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ABSTRACT

The beta invariant of a matroid was introduced by Crapo in 1967. We first find the

lower bound of the beta invariant of 3-connected matroids with rank r and the matroids

which attain the lower bound. Second, we characterize the matroids with beta invariant 5

and 6. For binary matroids, we characterize matroids with beta invariant 7. These results

extend earlier work of Oxley. Lastly, we partially answer an open question of chromatic

uniqueness of wheels and prove a splitting formula for the beta invariant of generalized

parallel connection of two matroids.

Tutte’s Wheel-and-Whirl theorem and Seymour’s Splitter theorem give, respectively,

a constructive and structural view of the 3-connected matroids. Geelen and Whittle proved

a chain theorem for sequentially 4-connected matroids and Geelen and Zhou proved a chain

theorem for weakly 4-connected matroids. From these theorems, one can obtain a chain

theorem for matroids as well. We prove a chain theorem for sequentially 4-connected and

weakly 4-connected matroids.
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1 INTRODUCTION

In this chapter, we introduce some basic definitions and theorems in matroid theory.

A matroid M is an ordered pair (E, I) consisting of a finite set E and a collection I of

subsets of E having the following properties:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I then I ′ ∈ I.

(I3) If I1 and I2 are in I and |I1| < |I2, then there exists an element e ∈ I1 − I2 such that

I2 ∪ e ∈ I.

Let M be a matroid, E(M), ground set of M , and I, collection of independent set of M .

Then a basis of the matroid M is a maximal independent set in M and the rank of the

matroid is the cardinality of a basis of M . A subset of E(M) which is not in I is called

dependent. A circuit is a minimal dependent set. For circuit C1 and C2 of M , the Circuit

Elimination Axiom (referred as CEA in the dissertation) states that if x ∈ C1∩C2, then there

exists another circuit C3 ⊆ C1 ∩ C2 − x. For a set X ⊆ E(M), the rank of the set X is the

cardinality of the basis B of M |X and we denote it as rM(X) or r(X). The closure of the set

X, denoted as cl(X) or clM(X) = {x ∈ E(M) : r(X∪x) = r(X)}. A set X ⊆ E(M) is called

a flat, or is closed, if cl(X) = X. If a set X is a flat and r(F ) = r(M)− 1, then X is called

a hyperplane. Let B be a collection of matroid M and let B∗(M) = {E(M) − B : B ∈ B}.

Then B∗(M) is the set of basis of a matroid with ground set E(M). This matroid is the

dual of the matroid M and is denoted M∗. If a set X is independent in M∗, then we say the
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set is coindependent in M as well. Other type of sets, circuit, bases, and hyperplanes are

defined in the same manner.

Let A be a m× n matrix over a field F. Then the matroid obtained by the matrix A

is denoted as M [A] and its ground set is the set of column labels of A. A set X in M [X] is

independent if it is linearly independent in the vector space V (m,F). For example, let A be

the matrix shown below.

A =

1 2 3 4 5 1 0 0 1 0

0 1 0 1 1

Then M [A] consists of the ground set {1, 2, 3, 4, 5} and I(M [A]) = {∅, {1}, {2}, {4},

{5}, {1, 2}, {1, 5}, {1, 4}, {2, 4}, {5, 4}}. A matroid M is representable over a field F when it

is isomorphic to the vector matroid of a matrix over a field F . A representable matroid is

binary when it is representable over GF (2) and ternary when it is representable over GF (3).

Let G be a graph and let E be the set of edges of G and I be the set of edges of G

which does not contain any cycles. Then I is the set of independent sets of a matroid on E.

This type of matroid is graphic, and is called the cycle matroid of G and is denoted M(G).

For example, let G be the graph shown in Figure 1.1. Then M(G) consists of ground set

{1, 2, 3, 4, 5} and I(M [A]) = {∅, {1}, {2}, {4}, {5}, {1, 2}, {1, 5}, {1, 4}, {2, 4}, {5, 4}}.

1 4

2

5

3

Figure 1.1: A graph G with 5 labeled edges.
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For a set X ⊆ E(M), the function λM(X) = r(X) + r(E(M) − X) − r(M) or

equivalently, λM(X) = r(X) + r∗(X) − |X| is called the connectivity function of M . Let

Y = E(M)−X. For a positive integer k, the set X and the pair of the set (X, Y ) is called

k−separating if λM(X) < k. Then the pair (X, Y ) is called k-separation of M if λM(X) < k

and |X|, |Y | ≥ k. Lastly, M is n-connected if M has no k-separation for all 1 ≤ k < n.

Given a matroid M and a set T ⊆ E(M), we can delete or contract T from M . The

matroid obtained by deleting T from M is denoted as M\T . This matroid has ground set

E(M) − T and the collection of independent set I(M\T ) = {I ⊆ E(M) − T : I ∈ I(M)}.

Similarly, the matroid obtained by contracting T from M is denoted as M/T , and the

collection of independent set of M/t is defined as I(M/T ) = {I ⊆ E(M) − T : I ∪ BT ∈

I(M)} where BT is the basis of M |T . Deletion and contraction is easier to understand with

graphic matroids. On Figure 1.2, we can see M(G)\e and M(G)/e.

e

G G\e G/e

Figure 1.2: Deleting and contracting an element.

Let M and N be matroids such that M = N\e. Then N is a single element extension,

or an extension of M . If M = N/e, then N is a single element coextension, or a coextension

of M . A modular cut of M , denoted as M, is a collection of flats of M which satisfies two

properties:

(i) If F ∈M and F ⊆ F ′, then F ∈M.

(ii) If F and F ′ ∈M and r(F ) + r(F ′) = r(F ∪ F ′)− r(F ∩ F ′) then F ∩ F ′ ∈M.

Let M be a matroid and N = M\e andM is the corresponding modular cut corresponding

3



to the extension N . Then N is denoted as M +M e. If X ⊆ E(M), then rN(X ∪ e) = rM(X)

if clM(X) ∈M. Similarly, rN(X ∪ e) = rM(X) + 1 if clM(X) /∈M. Lastly, two flats F and

F ′ in (ii) form a modular pair. In this case, we say (F, F ′) is a modular pair.

This also tells which sets to avoid if we want to find 3-connected extension of M using

modular cut. Suppose N = M+M e for a matroid M and a modular cutM of M . If ∅ ∈ M,

then e is a loop of N . If a ∈ E(M) and a ∈M then a and e are in parallel in N . Therefore

if N is 3-connected then ∅, {a} /∈M for all a ∈ E(M).

Suppose M1 and M2 are two matroids and cl1 and cl2 be closure operation of the

matroid M1 and M2 respectively. Then the generalized parallel connection of two matroids

can exist if the following corollary holds:

Corollary 1.0.1. [18] Suppose that cl1(T ) is a modular flat of M1 and every non-loop

element of cl1(T ) is parallel to some element of T . Then T is fully embedded in M1, so the

proper amalgam of M1 and M2 exists.

If the conditions in the previous corollary hold, then the proper amalgam of M1 and

M2 is the generalized parallel connection across T and is denoted by PT (M1,M2). Therefore

if M = PT (M1,M2) then E(M) = E(M1) ∪ E(M2) and M1|T = M2|T . Also, for every flat

F of M , we have rM(F ) = rM(F ∩ E1) + rM(F ∩ E2)− rM(F ∩ T ). When T is a 3-element

circuit, then PT (M1,M2) is called the generalized parallel connection of M1 and M2 across

a 3-point line. When both M1 and M2 are binary and |E1|, |E2| > 6, then PT (M1,M2)\T is

called 3-sum of M1 and M2 and is denoted M1 ⊕3 M2. When T = {p}, then PT (M1,M2) is

called parallel connection of M1 and M2 with respect to p and is denoted P (M1,M2). Lastly,

P (M1,M2)\T = M1 ⊕2 M2.

Let Wr denote the rank-r wheel graph. The matroid obtained from this graph is often

denoted as Wr and is called a wheel. In many literature, this matroid is also noted as M(Wr)

as well but in this dissertation, we will note it as Wr. A wheel has two types of elements,

4



a1

a2

a3

a4a5

a6

a7

a8

b1

b2

b3

b4b5

b6

b2

b8

Figure 1.3: Graphic representation of W8.

the spoke, denoted ai, of the wheel and the rim, denoted bi, of the wheel where 1 ≤ i ≤ r.

Figure 1.3 shows a rank-8 wheel, W8. Let C be the collection of circuits of Wr. Then the

set {b1, b2, · · · , br} ∈ C. We can see from Figure 1.3 that the set {b1, b2, · · · , b8} forms a

cycle of the graph and a circuit of the corresponding matroid. A rank-r whirl, denoted as

W r, has the same ground set as a rank-r wheel but B(W r) = B(Wr)∪ {b1, b2, · · · , br} where

B(W r) and B(Wr) are the collection of bases of W r and Wr respectively. In many literature,

a rank-r whirl is also noted as Wr but in this dissertation, we note it as W r.

Wheels and whirls are important matroids. In a way, these matroids are building

blocks of the 3-connected matroids. Also if W is a wheel or a whirl, for any e ∈ E(W ),

neither W\e nor W/e is not 3-connected and wheels and whirls are the only matroids with

such properties as described in Theorem 1.0.2. Also one can characterize binary and non-

binary matroids with wheels and whirls: Every 3-connected binary matroids have a W3-minor

and non-binary matroids have a W 2-minor.
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Theorem 1.0.2. [21] (Tutte’s Wheels-and-Whirls Theorem) The following are equivalent

for a 3-connected matroid M having at least one element.

(i) For every element e of M , neither M\e nor M/e is 3-connected.

(ii) M has rank at least three and is isomorphic to a wheel or a whirl.

Another interesting class of matroids is the class of uniform matroids. The uniform

matroid Ur,n has n-elements. The rank of the uniform matroid Ur,n is r. Lastly, Ur,n has a

collection of set of bases B(Ur,n) = {|X| = r | X ⊆ E(Ur,n)}.

On some of the matroids mentioned in this dissertation, we give an appropriate de-

scription of the matroid. In the dissertation, we give one of the following representations of

the matroid or its dual: Graphic, matrix, geometric representation or a modular cut and the

corresponding matroid.

On a geometric representation, elements of matroids are represented by dots. Ele-

ments of a rank-2 dependent sets are on a same line and elements of a rank-3 dependent sets

are on a same plane. Any 2-points on a line is a rank-2 independent set and any 3-points on

a plane but not on a line is a rank-3 independent set.

a

b

c

d

e

f

Figure 1.4: Geometric representation of Q6.

For example, consider a geometric representation of a matroid Q6 on the Figure 1.4.

The set {a, c, e} is a rank-2 circuit. The set {a, c, e, f} is on a same plane, thus a rank-4

dependent set. The set {a, b, f} is a rank-3 independent set.

6



The following two theorems tell us 3-connected minors of 3-connected matroids. Re-

statement of the Splitter Theorem and some application of the theorem can be found in

[18].

Theorem 1.0.3. (Seymour’s Splitter Theorem [20]) Let M and N be 3-connected matroids

such that N is a minor of M with at least four elements and if N is a wheel, then M has no

larger wheel as a minor, while if N is a whirl, then M has no longer whirl as a minor. Then

there is a sequence M0,M1, · · · ,Mn of 3-connected matroids with M0
∼= N and Mn

∼= M

such that Mi is a single element deletion or single element contraction of Mi+1 for all i in

{0, 1, · · · , n− 1}.

Theorem 1.0.4. [8] Let N be a 3-connected proper minor of a 3-connected matroid M such

that |E(N)| ≥ 4 and M is neither a wheel nor a whirl. Suppose that if N ∼= W 2, then M

has no W 3-minor, while if N ∼= W3, then M has no W4-minor. Then M has a 3-connected

minor M1 and an element e such that M1/e or M1\e is isomorphic to N .

Two theorems imply that if M is a 3-connected matroid, and W ∈ {W3,W4,W
2,W 3},

then there exists a chain of 3-connected matroids which starts at W = M0 and ends at

M = Mn where Mi is a single element contraction or a single element deletion of Mi+1 for

all i in {0, 1, · · · , n − 1}. Furthermore, if M is a binary matroid with no W4-minor, then

W = W3. If M is a binary matroid with a W4-minor, then W = W4. Similarly, if M is a

non-binary matroid with no W 3-minor, then W = W 2. Lastly, if M is a non-binary matroid

with a W 3-minor, then W = W 3. We will use this fact in latter chapters repeatedly.

7



2 BOUNDING THE BETA INVARIANT

In Chapter 2, we give a best possible lower bound of the beta invariant of 3-connected

rank r matroids and obtain all such matroids which achieve the lower bound. In Section 1,

we give the definitions and results from other literature on the beta invariant. In Section 2,

we state and prove the main result.

2.1 Introduction

For a matroid M , the beta invariant of M , denoted as β(M), was first introduced by

Crapo [9] as follows:

β(M) = (−1)r(M)
∑

A⊆E(M)

(−1)|A|r(A).

The beta invariant satisfies the deletion-contraction formula. That is, if e is neither

a loop nor a coloop, then

β(M) = β(M\e) + β(M/e). (2.1.1)

Crapo also proved the following interesting result.

Theorem 2.1.1. [9] A matroid M with at least two elements is connected if and only if

β(M) > 0. Moreover, β(M) = β(M∗).

8



From this result, we can deduce that if N is a connected single element extension of

M , then β(N) ≥ β(M). Beta invariant is non-zero if and only if the matroid is connected.

There is much information about the matroid that can be obtained by the beta invariant.

For example, Brylawski characterized all matroids with beta invariant one.

Theorem 2.1.2. [4] For a connected matroid M on a set of at least two elements, the

following statements are equivalent:

(i) β(M) = 1.

(ii) M is a series-parallel extension of U1,1.

(iii) M has no minor isomorphic to U2,4 or W3.

From the previous theorem we can see that the beta invariant of any series-parallel

network is 1. Oxley extended Brylawski’s result and characterized all matroids with beta

invariants 2, 3, and 4. The geometric representation of non-binary matroids O7, Q6, and F−7

are shown in Figure 2.1. Also matrix representation of binary matroids F7, S8, and M(K5\e)

are shown in Figure 2.2.

Q6

b c e

a d

f

O7

a b

c

d

e

f

g

c

F−7

a

b

gd

ef

Figure 2.1: Geometric Representation of Q6, O7, and F−7 .

Theorem 2.1.3. [16] Let M be a matroid. Then

(i) β(M) = 2 if and only if M is a series-parallel extension of U2,4 or W3.

(ii) β(M) = 3 if and only if M is a series-parallel extension of U2,5, U3,5, F7, F
∗
7 ,W4, or W 3.

(iii) β(M) = 4 if and only if either
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F7

 1 0 1 1
I3 1 1 0 1

0 1 1 1

 S8


1 1 1 0
1 1 0 1

I4 1 0 1 1
1 1 1 1

 K5\e


1 1 0 0 0
1 1 0 1 1

I4 1 0 1 1 1
1 0 1 0 1


Figure 2.2: Matrix representation of F7, S8, and M(K5\e).

a) M is a series-parallel extension of one of the matroids U2,6, U4,6, W
4, W5, Q6, O7, O

∗
7,

non-Fano, non-Fano dual, S8, M(K5\e), or M∗(K5\e), or

b) M is a 2-sum of matroids M1 and M2 each of which is a series-parallel extension of

M(K4) or U2,4.

Oxley also proved the following proposition about matroids with beta invariant k ≥ 1.

Proposition 2.1.4. [16] Let M be a matroid and suppose that β(M) = k > 1. Then either

(i) M is a series-parallel extension of a 3-connected matroid N such that β(N) = k, or

(ii) M = M1 ⊕2 M2, and β(M) = β(M1)β(M2) each having β(Mi) < k for i = 1, 2.

It is an interesting question to bound the beta invariant of a matroid. In the next

result, Oxley showed that in general, the beta invariant is an exponential function of the

connectivity of a matroid. He gave a bound for n-connected matroids, which is stated in the

following theorem.

Theorem 2.1.5. [16] If M is a n-connected matroid with 2(n− 1) elements, then β(M) ≥

2n−2 for n ≥ 2.

Oxley stated that this bound, in general, is weak as n increases. Also, the bound is not

sharp even for 4-connected matroids. He also proved in the same paper that for 4-connected

matroids, β ≥ 10 unless the matroid is U3,6 where β(U3,6) = 6. Oxley also states that one can

use the same proof technique he used to obtain a lower bound for any n-connected matroid

but this is not an efficient way to do so. Thus, for 3-connected matroids with rank r, we give

10



a better lower bound and give all matroids which attains the lower bound. Also, we give a

lower bound of beta invariant for rank r non-binary 3-connected matroids as well.

2.2 Main Result and Proof

In this section, we state and prove the main result of Chapter 2.

Theorem 2.2.1. Let M be a 3-connected matroid of rank r. Then β(M) ≥ r(M) − 1,

β(M) = r(M) − 1 if and only if M is a wheel, F ∗7 , or the Prism. Moreover, if M is non-

binary, then β(M) ≥ r(M), and β(M) = r(M) if and only if M is a whirl, Ur,r+2 (r ≥ 2),

(F−7 )∗, or O∗7.

Proof. The proof of the theorem is divided into four parts. In Part 1 we state and the lower

bound of beta invariant for a general 3-connected matroid and for a 3-connected non-binary

matroids. In Part 2, we explain the process of finding all 3-connected matroids such that

the beta invariant is one less than the rank and the 3-connected non-binary matroids with

beta invariant equal to the rank. In Part 3, we find all 3-connected matroids where the beta

invariant is one less than the rank. In Part 4, we find all 3-connected non-binary matroids

where the beta invariant equals to the rank.

Part 1

In Part 1 we prove that if M is a 3-connected matroid with rank r then β(M) ≥

r(M)− 1. We also prove that if M is 3-connected and non-binary, then β(M) ≥ r(M).

Suppose M is a 3-connected matroid such that r(M) = r. If M is a rank r wheel,

then β(M) = r − 1. Similarly, if M is a rank r whirl, then β(M) = r. Therefore β(M) ≥

r ≥ r − 1 if M is a wheel or a whirl. Now, suppose M is not a wheel or a whirl. Then

by Theorem 1.0.4, M has a 3-connected minor M1 and an element e such that M1/e or

M1\e is isomorphic to N where N ∈ {W3,W4,W
2,W 3}. If M is binary, then N ∼= W3 or

W4 and if M is non-binary, then N ∼= W 2 or W 3. Then by Theorem 1.0.4, there exists a

11



chain of 3-connected matroids from M to M1. Thus we obtain a chain of matroids from

M = Mn to N = M0 such that for each i ∈ {0, · · · , n − 1}, there exists e ∈ E(Mi) where

Mi\e or Mi/e ∼= Mi−1. Consider the matroid M1 and M0. We know r(M1) = r(M0)

or R(M1) = r(M0) + 1. Therefore r(M0) ≥ r(M1) − 1. Also, there exists an element

e ∈ E(M1) such that M1/e or M1\e ∼= M0. Furthermore, because M1 is 3-connected, both

M1/e and M1\e are connected and β(M1/e), β(M1\e) ≥ 1. Then by the deletion-contraction

formula for beta invariant, β(M1) = β(M1\e) + β(M1/e) ≥ β(M0) + 1. Furthermore, as M0

is either a wheel or a whirl, we have β(M0) ≥ r(M0) − 1 as well. Therefore we have

β(M1) ≥ r(M0)− 1 + 1 ≥ r(M1)− 1. Now, by applying the same argument to M1 and M2,

we can see that β(M2) ≥ β(M1) + 1 ≥ r(M2)− 1. Therefore by the inductive argument, we

have β(Mn) ≥ β(Mn−1) + 1 ≥ r(Mn)− 1 and the first statement of the theorem holds: If M

is a 3-connected matroid, then β(M) ≥ r(M)− 1.

For non-binary matroids, if M is a non-binary matroid, then by Theorem 1.0.4

and the Splitter theorem, we have chain of matroid from M = Mn to N = M0 where

N = W 2 or W 3. In this case, because M0 is a whirl, β(M0) = r(M0). Therefore,

β(M1) ≥ β(M0) + 1 = r(M) + 1 ≥ r(M0). By repeating the same argument, we have

β(Mn) ≥ β(Mn−1) + 1 ≥ r(Mn). Thus, if M is a 3-connected non-binary matroid, then

β(M) ≥ r(M).

For general 3-connected matroid M , we have β(M) ≥ r(M)− 1 and for 3-connected

non-binary matroid N , we have β(N) ≥ r(N). From this fact, we can deduce that if M is a

3-connected matroid M , then β(M) = r(M)− 1 implies M is binary.

Part 2.

In Part 2, we explain the process of finding all 3-connected matroids with beta invari-

ant one less than the rank and 3-connected non-binary matroids with beta invariant equal

to the rank. First, suppose M is a 3-connected matroid such that β(M) = r(M) − 1. In
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Part 1, we proved that if β(M) = r(M) − 1, then M is a binary matroid. If M is a wheel

then β(M) = r(M) − 1 and the theorem holds. Now suppose M is a 3-connected matroid

and M is not a wheel. Then by Theorem 1.0.4 and the Splitter theorem, there exists a chain

of 3-connected matroid from W = M0 to M = Mn where W ∼= W3 or W4. We will first

show that for all i ∈ {1, · · · , n}, Mi is a coextension of Mi−1 and β(Mi) = β(Mi−1) + 1.

From Part 1 of the proof, we know β(Mi) ≥ β(Mi−1) + 1 for each i ∈ {1, · · · , n}. Then

β(Mn) ≥ β(M0) + n. Now, suppose to the contrary that there are some matroids in the

chain where Mi is an extension of Mi+1. Then there are some matroids in the chain where

r(Mi) = r(Mi−1). Therefore r(Mn) < r(M0) + n. Since M0 is a wheel, β(M0) = r(M0)− 1.

Therefore β(Mn) ≥ β(M0) + n = r(M0) + n− 1 > r(Mn)− 1. A contradiction as Mn = M

and M is a 3-connected matroid such that β(M) = r(M)− 1. Therefore for each matroid in

the chain, Mi is a coextension of Mi−1 and β(Mi) = β(Mi−1)+1. Also, for all i ∈ {0, · · · , n},

we have β(Mi) = r(Mi)− 1. Thus all matroids in this chain from M0 to Mn are 3-connected

and the beta invariant is one less than the rank.

Thus we coextend W3 and W4 by an element and look for any coextensions where

the beta invariant increased exactly by one. If there exists a such matroid, then we repeat

the process and if there is no such coextension, we stop. Then we can obtain all 3-connected

matroids where the beta invariant is one less than its rank. However, beta invariants are

invariant under duality and it is sometimes easier to handle extensions than coextensions

of a matroid. Thus, instead of coextending matroids from W3 and W4, we will extend the

dual of W3 and W4, which are again W3 and W4, and find matroids where the beta invariant

increases exactly by one.

For non-binary matroids, the argument and the process of finding all 3-connected

non-binary matroids with beta invariant equal to their rank is exactly the same as the

binary ones. The only difference from the general case is with non-binary matroids, where

we extend the duals of W 2 and W 3, which are W 2 and W 3.
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Before we proceed with Part 3 of the proof, we can easily check, using the deletion-

contraction formula, that the beta invariant of wheel, F ∗7 , or a prism equals to one less than

its rank. And for each of the matroid whirl, Ur,r+2, r ≥ 2, (F−7 )∗ and O∗7, the beta invariant

equals to its rank.

Part 3

Now, we find all 3-connected matroids M such that β(M) = r(M) − 1 using the

procedure explained in Part 2. We first extend W3. By the proof of Part 1, since β(M) =

r(M) − 1 for 3-connected matroids imply M is binary, we look for a 3-connected binary

extension of W3 with no W4-minor such that the β = β(W3) + 1 = 3. We exclude matroids

with a W4-minor as we will extend matroids from W4. There are small number of 3-connected

binary matroids with 9 or less elements. Most of the matroids in this part are well known as

well as their matrix representations. In the dissertation, we use the known list of 3-connected

matroids with small number of elements. For binary matroids, we use both known properties

of the matroids and the matrix representation to extend and coextend the matroids. The

following table was obtained from the paper [11].

|E(M)| 3-Connected Binary Matroids
6 W3

7 F7, F
∗
7

8 W4, S8, AG(3, 2)
9 M(K3,3), M

∗(K3,3), M(K5\e), Prism, P9, P
∗
9 , Z4, Z

∗
4

Table 2.1: All 3-connected binary matroids with 6, 7, 8, and 9 elements.

As for the 3-connected binary extension of W3, we only have one extension: F7. Also

β(F7) = β(W3) + 1 as well. However, there does not exist any 3-connected binary extension

of F7. Therefore W3 and F ∗7 are the only matroids we can obtain by coextending W3 where

the beta invariant is one less than the rank.
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Now, we look at the 3-connected binary extensions of W4. By using Table 2.1 and

checking the rank, we can see that there are exactly four 3-connected binary extensions of

W4: M
∗(K3,3), M(K5\e), P9, and Z4. It is not difficult to compute the beta invariant of

those matroids and check that M(K5\e) is the only matroid with β = 4. Therefore, Prism,

dual of M(K5\e), is the only coextension of W4 where the beta invariant is one less than

the rank. Now, we need to look at the 3-connected binary extension of M(K5\e). This is

equivalent to adding a vector column to the matrix representation of M(K5\e) over GF (2).

This process is shown on the figure below with the matrix B where M(B) represents a 3-

connected binary extension of M(K5\e). The vector column f of matrix B corresponds to

the extended element of M(K5\e). In each extension the vector column f = (x1, x2, x3, x4)
T ,

at least two of x1, x2, x3, x4 must be 1 since the extension needs to be 3-connected. Now it

is easy to see the only possible choices of f are f1, f2, f3, f4, f5, or f6.

B =

1 2 3 4 5 6 7 8 9 f


1 0 0 0 1 0 0 1 0 ∗

0 1 0 0 1 1 0 0 1 ∗

0 0 1 0 0 1 1 0 0 ∗

0 0 0 1 0 0 1 1 1 ∗

f1


1

0

1

0

f2


0

1

1

1

f3


1

0

1

1

f4


1

1

0

1

f5


1

1

1

0

f6


1

1

1

1

For all f1, f2, ... f6, we have to compute the beta invariant of M(B). To do this,

we compute the beta invariant using the matrix representation of the matroid and obtain

a lower bound. Since M(B)\f1 = M(K5\e), we only need to check the beta invariant of

M(B)/f1. The following matrix B/f is a representation of M(B)/f .
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B/f =

1 2 3 4 5 6 7 8 9


0 1 0 0 1 1 0 0 1

1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 0 1 1

W =

1 2 3 4 5 6


1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

This matrix representation corresponds to a connected matroid with W3-minor by

comparing the matrix B/f with W , which is a matrix representation of W3. Therefore we

have β(M(B)/f1) ≥ β(W3) ≥ 2. We do this for other cases and computed that for each

case, β(M(B)/f) ≥ 2.

Then, using computer program SAGE, we confirmed our result by computing the

Tutte polynomial of the matroid and then obtaining the beta invariant from the Tutte

polynomial. As an example, suppose f = f1. Then, on SAGE, we can construct matroid

using matrix representation. Then we can compute the Tutte polynomial and obtain the

beta invariant. So if we were to construct a matroid M(B) using f = f1, we obtain the

Tutte polynomial of the given matroid, y6 + 4y5 + x4 + 5xy3 + 10y4 + 6x3 + 10x2y+ 15xy2 +

15y3 + 11x2 + 20xy + 15y2 + 6x + 6y. From this, we can see that the beta invariant of this

particular extension is 6. Using the same method, we confirmed the beta invariants were at

least 6 for all cases.

So, there does not exist a 3-connected binary extension of M(K5\e) such that the

beta invariant increases exactly by one. Therefore the 3-connected binary matroids with

W4-minor such that the beta is one less than the rank are: W4 and Prism. Hence if M is a

3-connected matroid such that β(M) = r(M) − 1, then M is isomorphic to a wheel, F ∗7 or

Prism.

Part 4

Now we find the 3-connected non-binary matroids M such that β(M) = r(M). Again,

we use the same procedure used in Part 3 of the proof. We first extend W 2 and find
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all single element extensions of W 2 = U2,4 where the β = 3. There exists only one 3-

connected single element extension of U2,4, namely, U2,5. And β(U2,5) = 3 as well. With

U2,n, it is not difficult to compute the beta invariant since for any e ∈ E(U2,n), we can see

U2,n/e ∼= U1,n−1 and β(U1,n−1) = 1 as it is connected with no U2,4-minor. Also, U2,6 is the

only 3-connected single element extension of U2,5 and β(U2,6) = β(U2,5) + 1. We can deduce

that β(U2,n) = n − 2 = r(U∗2,n) for all n ≥ 2. Therefore M∗ ∼= U2,n and M ∼= Ur−2,n for all

n ≥ 2.

Now, we extend W 3. Let N be a 3-connected single element extension of W 3 such

that β(N) = β(W 3) + 1 = 4. Then the beta invariant of N equals to 4 and we already know

all 3-connected matroids with beta invariant 4. Furthermore, we know N has 7-elements

and the rank is 3. By Theorem 2.1.3, either N ∼= O7 or F−7 . Thus O∗7 and (F−7 )∗ are two

single element coextension of W 3 such that the beta invariant equals to its rank. Now, we

need to extend O7 and F−7 . To do so, we use the geometric representation of O7 and F−7 .

O7

a b

c

d

e

f

g

c

F−7

a

b

gd

ef

Figure 2.3: Geometric representation of O7 and F−7 .

Suppose O is a 3-connected single-element extension of O7 by an element x. Then

O\x = O7 and O/x is connected since O7 is 3-connected. Now, we show that O/x has a

U2,4-minor and thus β(O/x) ≥ 2. Let clO(A) denote the closure of a set A in O. Then, either

x /∈ clO({a, g, b, e}) or x ∈ clO({a, g, b, e}). If x /∈ clO({a, g, b, e}) then rO/x({a, g, b, e}) = 2

and this implies O/x|{a, g, b, e} ∼= U2,4. Thus in this case, O/x has U2,4-minor. Now, suppose

x ∈ clO({a, g, b, e}). If there exists a circuit C = {x, u, v} where u ∈ {c, d, f}. Suppose
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without the loss of generality that u = c. If v = b or e, then {c, b, e} is forced to be a circuit

in O, and O7, a contradiction. If v = d or f , then {c, d, b, e} or {c, f, b, e} contains a circuit of

O and O7, a contradiction as well. Therefore if x ∈ clO({a, g, b, e}), then x is not in a rank-2

circuit with any one of the elements c, d or f . Thus we get only one possible extension as

shown in Figure 2.4. It is not difficult to check that by contracting x from O, we still obtain

U2,4-minor. Therefore if O is any 3-connected extension of O7, then β(O) ≥ β(O7) + 2.

f

a b

c

d

eg
x

c

a

b

gd

ef

x

c

a

b

gd

ef

x

Figure 2.4: Possible extensions of O7 and F−7 .

Now, consider single element extensions of F−7 . Suppose F is a 3-connected single

element extension of F−7 by an element x. Suppose x ∈ clF (C1) where C1 is a rank-2 circuit

of F−7 . Without the loss of generality, let C1 = {a, d, g}. If {b, x, c} is a circuit of F as well,

then x ∈ clF ({b, c, d}). If {b, x, g} is a circuit of F as well, then x ∈ clF ({b, e, g}). Therefore

either x is in the closure of exactly one 3-element circuit of F−7 or x is in more than one

3-element circuit of F−7 . In the first case, suppose x ∈ clF ({a, d, g}) and clF ({b, c, d}). Then

c ∈ clF ({a, d, g}) as well, a contradiction. In the second case, F/x has a U2,4-minor. Now,

if x is not be in the closure of any triangles in F−7 , since F is assumed to be 3-connected, x

has to be in a triangle with two elements from the set {f, e, d} or x ∈ clO({f, d, e}) which

is equivalent to a free extension. In Figure 2.4, one can see an extension where {x, f, e} is

a triangle and another one, a free extension. In both cases, one can easily check that if we

contract x, we still have a U2,4-minor. Therefore if F is any 3-connected extension of F−7 ,

then β(F ) ≥ β(F−7 ) + 2. Finally we conclude that if M is a 3-connected non-binary matroid

such that β(M) = r(M), then M is isomorphic to a whirl, Ur,r+2, r ≥ 2, O∗7, or (F−7 )∗.
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3 MATROIDS WITH SMALL BETA INVARIANT

In this chapter, we study matroids with small beta invariant. In Section 1, we survey

the previous research on characterizing matroids with small beta invariants. In Section 2,

we prove some lemmas which will be used in Section 3 of this chapter. In Section 3, we

state and prove the main results of this chapter which characterizes all matroids with beta

invariant 5, and 6, and for binary matroids, 7.

3.1 Matroids With Beta Invariant At Most 4

Crapo characterized all matroids with beta invariant 0 and Brylawski characterized

all matroids with beta invariant 1. Oxley characterized all matroids with beta invariant 2,

3, and 4. Crapo and Seymour’s results are listed in Chapter 2 but we list restatements of

their theorems again together with Oxley’s result in the following theorem.

Theorem 3.1.1. Let M be a matroid with at least two elements. Then

(i) β(M) = 0 if and only if M is not connected. [9]

(ii) β(M) = 1 if and only if M has no minor isomorphic to U2,4 or M(K4). [4]

(iii) β(M) = 2 if and only if M is a series-parallel extension of U2,4 or M(K4). [16]

(iv) β(M) = 3 if and only if M is a series-parallel extension of U2,5, U3,5, F7, F
∗
7 ,M(W4), or

W 3. [16]

(v) β(M) = 4 if and only if either

a) M is a series-parallel extension of one of the matroids U2,6, U4,6, W
4, M(W5), Q6,
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O7, O
∗
7, non-Fano, non-Fano dual, S8, M(K5\e), or M∗(K5\e), or

b) M is a 2-sum of matroids M1 and M2 each of which is a series-parallel extension of

M(K4) or U2,4. [16]

Furthermore, Benashski, Martin, Moore and Traldi characterized all simple 3-connected

graphs with beta invariant 9 or less in [3]. Instead of directly extending and coextending

binary matroids with small invariants to find matroids with larger beta invariant, we first

compute the beta invariant of the binary matroids with no P9-minor. To compute the beta

invariant of the matroids with no P9-minor, we prove a lemma which gives the recursive

formula for the beta invariant of the starfish and other classes of matroids with no P9-minor.

Note that we can also obtain the list of binary matroids with small beta invariants by extend-

ing and coextending W3 and W4 using MACEK and compute the beta invariant by SAGE

as well. However, we provide a way to compute without completely relying on the computer

programs for binary matroids with no P9-minor.

To classify binary matroids with no P9-minor, we use the following theorems associ-

ated with matroid minors. First, the following theorem is result of Ding and Wu [11] which

characterized all binary matroids with no P9-minor. A binary matroid starfish is defined in

[11]. The simple graphs K ′3,n, K
′′
3,n and K ′′′3,n are obtained from K3,n by adding one, two or

three edges in the color class of size three respectively. Take any t, (1 ≤ t ≤ n) disjoint tri-

angles, Ti of N and t copies of F7. Then apply 3-sum operation on N and F7. Any resulting

matroid in this class of matroids is called a (multi-legged) starfish. In this paper, when we

apply 3-sum operation on N and F7 along the triangles, we will denote it as N ⊕3 F7 for a

one legged starfish and N ⊕3 mF7 as a m-legged starfish for m ≥ 2. In this paper, we take

a closer look at the X10, a minor of Y16. For a closer study of starfish, Y16 and X10, see [11].

Matrix representation of M(X10) over GF (2) is shown in Figure 3.1.
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X10 =


1 1 1 0
1 1 0 1

I6 1 0 1 1
0 0 1 1
0 1 0 1
1 0 0 1


Figure 3.1: Matrix representation of M(X10).

Theorem 3.1.2. [11] Let M be a binary matroid. Then M is 3-connected having no minor

isomorphic to P9 if and only if one of the following is true:

(i) M is regular and 3-connected; or

(ii) M is a binary spike Zr, Z
∗
r , Zr\yr or Zr\t for some r ≥ 4; or

(iii) M is a starfish; or

(iv) M is one of the 15 internally 4-connected non-regular minors of a 16-element internally

4-connected binary matroid M(Y16).

The following results of Oxley [17] and Seymour [20], respectively, are used in the

computation of the beta invariants of matroids with no P9-minor. First, the following are

the matrix representation of the binary matroids R10, R12, P9 and AG(3, 2).

R10


1 1 0 0 1
1 1 1 0 0

I5 0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

 R12


1 1 1 0 0 0
1 1 0 1 0 0

I6 1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 1
0 0 0 1 1 1

 P9


0 1 1 1 1
1 0 1 1 1

I4 1 1 0 1 0
1 1 1 1 0



AG(3, 2)


0 1 1 1
1 0 1 1

I4 1 1 0 1
1 1 1 0



Figure 3.2: A matrix representation of R10, R12, P9 and AG(3, 2).
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Theorem 3.1.3. Let M be a 3-connected regular matroid. Then M is graphic or cographic,

or M is isomoprhic to R10, or has a minor isomorphic to R12.

Proposition 3.1.4. Every binary 3-connected single-element extension of S8 is either iso-

morphic to P9 or has an AG(3, 2)-minor.

Then we compute the beta invariant of the matroids with a P9-minor by extending

and coextending a column and a row of a matrix representation of P9. We compute the beta

invariant of the matroid obtained by contracting the element which was used to extend P9.

We check the result using SAGE by constructing the extension and coextension of P9 using

the matrix representation and compute the Tutte polynomial to obtain the beta invariant.

For non-binary matroids, as all non-binary matroids have W 2 or W 3-minor, we extend

the matroid and its dual from the small whirls to obtain all the non-binary matroids with

beta invariant 5 and 6. Most of this work was done by checking modular cuts and extending

them using SAGE.

In Section 3.2, we prove some lemmas which computes the beta invariant of binary

matroids with P9-minor and without P9-minor, separately. Also in Section 3.2, we explain

how we obtain matroids with W 2 and W 3-minor and compute the beta invariants using

SAGE. In Section 3.3, we list all 3-connected binary matroids with β = 5, 6 and 7. As for

the non-binary matroids, we list all 3-connected non-binary matroids with β = 5 and 6.

3.2 Beta Invariant of Matroids with no P9-minor

First, we introduce the matroids which were not defined in previous sections. If the

matroid or the dual is isomorphic to a cycle matroid of a graph, then we give the graph in

Figure 3.3. If the matroid and the dual are not graphic, then we give a matrix representation

of the matroid over GF (2) in Figure 3.4. For some of the non-binary matroids, we give the

modular cut and the matroid which corresponds with it. For example, if N is a 3-connected
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non-binary matroid with β = 6, and N is a single element coextension of M , then we give a

modular cut of M∗ and M∗ which corresponds with N∗. Note that the matroids T10, M(A),

M(B) and M(C) has both P9 and P ∗9 dual as a minor. And P ∗10
∼= M∗(K ′′′2,3) ⊕3 F7 has no

P9-minor and is a starfish, whereas P10 has a P9-minor.

(a) (b) (c) (d)

Figure 3.3: A graphic representation of H12, H11, Prism+ e, and W5 + e.

A =


1 0 0 0 1
1 1 0 0 0

I6 0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 1 1 1

 B =


1 1 1 0 0
1 1 0 1 0

I5 1 0 1 1 1
0 1 1 0 1
0 0 1 0 1

 C =


1 1 1 0 0
1 1 0 1 0

I5 1 0 1 1 1
0 1 1 0 1
1 0 1 0 0



P =


1 1 0 0 0 0
0 1 1 0 1 1

I4 0 0 1 1 0 1
1 0 0 1 1 1

 T =


1 0 0 1 0
1 1 0 0 0

I5 0 1 1 0 0
0 0 1 1 1
0 1 1 1 1



Figure 3.4: A matrix representation of M(A), M(B), M(C), M(P ) = P10 and M(T ) = T10
over GF (2).

Lemma 3.2.1. Let K ′3,n, K
′′
3,n and K ′′′3,n, n ≥ 2, be a simple graphs obtained from K3,n

by adding one, two or three edges in the color class of size three respectively and let e ∈

E(F7)\M∗(E(K3,n)). Then the following recursive relations hold.

(i). β(M(K3,n)) = β(M(K ′′3,n−1)) + β(M(K ′3,n−1)).

(ii). β(M∗(K3,n)⊕3 F7)\e) = β(M∗(K ′′′3,n−1)).

(iii). β(M∗(K3,n)⊕3 F7)/e) = β(M∗(K3,n)).
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(iv). β(M∗(K3,n)⊕3 2F7)\e) = β(M∗(K ′′′3,n−1)⊕3 F7).

(v). β(M∗(K3,n)⊕3 2F7)/e) = β(M∗(K3,n)⊕3 F7).

Proof. Statement (i) can be obtained by applying deletion-contraction formula to M(K3,n)

immediately and we will omit the proof. It is easily checked that (M∗(K3,n) ⊕3 F7)\e ∼=

M∗(K ′′′3,n−1) and (M∗(K3,n)⊕3 F7)/e ∼= M∗(K3,n). Hence (ii) and (iii) are true. (iv) and (v)

follow from (ii) and (iii).

In Chapter 4, we provide a splitting formula for computing 3-sum of two matroids.

Therefore we can use either the splitting formula or this recursive formula to compute the

beta invariant of starfish. Let M be a 3-connected binary matroid with no P9-minor. Using

Theorem 3.1.2, and Lemma 3.2.1, we compute the beta invariant of such matroids.

Lemma 3.2.2. Let M be a 3-connected binary matroid with no P9-minor. Then

(i) β(M) = 5 if and only if M is isomorphic to P ∗9 , M(K3,3), M∗(K3,3), W6, or Prism+ e.

(ii) β(M) = 6 if and only if M is isomorphic to M(K5), M∗(K5), M(K ′3,3), M∗(K ′3,3),

W5 + e, (W5 + e)∗, or W7, AG(3, 2), or P ∗10.

(iii) β(M) = 7 if and only if M is isomorphic to M(K ′′3,3), M∗(K ′3,3), M(H12), M(H11),

M∗(H11), W8, Z4, Z
∗
4 , or M(X10).

Proof. Let M be a 3-connected binary matroid. It is easily checked that for each matroid M

in (i), (ii), or (iii), β(M) = 5, 6, and 7 respectively, and M has no P9-minor. Now, let M be

a 3-connected binary matroid with no P9-minor. Then by Theorem 3.1.2, M is isomorphic

to one of the following matroids:

(i) M is regular and 3-connected; or

(ii) M is a binary spike Zr, Z
∗
r , Zr\yr or Zr\t for some r ≥ 4; or
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(iii) M is a starfish; or

(iv) M is one of the 15 internally 4-connected non-regular minors of a 16-element internally

4-connected binary matroid M(Y16).

Case (i). If M is regular, then by Theorem 3.1.3, M is graphic or cographic, or M is

isomoprhic to R10 or has a R12-minor. If M is isomorphic to R10, then β(M) = β(R10) = 10.

If M has a R12-minor, then β(M) ≥ β(R12) = 14. Thus if M is a 3-connected regular

matroid with β(M) = 5, 6, or 7, then M is either graphic or cographic. In the paper [3], the

authors list all graphs with β = 4, 5, 6, 7, 8, and 9. To obtain the complete list of the regular

matroids with β = 5, 6, and 7, we only need to add the dual of the non-planar graphs from

[3], as the dual matroid has the same beta invariant. We deduce that if M is a 3-connected

regular matroid and β(M) = 5, then M ∼= M(K3,3), M
∗(K3,3), W6, or M(Prism + e). If

β(M) = 6, then M ∼= M(K5), M
∗(K5), M(K ′3,3), M

∗(K ′3,3), M(W5 + e), M∗(K5 + e), or W7.

If β(M) = 7 then M ∼= M(K ′′3,3), M
∗(K ′3,3), M(H12), M(H11), M

∗(H11), or W8.

Case (ii). If M is a binary spike, then using the matrix representation of the smaller spikes,

we computed all of the non-isomorphic smaller spikes. If M ∼= Zr, where r ≥ 6, then Zr has

Z5-minor and thus, β(Zr) > β(Z5) = 15 and the beta invariant is too large. Thus we look

at the spikes with at most 11 elements. The beta invariants of the spikes with at most 11

elements are listed on Table 3.1.

M Z4 Z4\y4 Z4\t ∼= AG(3, 2) Z5 Z5\y5 Z5\t
β(M) 7 4 6 15 8 14

Table 3.1: The Beta invariant of small spikes.

Therefore if M is a 3-connected binary spike, then β(M) = 6 if and only if M ∼=

AG(3, 2) and β(M) = 7 if and only if M ∼= Z4 or Z∗4 . However, there are no binary spikes

with β = 5.
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Case (iii). If M is a starfish, then using Lemma 3.2.1, we give the beta invariants of some of

the 3-connected starfish on Table 3.2. Note that M∗(K ′′2,3)⊕3F7
∼= P ∗9 and M∗(K ′′′2,3)⊕3F7

∼=

P ∗10. Because P ∗10 has a P ∗9 -minor, P10 has a P9-minor and is not listed in Lemma 3.2.2 (ii).

β(M∗(K ′′2,3)⊕3 F7) = 5 β(M∗(K ′′2,3)⊕3 2F7) = 8 β(M∗(K3,3)⊕3 F7) = 9

β(M∗(K ′′′2,3)⊕3 F7) = 6 β(M∗(K ′′′2,3)⊕3 2F7) = 9

Table 3.2: The beta invariant of small starfishes.

Since β(M∗(K3,3) ⊕3 F7) = 9, any starfish obtained by adding edges to M∗(K3,n)

(n ≥ 3) or adding another leg to M∗(K3,n) ⊕3 F7 has greater beta invariant and thus has

beta invariant at least 10. Also, M∗(K ′′′2,3)⊕32F7 is the largest starfish that can be constructed

with the cographic matroid M∗(K2,3). Therefore if M is a starfish, then β(M) = 5 if and

only if M ∼= P ∗9 . Moreover, β(M) = 6 if and only if M ∼= P ∗10, and there are no starfish with

β = 7.

Case (iv). If M is one of the 15 internally 4-connected, non-regular minors of 16-element

internally 4-connected binary matroid M(Y16), then we look at M(X10). In the paper [11],

the authors note that all of the matroids of this case has a M(X10)-minor with exception of

F7 and F ∗7 , which have beta invariant 3. However, β(X10) = 7 and any 3-connected binary

matroid with a proper M(X10)-minor would have greater beta invariant. Thus if M is one

of the 15 internally 4-connected, non-regular minors of M(Y16), then β(M) = 7 if and only

if M ∼= M(X10).

Before introducing the main result of this chapter, we briefly explain how we extend

and coextend non-binary matroids from W 2 and W 3. Note that for any matroid M , a

modular cut of M corresponds with a single element extension of M . Coextension of M

corresponds to a extension of the M∗. As beta invariant is invariant under the dual operation,

to compute the beta invariant of all single element extension and coextension of a matroid
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M , we will extend M and M∗ then compute the extensions. Thus we find modular cuts of

M and M∗ which corresponds to a 3-connected extension and coextension of M .

For small matroids, there are ways to obtain all 3-connected single element extension

of a matroid without using a computer. However, in this section, we explain one method

to do this using SAGE. For example, suppose we want to find all possible 3-connected

single element extensions of W 3. Then we first need to find all modular cuts of W 3 which

corresponds to a 3-connected extension. SAGE contains certain classes of matroids in their

program and whirls are one of such matroids. In SAGE, built in matroid W 3 has the

groundset {0, 1, 2, 3, 4, 5}. Using SAGE, one can check if a set is a flat or list all flats of

different ranks. For example, {0, 1, 3} and {4, 5} are two flats of W 3. Suppose O is an

extension of W 3 = M which corresponds to a modular cut of M generated by flats {0, 1, 3}

and {4, 5}. Then we first need to extend the matroid using the modular cut generated by

flats {0, 1, 3} and {4, 5} and then compute the Tutte polynomial to obtain the beta invariant.

The following command shows the input we typed into the SAGE and the output we obtained

from SAGE.

Input:

M = matroids.Whirl(3)

H = [frozenset([0,1,3]), frozenset([4,5])]

O = M.extension(‘h’, H)

O.tutte polynomial()

Output:

y4 + x3 + xy2 + 3y3 + 4x2 + 5xy + 5y2 + 4x+ 4y

Next, in order to check if matroids generated by two modular cut of M corresponds

to an isomorphic extension of the matroid or not, we use the command is isomorphic. For

example, if P is an extension of W 3 which corresponds to a modular cut generated by flats

{0, 2, 5} and {3, 4} then we can check if O is isomorphic to P on SAGE as well.
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Input :

K = [frozenset([0,2,5]), frozenset([3,4])]

P = M.extension(‘k’, K)

O.is isomorphic(P)

Output :

True

The symmetry of geometric representation of the matroid is used to reduce the number

of modular cuts and corresponding extensions of the single-element extensions. For example,

W 3 has many symmetries. IfM1 is a modular cut generated by {0, 1, 3} andM2 is a modular

cut generated by {0, 2, 5}. Suppose M1 is the matroid which corresponds to M1 and M2 is

the matroid which corresponds to M2 where in both cases, the element e is the extended

element. We can see from Figure 3.5 that M1 and M2 are isomorphic and this is due to the

symmetry of W 3.

0

1

25

43

0

1

25

43
e

0

1

25

43

e

Figure 3.5: A geometric representation of W 3, M1, and M2.

3.3 Main Results and Proofs

Theorem 3.3.1. Let M be a binary matroid. Then β(M) = 5 if and only if M is a series-

parallel extension of P9, P
∗
9 , M(K3,3), M∗(K3,3), W6 or Prism+ e.

Proof. If M is one of the matroids listed in the theorem, then we checked that β(M) = 5.

Now, let M be a binary matroid and β(M) = 5. By Proposition 2.1.4, M is a series parallel
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extension of a 3-connected binary matroid N for which β(N) = β(M). If N has no P9-

minor, then it is isomorphic to the one of the matroids listed on Lemma 3.2.2 (i). That is,

N ∼= P ∗9 , M(K3,3), M
∗(K3,3), W6 or Prism+ e. However, N cannot have a proper P9-minor

as β(P9) = 5. Therefore if N has a P9-minor, then N ∼= P9. We conclude that if M is a

binary matroid with β(M) = 5, then M is a series-parallel extension of P9, P
∗
9 , M(K3,3),

M∗(K3,3), W6, or Prism+ e.

Theorem 3.3.2. Let M be a binary matroid. Then β(M) = 6 if and only if either

i) M is one of AG(3, 2), M(K5), M∗(K5), M(K ′3,3), M∗(K ′3,3), W5 + e, (W5 + e)∗, W7, P10,

P ∗10, or T10; or

ii) M is 2-sum of matroids M1 and M2 such that M1 is series-parallel extension of W3 and

M2 is series-parallel extension of F7, F ∗7 , or W4.

Proof. If (i) or (ii) holds, then it is easily checked that β(M) = 6. Suppose M is a binary

matroid and β(M) = 6. Then M is the 2-sum of some 3-connected matroids M1 and M2 such

that 1 < β(M1), β(M2) < 6 and β(M) = β(M1)β(M2), or M is a series-parallel extension of

3-connected matroid N for which β(N) = 6. In the former case, we can assume β(M1) = 2

and β(M2) = 3 and (ii) holds. So we may assume that M is 3-connected.

The rest of the proof is similar to the proof of the previous theorem. If N has no

P9-minor, then N is isomorphic to the one of the matroids listed on Lemma 3.2.2 (ii). In

this case, N ∼= AG(3, 2), M(K5), M
∗(K5), M(K ′3,3), M

∗(K ′3,3), M(W5 + e), M∗(W5 + e),

W7, or P ∗10.

Now we suppose that N has a P9-minor. We find all such N by extending and

coextending P9 one element at a time. This is only possible since P9 is a matroid with

relatively small number of elements. We consider all possible binary single element extension

of P9 by adding a vector column to the matrix representation of P9. We do the same for

29



X=

1 2 3 4 5 6 7 8 9


1 0 0 0 1 1 1 0 0
0 1 0 0 1 1 0 1 0
0 0 1 0 1 0 1 1 1
0 0 0 1 0 1 1 0 1

Figure 3.6: A matrix representation of P9 over GF (2).

X1=

1 2 3 4 5 6 7 8 9 e


1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 1
0 0 1 0 1 0 1 1 1 0
0 0 0 1 0 1 1 0 1 1

X2=

1 2 3 4 5 6 7 8 9 e


1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 0
0 0 1 0 1 0 1 1 1 0
0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 1 1 1

Figure 3.7: A matrix representation of a single element extension and a coextension of P9.

the single element coextension of P9 as well. All 3-connected single element extensions and

coextensions up to isomorphism with their beta invariants are shown in Table 3.3.

Vector Column {2, 4} {2, 3, 4} {1, 4}
Beta Invariant 6 8 7

Vector Row {8, 9} {7, 9} {7, 8, 9} {6, 7} {6, 7, 8} {6, 7, 8, 9} {5, 7} {5, 7, 9}
beta invariant 9 7 8 6 10 9 7 7

Table 3.3: The beta invariant of extension and coextension of P9.

In Table 3.3, we give the rows and columns of the added vector where 1’s are placed.

For example, in this table Vector Column {2, 4} denote adding a column with 1’s on row 2

and 4 as shown below with matrix X1 by column e. As for the second table, we have Vector

Row {8, 9}. This means first, add a column with all 0’s and add a row where we have 1’s

on column 8, 9, and the column we’ve added. This is shown below with matrix X2 and a

vertex column e and an extra row.
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Since M(X1)\e ∼= P9, and the matrix is relatively small, we can try to compute the

beta invariant of all single-element extensions and coextensions of P9. We can also compute

the beta invariant using SAGE as well.

There exists one extension and one coextension of P9 with β = 6 which are labeled as

P10 and T10, respectively. Therefore if M is a binary matroid with β = 6, then either M is a

2-sum of smaller binary matroids with β = 2 and β = 3 or M is a series-parallel extension of

AG(3, 2), M(K5), M
∗(K5), M(K ′3,3), M

∗(K ′3,3), W5 + e, (W5 + e)∗, W7, P10, P
∗
10, or T10.

Theorem 3.3.3. Let M be a binary matroid. Then β(M) = 7 if and only if M is a series-

parallel extension of one of the fifteen matroids: M(K ′′3,3), M∗(K ′′3,3), M(H12), M(H11),

M∗(H11), W8, Z4, Z
∗
4 , M(X10), M∗(X10), M(A), M∗(A), M(B), M(C), or M∗(C).

Proof. If M is one of the matroids on the theorem then it is easily checked β(M) = 7.

Now, let M be a binary matroid with β(M) = 7. By Proposition 2.1.4, M is a series parallel

extension of a 3-connected binary matroid N for which β(N) = β(M). If N has no P9-minor,

then N is isomorphic to the one of the matroids listed on Lemma 3.2.2 (iii).

Suppose N has a P9-minor. From the proof of Theorem 3.3.3, we already have the list

of all single-element extension and coextension of P9 with β = 7. There is one single-element

extension of P9 and three non-isomorphic single-element coextensions. The single element

extension of P9 with β = 7 is isomorphic to M∗(X10). As for the single element coextension

of P9 with β = 7, we apply the same process. Let O1, O2, and O3 be matroids obtained after

coextending P9 by an element b where we’ve added a row to the matrix with 1’s on {7, 9},

{5, 7} and {5, 7, 9} respectively. Using SAGE, we can check that O∗1
∼= O3 and also, all three

matroids are non-isomorphic as well. On the statement of the theorem, O1
∼= M(B) and

O2
∼= M(C) and O3

∼= M∗(B). Figure 3.4 shows the matrix representation of the matroids

M(A), M(B) and M(C).
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There are two single-element extensions and one single-element coextension of P9

with β = 6: P10 and T10. We extend and coextend P10 and T10 using matrix representation

of two matroids as well and compute the beta invariant and check for isomorphism. Since

these matroids are duals of each other, we give matrix representation of one in Figure 3.3,

denoted as A.

Therefore if M is a binary matroid with β = 7, then M is a series-parallel extension

of M(K ′′3,3), M
∗(K ′′3,3), M(H12), M(H11), M

∗(H11), W8, Z4, Z
∗
4 , M(X10), M

∗(X10), M(A),

M∗(A), M(B), M(C), or M∗(C).

Now, we list all non-binary matroids with beta invariant 5 and 6. For 3-connected

non-binary matroids with beta invariant 5 (resp. 6), we temporary label matroids that are

not well known by Ai (resp. Bi). As explained in the end of the Section 2, we obtain these

matroids by extensive search using SAGE. Also, in the table below, we give a modular cut

and the matroid which generates the matroid. For example, on the table, we have A1, Q6

and {a, b, d}, {e, f}. This means A1 is a single element extension of Q6 which corresponds

to the moudular cut {a, b, d}, {e, f} of Q6. If the matroid is not self-dual, we give modular

cut of the matroid but not its dual. As for the labeling, we will give the label used by SAGE

matroid package.

Theorem 3.3.4. Let M be a non-binary matroid. Then β(M) = 5 if and only if M is a

series parallel extension of one of the thirteen matroids: P6, W
6, U2,7, U5,7, P7, P

∗
7 , A1, A∗1,

A2, A∗2, A3, A∗3, A4.

Theorem 3.3.5. Let M be a non-binary matroid. Then β(M) = 6 if and only if either

i) M is one of the thirty three matroids: W 6, U3,6, U2,8, U6,8, B1, B
∗
1 , B2, B

∗
2 , B3, B

∗
3 , B4,

B∗4 , B5, B
∗
5 , B6, B

∗
6 , B7, B

∗
7 , B8, B

∗
8 , B9, B10, B11, B∗11, B12, B13, B14, B15, B∗15, B16, B∗16,

B17, B
∗
17 or

ii) M is 2-sum of matroids M1 and M2 such that at least one of M1 and M2 are series-parallel
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extension of a non-binary matroid with beta invariant 2 or 3 and the other, series-parallel

extension of a matroid with beta invariant 3 or 2, respectively.

β Ai Minor of Ai Flats Generating Modular Cut of Given Minor of Ai
5 A1 Q6 {a, b, d}, {e, f}

A2 Q6 {a, c}, {b, f}, {d, e}
A3 O∗7 {a, e}, {c, g}
A4 F−7 {a, d}, {e, b}

6 B1 U4,6 {0, 1}, {2, 3, 4}
B2 Q6 {a, f}, {d, c}
B3 Q6 {b, f}, {a, c}
B4 Q6 {a, c}, {d, e}
B5 A1 {a, b, d, h}, {c, f}
B6 A2 {a, e}, {b, h, f}, {c, d}
B7 O7 {e, f}, {a, d, c}
B8 P7 {a, b, e}, {c, d}, {f, g}
B9 A∗1 {a, c}, {d, e}, {f, b}
B10 A∗2 {f, h}, {a, b, c, d}
B11 O∗7 {a, b}, {e, d}
B12 O∗7 {c, f, d}, {a, b, g}
B13 O∗7 {a, b}, {c, f, d, g}
B13 P ∗7 {c, f}, {e, b}, {d, g}
B14 (F−7 )∗ {a, g}, {d, e, f}
B15 W 4 {0, 6}, {2, 7}, {3, 4, 5}
B16 W 4 {0, 1, 2, 4, 5}, {1, 2, 3, 4, , 7}, {0, 1, 4, 6}, {5, 6, 7}
B17 W 4 {0, 1, 2, 4, 5}, {1, 2, 3, 4, 7}, {0, 1, 4, 6}, {5, 6, 7}

Table 3.4: Some of the 3-connected non-binary matroids with beta invariant 5 and 6.
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4 CHROMATIC UNIQUENESS AND THE BETA INVARIANT

In this chapter, we partially answer an open question on the chromatic uniqueness of

wheels using the beta invariant. Also, we give a splitting formula for computing the beta

invariant for generalized parallel connection of two matroids as well. In Section 1, we give

history of the question and give definitions and theorems used in this chapter. In Section 2,

we state and prove our result on the chromatic uniqueness of wheels. In Section 3, we state

and prove a splitting formula for generalized parallel connection of two matroids.

4.1 Chromatically Unique Graphs

Let G be a graph. We use PG(λ) to denote its chromatic polynomial. A graph G

is chromatically unique if whenever PG(λ) = PH(λ) for a graph H, then G ∼= H. If G is

not isomorphic to H but PG(λ) = PH(λ), then G and H are called chromatically equivalent.

There are many papers on chromatically unique graphs and chromatically equivalent graphs.

In general, it is difficult to determine if a graph is chromatically unique due to the lack of

information that can be extracted from the chromatic polynomial of the given graph. For

example, given a chromatic polynomial of a graph G, one cannot determine if the graph is

3-connected or 2-connected but not 3-connected. One of the conjectures involving chromatic

polynomial is on the chromatic uniqueness of the n-spoked wheel graph, Wn. Chao and

Whitehead [5] commented on their paper that the wheels appears to be chromatically unique

but they were not able to prove it nor disprove it. However, on a different paper, Chao and
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G H

Figure 4.1: PG(λ) = PW5(λ) and PH(λ) = PW7(λ)

Whitehead [6] prove that W4 is chromatically unique but W5 is not chromatically unique by

providing a chromatically equivalent graph. Xu and Li [22] proved that for even n ≥ 4, the

wheels are chromatically unique. They also made a conjecture on the same paper that not

all wheels are chromatically unique.

Conjecture 4.1.1. [22] For every odd n ≥ 9, the wheel graph Wn is not chromatically

unique.

Xu and Li [22] also provided a graph G which is chromatically equivalent to W7

as well. Figure 4.1 shows two graphs G and H which are chromatically equivalent to W5

and W7, respectively. Note that neither G nor H is 3-connected. These examples show

that 3-connectedness might be needed. Read [19] proved that W9 is chromatically unique

by generating graphs which has same properties as W9, such as number of triangles, edges

and vertices, and comparing the chromatic polynomial using computer. Li and Whitehead

[15] provided a proof which does not depend on computer for W9. Al-Rekaby and Khalaf

[1] proved that W11 is chromatically unique without using computer. Azarija [2], on his

Ph.D. thesis, proved that W11 and W13 are chromatically unique by using a computer. The

following are the results on the chromatic uniqueness of the wheels listed in chronological

order. Note that some authors use Wn to denote the wheel with n vertices.
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Theorem 4.1.2. (1) ([6], 1978) W5 is not chromatically unique.

(2) ([22], 1984) For every even n ≥ 4, the wheel graph Wn is chromatically unique.

(3) ([22], 1984) W7 is not chromatically unique.

(4) ([19], 1988), ([15], 1992) W9 is chromatically unique.

(5) ([1], 2014), ([2], 2016) W11 and W13 are chromatically unique.

4.2 Beta Invariant and Other Polynomial Invariants

An attractive property of the beta invariant is its relation with other polynomial

invariants of the matroid. Using this relation, we prove the chromatic uniqueness of the

wheel for 3-connected graphs and matroids. The characteristic (or chromatic) polynomial of

the matroid M , denoted P (M,λ), is defined by

P (M ;λ) =
∑

A⊆E(M)

(−1)|A|λr(M)−r(A). (4.2.1)

When a matroid M is the cycle matroid of a graph G, then the chromatic polynomial of the

graph G can be obtained from the characteristic polynomial of the M(G). Let ω(G) be the

number of the components of G. Then, the chromatic polynomial of G, denoted PG(λ) is

defined as follows:

PG(λ) = λω(G)P (M(G);λ). (4.2.2)

The beta invariant of the matroid M is related to the P (M ;λ) by the following identity

β(M) = (−1)r(M)+1dP (M ;λ)

dλ

∣∣∣∣∣
λ=1

. (4.2.3)

Let TG(x, y) be the Tutte polynomial of the graph G with at least two edges. Then β(M(G))

is the coefficient of either x or y in TG(x, y). From the Tutte polynomial of G, we can also
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obtain the flow polynomial of the graph G, denoted QG(u). Let G be a connected graph

with n vertices and m edges. Then

QG(x) = (−1)m−n+1TG(0, 1− x). (4.2.4)

Moreover, the beta invariant of G is given by the absolute value of the coefficient of t = 1−x

of the flow polynomial after we make the substitution t = 1− x.

One of the bounds of the beta invariant we consider is the upper bound on the number

of the elements of the 3-connected matroids with the same beta invariant. Using this bound,

we show the chromatic uniqueness of the wheel as well as the other polynomial uniqueness

properties. Not only that, for certain beta invariants, we also obtain a lower bound on the

number of elements and this gives uniqueness of polynomial invariants as well.

First, we state two proposition to help with the proof of the main result.

Proposition 4.2.1. Let M and N be simple matroids such that P (M ;λ) = P (N ;λ). Then

r(M) = r(N) and |E(M)| = |E(N)|.

Proposition 4.2.2. [12] Let G and H be connected cosimple graphs with at least one edge

such that QG(x) = QH(x). Then |V (G)| = |V (H)| and |E(G)| = |E(H)|.

Now, using the two propositions, and another propositions which we will prove in the

next section, we will prove the following theorem and corollaries in the next section.

Theorem 4.2.3. Let M be a 3-connected matroid such that |E(M)| = |E(Wn)| and β(M) =

β(Wn). Then M ∼= Wn.

Corollary 4.2.4. Let M be a 3-connected matroid such that M and Wn have the same

chromatic polynomial: P (M ;λ) = P (Wn;λ). Then M ∼= Wn.

Corollary 4.2.5. Let G be a 3-connected graph such that M and Wn have the same chromatic

polynomial: PG(λ) = PWn(λ). Then G ∼= Wn.
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Corollary 4.2.6. Let G be a 3-connected graph such that G and Wn have the same flow

polynomial: QG(x) = QWn(x). Then G ∼= Wn.

Corollary 4.2.7. Let M be a 3-connected matroid such that M and Wn have the same flow

polynomial: QM(x) = QWn(x). Then M ∼= Wn.

4.3 First Main Result and Proof

Theorem 4.3.1. Let Mn be the set of 3-connected matroids with β = n, n > 1. Then

|E(M)| = max{|E(N)| : N ∈Mn} if and only if M ∼= Wn+1.

Proof. Assume to the contrary that M ∈ Mn, M � Wn+1, and |E(M)| = max{|E(N)| :

N ∈Mn}. We will show that |E(Wn+1)| > |E(M)|. Note that M � W n since |E(Wn+1)| >

|E(W n)| but β(Wn+1) = β(W n) = n. Let W be the largest wheel or whirl minor of M , where

r(W ) = r. By Theorem 1.0.3, there exists a sequence of 3-connected matroids M0, · · · ,Mk,

such that M0
∼= W and Mk

∼= M . Since M is not a wheel or a whirl, k > 0 and |E(M)| =

|E(W )|+ k = 2r + k.

Since W ∼= M0, if W is a wheel, then β(M0) = r(M0) − 1. If W is a whirl, then

β(M0) = r(M0). Let e ∈ E(Mi+1)\E(Mi) for some 0 ≤ i < k. Then by the deletion-

contraction formula for the beta invariant, β(Mi+1) = β(Mi+1\e) + β(Mi+1/e). Since Mi+1

is 3-connected, both Mi+1\e and Mi+1/e are connected and both β(Mi+1\e), β(Mi+1/e) ≥ 1.

Also either Mi+1\e ∼= Mi or Mi+1/e ∼= Mi. Combined with the deletion contraction formula,

for each i ∈ {0, 1, · · · , k − 1},

β(Mi+1) ≥ β(Mi) + 1. (4.3.1)

Thus, by applying induction on (4.3.1),

β(M) = β(Mk) ≥ β(M0) + k. (4.3.2)
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If W is a rank r whirl, then β(M0) = r and by (4.3.2), and β(Mk) = n ≥ r + k. Similarly,

if W is a rank r wheel, β(M0) = r − 1 and β(M) = β(Mk) ≥ r − 1 + k. Therefore β(M) =

β(Mk) ≥ r− 1 + k. Let s ∈ N such that r+ s = n+ 1. Then β(Wn+1) = r+ s− 1 and since

n ≥ r− 1 + k, we have that s ≥ k > 0. Therefore, |E(Wn+1)| = 2r+ 2s > 2r+ k = |E(M)|.

Thus β(Wn+1) = β(M) but |E(Wn+1)| > |E(M)|, a contradiction.

Theorem 4.2.3 is an immediate consequence of Theorem 4.3.1 as wheels have the

maximum number of elements among all 3-connected matroids with a fixed beta invariant.

Now we prove Corollaries 4.2.4, 4.2.5, 4.2.6 and 4.2.7.

Proof. Suppose M is a 3-connected matroid such that P (M ;λ) = P (Wn;λ). This implies

that β(M) = β(Wn) and by Proposition 4.2.1, |E(M)| = |E(Wn)| as well. Therefore, by

Theorem 4.2.3, M ∼= Wn. If G is a 3-connected graph such that PG(λ) = PWn(λ), then

|E(G)| = |E(Wn)| and β(M(G)) = β(Wn), where M(G) is a cycle matroid of the graph G.

Thus M(G) ∼= M(Wn). As both G and Wn are 3-connected, G ∼= Wn. By (4.2.4), the beta

invariant is the coefficient of t in QG(x) after we make the substitution t = 1− x. Hence if

QG(x) = QWn(x), we have that β(M(G)) = β(Wn). Then again, by applying Proposition

4.2.2 and Theorem 4.2.3, we conclude that G ∼= Wn. Thus Corollary 4.2.6 holds. We omit

the similar proof of Corollary 4.2.7.

It is already proven that for n ≥ 3, the wheel graph is completely determined by its

Tutte polynomial [10]. It is somewhat striking that if we know the number of elements of a

3-connected matroid, then only one coefficient of the Tutte polynomial, (the coefficient of x

or y, which equals to the beta invariant), determines if M is a wheel or not.

4.4 The Generalized Parallel Connection of Two Matroids

In this section, we will restate some of the definitions and properties related to gen-

eralized parallel connection of two matroids. Also we give some previous results on the beta
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invariant of special case of generalized parallel connection of two matroids as well. Suppose

M1 and M2 are two matroids and cl1 and cl2 be closure operation of the matroid M1 and

M2 respectively. Then the generalized parallel connection of two matroids can exist if the

following corollary holds:

Lemma 4.4.1. [18] Suppose that cl1(T ) is a modular flat of M1 and every non-loop element

of cl1(T ) is parallel to some element of T . Then T is fully embedded in M1, so the proper

amalgam of M1 and M2 exists.

If the conditions in the previous Lemma hold, then the proper amalgam of M1 and

M2 is the generalized parallel connection across T and is denoted by PT (M1,M2). Therefore

if M = PT (M1,M2) then E(M) = E(M1) ∪ E(M2) and M1|T = M2|T . Also, for every

flat F of M , we have rM(F ) = rM(F ∩ E1) + rM(F ∩ E2) − rM(F ∩ T ). The generalized

parallel connection of two matroids has some interesting properties regarding minors which

are shown in the following proposition.

Proposition 4.4.2. [18] The generalized parallel connection has the following properties:

(i) PT (M1,M2)|E1 = M1 and PT (M1,M2)|E2 = M2.

(ii) If e ∈ E1 − T , then PT (M1,M2)\e = PT (M1\e,M2).

(iii) If e ∈ E1 − cl1(T ), then PT (M1,M2)/e = PT (M1/e,M2).

The proposition states that if there is an element e ∈ E1 such that e /∈ cl1(T ),

then cl1(T ) is still a modular flat of M1\e and M1/e. We will use this proposition later in

the dissertation. When T is a specific set, then the generalized parallel connection of two

matroids are often denoted differently. For example, when T is a triangle, then PT (M1,M2)

is called the generalized parallel connection of M1 and M2 across a 3-point line. When both

M1 and M2 are binary and |E1|, |E2| > 6, then PT (M1,M2)\T is called 3-sum of M1 and M2

and is denoted M1 ⊕3 M2. When T = {p}, then PT (M1,M2) is called parallel connection of
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M1 and M2 with respect to p and is denoted P (M1,M2) and P (M1,M2)\T is called 2-sum of

M1 and M2 and is denoted M1⊕2M2. For M = P (M1,M2), Brylawski proved the following

result:

Theorem 4.4.3. [4] Suppose that p is neither a loop nor a coloop of M1 and M2, then

β(P (M1,M2)) = β(M1)β(M2).

In the next section, as a corollary, we prove that if M = PT (M1,M2) where T is a

triangle, then β(M) = β(M1)β(M2). This result, with Brylawski’s result proves that the

beta invariant cannot distinguish 3-connected matroids from the 2-connected matroids as

P (M1,M2) is 2-connected but not 3-connected if M1 and M2 are 3-connected and PT (M1,M2)

is 3-connected if T is a triangle and M1 and M2 are 3-connected. Therefore the connectivity

condition in Corollary 4.2.4 can not be dropped.

4.5 The Second Main Result and its Proof

In this section, we give some results on the computation of the beta invariant of a

generalized parallel connection across a 3-point line and as a corollary, the 3-sum of two

binary matroids.

Theorem 4.5.1. Let M1 and M2 be matroids and M = PT (M1,M2), the generalized parallel

connection of M1 and M2 across T . If cl1(T ) is a modular flat of M1 such that β(cl1(T )) 6= 0,

then β(M) = β(M1)β(M2)
β(cl1(T ))

.

Proof. LetM1 andM2 be matroids and M = PT (M1,M2), the generalized parallel connection

of M1 and M2 across T . Since cl1(T ) is a modular flat of M1 where β(cl1(T )) 6= 0, we can

see that M |cl1(T ) = cl1(T ) is connected as the beta invariant is zero if and only if the

matroid is not connected. Also, by the definition of generalized parallel connection of M1

and M2 across T , every elements of cl1(T )−T are parallel to some elements of T . Therefore
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β(cl1(T )) = β(T ) and there are no loops in M1 as well. If there are loops in M2, then same

loops will be loops in M as well. In such case, β(M) = β(M2) = 0 and the theorem holds as

well.

We prove the theorem by induction on the elements of E(M)−E(M2). For the base

case, consider the matroid PT (cl1(T ),M2). This matroid exists as cl1(T ) is a modular flat

of itself. Then PT (cl1(T ),M2) is isomorphic to adding elements parallel to T in M1 to M2

as only elements in cl1(T ) − T are elements in parallel with T in M1. Since beta invariant

does not change by adding elements in parallel, β(PT (cl1(T ),M2)) = β(PT (T,M2)) = β(M2).

Thus the statement holds as β(PT (cl1(T ),M2)) = β(cl1(T ))β(M2)
β(cl1(T ))

= β(M2).

Suppose the theorem holds for all matroid N such that N is a minor of M1 and

cl1(T ) ⊂ E(N) ⊂ E(M). If such a minor does not exist, then either cl1(T ) = E(M) or M1

is a single element extension or coexension of cl1(T ). If cl1(T ) = M1, we are back to the

base case and the theorem holds. If there exists an element e ∈ E(M) − cl1(T ) such that

M1\e or M1/e ∼= cl1(T ), then e has to be a loop or coloop of M1. However, we showed in

the beginning of the proof that M1 has no loops and thus, e has to be a coloop of M1 and

M . Then β(M∗
1 ) = 0 = β(M1) and β(M) = 0. Therefore the theorem holds. Thus, suppose

that for any N , a proper minor of M1 such that cl1(T ) ⊂ E(N) ⊂ E(M1), the theorem holds

and β(PT (N,M2)) = β(N)β(M2)
β(cl1(T ))

.

Now, pick an element e ∈ E(M1) − cl1(T ). Such element exists as cl1(T ) � M1.

Then by Proposition 4.4.2, PT (M1\e,M2) = M\e and PT (M1/e,M2) = M/e. Therefore, by

applying the deletion-contraction formula and the induction step,

β(M) = β(M\e) + β(M/e)

= β(PT (M1\e,M2)) + β(PT (M1/e,M2))

=
β(M1\e)β(M2)

β(clM1(T ))
+
β(M1/e)β(M2)

β(clM1(T ))

=
(β(M1\e) + β(M1/e))β(M2)

β(clM1(T ))
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=
β(M1)β(M2)

β(clM1(T ))
.

In either case, if β(cl1(T )) 6= 0, then β(M) = β(M1)β(M2)
β(cl1(T ))

.

Then the following result follows immediately when T is a triangle of M1 since β(T ) =

1.

Corollary 4.5.2. Let M1 and M2 be matroids and M = PT (M1,M2) be the generalized paral-

lel connection of M1 and M2 across a 3-point line T = {p, s, q}. Then β(M) = β(M1)β(M2).

Also, we obtain the following corollary by applying deletion-contraction formula to

Corollary 4.5.2.

Corollary 4.5.3. Let M1 and M2 be two binary matroids and M = M1 ⊕3 M2. Then

β(M) = β(M1)β(M2)− β(M1/s)β(M2/s)− β(M1/p)β(M2/p)− β(M1/q)β(M2/q).
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5 CHAIN THEOREMS

In this chapter, we introduce known results on chain theorems for matroids. In Section

1, we state the known results and in Section 2, we introduce questions which rises with chain

theorems.

5.1 Some Known Chain Theorems for Matroids

For a connected matroid, Tutte proved the following result in [21].

Theorem 5.1.1. [21] (Tutte’s Theorem) Let M be a connected matroid and e be an element

of M . Then either M\e or M/e is connected.

Then for 3-connected matroids, he proved the following theorem as well.

Theorem 5.1.2. [21] (Tutte’s Wheels and Whirls Theorem) If M is a 3-connected matroid

and, for every element e, neither M\e nor M/e is 3-connected, then M is a wheel or a whirl

or rank at least three.

Using Tutte’s Wheels and Whirls theorem, we can obtain the following chain theorem.

Theorem 5.1.3. (Tutte’s Chain Theorem) Let M be a 3-connected matroid other than a

wheel or a whirl. Then there is a chain of 3-connected matroids M0,M1, . . . ,Mn such that M0

is either a wheel or a whirl; Mn = M , and Mi+1 is a single-element extension or co-extension

of Mi for i = 0, 1, . . . , n− 1.
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Let N be a class of matroids, and M be a matroid. We say there is an NM -chain if

there is chain of matroids M0,M1, . . . ,Mn such that M0 ∈ N , Mn = M , and each Mi is a

minor of Mi+1 for all i = 0, 1, . . . , n− 1.

Theorem 5.1.4. (Restatement of Tutte’s Wheels and Whirls Theorem) Let M be a 3-

connected matroid other than a wheel or a whirl. Then there is a WM chain of 3-connected

matroids M0,M1, . . . ,Mn such that M0 is either a wheel or a whirl, Mn = M , and each Mi+1

is a single element extension or coextension of Mi for all i = 0, 1, . . . , n− 1.

Note that in this case, the set W contains all wheels and whirls and thus has infinite

cardinality. Which implies unless there is some upper bound restriction, we might need to

check all possible extensions and coextensions of all wheels and whirls in certain cases when

the theorem is used. On the other hand, Coullard and Oxley proved the following result

which restrictions this set W into a set containing four matroids: W3, W4, W
2 and W 3.

Theorem 5.1.5. [8] Let N be a 3-connected proper minor of a 3-connected matroid M such

that |E(N)| ≥ 4 and M is not a wheel or a whirl. Suppose that if N ∼= W 2, then M has no

W 3-minor, while if N ∼= M(W3), then M has no M(W4)-minor. Then M has a 3-connected

minor M1 and an element e such that M1/e or M1\e is isomorphic to N .

Here we give a restatement of Theorem 5.1.5.

Corollary 5.1.6. (Restatement of Theorem 5.1.5) Let M be a 3-connected matroid other

than a wheel or a whirl. Denote N = {W3,W4,W
2,W 3}. Then there is a NM chain of

3-connected matroids M0,M1, . . . ,Mn such that M0 ∈ N , Mn = M , and each Mi+1 is a

single element extension or coextension of Mi for all i = 0, 1, . . . , n− 1.

Note that all of the theorems so far applies to 3-connected matroids. The natural

next step is to increase connectivity. However, there does not exist a splitter theorem for

4-connected matroids and thus, a chain theorem, which depends on a splitter theorem type
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results, does not exist as well. However, there are results for sequentially 4-connected ma-

troids by Geelen and Whittle [13] and weakly 4-connected matroids by Geelen and Zhou [14].

First, let us give definition for sequentially 4-connected matroids and weakly 4-connected

matroids.

Let (A,B) be a k-separation of a matroid M . Then (A,B) is called sequential if

the elements of A can be ordered (a1, · · · , am) such that {a1, · · · , ai} is k-separating for

i = 1, · · · ,m. It is non-sequential if neither (A,B) nor (B,A) is sequential. A matroid M

is sequentially 4-connected if M is 3-connected and has no non-sequential 3-separations. In

paper [7], authors give an equivalent definition for sequential separations. A set A of E

is fully closed if A is both closed and coclosed in M . The full closure fcl(A) of A is the

intersection of all fully closed sets that contain A. If M is k-connected, then a k-separation

(A,B) is sequential if fcl(A) or fcl(B) is E.

A matroid M is internally 4-connected if M is 3-connected and for each 3-separation

(X, Y ) of M , either |X| ≤ 3 or |Y | ≤ 3. A matroid M is weakly 4-connected if M is 3-

connected and for each 3-separation (X, Y ) of M , either |X| ≤ 4 or |Y | ≤ 4. Thus internally

4-connected matroids are also weakly 4-connected.

Theorem 5.1.7. [13] If M be a sequentially 4-connected matroid that is neither a wheel nor

a whirl, then M has an element x such that M\x or M/x is sequentially 4-connected.

Like the 3-connected case, the following is the restatement of the previous theorem.

Theorem 5.1.8. (Restatement of Theorem 5.1.7) Let M be a sequentially 4-connected ma-

troid. Then there is a WM chain of sequentially 4-connected matroids M0,M1, . . . ,Mn such

that M0 is either a wheel or a whirl, Mn = M , and each Mi+1 is a single element extension

or coextension of Mi for all i = 0, 1, . . . , n− 1.
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Note that the set W contains infinite number of wheels and whirls. We have similar

results for weakly 4-connected matroids. The following theorem are Geelen and Zhou’s result

and the restatement of their result.

Theorem 5.1.9. [14] Let M be a weakly 4-connected matroid with |E(M)| ≥ 7. Then either

1. there exists e ∈ E(M) such that M\e or M/e is weakly 4-connected,

2. M has a 4-element 3-separating set A with elements c, d ∈ A such that M\d/c is weakly

4-connected,

3. M or M∗ is isomorphic to the cycle matroid of a ladder, or

4. |E(M)| = 12 and M is a trident.

Let L be the class of planar ladders and Möbius ladders and their dual matroids, and

T be the class of 12 elements tridents where a trident is a 12-element rank-6 matroid whose

ground set is the union of three disjoint 4-element 3-separating sets of rank 3.

Theorem 5.1.10. (Restatement of Theorem 5.1.9) Let M be a weakly 4-connected ma-

troid with |E(M)| ≥ 7. Then there is a (L ∪ T )M chain of weakly 4-connected matroids

M0,M1, . . . ,Mn such that M0 ∈ L ∪ T , Mn = M , and for all i = 0, 1, . . . , n − 1, either

each Mi+1 is a single element extension or coextension of Mi, or Mi+1 has a 4-element

3-separating set Ai with elements ci, di ∈ Ai such that Mi+1\di/ci = Mi.

Again, in both sequentially 4-connected matroids and weakly 4-connected matroids,

the chain starts (or ends) at W or L where both sets have infinite size. Now, we have to

ask if we can replace set of matroids with infinite cardinality with a finite set. In other

words, we want a theorem that is similar to Coullard and Oxley’s. For example, can all non-

wheel and non-whirl sequentially 4-connected matroids be constructed from a finite number

of matroids? In Chapter 5 and 6, we answer theses questions for sequentially 4-connected

matroids and weakly 4-connected matroids respectively.
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6 SEQUENTIALLY 4-CONNECTED MATROIDS

In this chapter, we prove a chain theorem for sequentially 4-connected matroids. In

Section 1, we give known results on a splitting theorem for sequentially 4-connected matroids

and provide motivation for our work. Then in Section 2, we prove lemmas which are used

in the proof of the main result. In Section 3, we prove the main result of this chapter.

6.1 Motivation and Main Result

Geelen and Whittle’s result on the sequentially 4-connected matroids give us aWM -

chain of sequentially 4-connected matroids as shown in the following theorem.

Theorem. (Restatement of Theorem 5.1.7) Let M be a sequentially 4-connected matroid.

Then there is a WM-chain of sequentially 4-connected matroids M0,M1, . . . ,Mn such that

M0 is either a wheel or a whirl, Mn = M , and each Mi+1 is a single element extension or

coextension of Mi for all i = 0, 1, . . . , n− 1.

However, the set W contains wheel and whirls of all rank and thus, has an infinite

cardinality. In Section 3, we prove that for sequentially 4-connected matroids, we have

a W ′M -chain of sequentially 4-connected matroids where W ′ = {W3,W4,W
2,W 3}. The

following theorem is the main result of this chapter.

Theorem 6.1.1. Let M be a sequentially 4-connected matroid such that |E(M)| ≥ 4 that is

neither a wheel nor a whirl and let W ′ = {W3,W4,W
2,W 3}. Then there is a W ′M-chain of
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sequentially 4-connected matroids M0,M1, . . . ,Mn such that M0 ∈ W ′, Mn = M , and each

Mi+1 is a single element extension or coextension of Mi for all i = 0, 1, . . . , n− 1.

The following are two theorems from the paper [13]. We will later use the two

theorems in the lemma which will be used to prove the main theorem in this chapter.

Theorem 6.1.2. [13] If T is a triangle in an internally 4-connected matroid M , then either

(i) there exists t ∈ T such that M\t is sequentially 4-connected, or

(ii) M has at most 11 elements, and there exists an element y of M sch that M/y is sequen-

tially 4-connected.

Theorem 6.1.3. [13] Let M be a sequentially 4-connected matroid with a sequential 3-

separation (A,B), where |A| ≥ 4. Assume that the elements of A are ordered (a1, · · · , ak).

Let Ai denote {ai, · · · , ai}, and let Bi denote {ai · · · , ak} ∪ B. For i ≥ 3, if ai ∈ cl(Ai) ∩

cl(Bi+1) and M\ai is 3-connected, then M\ai is sequentially 4-connected.

6.2 Lemmas

In this section, we prove some lemmas which will be used to prove the main theorem.

Let M be a simple, cosimple matroid and S be a subset of E(M) having at least three

elements. Then S is a fan in M if there is an ordering (s1, s2, · · · , sn) of the elements of S

such that, for all i in {1, 2, · · · , n− 2},

(i) {si, si+1, si+2} is a triangle or a triad; and

(ii) when {si, si+1, si+2} is a triangle, {si+1, si+2, si+3} is a triad; and, when {si, si+1, si+2} is

a triad, {si+1, si+2, si+3} is a triangle.

Lemma 6.2.1. Let M = W+e be a 3-connected matroid such that W = Wk or W k, (k ≥ 3).

Then for any 3-separation (X ∪ e, Y ) of M where |X|, |Y | ≥ 3, both X and Y are fans of

W .
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Proof. Since M is a single extension of W , rM(X) = rW (X) and rM(E(M)) = rW (E(W ))

for all X ⊆ E(W ). Therefore we won’t distinguish between rM and rW in the proof. Let

(X∪e, Y ) be a 3-separation of M where |X|, |Y | ≥ 3. As M is 3-connected, r(X∪e)+r(Y ) =

r(M)+2 where |X∪e| ≥ 4 and |Y | ≥ 3. If r(X∪e) = r(X)+1, then r(X)+r(Y ) = r(W )+1.

Also, |X| and |Y | ≥ 3 implies that (X, Y ) is a 2-separation of W , which is not possible as

W is 3-connected.

If r(X ∪ e) = r(X), then r(X) + r(Y ) = r(W ) + 2. Also r(X) + r(Y ) = r(cl(X)) +

r(cl(Y )) ≥ r(cl(X) ∪ cl(Y )) + r(cl(X) ∩ cl(Y )) = r(M) + r(cl(X) ∩ cl(Y )). Therefore

r(cl(X) ∩ cl(Y )) ≤ 2. Suppose X is not a fan of W . Then as |X|, |Y | ≥ 3, there exists at

least three elements a, b, c, such that {a, b, c} is not a triangle and {a, b, c} ⊆ cl(X)∩ cl(Y ).

Thus r(cl(X) ∩ cl(Y )) ≥ 3 which contradicts the fact that r(cl(X) ∩ cl(Y )) ≤ 2. Therefore

X is a fan and consequently Y is as well.

Theorem 6.2.2. Suppose that M = W + e, where W = Wk(k ≥ 5) or W k(k ≥ 4), is

sequentially 4-connected. Then there exists a ∈ E(W ) such that either M/a or M\e is

sequentially 4-connected and is not isomorphic to a wheel or a whirl.

Proof. We prove the theorem by proving three claims. Also, for the notations for the elements

of W , refer to the Figure 6.1.

6.2.3. One of the triad Ti = {bi, ai, bi+1} of W is no longer a triad of M .

Assume to the contrary that Ti is a triad of W and M for all i ∈ {1, 2, · · · , k}.

As M is 3-connected, there exists a circuit C such that e, b1 ∈ C. Since e, b1 ∈ C and

T2 = {b1, a2, b2} is a triad of M , by orthogonality, either b2 or a2 ∈ C. Thus there exists j,

1 ≤ j ≤ k − 1 such that either (1) {e, b1, b2, · · · , bj, aj+1} ⊆ C, or (2) {e, b1, b2, · · · , bk} ⊆ C.

If (1) holds, then as T1 = {b1, a1, bk} is a triad, by orthogonality, either bk ∈ C or a1 ∈

C. If there existsm, k > m > j+1 such that am ∈ C, then {e, b1, · · · , bj, aj+1, bk, · · · , bm, am} ⊆

C. But this is not possible as {aj+1, bj, · · · , bm, am} ⊂ C is a circuit of W and also a circuit
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T1
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Figure 6.1: Labels of elements, ai and bi, and tridents, Ti, of W .

of M as well. Thus {e, b1, b2, · · · , bk, aj+1} ⊂ C. However {b1, b2, · · · , bk} is a circuit in Wk

and {b1, b2, · · · , bk, aj+1} is a circuit in W k, (1) is not possible.

If (2) holds, by orthogonality and as (1) is not possible, C = {e, b1, b2, · · · , bk}. How-

ever, {b1, b2, · · · , bk} is a circuit in Wk, thus it must be that W = W k and C is a circuit in

M . Then by the circuit elimination axiom, {e, a1, b2, · · · , bk} contains a circuit C1. How-

ever T2 = {b1, a2, b2} is a triad of M by assumption, C2 ∩ T2 = {b2}, which is not possible.

Therefore there is at least one triad Ti of W is no longer a triad in M .

6.2.4. If Ti = {bi, bi−1, ai} is not a triad in M , then M\ai is 3-connected.

Suppose that M\ai is not 3-connected and there exists a 2-separation (X, Y ) of M\ai

such that r(X)+r(Y ) = r(M\ai)+1 and |X|, |Y | ≥ 2. If |X| = 2, then r(X)+r∗(X)−|X| =

1 and r(X) + r∗(X) = 3. As M is 3-connected, r(X) = 2 and thus r∗(X) = 1. Then X ∪ ai

has to be a triad of M since M is 3-connected. However by assumption ai is not in any triad

of M and Ti ∪ e = {bi−1, ai, bi, e} is a 4-element cocircuit. Therefore |X|, |Y | ≥ 3.
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Since M is 3-connected, and |X ∪ ai|, |Y | ≥ 3, we must have r(X ∪ ai) + r(Y ) =

r(X) + r(Y ∪ ai) = r(M) + 2. As r(M\ai) = r(M) and r(X) + r(Y ) = r(M\ai) + 1, we

can deduce that r(Y ∪ ai) = r(Y ) + 1 and thus (X ∪ ai, Y ) and (X, Y ∪ ai) are 3-separatin

of M . B y Lemma 6.2.1, if e ∈ X, X ∪ ai − e, Y , X − e, Y ∪ ai are fan of W . Therefore

r(Y ∪ ai) = r(Y ) which is a contradiction.

6.2.5. There exists an element x 6= e such that either M\x is sequentially 4-connected or

M/e is sequentially 4-connected.

First, suppose that at least one of the triad of W is a triad of M . Then M contains

4-element fan which contains a triad of M . Let F be a maximal fan containing the 4-element

fan and a be the end of the fan F . Then by step 1, a is in a triad of W but not in a triad of

M and a is a spoke of W as well. Also, e /∈ F as e is not in any triad of M . If there exists

triad T of M such that e ∈ T , there always exists a triangle C of M such that |T ∩ C| = 1,

which contradicts orthogonality of matroid. As a ∈ Tj such that Tj is not a triad of M but

is a triad of W , by step 2, M\a is 3-connected.

Relabel the elements of the fan such that it starts at a spoke a1 and end at the

spoke at = a. Thus F = {a1, b1, a2, b2, · · · , at}. As F is a maximal fan, at the ends of F ,

either or both a1 and at are not contained in a triad of M and r∗M(F ) = r∗W (F ). Thus

r(F ) + r∗(F )− |F | = t+ (t+ 1)− (2t− 1) = 2 and a ∈ cl(F )∩ cl(E(M)− F ) as well. Thus

by Theorem 6.1.3, M\a is sequentially 4-connected as a is in guts of (F − a,E(M)−F ∪ a).

Also, M\a is not isomorphic to a wheel or a whirl.

Suppose to the contrary that M\a a wheel or a whirl. Note that a = ai, a spoke of the

wheel or a whirl matroid. Without the loss of generality, suppose i = 2. Since {a1, b1, a2} and

{a2, b2, a3} is a triangle of W , when we delete a2, elements a1, b1, e have to be in a triangle and

b2, a3, e has to be in a triangle of M\a2. Also, as M is 3-connected, {e, a2} is not a 2-element

circuit. Then, {e, a1, a2, b1} and {a2, a3, b2, e} are isomorphic to U2,4. Then, {b1, a2, b2} and
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{b1, a2, e} is a triangle in M which implies rM({b1, b2, a2, e}) = 2. Now, we choose a2 such

that {b1, b2, a2} is no longer a triad in M . Therefore {b1, b2, a2, e} is a 4-element cocircuit in

M . Thus r∗({b1, b2, e, a2}) = 3. Then rM({b1, b2, e, a2}) + r∗M{b1, b2, e, a2} − |{b1, b2, e, a2} =

2 + 3 − 4 = 1. However, this is not possible as M is 3-connected. Therefore M\a2 is not

isomorphic to a wheel or a whirl.

If all of the triads of W are not triads of M , then we first show that M is internally

4-connected. Let (X ∪ e, Y ) be a 3-separation of M and |X ∪ e|, |Y | ≥ 4. Then r(X ∪ e) +

r(Y ) = r(M) + 2 = r(W ) + 2 as M is an extension of W . If r(X ∪ e) = r(X) + 1, then

r(X ∪ e) + r(Y ) = r(X) + 1 + r(Y ) = rW (X) + 1 + rW (Y ) = r(W ) + 2. Then (X, Y ) is a

2-separation of W , contradicting the connectivity of W . Thus r(X ∪ e) = r(X) and (X, Y )

is a 3-separation of W . By Lemma 6.2.1, X and Y are fan of W . As Y is a fan of W , and

the elements of wheels are either rims or spokes, there are three possible cases for Y :

Y = Y1 = {a1, b1, · · · , bt−1, at}

Y = Y2 = {a1, b1, · · · , at−1, bt−1}

Y = Y3 = {b1, a2, b2, · · · , at−1, bt−1}

Note that in each case, rM(Y ) = rW (Y ) as M is a single element extension of W . Also,

because none of the triads of W are triads of M , r∗M(Y ) = r∗W (Y ) + 1. Therefore in the first

case, r(Y1)+r∗(Y1)−|Y1| = t+ t+2−(2t−1) = 3. In the second case, r(Y2)+r∗(Y2)−|Y2| =

t+ t+ 1− (2t− 2) = 3 and lastly, in third, r(Y3) + r∗(Y3)−|Y3| = t+ 2 + t+ 2− (2t− 1) = 3.

Thus in each case, if Y is a fan of size 4 or greater, r(Y ) + r∗(Y )−|Y | 6= 2 which contradicts

the assumption that (X, Y ) is a 3-separation of M and W .

Then by Theorem 6.1.2, for each triangle T in M , there exists t ∈ T such that M\t is

sequentially 4-connected or |E(M)| ≤ 11 and there exists y ∈ E(M) such that y is not in any

triangle of M and such that M/y is sequentially 4-connected. As e is only element in E(M)

not in any triangle, M/e is sequentially 4-connected and as r(M/e) = r(M)− 1 = r(W )− 1,

we can see that M/e is not a wheel or a whirl. Also, M\t is not isomorphic to a wheel or
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a whirl matroid as well. Suppose M\t ia isomorphic to a wheel or a whirl. Before we state

this, remember M is an extension where non of the triads from a wheel (or whirl) is also

a triad. Let Ti = {bi, bi+1, ai+1} be a triad in W . If Hi = E(W ) − Ti then clM(Hi) = Hi

and Ti ∪ e is a 4-element cocircuit in M for all i. Suppose t = ai or bi. Then t ∈ Hi+2 and

t /∈ Ti+2 = {bi+1, bi+2, ai+2}. Also, clW (Hi+2−t) = Hi+2 implies clM(Hi+2−t) = clM(Hi+2) =

Hi+2. Thus clM\t(Hi+2 − t) = clM(Hi+2 − t) − t = Hi+2 − t. Also, Hi+2 is a hyperplane in

M\t as rM(Hi+2) = rM\t(Hi+2) and clM\t(Hi+2 − t) = Hi+2 − t. Which implies Ti+2 ∪ e is a

4-element cocircuit in M\t, which is not possible as M\t is supposed to be isomorphic to a

wheel or a whirl implies Ti+2 is supposed to be a 3-element cocircuit. Therefore M\t is not

a wheel or a whirl. This completes the proof.

6.3 Proof of Main Result

Now, we prove the main result of this chapter. We state this theorem again.

Theorem. Let M be a sequentially 4-connected matroid such that |E(M)| ≥ 4 that is nei-

ther a wheel nor a whirl and let W ′ = {W3,W4,W
2,W 3}. Then there is a W ′M-chain of

sequentially 4-connected matroids M0,M1, . . . ,Mn such that M0 ∈ W ′, Mn = M , and each

Mi+1 is a single element extension or coextension of Mi for all i = 0, 1, . . . , n− 1.

Proof. Let M be a sequentially 4-connected matroid that is neither a wheel nor a whirl.

Then by Theorem 5.1.7, there exists x ∈ E(M) such that either M\x or M/x is sequentially

4-connected. Let W ∈ W ′ be a minor of M such that if M has a W3-minor, then M has no

W4-minor. If M has a W 2-minor, then M has no W 3-minor. Let Mn = M and Mn−1 ∼= M/x

where Mn is sequentially 4-connected and x ∈ E(M). If Mi
∼= Wk (k ≥ 5) or Mi

∼= W k

(k ≥ 4), for some i ≥ 1, then Mi−1 is either a single element extension or coextension of Mi.

Without loss of generality, suppose the former. Then Mi+1
∼= Wk + e or Mi+1

∼= W k + e and
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by Theorem 6.2.2, there exists a ∈ E(Mi+1) such that either M\a or M/e is sequentially 4-

connected and is not isomorphic to a wheel or a whirl. We continue this each time Mj /∈ W .

Eventually, M0 = W for some W ∈ W ′ and the chain stops.
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7 WEAKLY 4-CONNECTED MATROIDS

In this chapter, we prove a chain theorem for weakly 4-connected matroids. In Section

1, we give known results on a splitting theorem for weakly 4-connected matroids and provide

motivation for our work. Then in Section 2, we prove lemmas which are used in the proof

of the main result. In Section 3, we prove the main result of this chapter.

7.1 Motivation and Main Result

As we have seen in Chapter 5, Geelen and Zhou’s result on the weakly 4-connected

matroids gives us a (L ∪ T )M -chain of weakly 4-connected matroids. The set T contains

finite number of matroids, but the set L contains all planar and Möbius ladders and their

duals and thus, have infinite cardinality.

Before stating the main theorem of this chapter, we give definitions of some matroids

in the theorem. In the paper [14], the authors give the definition of planar ladders and

Möbius ladders. See Figure 7.1 for the graphic representation of the matroids and the label

used throughout this chapter. There are two types of ladders: planar ladders and Möbius

ladders. In this dissertation, we write cycle matroid of a planar ladder as a planar ladder

and the cycle matroid of a Möbius ladder as a Möbius ladder. In the paper [14], authors

refer to both ladders as a cycle matroid of a ladder. Also we denote the planar ladder with

3n elements as Ln and the Möbius ladder with 3n elements as Ln for n ≥ 3. It is not difficult

to check that both planar ladder and Möbius ladder are internally 4-connected.
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Figure 7.1: Ln, L∗n, and Pn with labels

The definition of the trident is given in [14]. A trident is a weakly 4-connected rank-6

matroid M on 12 elements such that E(M) can be partitioned into three 4-element rank-3

3-separating sets.

Lastly, let Pn denote the unique internally 4-connected single element extension of the

dual of a planar ladder, L∗n, by an element e where {ai, ci, e} is a circuit for all i ∈ {1, · · · , n}.

Similarly, let P n denote the unique internally 4-connected single element extension of a

Möbius ladder, (Ln)∗ by an element e where {ai, ci, e} is a circuit for all i ∈ {1, · · · , n}. Note

that P ∗n (resp. (P n)∗) is also a single element coextension of Ln (resp. Ln). In Lemma 7.2.4

and 7.2.9, we prove we prove that these two classes of matroids are uniquely defined. The

following is the main result of this chapter.
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Figure 7.2: Examples of 3-separations (X, Y ) of L5 and L5 where |X| = 5.

Theorem 7.1.1. Let M be a weakly 4-connected matroid with |E(M)| ≥ 7 such that M or

M∗ is not isomorphic to the cycle matroid of a ladder(Ln and Ln), Pn, P n, or a trident. Then

there exists a weakly 4-connected W ′M-chain where W ′ = M0 ∈ {W3,W
3,W 2, trident}, and

M = Mn and for each i ∈ {0, · · · , n},

1. there exists e ∈ E(Mi) such that Mi\e ∼= Mi−1 or Mi/e ∼= Mi−1 is weakly 4-connected, or

2. Mi has a 4-element 3-separating set A with elements c, d ∈ A such that Mi\d/c ∼= Mi−1

is weakly 4-connected.

7.2 Lemmas

For Lemmas 7.2.2, 7.2.3, 7.2.4, and 7.2.7 let Xi = {bi, bi+1, ci−1, ci, ci+1} ⊂ E(Ln), and

Yi = E(Ln)−(Xi∪ai) for i ∈ {1, · · · , n}. Similarly, let X ′i = {bi, bi+1, ai−1, ai, ai+1} ⊂ E(Ln)

and Y ′i = E(Ln)− (X ′i ∪ ci). Define Xi, X
′
i, Yi, and Y ′i for L∗n in the same manner. For the

Möbius ladder and the dual, let Xi, X
′
i, Yi and Y ′i be defined in a same manner as Ln for

i ∈ {3, · · · , n}. For i = 1 and 2, let X1 = {c1, a2, cn, b1, b2} and X2 = {a1, c2, c3, b2, b3} for

Ln and the dual. Define Yi and Y ′i for Ln and the dual in the same manner.
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Note that (Xi, Yi), (Xi − ci+1, Yi ∪ ci+1), and (Xi − ci−1, Yi ∪ ci−1) are the only 3-

separation of Ln/ai where both sides of the separation have cardinality at least 4 for all

i ∈ {1, · · · , n} and n ≥ 4. The same holds for the Möbius ladder except, when i = 1,

(X1, Y1), (X1− cn, Y1∪ cn), (X1−a2, Y1∪ c2) are the 3-separations of Ln/a1 where both sides

of the separation have cardinality at least 4. For both Ln/bi and Ln/bi, if X is a 3-separation,

then {ai, ci} ⊂ X. Figure 7.2 shows 3-separations of L5/c2, L
5/a1, L

5/a2 and L5/c3 where

one of the sides of the separation have cardinality 5. For L5/c2, the set {a1, a2, a3, b2, b3} = X ′1

and E(L5)− (X1 ∪ a1) = Y ′1 . Throughout this section, we refer to the closure of the set Xi

and Yi of the cycle matroid of a ladder and the dual. Note that because of the symmetry,

if (Xi, Yi) is a 3-separation of Ln/ai, then (X ′i, Y
′
i ) is a 3-separation of Ln/ci. Many of the

proofs in this section are similar due to the symmetry of the cycle matroid of a ladder. Also,

a planar ladder and a Möbius ladder are very similar and we also use this similarity to use a

proof used for a planar ladder to a Möbius ladder case. Let us first introduce a proposition

that will be used in several lemmas in this section.

Proposition 7.2.1. ([18], P.300) Let e be an element of a matroid M . Suppose that M\e is

n-connected but M is not. Then either e is a coloop of M , or M has a circuit that contains

e and has fewer than n elements.

Now, we state and prove the lemmas which will be used to prove the main result of

this chapter.

Lemma 7.2.2. If M is a 3-connected single element extension of Ln, n ≥ 4, then M is

weakly 4-connected. Moreover, there exists an element a ∈ E(Ln) such that both M/a and

(M/a)∗ are weakly 4-connected and are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4.

Proof. Let M be a modular cut of Ln, n ≥ 4 and let M be a 3-connected extension of Ln

such that M = Ln +M e. Then |E(M)| = |E(Ln)|+ 1 = 3n+ 1 and r(M) = r(Ln) = 2n− 1.

Claim 1: M is weakly 4-connected.
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Proof. Suppose M is not weakly 4-connected. Since M is a 3-connected single element

extension of Ln, there exists a 3-separation (X∪e, Y ) in Ln where |X∪e|, |Y | ≥ 5. However,

this separation induces either a 2-separation or a 3-separation, (X, Y ) in Ln. Since |X| ≥ 4

and |Y | ≥ 5, and Ln is internally 4-connected, this is not possible. Therefore M is weakly

4-connected.

Now, suppose M/a is not weakly 4-connected for some ai ∈ E(Ln). Since M is weakly

4-connected, M/a is always 2-connected. In Claim 2a, we suppose M/a is 2-connected but

not 3-connected. In Claim 2b, we suppose M/a is 3-connected but not weakly 4-connected.

In Claim 2a and 2b, we see how connectivity of M/a effects M and Ln/a.

Claim 2a: If M/a is 2-connected but not 3-connected for some a ∈ E(Ln), then there exists

x ∈ E(Ln)− a such that {e, a, x} is a triangle in M .

Proof. Let a ∈ E(Ln) such that M/a is 2-connected but not 3-connected. However M/a\e =

M\e/a = Ln/a is 3-connected. Then by Proposition 7.2.1, there exists a circuit containing

e and has size fewer than 3 in M/a. Let {e, x} be a 2-element circuit in M/a where x ∈

E(Ln)−a. Since M is weakly 4-connected, {e, x} is not a 2-element circuit in M . Therefore

{e, x, a} has to be a 3-element circuit, a triangle, in M .

Claim 2b: If M/a is 3-connected but not weakly 4-connected, then a 3-separation (X∪e, Y ),

|X ∪ e|, |Y | ≥ 5, in M/a induces a 3-separation (X, Y ) in Ln/a.

Proof. Let M/a be a 3-connected but not weakly 4-connected matroid and (X∪e, Y ) be a 3-

separation of M/a such that |X∪e| and |Y | ≥ 5. Then λM(X∪e) = 2 or 3. If λM(X∪e) = 2

then (X ∪ e, Y ∪ a) is a 3-separation of M where |X ∪ e|, |Y ∪ a| ≥ 5. However, by Claim 1,

M is weakly 4-connected and if (X ∪ e, Y ∪ a) is a 3-separation, then |X ∪ e| or |Y ∪ a| ≤ 4.

A contradiction. Therefore λM(X ∪ e) = 3 and the following statement holds:

(i) λM(Y ) = rM(X ∪ e ∪ a) + rM(Y )− r(M) = 3 and a ∈ clM(Y ).
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The sets X ∪ a and Y have cardinality at least 4 and the matroid Ln is weakly 4-connected.

Therefore λLn(Y ) 6= 2. Thus following statement holds.

(ii) λLn(Y ) = rLn(X ∪ a) + rLn(Y )− r(Ln) = 3 and e ∈ clM(X ∪ a).

Since M is a single element extension of Ln and a ∈ clM(Y ), by (i), a ∈ clLn(Y ) = clM(Y )−e.

Therefore, rLn(Y ) = rLn(Y ∪ a). Also, by (ii), rM(X ∪ e ∪ a) = rM(X ∪ a). Therefore

rLn(X ∪ a) + rLn(Y ∪ a)− r(Ln) = 3 as well. If rLn(X ∪ a) 6= rLn(X) then rLn(X) + rLn(Y ∪

a)− r(Ln) = 2, a contradiction as Ln is internally 4-connected and |X|, |Y | ≥ 4. Therefore

the following statement holds.

(iii) λLn(X) = rLn(X) + rLn(Y ∪ a)− r(Ln) = 3 and a ∈ cl(X).

By (i) and (iii), we can deduce that a ∈ clLn(X) and clLn(Y ). Therefore rLn/a(X) =

rLn(X ∪ a) − 1 = rLn(X) − 1 and similarly, rLn/a(Y ) = rLn(Y ) − 1 as well. Therefore

λLn/a = 2 and (X, Y ) is a 3-separation in Ln/a.

In Claim 3, by using Claim 2a and 2b, we provide necessary conditions for M/ai to

be weakly 4-connected for some ai ∈ E(Ln).

Claim 3: If there exists i ∈ {1, · · · , n} such that clLn(Xi), clLn(Yi) /∈ M (resp. clLn(X ′i),

clLn(Y ′i ) /∈M) for some i ∈ {1, · · · , n}, then M/ai (resp. M/ci) is weakly 4-connected.

Proof. Suppose to the contrary that clLn(Xi), clLn(Yi) /∈ M but M/ai is not weakly 4-

connected. Then either M/ai is not 3-connected or M/ai is 3-connected but not weakly

4-connected. First, if M/ai is 2-connected but not 3-connected, then by Claim 2a, {e, ai, x}

must be a triangle in M for some x ∈ E(Ln) where x 6= ai. Therefore {ai, x} ∈ M,

as otherwise, {e, ai, x} would not be a triangle in M . Since Xi ∪ Yi ∪ ai = E(Ln) and

ai 6= x, we have ai ∈ clLn(Xi) and clLn(Yi) and x ∈ Xi or x ∈ Yi. Suppose x ∈ Xi. Then

{ai, x} ⊂ clLn(Xi). This implies clLn(Xi) ∈ M, a contradiction since we assumed that

clLn(X) /∈M. Therefore M/ai must be 3-connected but not weakly 4-connected.
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If M\ai is 3-connected but not weakly 4-connected, then there exists a 3-separation

(X ∪ e, Y ) in M/ai such that |X ∪ e|, |Y | ≥ 5. From Claim 2b, we know e ∈ clM(X ∪ a) and

a ∈ clLn(X). This implies a ∈ clM(X) and e ∈ clM(X ∪ a) = clM(X). Thus clLn(X) /∈ M.

Since (X, Y ) induces a 3-separation in Ln/ai, X or Y equals to the following sets: Xi,

Xi− ci−1, or Xi− ci+1. If X = Xi, then, clL∗
n
(Xi) ∈M, a contradiction. If X = Xi− ci−1 or

Xi− ci+1, again, clLn(Xi− ci−1) or clLn(Xi− ci+1) ∈M. However, Xi− ci−1, Xi− ci+1 ⊂ Xi

and sinceM is a modular cut, this implies Xi ∈M, a contradiction as well. Therefore M/ai

must be weakly 4-connected.

By Claim 3, if there exists i ∈ {1, · · · , n} such that clLn(Xi) ∈M, clLn(Yi) /∈M then

M/ai is weakly 4-connected. By symmetry, if clLn(X ′i), clLn(Y ′i ) /∈ M, then M/ci is weakly

4-connected. Now, we need to show that there exists i ∈ {1, · · · , n} such that clLn(Xi),

clLn(Yi) /∈M. We prove this in multiple steps. In Claim 4, we prove that there exists i such

that clLn(Xi) /∈M. Then in Claim 5, we prove that if there exists i such that clLn(Xi) /∈M

but clLn(Xi−1) ∈ M, then there exists aj or cj ∈ E(Ln) such that M/aj or M/cj is weakly

4-connected. In Claim 6, we prove that if clLn(Xi) /∈ M for all i ∈ {1, · · · , n}, then there

exists aj ∈ E(Ln) or cj ∈ E(Ln) such that M/aj or M/cj is weakly 4-connected.

In the rest of the proof, for clLn(X), we omit Ln and write cl(X). When we take the

closure of a set in a different matroid, say M , we will denote it properly as clM(X) in the

proof. For Lemma 7.2.2, Claims 4, 5, and 6, to see how different flats in the modular cut

create modular pairs, we provide an example with L5 in each claim. Elements in the sets in

modular cuts will be drawn in thick lines and the elements in the intersection will be drawn

in dashed lines. Also for all i ∈ {3, · · · , n}, the closure of a set Xi in Ln and Ln are equal.

Therefore we choose specific sets in some of the proofs of the claims in Lemma 7.2.2 so that

we can apply the same proof in other lemmas.

Claim 4: There exists i ∈ {1, · · · , n} such that cl(Xi) /∈M.
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Proof. Suppose to the contrary that cl(Xi) ∈M for all i ∈ {1, · · · , n}. Since Ln is symmet-

ric, without loss of generality, suppose cl(X2), cl(X3), cl(X4) ∈M. Note that r(cl(Xi)) = 5

for all i. Also, r(cl(X3) ∪ cl(X4)) = r(cl({a3, a4, b3, b4, b5, c2, c3, c4, c4+1})) = 7. If Ln = L4,

then c4+1 = c1. If n ≥ 5, then we have c4+1 = c5. And r(cl(X3)∩ cl(X4)) = r(cl(b4, c3, c4)) =

3. Then (cl(X3),cl(X4)) is a modular pair as r(cl(X3)) + r(cl(X4)) = r(cl(X3) ∪ cl(X4)) +

r(cl(X3) ∩ cl(X4)) = 10. Therefore, cl(X3) ∩ cl(X4) = {b4, c3, c4} ∈ M. Also, ({b4, c3, c4},

cl(X2)) is a modular pair as r(cl(X2) ∪ {b4, c3, c4}) = r({a2, b2, b3, c1, c2, c3, c4}) = 7 and

r(cl(X2) ∩ {b4, c3, c4}) = r({c3}) = 1. Therefore {b4, c3, c4} ∩ cl(X2) = {c3} ∈ M. This im-

plies that e is in parallel with c3 in M , which is a contradiction since M is weakly 4-connected.

Therefore there exists i ∈ {1, · · · , n} such that cl(Xi) /∈M.

a4

a3b4
a3

Figure 7.3: Example of Claim 4 with L5.

Claim 5: If there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ M and cl(Xi−1) ∈ M, then

M/ai, M/ci, or M/ai−3 is weakly 4-connected.

Proof. Suppose that there exists some i ∈ {1, · · · , n} such that cl(Xi) /∈ M and cl(Xi−1) ∈

M. Because Ln is symmetric, assume without loss of generality that i = 4. Thus cl(X4) /∈M

but cl(X3) ∈ M. If cl(Y4) /∈ M, then by Claim 3, M/a4 is weakly 4-connected and we are

done. Therefore, suppose that cl(Y4) ∈M. Then r(cl(X3)) = 5 and r(cl(Y4)) = 2n−3. Also
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r(cl(X3) ∪ cl(Y4)) = r(Ln) = 2n − 1 and r(cl(X3) ∩ cl(Y4)) = r({a3, b3, c2}) = 3. Therefore

(cl(X3),cl(Y4)) is a modular pair and thus {a3, b3, c2} ∈ M.

a3

b3
b2

a3

b3
b2

Figure 7.4: Example of Claim 4 with L5.

We now show that M/c4 or M/a1 is weakly 4-connected. We need to show that cl(X ′4),

cl(Y ′4) /∈ M or cl(X1), cl(Y1) /∈ M. Suppose to the contrary that both M/c4 and M/a1 are

not weakly 4-connected. Since M/c4 is not weakly 4-connected, cl(X ′4) or cl(Y ′4) ∈ M.

Similarly, since M/a1 is not weakly 4-connected, cl(X1) or cl(Y1) ∈ M. If cl(X ′4) ∈ M

then (cl(X ′4),{a3, b3, c2}) is a modular pair. Thus cl(X ′4) ∩ {a3, b3, c2} = {a3} ∈ M. This

contradicts the fact that M is weakly 4-connected. Therefore cl(Y ′4) must be an element of

M. Also, (cl(Y ′4),{a3, b3, c2}) is a modular pair so {b3, c2} ∈ M. Similarly, if cl(X1) ∈ M

then (cl(X1), {a3, b3, c2}) is a modular pair, which implies cl(X1) ∩ {a3, b3, c2} = {c2} ∈ M

as well. Therefore cl(Y1) must be an element of M. This implies (cl(Y1),{a3, b3, c2}) is

a modular pair and thus, {a3, b3} ∈ M. Therefore {b3, c2},{a3, b3} ∈ M. However, the

two sets form a modular pair. Therefore, the intersection, {b3} must be in M. This is a

contradiction as M is weakly 4-connected. Therefore cl(Y ′4) or cl(Y1) /∈M. By assumption,

cl(X ′4), cl(X1) /∈M. Therefore M/c4 or M/a1 is weakly 4-connected by Claim 3.

Claim 6: If cl(Xi) /∈ M for all i ∈ {1, · · · , n}, then there exists j, k ∈ {1, · · · , n} such

that M/aj or M/ck is weakly 4-connected.
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Proof. Let cl(Xi) /∈ M for all i ∈ {1, · · · , n}. If there exists j ∈ {1, · · · , n} such that

cl(Yj) /∈M, then by Claim 3, M/aj is weakly 4-connected and we are done. Thus, suppose

that cl(Yi) ∈ M for all i ∈ {1, · · · , n}. We first show that in this case,
⋂n
i=3 cl(Yi) ∈ M.

Now for each k ∈ {4, · · · , n} the following statements hold.

(i) r(Yi) = 2n− 3 = r − 2 for all i.

(ii)
⋂k
i=3 cl(Yi) = E(Ln)−{b3, · · · , bk+1, c2, · · · , ck+1} and r(

⋂k
i=3 cl(Yi)) = r− 2− (k− 3) =

r − k + 1.

(iii) (
⋂k
i=3 cl(Yi))∪cl(Yk+1) = E(Ln)−{bk+1, ck, ck+3} and r((

⋂k
i=3 cl(Yi))∪cl(Yk+1)) = r−1.

(iv) (
⋂k
i=3 cl(Yi))∩cl(Yk+1) =

⋂k+1
i=3 cl(Yi) and r((

⋂k
i=3 cl(Yi))∩cl(Yk+1)) = r−2−(k+1−3) =

r − k.

From (i)-(iv), we can deduce that (
⋂k
i=3 cl(Yi),cl(Yk+1)) is a modular pair. Therefore the

intersection of two sets, (
⋂k
i=3 cl(Yi))∩ cl(Yk+1) =

⋂k+1
i=3 cl(Yi) ∈M. Therefore

⋂n
i=3 cl(Yi) =

{a1, · · · , an, b2} must be an element of M. If there exists i ∈ {1, · · · , n} such that cl(X ′i) /∈

a5

a4

a3

a2

a1 b1

b2

c1
a5

a4

a3

a2

a1

b2 b2

Figure 7.5: Example of Claim 6 with L5.

M but cl(X ′i−1) ∈ M, then by Claim 5, M/ci or M/ci−3 is weakly 4-connected and we

are done. If cl(X ′i) /∈ M for all i, then we look at cl(Y ′j ). If there exists j such that

cl(Y ′j ) /∈ M then M/cj is weakly 4-connected and we are done. If cl(Y ′i ) ∈ M for all i,

then like cl(Yi) case,
⋂n
i=3 cl(Y

′
i ) = {c1, · · · , cn, b2} ∈ M. However, {a1, · · · , an, b2} ∈ M

as well and ({a1, · · · , an, b2},{c1, · · · , cn, b2}) is a modular pair. Therefore their intersection,
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{b2} ∈ M, a contradiction as M is weakly 4-connected. Therefore if cl(Yi) ∈ M for all i

then there must exist some k such that cl(Y ′k) /∈M. Then cl(X ′k) and cl(Y ′k) /∈M. Thus by

Claim 3, M/ck is weakly 4-connected. Therefore in all possible cases, there exists some aj

or ck such that M/aj or M/ck is weakly 4-connected.

Note that in Claim 6, we can also use
⋂n
i=1 cl(Yi) ∈ M and prove (

⋂n
i=1 cl(Yi),⋂n

i=1 cl(Y
′
i )) is a modular pair. In this case, ∅ ∈ M, which contradicts the fact that M

is weakly 4-connected. However, to use the this proof in Claim 6 of Lemma 7.2.3, we use⋂n
i=3 cl(Yi).

In all possible cases, we have proven that there exists some j ∈ {1, · · · , n} such

that M/aj or M/cj is weakly 4-connected. Suppose M/aj is weakly 4-connected. Then, by

comparing number of elements and the rank of M/aj, we can deduce that M/aj and (M/aj)
∗

are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4.

Now, we prove a similar lemma for a Möbius ladder.

Lemma 7.2.3. If M is a 3-connected single element extension of Ln, n ≥ 4, then M is

weakly 4-connected. Moreover there exists an element a ∈ E(Ln) such that M/a and (M/a)∗

are weakly 4-connected and is not isomorphic to Lm, Lm, Pm or Pm for m ≥ 4.

Proof. Let M be a modular cut of Ln, n ≥ 4 and let M be a 3-connected single element

extension of Ln such that M = Ln +M e. Let r = 2n− 1 denote the rank of Ln.

Claim 1: M is weakly 4-connected.

Proof. Suppose M is not weakly 4-connected. Since M is a 3-connected single element

extension of Ln, there exists a 3-separation (X ∪ e, Y ) where |X ∪ e|, |Y | ≥ 5. However, this

separation induces either a 2-separation or a 3-separation, (X, Y ) in Ln. This is not possible

since Ln is internally 4-connected. Therefore M is weakly 4-connected.
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Now, suppose M/a is not weakly 4-connected for some a ∈ E(Ln). Since M is weakly

4-connected, M/a is always 2-connected. In Claim 2a, we suppose M/a is 2-connected but

not 3-connected. In Claim 2b, we suppose M/a is 3-connected but not weakly 4-connected.

Claim 2a: If M/a is 2-connected but not 3-connected, then there exists x ∈ E(Ln)−a such

that {e, a, x} is a triangle in M .

Claim 2b: If M/a is 3-connected but not weakly 4-connected, then a 3-separation (X∪e, Y )

in M/a where |X ∪ e|, |Y | ≥ 5, induces a 3-separation (X, Y ) in Ln/a.

Since Ln is internally 4-connected and M is weakly 4-connected, we can apply the

proof of Claim 2a and 2b from 7.2.2 as both proofs only uses connectivity argument and

does not depend on the structure of the cycle matroid of a ladder at all. Now, the next claim

provides necessary conditions for M/ai to be weakly 4-connected.

Claim 3: If there exists i such that clLn(Xi), clLn(Yi) /∈M (resp. clLn(X ′i), clLn(Y ′i ) /∈M)

for some i ∈ {1, · · · , n}, then M/ai (resp. M/ci) is weakly 4-connected.

Since Ln is internally 4-connected and because we defined Xi and Yi of Ln such that

they correspond with the sets Xi and Yi of Ln, the proof of Claim 3 from Lemma 7.2.2 works

on this claim as well.

We now prove that there exists i ∈ {1, · · · , n} such that cl(Xi) and cl(Yi) ∈ M or

cl(X ′i) and cl(Y ′i ) ∈ M. The flow of the rest of the proof is same as Lemma 7.2.2. Because

Ln and Ln are similar, we use the proof of Claim 4, 5, and 6 to prove the claims. However,

clLn(Xi) 6= clLn(Xi) for i = 1 and 2. Thus in some cases, we add extra explanations when

necessary. Lastly, in the rest of the proof, for clLn(X), we omit Ln and write cl(X).

Claim 4: There exists i ∈ {1, · · · , n} such that cl(Xi) /∈M.

Proof. Suppose to the contrary that cl(Xi) ∈ M for all i ∈ {1, · · · , n}. Then cl(X2),

cl(X3), and cl(X4) ∈ M. Note that clLn(X3) ∩ clLn(X4) = {a3, b3, c2} and clLn(X3) ∪
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clLn(X4) = {a3, b3, c2}. Because the structure of two matroids are similar, part of the

proofs from Lemma 7.2.2 can be applied in the proof of Lemma 7.2.3. Thus, using the

proof of the Lemma 7.2.2 Claim 4, (cl(X3),cl(X4)) is a modular pair and their intersection,

cl(X3) ∩ cl(X4) = {b4, c3, c4} ∈ M. However, we can not use the same proof from Claim 4

of Lemma 7.2.2 for cl(X2) and {b4, c3, c4}. For Ln, we have clLn(X2) = {b2, b3, c1, c2, c3} but

clLn(X2) = {a1, c2, c3, b2, b3}. However, r(cl(X2)∪{b4, c3, c4}) = r({a1, a2, b2, b3, c2, c3, c4}) =

7 and r(cl(X2) ∩ {b4, c3, c4}) = r({c3}) = 1. Therefore (cl(X2),{b4, c3, c4}) is a modular pair

as well and {c3} ∈ M. This is a contradiction as M is weakly 4-connected.

Claim 5: If there exists i such that cl(Xi) /∈ M but cl(Xi−1) ∈ M, then M/ai, M/ci or

M/ai−3 is weakly 4-connected if i ≥ 4 and M/c1, M/c2, M/c3, M/cn or M/an−1 is weakly

4-connected if i = 1, 2 or 3.

Proof. Suppose there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ M but cl(Xi−1) ∈ M. If

cl(Yi) /∈ M then we are done. So suppose cl(Yi) ∈ M. Now, if i ≥ 4, then because

clLn(Xi) = clLn(Xi), proof of Claim 5 from the previous lemma works in this claim as well.

However, we still need to check for the case where i = 1, 2 and 3.

If cl(X1), cl(Y2) ∈M and cl(X2) /∈M, then (cl(X1),cl(Y2)) is a modular pair. There-

fore {a2, b1, c1, cn} ∈ M. Let {a2, b1, c1, cn} = Z. We will show that either M/c1, M/c2 or

M/c3 is weakly 4-connected. Suppose to the contrary that M/c1, M/c2 and M/c3 are not

weakly 4-connected. For each case, cl(X ′i) ∈ M or cl(Y ′i ) ∈ M. If cl(X ′i) ∈ M, then

(cl(X ′i), Z) is a modular pair. If cl(Y ′i ) ∈ M, then (cl(Y ′i ), Z) is a modular pair. Then the

following statements hold:

If cl(X ′1) and Z ∈M then {b1, c1} ∈ M.

If cl(Y ′1) and Z ∈M then {c1, cn, a2} ∈ M.

If cl(X ′2) and Z ∈M then {b1, cn} ∈ M.

If cl(Y ′2) and Z ∈M then {a2, c1} ∈ M.
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If cl(X ′3) and Z ∈M then {a2} ∈ M.

If cl(Y ′3) and Z ∈M then {b1, c1, cn} ∈ M.

If cl(X ′1) and cl(Y ′2) ∈M then ({b1, c1}, {b1, cn}) is a modular pair and {b1} is forced to be

in M. Following this idea, the following statements hold:

If cl(X ′1) and cl(Y ′2) ∈M, then {b1} ∈ M.

If cl(X ′1) and cl(X ′2) ∈M, then {c1} ∈ M.

If cl(Y ′1) and cl(Y ′2) ∈M, then {cn} ∈ M.

If cl(Y ′1) and cl(X ′2) ∈M, then {a2, c1} ∈ M.

Because neither M/c1 nor M/c2 is weakly 4-connected, cl(X ′1) ∈ M or cl(Y ′1) ∈ M. Sim-

ilarly, cl(X ′2) ∈ M or cl(Y ′2) ∈ M. However, the only case which does not induce a con-

tradiction is when cl(Y ′1), cl(X ′2), {a2, c1} ∈ M. Since M/c3 is not weakly 4-connected,

cl(X ′3) ∈M or cl(Y ′3) ∈M. If {a2, c1} and cl(X ′3) ∈M then ({a2, c1}, cl(X ′3)) is a modular

pair and {a2} ∈ M. This is a contradiction since M is weakly 4-connected. If {a2, c1} and

cl(Y ′3) ∈ M then ({a2, c1},cl(Y ′3)) is a modular pair and {c1} ∈ M, a contradiction. There-

fore if M/c1, M/c2 and M/c3 are not weakly 4-connected, then M is not weakly 4-connected,

a contradiction. Thus at least one of M/c1, M/c2 or M/c3 is weakly 4-connected.

If cl(X2), cl(Y3) ∈ M but cl(X3) /∈ M, then (cl(Y3),cl(X2)) is a modular pair.

Therefore {a1, a2, b2} ∈ M. This time, let {a1, a2, b2} = Z. Now, we will prove that M/c2 or

M/c3 is weakly 4-connected. Suppose to the contrary that neither M/c2 nor M/c3 is weakly

4-connected. If cl(X ′2) ∈ M then (Z,cl(Y ′2)) is a modular pairs and {c2} ∈ M. This is a

contradiction since M is weakly 4-connected. If cl(X ′3) ∈ M, then (Z,cl(X ′3)) is a modular

pair and {a2} ∈ M. This is a contradiction as well. Thus cl(X ′2), cl(Y
′
3) ∈ M. Therefore

M/c2 and M/c3 are not weakly 4-connected. However, these sets form a modular pair with

Z. This would force {b2, a2}, {a1, b2} ∈ M, respectively. Then again, ({b2, a2},{a1, b2}) is a

modular pair and thus {b2} ∈ M, a contradiction. Therefore M/c2 or M/c3 must be weakly

4-connected.
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Lastly, if cl(Xn) and cl(Y1) ∈ M but cl(X1) /∈ M, then (cl(Y1),cl(X1)) is a modular

pair and {an, bn, cn−1} ∈ M. Using the same reasoning as the previous proofs, either M/cn

or M/an−1 is weakly 4-connected. In all possible cases noted in the claim, there exists some

a ∈ E(Ln) such that M/a is weakly 4-connected.

Claim 6: If cl(Xi) /∈ M for all i ∈ {1, · · · , n}, then there exists j, k ∈ {1, · · · , n} such

that M/aj or M/ck is weakly 4-connected.

Proof. Since cl(Xi) /∈ M for all i ∈ {1, · · · , n}, if there exists j ∈ {1, · · · , n} such that

cl(Yj) /∈ M, then we are done as M/aj would be weakly 4-connected. Now, suppose that

cl(Yi) ∈ M for all i ∈ {1, · · · , n}. Then
⋂n
i=3 cl(Yi) ∈ M. Note that for all i ∈ {3, · · · , n},

we have clLn(Xi) = clLn(Xi). Therefore part of the proof from the Claim 6 from Lemma

7.2.2 holds here as well and
⋂n
i=3 cl(Yi) = {a1, · · · , an, b2} ∈ M. Similarly, if cl(Y ′i ) ∈ M

for all i, then {c1, · · · , cn, b2} ∈ M. Then two sets {a1, · · · , an, b2} and {c1, · · · , cn, b2} form

a modular pair and {bn} ∈ M. This contradicts the fact that M is weakly 4-connected.

Therefore there must be some k such that cl(Y ′k) /∈ M. Therefore if cl(Xi), cl(X
′
i) /∈ M

then there exists some k such that cl(X ′k), cl(Y
′
k) /∈ M. Therefore M/ck would be weakly

4-connected.

Now suppose there exists i such that cl(X ′i) /∈ M but cl(Xi−2) ∈ M. If cl(Y ′i ) /∈ M,

then we are done. If cl(Y ′i ) ∈ M then by Claim 5, there exists some a ∈ E(Ln) such that

M/a is weakly 4-connected. Therefore in all cases, there exists j, k ∈ {1, · · · , n} such that

M/aj or M/ck is weakly 4-connected.

In all possible cases, we have proven that there exists some j ∈ {1, · · · , n} such

that M/aj or M/cj is weakly 4-connected. Suppose M/aj is weakly 4-connected. Then by

comparing the number of elements and the rank of M/aj, we can deduce that neither M/aj

nor (M/aj)
∗ are isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4.
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Next, we prove slightly different lemmas for the dual of a planar ladder and the dual

of a Möbius ladder. In Lemma 7.2.4, we prove that if M is a 3-connected single element

extension of L∗n, then there exists a ∈ E(L∗n) such that (M\a) and (M\a)∗ are weakly 4-

connected and is not isomorphic to cycle matroid of a ladder or M ∼= Pn. Then in Lemma

7.2.5, we look at all 3-connected single element extension of Pn. If N is a 3-connected single

element extension of Pn, then we prove that there exists an element a ∈ E(L∗n) such that

N/a and (N/a)∗ is weakly 4-connected and are not isomorphic to Lm, Lm, Pm and Pm for

all m ≥ 4. In Lemma 7.2.6, we look at all 3-connected single element extension of (P ∗n) and

prove a similar result. In Lemmas 7.2.7, 7.2.8, and 7.2.9, we prove similar results for Möbius

ladder.

Lemma 7.2.4. If M is a 3-connected single element extension of L∗n, n ≥ 4, then M is

weakly 4-connected. Moreover either,

i) there exists an element a ∈ E(L∗n) such that M\a and (M\a)∗ are weakly 4-connected and

not isomorphic to Lm, Lm, Pm, or Pm, for m ≥ 4, or

ii) M ∼= Pn.

Proof. Let M be a modular cut of L∗n, n ≥ 4 and let M be a 3-connected extension of L∗n

such that M = L∗n +M e. Then |E(M)| = |E(L∗n) + 1| = 3n+ 1 and r(M) = r(L∗n) = n+ 1.

Claim 1: M is weakly 4-connected.

As Ln is internally 4-connected, the dual, L∗n is also internally 4-connected as well.

Since M is a 3-connected single element extension of L∗n, by the proof of Claim 1 of Lemma

7.2.2, M is weakly 4-connected.

Now, suppose M\a is not weakly 4-connected for some a ∈ E(L∗n). Since M is weakly

4-connected, M\a is always 2-connected. In Claim 2a, we prove that M\a is 3-connected.

In Claim 2b, we suppose M\a is 3-connected but not weakly 4-connected.

Claim 2a: If M\a is 3-connected.

71



Proof. SupposeM\a is not 3-connected. SinceM is weakly 4-connected, M\a is 2-connected.

Furthermore, M\a\e = M\e\a = L∗n\a is 3-connected for a ∈ E(L∗n). Then by Proposition

7.2.1, there exists a circuit containing e and has size fewer than 3 in M\a. Let {e, x} be a

2-element circuit in M\a where x ∈ E(L∗n)−a. However, any circuit in M\a is also a circuit

in M . If {e, x} is a circuit in M , then M is not weakly 4-connected. This is a contradiction.

Therefore M\a is 3-connected.

Claim 2b: M\a is 3-connected but not weakly 4-connected, then a 3-separation (X ∪ e, Y ),

|X ∪ e|, |Y | ≥ 5, in M\a induces a 3-separation (X, Y ) in L∗n\a.

Proof. Suppose M\a is 3-connected but not weakly 4-connected and (X ∪ e, Y ) is a 3-

separation in M\a where |X ∪ e|, |Y | ≥ 5. Since M is weakly 4-connected, λM(X ∪ e) 6= 2.

Otherwise (X ∪ e, Y ∪ a) induces a 3-separation (X, Y ) in M . Therefore the following

statement holds:

i) λM(X ∪ e) = rM(X ∪ e) + rM(Y ∪ a)− r(M) = 3 and a /∈ clM(Y ).

Then λL∗
n
(Y ) = 3 because L∗n is internally 4-connected and |X| ≥ 4, |Y | ≥ 5. Therefore, the

following statement holds:

ii) λL∗
n
(Y ∪ a) = rL∗

n
(X) + rL∗

n
(Y ∪ a)− r(L∗n) = 3 and e ∈ clM(X).

By (i), a /∈ clM(Y ) implies that a /∈ clL∗
n
(Y ). Therefore rL∗

n
(Y ∪ a) = rL∗

n
(Y ) + 1. Finally,

the last statement holds:

(iii) λL∗
n\a(X) = rL∗

n\a(X) + rL∗
n\a(Y )− r(L∗n\a) = 2.

Therefore if M\a is not weakly 4-connected, then the 3-separation (X∪e, Y ), |X∪e|, |Y | ≥ 5,

induces a 3-separation in L∗n\a.

Claim 3: If clL∗
n
(Xi), clL∗

n
(Yi) /∈ M (resp. clL∗

n
(X ′i), clL∗

n
(Y ′i ) /∈ M), then M\ai (resp.

M\ci)) is weakly 4-connected.
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Proof. Suppose to the contrary that there exists i ∈ {1, · · · , n} such that clL∗
n
(Xi), clL∗

n
(Yi) /∈

M but M\ai is not weakly 4-connected. If M\ai is not weakly 4-connected, then by Claim

2a, M\ai must be 3-connected but not weakly 4-connected. Thus, there exists a 3-separation

(X ∪ e, Y ) in M\ai such that |X ∪ e|, |Y | ≥ 5. From Claim 2b, two statements hold:

(i) e ∈ clM(X), which implies clL∗
n
(X) ∈M.

(ii) (X, Y ) induces a 3-separation in L∗n\ai.

From (ii), we know (X, Y ) induces a 3-separation in L∗n\ai. However, L∗n\ai = (Ln/ai)
∗ and

thus (X, Y ) must induce a 3-separation in Ln/ai as well. Without loss of generality, suppose

X = Xi, Xi − ci−1, or Xi − ci+1. If X = Xi, then by (i), clL∗
n
(Xi) ∈ M, a contradiction. If

X = Xi − ci−1 or Xi − ci+1, then by (i), clL∗
n
(Xi − ci−1) or clL∗

n
(Xi − ci+1) ∈ M. However,

Xi − ci−1, Xi − ci+1 ⊂ Xi and since M is a modular cut, this implies Xi ∈ M. This is a

contradiction. Therefore M\ai must be weakly 4-connected.

The flow of the proof is similar to the proof of Lemma 7.2.2. In Ln, we have ai ∈

clLn(Xi) and ai ∈ clLn(Yi) for all i ∈ {1, · · · , n}. In L∗n, we have ai /∈ clL∗
n
(Xi) and ai /∈

clL∗
n
(Yi). Thus, there are some differences between the proof of Lemma 7.2.2 and Lemma

7.2.4. In the rest of the proof, for clL∗
n
(X), we omit L∗n and write cl(X). When we take

closure of a set in a different matroid, say M , we will denote it properly as clM(X) in the

proof.

Claim 4: There exists i ∈ {1, · · · , n} such that cl(Xi) /∈M.

Proof. Suppose to the contrary that cl(Xi) ∈ M for all i ∈ {1, · · · , n}. Then cl(X2),

cl(X3) and cl(X4) ∈ M. Note that r(cl(Xi)) = 3 for all i. Also r(cl(X2) ∪ cl(X3)) =

r(cl({b1, b2, b3, c1, c2, c3, c4})) = 4. Lastly, r(cl(X2) ∩ cl(X3)) = r({b3, c2, c3}) = 2. Therefore

(cl(X2),cl(X3)) is a modular pair and thus, {b3, c2, c3} ∈ M. Also, ({b3, c2, c3},cl(X4)) is a

modular pair as well and {b3, c2, c3} ∩ cl(X4) = {c3} ∈ M. This is a contradiction since M

is weakly 4-connected. Therefore there exist some i ∈ {1, · · · , n} such that cl(Xi) /∈M.
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Claim 5: If there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ M but cl(Xi−1) ∈ M, then

M\ci−1 is weakly 4-connected.

Proof. Suppose to the contrary that there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ M but

cl(Xi−1), cl(Yi) ∈ M but M\ci−1 is not weakly 4-connected. Then (cl(Xi−1), cl(Yi)) is

a modular pair and thus cl(Xi−1) ∩ cl(Yi) = {bi−1, ci−2, ci−1} ∈ M. Since M\ci−1 is not

weakly 4-connected, cl(X ′i−1) ∈ M or cl(Y ′i−1) ∈ M. If cl(X ′i−1) ∈ M, then (cl(X ′i−1),{bi−1,

ci−2, ci−1}) is a modular pair. Therefore cl(X ′i−1) ∩ {bi−1, ci−2, ci−1} = {bi−1} ∈ M, which

implies M is not weakly 4-connected which leads to a contradiction. If cl(Y ′i−1) ∈ M, then

(cl(Y ′i−1),{bi−1, ci−2, ci−1}) is a modular pair. Therefore cl(Y ′i−1)∩{bi−1, ci−2, ci−1} = {ci−1} ∈

M, which also leads to a contradiction. Therefore cl(X ′i−1), cl(Y
′
i−1) /∈ M and M\ci−1 is

weakly 4-connected.

Claim 6: If cl(Xi) /∈ M for all i ∈ {1, · · · , n} then either there exists j such that

cl(Yj) /∈M or M ∼= Pn where Pn\a is not weakly 4-connected for all a ∈ E(L∗n).

Proof. If there exists cl(Yj) /∈ M for some j ∈ {1, · · · , n} then we are done as cl(Xj),

cl(Yj) /∈ M implies M\aj is weakly 4-connected. Note that for L∗n, we have cl(Yi) =

cl(Y ′i ) = E(L∗n)−{ai, bi, bi+1, ci} for all i ∈ {1, · · · , n}. This implies that if cl(Yi) ∈M then

cl(Y ′i ) ∈M.

Suppose that cl(Yi) ∈M for all i ∈ {1, · · · , n}. Then the following statements holds

for k ≥ 3:

(i)
⋂k
i=3 cl(Yi) = E(L∗n)−{a2, · · · , ak, b2, · · · , bk+1, c2, · · · , ck} and r(

⋂k
i=3 cl(Yi)) = r−k+ 1.

(ii)
⋂k
i=3 cl(Yi) ∪ cl(Yk+1) = E(L∗n)− ck+1 and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r.

(iii)
⋂k
i=3 cl(Yi) ∩ cl(Yk+1) =

⋂k+1
i=3 and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r − k.

From (i), (ii), and (iii) we can see that for each k ∈ {3, · · · , n},
⋂k
i=3 cl(Yj) and cl(Yk+1) is a

modular pair and thus,
⋂k
i=2 cl(Yi) ∩ cl(Yk+1) =

⋂k+1
i=3 cl(Yi) ∈ M. Therefore

⋂n
i=2 cl(Yj) =

{a1, c1} ∈ M. This applies for any intersection of n−1 number of cl(Yi) due to the symmetry
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of L∗n. Thus {ai, ci} ∈ M for all i ∈ {1, · · · , n}. In this case, M ∼= Pn. Therefore for all

i ∈ {1, · · · , n}, neither M\ai nor M\ci are weakly 4-connected. It is also not too difficult

to check that M\bi is not weakly 4-connected. Therefore if cl(Xi) /∈M for all i, then either

there exists j ∈ {1, · · · , n} such that M/aj is weakly 4-connected or M ∼= Pn.

By Claim 6, Pn\a is not weakly 4-connected for all a ∈ E(L∗n). Furthermore, if

Pn = L∗n +M e, then {ai, ci} ∈ M for all i ∈ {1, · · · , n} as well. Now, we prove that Pn is

the only weakly 4-connected single element extension of L∗n such that Pn\a is not weakly

4-connected for all a ∈ E(L∗n) and {ai, ci, e} is a triangle.

Claim 7: Pn is the only weakly 4-connected single element extension of L∗n such that Pn\a

is not weakly 4-connected for all a ∈ E(L∗n).

Proof. Suppose that M is a modular cut of L∗n such that cl(Yi) ∈ M for all i ∈ {1, · · · , n}

and M ∼= L∗n +M e. Then by Claim 6, {ai, ci} ∈ M for all i ∈ {1, · · · , n} and M ∼= Pn. We

will prove that there does not exist any other modular cut of L∗n, sayM1, such that {ai, ci}

for all i ∈ {1, · · · , n} and M1 6= M. Let M1 = L∗n +M1 e. We will show that M1 is not

3-connected and thus, Claim 7 holds.

Let F be a flat of L∗n such that F ∈ M1 but F /∈ M. Then {ai, ci} * F for all

i ∈ {1, · · · , n}. If {ai, ci} ⊆ F for some i ∈ {1, · · · , n}, then F ∈ M because M is a

modular cut. Therefore |{ai, ci} ∩ F | = 1 or 0 for all i.

Suppose there exists i ∈ {1, · · · , n} such that |{ai, ci} ∩ F | = 1. Assume without

loss of generality that ai ∈ F and ci /∈ F . Then r(F ∪ {ai, ci}) = r(F ) or r(F ) + 1. If

r(F ∪{ai, ci}) = r(F ) + 1, then (F ,{ai, ci}) is a modular pair, and F ∩{ai, ci} = {ai} ∈ M1.

This implies M1 is not 3-connected. If r(F ∪ {ai, ci}) = r(F ), then {ai, ci} ⊆ F . This

contradicts our assumption that {ai, ci} * F . Therefore there does not exist i such that

|{ai, ci} ∩ F | = 1. Thus {ai, ci} ∩ F = ∅ for all i. This implies that F ⊆ {b1, · · · , bn}. Since

F is a flat, r(F ∪ai) = r(F )+1 and r(F ∪ci) = r(F )+1 for all i. If r(F ∪{ai, ci}) = r(F )+1,
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then there exists a circuit C ⊆ F ∪ {ai, ci} such that {ai, ci} ⊆ C. However, there does not

exist a circuit in L∗n where the circuit only contains {ai, ci} and some elements from the set

{b1, · · · , bn}. Therefore r(F ∪{ai, ci}) = 2. Then (F ,{ai, ci}) is a modular pair. This implies

F ∩ {ai, ci} = ∅ ∈ M1, and M1 is not 3-connected. Therefore Claim 7 is true.

By Claim 1, Pn is weakly 4-connected. Now, we prove Pn is also internally 4-

connected.

Claim 8: Pn is internally 4-connected.

Proof. Suppose to the contrary that Pn is not internally 4-connected. Since Pn is weakly 4-

connected by Claim 1, there exists a 3-separation (X∪e, Y ) such that |X∪e|, |Y | ≥ 4. Since

L∗n is internally 4-connected, rL∗
n
(X)+rL∗

n
(Y )−r(L∗n) = 2. This implies that e ∈ clPn(X) and

|X| = 3. Thus X is one of the triangles in L∗n. However, e ∈ clPn(X) implies cl(X) ∈M and

{ai, ci} ⊆ X for some i ∈ {1, · · · , n}. This contradicts the assumption that X is a triangle

in L∗n as {ai, ci, x} can not be a triangle in L∗n for any x ∈ E(L∗n) for all i ∈ {1, · · · , n}.

Therefore Pn is internally 4-connected.

Suppose M is a weakly 4-connected single element extension of L∗n such that M � Pn.

Then there exists element a ∈ E(L∗n) such that M\a is weakly 4-connected. If M\a or

(M\a)∗ is isomorphic to Lm, Lm, Pm, or Pm for some n ≥ 4, it must be the case that

M\a ∼= L∗n or (Ln)∗. If m 6= n, then the rank or the number of element does not match.

Suppose there exists ai ∈ E(L∗n) such that M\ai is weakly 4-connected and M\ai ∼= L∗n.

Since {ai−1, ai, bi} and {ai, ai+1, bi+1} is a triangle in L∗n, if M\ai ∼= L∗n, then {ai−1, e, bi}

and {e, ai+1, bi+1} is a triangle in M\ai and M . Then cl({ai−1, bi}) = {ai−1, ai, bi} and

cl({ai+1, bi+1}) = {ai, ai+1, bi} ∈ M. However, two sets are modular pairs. Therefore {ai} ∈

M, a contradiction as M is weakly 4-connected. Therefore if M\ai is weakly 4-connected,

M\ai 6= L∗n. For the same reason, M\ai 6= (Ln)∗ as well.
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Now, we prove results similar to Lemma 7.2.2 and 7.2.4 for Pn. As for the coextension

of Pn, we look at the extension of P ∗n instead.

Lemma 7.2.5. If N is a 3-connected extension of Pn, n ≥ 4, then N is weakly 4-connected.

Moreover, there exists an element a ∈ E(Ln) such that N\a and (N\a)∗ are weakly 4-

connected and are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4.

Proof. Let N be a modular cut of Pn, n ≥ 4 and let N be a 3-connected extension of Pn

such that N = Pn +N f . Let r, denote the rank of Pn. Then r(N) = r(Pn) = r(L∗n) = n+ 1.

For Lemmas 7.2.5 and 7.2.6, let Xi = {bi, bi+1, ci−1, ci, ci+1} ⊆ E(L∗n) ⊆ E(Pn), for all

i ∈ {1, · · · , n}. And let Yi = E(Pn)−(Xi∪ai). Also, let X ′i = {bi, bi+1, ci−1, ci, ci+1} ⊆ E(L∗n)

and Y ′i = E(L∗n)− (X ′i ∪ ai).

Claim 1: N is weakly 4-connected.

Proof. Since Pn is internally 4-connected, if N is not weakly 4-connected,then there exists a

3-separation, (X ∪ f, Y ) in N such that |X ∪ f |, |Y | ≥ 5. However, this separation induces

a 3-separation (X, Y ) in Pn where |X| ≥ 4 and |Y | ≥ 5, a contradiction as Pn is internally

4-connected. Therefore N is weakly 4-connected.

Suppose N\a is not weakly 4-connected for some a = ai ∈ E(L∗n). Since N is weakly

4-connected, either N\a is 2-connected but not 3-connected or N\a is 3-connected but not

weakly 4-connected.

Claim 2a: If N\a is 3-connected.

Proof. Note that N\a is 2-connected but N\a\f = N\f\a = Pn\a. From Lemma 7.2.4

Claim 2a, we already proved that for any weakly 4-connected extension of L∗n, any single

element deletion is still 3-connected. Therefore Pn\a is 3-connected as well. Then by Propo-

sition 7.2.1, there exists a circuit containing f and has size fewer than 3 in N\a. Let {f, x}

be a 2-element circuit in N\a where x ∈ E(Pn) − a. However, any circuit in N\a is also a
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circuit in Pn as well and we have a contradiction. If {e, x} is a circuit in Pn, then Pn can

not be internally 4-connected. Therefore N\a is 3-connected.

Claim 2b: If N\a is 3-connected but not weakly 4-connected, then a 3-separation (X∪f, Y ),

where |X ∪ f |, |Y | ≥ 5, in N\a induces a 3-separation (X − e, Y − e) in L∗n\a.

Proof. Suppose N\a is 3-connected but not weakly 4-connected and (X ∪ f, Y ) is a 3-

separation in N\a such that |X∪f |, |Y | ≥ 5. Since N is weakly 4-connected, λN(X∪f) 6= 2

as (X∪f, Y ∪a) induces a 3-separation and |X∪f | ≥ 5, |Y ∪a| ≥ 6. Therefore, the following

statement holds:

(i) λN(X ∪ f) = rN(X ∪ f) + rN(Y ∪ a)− r(N) = 3 and a /∈ clN(Y ).

Then λPn(Y ∪ a) = 3 because Pn is internally 4-connected and |X| ≥ 4, |Y ∪ a| ≥ 6.

Therefore, the following statement holds:

(ii) λPn(Y ∪ a) = rPn(X) + rPn(Y ∪ a)− r(Pn) = 3 and f ∈ cl(X).

By (i), a /∈ clN(Y ) and this implies a /∈ clPn(Y ). Therefore rPn(Y ∪a) = rPn(Y ) + 1. Finally,

the last statement holds:

(iii) λPn\a(X) = rPn\a(X) + rPn\a(Y )− r(Pn\a) = 2.

Note that (X, Y ) is a 3-separation of Pn\a where |X| ≥ 4 and |Y | ≥ 5. If |X| = 4, then Pn\a

is weakly 4-connected. This contradicts Lemma 7.2.4 as Pn\a is not weakly 4-connected for

all a ∈ E(Ln). Therefore |X| ≥ 5. Since |X|, |Y | ≥ 5 and e ∈ X or e ∈ Y , we have |X − e|,

|Y − e| ≥ 4. In this case, by Lemma 7.2.4 Claim 2b, (X − e, Y − e) induces a 3-separation

in L∗n.

Claim 3: If cl(Xi), cl(Yi) /∈ N (resp. cl(X ′i), cl(Y
′
i ) /∈ N ), then N\ai (resp. N\ci) is

weakly 4-connected.

Proof. Suppose to the contrary that there exists i ∈ {1, · · · , n} such that clPn(Xi), clPn(Yi) /∈

N but N\ai is not weakly 4-connected. If N\ai is not weakly 4-connected, then by Claim
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2a, N\ai must be 3-connected but not weakly 4-connected. Thus, there exists a 3-separation

(X ∪ f, Y ) in N\ai such that |X ∪ f |, |Y | ≥ 5. From Claim 2b, two statements hold:

(i) f ∈ clPn(X), which implies clPn(X) ∈ N .

(ii) (X − e, Y − e) induces a 3-separation in L∗n\ai where |X − e|, |Y − e| ≥ 4.

From (ii), we know (X−e, Y −e) induces a 3-separation in L∗n\ai. Without loss of generality,

suppose X − e = Xi, Xi − ci−1, or Xi − ci+1. If X − e = Xi, then by (i), clPn(Xi) ∈

N , a contradiction. If X − e = Xi − ci−1 or Xi − ci+1, again, by (i), clPn(Xi − ci−1)

or clPn(Xi − ci+1) ∈ N . However, Xi − ci−1, Xi − ci+1 ⊂ Xi and since N is a modular

cut, this implies clPn(Xi) ∈ N , a contradiction as well. Therefore N\ai must be weakly

4-connected.

In the rest of the proof of Lemma 7.2.5, when we write cl(X), we mean clPn(X).

When we take closure of a set in a different matroid, say N , we will denote it properly as

clN(X) in the proof.

Claim 4: There exists i such that cl(Xi) /∈ N .

Proof. Suppose to the contrary that cl(Xi) ∈ N for all i ∈ {1, · · · , n}. Then cl(Xi) ∈ N

for all i ∈ {1, · · · , n}. Therefore cl(X2), cl(X3) and cl(X4) ∈ M. Note that f /∈ cl(Xi) for

all i since cl(Xi) does not contain ai and {ai, ci, f} is a triangle for all i ∈ {1, · · · , n} in Pn.

Therefore cl(Xi) = clL∗
n
(Xi) and we can apply the proof of the Claim 4 of Lemma 7.2.4 to

prove this claim.

Claim 5: If there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ N but cl(Xi−1) ∈ N , then

N/ci−1 is weakly 4-connected.

Proof. Suppose there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ N but cl(Xi−1) ∈ N . Then

(cl(Xi−1),cl(Yi)) is a modular pair and thus, cl(Xi−1)∩ cl(Yi) = {bi−1, ci−2, ci−1} ∈ N . Now,

suppose to the contrary that N\ci−1 is not weakly 4-connected. Then cl(X ′i−1) ∈ N or
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cl(Y ′i−1) ∈ N . If cl(X ′i−1) ∈ N , then (cl(X ′i−1),{bi−1, ci−2, ci−1}) is a modular pair. Therefore

cl(X ′i−1)∩{bi−1, ci−2, ci−1} = {bi−1} ∈ N , which implies N is not weakly 4-connected. This is

a contradiction. If cl(Y ′i−1) ∈ N , then (cl(Y ′i−1),{bi−1, ci−2, ci−1}) is a modular pair. Therefore

cl(Y ′i−1)∩{bi−1, ci−2, ci−1} = {ci−1} ∈ N , which also creates a contradiction. Therefore both

cl(X ′i−1), cl(Y
′
i−1) /∈ N and thus N\ci−1 is weakly 4-connected.

Claim 6: If cl(Xi) /∈ N for all i ∈ {1, · · · , n}, then there exists j such that cl(Yj) ∈ N

and N\aj is weakly 4-connected.

Proof. Suppose to the contrary that cl(Yi) ∈ N for all i ∈ {1, · · · , n}. Then, r(Yi) = r − 1

and the following statements hold.

(i)
⋂k
i=3 cl(Yi) = E(Pn)−{a2, · · · , ak, b2, · · · , bk+1, c2, · · · , ck} and r(

⋂k
i=3 cl(Yi)) = r−k+ 1.

(ii)
⋂k
i=3 cl(Yi) ∪ cl(Yk+1) = E(L∗n)− ck+1 and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r.

(iii)
⋂k
i=3 cl(Yi) ∩ cl(Yk+1) =

⋂k+1
i=3 and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r − k.

From (i), (ii), and (iii) we can see that for each k ∈ {3, · · · , n}, (
⋂k
i=3 cl(Yj),cl(Yk+1)) is a

modular pair and thus,
⋂k
i=2 cl(Yi) ∩ cl(Yk+1) =

⋂k+1
i=3 cl(Yi) ∈ N . Therefore

⋂n
i=2 cl(Yj) =

{a1, c1, e} ∈ N as well. Now, consider the set {a1, c1, e} and cl(Y1). Two sets form a

modular pair and thus their intersection {e} ∈ N . This is a contradiction as N is weakly

4-connected. Therefore there exists some j ∈ {1, · · · , n} such that cl(Yj) /∈ N and N\aj is

weakly 4-connected.

Suppose N\ai is weakly 4-connected. Then we need to make sure N\ai and (N\ai)∗

are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4. By comparing the rank and the

number of elements, we only need to check if N\ai is not isomorphic to Pn or P n. Note

that {ai, ai+1, bi+1} is a triangle for all i ∈ {1, · · · , n} in Pn. Also, every element ai is in

two such triangles as {ai−1, ai, bi} is also a triangle. Therefore if N\ai ∼=, then {f, ai+1, bi+1}

and {ai−1, f, bi} must be two triangles in N\ai. Since N is an extension of Pn, the two

set {f, ai+1, bi+1} and {ai−1, f, bi} must be also a triangle in N as well. If {ai, f} is not in
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parallel, by applying the CEA to {ai, ai+1, bi+1} and {f, ai+1, bi+1} we see that {ai+1, f, bi+1}

must be a triangle in N as well. This implies that {ai+1, bi+1} ∈ N and by the construction

of Pn, we also have {ai+1, ci+1} ∈ N as well. Two sets form a modular pair and this forces

{ai+1} ∈ N , a contradiction as N is weakly 4-connected matroid. Therefore if N/ai ∼= Pn,

then {ai, f} is in parallel, which again, is a contradiction. Thus, N\ai � Pn. For the same

reason, N\ai � P n as well. Furthermore, if N\ai has a L∗n-minor, then N\ai must be one

of weakly 4-connected extension of L∗n which is not isomorphic to Pn and in this case, by

Lemma 7.2.4, there exists an element b ∈ E(L∗n) such that N\ai\b is weakly 4-connected.

This complete the proof of Lemma 7.2.5.

Lemma 7.2.6. If N is a 3-connected extension of P ∗n , then N is weakly 4-connected and

there exists an element a ∈ E(Ln) such that N/a and (N/a)∗ are weakly 4-connected and are

not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4.

Proof. Let N be a modular cut of P ∗n , n ≥ 4 and let N be a 3-connected extension of P ∗n such

that N = P ∗n +N e. Note that P ∗n is a coextension of Ln and N∗ is a coextension of Pn. Let

r, denote the rank of P ∗n . For this lemma, let Xi = {bi, bi+1, ci−1, ci, ci+1} ⊆ E(Ln) ⊆ E(P ∗n),

for all i ∈ {1, · · · , n}. And let Yi = E(P ∗n)−(Xi∪ai). Also, let X ′i = {bi, bi+1, ci−1, ci, ci+1} ⊆

E(Ln) and Y ′i = E(Ln)− (X ′i ∪ ai).

Claim 1: N is weakly 4-connected.

Proof. SupposeN is not weakly 4-connected. Therefore there exists a 3-separation, (X∪f, Y )

in N where |X ∪ f |, |Y | ≥ 5. This separation induces either a 2-separation or a 3-separation

(X, Y ) in P ∗n . However Pn is internally 4-connected. Therefore P ∗n is internally 4-connected as

well, and thus can not have a 3-separation where both sides of the separation have cardinality

at least 4. Therefore N is weakly 4-connected.

Now, suppose N/a is not weakly 4-connected for some a = ai ∈ E(L∗n). Then either

N/a is 2-connected but not 3-connected, or it is 3-connected but not weakly 4-connected.
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Claim 2a: If N/a is 2-connected but not 3-connected, then there exists x ∈ E(L∗n)− a such

that {f, a, x} is a triangle in Pn.

In the proof of Claim 2a of Lemma 7.2.2, we only used the fact that Ln is internally

4-connected and M is weakly 4-connected single element extension of M . We did not use

any properties of Ln in the proof. Thus, we can use the same proof in this claim as well.

Claim 2b: If N/a is 3-connected but not weakly 4-connected for a = ai ∈ E(Ln), then a

3-separation (X ∪ f, Y ) where |X ∪ f |, |Y | ≥ 5, in N/a induces a 3-separation (X− e, Y − e)

in Ln/a.

Proof. Suppose N/a is not weakly 4-connected and (X∪f, Y ) is a 3-separation where |X∪f |,

|Y | ≥ 5. Then, λN/a(X ∪ f) = 2 and λN(X ∪ f) = 3. If λN(X ∪ f) = 2, then (X ∪ f, Y ∪ a)

is a 3-separation of N where |X ∪ f |, |Y ∪ a| ≥ 5. Since N is weakly 4-connected, this is a

contradiction. Therefore λN(X ∪ f) = 3 and the following statement holds:

(i) λN(Y ) = rN(X ∪ f ∪ a) + rN(Y )− r(N) = 3 and a ∈ clN(Y ).

Since |X ∪ a|, |Y | ≥ 4 and P ∗n is internally 4-connected, λP ∗
n
(Y ) 6= 2. Thus following

statement holds:

(ii) λP ∗
n
(Y ) = rP ∗

n
(X ∪ a) + rP ∗

n
(Y )− r(P ∗n) = 3 and f ∈ clN(X ∪ a).

Since N is a single element extension of P ∗n and a ∈ clN(Y ), by (i), a ∈ clP ∗
n
(Y ) = clN(Y )−e.

Therefore, rP ∗
n
(Y ) = rP ∗

n
(Y ∪ a). Also, by (i), rP ∗

n
(X ∪ e ∪ a) = rP ∗

n
(X ∪ a). Therefore

rP ∗
n
(X ∪a) + rP ∗

n
(Y ∪a)− r(P ∗n) = 3 as well. If rP ∗

n
(X ∪a) 6= rP ∗

n
(X), then rP ∗

n
(X) + rP ∗

n
(Y ∪

a)− r(P ∗n) = 2 where |X|, |Y | ≥ 4. This is a a contradiction as P ∗n is internally 4-connected.

Therefore the following statement holds:

(iii) λP ∗
n
(X) = rP ∗

n
(X) + rP ∗

n
(Y ∪ a)− r(P ∗n) = 3 and a ∈ clP ∗

n
(X).

By (i) and (iii), we can deduce that a ∈ clP ∗
n
(X) and clP ∗

n
(Y ). Therefore rP ∗

n/a(X) =

rP ∗
n
(X ∪ a) − 1 = rP ∗

n
(X) − 1 and similarly, rP ∗

n/a(Y ) = rP ∗
n
(Y ) − 1 as well. Therefore

λP ∗
n/a(X) = 2 and (X, Y ) is a 3-separation in P ∗n/a such that |X| ≥ 4 and |Y | ≥ 5. Note
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that P ∗n/a = (Pn\a)∗, and in Lemma 7.2.4, we already proved that Pn\a is not weakly 4-

connected for all a ∈ E(L∗n). Therefore if |X| = 4, then we obtain a contradiction. Therefore

|X| ≥ 5 and (X, Y ) is a 3-separation of P ∗n/a where |X|, |Y | ≥ 5. Also, (X, Y ) is a 3-

separation of Pn\a. From Lemma 7.2.4, this separation induces a 3-separation (X−e, Y −e)

in L∗n\a and this, in turn, induces a 3-separation (X − e, Y − e) in Ln/a.

Using Claim 2a and 2b, we provide necessary conditions for N/ai to be weakly 4-

connected in Claim 3.

Claim 3: If there exists i ∈ {1, · · · , n} such that cl(Xi), cl(Yi) /∈ N (resp. cl(X ′i),

cl(Y ′i ) /∈ N ), then N/ai (resp. N/ci) is weakly 4-connected.

Proof. Suppose to the contrary that cl(Xi), cl(Yi) /∈ N but N/ai is not weakly 4-connected.

Then N/ai is not 3-connected or N/ai is 3-connected but not weakly 4-connected. First, if

N/ai is 2-connected but not 3-connected, then by Claim 2a, {f, ai, x} must be a triangle

in N for some x ∈ E(P ∗n) where x 6= ai. Therefore {ai, x} ∈ N , as otherwise, {f, ai, x}

would not be a triangle in N . Note that ai ∈ cl(Xi) and ai ∈ cl(Yi). Also x ∈ cl(Xi)

or x ∈ cl(Yi) as cl(Xi) ∪ cl(Yi) = E(L∗n). Without the loss of generality, suppose x ∈ Xi.

Then {ai, x} ⊂ cl(Xi) which implies cl(Xi) ∈ N a contradiction. Therefore N/ai must be

3-connected.

If N/ai is 3-connected but not weakly 4-connected, then there exists a 3-separation

(X ∪ f, Y ) in N/ai such that |X ∪ f |, |Y | ≥ 5. From Claim 2b, we know e ∈ clN(X ∪ a) and

a ∈ clP ∗
n
(X). This implies a ∈ clN(X) and e ∈ clN(X ∪ a) = clN(X). Thus clP ∗

n
(X) /∈ N .

Since (X − e, Y − e) induces a 3-separation in Ln/ai, either X − e or Y is Xi, (Xi − ci−1),

or (Xi − ci+1). If X − e = Xi, then, clL∗
n
(Xi) ∈ N , a contradiction. If X − e = Xi − ci−1 or

X − e = Xi − ci+1, again, clL∗
n
(Xi − ci−1) ∈ N or clL∗

n
(Xi − ci+1) ∈ N . However, Xi − ci−1,

Xi − ci+1 ⊂ Xi and since N is a modular cut, this implies Xi ∈ N , a contradiction as well.

Therefore N/ai must be weakly 4-connected.
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In the rest of the proof of Lemma 7.2.6, when we write cl(X), we mean clP ∗
n
(X).

When we take the closure of a set in a different matroid, say N , we will denote it properly

as clN(X) in the proof.

Claim 4: There exists i ∈ {1, · · · , n} such that cl(Xi) /∈ N .

Proof. Suppose to the contrary that cl(Xi) ∈ N for all i ∈ {1, · · · , n}. Therefore cl(X2),

cl(X3) and cl(X4) ∈ N . Note that r(cl(Xi)) = 5 for all i. Also, r(cl(X2) ∪ cl(X3)) =

r(cl({a2, a3, b2, b3, b4, c1, c2, c3, c4})) = 7. Lastly, r(cl(X2) ∩ cl(X3)) = r(cl({b3, c2, c3})) =

3. Then (cl(X2),cl(X3)) is a modular pair and thus cl(X2) ∩ cl(X3) = {b3, c2, c3} ∈ N .

Also, ({b3, c2, c3},cl(X4)) is a modular pair and their intersection is in N as well. However,

{b3, c2, c3} ∩ cl(X4) = {c4}. This implies that f is in parallel with c4 in N , which is a

contradiction since N weakly 4-connected. Therefore there exists i ∈ {1, · · · , n} such that

cl(Xi) /∈ N .

Claim 5: If there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ N but cl(Xi−1) ∈ N , then N/ai,

N/ci, or N/ai−3 is weakly 4-connected.

Proof. Now suppose that there exists some i ∈ {1, · · · , n} such that cl(Xi) /∈ N but

cl(Xi−1) ∈ N . Without loss of generality suppose that i = 4. Thus cl(X4) /∈ N but

cl(X3) ∈ N . If cl(Y4) /∈ N as well, then we are done since N/a3 will be weakly 4-connected.

Suppose that cl(Y4) ∈ N . Then (cl(X3),cl(Y4)) is a modular pairs and thus cl(X3) ∩

cl(Y4) = {a3, b3, c2} ∈ N . In this case, we will show that N/c4 or N/a1 is weakly 4-

connected. Suppose neither N/c4 nor N/a1 are weakly 4-connected. Therefore cl(X ′4) ∈ N

or cl(Y ′4) ∈ N . Similarly, cl(X1) ∈ N or cl(Y1) ∈ N . If cl(X ′4) ∈ N then (cl(X ′4),{a3, b3, c2})

is a modular pair and thus their intersection, {a3} ∈ N . This contradicts the fact that

N is weakly 4-connected. Therefore cl(Y ′4) must be in N . Also, (cl(Y ′4),{a3, b3, c2}) is a

modular pair so {b3, c2} ∈ N . Similarly, if cl(X1) ∈ N then we obtain contradiction as

(cl(X1),{a3, b3, c2}) is a modular pair, which implies {c2} ∈ N . Therefore cl(Y1) ∈ N . Also,
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(cl(Y1),{a3, b3, c2}) is a modular pair and thus, {a3, b2} ∈ N . Now, because neither N/a1

nor N/c4 are weakly 4-connected, we showed cl(Y ′4) and cl(Y1) ∈ N which implied {b3, c2}

and {a3, b2} ∈ N . However, the two sets form a modular pair. Therefore {b2} ∈ N , a

contradiction as N is weakly 4-connected. Therefore we must have cl(Y ′4) /∈ N or cl(X1) /∈ N

which implies cl(X ′4) and cl(Y ′4) /∈ N or cl(X1) and cl(Y1) /∈ N . Then either N/c4 is weakly

4-connected or N/a1 is weakly 4-connected.

Claim 6: If cl(Xi) /∈ N for all i ∈ {1, · · · , n}, then there exists j, k ∈ {1, · · · , n} such

that N/aj or N/ck is weakly 4-connected.

Proof. Since cl(Xi) /∈ N for all i ∈ {1, · · · , n}. If there exists some j ∈ {1, · · · , n} such that

cl(Yj) /∈ N , then we are done as M/aj would be weakly 4-connected. Thus, suppose that

cl(Yi) ∈ N for all i ∈ {1, · · · , n}. For k ∈ {4, · · · , n}, the following statements hold:

(i)
⋂k
i=3 cl(Yi) = E(P ∗n)− {b3, · · · , bk+1, c2, · · · , ci+1} and r(

⋂k
i=3 cl(Yi)) = r − 2− (k − 3) =

r − k + 1.

(ii)
⋂k
i=3 cl(Yi) ∪ cl(Yk+1) = E(P ∗n)− {bk+1, ck, ck+3} and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r − 1.

(iii)
⋂k
i=3 cl(Yi)∩ cl(Yk+1) =

⋂k+1
j=3 and r(

⋂k
i=3 cl(Yi)∩ cl(Yk+1)) = r− 2− (k+ 1− 3) = r− k.

From (i), (ii), and (iii) we can deduce that (
⋂k
i=3 cl(Yi),cl(Yk+1)) is a modular pair for each

k ∈ {4, · · · , n}, and thus, ∩k+1
j=3cl(Yj) ∈ M. Therefore ∩ni=3cl(Yi) = {a1, · · · , an, b2, e} ∈ M.

Now, consider the set {a1, · · · , an, b2, e} and cl(Y2). Two sets form a modular pair and

{a1, · · · , an, b2, e} ∩ cl(Y2) = {a1, · · · , an, e} ∈ N .

Now consider cl(X ′i). If there exists i ∈ {1, · · · , n} such that cl(X ′i) /∈ N but

cl(X ′i−1) ∈ N , then by Claim 5, there exists a ∈ E(L∗n) such that N/a is weakly 4-connected.

If cl(X ′i) /∈ N for all i, then we look at cl(Y ′j ). If there exists j such that cl(Y ′j ) /∈ N

then N/cj is weakly 4-connected and we are done. If cl(Y ′i ) ∈ N for all i, then similar to

cl(Yi), we have
⋂n
i=2 cl(Y

′
i ) = {c1, · · · , cn, e} ∈ N . However, {a1, · · · , an, e} ∈ N . Then

two sets form a modular pair and thus {e} ∈ N , which is a contradiction as N is weakly
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4-connected. Therefore in all possible cases, there exists some a ∈ E(L∗n) such that N/a is

weakly 4-connected.

In all possible cases, we have proven that there exists some a ∈ E(L∗n) such that N/a

is weakly 4-connected. Suppose N/a is weakly 4-connected. Then we need to make sure N/a

and (N/a)∗ are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4. By comparing the rank

and the number of elements we can confirm the previous statement. Also, as N is a single

element extension of P ∗n , it is not possible that N ∼= P ∗n . Furthermore, P ∗n is an internally

4-connected single element coextension of Ln and N is a weakly 4-connected single element

extension of P ∗n . Therefore if N/a is weakly 4-connected and N/a has a Ln-minor, then N/a

has to be a weakly 4-connected single element extension of Ln. And by Lemma 7.2.2, there

exists b ∈ E(Ln) such that N/a/b is weakly 4-connected. Also, by the same lemma, neither

N/a/b nor (N/a/b)∗ are isomorphic to Lm, Lm, Pm or Pm for m ≥ 4.

Note that the dual of a planar ladder is a graphic matroid. However, (Ln)∗ is not a

graphic matroid. To compute the rank of sets in (Ln)∗, one can use the graph of a Möbius

ladder. Also, we omit the proof of Claim 1, 2a, 2b, and 3 of the rest of the lemmas are

same as the proof of the corresponding claims in Lemma 7.2.4, 7.2.5, and 7.2.6. We can do

this as the proof only depends on the connectivity of the matroids Ln and Pm but not the

structure.

Lemma 7.2.7. If M is a 3-connected single element extension of (Ln)∗, n ≥ 4, then M is

weakly 4-connected. Moreover either,

(i) there exists an element a ∈ E(Ln) such that M\a and (M\a)∗ are weakly 4-connected

and not isomorphic to Lm, Lm, Pm, or Pm, m ≥ 4, or

(ii) M ∼= P n.

Proof. LetM be a modular cut of (Ln)∗, n ≥ 4 and let M be a 3-connected extension of (Ln)∗

such that M = (Ln)∗+M e. Then |E(M)| = |E((Ln)∗) + 1| = 3n+ 1 and r(M) = r((Ln)∗) =
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n + 1. For this lemma, let Xi = {bi, bi+1, ci−1, ci, ci+1} ⊂ E((Ln)∗), and Yi = E((Ln)∗) −

(Xi ∪ ai) for i ∈ {3, · · · , n}. Similarly, let X ′i = {bi, bi+1, ai−1, ai, ai+1} ⊂ E((Ln)∗) and

Y ′i = E(Ln)−(X ′i∪ci). For i = 1 and 2, letX1 = {c1, a2, cn, b1, b2} andX2 = {a1, c2, c3, b2, b3}.

Define Yi and Y ′i for (Ln)∗ in a same manner.

Claim 1: M is weakly 4-connected.

Claim 2a: M\a is 3-connected.

Claim 2b: If M\a is 3-connected but not weakly 4-connected, then a 3-separation (X∪e, Y ),

|X ∪ e|, |Y | ≥ 5, in M\a induces a 3-separation (X, Y ) in (Ln)∗\a.

Claim 3: If cl(Ln)∗(Xi), cl(Ln)∗(Yi) /∈ M (resp. cl(Ln)∗(X ′i), cl(Ln)∗(Y ′i ) /∈ M), then M\ai

(resp. M\ci)) is weakly 4-connected.

Claim 4: There exists i ∈ {1, · · · , n} such that cl(Xi) /∈M.

Proof. Suppose to the contrary that cl(Xi) ∈ M for all i ∈ {1, · · · , n}. Then cl(X2),

cl(X3) and cl(X4) ∈ M. Note that r(cl(Xi)) = 3 for all i. Also r(cl(X2) ∪ cl(X3)) =

r(cl({a1, b2, b3, b4, c2, c3, c4})) = 4. Lastly, r(cl(X2) ∩ cl(X3)) = r({b3, c2, c3}) = 2. There-

fore (cl(X2),cl(X3)) is a modular pair and cl(X2) ∩ cl(X3) = {b3, c2, c3} ∈ M. Also,

({b3, c2, c3},cl(X4)) is a modular pair as well and {b3, c2, c3} ∩ cl(X4) = {c3} ∈ M, a con-

tradiction since M is weakly 4-connected. Therefore there exist i ∈ {1, · · · , n} such that

cl(Xi) /∈M.

Claim 5: If there exists i such that cl(Xi) /∈M but cl(Xi−1) ∈M, then M\ci−1 is weakly

4-connected if i ≥ 4 and M\c1, M/c2, M/c3, M/cn or M/an−1 is weakly 4-connected if i = 1,

2 or 3.

Proof. If cl(Xi) /∈ M and cl(Yi) /∈ M, then we are done as M/ci would be weakly 4-

connected. Now, suppose there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ M but cl(Xi−1),

cl(Yi) ∈ M for some i ≥ 4. Then (cl(Xi−1),cl(Yi)) is a modular pair and thus cl(Xi−1) ∩
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cl(Yi) = {bi−1, ci−2, ci−1} ∈ M. Suppose to the contrary that M\ci−1 is not weakly 4-

connected. Then cl(X ′i−1) ∈M or cl(Y ′i−1) ∈M. If cl(X ′i−1) ∈M, then (cl(X ′i−1),{bi−1, ci−2, ci−1}

is a modular pair. Therefore cl(X ′i−1) ∩ {bi−1, ci−2, ci−1} = {bi−1} ∈ M, which implies M

is not weakly 4-connected. If cl(Y ′i−1) ∈ M, then (cl(Y ′i−1),{bi−1, ci−2, ci−1} is a modular

pair. Therefore cl(Y ′i−1)∩{bi−1, ci−2, ci−1} = {ci−1} ∈ M, which also creates a contradiction.

Therefore cl(X ′i−1), cl(Y
′
i−1) /∈M and M\ci−1 is weakly 4-connected.

We need to check the case when i = 1, 2 or 3. First, for i = 1, we suppose cl(X1) /∈M

but cl(Xn) ∈ M. For i = 2, we suppose cl(X2) /∈ M but cl(X1) ∈ M and lastly, for i = 3,

we suppose cl(X3) /∈M but cl(X2) ∈M.

First, suppose cl(X1) /∈ M and cl(Xn) ∈ M. If cl(Y1) /∈ M as well, then we are

done and M\a1 is weakly 4-connected. Thus, suppose cl(Y1) ∈ M. Then (cl(Y1),cl(Xn))

is a modular pair and cl(Y1) ∩ cl(Xn) = {bn−1, bn, cn} ∈ M. We will show that M\cn is

weakly 4-connected. Suppose not. Then cl(X ′n) ∈ M or cl(Y ′n) ∈ M. If cl(X ′n) ∈ M, then

({bn−1, bn, cn},cl(X ′n)) is a modular pair and {bn} ∈ M, a contradiction. If cl(Y ′n) ∈ M,

then ({bn−1, bn, cn},cl(Y ′n)) is a modular pair and {cn−1} ∈ M, a contradiction. Thus cl(X ′n),

cl(Y ′n) /∈M and M\cn is weakly 4-connected.

Next, suppose cl(X1) ∈ M and cl(X2) /∈ M. If cl(Y2) /∈ M as well, then M\a2 is

weakly 4-connected and we are done. Thus, suppose cl(Y2) ∈ M. Then (cl(X1),cl(Y2)) is a

modular pair, and thus {b1, c1, cn} ∈ M. We will show that M\cn is weakly 4-connected.

Suppose to the contrary that M\cn is not weakly 4-connected. Then cl(X ′n) ∈ M or

cl(Y ′n) ∈ M. If cl(X ′n) ∈ M, then ({b1, c1, cn},cl(X ′n)) is a modular pair and {b1} ∈ M, a

contradiction. If cl(Y ′n) ∈ M, then ({b1, c1, cn},cl(Y ′n)) is a modular pair and {c1} ∈ M, a

contradiction. Thus cl(X ′n), cl(Y ′n) /∈M and M\cn is weakly 4-connected.

Last, suppose cl(X3) /∈ M but cl(X2) ∈ M. If cl(Y3) /∈ M, then M\a3 is weakly

4-connected and we are done. Suppose cl(Y3) ∈ M. Then (cl(Y2),cl(X3)) is a modular pair

and {a1, b2, c2} ∈ M. Then we will show that M\c2 is weakly 4-connected. Suppose not.
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Then cl(X ′2) ∈ M or cl(Y ′2) ∈ M. If cl(X ′2) ∈ M, then ({a1, b2, c2},cl(X ′3)) is a modular

pair and {b2} ∈ M, a contradiction. If cl(Y ′2) ∈ M, then ({a1, b2, c2},cl(Y ′2)) is a modular

pair and {a1} ∈ M, a contradiction. Thus cl(X ′2), cl(Y
′
2) /∈ M and M\c2 is weakly 4-

connected. Therefore in all possible cases such that cl(Xi) ∈ M and cl(Xi−1) /∈ M, there

exists a ∈ E((Ln)∗) such that M\a is weakly 4-connected.

Claim 6: If cl(Xi) /∈ M for all i ∈ {1, · · · , n} then either there exists j such that

cl(Yj) /∈M or M ∼= P n where P n\a is not weakly 4-connected for all a ∈ E((Ln)∗).

Proof. Suppose cl(Xi) /∈ M for all i ∈ {1, · · · , n}. If there exists cl(Yj) /∈ M for some

j ∈ {1, · · · , n}, then we are done as cl(Xj) cl(Yj) /∈M implies M\aj is weakly 4-connected.

Note that cl(Yi) = cl(Y ′i ) = E((Ln)∗) − {ai, bi, bi+1, ci} for all i ∈ {1, · · · , n}. This implies

that if cl(Yi) ∈M then cl(Y ′i ) ∈M. Also, the same holds if i = 1, 2, or 3.

Suppose thatM is a modular cut of (Ln)∗ such that cl(Yi) ∈M for all i ∈ {1, · · · , n}.

Then the following statements hold for k ≥ 2.

(i)
⋂k
i=3 cl(Yi) = E((Ln)∗)−{a2, · · · , ak, b2, · · · , bk+1, c2, · · · , ck} and r(

⋂k
i=3 cl(Yi)) = r−k+

1.

(ii)
⋂k
i=3 cl(Yi) ∪ cl(Yk+1) = E((Ln)∗)− ck+1 and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r.

(iii)
⋂k
i=3 cl(Yi) ∩ cl(Yk+1) =

⋂k+1
i=3 and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r − k.

From (i), (ii), and (iii) we can deduce that for each k ∈ {3, · · · , n}, the sets
⋂k
i=3 cl(Yj)

and cl(Yk+1) form a modular pair and thus, (
⋂k
i=2 cl(Yi))∩cl(Yk+1) =

⋂k+1
i=3 cl(Yi) ∈ M.

Therefore
⋂n
i=2 cl(Yj) = {a1, c1} ∈ M. This applies for any intersection of n− 1 number of

cl(Yi). Thus {ai, ci} ∈ M for all i ∈ {1, · · · , n}.

Then for all i ∈ {1, · · · , n}, M\ai and M\ci are not weakly 4-connected. It is also

not too difficult to check that M\bi is also not weakly 4-connected. Therefore if cl(Xi) /∈M

for all i, then either there exists j such that M/aj is weakly 4-connected or M ∼= P n.
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Let Pn be the internally 4-connected single element extension of L∗n such that P n\a

is not weakly 4-connected for all a ∈ E(Ln). And let Xi = {bi, bi+1, ci−1, ci, ci+1} ⊆

E(L∗n) ⊆ E(P n), for all i ∈ {1, · · · , n}. And let Yi = E(P n) − (Xi ∪ ai). Also, let

X ′i = {bi, bi+1, ci−1, ci, ci+1} ⊆ E(Ln) ⊆ E() and Y ′i = E(Ln)−(X ′i∪ai). LetXi, X
′
i be defined

in a same manner for E(P n) and the dual except for i = 1 and 2. Let X1 = {c1, a2, cn, b1, b2}

and X2 = {a1, c2, c3, b2, b3}. Let X ′1 = {a2, c2, an, b1, b2} and X ′2 = {c1, a2, a3, b2, b3}. Define

Yi and Y ′i for P n and the dual in a same manner for all i ∈ {1, · · · , n}.

Claim 7: P n is the only weakly 4-connected single element extension of (Ln)∗ such that

P n\a is not weakly 4-connected for all a ∈ E((Ln)∗).

Proof. Suppose thatM is a modular cut of (Ln)∗ such that cl(Yi) ∈M for all i ∈ {1, · · · , n}

and M ∼= (Ln)∗ +M e. Then by Claim 6, {ai, ci} ∈ M for all i ∈ {1, · · · , n} and M ∼= P n.

We will prove that there does not exist any other modular cut of (Ln)∗, say M1, such that

{ai, ci} for all i ∈ {1, · · · , n} and M1 6=M. Let M1 = (Ln)∗ +M1 e. We will show that M1

is not 3-connected and thus, Claim 7 holds.

Let F be a flat of (Ln)∗ such that F ∈ M1 but F /∈ M. Then {ai, ci} * F for all

i ∈ {1, · · · , n}. If {ai, ci} ⊆ F for some i ∈ {1, · · · , n}, then F ∈M becauseM is a modular

cut. Therefore |{ai, ci} ∩ F | = 1 or 0 for all i.

Suppose there exists i ∈ {1, · · · , n} such that |{ai, ci} ∩ F | = 1. Assume without

loss of generality that ai ∈ F and ci /∈ F . Then r(F ∪ {ai, ci}) = r(F ) or r(F ) + 1. If

r(F ∪{ai, ci}) = r(F ) + 1, then (F ,{ai, ci}) is a modular pair, and F ∩{ai, ci} = {ai} ∈ M1.

This implies M1 is not 3-connected. If r(F ∪ {ai, ci}) = r(F ), then {ai, ci} ⊆ F . This

contradicts our assumption that {ai, ci} * F . Therefore there does not exist i such that

|{ai, ci} ∩ F | = 1. Thus {ai, ci} ∩ F = ∅ for all i. This implies that F ⊆ {b1, · · · , bn}. Since

F is a flat, r(F ∪ai) = r(F )+1 and r(F ∪ci) = r(F )+1 for all i. If r(F ∪{ai, ci}) = r(F )+1,

then there exists a circuit C ⊆ F ∪ {ai, ci} such that {ai, ci} ⊆ C. However, there does not
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exist a circuit in (Ln)∗ where the circuit only contains {ai, ci} and some elements from the

set {b1, · · · , bn}. Therefore r(F ∪ {ai, ci}) = 2. Then (F ,{ai, ci}) is a modular pair. This

implies F ∩ {ai, ci} = ∅ ∈ M1, and M1 is not 3-connected. Therefore Claim 7 is true.

Claim 8: P n is internally 4-connected.

Proof. Suppose to the contrary that Pn is not internally 4-connected. Since Pn is still weakly

4-connected, there exists 3-separation (X ∪ e, Y ) such that |X ∪ e|, |Y | ≥ 4. If e /∈ clPn(X),

then cl(X) /∈M1. Then rPn(X∪e) = rPn(X)+1 and r(Ln)∗(X)+1+r(Ln)∗(Y )−r((Ln)∗) = 2,

a contradiction as (Ln)∗ is internally 4-connected. Therefore e ∈ clPn(X) and cl(X) ∈ M.

This implies that r(Ln)∗(X) + r(Y )(Ln)∗(Y ) − r((Ln)∗) = 2. Because (Ln)∗ is internally

4-connected, X must be one of the triangle, {ai, ai+1, bi+1} for some i and e ∈ clPn(X).

Therefore {ai, ci}, {ai, ai+1, bi+1} ∈ M1 and because two sets form a modular pair, this

implies {ai} ∈ M. This is a contradiction as P n is weakly 4-connected. Therefore P n is also

internally 4-connected as well.

Suppose M is a weakly 4-connected single element extension of (Ln)∗ such that M �

P n. Then there exists element a ∈ E((Ln)∗) such that M\a is weakly 4-connected. If M\a

or (M\a)∗ is isomorphic to Lm, Lm, Pm, or Pm for some n ≥ 4, it must be the case that

M\a ∼= L∗n or (Ln)∗. If m 6= n, then the rank and the number of element does not match.

Suppose there exists ai ∈ E((Ln)∗) such that M\ai is weakly 4-connected and M\ai ∼= (Ln)∗.

Since {ai−1, ai, bi} and {ai, ai+1, bi+1} is a triangle in (Ln)∗, if M\ai ∼= (Ln)∗, then {ai−1, e, bi}

and {e, ai+1, bi+1} is a triangle in M\ai and M . Then cl({ai−1, bi}) = {ai−1, ai, bi} and

cl({ai+1, bi+1}) = {ai, ai+1, bi} ∈ M. However, two sets form a modular pair. Therefore

{ai} ∈ M, a contradiction as M is weakly 4-connected. This holds if i = 2 where the

triangles have the form {c1, b1, a2}. Therefore if M\ai is weakly 4-connected, M\ai is not

isomorphic to (Ln)∗. For the same reason, M\ai is not isomorphic to L∗n as well.
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Now, we prove results similar to Lemma 7.2.3 and 7.2.7 for P n. As for the coexten-

sion of P n, we look at the extension of (P n)∗ instead. Let Xi = {bi, bi+1, ci−1, ci, ci+1} ⊆

E((Ln)∗) ⊆ E(P n), for all i ∈ {3, · · · , n}. For i = 1 and 2, let X1 = {c1, a2, cn, b1, b2} and

X2 = {a1, c2, c3, b2, b3}. And let Yi = E(P n)−(Xi∪ai). Also, letX ′i = {bi, bi+1, ci−1, ci, ci+1} ⊆

E((Ln)∗) ⊆ E(P n) and Y ′i = E(P n)− (X ′i ∪ ai). Define X ′i and Y ′i in a similar manner.

Lemma 7.2.8. If N is a 3-connected extension of P n, then N is weakly 4-connected and

there exists an element a ∈ E((Ln)∗) such that N\a and (N\a)∗ are weakly 4-connected and

are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4.

Proof. Let N be a modular cut of P n, n ≥ 4 and let N be a 3-connected extension of P n

such that N = P n +N f . Let r, denote the rank of P n. Then r(N) = r() = r(L∗n) = n+ 1.

Claim 1: N is weakly 4-connected.

Claim 2a: If N\a is 3-connected.

Claim 2b: If N\a is 3-connected but not weakly 4-connected, then a 3-separation (X∪e, Y )

in N\a where |X ∪ f |, |Y | ≥ 5 induces a 3-separation (X − e, Y − e) in (Ln)∗\a.

Claim 3: If cl(Xi), cl(Yi) /∈ N (resp. cl(X ′i), cl(Y
′
i ) /∈ N ), then N\ai (resp. N\ci) is

weakly 4-connected.

In the rest of the proof of Lemma 7.2.8, when we write cl(X), we mean clPn(X).

When we take closure of a set in a different matroid, say N , we will denote it properly as

clN(X) in the proof.

Claim 4: There exists i such that cl(Xi) /∈ N .

Proof. Suppose to the contrary that cl(Xi) ∈ N for all i ∈ {1, · · · , n}. Then cl(Xi) ∈ N

for all i ∈ {1, · · · , n}. Therefore cl(X2), cl(X3) and cl(X4) ∈ M. Note that f /∈ cl(Xi) for

all i since cl(Xi) does not contain ai and {ai, ci, f} is a triangle for all i ∈ {1, · · · , n} in P n.

Therefore cl(Xi) = cl(Ln)∗(Xi) and we can apply the proof of the Claim 4 of Lemma 7.2.7 to

prove this claim.
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Claim 5: If there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ N but cl(Xi−1) ∈ N , then

N\ci is weakly 4-connected for i ≥ 4 and N\c1, N/c2, N/c3, N/cn or N/an−1 is weakly

4-connected if i = 1, 2 or 3.

Proof. Suppose there exists an i such that cl(Xi) /∈ N but cl(Xi−1), cl(Yi) ∈ N for some i ≥

4. Then (cl(Xi−1), cl(Yi)) is a modular pair and thus cl(Xi−1)∩cl(Yi) = {bi−1, ci−2, ci−1} ∈ N .

Now, suppose to the contrary that M\ci−1 is not weakly 4-connected. Then cl(X ′i−1) ∈ N or

cl(Y ′i−1) ∈ N . If cl(X ′i−1) ∈ N , then (cl(X ′i−1),{bi−1, ci−2, ci−1}) is a modular pair. Therefore

cl(X ′i−1) ∩ {bi−1, ci−2, ci−1} = {bi−1} ∈ N . This is a contradiction since N is weakly 4-

connected. If cl(Y ′i−1) ∈ N , then (cl(Y ′i−1),{bi−1, ci−2, ci−1}) is a modular pair. Therefore

cl(Y ′i−1) ∩ {bi−1, ci−2, ci−1} = {ci−1} ∈ N . This is a contradiction since N is weakly 4-

connected. Therefore cl(X ′i−1), cl(Y
′
i−1) /∈ N and M\ci−1 is weakly 4-connected.

We still need to check the case where i = 1, 2 and 3. For i = 1, we suppose cl(X1) /∈M

but cl(Xn) ∈ M. For i = 2, we suppose cl(X2) /∈ N but cl(X1) ∈ N . Lastly, for i = 3, we

suppose cl(X3) /∈ N but cl(X2) ∈ N .

First, suppose cl(X1) /∈ N and cl(Xn) ∈ N . If cl(Y1) /∈ N as well, then we are done

and M\a1 is weakly 4-connected. Suppose cl(Y1) ∈ N . Then (cl(Y1),cl(Xn)) is a modular

pair and {bn−1, bn, cn} ∈ N . Then we will show that M\cn is weakly 4-connected. Suppose

M\cn is not weakly 4-connected. Then cl(X ′n) ∈ N or cl(Y ′n) ∈ N . If cl(X ′n) ∈ N , then

({bn−1, bn, cn},cl(X ′n)) is a modular pair and {bn} ∈ N , a contradiction. If cl(Y ′n) ∈ N ,

then ({bn−1, bn, cn},cl(Y ′n)) is a modular pair and {cn−1} ∈ N , a contradiction. Thus cl(X ′n),

cl(Y ′n) /∈ N and N\cn is weakly 4-connected.

Next, suppose cl(X1) ∈ N and cl(X2) /∈ N . If cl(Y2) /∈ N as well, then M\a2 is

weakly 4-connected and we are done. So, suppose cl(Y2) ∈ N . Then (cl(X1),cl(Y2)) is a

modular pair, and thus {b1, c1, cn} ∈ N . We will show that N\cn is weakly 4-connected.

Suppose to the contrary that M\cn is not weakly 4-connected. Then cl(X ′n) ∈ N or cl(Y ′n) ∈
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N . If cl(X ′n) ∈ N , then ({b1, c1, cn},cl(X ′n)) is a modular pair and {b1} ∈ N . Which is a

contradiction. If cl(Y ′n) ∈ N , then ({b1, c1, cn},cl(Y ′n)) is a modular pair and {c1} ∈ N , a

contradiction. Thus cl(X ′n), cl(Y ′n) /∈ N and N\cn is weakly 4-connected.

Last, suppose cl(X3) /∈ N but cl(X2) ∈ N . If cl(Y3) /∈ N , then N\a3 is weakly

4-connected and we are done. So, suppose cl(Y3) ∈ N . Then (cl(Y2),cl(X3)) is a modular

pair and {a1, b2, c2} ∈ N . Then we will show that N\c2 is weakly 4-connected. Suppose

to the contrary M\c2 is not weakly 4-connected. Then cl(X ′2) ∈ N or cl(Y ′2) ∈ N . If

cl(X ′2) ∈ N , then ({a1, b2, c2},cl(X ′3)) is a modular pair and {b2} ∈ N , a contradiction. If

cl(Y ′2) ∈ N , then ({a1, b2, c2},cl(Y ′2)) is a modular pair and {a1} ∈ N , a contradiction. Thus

cl(X ′2), cl(Y
′
2) /∈ N and N\c2 is weakly 4-connected. Therefore in all possible cases such

that cl(Xi) ∈ N and cl(Xi−1) /∈ N , there exists a ∈ E((Ln)∗) such that N\a is weakly

4-connected.

Claim 6: If cl(Xi) /∈ N for all i ∈ {1, · · · , n}, then there exists j such that cl(Yj) ∈ N

and N\aj is weakly 4-connected.

Proof. Suppose to the contrary that cl(Yi) ∈ N for all i ∈ {1, · · · , n}. Then, r(Yi) = r − 1

and the following statements holds:

(i)
⋂k
i=3 cl(Yj) = E(P n)−{a2, · · · , ak, b2, · · · , bk+1, c2, · · · , ck} and r(

⋂k
i=3 cl(Yi)) = r−k+1.

(ii)
⋂k
i=3 cl(Yi) ∪ cl(Yk+1) = E(P n)− ck+1 and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r.

(iii)
⋂k
i=3 cl(Yi) ∩ cl(Yk+1) =

⋂k+1
i=3 and r(

⋂k
i=3 cl(Yi) ∪ cl(Yk+1)) = r − k.

From (i), (ii), and (iii) we can deduce that for each k ∈ {3, · · · , n},
⋂k
i=3 cl(Yi) and cl(Yk+1)

form a modular pair and thus,
⋂k
i=2 cl(Yi)∩cl(Yk+1) =

⋂k+1
i=3 cl(Yi) ∈ N . Therefore

⋂n
i=2 cl(Yj) =

{a1, c1, e} ∈ N . Consider the set {a1, c1, e} and cl(Y1). Two sets form a modular pair and

their intersection {e} ∈ N , a contradiction as N is weakly 4-connected. Therefore there

exists some j such that cl(Yj) /∈ N and N\aj is weakly 4-connected.
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Suppose N\ai is weakly 4-connected. Then we need to make sure N\ai and (N\ai)∗

are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4. By comparing the rank and the

number of elements, we only need to check if N\ai is isomorphic to Pn or P n. Note that

{ai, ai+1, bi+1} is a triangle for all i ∈ {1, · · · , n} in P n if i 6= 2. Also ai is in two such

triangles as {ai−1, ai, bi} is also a triangle if i 6= 2. However, a2 is also in two triangles of P n

as well. Therefore if N\ai ∼=, then {f, ai+1, bi+1} and {ai−1, f, bi} must be two triangles in

N\ai. Since N is an extension of P n, the two set {f, ai+1, bi+1} and {ai−1, f, bi} must be also

a triangle in N as well. If {ai, f} is not in parallel, by applying the CEA to {ai, ai+1, bi+1}

and {f, ai+1, bi+1} we see that {ai+1, f, bi+1} must be a triangle in N as well. This implies

that {ai+1, bi+1} ∈ N and by the construction of P n, we also have {ai+1, ci+1} ∈ N as well.

Two sets form a modular pair and this forces {ai+1} ∈ N , a contradiction as N is weakly

4-connected matroid. Therefore if N/ai ∼= P n, then {ai, f} is in parallel, which again, is a

contradiction. Thus, N\ai � P n. For the same reason, N\ai � Pn as well. Furthermore, if

N\ai has a (Ln)∗-minor, then N\ai must be one of weakly 4-connected extension of (Ln)∗

which is not isomorphic to P n and in this case, by Lemma 7.2.7, there exists an element

b ∈ E((Ln)∗) such that N\ai\b is weakly 4-connected. This complete the proof of Lemma

7.2.8.

Lemma 7.2.9. If N is a 3-connected extension of (P n)∗, then N is weakly 4-connected and

there exists an element a ∈ E((Ln)∗) such that N/a and (N/a)∗ are weakly 4-connected and

are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4.

Proof. Let N be a modular cut of (P n)∗, n ≥ 4 and let N be a 3-connected extension of

(P n)∗ such that N = (P n)∗ +N e. Let r, denote the rank of (P n)∗.

Claim 1: N is weakly 4-connected.
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Claim 2a: If N/a is 2-connected but not 3-connected, then there exists x ∈ E((Ln)∗) − a

such that {f, a, x} is a triangle in (P n)∗.

Claim 2b: If N/a is 3-connected but not weakly 4-connected for a = ai ∈ E(Ln), then a

3-separation (X ∪ f, Y ) where |X ∪ f |, |Y | ≥ 5, in N/a induces a 3-separation (X− e, Y − e)

in Ln/a.

Claim 3: If there exists i ∈ {1, · · · , n} such that cl(Xi), cl(Yi) /∈ N (resp. cl(X ′i),

cl(Y ′i ) /∈ N ), then N/ai (resp. N/ci) is weakly 4-connected.

In the rest of the proof of Lemma 7.2.9, when we write cl(X), we mean cl(Pn)∗(X).

When we take closure of a set in a different matroid, say N , we will denote it properly as

clN(X) in the proof.

Claim 4: There exists i such that cl(Xi) /∈ N .

Proof. Suppose to the contrary that cl(Xi) ∈ N for all i ∈ {1, · · · , n}. Therefore cl(X2),

cl(X3), cl(X4) ∈ N . Note that f /∈ cl(Xi) for all i since f ∈ cl∗(ai, ci) not cl(ai, ci). Therefore

the proof of this part is exactly same as the proof of the Claim 4 of Lemma 7.2.7 as (P n)∗

is equivalent to the coextension of (Ln)∗.

Claim 5: If there exists i ∈ {1, · · · , n} such that cl(Xi) /∈ N but cl(Xi−1) ∈ N , then N/ai,

N/ci or N/ai−3 is weakly 4-connected for i ≥ 4 and N/c1, N/c2, N/c3, N/cn or N/an−1 is

weakly 4-connected if i = 1, 2 or 3.

Proof. Suppose there exists some i such that cl(Xi) /∈ N and cl(Xi−1) ∈ N . For i ≥ 4,

without loss of generality, we suppose that i = 4 and prove the claim. Suppose cl(X4) /∈ N

but cl(X3) ∈ N . If cl(Y4) /∈ N , then we are done as N/a4 is weakly 4-connected. Thus,

suppose cl(Y4) ∈ N . Then (cl(X3),cl(Y4)) is a modular pair and {c2, b3, a3} ∈ N . Now,

we show that N/c3 or N/c4 is weakly 4-connected. Suppose both matroids are not weakly

4-connected. Then cl(X ′3) ∈ N or cl(Y ′3) ∈ N . Similarly, cl(X ′4) ∈ N or cl(Y ′4) ∈ N . If

cl(X ′3) ∈ N , then ({c2, b3, a3},cl(X ′3)) is a modular pair and {c2} ∈ M. If cl(X ′4) ∈ N , then
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({c2, b3, a3},cl(X ′4)) is a modular pair and {a3} ∈ M. Thus cl(Y ′3), cl(Y ′4) ∈ N . However,both

(cl(Y ′3),{c2, b3, a3}) and (cl(Y ′4),{c2, b3, a3}) are modular pairs. Therefore {b3, a3}, {c2, b3} ∈

N . But, the two sets also form a modular pair which forces {b3} ∈ N , a contradiction. Thus

either N/c3 or N/c4 is weakly 4-connected.

Now suppose cl(X1) ∈ N and cl(X2) /∈ N . If cl(Y2) /∈ N as well, then we are done

and N/a2 is weakly 4-connected. Thus, suppose cl(Y2) ∈ N . Then (cl(X1),cl(Y2)) is a

modular pair, and {a2, b1, c1, cn} ∈ N . Let {a2, b1, c1, cn} = Z. We will show that either

N/c1, N/c2 or N/c3 is weakly 4-connected. Suppose neither N/c1, N/c2 nor N/c3 are weakly

4-connected. For each case, cl(X ′i) ∈ N or cl(Y ′i ) ∈ N . In all cases, if cl(X ′i) ∈ N or

cl(Y ′i ) ∈ N then they form a modular pair with Z. Thus the following statements hold:

If cl(X ′1) and Z ∈ N then {b1, c1} ∈ N .

If cl(Y ′1) and Z ∈ N then {c1, cn, a2} ∈ N .

If cl(X ′2) and Z ∈ N then {b1, cn} ∈ N .

If cl(Y ′2) and Z ∈ N then {a2, c1} ∈ N .

If cl(X ′3) and Z ∈ N then {a2} ∈ N .

If cl(Y ′3) and Z ∈ N then {b1, c1, cn} ∈ N .

Therefore if cl(X ′1) and cl(Y ′2) ∈ N then ({b1, c1},{b1, cn}) is a modular pair as well and

{b1} ∈ N . Following this idea, the following statements hold as well:

If cl(X ′1) and cl(Y ′2) ∈ N , then {b1} ∈ N .

If cl(X ′1) and cl(X ′2) ∈ N , then {c1} ∈ N .

If cl(Y ′1) and cl(Y ′2) ∈ N , then {cn} ∈ N .

If cl(Y ′1) and cl(X ′2) ∈ N , then {a2, c1} ∈ N .

Because neither N/c1 nor N/c2 are weakly 4-connected, we have cl(X ′1) ∈ N or cl(Y ′1) ∈ N

and same holds for cl(X ′2) and cl(Y ′2). However, only case in which this does not induce

a contradiction is when cl(Y ′1), cl(X ′2), and {a2, c1} ∈ N . If {a2, c1} and cl(X ′3) ∈ N then

({a2, c1},cl(X ′3)) is a modular pairs and {a2} ∈ N , a contradiction. If {a2, c1} and cl(Y ′3) ∈ N
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then ({a2, c1},cl(Y ′3)) is a modular pair and {c1} ∈ N , a contradiction. Therefore neither

N/c1, N/c2 nor N/c3 are weakly 4-connected, then we obtain a contradiction. Thus, at least

one of N/c1, N/c2 or N/c3 is weakly 4-connected.

Now, suppose cl(X2) and cl(Y3) ∈ N and cl(X3) /∈ N . In this case, (cl(Y3),cl(X2))

is a modular pair and thus, {a1, a2, b2} ∈ N . Let {a1, a2, b2} = Z. Now, we will show

that either N/c2 or N/c3 is weakly 4-connected. Suppose to the contrary that neither N/c2

nor N/c3 are weakly 4-connected. If cl(X ′2) ∈ N then (Z,cl(Y ′2)) is a modular pair and

{c2} ∈ N , a contradiction. If cl(X ′3) ∈ N then (Z,cl(X ′3)) is a modular pair and {a2} ∈ N ,

a contradiction. Thus it must be cl(X ′2) and cl(Y ′3) ∈ N . Therefore N/c2 and N/c3 are

not weakly 4-connected. However, cl(X ′2) and Cl(Y ′3) form a modular pair with Z and thus

{b2, a2} and {a1, b2} ∈ N , respectively. Then again, ({b2, a2},{a1, b2}) is a modular pair and

thus {b2} ∈ N , a contradiction. Therefore N/c2 or N/c3 must be weakly 4-connected.

Lastly, suppose cl(Xn) and cl(Y1) ∈ N and cl(X1) /∈ N . Then (cl(Y1),cl(X1)) is a

modular pair and {an, bn, cn−1} ∈ N . Using same reasoning as previous proofs in this claim,

either N/cn or N/an−1 is weakly 4-connected. In all possible cases noted in the claim, there

exists some a ∈ E((Ln)∗) such that N/a is weakly 4-connected.

Claim 6: If cl(Xi) /∈ N for all i ∈ {1, · · · , n}, then there exists j, k ∈ {1, · · · , n} such

that N/aj or N/ck is weakly 4-connected.

Proof. Since cl(Xi) /∈ N for all i ∈ {1, · · · , n}, if there exists j ∈ {1, · · · , n} such that

cl(Yj) /∈ N , then we are done. Now, suppose that cl(Yj) ∈ N for all j ∈ {1, · · · , n}. Then⋂n
j=1 cl(Yj) = {e, an, an−1, · · · , a3} ∈ N . If cl(Y ′j ) ∈ M for all j as well, then

⋂n
j=1 cl(Y

′
j ) =

{e, cn, cn−1, · · · , c3} ∈ N as well. However, {e, an, an−1, · · · , a3} and {e, cn, cn−1, · · · , c3}

form a modular pair, which forces {e} to be in N , a contradiction. Therefore there exists

k ∈ {1, · · · , n} such that cl(Y ′k) /∈ N and thus N/ck is weakly 4-connected.
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Now suppose there exists i such that cl(X ′i) /∈ N but cl(Xi−2) ∈ N . If cl(Y ′i ) /∈ N ,

then we are done. If cl(Y ′i ) ∈ N then by Claim 5, there exists some a ∈ E(Ln) such that

N/a is weakly 4-connected.

In all possible cases, we have proven that there exists some a ∈ E((Ln)∗) such that

N/a is weakly 4-connected. Suppose N/a is weakly 4-connected. Then we need to make

sure N/a and (N/a)∗ are not isomorphic to Lm, Lm, Pm, or Pm for m ≥ 4. By comparing

the rank and the number of elements we can confirm the previous statement. Also, as N is

a single element extension of (P n)∗, it is not possible that N ∼= (P n)∗. Furthermore, (P n)∗

is an internally 4-connected single element coextension of Ln and N is a weakly 4-connected

single element extension of (P n)∗. Therefore if N/a is weakly 4-connected and N/a has a

Ln-minor, then N/a has to be a weakly 4-connected single element extension of Ln. And

by Lemma 7.2.3, there exists b ∈ E(Ln) such that N/a/b is weakly 4-connected. Also, by

the same lemma, neither N/a/b nor (N/a/b)∗ are isomorphic to Lm, Lm, Pm or Pm for

m ≥ 4.

Before proving Theorem 7.1.1, we provide an example how Lemma 7.2.2 is applied.

Suppose M is an internally 4-connected matroid such that |E(M)| ≥ 6 and M\e ∼= L5 for

some e ∈ E(M). Since M is internally 4-connected, it has no 4-element 3-separating set A.

Therefore we can apply Theorem 5.1.9 (1) to obtain a smaller weakly 4-connected matroid.

However, we can not tell if this smaller matroid is isomorphic to L5 or not. Since M\e ∼= L5,

by applying Theorem 5.1.9, we can obtain L5 as a result. If we obtain L5, we can not apply

Theorem 5.1.9 to obtain a smaller weakly 4-connected matroid and the chain which started

from M stops at L5. However, by Lemma 7.2.2, M has an element f such that M/f is

weakly 4-connected neither M/f nor (M/f)∗ is isomorphic to Ln, Ln, Pn, and Pn for all

n ≥ 4. Then we can apply Theorem 5.1.9 to M/f to obtain a smaller matroid and continue

the chain of weakly 4-connected matroids.
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As we will see in the proof, by applying Lemmas 7.2.2, · · · , 7.2.9 and Splitter Theorem

to Theorem 5.1.9, we obtain Theorem 7.1.1. Now, we state the Theorem 7.1.1 once more

before proving the theorem.

7.3 Proof of the Main Result

Theorem. Let M be a weakly 4-connected matroid with |E(M)| ≥ 7 such that M or M∗

is not isomorphic to the cycle matroid of a ladder(Ln and Ln), Pn, P n, or a trident. Then

there exists a weakly 4-connected W ′M-chain where W ′ = M0 ∈ {W3,W
3,W 2, trident}, and

M = Mn and for each i ∈ {0, · · · , n},

1. there exists e ∈ E(Mi) such that Mi\e ∼= Mi−1 or Mi/e ∼= Mi−1 is weakly 4-connected, or

2. Mi has a 4-element 3-separating set A with elements c, d ∈ A such that Mi\d/c ∼= Mi−1

is weakly 4-connected.

Proof. (of Theorem 7.1.1) Let M be a weakly 4-connected matroid with |E(M)| ≥ 7 and

suppose M is not a planar ladder, Möbius ladder, their duals or a trident. By Theorem

5.1.9, there exists a matroid M1 such that either M\a, M/a or M\d/c ∼= M1 and M1 is

weakly 4-connected. Apply Theorem 5.1.9 to the matroid M1 to obtain a smaller weakly

4-connected M2. Suppose Mi is isomorphic to a trident. Then we can not apply Theorem

5.1.9 to Mi. Then the chain of matroids starting from Mi, a trident, to M1 = M is the

weakly 4-connected W ′M -chain described by the above theorem.

Now suppose Mi
∼= L, where L is a planar ladder or a Möbius ladder for some i ≥ 2.

If Mi+1 has a 4-element 3-separating set A with elements c, d ∈ A such that Mi+1\d/c = Mi,

then |E(Mi+1)−E(Mi)| = 2. M has a 4-element 3-separating set A with elements c, d ∈ A

such that M\d/c is weakly 4-connected. By the Splitter Theorem, there exist a 3-connected

matroid M ′ and element e ∈ E(Mi+1) such that Mi+1\e or Mi+1/e = M ′. Furthermore,
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there exists an element f ∈ E(M ′) such that M ′\f or M ′/f ∼= Mi. Then M ′ is either a

3-connected single element extension or coextension of Mi. Then M ′ is a 3-connected single

element extension or coextension of Mi, a planar ladder or a Möbius ladder, and all such

matroids are also weakly 4-connected. Therefore M ′ is weakly 4-connected. Therefore we

can always relabel the matroids in the chain such that if Mi
∼= L then Mi+1 is a single

element extension or coextension of Mi.

If Mi+1 is an extension of a planar ladder or Möbius ladder, then by Lemmas 7.2.2 and

7.2.3, there exists a ∈ E(L) such that Mi+1/a is weakly 4-connected and is not isomorphic to

L or L∗. Then we relabel the matroid Mi such that Mi+1/a = Mi and apply Theorem 5.1.9.

If L is a coextension of a planar ladder or a Möbius ladder, then by the dual of Lemmas

7.2.4 and 7.2.7, except for one case, there exists an element a ∈ E(L) such that Mi+1/a is

weakly 4-connected and is not isomorphic to L or L∗. If Mi+1/a is not weakly 4-connected

for all a ∈ E(L), then by Lemmas 7.2.4 and 7.2.7, Mi+1 is internally 4-connected and like

the ladder, we can relabel the matroids in the chain such that Mi+2 is weakly 4-connected

and |E(Mi+2 −E(Mi+1)| = 1. Then Mi+2 is either an extension or coextension of Mi+1 and

by Lemmas 7.2.5, 7.2.6, 7.2.8, and 7.2.9 there exists an element a ∈ E(Mi) such that Mi+2/a

is weakly 4-connected and Mi+2/a �Mi+1. In this case, Mi+1 is the only matroid such that

Mi+1/a is not weakly 4-connected for all a ∈ E(L) by Claim 7 of Lemmas 7.2.4 and 7.2.7.

Then by the same lemmas, there exists b ∈ E(L) such that Mi+2/a/b is weakly 4-connected

and is not isomorphic to L or L∗. Then relabel the matroid such that Mi+2/a = Mi+1 and

Mi+2/a/b = Mi and apply Theorem 5.1.9. If Mi is a dual of the ladder or a Möbius ladder,

then we can apply the dual of Lemma 7.2.2, 7.2.3 and Lemmas 7.2.4-7.2.9. Therefore in all

cases, whenever Mi is a planar ladder, Möbius ladder, or their duals, we can go around the

chain and obtain a chain of matroid which does not contain a planar ladder, Möbius ladder.

Because Theorem 5.1.9 can be applied to any weakly 4-connected matroid with 7-

elements or more and any 3-connected matroid with elements 7, 8, or 9 are trivially weakly
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4-connected, by repetitively applying Theorem 5.1.9 and Lemmas 7.2.2 - 7.2.9, we can obtain

a matroid Mj such that |E(Mj)| = 5 or 6 or Mj is a trident. If Mj is a 3-connected binary

matroid with 6-elements, then Mj
∼= W3 are we are done. If Mj is a non-binary matroid,

then either Mj
∼= W 3 or Mj has W 2-minor. If Mj has W 2-minor, then we can delete or

contract an element from Mj and obtain W 2. In all cases, the chain stops at the trident,

W3, W
3 or W 2 as noted in the Theorem 7.1.1.
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