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ABSTRACT

Random forests (RFs) have been widely used for supervised learning tasks because of

their high prediction accuracy, good model interpretability and fast training process. How-

ever, they are not able to learn from local structures as convolutional neural networks (CNNs)

do, when there exists high dependency among features. They also cannot utilize features

that are jointly dependent on the label but marginally independent of it. In this disserta-

tion, we present two approaches to address these two problems respectively by dependence

analysis. First, a local feature sampling (LFS) approach is proposed to learn and use the

locality information of features to group dependent/correlated features to train each tree.

For image data, the local information of features (pixels) is defined by the 2-D grid of the

image. For non-image data, we provided multiple ways of estimating this local structure.

Our experiments shows that RF with LFS has reduced correlation and improved accuracy on

multiple UCI datasets. To address the latter issue of random forest mentioned, we propose a

way to categorize features as marginally dependent features and jointly dependent features,

the latter is defined by minimum dependence sets (MDS’s) or by stronger dependence sets

(SDS’s). Algorithms to identify MDS’s and SDS’s are provided. We then present a feature

dependence mapping (FDM) approach to map the jointly dependent features to another fea-

ture space where they are marginally dependent. We show that by using FDM, decision tree

and RF have improved prediction performance on artificial datasets and a protein expression

dataset.
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CHAPTER 1

INTRODUCTION

Among all supervised learning models, random forest is one of the most popular

algorithms and has been applied to almost every field. It has high prediction performance,

good model interpretability, and a fast training process. In this chapter, we will explain

what a random forest is (Section 1.1), the existing types of ensemble learners (Section 1.2),

why it has the mentioned advantages (Section 1.3, 1.4 and 1.5), its weakness and how to

improve it by overcoming the weakness (Section 1.7).

1.1 Random Forests

Random Forests evolve from ensemble of decision trees. Bagging (Breiman, 1996) and

boosting (Freund et al., 1996; Freund and Schapire, 1997) are the first two main approaches of

using tree ensembles. Bagging, short for bootstrap aggregating, is to use bootstrap samples

(sampling with replacement) of the training data to train each tree. Boosting assigns higher

weights to misclassified examples to boost performance. Bagging can also be combined with

boosting by using the normalized sample weights as the sampling distribution (Quinlan,

1993). (Dietterich, 2000) proposed to use random split from the K best splits. (Amit and

Geman, 1997) used a random selection of the features to decide the best split on image

classification and feature selection tasks. (Breiman, 2001) generalized this idea and showed

the better performance of this approach – using bootstrap and best split from a random

subset of features – than other variations and it becomes the most popular tree ensemble

technique, known as random forest.

Random forest has been applied to a wide range of classification tasks, e.g, image

classification and annotation (Bosch et al., 2007; Fu et al., 2012; Du et al., 2015; Huynh
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et al., 2015), cancer prediction (Statnikov et al., 2008; Nguyen et al., 2013; Okun and Priisalu,

2007; Wu et al., 2003), speach recognition (Su et al., 2007; Xue and Zhao, 2008), remote

sensing (Belgiu and Drăguţ, 2016), etc. In addition to serving as a classifier, random forest

has also been extensively used as a feature selection method, because it evaluates feature

importance during the training process. For example, as a gene selection method on the

microarray data (Dı́az-Uriarte and De Andres, 2006; Nguyen et al., 2013). Random forest

has shown competitive performance as a feature selector compared with other popular feature

selection methods, such as 1-norm SVM, SVM-RFE and mutual information (Zhang et al.,

2019).

1.2 Ensemble Learners

Random forest is a type of ensemble learners. An ensemble consists of a number of

learners known as base learners. The prediction of the ensemble is based on the predictions

of all of its base learners. The combination of multiple weak learners usually results in

a much stronger learner. Random forest is just an ensemble of Decision Trees. Other

examples of ensemble learners are the nearest-neighbour ensemble (Zhou and Yu, 2005) and

neural network ensemble (Krogh and Vedelsby, 1995). However, they are not as commonly

used as random forest. The nearest-neighbour ensemble is not as competitive as random

forests because it lacks randomness in constructing the base learners. The performance of an

ensemble relies on not only the performance but also the diversity of its base learners (Krogh

and Vedelsby, 1995). Similarly, it is also difficult to introduce diversity to neural networks.

Krogh and Vedelsby achieved this by using cross-validation to construct the ensemble, i.e.,

different subsets of the training set were used to train the base neural networks of the

ensemble. However, networks are not guaranteed to converge when the training set changes.

Besides, training each neutral network is already very time consuming, which limits the

number of base learners in the ensemble. A large network ensemble usually requires external

computation resource such as a cluster.

2



1.3 Model Interpretability

A key reason for the success of random forest in multiple fields is its interpretability.

When given the options of a highly accurate but black-box model (e.g. deep networks) and

a relatively less accurate but more interpretable model (e.g. random forests), people tend to

favor the latter, especially in medical domains. The interpretability of a random forest comes

from its rule-based decision tree base learners. Here we give a brief review on decision tree

classifiers. A more comprehensive explanation of decision trees can be found in (Breiman,

2017).

A decision tree model is a binary tree with each node (called a decision node) asso-

ciated with a decision rule. Usually, the decision rule is about determining whether to go

to the left or right child of the node based on the value of a feature. Each node partitions

the data into two parts, therefore it is also called a split. For classification problems, at each

node, any feature can be used to partition the data, but the feature achieving the maximum

impurity decrease is called the best split and is used as the feature at that node. The training

data is used to grow the tree until a stopping criterion is met. Each leaf node is associated

with the label of the majority of training examples falling into that node. A test example

starts from the root node and follows the path defined by the rules and finally reaches a

leaf node. The label of the leaf node is predicted as the label of the test example. This

ensures the interpretability of the decision tree classifier since one can always retrieve the

information regarding how the decision is made to classify a test example by tracing the

path.

1.4 Bias-Variance Decomposition

To better understand why an ensemble performs better than its base learners, it is

helpful to decompose the generalization error of the ensemble into bias and variance terms,

as shown in Krogh and Vedelsby (1995). Consider the task of learning a function f such

that f(x) = y for any example (x, y). The distribution of input x is p(x). The following

3



results can be generalized to several output variables and applied to any ensemble method.

The output of the ensemble V (x) is a weighted average over the outputs of all its

base learners, i.e.,

V (x) =
∑
k

ωkVk(x), (1.1)

where Vk(x) and ωk are the output and the weight of the kth learner, respectively. Note that

the sum of the weights of all learners should be one. The ambiguity of a single learner on

input x is defined as ak(x) = (Vk(x) − V (x))2, which describes the degree of disagreement

between a single learner and the ensemble. The ensemble ambiguity on input x is the

weighted average ambiguity over all its base learners, i.e.,

a(x) =
∑
k

ωkak(x) =
∑
k

ωk(Vk(x)− V (x))2, (1.2)

which can also be seen as the weighted variance around the weighted mean. Expand (1.2)

to get

a(x) =
∑
k

ωkVk(x)2 − 2V (x)
∑
k

ωkVk(x) + V (x)2
∑
k

ωk. (1.3)

Using (1.1) and
∑

k ωk = 1, (1.3) becomes

a(x) =
∑
k

ωkVk(x)2 − V (x)2. (1.4)

We can rewrite (1.4) as

a(x) =
∑
k

ωkVk(x)2 + y2 − 2yV (x)− y2 + 2yV (x)− V (x)2

=
∑
k

ωkVk(x)2 +
∑
k

ωky
2 − 2y

∑
k

ωkVk(x)− (y − V (x))2

=
∑
k

ωk(y − Vk(x))2 − (y − V (x))2

(1.5)

Defining εk(x) = (y − Vk(x))2, which is the quadratic error of the kth learner, ε(x) =

4



∑
k ωkεk(x), which is the weighted average error of base learners, and e(x) = (y−V (x))2 as

the error of the ensemble, we can rewrite (1.5) as

e(x) = ε(x)− a(x). (1.6)

(1.6) suggests that ensemble error can be decomposed as base learner error and ensemble

ambiguity. The ε(x) term can also be viewed as the bias of the model and a(x) reflects the

variance. If we average over the input distribution, (6) becomes

∫
p(x)e(x)dx =

∫
p(x)ε(x)dx−

∫
p(x)a(x)dx

E = E − A,
(1.7)

where E = p(x)e(x)dx, which is the generalization error of the ensemble, E =
∫
p(x)ε(x)dx =∑

k ωk
∫
p(x)εk(x), which is the weighted average of generalization error of base learners, and

A =
∫
p(x)a(x)dx, which is the expected ensemble ambiguity over input distribution. Since

A is non-negative, (1.7) suggests that the performance of the ensemble is always better than

the average performance of its base learners. To achieve better performance, we want to

improve the performance of the base learners as well as increase the ensemble ambiguity,

i.e., the more base learners disagree on each other, the better.

For neural network ensembles, where the number of base learners is small (usually less

than 10), it is beneficial to optimize the weights. However, for random forests, which usually

consist of hundreds or thousands of trees, uniform weights are used due to the computation

concerns of finding the optimal weights.

1.5 Strength-Correlation Decomposition

Breiman derived an upper bound for the generalization error of random forests in

terms of strength and correlation, where strength measures the performance of individual

trees and correlation measures the dependence between them (Breiman, 2001). This is shown

5



in the following theorem (Breiman, 2001).

Theorem 1. An upper bound for the generalization error of random forests is given by

PE∗ 6 ρ̄(1− s2)/s2,

where PE∗ is the generalization error, s is strength and ρ is correlation.

Since the motivation of this work is mostly based on Theorem 1, here we show the

proof of Theorem 1 with sufficient derivations. The original proof is in (Breiman, 2001).

Proof. To start the proof, we have the following definitions for random forests.

Definition 2. A random forest consists of a collection of decision tree classifiers {h(X,Θk), k =

1, ...}, where X is the input vector, and the {Θk} are independent identically distributed

random vectors that used to generate trees.

Definition 3. The margin function for a random forest is

mr(X, Y ) = PΘ(h(X,Θ) = Y )−max
j 6=Y

PΘ(h(X,Θ) = j),

where X, Y are random vectors drawn from the input space and the subscript Θ indicates

that the probability is over the Θ space.

We also need the following theorem proved in (Breiman, 2001).

Theorem 4. As the number of trees increases, for almost surely all sequences Θ1, ..., PE
∗

coverages to

PE∗ = PX,Y (mr(X, Y ) < 0),

here the subscripts X, Y suggests that the probability is over the X, Y space.

Now define the strength of the set of classifiers {h(X,Θ)} as

s = EX,Ymr(X, Y ), (1.8)
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and assume s > 0, from Chebychev’s inequality we have

PX,Y (|mr(X, Y )− s| > s) 6 Var(mr)/s2,

where V ar(mr) is the simplified notation for V ar(mr(X, Y )). Expanding the left hand side,

PX,Y (mr(X, Y ) > 2s) + PX,Y (mr(X, Y ) 6 0) 6 Var(mr)/s2.

Now it is obvious that

PX,Y (mr(X, Y ) < 0) 6 Var(mr)/s2

From Theorem 4 we then have

PE∗ 6 Var(mr)/s2. (1.9)

Var(mr) can be further decomposed in the following way. Let

ĵ(X, Y ) = arg max
j 6=Y

PΘ(h(X,Θ) = j),

which is the class other than the true label that has highest votes. Then we can rewrite the

margin as

mr(X, Y ) = PΘ(h(X,Θ) = Y )− PΘ(h(X,Θ) = ĵ(X, Y )) (1.10)

= EΘ[I(h(X,Θ) = Y )− I(h(X,Θ) = ĵ(X, Y )], (1.11)

where I(·) is the indicator function.

Definition 5. Define the raw margin function as

rmg(Θ,X, Y ) = I(h(X,Θ) = Y )− I(h(X,Θ) = ĵ(X, Y ).

7



Then margin is the expectation of raw margin with respect to Θ, i.e.,

mr(X, Y ) = EΘ[rmg(Θ,X, Y )]. (1.12)

For any function f , the following holds

E2
Θ[f(Θ)] = EΘ,Θ′ [f(Θ)f(Θ′)], (1.13)

if Θ and Θ′ are independent with the same distribution. We use (1.13) multiple times for

the following derivations. From (1.12) we have

mr(X, Y )2 = E2
Θ[rmg(Θ,X, Y )]

= EΘ,Θ′ [rmg(Θ,X, Y )rmg(Θ′,X, Y )]. (1.14)

Now we can decompose Var(mr):

Var(mr) = EX,Y [mr(X, Y )2]− E2
X,Y [mr(X, Y )] (1.15)

= EX,Y [E2
Θrmg(Θ,X, Y )]− [EX,YEΘ[rmg(Θ,X, Y )]]2 (1.16)

Using (1.13), the first term of (1.16) can be further derived as

EX,Y [E2
Θ[rmg(Θ,X, Y )]] = EX,YEΘ,Θ′ [rmg(Θ,X, Y )rmg(Θ′,X, Y )]

= EΘ,Θ′EX,Y [rmg(Θ,X, Y )rmg(Θ′,X, Y )], (1.17)

and the second term of (1.16) is

[EX,YEΘ[rmg(Θ,X, Y )]]2 = E2
Θ[EX,Y [rmg(Θ,X, Y )]]

= EΘ,Θ′ [EX,Y [rmg(Θ,X, Y )]EX,Y [rmg(Θ′,X, Y )]]. (1.18)
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Substitute (1.17) and (1.18) into (1.16),

Var(mr) = EΘ,Θ′ [EX,Y [rmg(Θ,X, Y )rmg(Θ′,X, Y )]

− EX,Y [rmg(Θ,X, Y )]EX,Y [rmg(Θ′,X, Y )]]

= EΘ,Θ′ [CovX,Y (rmg(Θ,X, Y ), rmg(Θ′,X, Y ))]

= EΘ,Θ′ [ρX,Y (rmg(Θ,X, Y ), rmg(Θ′,X, Y ))·

sdX,Y (rmg(Θ,X, Y ))sdX,Y (rmg(Θ′,X, Y ))]. (1.19)

To simplify the notations, let ρ(Θ,Θ′) = ρX,Y (rmg(Θ,X, Y ), rmg(Θ′,X, Y )), and sd(Θ) =

sdX,Y (rmg(Θ,X, Y )), then (1.19) becomes

Var(mr) = EΘ,Θ′ [ρ(Θ,Θ′)sd(Θ)sd(Θ′)]. (1.20)

Let

ρ̄ = EΘ,Θ′ [ρ(Θ,Θ′)sd(Θ)sd(Θ′)]/EΘ,Θ′ [sd(Θ)sd(Θ′)],

which is the mean value of the correlation, then (1.19) becomes

Var(mr) = ρ̄EΘ,Θ′ [sd(Θ)sd(Θ′)]

= ρ̄E2
Θ[sd(Θ)] (1.21)

6 ρ̄EΘ[sd(Θ)2]

= ρ̄EΘ[Var(Θ)], (1.22)
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where Var(Θ) is the simplified notation for VarX,Y (rmg(Θ,X, Y )). Expanding EΘ[Var(Θ)],

EΘ[Var(Θ)] = EΘ[VarX,Y (rmg(Θ,X, Y ))]

= EΘ{EX,Y [rmg(Θ,X, Y )2]− E2
X,Y [rmg(Θ,X, Y )]}

= EΘEX,Y [rmg(Θ,X, Y )2]− EΘ[E2
X,Y [rmg(Θ,X, Y )]]

6 EΘEX,Y [rmg(Θ,X, Y )2]− [EΘEX,Y [rmg(Θ,X, Y )]]2

= EΘEX,Y [rmg(Θ,X, Y )2]− [EX,YEΘ[rmg(Θ,X, Y )]]2 (1.23)

Notice that EΘ[rmg(Θ,X, Y )] is mr(X, Y ) (1.12) and EX,Y [mr(X, Y )] is s (1.8), then (1.23)

becomes

EΘ[Var(Θ)] 6 EΘEX,Y [rmg(Θ,X, Y )2]− s2

6 1− s2 (1.24)

Putting (1.9), (1.22) and (1.24) together completes the proof for Theorem 1.

1.6 Out-of-Bag Estimates for Strength and Correlation

As described in (Breiman, 2001), strength and correlation can be estimated by out-

of-bag estimates. To estimate strength s, let

Q(X, j) =
∑
k

I(h(X,Θk) = j; (y,X) /∈ Tk,B)/
∑
k

I((y,X) /∈ Tk,B),

where Tk,B is the bootstrap training set for the k’th tree. Therefore Q(X, j) is the proportion

of out-of-bag votes cast at X for class j, i.e., for trees that do not have (y,X) in the bootstrap

training set, how many (in proportion) vote for class j. Q(X, j) can be used as an estimate
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for PΘ(h(X,Θ) = j). From (1.10) we can estimate mr(X, Y ) as

Q(X, Y )−max
j 6=Y

Q(X, j). (1.25)

And since strength is the expectation of mr(X, Y ) (1.8), the out-of-bag estimate for strength

can be obtained by taking the average of (1.25) on the whole sample.

The estimate for correlation can be derived as follows. (1.21) can be rewritten as

ρ̄ = Var(mr)/E2
Θ[sd(Θ)]. (1.26)

From (1.8),(1.10) and (1.15), we have

Var(mr) = EX,Y [(PΘ(h(X,Θ) = Y )− PΘ(h(X,Θ) = ĵ(X, Y ))2]− s2 (1.27)

Using the average of (Q(X, Y )−maxj 6=Y Q(X, j))2 as the estimate of the first term and using

estimate of s gives the estimate of Var(mr). Var(Θ) can be derived as

Var(Θ) = VarX,Y (rmg(Θ,X, Y ))

= VarX,Y (I(h(X,Θ) = Y )− I(h(X,Θ) = ĵ(X, Y ))

= EX,Y [(I(h(X,Θ) = Y )− I(h(X,Θ) = ĵ(X, Y ))2]

− E2
X,Y [I(h(X,Θ) = Y )− I(h(X,Θ) = ĵ(X, Y ))]

= EX,Y [I(h(X,Θ) = Y )2]− 2EX,Y [I(h(X,Θ) = Y )I(h(X,Θ) = ĵ(X, Y ))]

+ EX,Y [I(h(X,Θ) = ĵ(X, Y ))2]− {EX,Y [I(h(X,Θ) = Y )]

− EX,Y [I(h(X,Θ) = ĵ(X, Y ))]}2

= EX,Y [I(h(X,Θ) = Y )] + EX,Y [I(h(X,Θ) = ĵ(X, Y ))]

− {EX,Y [I(h(X,Θ) = Y )]− EX,Y [I(h(X,Θ) = ĵ(X, Y ))]}2

= p1 + p2 − (p1 − p2)2,

11



where p1 = EX,Y [I(h(X,Θ) = Y )], p2 = EX,Y [I(h(X,Θ) = ĵ(X, Y ))]. Then

sd(Θ) = (p1 + p2 − (p1 − p2)2)1/2. (1.28)

For the kth tree, sd(Θk) can be estimated by using out-of-bag samples to estimate p1 and p2.

Then taking the average of all trees gives the estimate of sd(Θ). Since p1 + p2 6 1, p1 > 0

and p2 > 0, it is easy to show that 0 6 sd(Θ) 6 1.

The strength and correlation estimates are useful to study the behavior of random

forests during experiments. We implemented the strength and correlation estimates in our

random forest classifier and the results are shown in Chapter 4.

1.7 Weaknesses of Random Forests

There are two major weaknesses of random forests. First, it cannot capture the

structural information of the features. For example, image data are usually represented by

pixels and the pixels have a 2-D spatial structure, which can be captured by a Convolutional

Neural Network (CNN) but not by a random forest. The arrangement of the features does

not affect the performance of a random forest. And this could be one explanation of why

CNNs perform better than random forests on image data. The importance of using feature

locality is further explained in Chapter 3 and our solution to overcome this weakness of

random forest is demonstrated in Chapter 4.

The other weakness of random forests comes from its base learner, the decision tree

classifier. At each node, only one feature will be used to decide the best split. This nature of

decision tree classifiers presents challenges in solving problems like XOR, where two features

must be used at the same time to determine the class of an example. In the XOR problem,

the input X has two features, X1 and X2. The label Y is 1 if both X1 and X2 are equal to 0

or both are equal to 1, and Y is 0 otherwise. The two classes cannot be separated by splitting

on X1 or X2. In the XOR problem, X1 and X2 are marginally independent on the label but

jointly dependent on the label. However, random forests can only take advantage of features
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that are marginally dependent on the label. In Chapter 5 & 6, we further demonstrate the

difference between marginal and joint dependence and present our solution to make use of

joint dependent features.

1.8 Outline

Both of the two approaches to improve random forests proposed in this paper require

dependence analysis. Therefore, we first introduce statistical tools for dependence measure

in Chapter 2. We then explain the concept of feature locality that motivated our local

feature sampling (LFS) approach in Chapter 3 and Chapter 4 demonstrates LFS in detail.

Chapter 5 explains the difference between marginal and joint dependence and experimentally

demonstrates that decision trees can take advantage of jointly dependent features. We

then propose a feature dependence mapping technique to overcome this issue in Chapter 6.

Chapter 7 concludes the dissertation.
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CHAPTER 2

DEPENDENCE MEASURE

Dependence (also know as association) is a statistical relationship between two ran-

dom variables. Analysis of dependence is crucial in machine learning, including both super-

vised and unsupervised learning. In general, supervised learning aims to study the depen-

dence between features and the label, while unsupervised learning focus on the dependence

between samples. Our approach to improve random forests is based on the analysis of de-

pendence between features as well as the dependence between features and the label. We

therefore precede our introduction to some statistical measures of dependence that are used

in or related to our approach.

The measure of dependence is usually called correlation, which a number that indi-

cates the degree to which a pair of variables are related. However, the presence of correlation

is not sufficient to infer causal relationship. Here we focus our discussion on correlation.

Among various correlations developed (Mari and Kotz, 2001), the most commonly used one

is Pearson correlation, which measures the linear dependence between two random vari-

ables. In spite of its simple computation, Pearson correlation does not capture non-linear

dependence and only applies to 1-dimensional random variables. To address this issue, two

distance based correlations were developed: distance correlation (Székely et al., 2007; Székely

and Rizzo, 2009) and Gini correlation (Dang et al., 2018). They both characterize non-linear

dependence, with distance correlation measuring dependence between two numerical and ar-

bitrary dimensional random variables, and Gini correlation measuring dependence between

one numerical random variable with arbitrary dimension and a categorical random variable.

We present the definitions and computations of the above-mentioned correlations in this

Chapter.
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2.1 Pearson Correlation

The Pearson correlation is also called “Pearson product-moment correlation coeffi-

cient” or “Pearson’s correlation coefficient”. The Pearson correlation between two random

variables X and Y , denoted as ρX,Y or Cor(X, Y ), is defined as

ρX,Y = Cor(X, Y ) =
Cov(X, Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
,

where µX and µY are expected values of X and Y and σX and σY are standard deviations.

Pearson correlation is symmetric and has a value between -1 and 1. The value 1 indicates

direct (increasing) linear relationship and the value -1 indicates a decreasing (inverse) linear

relationship. When the sign is not of interest, the squared value of ρX,Y , called Pearson R-

squared, is a preferred measure of dependence. It is interpreted as the ratio of the explained

variation to the total variation. A higher value suggests a stronger linear dependence but a

zero value does not suggest independence. The computation complexity for Pearson correla-

tion is O(n), where n is the sample size. The simplicity in computation and the ubiquitous

liner dependence makes it an effective dependence measure for a wide range of applications.

However, Pearson correlation suffers two main drawbacks. First, it is not always

able to detect dependency between a pair of dependent random variables. Examples are

Y = X2 and Y = cos(X). In both cases, clearly there is a dependence between X and Y ,

but the Pearson correlation is zero. More generally, we have ρ = 0 if Y = f(X) over the

interval (−a, a), f(x) is a single-valued function, symmetrical about x = 0, and the points

are sampled uniformly from the intervals. Second, Pearson correlation can only be applied

two 1-dimensional random variables which also have to be numerical. It can not be directly

applied to feature selection task when the response variable is categorical. In the case of

sure independent screening (SIS) procedure (Fan and Lv, 2008), the class variable is treated

as numerical one to apply Pearson correlation for screening out irrelevant features. In (Hall,

2000), a Correlation-based Feature Selection (CFS) was proposed to use Pearson correlation
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to select useful features for classification problems where the class variable can be either

numerical or categorical. In the case of class variable being numerical, Pearson correlation

is directly applied. For the categorical case, a weighted Pearson’s correlation is used. Let

Y be the class variable that can take values y1, ..., yK , the weighted Pearson correlation is

defined as

ρX,Y =
K∑
k=1

pkρX,Yk ,

where pk is the probability of Y taking value yk, and Yk is a binary vector which takes value

1 if Y has value yk or 0 otherwise. Yk is treated numerically to calculate ρX,Yk .

2.2 Distance Correlation

The disadvantages of Pearson correlation motivated the development of distance cor-

relation (dCor) based on pairwise distances between sample elements (Székely et al., 2007;

Székely and Rizzo, 2009). Here we present some key results from their work.

Let X ∈ Rp and Y ∈ Rq be two numerical random vectors, where p and q are

positive integers. Let fX and fY be the characteristic functions of X and Y and fX,Y be the

joint characteristic function. Thus, X and Y are independent if and only if fX,Y = fXfY.

Therefore a natural way to measure dependence between X and Y is to have a suitable norm

to define the distance between fX,Y and fXfY.

Definition 6. The distance covariance (dCov) between random vectors X and Y with finite

first moments is defined by

dCov2(X,Y) = ||fX,Y(t , s)− fX(t)fY(s)||2

=
1

cpcq

∫
Rp+q

|fX,Y(t , s)− fX(t)fY(s)|2

|t|1+p|s|1+q
dtds,

where

cd =
π(1+d)/2

Γ((1 + d)/2)
.
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Definition 7. The distance correlation (dCor) between random vectors X and Y with finite

first moments is defined by

dCor2(X,Y) =


dCov2(X,Y)√

dVar2(X)dVar2(Y)
, dVar2(X)dVar2(Y) > 0;

0, dVar2(X)dVar2(Y) = 0,

where dVar is the distance variance defined by dVar(X) = dCor(X,X).

Distance correlation is different from classical correlations in two fundamental ways:

1) dCor(X,Y) is defined for X and Y in arbitrary dimension.

2) dCor(X,Y) = 0 characterized independence of X and Y.

It satisfies 0 ≤ dCor ≤ 1, and dCor = 0 if and only if X and Y are independent. For

the sake of implementations, we need sample versions of distance statistics as estimations.

Definition 8. The sample version of distance covariance dCovn and distance variance dVarn

of n i.i.d. samples (x i,y i), i = 1, ..., n, drawn from their joint distribution, are defined by

dCov2
n(X,Y) =

1

n2

n∑
k,l=1

AklBkl,

dVar2
n(X) = dCov2

n(X,X) =
1

n2

n∑
k,l=1

A2
kl,

where Akl and Bkl are calculated from the Euclidean distance matrices akl = |x k − x l|p and

bkl = |yk − y l|q, i.e.,

Akl = akl − āk· − ā·l + ā··, Bkl = bkl − b̄k· − b̄·l + b̄··, k, l = 1, ..., n,

where

āk· =
1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl, ā·· =
1

n2

n∑
k,l=1

akl,
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and similarly for b̄k·,b̄·l and b̄··.

Definition 9. The sample distance correlation (dCor) between random vectors X and Y

can then be defined by

dCor2
n(X,Y) =


dCov2

n(X,Y)√
dVar2

n(X)dVarn
2(Y)

, dVar2
n(X)dVar2

n(Y) > 0;

0, dVar2
n(X)dVar2

n(Y) = 0.

dCovn and dCorn have the following properties:

1) dCovn(X,Y) > 0;

2) dCovn(X,Y) = 0 if and only if every sample observation is identical;

3) 0 6 dCorn(X,Y) 6 1.

As the sample size n goes to infinity, dCovn converges to dCov and dCorn converges

to dCor. The sample version of distance correlation dCorn provides a good estimation of

dependence between two random variables of arbitrary dimension and is used in our work

to measure dependence between two sets of features, with each set considered as one multi-

dimensional random variable.

From Definition 8 and 9, it is clear that the computation complexity of dCovn(X,Y)

or dCorn(X,Y) is O(n2). When n is large, using a random subset of samples for dependence

estimations is desired for time efficiency.

Distance correlation has been proven to be a better feature selection method than

Pearson correlation in (Li et al., 2012), where a distance correlation based sure independence

screening (DC-SIS) was proposed. By using dCor as the dependent measure, DC-SIS avoids

screening out some non-linearly dependent features which could be otherwise filtered out if

Pearson correlation is applied. Same as SIS, the class variable in DC-SIS is treated numer-

ically. Distance correlation has also been applied to measure the dependence between time
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series random vectors (Székely and Rizzo, 2013; Zhou, 2012), where the random vectors are

multi-dimensional. As pointed out in (Székely and Rizzo, 2009), dCor can also be used to

measure feature-label dependence when the response is multivariate.

2.3 Gini Correlation

Gini correlation was developed by (Dang et al., 2018) to measure dependence between

a numerical random variable and a categorical variable.

Definition 10. Let X ∈ Rd be a numerical random vector with its CDF being F , Y be

a categorical random variable which can take K values L1, ..., LK , and Xk be a random

variable conditional on Y = Lk with its CDF being Fk, the Gini covariance (gCov) between

X and Y is defined as the weighted energy distance between Xk and X, i.e.,

gCov(X, Y ) =
K∑
k=1

pkT (Xk,X),

where pk = P (Y = Lk), T (Xk,X) = 2E|Xk −X| − E|Xk −X′k| − E|X−X′|, X and X′ are

independent random variables from F , Xk and X′k are independent random variables from

Fk.

Applying the Proposition 2 of (Székely and Rizzo, 2013), we have

T (Xk,X) =
1

cd

∫
Rd

|fk(t)− f(t)|2

|t|1+d
dt,

where fk and f are the characteristic functions of Xk and X, respectively, and cd is the same

constant used in Definition 6. This suggests that gCov(X, Y ) > 0 with equality to zero if

and only if X and Xk are identically distributed for all k = 1, ..., K, or equivalently, X and

Y are independent.

Gini covariance can also be represented by Gini mean difference (GMD). The Gini
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mean differences are defined as

∆ = E|X−X′|,

∆k = E|Xk −X′k|,

∆kl = E|Xk −Xl|.

Then gCov can be rewritten as

gCov(X, Y ) =
K∑
k=1

pkT (Xk,X)

=
K∑
k=1

pk[2E|Xk −X| − E|Xk −X′k| − E|X−X′|]

= 2
K∑
k=1

K∑
l=1

pkpl∆kl −
K∑
k=1

pk∆k −∆

= 2∆−
K∑
k=1

pk∆k −∆

= ∆−
K∑
k=1

pk∆k

The Gini correlation is then defined as

Definition 11.

gCor(X, Y ) =
gCov(X, Y )

∆
=

∆−
∑K

k=1 pk∆k

∆
.

Since
∑K

k=1 pk∆k is the weighted average of GMD within each group, and ∆ −∑K
k=1 pk∆k is the GMD between groups, then gCor can be interpreted as the ratio of the

between-group Gini variation and the total Gini variation. gCor(X, Y ) has the following

properties:

1) 0 6 gCor(X, Y ) 6 1;

2) gCor(X, Y ) = 0 if and only if X and Y are independent;
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3) gCor(X, Y ) = 1 if and only if Fk is a single point mass distribution.

When d = 1, it was also shown in (Dang et al., 2018) that

∆ = 2

∫
F (x)(1− F (x))dx,

and gCor can be written as

gCor(X, Y ) =
2
∫
F (x)(1− F (x))dx− 2

∑K
k=1 pk

∫
R Fk(x)(1− Fk(x))dx

2
∫
F (x)(1− F (x))dx

=

∑K
k=1 pk

∫
R(Fk(x)− F (x))2dx∫

F (x)(1− F (x))dx
.

This representation shows that gCor measures the distance between the marginal distribution

F (x) and the conditional distribution Fk(x).

Like what we have shown for dCov and dCor, the sample versions of gCov and gCor

are needed for implementation purposes.

Definition 12. Let (x i, yi), i = 1, ..., n, be n i.i.d. samples drawn from the joint distribution

of X and Y , and Ik be the index set of sample points with yi = Lk. Then pk is estimated

by the sample proportion of category Lk, i.e., p̂k = nk

n
, where nk = |Ik| > 2. The sample

estimators of Gini distance covariance Gini correlation are defined by

gCovn(X, Y ) = ∆̂−
K∑
k=1

p̂k∆̂k,

gCorn(X, Y ) =
∆̂−

∑K
k=1 p̂k∆̂k

∆̂
,

where ∆̂k =
(
nk

2

)−1∑
i<j∈Ik |x i − x j|d, ∆̂ =

(
n
2

)−1∑
1=i<j=n |x i − x j|d.

Similiar to distance statistics, gCovn(X, Y ) and gCorn(X, Y ) converges to gCov(X, Y )

and gCor(X, Y ) as n → ∞. However, different from distance statistics, the sample estima-

tions gCovn(X, Y ) and gCorn(X, Y ) are unbiased. In other words, negative values may be
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observed if X and Y are independent.

The complexity of a direct implementation of gCovn(X, Y ) and gCorn(X, Y ) accord-

ing to Definition 12 is O(n2). It can be simplified to O(n log(n)) when the dimension of X

is 1, i.e., d = 1. This is because the Gini mean distance of a 1-dimensional random variable

can be written as a linear combination of order statistics (Schezhtman and Yitzhaki, 1987).

Assume the order statistics of x1, x2, ..., xn are x(1) 6 x(2) 6 ... 6 x(n), then

∆̂ =

(
n

2

)−1 ∑
1=i<j=n

|xi − xj| =
(
n

2

)−1 n∑
i=1

(2i− n− 1)x(i). (2.1)

The calculation of (2.1) takes O(n) and the sorting takes O(n log(n)), thus the overall com-

putation takes O(n log(n)). This fast implementation is very useful when testing the depen-

dence between each feature and the label, since the number of features can be very large.

However, when testing the dependence between a set/subset of features (treated as a multi-

dimensional random variable) and the label, only the O(n2) algorithm can be used. When

n is large, using a random subset of samples for dependence estimations is recommended.

Since gGor measures the dependence between a numerical variable and a categorical

variable, it is well suited to serve as a feature selector in a classification problem. One of

our previous work (Zhang et al., 2019) is to use gCor or gCov to rank feature relevance and

showed that gCor and gCov outperformed dCor, dCov and Pearson correlation. To apply

Pearson correlation, we treated the class variable as numerical. To apply dCor or dCov, we

used set difference to measure the sample distances of the class variable, i.e., the distance

between to samples is 1 if they are of different classes, or 0 otherwise. Figure 2.1 shows

the ranking performance of using Pearson R2, dCov, dCor, gCov and gCor. PAM50 is the

gold standard gene list for breast cancer subtype diagnosis. In both subfigures, k is the

number of top features being selected. Figure 2.1a shows that gCov and gCor are able to

select a smaller set of genes and the prediction is better than the gold standard. Figure 2.1b

shows that Gini statistics are able to select more PAM50 genes than distance statistics as k
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(a) (b)

Figure 2.1. Feature selection on the breast cancer dataset. (a) Test accuracy using the top
k selected genes. (b) Number of PAM50 genes in the selected top k genes.

increases.

2.4 Permutation Tests

Like other statistical tests, a p-value needs to be calculated to measure the significance

of dependence. The p-value is the probability of observing the test statistic or higher when the

null hypothesis is true. A smaller p-value suggests the higher significance of the test. In our

dependence test, if we use gCorn(X, Y ) as the test statistic (similar if we use dCorn(X, Y )),

we will have the following null and alternative hypotheses:

H0 : gCor(X, Y ) = 0, (X and Y are independent);

H1 : gCor(X, Y ) > 0, (X and Y are dependent).

A claim on dependence can be make by comparing the p-value with a pre-defined significance

level α: if p−value 6 α, we reject the null hypothesis and claim X and Y are dependent.

For example, if we we observe gCorn(X, Y ) = 0.01 in our dependence test, a p-value = 0.045

is interpreted as: when X and Y are independent, P (gCorn(X, Y ) > 0.01) = 0.045. If the

significance level α is set at 0.05, we can reject the null hypothesis and say X and Y are
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dependent. The p-value is crucial for two reasons: 1) it can be used to determine whether

or not two random variables are dependent; 2) the p-values of dependence tests can be used

to sort the significance of dependence, e.g., in the application of feature selection.

A common approach to calculate p-value is to perform permutation tests. A per-

mutation test is to calculated the test statistic (gCorn(X, Y ) in the example above) after

random permutating the sample observations of X or Y . After N permutation tests, the

p-value can be estimated by the proportion of test statistics obtained in permutation tests

that are greater than the observed test statistic in the dependence test, i.e.,

p−value =

∑N
i=1 I(gCorn(X, Y )ithperm > gCorn(X, Y ))

N
, (2.2)

where gCorn(X, Y )ithperm is the notation for gCorn(X, Y ) obtained in the ith permutation

test and I(·) is the indicator function. The larger the value of N is, the more accurate

the p-value can be obtained. Therefore in our implementation, we used a relative large N

(N = 5000) and parallelized permutation tests.
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CHAPTER 3

FEATURE LOCALITY

3.1 Motivation

The idea of feature locality comes from the observation that convolutional neural

networks (CNNs) are good at analyzing image data due to their ability to learn abstract

representations from local features (pixels). In spite of their excellent performance, CNNs

are black-box models that lack interpretability. This motivated us to borrow the idea of

exploiting local information from CNNs to improve random forests, which are much more

interpretable (discussed in Section 1.3).

Is local information of features useful to a random forest? The answer is yes, if the

following hypothesis is true: features within a shorter distance are more dependent than

features across a longer distance. For image data, the distance between features can be

defined by the Euclidean distance between pixels on the 2D grid. For non-image data,

the distance between features needs to be defined. We show some experimental results to

validate our hypothesis below, but let’s assume the hypothesis is true for now. We can

therefore increase the variance of the tree outputs by constructing the forest in this way:

we use a subset of features (instead of all features) as the input for each tree and let local

features be in the same tree. As a consequence, features input to different trees are less

correlated. Since a tree classifier is just a function mapping from input to output, by making

the inputs less correlated, we are also forcing the outputs from different trees to be less

correlated. Mathematically, let A and B be two subsets of features, and XA, XB be the data

represented using feature set A and B, respectively. We then train a tree TA using feature

set A and another tree TB using feature set B and let ΘA and ΘB be the parameters to
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generate TA and TB, respectively. Then the class conditional correlation between these two

trees is

ρ(ΘA,ΘB|Y )

= ρX(rmg(ΘA,X, Y ), rmg(ΘB,X, Y ))

∝ CovX(rmg(ΘA,X, Y ), rmg(ΘB,X, Y ))

= CovX(rmg(ΘA,XA, Y ), rmg(ΘB,XB, Y ))

= EX[rmg(ΘA,XA, Y )rmg(ΘB,XB, Y )]

− EXA [rmg(ΘA,XA, Y )]EXB [rmg(ΘB,XB, Y )]

=

∫
rmg(ΘA,xA, Y )rmg(ΘB,xB, Y )p(xA,xB|Y )dx

−
∫
rmg(ΘA,xA, Y )p(xA|Y )dxA

∫
rmg(ΘB,xB, Y )p(xB|Y )dxB

=

∫
rmg(ΘA,xA, Y )rmg(ΘB,xB, Y )p(xA,xB|Y )dx

−
∫
rmg(ΘA,xA, Y )rmg(ΘB,xB, Y )p(xA|Y )p(xB|Y )dx

=

∫
rmg(ΘA,xA, Y )rmg(ΘB,xB, Y )[p(xA,xB|Y )− p(xA|Y )p(xB|Y )]dx

6 {
∫

[rmg(ΘA,xA, Y )rmg(ΘB,xB, Y )]2dx

∫
[p(xA,xB|Y )− p(xA|Y )p(xB|Y )]2dx}1/2.

(3.1)

Notice that the second integral in ( 3.1) is a dependence measure of XA and XB. By making

XA and XB less dependent, we can reduce the correlation between trees. In Chapter 1

we showed that the performance of random forest is controlled by the trade-off between

strength and correlation. When the strength of individual trees is high enough, reducing the

correlation is likely to improve the forest’s performance.

3.2 Feature Dependence in Image Data

To validate our hypothesis empirically, we need a way to measure the dependence

between features. Specifically, we are more interested in measuring dependence between two
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groups of features, and the sizes of the two groups are not necessarily to be the same. The

two groups of features can be viewed as two random vectors, possibly of different dimensions.

An observation of the random vector is a sample represented by the features of that group.

Therefore, measuring the dependence between the two groups of features is equivalent to

measuring the dependence between the two random vectors. As introduced in Section 2.2,

distance correlation (dCor) is a good dependence measure for random vectors of arbitrary

and not necessarily equal dimensions. It is zero if and only if the two random vectors are

independent.

We tested our hypothesis on one of the most popular image data sets: MNIST (LeCun

et al., 2010). In our experiment, we randomly selected two m by m windows from the image

as the two feature sets and tested the distance correlation of the two sets. 500 random

samples (images) were used to calculate distance correlation. For implementation simplicity,

the two windows under dependence test were of the same size, but they were not required to

be. The window distance is measured by the Euclidean distance between the two left corner

pixels of the two windows on the image and rounded to an integer. Given two pixels p1 and

p2 with their coordinates on the image being (x1, y1) and (x2, y2), the distance between p1

and p2 is defined as

d =
√

(x1 − x2)2 + (y1 − y2)2. (3.2)

A schematic diagram of our experiment is shown in Figure 3.1. The conditional distance

correlation dCor(X1,X2|Y ) was first calculated and the unconditional distance correla-

tion is calculated by taking the expectation of the dCor(X1,X2|Y ), i.e., dCor(X1,X2) =

EY [dCor(X1,X2|Y )]. Here X1 and X2 denotes the two sets of features defined by the two

windows and Y denotes the class label. The results are shown in Figure 3.2. Three different

values of window size m were used: 10, 15 and 20. The range of the window distance is

defined by the window size since the images are of a fixed size of 28 by 28. The distance was

rounded to an integer for plotting and each point in the figure is an average of 100 experi-

ments. The figure shows a clear trend of decreasing dependence when the distance between
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Figure 3.1. A schematic diagram of testing dependence between two windows of size m×m
on MNIST data. The distance between two widows d is measured by the distance between
the upper left corners of the windows.

the two windows is increased, which validates our hypothesis empirically. For window size

m = 10 with d > 15, the slightly increase in dCor is because both windows include some

margins of the image (black background regions).

3.3 Local Features of Non-Image Data

For non-image data, feature locality is not explicitly given as in the case of images,

therefore it has to be defined or learned from the data. To learn the neighborhood infor-

mation of the features, the pair-wise distance needs to be defined. The goal of defining the

distance is to capture feature dependence such that dependent features should have a closer

distance to each other. Therefore it is appealing to use a dependence measure to repre-

sent the distance. As discussed in Section 2.2, dCor is a good candidate for this purpose,

but the computation is too expensive for pair-wise feature dependence measures, which is

(O(n2d2)), where d is the number of features). To reduce computation complexity, we use

Pearson correlation as a substitute. Other distance metrics that have been used in data

visualization and dimensionality reduction techniques are also worth testing, since they are

good approximations for sample dependence. Here we propose four ways of defining the

pair-wise distance between features. Each feature can be represented by its values in the

samples, i.e., a vector of length n, where n is the number of samples. The following distance
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Figure 3.2. Feature dependence tested using distance correlation statistic on MNIST dataset.

metrics are used in our study to calculate pair-wise distance of features: 1) 1− ρ2, where ρ

is the Pearson correlation; 2) Euclidean distance; 3) PCA Euclidean and 4) graph distance.

The first one is a direct approach to capture feature dependence. Euclidean distance is the

most commonly used distance metric in data analysis. PCA Euclidean is defined as the

Euclidean distance between features after dimensionality reduction using PCA (Principle

Component Analysis). This is the default distance used in t-SNE implementation in Python

scikit-learn. The graph distance is defined as the shortest path between two features in the

k-neighbor graph. In the k-neighbor graph, each node is a feature and it has undirected

edges to its k-nearest neighbors defined by Euclidean distance and the weight of the edges

are the Euclidean distances. This distance is used in the Isomap algorithm for dimension-

ality reduction (Tenenbaum et al., 2000) and is good for the Swiss Roll dataset. However,

the choice of k is tricky and the graph can also be defined as a unweighted graph, which

makes it difficult to find the optimal and stable distance representation for different datasets.

We show the evaluation of the above mentioned distance metrics in Chapter 4. Once the

pair-wise distance of features is defined, a random set of “local” features of size m can be
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selected by randomly choosing a feature and its (m− 1) nearest neighbors.

To provide some insight on how well these distances are defined, we compute these

distances, denoted as d̂, using the MNIST data and compare those with the ground truth,

dGT , which can be obtained by (3.2). For each distance type we defined, a scatter plot

is generated and shown in Figure 3.3. The x-axis is the ground truth, the y-axis is the

logarithmic of the normalized distance learned from the data. Since a particular value of

dGT may correspond to multiple values of d̂, the median of which is used to generate the

plot. A perfect distance measure should have a monotonic increasing trend as dGT increases.

As shown in Figure 3.3, none of the distance defined maintains monotonic increasing trend

in the whole x-range. All of them serve as a good distance measure only within a certain

range. Pearson distance is functional only when dGT is less than 5. log(d̂/d̂max) is close to 0

when dGT > 5. This is because a pair of pixels with a distance longer than 5 in between on

the images has a Pearson correlation close to 0, resulting d̂ to be near 1. Euclidean and PCA

Euclidean are functional when dGT < 7. Graph distances have a longer functional range, up

to dGT = 12. The behavior is not sensitive to the different choices of k. From the above

results, Graph distances seem like better distance measures when the ground truth is not

available.

3.4 Summary

In this Chapter, we presented the concept of feature locality. For image data, the

locations of features are given by their coordinates on the image. We validated that pixels

within a shorter distance have higher dependency. For non-image data, we aim to find a

organization of the features such that dependent features are clustered together. To achieve

this goal, since the direct measure of dependence between every pair of features by distance

correlation is too computationally expensive, we presented alternative ways of defining dis-

tance that captures dependence. The proposed distance measures were tested on the MNIST

dataset and compared with the ground truth (distance defined by the pixel coordinates). The
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(a) Pearson (1− ρ2) (b) Euclidean

(c) PCA Euclidean (d) Graph (k = 5)

(e) Graph (k = 8) (f) Graph (k = 10)

Figure 3.3. The learned distances compared with the ground truth on the MNIST dataset.
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graph distances show more promising results than others. In the next chapter, we show how

to utilize feature locality to improve random forests.

32



CHAPTER 4

RANDOM FOREST WITH LOCAL FEATURE SAMPLING

4.1 Local Feature Sampling

The most popular way of building a random forest is by training each tree with boot-

strap samples using all features. It has also been proposed to use a random subset of features

to grow each tree, know as “the random subspace” (Barandiaran, 1998). However, the fea-

tures in the subset are chosen by a pure random sampling without considering any locality

information of the features. Here we propose a local feature sampling (LFS) approach, which

is also using a feature subspace but our contribution is to include the locality information

during the sampling process, i.e., a random patch or neighbourhood of features are used to

construct each tree. In (Louppe, 2014), the term “random patch” is also used but what

it actually means is random subspace. We name our version of random forest as RF-LFS

(random forest with local feature sampling).

For image data, a random patch is defined by an m × m square region of pixels

(total m2 features) located at a random position in the image. The sampling process can be

achieved by randomly picking a pixel from the image as the upper left corner of the patch

and including all features in the m×m square. Notice that the valid region for picking the

upper left corner pixel is not the whole image but a cropped image of size (M−m)×(M−m)

if the whole image is of size M×M . An example of how RF-LFS works on predicting a digit

‘8’ is shown in Figure 4.1. The forest consists of 6 trees. Each tree has access to a random

local region of the image during training and testing. This introduces varieties in the tree

outputs since different trees have different access to the data. For example, tree 2 predicts

‘9’ because it looks at the top part of digit ‘8’ while tree 6 predicts ‘6’ since it looks at the
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Figure 4.1. An example of how RF-LFS works on predicting a digit ‘8’.

bottom part. However, the majority votes for ‘8’ which is correct.

For non-image data, a random neighbourhood of size m is generated by randomly

selecting one feature from the whole feature set and then its (m−1) nearest neighbours with

the distance defined using one of the distance metrics described in Section 3.3. Therefore, a

pair-wise distance metric of features needs to be calculated before the construction of trees.

4.2 Sampling Window Size

We call the size of a random patch or neighbourhood as the sampling window size.

When the sampling window size is equal to the total number of features, then LFS is equiva-

lent to not using LFS. Therefore, the default setting of current random forest can be viewed

as a special case of our RF-LFS. The window size among trees can be kept the same or using

a random size for each tree. In the former case, the window size is a hyper-parameter and

in the latter case, the range of the window size is a hyper-parameter. We compare these two

cases in Section 4.4.1.
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4.3 Out-of-Bag Estimates of Error, Strength and Correlation

We implemented out-of-bag estimates of error, strength and correlation in the RF-

LFS classifier, as described in Section 1.5. The estimates of strength and correlation help

us in understanding how LFS affects the model and the out-of-bag error can be used as the

validation performance to optimize hyper-parameters. Notice that the out-of-bag estimates

require bootstrap. Since bootstrap is usually recommended to train random forests, we use

bootstrap for all experiments.

4.4 Experimental Results

4.4.1 The MNIST Dataset

We first tested RF-LFS on the most popular benchmark image dataset, the MNIST

dataset. We compare RF-LFS with 1) fixed and 2) random window size against the other

three non-LFS based RFs as baselines: 3) RF using all features (this is the Python scikit-

learn implementation); 4) RF using random subspaces with fixed size and 5) RF using

random subspaces with random sizes. We use the following legends for the five methods

under comparison: 1) LFS-fixed; 2) LFS-random; 3) all; 4) subspace-fixed and 5) subspace-

random.

Figure 4.2 shows the results of test accuracy, RF out-of-bag accuracy (performance

of RF on out-of-bag examples), tree out-of-bag accuracy (average performance of trees on

out-of-bag examples), strength (out-of-bag estimates), correlation (out-of-bag estimates) and

upper bound of generalization error (Theorem 1). The number of features sampled to grow

each tree is a hyperparameter for subspace-fixed and LFS-fixed, but not for the other three

methods. Therefore, we show the effect of this hyperparameter on the performance by

using different values from 100 to 700. Each data point in the curve is the average of 30

runs. For method all, subspace-random, and LFS-random, a straight line is plotted. Among

all five methods under comparison, LFS-random has the best performance (test accuracy),

regardless of the hyperparameter used for other methods.

35



(a) (b)

(c) (d)

(e) (f)

Figure 4.2. The MNIST dataset. Effect of number of features sampled to grow each tree.
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Table 4.1. Performance on the MNSIST Dataset Using Optimal Number of Features for
Sampling.

Method Validation (%) Test (%) Strength Correlation

all 96.11 96.60 0.670 0.195
subspace-fixed 96.09 96.63 0.668 0.195
subspace-random 95.98 96.51 0.655 0.193
LFS-fixed 96.25 96.74 0.691 0.197
LFS-random 96.25 96.87 0.644 0.188

We use RF out-of-bag accuracy as validation accuracy to choose the optimal number

of features used for sampling and compare test accuracy. The results are shown in Table 4.1.

The performance gain of LFS-random is due to the reduced correlation with sacrifice in

strength. The decrease in strength is because of the use of local features, as expected. How-

ever, since now the correlation is more dominant in controlling the overall forest performance,

reducing correlation among trees is beneficial. The fact subspace-fixed and LFS-random out-

performs subspace-random shows that the performance gain comes from the local features

sampling, rather than a simply usage of random subsets of features.

From Figure 4.2(f), we can see that the upper bound is loose, therefore does not

correspond with test accuracy. This suggests that a lower upper bound on generalization

error does not guarantee a higher test accuracy. Therefore it is more reasonable to use RF

out-of-bag accuracy to optimize hyperparamters. Figure 4.2(d)&(c) also show the trade-off

between strength and correlation, i.e., one cannot increase strength as well as reduce cor-

relation at the same time. Since LFS-random outperforms LSF-fixed and subspace-random

is comparable with subspace-fixed, we omitted methods with fixed sampling size for later

experiments and no optimization on sampling size is further needed.

Notice that using LFS is not the only way to control the trade-off between strength

and correlation, other hyperparameters like bootstrap and number of features used at each

split (the max features parameter of sklearn.ensemble.RandomForestClassifier) are also key

hyperparameters that achieve this goal. The results shown in Figure 4.2 were obtained by

setting bootstrap as true and number of features at each split as log2(n features). Our
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(a) (b)

(c) (d)

Figure 4.3. The MNIST dataset. Effect of number of features at each tree node to decide
best split.

LFS is a third hyperparameter that should be tested along with these two to see if a third

one is helpful. We keep bootstrap on for all tests and we compare LFS-random against all

and subspace-random by varying the value for number of samples at split. The effect of the

number of features at each split on the performance is shown in Figure 4.3. The performance

gain due to LFS is small but significant. The validation and test accuracies, strength and

correlation using the optimal number of features at each split are shown in Table 4.2.

We randomly selected 100 images from the test set that RF-all predicted wrong but

RF-LFS-random predicted correctly, as shown in Figure 4.4. These are examples showing

local information is more critical and generalizable than global information. For example,
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Table 4.2. Performance on the MNIST Dataset Using Optimal Number of Features at Each
Split.

Method Validation (%) Test (%) Strength Correlation

all 96.66 96.96 0.763 0.203
subspace-random 96.66 96.97 0.758 0.202
LFS-random 96.63 97.14 0.703 0.201

the image on the second row, second column is a “3”, but it is so thick that RF-all predicted

it as an “8”. The image on the 5th row, 5th column is a “9”, but RF-all interpreted it as a

“0” because there is a big circle. However, by using local features, LFS was able to predict

these images correctly.

We are also interested in what regions (groups of features) are essential to make the

prediction correct for each class. Therefore, for each class, we selected the 10 trees in the

forest that have highest accuracy for this particular class, and visualize the patches they

used. The visualization result is shown in Figure 4.5. The white pixels are features selected

and the intensity shows the frequency of a pixel being selected. It shows that trees have

different focuses for different classes.

4.4.2 The ISOLET Dataset

We next test LFS on a non-image dataset—the ISOLET dataset, available at UCI

Machine Learning Repository (Dheeru and Karra Taniskidou, 2017). This dataset contains

recordings of human speaking letters from “a” to “z”. The number of classes is 26, the

number of examples is 7797 and the number of features is 617. We randomly hold out 50%

of the data as test set and the other 50% as training set.

Since this is a non-image dataset, we need to choose a distance metric to define

feature neighborhood. As mentioned in Section 3.3, we will test Pearson, Euclidean, PCA

Euclidean and graph distance. Specifically, for the graph distance, the value of k needs to

be determined to construct the k-neighbor graph. Here we tested the value of k to be 5, 8

and 10. The legend for methods under comparison are:
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Figure 4.4. Some example images that RF-all predicted wrong but RF-LFS-random predicts
correctly. The prediction result is shown in the format of “all/LFS” on the top of each image.
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Figure 4.5. Random patches used by top-10 trees with highest accuracy for each class.

• all: RF using all features;

• subspace-random: RF using a random subset (of random size) of features without

considering feature locality;

• LFS-Pearson: RF with LFS with random window size using (1 − ρ2) as the distance

to define feature neighborhood;

• LFS-Eu: RF with LFS with random window size using Euclidean distance to define

feature neighborhood;

• LFS-PCAEu: RF with LFS with random window size using Euclidean distance of

features after dimensionality reduction using PCA. The number of components used

for this dataset is 20;

• LFS-graph (k = n): RF with LFS with random window size using shortest path on

the k-neighbor graph as the distance, where k = n.

The performance of methods under evaluation are shown in Figure 4.6. Each data point is

an average of 100 runs. It is obvious that LFS-graph (k = 8) has the best performance in

41



(a) (b)

Figure 4.6. The ISOLET dataset. Effect of number of features at each tree node to decide
best split.

Table 4.3. Performance on ISOLET Dataset Using Optimal Number of Features at Each
Split.

Method Validation (%) Test (%) Strength Correlation

all 93.14 93.60 0.570 0.210
subspace-random 93.10 93.64 0.565 0.208
LFS-Pearson 92.92 93.58 0.534 0.188
LFS-Eu 92.88 93.56 0.486 0.175
LFS-PCAEu 93.08 93.55 0.501 0.181
LFS-graph (k = 5) 93.09 93.68 0.490 0.171
LFS-graph (k = 8) 93.49 93.93 0.487 0.165
LFS-graph (k = 10) 93.47 93.83 0.501 0.170

all x-range. The performances using optimal number of features at each split are shown in

Table 4.3. As the table shows, all LFS methods based on graph distance outperform the

sklearn implementation and subspace-random. It is also clear that the performance gain

of these graph distance based LFS methods come from the reduced correlation. Among all

distance metrics being tested, graph distance with k = 8 perform best and has the lowest

correlation on this dataset. However, the optimal k can be data dependent. We chose to use

graph distance with k set to 8 by default, as our distance metric for LFS to test on other

non-image data.
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4.4.3 More Datasets

From previous experimental results, we see LFS that can improve random forest. The

sampling of features is done by randomly selecting patches of random size for image data

or neighborhoods of random size defined by graph distance (k = 8) for non-image data. We

from now on use a single notation LFS for our approach and simplify subspace-random as

subspace. We tested our LFS on more datasets summarized in Table 4.4. HAR is the “Hu-

man Activity Recognition Using Smartphones Data Set” available on UCI (Anguita et al.,

2013). It is a classification task of identifying six human activities (walking, walking upstairs,

waling downstairs, sitting, standing, laying) using signals recorded by smartphones. The fea-

tures are time and frequency domain variables calculated from sliding windows with 50%

overlap, thus we would expect high dependency between these features. The UJIndoorLoc

dataset is a classification of indoor locations (floors in buildings) using signal strength at

Wireless Access Points (WAPs) (Torres-Sospedra et al., 2014). There is clearly a 3-D struc-

ture in features, but the information is not provided. Therefore we have to learn the locality

information of the WAPs. Because this dataset is sufficient large and relatively easy, we use

only 10% as training and 90% as testing.

The number of trees used for all datasets and methods is 100. The result for MNIST

is the average of 30 runs (because of the large size of the dataset) and 100 runs for the other

three datasets. We kept the training and test set unchanged for MNIST in order to compare

with CNN. We shuffled other datasets to ensure similar training and testing distributions

and used a larger hold-out to test method generalizability. The classification performances

are shown in Table 4.5. We see consistent improvement using LFS across these datasets

except the UJIndoorLoc dataset, where subspace performs best. This may due to the less

dependency among features, i.e., the WAPs are sparsely scattered in the buildings, even

though there is a 3D structure. In such scenario, using local features scarifies too much in

strength, therefore is not beneficial for overall performance. For the other three datasets,

we observed that subspace has about the same or even lower performance than using all
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Table 4.4. Data Sets Summary

Data Set Train Size Test Size Features Classes Shuffled

MNIST 60000 10000 784 10 No
ISOLET 3898 3899 617 26 Yes
HAR 5149 5150 561 6 Yes
UJIndoorLoc 2104 18944 520 13 Yes

Table 4.5. Performance on Multiple Datasets Using Optimal Number of Features at Each
Split.

Method
Datasets

MNIST ISOLET HAR UJIndoorLoc

Test (%)
all 96.99 93.56 97.03 97.44

subspace 96.98 93.61 97.10 97.51
LFS 97.10 93.87 97.22 97.48

Validation (%)
all 96.66 93.09 97.22 97.40

subspace 96.65 93.06 97.29 97.36
LFS 96.61 93.58 97.43 96.90

Strength
all 0.763 0.570 0.763 0.672

subspace 0.763 0.565 0.759 0.681
LFS 0.709 0.502 0.735 0.645

Correlation
all 0.203 0.211 0.155 0.161

subspace 0.203 0.208 0.154 0.164
LFS 0.201 0.172 0.137 0.159

features, which suggests the importance of using local information. LFS reduced strength

for all datasets because each tree only has access to local features. The correlation was

reduced by LFS for all datasets compared to subspace and all, suggesting the effectiveness

of using local information.

4.4.4 Discussions

We have some observations during experiments:

1) The improvement of using LFS is about less than 1%. Therefore, the performance

gain is only observable on large datasets (about more than 1000 for the test set).

2) The dataset needs to have a reasonable number of features (hundreds) so that

using LFS is beneficial. This is because when the number of features is small, there is less
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redundancy and less dependency between features. Thus, using LFS is unlikely to reduce

correlation but likely to reduce strength, therefore will not improve overall performance. On

the other hand, when the number of features is too large, the computation of the distance

matrix is too costly to be practical. In such scenarios, feature selection is desired before

applying LFS. When the data dimension is large, the training data should also be sufficient

large so that the strength is not too low to apply LFS. As a consequence, LFS works well

on large data, in terms of both the sample size and dimension.

3) When the training set is sufficient large, the advantage of using LFS is more obvious

when the hold-out percentage for the test set is large (> 50%). This suggests that LFS can

learn more abstract information from data and generalize better. This is understandable

since the data dimension is reduced for each tree and local information can be learned

efficiently.

4) LFS is more useful for multi-class than binary class classification tasks. This is

because data with more classes tends to have more local structures that LFS takes advantage

of. For example, if we only use digit “1” and “7” of the MNIST data and make it a binary

classification problem, we would expect only the upper left pixels of the image to be useful

for this task, i.e., fewer local structures are presented.

5) The minimum window size used for sampling is a hyper-parameter. When the

features are highly dependent, a smaller window size can be used without losing too much

strength while reducing correlation. However, if less dependency exists, a larger window size

must be used to preserve enough strength and LFS will degrade to the sklearn implementa-

tion. In our experiments, the minimum window size was set to 100 for the MNIST dataset,

200 for the ISOLET and HAR datasets, and 300 for the UJIndoorLoc dataset.

6) The validation accuracy of LFS is not always higher than the baselines. This

is because we used out-of-bag accuracy as validation. Since we shuffled the data before

splitting training and testing sets, the data distributions of the two should be very similar.

Note that each out-of-bag example is predicted by about 1/3 (the probability of being out-

45



of-bag sample during sampling with replacement) of the trees in the forest, the discrepancy

between validation and test accuracy is due to the number of trees used as the ensemble.

When LFS is applied, each tree is using a local structure, therefore we would expect to

benefit more from having more trees than in the case LFS is not applied. A recommendation

when applying LFS is to use sufficient number of trees (100 in our experiments).

The above mentioned observations can be used as a guideline regarding when to use

LFS. We next present some potential usage of LFS.

LFS may have potential application on time-series data. Here time-series refers to

data with each feature a record at a particular time point, not the response variable being

time-series. The features of this type of data has a well structure given: they are organized

in 1-D and features within a short time frame are highly dependent. We implemented LFS-

randomTF that randomly sample features within a time frame to train each tree. However,

we did not observe improvement in performance when applying LFS-randomTF on time-

series datasets available on UCI. This is mainly because random forests or tree classifiers do

not perform well on time-series data since the dimension is usually much higher than the

sample size. In this case, the strength is the dominate term in determining the generalization

error and one should aim to improve strength rather than reduce correlation in order to

achieve a better prediction performance. However, we would expect to benefit from using

LFS on time-series data when a sufficient large training set is given.

LFS can also be apply to other ensemble learners, e.g., kNN ensembles. Unlike

decision trees, the training process of a kNN classifier has no randomness. Therefore, we can

only introduce randomness in the process of constructing the ensemble. Bootstrap is not

very effective for kNN ensemble, because the performance of kNN is insensitive to a small

perturbation in the training samples. (Zhou and Yu, 2005) proposed to use random subspace

on kNN ensemble and observed improved performance. We tested LFS on a kNN ensemble

and compare it with the random subspace approach, using the same datasets. Because kNN

is too slow when the training size is large, for the MNIST dataset, we randomly selected
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Table 4.6. Performance of kNN ensemble on Multiple Datasets.

Method
Datasets

MNIST ISOLET HAR UJIndoorLoc

Test subspace 93.78 89.13 96.40 92.03
(%) LFS 94.17 90.20 96.63 91.45

Validation subspace 92.71 87.69 96.17 90.97
(%) LFS 93.09 88.44 95.95 89.77

Strength
subspace 0.804 0.684 0.869 0.743

LFS 0.736 0.594 0.777 0.664

Correlation
subspace 0.308 0.414 0.147 0.402

LFS 0.280 0.317 0.144 0.350

5000 training samples for training, with the test set unchanged. Other datasets are the same

with previous experiments. We also set the number of base learners to 30 and the number

of runs to 10 for the same reason. The results are shown in Table 4.6 and they are mostly

consistent with those in Table 4.5.

LFS encourages us to analysis features as groups. As in the example shown in Fig-

ure 4.1, trees that have access to the middle part of the image are able to predict digit “8”

correctly. In the contrast, trees that have only access to the top region or bottom region

fails to generate the correct output. This suggests that some regions are more critical in

prediction than others for a particular class. Unlike traditional random forest that only pro-

vides feature importance “individual wise”, LFS provides some insights on class conditional

feature importance “group wise”, as shown in Figure 4.5. LFS can be used to cluster local

feature sets into meaningful groups, like “center”, “bottom”, “top” in the case of MNIST

data, and for non-image data as well, to help interpreting prediction results.

Learning the local information of features is a new direction of representation learning.

Usually a new representation means change in data dimension and/or changes in the values

of the features. However, in our LFS, we change neither of these. It is the organization of

features that we are interested in. We aimed to learn a better organization of the features

and enabled RF to benefit from it.
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In spite of the significance on the performance gain in random forest by LFS, it is

still not comparable to that of CNN, which is above 99% (LeCun et al., 1998). In the next

two chapters, we propose another approach to improve random forest. However, due to the

difference in model capability between random forest and CNN, we do not expect random

forest to outperform CNN when training data are sufficient.

4.5 Related Work

Extensive efforts have been made to introduce randomness in random forest for lower

correlation. The most significant one is bootstrap aggregating (Breiman, 1996), also called

bagging, which uses bootstrap samples of the training data to grow each tree. A bootstrap

sample is a random set drawn from the training set with replacement. In bagging, the

diversity in trees comes from the difference in their bootstrap samples. Bagging can also be

combined with boosting, an algorithm that maintains a set of weights for training examples

and assigns higher weights to misclassified examples and lower weight to correctly classified

examples. Then the weights from boosting can be used as the sampling distribution for

bagging to generate bootstrap samples (Quinlan, 1993).

An alternative approach to increase diversity is to introduce randomness inside of

each tree at the process of decision making. (Dietterich, 2000) proposed to use random split

selection where the split at each node is selected at random from the K best splits. In

this approach, every feature must be evaluated to determine the best K splits. To reduce

complexity, (Amit and Geman, 1997) used a random selection of the features to decide the

best split on image classification and feature selection tasks. (Breiman, 2001) generalized

this idea and tested it on a variety of data sets.

The method that is most similar to ours is the “random subspace” approach (Baran-

diaran, 1998), where each tree only has access to a subset of features. Unlike ours, this

subset of features is drawn randomly and uniformly from all features, without considering

the dependence among these features. Our LFS approach aims to put dependent features in
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the same tree and less dependent features into different trees.

4.6 Summary

In this chapter, we proposed a local feature sampling (LFS) approach to improve

random forests. LFS uses a random subset of features that are close to/dependent on each

other, to train each tree. Since dependent features are within one tree, feature sets for dif-

ferent trees are less dependent, thus reducing correlation among trees. Different distance

measure to define feature locality were evaluated and the graph distance showed best per-

formance, agreeing with the results in Chapter 3. On multiple UCI datasets where features

are structured and highly correlated, our LFS approach outperformed random forest using

all features or random subsets of feature to train each tree, suggesting the importance of

learning local information of features. This chapter completes our work on reducing corre-

lation to improve random forest. In the next chapters, we show our approaches to improve

the strength of random forest.
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CHAPTER 5

FEATURE-LABEL DEPENDENCE

5.1 Marginal Dependence vs. Joint Dependence

In Section 1.7 we mentioned that one weakness of random forest or decision tree is

that it can use only one feature to decide the best split at each decision node. This way of

partitioning the data is not efficient when the marginal dependency is weak and the joint

dependency is strong. A feature Xi is marginally dependent on Y if Xi 6⊥⊥ Y . A set of features

{X1, ...Xk} is jointly dependent on Y if X 6⊥⊥ Y , where X = [X1, ..., Xk]. The XOR problem

is a good example. Since the original XOR problem contains only 4 points, we generalize

it to a dataset containing arbitrary number of data points and use it as a demonstration

example.

A generalized XOR dataset (X, Y ), X ∈ R2, is generated in this way: for each i.i.d

sample (xi, yi), where xi = [xi1, xi2], xi1 is drawn randomly from N (µi1, σ
2), where µi1 is

randomly chosen from {−1, 1} and σ2 is a predefined value for variance. xi2 is generated

the same way and independent of xi1, i.e., xi2 is drawn randomly from N (µi2, σ
2), where µi2

is also randomly chosen from {−1, 1}. The label yi is determined by both µi1 and µi2, i.e.,

yi = µi1∗µi2, therefore X 6⊥⊥ Y . A dataset containing 200 points is visualized in Figure 5.1(a).

The XOR dataset can also be extended to an arbitrary dimensional space, X ∈ Rd. For each

i.i.d sample (xi, yi), where xi = [xi1, ..., xid], xik is drawn randomly from N (µik, σ
2), and µik

is randomly chosen from {−1, 1}. The label yi is determined by yi =
∏d

k=1 µk. A 3D XOR

dataset is shown in Figure 5.1(b). To test the behavior of decision tree based classifiers,

we can also add a marginally dependent feature X0. For each sample i, xi0 is randomly

drawn from N (yi, σ
′2). The class conditional distributions of X0 is shown in Figure 5.1(c).
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(a) (b)

(c)

Figure 5.1. The generalized XOR datasets in (a) 2D and (b) 3D. (c) Class conditional
distribution of a marginally dependent feature. In all datasets, blue denotes class -1 and red
denotes class 1. σ = 0.4 for (a) and (b). σ′ = 1.5 for (c).

As we can see from the figures, when σ′ > σ, the data points are easier to separate in the

dimensions defined by the joint dependent features than in the dimension defined by the

marginal dependent feature. To demonstrate the effect of marginal dependent features and

joint dependent features in a classification task, we generated 4 artificial datasets:

(i) A 2D XOR dataset, σ = 0.4

(ii) A 3D XOR dataset, σ = 0.4

(iii) A dataset with two features (X1, X2) generated the same way as in (i) and a marginally

51



Table 5.1. Test Accuracy (%) on Artificial Datasets.

Classifier
Datasets

i ii iii iv

Decision Tree 91.78 65.60 83.50 68.60
Random Forest 97.65 77.60 92.48 75.38

kNN 98.17 97.30 97.67 95.28

Table 5.2. Feature Importance on Artificial Datasets.

Classifier Feature
Datasets

i ii iii iv

Decision Tree

X0 NA NA 0.377 0.476
X1 0.480 0.347 0.319 0.170
X2 0.520 0.333 0.304 0.181
X3 NA 0.320 NA 0.172

Random Forest

X0 NA NA 0.397 0.479
X1 0.495 0.334 0.304 0.173
X2 0.505 0.332 0.300 0.174
X3 NA 0.334 NA 0.174

dependent feature (X0) with σ′ = 1.5

(iv) A dataset with three features (X1, X2, X3) generated the same way as in (ii) and a

marginally dependent feature (X0) with σ′ = 1.5

We tested the performance of three classifiers on these datasets: decision tree, random

forest (with 100 trees) and kNN (k = 3). Unlike tree based classifiers, kNN is able to use all

features at the same time. It is well suited for the datasets we designed for this experiment.

We used the Python scikit-learn implementations for all classifiers under comparison. In

each run of experiment, four new datasets are generated with 20% hold-out for testing. 100

runs were performed and the average test accuracy is summarized in Table 5.1. For the 2D

XOR dataset (i), even the two features are marginally independent of Y , decision tree and

random forest can still achieve high accuracy (> 91%). This is because there are only two

features and the tree classifiers are forced to use one of them at each split. When the training

size is sufficient, a decision can still partition the data in a way that the two classes are well
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separated. However, as we increase the dimension by one, to generate the 3D XOR dataset

(ii), it becomes much harder for the tree based learners, while a kNN can still maintain a

high accuracy. As we introduce a marginally dependent feature, in the dimension defined

by which the two classes are not well separated, the accuracies of both decision tree and

random forest dropped significantly (comparing i with iii). In all datasets tested, kNN is

able to achieve a high accuracy (> 95%), due to its ability of using both jointly dependent

and marginally dependent features.

To observe the effect of introducing a (bad) marginally dependent feature (X0) on

the tree based classifiers, we also list the feature importance generated by the classifiers in

Table 5.2. The feature importance is computed as “the (normalized) total reduction of the

criterion brought by that feature”, according to the scikit-learn documentation. Briefly, it

represents how useful it is to the classifier. As shown in the table, when X0 is absent, both

decision tree and random forest treat other jointly dependent features equally important.

When X0 is present, the classifiers tend to use X0 more than others (this is more obvious

in the case of dataset iv), even if X0 is not a good feature for this classification task. In

other words, a decision tree can be “fooled” by features like X0. As the number of this type

of features increases, the jointly dependent features will have little use for the tree based

classifiers.

5.2 Minimum Dependence Sets

Motivated by the above examples, we can partition the whole set of features S into

two sets:

Sm = {X ∈ S : X 6⊥⊥ Y } ,

Sm = {X ∈ S : X ⊥⊥ Y } ,

where X denotes a 1-dimensional random variable (feature) and Y is the output label.

X ⊥⊥ Y (X 6⊥⊥ Y ) denotes X and Y being independent (dependent). We call Sm the
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marginal dependence set as it is the set of features whose marginal distribution is dependent

on Y . Therefore only features in Sm are useful for random forests/decision trees. However,

“marginal independence” does not imply “joint independence”, i.e., it is possible that Sm

6⊥⊥ Y . Thus, we are more interested in partitioning the features S into two sets: dependent

features SD and independent features SI . SI is given by

SI = {X ∈ S : ∀S ⊆ S, S ⊥⊥ Y implies S ∪ {X} ⊥⊥ Y } .

Unlike Sm, SI is independent of Y by definition and is therefore of no use for any classifier.

To identify SD, we need the following definition for minimum dependence set.

Definition 13. Given an input feature set S and an output label Y , a feature subset S ⊆ S

is called a minimum dependence set (MDS) if S 6⊥⊥ Y and S ′ ⊥⊥ Y , ∀S ′ ⊂ S.

Then we have the following theorem:

Theorem 14. Given an input feature set S and an output label Y , S can be divided into

two disjoint sets, i.e., SD and SI , where SD = SI =
⋃
i Si is the union of all MDS’s in S.

Proof. From the definition of SI , we have its complement

SI = {X ∈ S : ∃S ⊆ S, S ⊥⊥ Y and S ∪ {X} 6⊥⊥ Y } .

It suffices to show that
⋃
i Si = SI .

For any X ∈
⋃
i Si, there exist i∗ such that X ∈ Si∗ . As Si∗ is an MDS, we have

Si∗ \ {X} ⊥⊥ Y and Si∗ 6⊥⊥ Y , i.e., X ∈ SI . Therefore,
⋃
i Si ⊆ SI .

For any X ∈ SI , there exists S ⊆ S such that S ⊥⊥ Y and S ∪ {X} 6⊥⊥ Y . Let

S∗ = S ∪ {X}. For each element X ′ in S∗ (X ′ 6= X), we remove X ′ if (S∗ \ {X ′}) 6⊥⊥ Y .

The resulting S∗ is an MDS. Hence X ∈
⋃
i Si. Therefore, SI ⊆

⋃
i Si. This completes the

proof.
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However, since the number of MDS’s grows quadratically with the size of S, it is

computationally unfeasible to identify SD. A computationally more friendly partition of S

is SC and SC , where SC is called the minimum dependence cover (MDC) defined as follows:

Definition 15. Given an input feature set S and an output label Y , a feature subset SC

is called a minimum dependence cover if SC =
⋃s
i=1 Si where Si, i = 1, · · · , s, are mutually

disjoint MDS’s, and SC ⊥⊥ Y .

We show several algorithms to identify an MDC in the next section. Once an MDC

is identified, and if it is a superset of Sm, we are interested in how to improve random forest

by utilizing all features in this MDC, which will be discussed in Chapter 6. The relationship

between the set concepts covered in this section is Sm ⊆ SC ⊆ SD ⊆ S.

5.3 Identifying an Minimum Dependence Cover

Given an input feature set S and an output label Y , finding the an MDC SC can be

achieved by first identifying the marginal dependent set Sm and then the MDC of Sm, i.e.,

[Sm]C , taking the union of the two gives SC , i.e., SC = Sm ∪ [Sm]C . Identifying Sm is easy

and can be done in linear time, i.e., O(d), where d is size of S. An algorithm of finding Sm

is given in Algorithm 1. For each dependence test, a p-value is calculated and compared

with a predefined significance level α. The p-value of a dependence test with the alternative

hypothesis being X 6⊥⊥ Y is denoted as pX 6⊥⊥Y . If pX 6⊥⊥Y 6 α, we say X is dependent on Y ,

otherwise not dependent. We next propose several algorithms to identify an MDC SC given

an marginally independent features set S and output label Y .

We first present a top-down approach assuming that a feature set is dependent if it

contains at least one MDS. Then we have Algorithm 2 to identify one MDS from the feature

set. Each feature is hold-out and the remaining ones are tested for dependence with Y . If the

dependence disappears, then the hold-out feature belongs to an MDS and is kept for further

dependence tests, otherwise removed from the feature set and not participating dependence

tests with other features. This process is repeated until every feature has been hold-out

55



once. To identify an MDC, a less efficient approach is shown in Algorithm 3. It simply

find one MDS at a time, removing the identified MDS from the feature set, and repeat the

process on the remaining feature set. The time complexity for this algorithm is O(d2) since

the for loop in FindMDS(S, Y ,α) needs O(d) tests and the while loop iterates O(d) times.

Usually the size of S is large, therefore it is desired to have a faster algorithm. We then

provide a O(d log(d)) algorithm to find MDC, as shown in Algorithm 4. This algorithm uses

a divide-and-conquer approach, which divides the original problem into two subproblems

with half of the size. There will be O(log(d)) number of combinations of subproblems and

each combination requires O(d) dependence tests, therefore a total of O(d log(d)) operations.

However, Algorithm 4 does not guarantee to return an MDC. Instead, it can be a subset

of MDC since FINDMDS (line 15) can identify at most one MDS instead of all. As a

consequence, the algorithm may be repeatedly applied to the remaining features, i.e., S \SC ,

if (S \ SC) 6⊥⊥ Y . Empirically this is an more efficient algorithm than Algorithm 3.

The problem with the top-down approach is that as more independent features being

included in the feature set, the dependence of the whole set with Y becomes weaker. As a

consequence, it is possible that the dependence between a big feature set with Y is too weak

to be tested as significant in a dependence test even if the feature set contains an MDS. In

another words, the assumption made in the top-down approach – a feature set is dependent if

it contains at least one MDS – is not always correct. We then provide a bottom-up approach,

which first identifies disjoint MDS’s of size = 2, then size = 3, and so on. An algorithm to

identify MDS’s of size = 2 is shown in Algorithm 5. In this algorithm, a pair of features are

evaluated in a dependence test with Y , they are added to MDC and excluded for future test

if dependent, or kept for pairing with other features otherwise. For greater sizes, we can just

increase the nesting levels of the for loop. The time complexity of this bottom-up approach

is O(d2), which is not efficient when the feature set is large and a lot of independent features

exist.
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Algorithm 1 Find the marginal dependent set Sm
1: function findSm(S, Y, α)
2: initialize Sm as an empty set
3: for X in S do
4: if pX 6⊥⊥Y 6 α then
5: Add X to Sm
6: end if
7: end for
8: return Sm
9: end function

Algorithm 2 Find a minimum dependent set (MDS)

1: function findMDS(S, Y, α)
2: SMDS = S
3: for X in SMDS do
4: S ′ = SMDS \ {X}
5: if pS′ 6⊥⊥Y 6 α then
6: SMDS = S ′
7: end if
8: end for
9: return SMDS

10: end function

Algorithm 3 Find an MDC (O(d2), a top-down approach)

1: function findMDC(S, Y, α)
2: assume S is marginally independent of Y
3: initialize SC as an empty set
4: while pS6⊥⊥Y 6 α do
5: SMDS =FINDMDS(S, Y ,α)
6: SC = SC ∪ SMDS

7: S = S \ SMDS

8: end while
9: return SC
10: end function
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Algorithm 4 Find an MDC (O(d log(d)), a top-down approach)

1: function findMDC2(S, Y, α)
2: assume S is marginally independent of Y
3: initialize SC as an empty set
4: if pS6⊥⊥Y > α then
5: return SC
6: end if
7: random partition S into two disjoint sets: S1 and S2. The size difference between

the two is at most 1.
8: SC1 = FINDMDC2(S1,Y )
9: SC2 = FINDMDC2(S2,Y )
10: SC = SC ∪ SC1 ∪ SC2
11: S = S \ SC
12: if pS6⊥⊥Y > α then
13: return SC
14: end if
15: SMDS =FINDMDS(S, Y )
16: SC = SC ∪ SMDS

17: return SC
18: end function

Algorithm 5 Find an MDC (O(d2), a bottom-up approach)

1: function findMDC(S = {Xi, i = 1, ..., n}, Y, α)
2: assume S is marginally independent of Y
3: initialize SC as an empty set
4: for i = 1 to n− 1 do
5: for j = i+ 1 to n do
6: if p{Xi,Xj}6⊥⊥Y 6 α then
7: SC = SC ∪ {Xi, Xj}
8: break
9: end if
10: end for
11: end for
12: return SC
13: end function
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5.4 Stronger Dependence Sets

As tree based learners can only take advantage of features in Sm, wasting those in

SC \ Sm, we are interested in transforming features in SC \ Sm into marginally dependent

features (we show how in Chapter 6). However, in practice, the size of SC \ Sm might be

too small to make a difference. If we set the significance level α to be very small, the size

of SC \ Sm is increased but we may not able to identify any significant joint dependence.

Motivated by this, we generalize the concept of minimum dependence set of size greater than

1 to a stronger dependence set.

Definition 16. Given an input feature set S and an output label Y , a feature subset S ⊆ S

is called a stronger dependence set (SDS), if for ∀S ′ ⊂ S, the dependency between S ′ and Y

is less than the dependency between S and Y , i.e., pS′ 6⊥⊥Y > pS 6⊥⊥Y .

It is easy to show that MDS of size greater than 1 is a special case of SDS.

Proof. If S is an MDS with a significant level α, by definition, pS 6⊥⊥Y < α and pS′ 6⊥⊥Y > α for

∀S ′ ⊂ S. Therefore, we have pS′ 6⊥⊥Y > pS 6⊥⊥Y , ∀S ′ ⊂ S, thus S is also a SDS.

To improve a decision tree classifier, we aim to first partition the feature set S into

Sm and Sm by setting a significant level α, then find all the disjoint SDS’s in Sm (finding

all SDS’s is too computational expensive), called a minimum stronger dependence cover.

Definition 17. Given an input feature set S and an output label Y , a feature subset is

called a minimum stronger dependence cover (SDC), denoted as SSC if SSC =
⋃s
i=1 Si where

Si, i = 1, · · · , s, are mutually disjoint SDS’s, and SSC ∪ Sm ⊥⊥ Y .

Since a MDS (of size > 1) is a special case of SDS, a SDC is a bigger set than

MDC\Sm.

5.5 Identifying an SDC

The O(d log(d)) algorithm to identify an MDC uses a divide-and-conquer (top down)

approach. This relies on a good property of an MDC, which is that we can (most of the
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time) tell if there exists an MDS in S by testing the dependence between S and Y . However,

we are not able to tell if there exists an SDS in S by testing the dependence between S and

Y . Since an SDS can be of any size greater than 1, we use a bottom up approach, similar

to Algorithm 5, to first identify disjoint SDS’s of size = 2, then size = 3, and so on. When

looking for SDS’s of size = 2, we only need to compare the joint dependency between a pair

of features (Xi, Xj) and Y , p(Xi,Xj)6⊥⊥Y , and their marginal dependencies, pXi 6⊥⊥Y and pXj 6⊥⊥Y .

If p(Xi,Xj)6⊥⊥Y < min(pXi 6⊥⊥Y , pXj 6⊥⊥Y ), then {Xi, Xj} is an SDS. Notice that we are only looking

for disjoint SDS’s, therefore it is not necessary to examine the dependency for every feature

of features. Once an SDS is identified, the pair is excluded from future evaluations. The

identification of SDS’s of larger sizes are more computationally expensive. However, there

will be fewer features left after SDS’s of smaller sizes are discovered. In addition, to find an

SDS of size m, we still only need to compare the joint dependency of the m features with

the marginial dependencies, ignoring joint dependencies of size in [3,m− 1]. This is because

any joint dependencies of size in [3,m − 1] should be weaker than the strongest marginal

dependency, otherwise these features would be discovered as an SDS in a previous step. The

iteration stops when there is not enough features left. In practice, we found it efficient to

identify only SDS’s of size = 2 and 3. Few features left after all disjoint SDS’s of size = 2

are discovered. The sudo code to find all disjoint SDS’s of size = 2 is shown in Algorithm 6.

Similar to Algoritm 5, the time complexity is O(d2) and the nesting levels of the for loop

can be increased for greater sizes.

Unlike Algorithm 1-5, Algorithm 6 does not require a significance level α. Only p-

values are compared. Therefore it is possible that an SDS has a higher p-value than the α

used to select marginal dependent features Sm. In practice, we set α to be a very small value

to separate out very strong marginal dependent features and allow for discovery of stronger

joint dependence. Even if for some features pjoint > α, they may still be helpful to improve

classification performance. However, it worth filtering out features with extreme large pjoint,

e.g. pjoint = 1. These are usually features with constant values, for example, the boarder
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Algorithm 6 Find an SDC (O(d2))

1: function findSDC(S = {Xi, i = 1, ..., n}, Y )
2: assume S is marginally independent of Y
3: initialize SSC as an empty set
4: for i = 1 to n− 1 do
5: for j = i+ 1 to n do
6: if p(Xi,Xj)6⊥⊥Y < min(pXi 6⊥⊥Y , pXj 6⊥⊥Y ) then
7: SSC = SSC ∪ {(Xi, Xj}
8: break
9: end if
10: end for
11: end for
12: return SSC
13: end function

pixels in the MNIST data.

5.6 Dependence Test

The p-values used in Algorithm 1-6 are obtained from performing dependence tests

using Gini correlation as the test statistic. As discussed in Section 2.3, gCor is a perfect

feature-label dependence measure. It can measure the marginal dependence as well as the

joint dependence, and the two can also be compared via p-values. The direct compare of

the test statistic is not fair since the dimensions are different, therefore permutation tests

must be performed to obtain the p-values. However, performing permutation tests can be

computationally expensive even with parallelization. From (2.2), a p-value of 0.001 can only

be obtained with at least 1000 permutation tests. The higher precision we want on the

p-value, the more permutation tests needed to be performed. In our experiment, it seems

to be sufficient to set the number of permutation tests to be 5000. However, it is a waste

to run 5000 times if the p-value is ∼ 0.1, because a similar value can be obtained with only

100-200 runs. Thus, in our implementation, we start with a small number of tests, e.g., 100,

and if the resulting p-value is zero, we will double the number of tests. Repeat this process

until a non-zero p-value is obtained or the maximum number of test (5000) is reached.
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Figure 5.2. A schematic diagram of 17 features consisting of 10 MDS’s. The bold circle
indicates the whole feature set. The thin circles indicates MDS’s.

5.7 Algorithm Evaluations

To verify the correctness of the proposed algorithms, we tested them on an artificial

dataset with 17 features. The features consist of 10 MDS’s: 5 MDS’s are of size 1, 3 MDS’s

are of size 2 and 2 MDS’s are of 3. A schematic diagram of the 10 MDS’s is shown in

Figure 5.2. Marginal dependent features (MDS’s of size 1) are generated as described in

Section 5.1. The MDS’s of size 2 are generated the same way as the 2D XOR example, and

the MDS’s of size 3 are generated the same way as the 3D XOR example. The number of

data points is 200. We first used Algorithm 1 to find the marginal dependent features, and

compared the following proposed algorithms on the remaining ones:

1. The top-down O(n log(n)) algorithm to identify an MDC (Top-down MDC).

2. The bottom-up O(n2) algorithm to identify an MDC (Bottom-up MDC).

3. The bottom-up O(n2) algorithm to identify an SDC (Bottom-up SDC).

The results are summarized in Table 5.3. Algorithm 1 was used to identify marginally

dependent features and labeled them as -1, with the significant level α set at 0.05. The p-value

of a marginal dependence test is denoted as pm. Other algorithms worked on the marginally
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Figure 5.3. The marginal p-values (pm) of the mice protein expression dataset in descending
order.

independent features and assigned each feature a non-negative integer label. 0 means the

feature is not dependent (∈ SI), other values indicate the feature belongs to a MDS (or

SDS) and features in the same MDS (or SDS) have the same label. The p-values of the joint

dependence of features in the same MDS, SDS or SI are listed in the columns denoted as

pjoint. Comparing Table 5.3 with the ground truth shown in Figure 5.2, we can see that

Algorithm 1 effectively identified all marginally dependent features. Among the other three

approaches tested, only bottom-up MDC achieved an exact match with the ground truth.

Top-down MDC was not able to detect any MDS among {X11, ..., X15}, which is because

the joint dependence of {X11, ..., X15} is too weak with pjoint = 0.07 > α, so the algorithm

stopped. It also detected {X5, X6, X7, X8} as one MDS instead of two. This is because

when any of these four features is removed, the remaining three have weak dependency with

a p-value larger than 0.05, even though there is an MDS in these three features. Bottom-

up SDC, on the other hand, identified {X13, X15} and {X14, X16} as two SDS’s because

the joint p-values are smaller than the marginal p-values, i.e., 0.2 < min(0.26, 0.43) and

0.26 < min(0.31, 0.27). Since the algorithm only looks for disjoint SDS’s, {X11, X12, X13}

and {X14, X15, X16} were not able to be identified.
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Table 5.3. Testing Proposed Algorithms on an Artificial Dataset (10 MDS’s).

Feature pm
Top-down MDC Bottom-up MDC Bottom-up SDC
Label pjoint Label pjoint Label pjoint

X0 0 -1 NA -1 NA -1 NA
X1 0 -1 NA -1 NA -1 NA
X2 0 -1 NA -1 NA -1 NA
X3 0 -1 NA -1 NA -1 NA
X4 0 -1 NA -1 NA -1 NA
X5 0.94 1

0

1
0

1
0

X6 0.22 1 1 1
X7 0.15 1 2

0
2

0
X8 1 1 2 2
X9 0.92 2

0
3

0
3

0
X10 0.91 2 3 3
X11 0.44 0

0.07

4
0.0033

0
0.73

X12 0.74 0 4 0
X13 0.26 0 4 4 0.2
X14 0.31 0 5

0.0006
5 0.26

X15 0.43 0 5 4 0.2
X16 0.27 0 5 5 0.26

We then tested the proposed algorithms on a real dataset. We used the mice protein

expression dataset available on UCI (Higuera et al., 2015). The dataset contains 77 features,

8 classes and 1080 instances. Each feature is a protein expression and each class is a treat-

ment. We chose to use this dataset because we observed some features have weak marginal

dependence and would like to discover any (stronger) joint dependence. Since this dataset

contains missing values, we imputed the missing values by column means (each column is a

feature). For all experiments on this datasets, we used a random 50% hold-out as the test set

and all dependence tests were performed using the training set. The marginal dependence of

the features are described in Figure 5.3, where pm is presented in a descending order. As we

see from the figure, the majority of the features are significantly marginally dependent on

the class label, with 56 of those having a pm equals 0. To discover joint dependence, we set

the significant level α = 0 and run the proposed algorithm on the remaining 21 features. The

identified MDS/SDS’s are listed in Table 5.4. All three approaches were able to detect some
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joint dependence. This is reasonable for this dataset since some proteins react with each

other, e.g., enzyme-inhibitor, antibody-protein, etc. (Jones and Thornton, 1996) Bottom-up

SDC is able to identify more joint dependent sets than the MDC approaches. This is because

a SDS does not require pjoint = 0 but a MDS does. The top-down MDC identified the least

number of MDS’s due to the dependence drop at the upper levels. The above results suggest

that if the computation time is not an issue, the bottom-up MDC is a better approach than

the top-down MDC. An MDC contains fewer but more significant joint dependence sets than

an SDC.

5.8 Summary

In this chapter, we first used some artificial datasets to show the difference between

marginally dependent and jointly features and how a tree classifier fails to use joint de-

pendencies and performs poor on datasets with strong joint dependence but weak marginal

dependence. For real datasets, we aim to first identify these joint dependencies and then

improve tree cased classifier by taking advantage of those. We therefore proposed the con-

cepts of minimum dependence set (MDS) and stronger dependence set (SDS) to define joint

dependent feature sets, followed by algorithms for implementations. We showed that MDS

defines less dependent sets but the joint dependencies are more significant than those de-

fined by SDS. In the next Chapter, we present an approach to utilize these joint dependence

feature sets in decision tree based classifiers.
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CHAPTER 6

FEATURE DEPENDENCE MAPPING

In the previous Chapter, we show that decision tree based classifiers can only take

advantage of marginal dependent features, wasting the joint dependence. This motivated

us to map the joint dependent feature set to another space where it becomes marginally

dependent. Mathematically, given a joint dependent but marginally independent feature set

S = {X1, ...Xp}, let X = [X1, ...Xp], Y is the class variable and X 6⊥⊥ Y , we are seeking for

a function f : Rp → R, such that f(X) 6⊥⊥ Y . We call this approach as feature dependence

mapping (FDM) and f is the mapping function.

6.1 Mapping Functions

Any function that maps a multidimensional vector to a 1-dimensional one can be

used as the mapping function for FDM. Here we present two approaches to FDM, 1) random

projection and 2) distance to a random sample.

6.1.1 Random Projection

Random projection (RP) is a simple dimensionality reduction technique that projects

the original p-dimensional data to a lower k-dimensional space using a random projection

matrix Rp×k. Assuming the original data is Xn×p, the projected data X′n×k can be obtained

by matrix multiplication, i.e.,

X′n×k = Xn×pRp×k.

The motivation of using random projection comes of Johnson-Lindenstrauss lemma (Johnson

and Lindenstrauss, 1984), which states that if data points lie in a vector space of sufficiently
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high dimension, they are possible to be projected into a lower dimensional space where the

distances between them are approximately preserved. Random projection is computationally

efficient: the calculation of Xn×pRp×k takes O(npk). If the data matrix X is sparse, with

about c non-zero values per row, the time complexity is then O(nck) (Bingham and Mannila,

2001).

For our purpose of FDM, we need the projection matrix to be a p-dimensional vector

of size p × 1, denoted as r, such that the projected data X ′ = Xr is one-dimensional. In

our implementation, a random vector r can be generated using random numbers uniformly

sampled from [-1, 1]. Usually a projection vector is a unit vector, i.e., |r| = 1. Since the

length of r does not affect the dependence of the projected variable, it is not necessary to

normalize r for FDM. We denote a feature mapping function using random projection as

fRP defined by

fRP (X; r) = Xr.

6.1.2 Distance to a Random Landmark

The distance operation | · | is a function that maps Rp to R. The motivation of using

distance as the mapping function comes from the superior performance of the kNN classifier

on the artificial datasets presented in Section 5.1. The way how kNN works is to find the test

example’s k nearest neighbors and predict the label using the majority of the neighbors. And

the information used for find the neighbors is the Euclidean distance between data points.

In the k-neighbor search, all features are used to calculate the distance and this explains

why kNN is able to use the joint dependence.

We hereby present the distance to a random landmark (DRL) approach, that maps

the high dimensional data Xn×p, presented using its n samples x1, ...,xn as

Xn×p =


xT1

...

xTn

 ,
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to a one dimensional vector d = [d1, ..., dn]T , where di is the distance between data point i

and a random landmark xl selected from the training data, i.e.,

di = |xi − xl|.

We denote a feature mapping function using DRL as fDRL defined by

fDRL(X;xl) = D(X,xl) :=


|x1 − xl|

...

|xn − xl|

 .

6.2 Mapping Selection

Both mapping functions discussed above are able to map a multi-dimensional vector

X to a 1-dimensional variable X ′, but they do not guarantee that X ′ 6⊥⊥ Y . Notice that

either function depends on a random parameter θ, which is a random vector r in the case of

fRD and a random landmark xl in the case of fDRL, thus it is desired to select k optimal θ’s

from m randomly generated ones with the objective function defined by dependence. The

mapping selection procedure is described as follows. Given the training data (Xn×p, Y ) and

a choice of mapping function f ∈ {fRD, fDRL}, m random parameters are generated, i.e.,

θ1, ..., θm, the optimal θ∗ can be obtained by

θ∗ = arg min
θ∈{θ1,...,θm}

pf(X;θ)6⊥⊥Y . (6.1)

The computation of p-value needs a number of permutation tests. To reduce computation

cost, the sample estimator of Gini correlation gCorn can be used to estimate dependence,

then (6.1) becomes

θ∗ = arg max
θ∈{θ1,...,θm}

gCorn(f(X; θ), Y ). (6.2)
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The objective functions used in (6.1) and (6.2) can also be used to select the best k θ’s,

θ∗1, ..., θ
∗
k. In this case, the mapping function f is consist of k functions defined by θ∗1, ..., θ

∗
k,

denoted as f(X;θ∗), where θ∗ = [θ∗1, ..., θ
∗
k]. Explicitly,

f(X;θ∗) = [f(X; θ∗1), ..., f(X; θ∗k)] = [X ′1, ..., X
′
k],

where X ′1, ...X
′
k are mapped features that are marginally dependent on Y . When k < p,

FDM can also serve as a dimensionality reduction approach. Here we only test the effect of

dependence mapping, therefore we keep the dimension the same by setting k = p. The num-

ber of random parameters generated m should also be predefined. In our implementation,

we set m = 10. The mapping selection is only performed in the training phase to obtain θ∗.

In the testing phase, the learned θ∗ is directly applied.

6.3 Feature Dependence Mapping: An Algorithmic View

Feature dependence mapping relies on the identification of marginally independent

(or weakly dependent) but jointly (more) dependent feature sets, MDS or SDS’s. Therefore,

the first step of FDM is to separate out marginally dependent features Sm and from the

remaining feature set Sm, discover an MDC, SmC , or an SDC, SmSC . We use the notation

XSm to denote the data represented using only marginal dependent features. This step can

be done by the algorithms proposed in Chapter 5. Next, for each MDS (SDS) in SmC (SmSC),

denoted as XSi
, find its optimal feature dependence mapping f(X;θ∗i ) by selecting θ∗i from

m (m = 10 in our implementation) randomly generated θ’s, θi1, ..., θim, according to (6.2).

Then map XSi
to X′Si

by

X′Si
= f(XSi

;θ∗i ).

Assuming there are s disjoint MDS’s (SDS’s) in MDC (SDC), let Θ∗ be the set of optimal

parameters, i.e., Θ∗ = {θ∗1, ...,θ∗s}, F(X; Θ∗) be the overall mapping function applied on the
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whole data X (represented using all features), the new data generated after FDM is then

X′ = F(X; Θ∗)

= [XSm , f(XS1 ;θ
∗
1), ..., f(XSs ;θ

∗
s)]

= [XSm ,X
′
S1
, ...,X′Ss

].

The transformed data X′ has the same dimension as the original data X by setting k = p as

described in Section 6.2.

When applying FDM on decision trees, the training data Xtrain is first used to learn

the optimal mapping, F(X; Θ∗), and then both Xtrain and Xtest are transformed to X′train

and X′test by

X′train = F(Xtrain; Θ∗)

X′test = F(Xtest; Θ
∗).

The decision tree will then be trained using X′train and tested on X′test.

6.4 Random Forests with Feature Dependence Mapping

We present two approaches to apply FDM to random forests. The straight forward

one is to first transform the training and test data and feed those to a random forest, the

same way we apply it on a decision tree. In this case, FDM is a data prepossessing step

before training a random forest. The other approach is to use FDM at the tree level, i.e.,

each tree has its own FDM transformed data to train on. Because of the randomness in the

FDM procedure, which is the random sampling of θ’s for selection, each tree can have the

data transformed to a different feature space. This is likely to introduce more variations (less

correlation) among trees, which is desired for an ensemble learner. We show the performance

of these two approaches in 6.5. In our experiments, we name the former approach as FDM RF

and the latter one as RF FDM. The schematic diagrams of these two approaches are shown
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Figure 6.1. A schematic diagram of the FDM RF approach.

Figure 6.2. A schematic diagram of the RF FDM approach.

in Figure 6.1 and 6.2.

6.5 Experimental Results

6.5.1 Artificial Datasets

We first tested FDM on the artificial datasets used in Chapter 5. The datasets are

summarized in terms of MDS’s in Table 6.1. An MDS of size = 1 is a marginal dependent

feature. An MDS of size = 2 is a 2D XOR dataset and an MDS of size = 3 is a 3D XOR

dataset. The results are averages of 100 runs. For each run, a new dataset is generated and
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Table 6.1. Descriptions of the Artificial Datasets.

Dataset
# of MDS’s

size = 1 size = 2 size = 3

i 0 1 0
ii 0 0 1
iii 1 1 0
iv 1 0 1
v 5 3 2

Table 6.2. Classification Accuracy (%) of Decision Trees Using FDM on Artificial Datasets.

FDM Function
Dataset

i ii iii iv v

fI 91.78 65.50 83.50 68.60 79.25
fRP 92.97 86.02 91.67 85.20 91.45
fDRL 90.42 85.00 90.75 84.42 91.25

the three mapping functions were tested on the same dataset.

The results of using FDM on a decision tree classifier are shown in Table 6.2. Both

mapping functions were tested: random projection fRP and distance to random landmark

fDRL. The baseline to compare against is the decision tree without using FDM, or equiva-

lently, FDM using the identity function fI , i.e., fI(X) = X. In our experiments, FDM used

the ground truth feature information (the composition of features in terms of MDS’s) to

learn the mappings. The number of features evaluated at each split was set to “log2”. The

table shows that FDM has significantly improved decision tree performance on all datasets.

As the dataset getting harder (comparing i and iii), the improvement brought by FDM is

more significant. Comparing the two mapping functions under testing, RP performs better

than DRL on all datasets.

The results in Table 6.2 were obtained by fixing the max features parameter of decision

tree at “log2”. max features is the number of features evaluated at each split node. If the

total number of features is d, then by setting max features=‘log2’, we allow the classifier to

consider log2(d) features to select the best split. The decision tree is likely to perform better

with more features evaluated at each split. To see how the performance gain from FDM
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Figure 6.3. The effect of number of features used at each split on decision tree performance
using the 10 MDS’s dataset.

would be affected by varying this parameter, we ran experiments using different values of

max features on dataset v, which contains 17 features. As shown in Fig 6.3, FDM effectively

improved decision tree regardless of number of features used at each split. DRL has more

performance gain in the lower range of max features (< 4) and RP is better in the higher

range (> 4).

We then applied FDM on the random forest and observed the performance by record-

ing test accuracy, out-of-bag accuracy, strength and correlation. In addition to the mapping

functions, the two approaches of applying FDM on random forests – FDM RF and RF FDM

– described in Section 6.4 were also tested. The max features is set to “log2”. Each experi-

ment was repeated 100 times. The results are shown in Table 6.3. For test accuracy, our-of-

bag accuracy and strength, the highest value of the five methods under comparison is shown

in bold. For correlation, the lowest is shown in bold. We have the following observations

from Table 6.3:

• The fRP RF FDM approach has the best performance on all datasets except dataset
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i, similar to our observation from Table 6.2.

• All FDM approaches significantly improved strength and reduced correlation, com-

pared with fI . The increase in strength comes from the dependence mapping from

joint dependence to marginal dependence. The decreased correlation comes from the

availability of more marginal dependant features for the classifier to use.

• The RF FDM approach performs better than FDM RF for both mapping functions

(fRP and fDRL). This is because by using a different mapping for each tree in the

forest, we significantly reduced correlation while maintaining strength.

• fRP is a better mapping function than fDRL on all datasets, in both FDM approaches.

It provides a better strength and a lower correlation.

Similar to LFS, FDM can be viewed as a hyper-parameter of RF, especially in the

RF FDM approach, where FDM is implemented inside of RF classifier. While LFS aims

to reduce correlation, FDM aims to improve strength by transforming joint dependent fea-

tures into marginal dependent features, and at the same time happens to reduce correlation

because it provides more useful features thus introducing more randomness. Therefore, we

tested the effect of max features, which is another hyper-parameter that controls strength

of RF, on the performance. The results are shown in Figure 6.4. The base line is shown in

a black solid line. Red color represents the RP function and blue represents DRL. Dashed

lines denote FDM RF approaches and dotted lines denote RF FDM approaches. As we can

tell from the figure, methods with FDM significantly outperforms fI (not using FDM) in the

entire range of max features, by increasing strength and reducing correlation. The strengths

of all FDM based methods are similar. In terms of correlation, fRP (RF FDM) has the lowest

values and is less affected by max features. Our results on the artificial datasets suggest that

FDM can boost RF performance as a new hyper-parameter when there exists strong joint

feature dependencies.
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Table 6.3. Testing Random Forests with FDM on Artificial Datasets.

FDM FDM Dataset
Function Approach i ii iii iv v

fI NA 98.02 78.00 91.95 76.15 91.70
Test

fRP
FDM RF 93.97 90.62 95.60 90.07 99.65

Accuracy RF FDM 96.92 96.60 96.32 94.70 99.92
(%)

fDRL
FDM RF 92.95 88.90 94.08 89.15 99.27
RF FDM 97.12 96.02 96.70 93.05 99.88

fI NA 97.58 75.97 92.3 75.84 90.85
Out-of-Bag

fRP
FDM RF 94.01 90.57 96.12 90.33 99.49

Accuracy RF FDM 96.90 96.07 97.25 94.62 99.84
(%)

fDRL
FDM RF 93.61 90.10 95.26 89.65 99.29
RF FDM 97.19 95.94 97.17 93.56 99.78

Strength

fI NA 0.789 0.250 0.627 0.348 0.539

fRP
FDM RF 0.843 0.685 0.837 0.672 0.814
RF FDM 0.857 0.680 0.836 0.675 0.816

fDRL
FDM RF 0.813 0.661 0.803 0.656 0.802
RF FDM 0.819 0.650 0.795 0.654 0.803

Correlation

fI NA 0.124 0.134 0.189 0.277 0.174

fRP
FDM RF 0.140 0.217 0.114 0.215 0.069
RF FDM 0.090 0.146 0.095 0.163 0.059

fDRL
FDM RF 0.158 0.227 0.136 0.225 0.076
RF FDM 0.113 0.140 0.113 0.173 0.066
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(a) (b)

(c) (d)

Figure 6.4. The effect of number of features used at each split on random forest performance
using the 10 MDS’s dataset.
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6.5.2 The Mice Protein Expression Dataset

We next present our results of applying FDM on the mice protein expression dataset.

Since the ground truth of joint feature dependence is not available, we used the approaches

proposed in Chapter 5 to identify these joint dependence. Considering the feature set for

this dataset is small, we only evaluate bottom-up MDC and bottom-up SDC, excluding

top-down MDC because it identifies fewer MDS’s than the bottom-up approach. Regarding

FDM, both mapping functions were tested. Therefore, we have four methods under testing:

• MDS RP: The mapping function fRP is applied on each MDS;

• MDS DRL: The mapping function fDRL is applied on each MDS;

• SDS RP: The mapping function fRP is applied on each SDS;

• SDS DRL: The mapping function fDRL is applied on each SDS.

The four approaches were used to map features into a new space, and the marginal

dependence of the features in the new feature space was compared with that in the original

space, as shown in Figure 6.5. Due to the randomness in FDM, all FDM methods were

performed 10 times. Features are sorted by pm (p-value of a marginal dependence test) in

ascending order and the median of p-values from 10 runs was used to generate the plot. As

presented in Section 5.7, there are 56 features with pm = 0 in the original feature space. By

setting α = 0, we let FDM approaches works on the remaining 21 features, keeping those

56 features unchanged. Thus, after FDM, there are at least 56 features with pm = 0. The

effectiveness of FDM approaches can be observed on the remaining features. We use black

color to denote the original features. FDM approaches using MDS (SDS) to define joint

dependence sets are shown in dashed (dotted) lines. FDMs using RP (DRL) as the mapping

function are shown in red (blue) color. From Figure 6.5, it is clear that MDS RP, SDS RP

and SDS DRL significantly lowered pm. MDS DRL is the only one that did not work well.

Comparing MDS with SDS, SDS shows better performance since it is more general than
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Figure 6.5. The marginal p-values (pm) of the mice protein expression dataset in ascending
order.

MDS therefore covers more joint dependence. With same joint dependence set being used,

RP significantly outperforms DRL, which agrees with our results on the artificial datasets.

We next present the performance of a decision tree on this dataset using or not using

FDM. Because of the huge variations in the test performance on this dataset, we repeat each

experiment 300 times. The variations came from the randomness in the training process

of decision tree and the randomness in the FDM process (each run used a different FDM

mapping). The max features parameter was set to “log2”. The results are shown in Fig-

ure 6.6. The MDS RP approach has the highest accuracy, exceeding using original features

by about 0.7 % in accuracy. RP approaches outperform DRL approaches, which agrees with

the results in Figure 6.5 and results obtained from the artificial datasets. Interestingly, MDS

based methods have slightly higher test accuracy than SDS based methods, even though

SDS based FDM provides more marginal dependent features (as shown in Figure 6.5). This

may suggest that MDS’s are more significant jointly dependent sets than SDS’s, and their

mappings are therefore more useful/meaningful marginal dependent features.

79



Figure 6.6. The performance of decision tree on the mice protein expression dataset with
max features = ‘log2’.

Similar to previous experiments, we test the effect of max features on the tree per-

formance and the results are shown in Figure 6.7. All methods except SDS DRL have some

performance gain in all x-range, and more significant in the higher range. This suggests that

by using FDM, we can further boost the tree performance with optimized max features.

When applying FDM on random forest for a real dataset, many variants of FDM

approach are available, since we have choices of MDS and SDS regarding how to define

joint dependence sets; choices of RP and DRL regarding which type of mapping function to

use; and choices of FDM RF and RF FDM regarding when to apply FDM. To reduce the

number of methods under comparison, we exclude FDM RF approaches in this experiment

because RF FDM has much better results than FDM RF on the artificial datasets. Note that

RF FDM is more computationally expensive, but acceptable for the mice protein expression

dataset.

We measured test accuracy, out-of-bag accuracy, strength and correlation of random

forest with max features set at different values. The results are shown in Figure 6.8. It is

clear that RP based approaches perform better than DRL based approaches and original.
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Figure 6.7. The effect of number of features used at each split on decision tree performance
using the mice protein expression dataset.

MDS approaches and SDS approaches have similar out-of-bag accuracy but MDS based ones

have higher test accuracy. The discrepancy between test accuracy and out-of-bag accuracy

came from the number of trees used in the ensemble. For out-of-bag predictions, only about

1/3 of trees are available. Figure 6.8(c) shows that MDS RP based approaches have higher

strength than SDS based approaches (more clear for RP approaches), because MDS’s have

more significant jointly dependencies. Figure 6.8(d) shows that SDS based approaches have

lower correlation than SDS based approaches, this is because more joint dependent sets

are defined by SDS. When the number of trees is about 33 for out-of-bag prediction, the

performance of MDS based approach is similar to SDS based approach (or even lower in the

case of DRL), given the same mapping function. When the number of trees becomes 100 for

test prediction, SDS based approaches start to show superiority, suggesting that correlation

is the dominant term in determining the overall performance.

The optimal max features can be obtained by maximizing the out-of-bag accuracy

(validation). The performances of all methods using optimal max features are summarized
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(a) (b)

(c) (d)

Figure 6.8. The effect of number of features used at each split on random forest performance
using the mice protein expression dataset.

in Table 6.4. SDS RP outperformed original in terms of test accuracy. When looking at

the strength and correlation results, we observe that the performance gain came from the

reduced correlation, rather than increased strength. This is an overall effect of using FDM

and the optimization of max features : as we increased strength by FDM, we were allowed to

reduce correlation by using a smaller value of max features. This is another good example

showing the trade-off between strength and correlation.
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Table 6.4. Performance of RF Using Optimal Number of Features at Each Split on the Mice
Protein Dataset.

Method Test (%) Validation (%) Strength Correlation
Optimal

max features

original 96.80 96.10 0.521 0.120 15
MDS RP 97.06 96.54 0.497 0.102 7

MDS DRL 96.56 95.89 0.519 0.123 15
SDS RP 97.22 96.52 0.495 0.102 7

SDS DRL 96.74 95.97 0.483 0.105 7

6.5.3 Summary

In this section, we have presented our results of applying FDM on artificial datasets

and a real dataset, the mice protein dataset. A summary of proposed FDM approaches are

shown in Table 6.5. The joint dependence sets can be defined by minimum dependence sets

(MDS’s) or stronger dependence sets (SDS’s), when the ground truth is not available. Our

results show that even if the SDS approach is able to identify more joint dependence sets and

provide more marginal dependent features in the mapped feature space, the MDS approach

has better classification performance for decision trees because the joint dependence sets it

defines are more significant. Once the joint dependence sets are defined, a mapping function

with randomly generated parameters maps the joint dependent features into another feature

space, and parameters that result in the most marginally dependent features are selected.

Two mapping functions were evaluated: random projection (RP) and distance to random

landmark (DRL). Both results from artificial datasets and the real datasets show that RP is

a better mapping function than DRL. When applying FDM to random forests, two options

are available: FDM applied at the forest level (the FDM RF approach) or FDM applied

at the tree level (the RF FDM approach). The FDM RF approach uses FDM as a data

prepossessing step and is computationally efficient. The RF FDM approach implements

FDM inside of random forest, with each tree having its own FDM mapped features. This

approach is more computationally expensive but provides more varieties among trees. Our

results show that RF FDM has significant better performance than FDM RF.
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Table 6.5. A Summary of Proposed Feature Dependence Mapping (FDM) Approaches

Joint Dependent Set Mapping Function RF Approach

Minimum Dependence Set Random Projection
FDM RF

(MDS) (RP)
Stronger Dependence Set Distance to Random Landmark

RF FDM
(SDS) (DRL)

To conclude, we have the following claims from our experiment:

• Either MDS and SDS has its own advantages. MDS is preferred if improving strength

is more important and SDS is preferred when reducing correlation is more desired;

• fRP is a better mapping function than fDRL;

• When integration with random forest, applying FDM at the tree level to generate a

different feature mapping for each tree is more beneficial, provided that computation

is not an issue.

6.6 Discussions

We have presented a feature dependence mapping (FDM) approach to utilize joint

dependent features for decision trees and random forests. It shows significant improvement

on artificial datasets, where the joint dependencies are strong and marginal dependencies are

weak. However, for real data, most features have strong marginal dependence with the label,

which limits the room for improvement by FDM. In the case of the mice protein expression

dataset, the joint dependencies exist, but marginal dependencies are still dominant (52 out

of 77 features are marginally dependent with pm = 0). As a consequence, the performance

gain brought by FDM is much less than what we observed on the artificial datasets.

In our implementation of FDM, the best k mappings are selected from them randomly

generated ones by optimizing the objective function defined in (6.2). This objective, however,

only takes the feature-label dependence into account, ignoring feature-feature dependence.

For better classification performance, we expect the features to be dependent on the label,
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but as less dependent as possible on each other. This motivated us to use a mortified

objective to consider both feature-label dependence and feature-feature dependence. For

random projection, we can select the optimal k projection vectors r∗1, ..., r
∗
k according to

r∗i =


arg max

r∈{r1,...rm}
gCorn(fRP (X; r), Y ), for i = 1;

arg max
r∈{r1,...rm}

gCorn(fRP (X; r), Y )
i−1∏
j=1

| sinαr,rj
|, for i > 1,

(6.3)

where αr,rj
denotes the angle between two projection vectors r and rj. | sinαr,rj

| is 0 if r

and rj are parallel and is 1 orthogonal. By using (6.3), we aim to find projection vectors that

makes the mapped feature dependent on Y as well as being orthogonal to already selected

vectors, thus encouraging independence between features.In the case of fDRL, this can be

achieved by selecting land marks that are far away from each other. Mathematically, the

optimal k landmarks x∗1, ...,x
∗
k can be obtained by

x∗
i =


arg max

x∈{x1,...xm}
gCorn(fDRL(X;x), Y ), for i = 1;

arg max
x∈{x1,...xm}

gCorn(fRP (X;x), Y )
i−1∑
j=1

|x− xj|, for i > 1.
(6.4)

We tested using (6.3) and (6.4) as the objective to select optimal mappings, but did not

observe a better performance. The reason might be the number of selected mappings k is

small (2 or 3 defined by the size of MDS or SDS), resulting in less dependency between

selected mappings even with (6.2) as the objective.

The LFS approach proposed in Chapter 4 aims to reduce correlation of random forest,

and FDM proposed in this Chapter aims to improve strength. Therefore, it is appealing

to apply both at the same time. The integration of the two is straight forward on the

implementation side, by using FDM as preprocessing step and let RF LFS work on the

transformed data. However, since either LFS and FDM has its own limitations, we failed to

find a good application where both LFS and FDM can be effectively applied.
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FDM can also be applied for regression problems with minor change in implemen-

tation. Since in a regression task, the response variable is numerical, any dependence test

performed between feature and label should use dCor instead of gCor as the test statistic.

All other implementations can be kept the same.

In spited of the limitation of FDM on improving classification performance, the con-

cept of MDS and SDS in finding joint dependent feature sets has potential impact on feature

representation learning. It provides us another angle to interpret the features. It can be

used to explore the unknown interactions between genes, proteins, molecules, etc.

6.7 Related Work

Our FDM using random projection was inspired by (Breiman, 2001), in which an

approach of using linear combinations of features to split the data was proposed. In this

approach, L features are randomly selected from all features and the linear combination of

these L features are used as a new feature. The coefficients of the L features are uniform

random numbers on [-1, 1]. F such linear combinations are evaluated to decide the best

split. However, this approach is different from ours in two aspects. First, the linear com-

bination is applied on a random selected L features, which may not have a (stronger) joint

dependence. Second, they did not perform any selection on the randomly generated linear

projections. These two reasons explain why they fail to observe significant improvement on

the performance.

The Gini correlation (gCor) proposed in (Dang et al., 2018) provides us a dependence

measure between a set of features and the label, which made our implementation of FDM

possible. It is also this work that encouraged us to deeply think about the joint dependence

between features and the label and how this joint dependence can affect a classifier’s per-

formance. The distance correlation (dCor) presented in (Székely et al., 2007; Székely and

Rizzo, 2009) can be similarly applied when the response variable is numeric, for instance, in

the case of a regression task.
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6.8 Summary

In this chapter, we proposed a feature dependence mapping (FDM) approach to map

joint dependent features to another feature space where they are marginally dependent,

therefore can be utilized by tree classifiers. Many variants of FDM are available, due to

the choices of using MDS or SDS to define joint dependent feature sets, the choices of

mapping functions – random projection (RP) or distance to a random landmark (DRL) –

and the choices of applying FDM at the forest level or tree level, when integrated with

random forest. Our results showed that both MDS and SDS are effective in identify joint

dependencies, RP is a better mapping function than DRL, and applying FDM at the tree level

is more beneficial than using FDM as data preprocessing step before trainning random forest,

because by generating a different mapping for each tree, more varieties can be introduced.

The improvements on artificial datasets are much more significant than that on the mice

protein expression dataset, because marginal dependencies are dominant for this real dataset

and make the room for improvement limited.
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CHAPTER 7

CONCLUSION

Random forests haven been widely applied in many classification tasks because of

its high prediction accuracy, good model interpretability and fast training process. As the

computation power increases dramatically recent years, people tend to favor more accurate

model like deep neural networks, even if they are black-box models. However, in some

domains, especially medical fields, the interpretability of a model is extremely important.

This motivated us to improve the prediction performance of random forest while maintaining

its interpretability.

In Chapter 1, we explained that the performance of random forest is affected by the

strength and correlation. In later chapters, we illustrated our two attempts to improve ran-

dom forests. The first one is to reduce correlation by taking advantage of local information of

features. We proposed a local feature sampling (LFS) approach to let each tree in the forest

to focus on a “local region” of the data, thus reducing correlation among trees. For image

data, where the pixels are used as features, the locations of the features are given by their

coordinates on the image. For non-image data, we proposed ways to define the distance be-

tween features to learning the local information from the data. Our experimental results have

shown significant improvement of using LFS on datasets where features are highly correlated.

The second attempt is to increase strength by improving tree performance, which is achieved

by utilizing jointly dependent features. To identify this joint dependence, we proposed the

concepts of minimum dependent set (MDS) and stronger dependence set (SDS) and algo-

rithms of finding MDS’s and SDS’s. We then illustrated that these jointly dependent features

can be transformed to marginally dependent ones by a feature dependence mapping (FDM)

approach. Two mapping functions were compared: random projection (RP) and distance to
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a random landmark (DRL) and RP showed better performance. Our experiments show that

FDM is effective when the data has significant joint dependence in features. The source code

to repeat this work is available at https://github.com/zhangsilu17/Improving random forest.

Both LFS and FDM have some limitations. LFS is effective when features are struc-

tured and highly correlated. FDM is effective when joint dependencies exist and feature-label

dependence is not dominated by marginal dependencies. In spite of their limitations, these

two approaches have provided us new aspects of representation learning: the structure of

features learned by LFS and the interaction between features learned by FDM. We call for

a better understanding of the features and their behaviors in affecting classification perfor-

mance while seeking for a higher prediction accuracy.

89



BIBLIOGRAPHY

90



BIBLIOGRAPHY

Amit, Y., and D. Geman (1997), Shape quantization and recognition with randomized trees,
Neural computation, 9(7), 1545–1588.

Anguita, D., A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz (2013), A public domain
dataset for human activity recognition using smartphones., in Esann.

Barandiaran, I. (1998), The random subspace method for constructing decision forests, IEEE
transactions on pattern analysis and machine intelligence, 20(8).
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