized by fungal infections primarily in 

the cornea and aqueous humor (AH) & vitreous humor (VH), respectively (1, 69, 106, 107). Fungal 

keratitis severely affects the corneal integrity and could be localized initially, but if left untreated, 

could lead to the spread of fungal infection to the inner ocular tissues causing fungal 

endophthalmitis and/or deep-seated mycoses (1, 69, 106, 107). Also, such cases of OFI are 

characterized by a loss of corneal integrity, which additionally facilitates quicker passage of 

antifungal drugs (such as NT), thereby further achieving higher drug levels in the intraocular 

tissues. Despite this, the current therapy involves the need for frequent instillation/dosing of the 

marketed suspension owing to the pre-corneal losses/drainage (3, 65) 

Short residence times in the conjunctival cul de sac, post instillation, and low permeability 

across the corneal membrane, limits ocular bioavailability of NT (≈ 2%) from the Natacyn® topical 

eye drops. This necessitates frequent instillation of the NT eye drops; initially given every hour or 

2-hour and then gradually reduced to about 6 – 8 times a day (65, 70).   Also, Natacyn® suspension 

(5%) is associated with adverse reactions/side-effects such as allergic reaction, change in vision, 

chest pain, corneal opacity, dyspnea, eye discomfort, eye edema, eye hyperemia, eye irritation, eye 
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pain, foreign body sensation, paresthesia, and tearing (111). In our previous studies, we developed 

NT loaded polyethylene glycol nano-lipid carriers (NT-PEG-NLCs) that showed enhanced in vitro 

permeation across the intact cornea and improved ocular bioavailability compared to the 

commercial NT suspension (Natacyn® eye drops) (110) at a 16-fold lower dose (NT-PEG-NLC: 

0.3% versus Natacyn®: 5%) thereby also potentially reducing the chances of the aforementioned 

adverse reactions. The goal of the current research was to improve the retention of the NT-PEG-

NLCs at a lower dose (compared to Natacyn® suspension) on the ocular surface without 

compromising the enhanced transcorneal delivery characteristics.  

Gelling systems containing nanoparticles and/or nano-lipid carriers can improve pre-

corneal and corneal residence times of therapeutic agents, reducing pre-corneal losses, and may 

improve the permeation of therapeutic agents across the corneal barriers owing to prolonged 

contact. Additionally, the composition may provide a sustained/prolonged release profile of the 

therapeutic agent/s, facilitating a reduction in the frequency of application (88, 112-115). 

Carboxyvinyl polymers (such as Carbopol® grades) have been evaluated as gelling agents in the 

ocular delivery of various therapeutic agents. They have found a favor as gelling and/or viscosity 

enhancing agents owing to their ability to provide thickening and gelling effect (by cross-linking) 

at lower concentration, bioadhesive properties (at the corneal surface), clear gel appearance, 

compatibility with various therapeutic agents, and excellent patient compliance due to their ability 

to not interfere with the patients’ vision (116-119). The borate-guar gum combination along with 

carboxyvinyl polymer in the system, stabilizes the cross-linked polymer by providing additional 

cross-links (borate anion reacts with the galactomannan sugar contributed by guar gum to form 

additional cross-links)(120). Therefore, the current study aimed to develop and optimize a 

carboxyvinyl polymer-guar gum-borate gelling system containing NT-PEG-NLCs (NT-PEG-
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NLC-GEL) and compare its in vivo performance against NT-PEG-NLC and Natacyn®.   

3.2. MATERIALS AND METHODS 

Chemicals 

NT was procured from Cayman Chemicals (Michigan, USA). N-(Carbonyl-

methoxypolyethylenglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt 

(mPEG-2K-DSPE sodium salt) was bought from Lipoid (Ludwigshafen, Germany). Precirol® 

ATO 5 (Glyceryl distearate) was a gift from Gattefossé (New Jersey, USA). Castor oil, surfactants 

(Span® 80, Tween® 80, poloxamer 188), and glycerin were all bought from Acros Organics (New 

Jersey, USA). The gelling components – guar gum, boric acid crystals, and Carbopol® 940 

(generally regarded as safe (GRAS) status and used in FDA approved ophthalmic products); and 

all the solvents (analytical grade) were purchased from Fisher Scientific (Illinois, USA).   

Methods 

Preparation of NT-PEG-NLCs 

Homogenization method was employed in the preparation of NT-PEG-NLCs which has 

been reported earlier (110). Briefly, an aqueous phase consisting of surfactants – Tween® 80 

(0.75% w/v; primary surfactant), poloxamer 188 (0.25% w/v; secondary surfactant), and glycerin 

(2.25% w/v) was prepared in de-ionized water and heated. Separately a molten lipid phase 

containing NT (0.3% w/v), castor oil (1% w/v), Precirol® ATO 5 (1.5% w/v), mPEG-2K-DSPE 

sodium salt (1.5% w/v), and Span® 80 (0.1% w/v) was prepared. The aqueous phase was gradually 

added to the lipid phase under continuous stirring at 2000 rpm for 5 minutes. The coarse emulsion 

was then emulsified (Ultra-Turrax, 16,000 rpm, 5 minutes) to form a fine emulsion. The fine 

emulsion was then subjected to high pressure homogenization (HPH; 15,000 psi) using 
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temperature controlled Avestin® Emulsiflex C5 homogenizer that resulted in the formation of NT-

PEG-NLCs. Temperature was maintained at a constant 80 ± 2°C during the entire process of NT-

PEG-NLC preparation. 

Experimental design 

A 23 factorial design (8 formulation experimental run; design generated using Design-

Expert® software (8.0.7.1)) was employed to develop the gelling system for NT-PEG-NLCs. The 

independent factors were the gelling excipients (guar gum, boric acid, and Carbopol® 940) and the 

dependent variables were gelling time, gel depot collapse time, rheology, firmness, and work of 

adhesion.  

Preliminary studies were performed to determine the individual levels of the gelling 

excipients. Then, the factorial design was utilized to select the optimum levels of all the three 

gelling excipients in obtaining a suitable optimized formulation with desired properties. Tables 

3.1 and 3.2 present the details on the experimental 23 factorial design.  

Table 3.1: Independent factors (at their two levels) and dependent variables in the experimental 

23 factorial design. 

Factors Levels 

Independent factors Level 1 Level 2 

Guar gum (% w/v) 0.1 0.2 

Boric acid (% w/v) 0.4 0.5 

Carbopol® 940 (% w/v) 0.1 0.4 

Dependent variables Constraints 

Gelling time Minimum 
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Gel depot collapse time Maximum 

Rheology Optimum (shear-thinning rheology) 

Firmness Maximum 

Work of adhesion Maximum 

Guar gum: L = 0.1 & H = 0.2; Boric acid: L = 0.4 & H: 0.5; Carbopol® 940: L = 0.1 & H = 0.4 

Table 3.2: 23 factorial design for the NT-PEG-NLC-GEL. 

 Code Guar gum 

(% w/v) 

Boric acid 

(% w/v) 

Carbopol® 940 

(% w/v) 

All the codes 

contain NT-

PEG-NLC (0.3% 

w/v) 

B1 H L L 

B2 H L H 

B3 L L L 

B4 L L H 

B5 L H L 

B6 L H H 

B7 H H L 

B8 H H H 

 

Fabrication of NT-PEG-NLC-GEL 

NT-PEG-NLCs were taken and magnetically stirred at 2000 rpm. Weighed quantities of 

guar gum, boric acid, and Carbopol® 940, according to the experimental runs (Table 3.1), were 

added into the NT-PEG-NLCs, and the stirring was continued for 15 minutes. Post 15 minutes 
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stirring, NT-PEG-NLC-GELs (of compositions as described in Table 3.2) were prepared and 

evaluated for the of dependent variables (as specified in Table 3.1).  

Characterization of NT-PEG-NLC-GEL 

Gelling time and gel depot collapse time: Simulated tear fluid (STF; 10 mL; composition: NaCl 

(0.68% w/v), NaHCO3 (0.22% w/v), CaCl2 (0.008% w/v), and KCl (0.140% w/v) in deionized 

water), pH = 7.4, was taken in multiple scintillation vials. Five hundred microliters of the eight 

different NT-PEG-NLC-GEL in-situ gelling samples (existing as liquids) were added and observed 

for their in-situ gelling in STF. Time required for the gel to form and the duration of time the depot 

was maintained was determined.    

Rheology: Rheological evaluations were carried out using Bohlin Visco 88 viscometer (Malvern 

Panalytical, UK). A cup and bob attachment with a C14 probe were used to determine the 

rheological behavior of the NT-PEG-NLC-GEL. Six hundred microliters of the gel samples (after 

adding STF/post gelling) were placed in the cup and the rheology analyses were carried out in the 

“up & down” ramp mode, at pre-defined multiple shear rates (66.5-506.5 1/s), and at room 

temperature. The rheology data analyses were accomplished using Bohlin Software (Version 

6.32.1.2).   

Texture analyses (firmness and work of adhesion): Texture analyses for NT-PEG-NLC-GEL was 

performed using Texture Analyzer model TA.XT2i (Texture Technologies Corp, USA) along with 

a 1-inch diameter (TA-3), cylindrical, acrylic probe, and a soft matter kit (TA-275) (121). NT-

PEG-NLC-GELs were placed in the soft matter fixture and placed below the TA-3 probe and the 

texture analyses was performed according to the parameters specified in Table 3.3.  
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Table 3.3: Parameters for texture analyses of NT-PEG-NLC-GEL. 

Parameter Set value 

Test mode Compression 

Pre-test speed 0.5 mm/sec 

Test speed 0.5 mm/sec 

Post-test speed 0.5 mm/sec 

Target mode Distance 

Distance 1.0 mm 

Trigger type Auto (Force) 

Trigger force 2.0 g 

Temperature Room temperature 

 

Transcorneal permeation: Transcorneal flux, permeability, and permeation rate of NT from NT-

PEG-NLC-GEL formulation was assessed across rabbit cornea procured from Pel-Freez 

Biologicals® (Arkansas, USA) using vertical Franz diffusion cells (PermeGear®, Inc.) (110, 122). 

The underlying aim of the transcorneal permeation study was to select the most optimum (guar 

gum: boric acid) ratio, and to evaluate the effectiveness of the incorporation of the NT-PEG-NLCs 

in the carboxyvinyl polymer-guar gum-borate gels and compare the gelling system to NT-PEG-

NLCs (not incorporated into gel) and diluted Natacyn® (dose normalized; diluted to 0.3% w/v).  

Cornea was fixed in between the donor and receiver compartments, with corneal epithelial 

surface facing the donor cell containing formulations. Five hundred microliters of diluted 

Natacyn® (dose normalized; 0.3% w/v), NT-PEG-NLCs (0.3% w/v), and NT-PEG-NLC-GEL 

(0.3% w/v) were the test formulations that were placed in the donor compartment. Randomly 
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methylated-β-cyclodextrin (RMβCD) in Dulbecco's Phosphate-Buffered Saline (DPBS) (2.5% 

w/v) was used as the receiver medium (5 mL) to maintain the corneal integrity and sink conditions 

during the study and was stirred continuously using a magnetic stirrer (123, 124). Aliquots (600 

μL) were withdrawn at pre-determined time intervals over a duration of 3-hours and replenished 

with an equal volume of RMβCD in DPBS. NT concentration in the aliquots was quantified using 

a HPLC analytical method for in vitro samples described in the subsequent analytical methods 

section. 

NT content in optimized NT-PEG-NLC-GEL: Pre-determined amount of NT-PEG-NLC-GEL 

was taken from three different regions (bottom, middle, and top) of the gel formulation and 

dissolved in methanol (extracting solvent). The gel samples were centrifuged at 13,000 rpm for 10 

minutes and the supernatant analyzed for NT.  

pH of the optimized NT-PEG-NLC-GEL: pH of the optimized NT-PEG-NLC-GEL formulation 

was determined by SevenMulti™ Mettler Toledo pH meter (Belgium). 

In vitro release and release kinetics of the optimized NT-PEG-NLC-GEL: Twenty milliliters of 

STF, pH = 7.4, was taken in six scintillation vials, to evaluate the release of NT from NT-PEG-

NLC-GEL system and NT suspension. STF was selected as a biorelevant medium to study the 

drug release at/in the precorneal region, since the gelling system was intended to be 

applied/instilled in the precorneal region (125). The study was carried out under continuous 

magnetic stirring of the STF at 32 ± 1°C. Briefly, two hundred microliters of the samples were 

loaded on to the dialysis cassettes (Slide-A-Lyzer® Mini Dialysis Devices, 10K MWCO) which 

contained a cellulose membrane with diffusion area of 0.64 cm2. At pre-determined time points (t 

= 0, 0.5, 1, 1.5, 2, 4, 6, 12, 24, and 48 hour) six hundred microliters of the aliquot sample of STF 

was withdrawn from the scintillation vial and an equal amount of STF was replaced in the vial 
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post every withdrawal. The aliquot sample of STF was then analyzed using HPLC to quantify the 

amount of NT released across the active diffusion membrane. The release data was analyzed to 

model the release kinetics using different release models – Higuchi square root, first-order, zero-

order, and Korsmeyer-Peppas models. 

In vivo pre-corneal tear pharmacokinetics (PK) of the optimized NT-PEG-NLC-GEL: In vivo 

pre-corneal tear kinetics of the various NT formulations was determined in triplicates (n=3) in 

male New Zealand White (NZW) Rabbits (2-2.5 kg), which were purchased from Charles River 

Labs. All the animal studies conformed to the tenets of the Association for Research in Vision and 

Ophthalmology statement on the use of animals in ophthalmic vision and research and the 

University of Mississippi Institutional Animal Care and Use Committee approved protocols. The 

rabbits were dosed (100 µL administered as two drops of 50 µL each) with NT-PEG-NLC-GEL, 

NT-PEG-NLC, and Natacyn® (5%) formulations topically. Therefore, amount of NT dose received 

by the rabbits was 0.3 mg (for NT-PEG-NLC-GEL and NT-PEG-NLC) and 5 mg (for Natacyn®). 

The tear samples were collected using a pre-weighed piece of filter paper by gently touching the 

filter paper at the corneal surface at every time point (t = 0, 0.5, 1, 2, 3, 4, 5, and 6 hours). The wet 

weight of the filter paper was then recorded and the difference in their dry and wet weights was 

used in the determination of the amount of tear fluid that was collected which was used in the 

estimation of NT from the tear biosamples.  

NT from the tear biosamples collected on filter papers was extracted with six hundred 

microliters of ice-cold methanol, mixed thoroughly using a vortex genie mixer, and centrifuged 

(13,000 rpm, 15 minutes) in a table-top centrifuge. The supernatant was then collected and 

analyzed for NT using a validated HPLC quantification method that has been outlined below 

(analytical methods). The data was then analyzed using PKSolver software 2.0 for determining the 
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various PK parameters (126). Once the study was completed, Balanced Salt Solution (BSS) was 

used for washing the test eyes of the rabbits during the wash-out period.       

Ocular biodistribution of the optimized NT-PEG-NLC-GEL: NT-PEG-NLC-GEL, NT-PEG-

NLC, and Natacyn® (5%), were dosed in vivo, in conscious NZW rabbits (n = 3; 12 rabbits). The 

dosing regimen of rabbits is detailed in Table 3.4. At the sacrificial time-points, rabbits were 

anesthetized using a combination of ketamine (35 mg/kg) and xylazine (3.5 mg/kg) injected 

intramuscularly. Using an overdose of pentobarbital injected through ear vein, the rabbits were 

euthanized. Rabbit eyes were enucleated and washed using BSS and the intraocular tissues such 

as, aqueous (AH) and vitreous (VH) humors, iris-ciliary bodies (ICB), and cornea, were separated 

and extracted for NT. Briefly, ICB and cornea were cut into pieces, and AH and VH were taken in 

centrifuge tubes and ice-cold methanol (600 µL) was added for protein precipitation. The 

biosamples were sonicated for 10 minutes in an ultrasonic bath and centrifuged (13,000 rpm, 30 

minutes) before quantification.  

Table 3.4: Dosing regimen of rabbits (n = 3) for ocular biodistribution studies 

Set Number 

of animals 

Formulations Volume NT dose Dosing 

frequency 

Sacrificial 

time-point 

1 

n = 3 NT-PEG-

NLC-GEL 100 μL as 

two drops 

50 μL each 

0.3 mg 

t = 0, 3, 6 

hours 
t = 9 hours n = 3 NT-PEG-

NLC 

0.3 mg 

n = 3 Natacyn® 5 mg 
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Set Number 

of animals 

Formulations Volume NT dose Dosing 

frequency 

Sacrificial 

time-point 

2 n = 3 NT-PEG-

NLC-GEL 

0.3 mg t = 0, 4 

hours 
t = 8 hours 

 

Using standard calibration curves for AH (0.4–100 ng/mL), VH (2–200 ng/mL), cornea 

(1.31–65.57 ng/mL), ICB (1.31–65.57 ng/mL), NT quantification was accomplished using LC-

MS/MS method. A coefficient of determination r2 ⩾ 0.95 was obtained for all the standard curves. 

NT extraction efficiency was greater than 95% for cornea, ICB, and AH whereas was about 82% 

for VH; and, process efficiency was greater than 90% for all the tissues (110). The LOD for all 

ocular tissues corresponded to 0.13 ng/mL for all four intraocular tissues analyzed (110). 

Analytical methods 

In vitro analyses: NT was quantified using a validated HPLC method reported in literature (79, 

110). The HPLC system consisted of a Waters 717 plus auto-sampler coupled with a Waters 2487 

Dual λ Absorbance UV detector, a Waters 600 controller pump, and an Agilent 3395 Integrator. 

The mobile phase consisted of a mixture of phosphate buffer (0.2 M, pH 5.5) and acetonitrile 

(70:30) with flow rate of 1 mL/min. A C18 Phenomenex Luna® (5µ, 250 x 4.6 mm) column was 

used. The injection volume was 20 µL, and the UV detection wavelength was set to 304 nm at 

AUFS 1.00.  

In vivo analyses: A Waters Xevo TQ-S triple quadrupole tandem mass spectrometer with an 

electrospray ionization source (ESI), equipped with ACQUITY UPLC® I-Class System were used 

(Waters Corporation, Milford, MA, USA) in NT quantification from biosamples. TargetLynx and 

MassLynx were utilized for data acquisition and data processing, respectively. Separation was 
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achieved using a C18 column (Acquity UPLC® BEH C18 100 mm×2.1 m, 1.7μm particle size). 

Mobile phase consisted of water (A), and acetonitrile (B) both containing 0.1 % formic acid with 

a gradient flow rate of 1.0 mL/min (0 min, 98 % A/2 % B held for 0.2 min and in next 2.3 min to 

100% B). Each run was followed by 1-minute wash with 100 % B and equilibration period of 2 

min with 98 % A/2 % B. Column and sample temperature were maintained at 50ºC and 10°C, 

respectively. Column effluent was directed into the ESI probe. The ESI conditions were: 

desolvation temperature 600°C, source temperature 150°C, capillary voltage 3.0 kV, cone voltage 

40 V, nebulizer gas 1100 L·h−1 N2, and nebulizer pressure, 7 bar. The collision gas utilized was 

Argon and collision energies ranged from 10 to 15 eV. Mass spectra were acquired in positive 

mode and multiple reaction monitoring (MRM) mode. The MRM mode was applied to monitor 

the transitions of quantifier ion to qualifier ions of m/z 666.2 → m/z 467.2, 485.2, 503.2 for NT; 

m/z 924.4 → m/z 107.5, 743.2, 761.4 for amphotericin B (internal standard).  

STATISTICAL ANALYSES 

For each study, a minimum of 3 independent experimental trials have been performed and 

the data values have been represented as mean ± standard deviation and/or mean ± standard error. 

Statistical comparison was performed using Student’s t-test and/or one-way analysis of variance 

(ANOVA). Statistically significant differences were considered at p-value less than 0.05. 

3.3. RESULTS 

Characterization of NT-PEG-NLC-GEL 

Gelling time and gel depot collapse time: The results observed from gelling time and gel depot 

collapse time are presented in Table 3.5. Out of 8 (B1-B8) factorial runs, B1, B3, B5, and B7 did 

not undergo gelation to form a gel depot. Therefore, these formulations from the experimental 
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design could not be considered for statistical analyses (ANOVA). On the basis of the results, NT-

PEG-NLC-GEL formulation codes (B2, B4, B6, and B8) were selected for further evaluation with 

respect to the other aforementioned dependent variables with the intent to optimize and select the 

most suitable NT-PEG-NLC-GEL formulation.  

Table 3.5: Results from gelling time and gel depot collapse time study. 

Code Gelling components in NT-PEG-

NLC-GEL (%) 

Gelling 

time 

Depot 

collapse 

time 

Firmness 

(g) 

Work of 

Adhesion 

(g-sec) Guar 

gum  

Boric 

acid 

Carbopol® 

940 

B1 0.2 0.4 0.1 (-) NA NA NA 

B2 0.2 0.4 0.4 (+) Depot 

until > 

12 hours 

7.36±2.86 21.54±1.52 

B3 0.1 0.4 0.1 (-) NA NA NA 

B4 0.1 0.4 0.4 (+) Depot 

until > 

12 hours 

10.32±0.28 23.59±3.04 

B5 0.1 0.5 0.1 (-) NA NA NA 

B6 0.1 0.5 0.4 (+) Depot 

until > 

12 hours 

11.30±1.37 23.41±4.31 

B7 0.2 0.5 0.1 (-) NA NA NA 
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Code Gelling components in NT-PEG-

NLC-GEL (%) 

Gelling 

time 

Depot 

collapse 

time 

Firmness 

(g) 

Work of 

Adhesion 

(g-sec) Guar 

gum  

Boric 

acid 

Carbopol® 

940 

B8 0.2 0.5 0.4 (+) Depot 

until > 

12 hours 

8.42±3.79 20.87±2.18 

(-): does not form a gel depot and instantaneously collapses in STF; (+): forms a gel depot 

immediately (< 1 min). 

Rheology: The rheological data for the selected NT-PEG-NLC-GEL formulations (B2, B4, B6, 

and B8) are depicted in Figure 3.1. All four selected gel formulations exhibited shear thinning 

rheology with a viscosity of 394.64 ± 18.12 cP for B2, 287.30 ± 4.23 cP for B4, 243.17 ± 2.03 cP 

for B6, and 428.12 ± 8.25 cP for B8 at the highest shear rate (≈ 500 1/s).  
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Figure 3.1: Plot of viscosity vs. shear rate for selected NT-PEG-NLC-GEL formulations (B2, 

B4, B6, and B8) exhibiting shear-thinning rheology. 

Texture analyses (firmness and work of adhesion): The results obtained for firmness and work 

of adhesion are presented in Table 3.5 for the selected formulation codes – B2, B4, B6, and B8.   

Transcorneal permeation: From the in vitro trans-corneal permeation study it was observed that 

(guar gum: boric acid) should be used in their lowest ratio (1:2) for effective transcorneal NT 

permeation (higher amounts of boric acid in NT-PEG-NLC-GEL, in contrast, did not show any 

NT permeation at the end of 3 hours). Hence, gel formulation B2 with a ratio of guar gum to boric 

acid (1:2) was chosen to be the most suitable gel formulation in comparison to the gel formulation 

B6 which had a higher amount of boric acid (1:5). Transcorneal permeability (cm/s) of NT-PEG-

NLC-GEL-B2 ((0.010 ± 0.007) × 10−5) was significantly lower than NT-PEG-NLCs ((0.050 ± 

0.010) × 10−5)), and Natacyn® ((0.030 ± 0.005) × 10−5)) (N=3). The trend for transcorneal flux and 

rate was NT-PEG-NLC-GEL < Natacyn® < NT-PEG-NLCs. (Figure 3.2).   
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Figure 3.2: Plot of rate (µg/min), flux (µg/min/cm2), and permeability (× 10−5 cm/s) for NT 

permeation across the isolated cornea from NT-PEG-NLC-GEL-B2, NT-PEG-NLC-GEL-B6, 

NT-PEG-NLC and Natacyn® (dose normalized: diluted to 0.3% w/v) over 3-hours, (n=3); data 

represented as mean ± standard error of mean; (*) denotes statistically significant difference at p 

< 0.05. 

Uniformity of NT Content in the optimized NT-PEG-NLC-GEL: The mean NT content in the 

optimized and most suitable NT-PEG-NLC-GEL (formulation B2) from the three different regions 

was found to be 95.53 ± 0.61%. 

pH of the optimized NT-PEG-NLC-GEL: The pH of the optimized and most suitable NT-PEG-

NLC-GEL (formulation B2) was found to be 5.5 ± 0.1. 

In vitro release and release kinetics of the optimized NT-PEG-NLC-GEL: From Figure 3.3, it is 

evident that NT-PEG-NLC-GEL system provided a significantly slower/sustained release in 

comparison to the control – NT suspension (≈ 3-folds lower) over a period of 48 hours and 

exhibited a better fit for Higuchi model for drug release kinetics (r2 > 0.96) compared to the other 
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release models (first-order, zero-order, and Korsmeyer-Peppas; r2 < 0.94).   

 

Figure 3.3: (A): Comparison of NT release from NT-PEG-NLC-GEL (formulation B2) and NT 

solution; (B): fit to Higuchi model for drug release kinetics for NT-PEG-NLC-GEL (formulation 

B2). 

In vivo pre-corneal tear pharmacokinetics (PK) of the optimized NT-PEG-NLC-GEL: 

Instantaneous gelation was observed upon the instillation of NT-PEG-NLC-GEL and results 

obtained from the pre-corneal tear PK parameters (area under curve from time t = 0 to t = 6 h 

(AUC0-t), half-life (T0.5), maximum concentration (Cmax), mean residence time (MRT0-∞)) are 

summarized in Table 3.6 and represented in Figure 3.4. 
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Table 3.6: Pre-corneal tear PK parameters obtained for NT-PEG-NLC-GEL, NT-PEG-NLC, and 

Natacyn® (5%). 

Test formulations NT-PEG-

NLC-GEL 

NT-PEG-NLC Natacyn® 

Dose 0.3 mg 0.3 mg 5 mg 

PK parameter Units    

AUC0-t μg/μL*h 1.15 ± 0.02 0.58 ± 0.01* 2.72 ± 0.17** 

Dose normalized 

AUC0-t 

(μg/μL*h)/mg 3.83 ± 0.06 1.93 ± 0.03* 0.54 ± 0.03** 

T0.5 h 2.82 ± 0.23 0.93 ± 0.14* 2.78 ± 0.85 

Cmax μg/μL 2.57 ± 0.09 1.37 ± 0.06* 3.00 ± 0.18** 

Dose normalized 

Cmax 

(μg/μL)/mg 8.57 ± 0.3 4.56 ± 0.2* 0.6 ± 0.03** 

MRT0-∞ h 2.16 ± 0.26 1.09 ± 0.21* 1.56 ± 0.32 

*: statistically significant difference between NT-PEG-NLC-GEL and NT-PEG-NLC at p < 0.05;  

**: statistically significant difference between NT-PEG-NLC-GEL and Natacyn® (5%) at p < 0.05. 
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Figure 3.4: Plot of dose normalized NT concentrations (µg/µL) versus time (hours) profile for 

NT-PEG-NLC-GEL, NT-PEG-NLC, and Natacyn®; (*) and (**) denotes statistically significant 

difference between (NT-PEG-NLC-GEL and NT-PEG-NLC) and (NT-PEG-NLC-GEL and 

Natacyn®) at p < 0.05, respectively; (n=3, data represented as Mean ± Standard Error). 

Ocular biodistribution of the optimized NT-PEG-NLC-GEL: Figure 3.5 illustrates that all the 

NT formulations (NT-PEG-NLC-GEL, NT-PEG-NLC, and Natacyn® (5%)) could deliver NT to 

AH, VH, ICB, and cornea in both study sets.   

Moreover, it is evident from Figure 3.5 that, there is no statistical difference observed 

between NT levels obtained from NT-PEG-NLC-GEL following two different dosing regimens 

(Table 4) in AH, VH, ICB, and cornea (p > 0.05).   

In the cornea (Figure 5), NT concentration from NT-PEG-NLC-GEL (for both dosing 

regimens detailed in Table 3.4) was significantly higher than NT concentration obtained from NT-

PEG-NLC formulation (p < 0.05). The NT concentration from Natacyn® (5%), however, was 
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significantly higher than that obtained from NT-PEG-NLC-GEL (in both study sets) (p < 0.05).  

NT concentration from NT-PEG-NLC-GEL (for both dosing regimens; Table 3.4) was 

found to be significantly lower than Natacyn® (5%) in ICB (p < 0.05). In ICB, a statistical 

difference was found for NT concentrations obtained from NT-PEG-NLC-GEL (for both dosing 

regimens; Table 3.4) and NT-PEG-NLC (p < 0.05) (Figure 3.5).   

In AH (Figure 3.5), concentration of NT from NT-PEG-NLC-GEL (for both dosing 

regimens; Table 3.4) was significantly higher than the NT concentrations obtained from the NT-

PEG-NLC and Natacyn® (5%) formulations (p < 0.05).  

In case of VH (Figure 3.5), significantly lower concentration was observed in NT 

concentrations obtained from the NT-PEG-NLC-GEL (for both dosing regimens; Table 3.4) and 

Natacyn® (5%) (p < 0.05). However, a non-significant difference was observed between NT levels 

obtained from NT-PEG-NLC-GEL and NT-PEG-NLC (p > 0.05). 
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Figure 3.5: NT concentrations (µg/g) in cornea, ICB, AH, and VH from NT-PEG-NLC-GEL 

(dose: 0.3 mg; instillation volume: 100 µL), NT-PEG-NLC (dose: 0.3 mg; instillation volume: 

100 µL), and Natacyn® (dose: 5 mg; instillation volume: 100 µL) obtained after instillation every 

3-hour and 4-hour for a 9-hour and an 8-hour study, respectively; (*) denotes statistically 

significant difference at p < 0.05 (n=3, data represented as Mean ± Standard Error). 

3.4. DISCUSSION 

NT has been a mainstay in the pharmacotherapy of fungal keratitis and endophthalmitis(3, 

65, 80, 108). The current therapeutic regimen comprises of an ophthalmic suspension of NT – 

Natacyn® (5%); however, “lower retention” at pre-corneal/corneal sites has been one of the 

foremost challenges that has been associated with the current Natacyn® therapy (3, 65, 80, 127). 

In our previous work (110), NT-PEG-NLCs showed better permeation across the intact corneal 

barrier owing to PEGylation. However, the initial formulations were simple eye-drops, without 
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any viscosity/mucoadhesive modifiers, and thus had lower retention at the ocular surface. Hence, 

to enhance the residence at the pre-corneal/corneal sites, we sought to develop and optimize a 

suitable gelling system to incorporate the NT carriers – NT-PEG-NLCs (developed and optimized 

in our previous study (110)) – for topical ocular administration.  

A couple of studies have reported on the design and performance of NT gelling systems 

for ocular application (64, 128). The study by Janga et al., reports on the design and evaluation of 

NT loaded bilosome hydrogel system intended for the back-of-the-eye delivery. In their study, 

they developed and optimized system showed enhancement in transcorneal flux in vitro and in 

vivo. In another study by Paradkar et al., NT loaded niosomal gel also exhibited improved 

transcorneal permeation, in vitro. The fabrication processes for the formulations in both the 

publications, involves the use of organic solvents (DMSO, chloroform, ethanol, and methanol) 

which are known to be toxic even in residual amounts. So also, use of organic solvents makes the 

scale-up of the process challenging. The amount of surfactant (Span 60) used in the formulation 

of NT-loaded niosomes reported by Janga et al and Paradkar et al., is more than ~5 times the 

amount of Span used in the fabrication of NT-PEG-NLC-GEL investigated in this study. Use of 

such a high amount of surfactant could also lead to potential irritations/toxicities. In such a case, 

the formulation investigated in this study, is without the use of any organic solvents (potentially 

scalable formulation) and significantly lower amount of Span (~5 times lower), thereby 

circumventing any potential toxicities/irritations in the aggravated diseased conditions. Also, to 

the best of our knowledge, ours is the first study that assesses the effectiveness of a carboxyvinyl 

polymer based gelling system for ocular applications by evaluating, both, pre-corneal tear PK 

(front-of-the-eye delivery) and ocular biodistribution (back-of-the-eye delivery), in vivo.   

In this study, different gel formulations were evaluated for their critical quality attributes 
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(CQA); first being the gelling time and gel depot collapse time. From Table 3.5, it is evident that 

the gel formulations (B1, B3, B5, and B7) having low Carbopol® 940 concentration (< 0.4% w/v) 

did not form a gel depot upon addition in STF. The formulations containing higher amounts of 

Carbopol® 940 (0.4% w/v) formed the gel depot in STF that persisted for more than 12 hours. It is 

evident that the presence of Carbopol® 940 in higher amounts (> 0.1% w/v) is essential for 

maintaining the gel characteristics of the NT-PEG-NLC-GEL formulation. Therefore, 

formulations B2, B4, B6, and B8, having higher concentration of Carbopol® 940 (0.4% w/v), were 

selected for further evaluation of their CQA. 

The second CQA was rheology and viscosity. It is recommended that the ocular gelling 

systems exhibit pseudoplastic flow patterns, which implies that the gelling systems should undergo 

a reduction in their viscosity upon the application of shear, i.e., exhibit a shear thinning rheology 

(129). The mechanism of blinking generates shear that ranges between 10000 – 40000 1/s (129-

131). Therefore, if the gelling formulation exhibits shear-thinning rheology, the process of blinking 

is not affected, avoiding any discomfort to the eye, thereby enhancing patient compliance (132). 

Also, it is reported that ocular gelling systems having viscosity between 5-1000 cP, exhibit ease 

of application without causing any ocular discomfort or interfering with the blinking process (132, 

133). The NT-PEG-NLC-GELS exhibit a viscosity of ~500 cP at 500 1/s shear rate (20 times lower 

shear than the shear generated by blinking); indicating that the viscosity would further be lower at 

the blinking shear rates. Therefore, the application of a gelling system with shear-thinning 

rheology, leads to a reduction in the viscosity of the gelling formulation owing to the shearing 

force associated with blinking. Accordingly, all the selected gel forming formulations (B2, B4, 

B6, and B8) exhibited shear-thinning rheology and a marked decrease in viscosity with increasing 

shear rates (Figure 1).  
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Gel texture analyses parameters such as firmness and work of adhesion (Table 3.5) are the 

CQAs that provide information on the gel characteristics. Firmness describes the ability of the gel 

to maintain its cohesivity and work of adhesion describes the extent of the ability of the spreading 

of the gel as a thin film upon the application of shear (134). The firmness and work of adhesion 

values for gel formulations B2, B4, B6, and B8, indicate that they would maintain the cohesivity 

of the gel film and help stabilize it as a thin film over the ocular surface. Additionally, a statistically 

non-significant difference was observed in the values for viscosity, rheological patterns, firmness 

and work of adhesion of these formulations. The concentration of Carbopol® 940 in these 

formulations was the same (0.4% w/v), which suggests that Carbopol® 940 is primarily responsible 

for affecting these two CQA in these formulations. This is consistent with reports that Carbopol® 

(all grades) is known to have a dominant effect on the texture properties of the formulations 

containing it (121, 135-140). The shear-thinning rheology of the gels coupled with favorable 

firmness and adhesivity values would aid in the stabilization of the gel film over the ocular surface 

without affecting the corneal tear film (130, 134, 141).  

Since, all the gelling formulations (B2, B4, B6, and B8) exhibited similar rheological and 

textural properties, the most optimum gelling system was selected on the basis of guar gum-to-

boric acid ratio. In all the above-mentioned formulations, guar gum: boric acid ratio ranged from 

1:2 (B2), 1:2.5 (B8), 1:4 (B4), to 1:5 (B6). Although the texture characteristics of B2, B4, B6 and 

B8 were not significantly different, the unstressed gel viscosity of formulation B2 was the highest 

whereas that of B6 was the lowest. Thus, the ratio of guar gum and boric acid had an effect on the 

viscosity of the gel formed on contact of the formulation with the STF; B2 (1:2) demonstrating 

higher gel viscosity than any of the others (1:2.5, 1:4 or 1:5). 

Formulations B2 and B6 were further evaluated for their transcorneal permeation 
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characteristics to understand if guar gum: boric acid ratio had any impact on the permeation of 

NT-PEG-NLCs from the gelling system. From Figure 3.2, it is observed that the gelling 

formulation B6 (guar gum:boric acid::1:5) did not show any transcorneal NT permeation at the 

end of the 3-hour study, whereas, gelling formulation B2 (guar gum:boric acid::1:2) showed 

transcorneal NT permeation. This could be attributed to the presence of a higher amount of boric 

acid (borate anion) which could have led to the formation of a borate-NT (a polyene antifungal) 

complex which would have potentially reduced the solubility and dissolution rate, and also 

reduced/controlled the transcorneal NT permeation (142). Thus, the gelling formulation B2 was 

chosen as the most suitable and optimized formulation for further evaluations. 

The trend for transcorneal rate of permeation, flux, and permeability followed the order – 

NT-PEG-NLC-GEL < Natacyn® < NT-PEG-NLCs. The trend was the highest for NT-PEG-NLCs 

which is consistent with the reported literature (PEGylation facilitates improved penetration across 

the corneal mucosa and epithelium) (91, 102, 103, 110). However, in case of NT-PEG-NLC-GEL 

the trend was lowest which could be ascribed to the entrapment of the NT-PEG-NLCs in the gelling 

system (128). The gelling system manifested as a primary barrier for NT release from the 

embedded NT-PEG-NLCs (128).       

The low standard deviation for the mean NT content (95.53 ± 0.61) % w/v obtained from 

three different regions of the formulation indicates a homogenous formulation. The pH of an 

ophthalmic formulation plays a critical role in assessing it potential utility; since, extreme pH 

ranges could lead to ocular discomfort, irritation, and redness (132). pH of the FDA approved 

marketed suspension (Natacyn®) ranges between pH 5.0 – 7.5; therefore, the optimized gelling 

system reported in this study having a pH value (5.5 ± 0.1) would, also be well tolerated (56).  

The rate of release of NT was sustained and slower from the NT-PEG-NLC-GEL in 
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comparison to the NT suspension (control) (Figure 3.3 (A)). A 3-fold decrease was found in the 

NT release from the gelling system in comparison to the control, indicating that the entrapment of 

NT in NLCs and further entrapment of the NT-PEG-NLCs in the cross-linked gelling system 

sustained/slowed the release of NT from NT-PEG-NLC-GEL. The modeling of release data for 

release kinetics revealed that the NT release from NT-PEG-NLC-GEL showed a better fit to 

Higuchi release kinetics compared to the other release models (higher r2 value) (Figure 3.3 (B)) 

(143). This fit implies that assumptions of Higuchi kinetics hold true (132, 144, 145).  

The tear kinetics data shows that the MRT0-∞ and T0.5 with the NT-PEG-NLC-GEL was 

significantly greater than NT-PEG-NLCs indicating that the gelling system prolongs the MRT of 

NT by decreasing its pre-corneal loss (Table 3.6). The dose normalized Cmax and AUC0-t values 

associated with the NT-PEG-NLC-GEL was ≈ 2-folds higher than NT-PEG-NLCs. NT were 

detectable in the tear until the end of 5-hours from the gelling system in contrast to NT-PEG-NLCs 

wherein NT was detected until the end of 3-hours only. Interestingly, a 16-fold higher dose of NT 

with the Natacyn® suspension formulation exhibited similar T0.5 and MRT values (statistically non-

significant). The dose normalized Cmax (Figure 4) and AUC0-t of NT from Natacyn® was, thus, 

disproportionately ≈ 14-fold and 7-fold lower than that from NT-PEG-NLC-GEL. The NT-PEG-

NLC-GEL system at a lower dose (1/16th of Natacyn®) achieves significantly better NT PK 

parameters compared to Natacyn® suggesting that NT-PEG-NLC-GEL could be a potential 

alternative to Natacyn® in case of superficial fungal infections.        

In our previous investigations, NT-PEG-NLCs (0.3%) showed enhanced NT permeation 

across the intact corneal barrier and the NT levels from NT-PEG-NLCs were similar to the 

marketed suspension (Natacyn®, 5%) in inner ocular tissues (AH, VH, and ICB), in vivo (110). 

Therefore, to assess the effectiveness of the gelling formulation in NT delivery in the current ocular 
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biodistribution study, dosing specifications (amount and volume of dose) were kept similar to the 

previously published study. NT formulations containing 0.3 mg NT were chosen; since, they were 

highest NT loaded formulations that were optimized and stabilized which provided enhanced 

transcorneal permeation (110). One-hundred microlitres of the formulations were instilled to 

provide the highest NT dose (0.3 mg) from the formulations and were instilled as two drops of 50 

µL to prevent spillage from the cul de sac. A high dose of NT was chosen, since the in vivo 

evaluations were to be conducted across intact and uninflamed cornea which would pose a 

significant barrier for NT permeation than a fungal infected and inflamed corneal barrier. Since 

Natacyn® is clinically administered at 5% dose, in these in vivo investigations its clinical dose was 

followed to compare its profile to the NT formulations at lower dose. The current therapeutic 

regimen calls for the administration of Natacyn® (5%) every 1 or 2-hours (65, 80, 110). Therefore, 

to evaluate if the optimized gelling system could potentially reduce the dosing frequency, every 3 

and 4-hour instillation was investigated.         

In cornea, AH, and ICB (Figure 3.5), NT concentration from NT-PEG-NLC-GEL was 

significantly higher than NT concentration obtained from NT-PEG-NLC, consistent with the 

higher MRT and T0.5 values in the tear fluid. Higher MRT and T0.5 value suggested a higher 

retention and lower elimination of NT from the gelling system compared to NT-PEG-NLCs. The 

NT concentration in cornea from Natacyn® (5%) was ≈ 2.5 and 3.5-fold higher (every 3 and 4-

hour dosing, respectively), ≈ 2-fold higher in ICB, and ≈ 3-fold higher in VH compared to NT 

levels obtained from NT-PEG-NLC-GEL. However, in case of all the above-mentioned 

observations, it should be noted that Natacyn® dose which was 16-fold higher caused only a 

disproportionate increase in the corneal, ICB, and VH concentrations compared to NT-PEG-NLCs. 

In contrast to the other tissues, AH NT concentrations from the NT-PEG-NLC-GEL formulation 
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were 3 and 2-fold higher (for every 3 and 4-hour instillation, respectively) than Natacyn® (5%). 

High MRT and T0.5 for NT-PEG-NLC-GEL coupled with the quicker diffusion of NT-PEG-NLCs 

from the gelling system across the corneal and ocular barriers, owing to PEGylation, could have 

led to higher NT concentrations in AH from NT-PEG-NLC-GEL in comparison to Natacyn® (5%).    

3.5. CONCLUSION 

The NT-PEG-NLC-GEL – composed of carboxyvinyl polymer guar gum-borate, reported 

in this study could serve as a potential substitute to the suspension in cases of OFI. The optimized 

NT-PEG-NLC-GEL system exhibited the formation of a gel depot that did not collapse 

immediately (> 12 hours), shear thinning rheology, adequate firmness, and spreadability 

(evaluated as work of adhesion). Additionally, the transcorneal permeation and release studies 

indicated that the NT-PEG-NLC-GEL exhibited a lower/slower flux, rate, and sustained release of 

NT in comparison to the control/s. The NT-PEG-NLC-GEL demonstrated superior pre-corneal PK 

parameters and ocular biodistribution in comparison to NT-PEG-NLCs (without the gelling 

components) which indicated that incorporation of the gelling agents improves the residence and 

lowers the pre-corneal losses/drainage, thereby improving its effectiveness. The NT-PEG-NLC-

GEL (0.3%) attained comparable MRT and T0.5 and higher dose normalized Cmax and AUC0-t at 

the pre-corneal/corneal sites and similar NT levels in the inner ocular tissues at a dose which is 

about 16-fold lower than the marketed suspension (Natacyn® (5%)), indicating that it could be a 

potential lower dose alternative to the conventional marketed suspension during the ocular 

antifungal regimen.  
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Chapter 4 

Design and In vitro – In vivo Evaluation of Eudragit™ Based Natamycin Films for 

Fungal Infections of the Eye. 

Abstract:  

Antifungal pharmacotherapy with natamycin (NT) has been one of the foremost therapeutic 

approaches utilized in the management of ocular fungal infections (OFI). Presently, Natacyn® 

suspension (instilled as eye drops) is the only US-FDA approved medication that is indicated in 

the treatment of OFI. However, lower retention and permeation at the ocular site are two of the 

major challenges associated with the present NT therapy. Therefore, to overcome these challenges, 

Eudragit™ RLPO based ocular films were designed and evaluated as potential alternative dosage 

forms for ocular delivery of NT. Central Composite Design was utilized in the design and 

optimization of NT-loaded films; with, amounts of Eudragit™ RLPO and amounts & grades of 

the Methocel™ being the independent factors and peelability, % cumulative release, time required 

for release to plateau, and thickness as the dependent variables. It was found that all the three 

independent factors affected the dependent variables significantly which was further elucidated by 

one-factor interaction plots. An optimized film formulation (NT-film-14) was selected on the bases 

of the constraints and interaction plots; and, it exhibited significantly higher transcorneal 

permeation (ex vivo) and superior pharmacokinetic parameters (in vivo) in comparison to the 

marketed suspension – Natacyn®. These observations imply that, NT-loaded films could be 

explored as alternative dosage forms in the management of OFI.    
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4.1. INTRODUCTION 

Polyene (natamycin and amphotericin B) and azole (fluconazole, ketoconazole, 

voriconazole) class of antifungal drugs have been routinely used as therapeutic agents in the 

management of ocular fungal infections (OFI) (109). Amongst these antifungal agents, natamycin 

(NT) has been the only US FDA approved antifungal agent for the management of OFI (108). It 

is marketed as a supersaturated ophthalmic suspension that is applied topically at the ocular 

surface. The reason that NT is the only approved medication for OFI pharmacotherapy is attributed 

to its better safety/tolerability profile upon topical administration and its selective potent activity 

against filamentous fungal species, compared to the other antifungal agents (80).     

Despite these favorable aspects associated with NT therapy, there are challenges associated 

with the ocular delivery of NT in the treatment of superior and deep-seated OFI. One of the major 

challenges with the therapy is the higher precorneal losses since it is instilled topically in the form 

of eye drops. These losses result in the poor ocular bioavailability of the suspension which 

necessitates frequent administration which results in poor patient compliance, increased cost of 

therapy, and higher chances of untoward side-effects (80, 109, 110).   

In recent times, films have come to be investigated as potential drug delivery platforms for 

the delivery of therapeutic agents at the ocular site. These ocular films offer advantages such as 

ease of administration, greater accuracy in dosing, prolonged retention at the ocular site, 

sustained/controlled drug release, lowered precorneal losses, and superior ocular pharmacokinetic 

parameters in comparison to the conventional topical ocular dosage forms such as suspensions and 

solutions (146, 147).      

Ocular films for the delivery of therapeutics such as acetazolamide, diclofenac sodium, 

timolol maleate, ofloxacin, ciprofloxacin, levofloxacin, dorzolamide hydrochloride, triamcinolone 
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acetonide, and naphazoline hydrochloride have been reported in literature (146, 148-152). 

Amongst all these, triamcinolone acetonide, diclofenac sodium, and acetazolamide loaded ocular 

films have been evaluated for their feasibility to deliver the drugs at their intended ocular site of 

action. Tatke et al. reported the development of triamcinolone acetonide (TA) ocular films using 

polyethylene oxide (PEO) and Soluplus® and these films exhibited significantly higher TA 

concentration in the back-of-the-eye in comparison to the control (TA suspension) (153). 

Similarly, in the study reported by Adelli et al., PEO and Duolite® AP 143/1083 based polymeric 

films containing diclofenac sodium (DS) could provide higher DS concentrations in the anterior 

ocular chamber compared to the DS suspension (154). Acetazolamide loaded ocular films 

composed of carbopol® 974P, sodium carboxymethylcellulose, and poloxamer lowered intraocular 

pressure in normotensive rabbits thereby exhibiting their effectiveness (150).  

Therefore, to potentially improve the therapy associated with NT in OFI, we sought to 

design ocular films containing NT. In the current study, Eudragit™ RLPO based NT loaded ocular 

films were designed and optimized using a central composite design and the optimized film was 

evaluated in vitro, ex vivo, and in vivo to assess its effectiveness in the delivery of NT at the ocular 

site.  

4.2. MATERIALS AND METHODS 

Chemicals 

NT was purchased from Cayman Chemicals (Michigan, USA). Eudragit™ RLPO was 

kindly gifted by Evonik Corporation (New Jersey, USA); Methocel™ K15M premium 

hydroxypropyl cellulose (HPMC K15M; mol wt.: 750 kDa) and Methocel™ K4M CR 

hydroxypropyl cellulose (HPMC K4M; mol wt.: 500 kDa) were gifted by Colorcon Corporation 

(Pennsylvania, USA). Propylene glycol was purchased from Fisher Scientific (New Jersey, USA). 
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All the solvents were of the highest analytical grade and bought from Fisher Scientific (Illinois, 

USA).   

Methods 

Experimental design 

A 20 experimental run central composite design generated using Design-Expert® software 

(version 11) was utilized in the design and subsequent optimization of the NT loaded films. The 

independent factors utilized in the study were the amounts of Eudragit™ RLPO and amounts & 

grades of the Methocel™ used (either Methocel™ K15M premium hydroxypropyl cellulose 

(HPMC K15M; mol wt.: 750 kDa) or Methocel™ K4M CR hydroxypropyl cellulose (HPMC 

K4M; mol wt.: 500 kDa)). The dependent variables utilized in the design were peelability, % 

cumulative release, time required for release to plateau, and film thickness. The independent 

factors were varied at three levels and constraints were placed for the dependent variables in 

optimizing and choosing the most suitable NT film formulation. Tables 4.1 and 4.2 present the 

details on the 20 experimental run central composite design. 

Table 4.1: Independent factors (varied at three levels) and dependent variables in the 20 

experimental run central composite design. 

Factors Levels 

Independent factors Level 1 Level 2 Level 3 

Eudragit™ RLPO (mg) 200 300 400 

HPMC K15M or 

HPMC K4M (mg) 

100 150 200 

Dependent variables Constraints 
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Peelability 0 or 1; 0: not peelable and 1: peelable 

% cumulative release Maximum 

Time required for release 

to plateau 

Prolonged duration 

Film thickness Maximum 

 

Table 4.2: 20 experimental run CCD 

Run 

Factor 1 Factor 2 Factor 3 

Eudragit™ RLPO 

(mg) 

Methocel™ 

(mg) 

Methocel™ grade 

1 200 100 K15M 

2 400 200 K4M 

3 400 200 K15M 

4 300 150 K15M 

5 200 200 K15M 

6 200 200 K4M 

7 300 150 K4M 

8 300 220 K4M 

9 300 150 K15M 

10 441 150 K15M 

11 300 79 K4M 

12 400 100 K15M 

13 400 100 K4M 
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Run 

Factor 1 Factor 2 Factor 3 

Eudragit™ RLPO 

(mg) 

Methocel™ 

(mg) 

Methocel™ grade 

14 300 220 K15M 

15 158 150 K4M 

16 158 150 K15M 

17 300 79 K15M 

18 200 100 K4M 

19 441 150 K4M 

20 300 150 K4M 

 

Preparation of NT-films 

NT films were prepared by solvent cast method. A 1:1 blend of methanol and 

dichloromethane was prepared and propylene glycol (1600 µg) was added to it. NT (100 mg) was 

then added to it and mixed thoroughly using a vortex genie mixer. Known amounts of Eudragit™ 

RLPO and Methocel™ K15M HPMC/Methocel™ K4M CR HPMC were then added as specified 

by the experimental design (Table 4.2). Six milliliters of the formulation were then poured into a 

petriplate and dried in a desiccator connected to a vacuum source for 24-hours.   

Characterization of NT-films 

Peelability: Peelability was the first evaluation test that was performed for all the films. 

Once the films were formed in the petriplate post 24-hours drying in vacuum, the films were gently 

peeled off using a pair of forceps in a single continuous stroke. The responses for peeling were 
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recorded as 0 or 1; with 0 being the inability of the films to be peeled without breaking and 1 being 

the easy peelability of the films without any breaking/damage in a single continuous stroke.     

NT content in NT-films: A film of dimension 1cm2 was cut and added into one milliliter 

of extracting solvent blend containing methanol: dichloromethane (1:1). It was then mixed using 

a vortex genie mixer and centrifuged at 13,000 rpm for 10 minutes on a table-top centrifuge and 

the supernatant was analyzed for NT using a validated HPLC method, that is outlined in the 

analytical method section subsequently.  

Release studies: NT release was evaluated for all the films that passed the peelability test. 

For the in vitro release studies, simulated tear fluid (STF; NaCl (0.68% w/v), NaHCO3 (0.22% 

w/v), CaCl2 (0.008% w/v), and KCl (0.140% w/v) in deionized water) was used as the release 

medium. In vitro release protocols for ocular films outlined by Adelli et al. and Tatke et al., were 

followed for evaluating the NT release from films in this study (153, 155). NT-films were placed 

at the bottom of glass scintillation vials and a brass mesh of sieve size #10 was positioned on top 

of the film with a small magnetic stirrer placed above the mesh. 20-mL of STF was then added 

into the glass scintillation vials. The entire release setup was maintained at a temperature of 34 ± 

0.2°C with continuous magnetic stirring. At pre-determined time points, 1 mL aliquots were 

withdrawn and replenished with an equal amount of STF. NT concentration was analyzed using a 

validated HPLC method, as discussed in the subsequent analytical section. % cumulative release 

and time required for the release to plateau were evaluated from the in vitro NT release data. 

Thickness: Film thickness was evaluated for all the films that passed the peelability test 

and could be peeled off. For determining the film thickness, entire film peeled off the petriplate 

was used. The thickness was evaluated using General UltraTech® calipers. Three independent 

measurements were taken at different positions on the entire film area.  
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Interaction between independent factors and dependent variables (selection of the most 

optimized formulation): For evaluating and understanding the interaction between independent 

factors and dependent variables, one-factor plots were developed using Design Expert® software 

(version 11). These plots further aided in the selection of the most suitable NT-film formulation.  

pH: pH of the selected NT-film-14 was evaluated using Mettler Toledo pH meter 

(Belgium). Briefly, the films were cut into 1cm2 dimension and soaked placed into 3 mL of STF 

(pH = 7.4) and the surface pH was then measured.  

Transcorneal permeation: Isolated rabbit cornea (Pel-Freez Biologicals®, Arkansas, USA) 

were used to assess the transcorneal flux, permeability, and permeation rate of NT from the 

optimized NT-film-14 and Natacyn®. The isolated rabbit corneas were mounted on vertical Franz 

diffusion cells (PermeGear®, Inc.) and clamped between the donor and receiver compartments. 

The corneal epithelial surface faced the donor cell in which the formulations were placed. NT-

film-14 (1 cm2; containing 2 mg of NT dose) and five hundred microliters of Natacyn® (containing 

25 mg of NT dose) were the test formulations that were placed in the donor chamber (n=3). The 

receiver medium consisted of 5 mL of 2.5% w/v randomly methylated-β-cyclodextrin (RMBCD) 

in Dulbecco's Phosphate-Buffered Saline (DPBS) which helped in preserving the corneal integrity 

and maintaining sink conditions during the study. The medium in the receiver compartment was 

stirred continuously using a magnetic stirrer (123, 124). Over the 3-hours duration of the study, 

600 μL aliquots were withdrawn at designated time intervals and replaced with an equal volume 

of RMBCD in DPBS. NT concentration was quantified using the HPLC analytical method outlined 

in the subsequent analytical methods section. 

In vivo pre-corneal tear pharmacokinetics (PK): Male New Zealand White (NZW) 

Rabbits (3-3.5 kg), were purchased from Charles River Labs and were used in the evaluation of 
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pre-corneal tear PK of NT-films and the marketed control – Natacyn®. Tenets of the Association 

for Research in Vision and Ophthalmology statement on the use of animals in ophthalmic vision 

and research and the University of Mississippi Institutional Animal Care and Use Committee 

approved protocols were followed during the in vivo animal studies. NT-film-14 (1 cm2) was 

instilled in the lower cul-de-sac of the rabbit and Natacyn® was topically dosed (100 µL 

administered as two drops of 50 µL each) in triplicates (n=3). Therefore, amount of NT dose 

received by the rabbits was 2 mg (for NT-film-14) and 5 mg (for Natacyn®). At designated time 

points (t = 0, 0.5, 1, 2, 3, 4, 5, and 6 hours) by gently touching a pre-weighed piece of filter paper 

at the corneal surface tear bio-samples were collected. The estimation of NT from the tear bio-

samples was estimated using the amount of tear fluid collected (determined by calculating the 

difference in the dry and wet weights of the filter paper before and after tear collection).  

NT from the biosamples was extracted using six hundred microliters of ice-cold methanol, 

mixed using a vortex genie mixer, and centrifuged at 13,000 rpm for 15 minutes. The supernatant 

was then collected and evaluated for NT content using the HPLC method outlined in the 

subsequent section (analytical methods). The data was then analyzed using PKSolver software 2.0 

for determining the various PK parameters (126).  

Analytical methods 

Determination and quantification of NT was performed using a validated HPLC method. 

The HPLC analytical system comprised of a Waters 717 plus auto-sampler attached to a Waters 

2487 Dual λ Absorbance UV detector, a Waters 600 controller pump, and an Agilent 3395 

Integrator. A mixture of phosphate buffer (0.2 M, pH 5.5) and acetonitrile (70:30) with flow rate 

of 1 mL/min was used the mobile phase and a C18 Phenomenex Luna® (5µ, 250 x 4.6 mm) column 

was used for the chromatographic separation. The injection volume was 20 µL, with detection 
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being carried out at a wavelength of 304 nm at AUFS 1.00. The method was validated with respect 

to linearity (> 0.99), LOD (0.1 µg/mL), LOQ (0.5 µg/mL), accuracy and precision (< 5% RSD). 

STATISTICAL ANALYSES 

A minimum of 3 independent experimental trials (n=3) have been carried out. All the data 

has been represented as mean ± standard deviation and/or mean ± standard error. Statistical 

analyses were accomplished using Student’s t-test and/or one-way analysis of variance (ANOVA) 

and at p-value less than 0.05 statistical difference was deemed significant. 

4.3. RESULTS 

Peelability: The results from the peelability studies are presented in Table 4.3. Out of the 

20 experimental runs, only 7 NT-films could be peeled off in a single continuous stroke. Therefore, 

only these 7 films were evaluated further to select the most suitable NT-film formulation.  

Table 4.3: Peelability and NT content results for the 20-experimental run CCD study. 

Run Peelability Selected NT-films 

1 0  

2 0  

3 1 �  

4 0  

5 1 �  

6 1 �  

7 0  

8 1 �  

9 0  
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Run Peelability Selected NT-films 

10 0  

11 0  

12 0  

13 0  

14 1 �  

15 1 �  

16 1 �  

17 0  

18 0  

19 0  

20 0  

 

NT content in NT-films: The films that could be easily peeled off were evaluated for NT 

content (run numbers: 3, 5, 6, 8, 14, 15, and 16). The NT content results have been tabulated in 

Table 4.4.  
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Table 4.4: Results for the 7 NT-film formulations that were selected post the peelability 

study. 

Run 

Assay  

(%) 

Cumulative 

release 

(%) 

Time required 

for the release 

to plateau  

(h) 

Thickness (mm) 

3 97.00 ± 2.1 44.87 ± 2.16 6  0.52 ± 0.01 

5 94.17 ± 1.33 40.87 ± 5.63 4.5  0.49 ± 0.01 

6 88.52 ± 3.21 60.60 ± 3.84 3 0.30 ± 0.02 

8 90.82 ± 2.76 56.09 ± 6.48 4  0.38 ± 0.00 

14 94.80 ± 3.1 45.56 ± 5.39 5  0.55 ± 0.01 

15 96.47 ± 1.98 56.29 ± 3.15 2.5  0.10 ± 0.02 

16 88.25 ± 2.36 51.91 ± 0.65 3.5  0.46 ± 0.00 

 

Release studies: The % cumulative release for the 7 NT-films is tabulated in Table 4.4. 

All the 7 films showed burst release at 30 minutes with film-6 showing the highest burst release 

(> 49%) and film-14 showing the lowest burst release (~ 21%). Film-3 required the longest time 

(6-hours) to reach a plateaued drug release phase whereas film-15 quickly reached a plateau release 

phase at 2.5-hours. The release for all the other films ranged between 2.5-6 hours and is presented 

in Table 4.4.  

Thickness: The thickness for the NT-films ranged from 0.10 – 0.55 mm for the films; with 

film-15 being the thinnest and film-14 showing the highest thickness. The results on thickness of 

the peelable NT-films are presented in Table 4.4. 
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Interaction between independent factors and dependent variables: Using a reduced linear 

model, it was found that all the three dependent variables (% cumulative release, time required for 

the release to plateau, and thickness) were significantly affected by the independent factors – 

Methocel™ grade, Eudragit™ RLPO and Methocel™ amounts. The degree of this effect is given 

by the p-value and the results from the interaction are presented in Table 4.5 and Figures 4.1, 4.2, 

and 4.3. 

Table 4.5: ANOVA for reduced linear model. 

Dependent variables Independent factors that 

affect the response variable 

significantly 

p-value 

% cumulative release Methocel™ grade 0.0104 

Time required for the 

release to plateau 

Methocel™ grade 0.0009 

Eudragit™ RLPO amount 0.0032 

Thickness Methocel™ grade 0.0013 

Methocel™ amount 0.0005 
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Figure 4.1: One-factor interaction plot showing the effect of Methocel™ grade on % 

cumulative release. 
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Figure 4.2: One-factor interaction plots showing the effect of Methocel™ grade and 

Eudragit™ RLPO amount on time required for the release to plateau. 

 

Figure 4.3: One-factor interaction plots showing the effect of Methocel™ grade and 

Methocel™ amount on film thickness. 
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pH: The pH of NT-film-14 was approximately 5.8 ± 0.2 pH units.  

Transcorneal permeation: The transcorneal permeability of NT from NT-film-14 and 

Natacyn® was observed to be (0.436 ± 0.029) × 10−5 and (0.01 ± 0.002) × 10−5 cm/s, respectively. 

The transcorneal rate and flux of NT from NT-film-14 was approximately 3 times higher in 

comparison than that from Natacyn®. Thus, the general trend for NT permeability, rate, and flux 

was NT-film-14 > Natacyn® (Figure 4.4). 

 

Figure 4.4: Plot of rate (µg/min), flux (µg/min/cm2), and permeability (× 10−5 cm/s) for 

NT permeation across the isolated rabbit cornea from NT-film-14 and Natacyn® over 3-hours, 

(n=3); data represented as mean ± standard error of mean; (*) denotes statistically significant 

difference at p < 0.05. 

In vivo pre-corneal tear pharmacokinetics (PK): Results obtained from the pre-corneal 

tear PK parameters (area under curve from time t = 0 to t = 6 h (AUC0-t), half-life (T0.5), maximum 

concentration (Cmax), mean residence time (MRT0-∞)) are summarized in Table 4.6 and represented 
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in Figure 4.5. 

Table 4.6: Precorneal tear PK parameters obtained for NT-film-14 and Natacyn®. 

Test formulations NT-film-14 Natacyn®  

Dose 2 mg 5 mg 

PK parameter Units   

AUC0-t μg/μL*h 1.35 ± 0.03 3.48 ± 0.13* 

Dose normalized AUC0-t  (μg/μL*h)/mg 0.68 ± 0.05 0.70 ± 0.02 

T0.5 h 0.81 ± 0.03 0.64 ± 0.02* 

Cmax μg/μL 1.28 ± 0.10 4.43 ± 0.25* 

Dose normalized Cmax (μg/μL)/mg 0.64 ± 0.04 0.89 ± 0.05 

MRT0-∞ h 1.04 ± 0.06 0.56 ± 0.01* 

*: statistically significant difference between NAT-film-14 and Natacyn® at p < 0.05 
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Figure 4.5: Plot of dose normalized NT concentrations (µg/µL) versus time (hours) 

profile for NT-film-14 and Natacyn®; (*) denotes statistically significant difference at p < 0.05; 

(n=3, data represented as mean ± standard error of mean). 

4.4. DISCUSSION 

NT suspension (Natacyn®) that forms the first line of therapy in treating OFI suffers from 

two major challenges – low bioavailability (attributed to it being instilled as topical eye-drops) and 

frequent instillation (owing to high precorneal losses) (65, 80, 110). Both these factors lead to poor 

patient compliance during the therapy which increases the chances of treatment failure (3, 65, 80). 

Therefore, to circumnavigate these challenges, polymeric ocular films were explored as potential 

delivery platforms for ocular delivery of NT; since, the polymeric ocular films are known to exhibit 

enhanced retention at the precorneal site and provide a controlled/sustained release of drug over a 

prolonged period (146, 147).     
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Eudragit™ polymers have been widely used in various drug delivery systems owing to 

their non-toxicity, pH sensitive drug release, their ability to provide controlled/sustained release, 

and their mucoadhesivity (the positively charged groups in Eudragit™ polymers interact with the 

negativity charged mucus layer on the ocular surface to provide mucoadhesion) leading to 

improved ocular/precorneal retention (156, 157). Amongst all the Eudragit™ grades, Eudragit™ 

RLPO has been evaluated for its safety and toxicity upon ocular application and it was found that 

Eudragit™ RLPO did not elicit any untoward unsafe/toxic reaction in the eye and showed 

improved ocular retention owing to their mucoadhesive nature (158). Owing to these features, 

Eudragit™ RLPO was utilized as a mucoadhesive polymer in the fabrication of NT ocular films 

in this study. 

Methocel™ or HPMC has been widely used in the design of various polymeric dosage 

forms and has been primarily used as a retardant to aid in controlling/sustaining the release of drug 

in the dosage form. HPMC has been categorized as a ‘generally recognized as safe’ additive 

(GRAS)’ in formulations and has also been used in numerous ocular formulations intended for dry 

eye disease and glaucoma (159, 160). Owing to these reasons, HPMC and its two grades (HPMC 

K15M (high molecular weight; high viscosity) and HPMC K4M (low molecular weight; low 

viscosity)) were evaluated as retardants in the fabrication of NT films. Also, from amongst the two 

evaluated HPMC grades, one HPMC grade providing a suitable NT release (good retardant ability) 

was selected in the selection of the most suitable NT film.  

Plasticizers have been used in the preparation of films to improve the film forming ability, 

impart flexibility, and reduce brittleness (161). Propylene glycol has been one of the most 

commonly used plasticizers; and, has been chosen in this study since it is a GRAS additive and 

has been used in ophthalmic formulations (162, 163).   
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To select the most suitable NT-film formulation, a central composite design was utilized 

with independent factors and dependent variables specified in the design. Since a 

controlled/sustained release over a prolonged duration (with the intent to reduce the frequent 

dosing that is associated with the conventional Natacyn® therapy) was warranted from the NT 

polymeric film, % cumulative release and time required for release to plateau were chosen as the 

dependent variables. The thickness of the film also is known to affect drug release profile and 

therefore was incorporated as a dependent variable in the study. All these variables would be 

affected by the film forming polymers – Eudragit™ RLPO and Methocel™ (their amounts and 

grade) and were therefore selected as independent factors.  

Percent cumulative release was found to be significantly affected by Methocel™ grade 

(HPMC 4K vs 15K) (Table 4.5; Figure 4.1). The % cumulative release was higher with 4K grade 

of Methocel™ in comparison to the 15K grade. This could be attributed to the fact that the 4K 

grade has a lower molecular weight and viscosity than the 15K grade. As of result of this, the 15K 

grade would induce greater chain entanglement than the 4K grade of Methocel™ which would 

exhibit lower chain entanglement owing to a comparatively lower viscosity and molecular weight 

(164, 165). Hence, higher viscosity polymers (15K grade) would lead to the formation of thicker 

gel layer after hydration in the ocular milieu causing a more retarded/controlled NT release than 

lower viscosity (4K) grade Methocel™. 

Methocel™ grade and amount of Eudragit™ RLPO were both found to have a significant 

effect on the time required for the release to plateau (Table 4.5; Figure 4.2). Methocel™ 4K grade 

showed a shorter duration for the release to plateau whereas 15K grade took a longer duration for 

the release to plateau. This could be attributed to the fact that 15K grade (higher viscosity and 

molecular weight) led to the formation of highly entangled and cross-linked gel-matrix upon 
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hydration in the ocular milieu that resulted in a slower NT release which led to a longer duration 

for the NT release to plateau out (165). Also, with an increase in the amount of Eudragit™ RLPO 

the time required for the release to plateau increased significantly. With an increase in the amount 

of polymer, greater cross-linking would have occurred in the gelled film matrix that impeded the 

faster release of NT leading to longer time for the release to plateau (166, 167).  

Thickness was found to be significantly affected by the amount and grade of Methocel™ 

(Table 4.5; Figure 4.3). Methocel™ grade 15K showed films with significantly higher thickness 

than the 4K grade, owing to the higher molecular weight and viscosity of 15K in comparison to 

the 4K grade (163, 168). With increasing the amount of Methocel™, thickness of the films 

increased significantly owing to higher amounts of retarding film polymer being incorporated into 

the film weight; that has also been reported in the development of verapamil film-strips wherein 

increasing Methocel™ amount increased the thickness of the film (169).       

Upon understanding the effect of independent factors on the dependent variables using one-

factor interaction plots and the results obtained for dependent variables (% cumulative release, 

time required for release to plateau, and thickness) from the characterization evaluations, NT-film-

14 was chosen as the most suitable film formulation. NT-film-14 was chosen as the suitable film 

formulation over the other film formulations owing to it sustaining/controlling NT release (45.56 

± 5.39%) over 5-hours with the lowest burst release and higher thickness. Therefore, NT-film-14 

was further evaluated for its in vitro and in vivo effectiveness and compared to the marketed 

product – Natacyn® ophthalmic suspension.   

One of the critical factors in assessing the utility of an ocular formulation is its pH; since, 

extremely high or low pH values for the ocular products could lead to irritation, discomfort, 

redness, and inflammation in the eye (132). The pH of Natacyn® ranges between pH 5.0 – 7.5; 
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hence, NT-film-14 which was selected as the most suitable film in this study had a pH value (5.8 

± 0.2) that was within the pH range of the marketed Natacyn® implying that the film formulation 

could also be well tolerated in cases of OFI (56).  

In vitro transcorneal studies revealed that the trend for transcorneal flux, permeability, and 

rate of permeation was – NT-film-14 > Natacyn®. The significantly higher trend for NT flux, rate 

of permeation, and permeability from NT-film-14 could be attributed to the films being composed 

of Eudragit™ RLPO and propylene glycol. It has been reported in literature that, mucoadhesivity 

provided by Eudragit™ polymers (in this study by the RLPO grade) improves the corneal 

adhesion/contact, thereby retaining and improving the drug residence at the corneal site, and 

enhancing the drug permeation across the corneal barrier (170, 171). Additionally, the propylene 

glycol that is incorporated as a plasticizer has been known to be penetration enhancer by improving 

the epithelial hydration, thereby further aiding in enhancing the drug permeation across the corneal 

epithelial barrier (172, 173).     

Only a few studies reported in literature have evaluated the in vivo effectiveness of films 

in the delivery of therapeutics to the eye (153, 154, 174). However, to the best of our knowledge, 

ours is the first study that assesses the efficacy of a Eudragit™ RPLO based ocular film containing 

NT by evaluating its pre-corneal tear PK, in vivo, for its potential utility in OFI.   

Tear PK analyses were undertaken to evaluate the feasibility of NT-film-14 in delivering 

and prolonging the MRT at the target precorneal and corneal sites (common sites for OFI) and 

compare it to the marketed Natacyn® suspension. From Table 4.6, it is concluded that T0.5 and 

MRT0-∞ for NT-film-14 is significantly higher than Natacyn® suspension (p < 0.05) which shows 

that the film prolongs/extends the MRT and reduces the elimination (indicated by a significantly 

higher elimination half-life) of NT at the precorneal site. Furthermore, Cmax and AUC0-t (dose 
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normalized) values for NT-film-14 and Natacyn® did not show a statistical difference, indicating 

that similar NT concentrations were obtained from both the NT formulations. Additionally, NT 

from NT-film-14 was detected until the end of 6-hours in contrast to Natacyn® wherein NT was 

not detected post 5-hours. These observations imply that NT-film-14 delivers and prolongs NT 

release at the precorneal site and results in significantly higher MRT and T0.5 and produces similar 

dose normalized NT concentrations compared to Natacyn®, despite a two-and-half fold dose 

difference between the two formulations (2 mg (NT-film-14) versus 5 mg (Natacyn®)). This 

implies that the film formulation at lower dose (2/5th of Natacyn®) is effective in achieving 

significantly higher/comparable PK parameters compared to Natacyn® at the precorneal site 

However, redness was observed in one rabbit administered with NT-film-14, which necessitates 

the evaluation of its safety/toxicity profile that constitutes the future scope of this study, to better 

understand the feasibility of NT-film-14 in the management of OFI.  

4.5. CONCLUSION 

Eudragit™ RPLO based ocular film containing NT were prepared using solvent-cast 

method and optimized using central composite design. The amount of Eudragit™ RPLO and 

amount & grade of Methocel™ was found to have a significant effect on critical quality attributes 

of NT loaded films such as peelability, % cumulative release, time required for release to plateau, 

and thickness. The optimized film – NT-film-14 was found to provide a controlled/sustained 

release over 5-hours, in vitro; and, led to significantly higher rate of permeation, flux, and 

permeability compared to Natacyn® across the corneal barrier, ex vivo. From in vivo tear PK 

analyses it was found that the optimized NT-film-14 formulation exhibited significantly higher 

(MRT and T0.5) or similar (dose normalized Cmax and AUC0-t) PK parameters in the eye in 

comparison to Natacyn®, at a markedly lower dose (2/5th of Natacyn®) indicating its potential 
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utility in the management of fungal infections of the eye. 
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