
Cork Institute of Technology Cork Institute of Technology

SWORD - South West Open Research SWORD - South West Open Research

Deposit Deposit

Masters Science

5-2018

An Industry-Based Study on the Efficiency Benefits of Utilising An Industry-Based Study on the Efficiency Benefits of Utilising

Public Cloud Infrastructure and Infrastructure as Code Tools in Public Cloud Infrastructure and Infrastructure as Code Tools in

the IT Environment Creation Process the IT Environment Creation Process

Shane Callanan

Follow this and additional works at: https://sword.cit.ie/scimas

 Part of the OS and Networks Commons

https://www.cit.ie/
https://www.cit.ie/
https://sword.cit.ie/
https://sword.cit.ie/
https://sword.cit.ie/scimas
https://sword.cit.ie/scithe
https://sword.cit.ie/scimas?utm_source=sword.cit.ie%2Fscimas%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=sword.cit.ie%2Fscimas%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

An industry-based study on the efficiency benefits of

utilising public cloud infrastructure and infrastructure as

code tools in the IT environment creation process
by

Shane Callanan

This thesis has been submitted in fulfilment for the degree of Masters of Science in

Cloud Computing

in the

Department of Computer Science

Cork Institute of Technology

May 2018

This thesis is dedicated to Orla Leahy

i

Declaration

I, Shane Callanan, declare that this thesis titled, ‘An industry -based study on the

efficiency benefits of utilising public cloud infrastructure and infrastructure as code

tools in the IT environment creation process’ and the work presented in it are my own.

I confirm that:

 This work done wholly or mainly while in candidature for a postgraduate master’s

degree at Cork Institute of Technology.

 Where any part of this thesis has previously been submitted for a degree or any

other qualification at Cork Institute of Technology of any other institution, this

has been clearly state.

 Where I have consulted the published work of others, this is always clearly

attributed.

 Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this project report is entirely my own work.

 I have acknowledged all main sources of help.

 Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:__

Date:__

ii

Abstract

The traditional approaches to IT infrastructure management typically involve the

procuring, housing and running of company-owned and maintained physical servers.

In recent years, alternative solutions to IT infrastructure management based on public

cloud technologies have emerged. Infrastructure as a Service (IaaS), also known as

public cloud infrastructure, allows for the on-demand provisioning of IT

infrastructure resources via the Internet. Cloud Service Providers (CSP) such as

Amazon Web Services (AWS) offer integration of their cloud-based infrastructure

with Infrastructure as Code (IaC) tools. These tools allow for the entire configuration

of public cloud based infrastructure to be scripted out and defined as code.

This thesis hypothesises that the correct utilization of IaaS and IaC can offer an

organisation a more efficient type of IT infrastructure creation system than that of the

organisations traditional method. To investigate this claim, an industry -based case

study and survey questionnaire were carried out as part of this body of work. The case

study involved the replacement of a manually managed IT infrastructure with that of

the public cloud, the creation of which was automated via a framework consisting of

IaC and related automation tools. The survey questionnaire was created with the intent

to corroborate or refute the results obtained in the case study in the context of a wider

audience of organisations.

The results show that the correct utilization of IaaS and IaC technologies can provide

greater efficiency in the management of IT networks than the traditional approach.

iii

Acknowledgements

Firstly, I would like to thank Eoin O’Regan and Dr. Donna O’Shea for the ir ceaseless

assistance as my academic supervisors. I would like to acknowledge the time they

have dedicated to review and evaluate my work over the course of the last two years.

Secondly, I would like to thank Tomasz Serafinski for encouraging me to expand my

horizons past the work place and into the world of academia. Thirdly, I would like to

thank Declan Chambers, Mike Kissane, Tomasz Marciniszyn, Sean Barry, and all of

my work colleagues for the advice and counsel they have given me during the course

of this masters. Lastly, I would like to thank my employer, Aspen Grove Solutions,

for the opportunity to conduct this research.

iv

TABLE OF CONTENTS

Declaration.... ... i

Abstract…….. ... ii

Acknowledgements ... iii

List of Figures………………………………………………………………………….. vii

List of Tables ... xi

Chapter 1. Introduction .. 1

1.1 Motivation ... 4

1.2 Research Aim .. 5

1.3 Research Objectives ... 5

1.4 Contribution .. 7

1.5 Methodology .. 8

1.6 Research Delimitation .. 11

Chapter 2. Background and Literature Review .. 12

2.1 Cloud Computing ... 12

2.1.1 Cloud Computing History .. 12

2.1.2 Modern Cloud Computing Definition ... 16

2.1.3 Infrastructure as a Service (IaaS) Benefits 19

2.1.4 Infrastructure as a Service Risks .. 22

2.2 Cloud Service Provider Comparison ... 27

2.2.1 Amazon EC2 ... 27

v

2.2.2 Azure Virtual Machines ... 29

2.2.3 Google Compute Engine .. 31

2.2.4 Availability Comparison .. 33

2.2.5 Instance Price Comparison .. 34

2.2.6 Security .. 36

2.2.7 Results .. 37

2.3 Infrastructure as Code .. 37

2.3.1 Infrastructure as Code Benefits .. 43

2.3.2 Infrastructure as Code Risks .. 46

2.4 Infrastructure as Code and Infrastructure as a Service 47

2.5 State of the Art in Infrastructure as a Service Migration 48

2.6 Conclusion ... 53

Chapter 3. Design and Implementation .. 56

3.1 Case Study ... 56

3.1.1 Exploratory Phase ... 57

3.1.2 Project Planning Phase .. 59

3.1.3 Functional Requirements ... 63

3.1.4 Non-Functional Requirements ... 63

3.2 Framework Architecture ... 64

3.2.1 The Build Server ... 65

3.2.2 API Components ... 65

3.2.3 Framework Builds ... 67

3.2.4 Framework Prerequisites ... 71

3.2.5 Summary... 72

3.3 Technologies Used ... 73

3.3.1 Cloud Service Provider - AWS .. 73

vi

3.3.2 Build Server – TeamCity ... 74

3.3.3 Infrastructure-as-code - Terraform ... 74

3.3.4 Version Control System - Subversion .. 75

3.3.5 Configuration Management - Puppet .. 76

3.3.6 General Purpose Automation – PowerShell 77

3.3.7 Summary... 78

3.4 Framework Use Case .. 78

3.4.1 User Interaction .. 79

3.4.2 Provisioning Build (PB) .. 81

3.4.3 Domain Build .. 82

3.4.4 Configuration Build .. 86

3.4.5 Deployment Build ... 87

Chapter 4. Results .. 89

4.1 Creation/Recreation Experiment Context .. 89

4.1.1 Creation/Recreation Experiment Aims ... 89

4.1.2 Network Architecture .. 90

4.1.3 Environment Specification .. 96

4.1.4 Process Variables .. 99

4.1.5 Creation/Recreation Experiment Scope and Conduction 102

4.2 Creation/Recreation Experiment Results ... 103

4.2.1 Data Analysis .. 104

4.2.2 Sample Size .. 107

4.2.3 Comparison of Manual and Automated Datasets 108

4.2.4 Comparison of Creation and Recreation Data Datasets 115

4.2.5 Summary... 117

4.3 Secondary Experiments .. 118

vii

4.3.1 Instance Type Experiment Context .. 119

4.3.2 Instance Type Experiment Results ... 120

4.3.3 Storage Capacity Experiment Context .. 124

4.3.4 Storage Capacity Experiment Results ... 127

4.4 Survey ... 131

4.4.1 Sampling ... 131

4.4.2 Measurement Procedures ... 132

4.4.3 Data Collection ... 134

4.4.4 Respondent Category Comparison ... 134

4.4.5 Summary... 137

4.5 Review of Results .. 137

4.5.1 Review of Creation/Recreation Experiment Results 137

4.5.2 Review of Secondary Experiment Results 146

4.5.3 Review of Survey Results .. 149

4.6 Limitations .. 152

Chapter 5. Conclusions and Future Work .. 156

5.1 Discussion ... 156

5.2 Conclusions and Research Implications .. 157

5.4 Recommendations for Future Research ... 158

Bibliography….. .. 161

Appendices………………………………………………………………………... 171

Appendix A. Interview with infrastructure member ... 171

Appendix B. Interview with Release Management member 175

Appendix C. Interview with Database Administration member 180

viii

Appendix D. Survey Questionnaire ... 184

ix

LIST OF FIGURES

Figure 1: Cloud Computing Overview... 17

Figure 2: Cloud Computing Reported Benefits ... 22

Figure 3: Average Yearly Downtime ... 33

Figure 4: Average Yearly Outages... 34

Figure 5: Average Yearly Availability... 34

Figure 6: Instance Price Comparison ... 36

Figure 7: Reported benefits of IaC ... 45

Figure 8: AWS Shared Responsibility Model .. 60

Figure 9: Framework Architecture Overview .. 64

Figure 10: Overview of the Build Chain .. 68

Figure 11: Technologies Used ... 73

Figure 12: Sample Terraform Script .. 75

Figure 13: Sample Puppet Script ... 76

Figure 14: Terraform Script Transformation ... 81

Figure 15: Provisioning Build Sequence Diagram .. 82

Figure 16: Redirection of Traffic via DNS .. 84

Figure 17: Domain Build Sequence Diagram Part 1 .. 85

Figure 18: Domain Build Sequence Diagram Part 2 .. 85

Figure 19: Configuration Build Sequence Diagram .. 86

Figure 20: Sample PowerShell Function ... 88

Figure 21:On-site office to co-location datacentre diagram .. 92

Figure 22: On-site office to AWS diagram .. 95

Figure 23: Data Set Comparison: Automated vs. Manual ... 109

Figure 24: Task Comparison: Automated vs. Manual ... 110

Figure 25: Manual Timings: Breakdown of overall process .. 111

x

Figure 26: Automated Timings: Breakdown of overall process .. 112

Figure 27: Rate of Error in Automated Process ... 113

Figure 28: Median troubleshooting time per error occurrence .. 114

Figure 29: Data Set Comparison: Creation vs. Recreation .. 116

Figure 30: Task Comparison: Creation vs. Recreation .. 117

Figure 31: Instance Type Experiment Overall Comparison .. 122

Figure 32: Instance Type Experiment Task Comparison ... 123

Figure 33: Storage Capacity Experiment Overall Process Comparison 129

Figure 34: Storage Capacity Experiment Task Comparison .. 130

Figure 35: Respondent Category Timing Comparison .. 135

Figure 36: Staff involved in environment creation process ... 136

xi

LIST OF TABLES

Table 1: Cloud Offering Downtime ... 33

Table 2: CSP Instance Comparison ... 35

Table 3: CSP Security Certificate Comparison .. 36

Table 4: Existing Migration Frameworks Phase Comparison ... 52

Table 5: Existing Migration Frameworks Features and Limitations Comparison 53

Table 6: Summary of technologies used in the framework.. 74

Table 7: System comparison of non-cloud and cloud environments 96

Table 8: Storage comparison of non-cloud and cloud environments 97

Table 9: Basic test environment software systems ... 98

Table 10: Organisation software on test environments .. 99

Table 11: Instance Types used ... 120

Table 12: Baseline AMI Storage ... 125

Table 13: Low Capacity AMI Storage ... 125

Table 14: High Capacity AMI Storage ... 126

1

Chapter 1. Introduction

The ubiquity of Internet access has reached an unprecedented rate, going from 400

million Internet users in 2000 to 3.7 billion users in 2017, an increase of 925% in just

seventeen years (International Telecommunication Union, 2015) (Internet World

Stats, 2017). This increase of Internet availability has vastly changed the world we

live in, online services are quickly replacing their local equivalents in ways previously

thought impossible. This is being done through the umbrella of technologies that

cloud computing encapsulates.

At a very high level, the shift from local to online services can be simplified in the

context of a delivery medium for movies: the old paradigm can be thought of as one

where the customer travels to a DVD rental store, rents the physical DVD and brings

the disk home for viewing on his local device. The cloud computing method uses an

online video hosting service such as Netflix to handle payment for and deliver the

movie to the client in an automated fashion through the Internet for portable viewing

on a variety of devices. All the customer needs is a device that can access the service

through the Internet. The simplicity and flexibility of this method compared to the

traditional one are significant pull factors for the customer. Complimenting this are

the resource savings from the provider’s perspective, no longer needing to invest in

buildings in a variety of locations and the fees that come with them, instead, they

create and maintain an online service to handle certain aspects of their business.

The scope of cloud computing is broadening, accessing software online through a web

browser instead of installing a local client is no longer thought of as an advanced

technology as it has been globally adopted and used by millions of people for years:

Facebook, Netflix, eBay and Gmail are all examples of this. The field of cloud

computing has expanded so much that the paradigm known as X-as-a-Service (XaaS)

has emerged. Duan et al. found that the XaaS term has become synonymous with cloud

computing and is used describe the numerous services that can be delivered through

the Internet, One such example of this is Infrastructure-as-a-Service (IaaS) (Duan, et

al., 2015).

Industry-based surveys pertaining to trends in virtualization have shown that it is

common place for organisations to utilize virtualisation technologies such as VMWare

2

in order to reduce their IT infrastructure costs and utilise their computing resources

in a more efficient way (Davis & Lowe, 2015) (F5 Networks, 2009). Instead of buying,

setting up and maintaining ten low specification physical machines to carry out

business functions, one very powerful machine split into ten virtual machines can

carry out the same functions for a fraction of the operating costs. This was a

revolutionary system when it first came about and is still in use today, the cloud model

of IaaS uses the same principles of virtualisation in a very different way. Instead of

an organisation acquiring their own high specification machines for computing

resources, a Cloud Service Provider (CSP) takes this, and associated responsibilities

on in order to deliver virtualised networking components as a service to their clients

(Mell, 2011). This method reduces costs considerably for both parties, instead of

every business with IT infrastructure buying and maintaining their own physical

servers, a CSP builds a very large data centre that houses hundreds, even thousands

of physical machines and leases them out to cover the costs of the data centre

construction, machine acquisition and physical server maintenance (Mell, 2011).

Existing research into the area of IaaS has shown that the reliability, scalability,

interoperability and costing model associated with IaaS are motivating factors for

organisations to migrate their existing non-cloud infrastructure to the public cloud,

particularly Small to Medium sized Enterprises (SMEs) (Mateescu, et al., 2014)

(Khajeh-Hosseini, et al., 2010) (RightScale, 2014) (RightScale, 2015). Both service

provider and client have motivations for switching to this type of paradigm, and

implementing cloud technologies is a high priority for many organisat ions. Evidence

gathered in a survey of 196 technical professionals by the International Data Group

Enterprise, a technology and research venture capital organisation, supports this

claim. This survey pertains to each respondents organisation’s expected investment

in 2017 in various technologies, IaaS is the sixth highest area of technological

investment with an overall spending increase of 27% compared to 2016 (IDG

Enterprise, 2017). The above indicates that cloud computing is being actively pursued

by businesses at an increasing rate.

However, there are challenges associated with the adoption of IaaS. Security issues

pertaining to data hosting on third party infrastructure has been cited by Sadiku, et al.

to be the greatest challenge when considering to adopt cloud computing platforms

(Sadiku, et al., 2014). Various works outline the issue of organisations regulatory

compliance in regards to the data they host being moved to a CSP’s data centre which

3

may be located outside of an allowed geographical region for that data to exist in

(Khan & Al-Yasiri, 2015) (Vu & Asal, 2012) (Manvi & Krishna Shyam, 2014).

Hwang, et al., alongside Frey and Hasselbring state that the lack of automation in the

process of migrating existing Virtual Machines (VMs) from an on-premise setting to

a cloud based infrastructure is a major challenge for organisations (Hwang, et al.,

2015) (Frey & Hasselbring, 2011). Mateescu et al. briefly describe the challenge of

dealing with the complexity of migrating business processes from a non -cloud setting

to the cloud platform (Mateescu, et al., 2014). As general challenges in adopting IaaS,

Manvi and Krishna Shyam cite that, among others, the provisioning and management

of large amount of VMs through standard system administration tasks requi res a

significant level of automation in order for IaaS to be a viable for organisations

(Manvi & Krishna Shyam, 2014).

There have been several articles published in the field that present frameworks to

tackle the aforementioned challenges pertaining to the migration of non-cloud

infrastructure to the IaaS platform. Mateescu et al. propose The Migration Assessment

Tool (MAT), which assesses existing systems designated for migration to cloud

platforms and suggests service models alongside CSPs that could potentially host

them (Mateescu, et al., 2014). Khan and Al-Yasiri present a step-by-step type

framework for SMEs to decide what non-cloud systems they are running can be

migrated to a particular cloud platform (Khan & Al-Yasiri, 2015). Bergmayr, et al.

put forward the Advanced Software-based Service Provisioning and Migration of

Legacy Software (ARTIST) framework, which provides a means for the reverse

engineering and modernization of existing software systems in order to migrate it to

the cloud platform, however, this framework focuses on the Software-as-a-Service

(SaaS) platform as opposed to IaaS (Bergmayr, et al., 2013). Sabiri et al. outline a

migration framework based on the Architecture Driven Modernization (ADM)

paradigm, in which the legacy components of a system are analysed, reverse

engineered and transformed in order to generate a model of the new system as it

should act on a cloud platform (Sabiri, et al., 2015).

The above cited material deal primarily with the pre-migration phase of the migration

process, assessing existing systems and suggesting potential cloud platforms that

could host them. They do not address the complexity of migration challenge outlined

by Mateescu et al. or the automation challenges described by Manvi and Krishna

Shyam (Mateescu, et al., 2014) (Manvi & Krishna Shyam, 2014). They do not provide

4

any tangible automated process around which existing non-cloud infrastructure can

be migrated to the IaaS platform in a standard, repeatable manner with as little human

intervention as possible, this topic has been addressed by Hwang et al., who propose

the Cloud Migration Orchestrator (CMO), a framework tested in laboratory scenarios

which describes the entire migration procedure for non-cloud infrastructure to the

IaaS platform from end-to-end and provides a semi-automated process for the live

migration of existing VMs to IBM’s Softlayer IaaS platform (Hwang, et al., 2015).

However, to date, the CMO has only been tested under devised, laboratory conditions

and has not been field tested, leaving a gap of knowledge in the area of industry-based

studies on the migration of existing non-cloud infrastructure to the public cloud.

1.1 Motivation

The main motivation for this research is to address the lack of knowledge in the

specific area of industry-based studies pertaining to the migration of non-cloud

infrastructure to IaaS, which is outlined above. To further this point, the researcher

performed a search through the digital library of the Institute of Electr ical and

Electronics Engineers (IEEE) which revealed that there is only one industry-based

case study pertaining to the migration of in-house IT infrastructure to the IaaS

platform available. This case study documents the organisational impact that a

migration to AWS’s IaaS platform would have and includes a cost comparison of the

organisations existing in-house infrastructure versus the same infrastructure hosted in

AWS (Khajeh-Hosseini, et al., 2010) . But no migration was ever performed as part of

the above case study due a number of reservations the organisation and its client had

with the IaaS platform (Khajeh-Hosseini, et al., 2010) . This means that the gap of

knowledge in this area still exists as there has been no industry-based case study to

date in academic literature that details the technical aspects of how a migration of

existing enterprise level infrastructure to the public cloud can be performed. As there

has been no industry-based study where existing infrastructure has been successfully

migrated to the IaaS platform, there has also not been any study relating to the

potential benefits or drawbacks of performing such a migration.

5

1.2 Research Aim

This research aims to develop and implement an automated framework for the

migration of a SME’s colocation-based IT infrastructure to AWS’s IaaS platform. In

doing so, it is aimed to gather metrics pertaining to the efficiency benefits of utilising

such a framework in an industry-based setting when compared to the organisations

traditional method of migration. It is also planned to prove the generalisability of

these efficiency benefits in the context of the wider audience of SMEs. In order to

gauge efficiency benefits in the context of this research, the following metrics a re

planned for inclusion:

1. Time

The time taken for the envisioned automated migration framework to perform actions

in the context of creating an IT environment.

2. Effort

In the event where it is not possible to automate all actions involved in creating an IT

environment via the framework then manual intervention will be required. This

manual intervention will be measured by the effort metric.

3. Error occurrence

The recorded tendency of errors to be thrown on execution of the framework when

performing actions to create an IT environment. This metric will tie in heavily with

the effort metric as manual effort will be required to troubleshoot errors if they are to

occur.

1.3 Research Objectives

The objectives of this research are as follows:

1. Analyse existing frameworks that allow for the migration of non-cloud

infrastructure to the public cloud platform.

A large base of knowledge into the area of research should be obtained by the

researcher before considering any industry-based development and implementation.

6

This base of knowledge will be created by carrying out a literature review of existing

cloud migration frameworks. The analysis, documentation and categorisation of

existing cloud migration frameworks should shed light on the existing technologies

in the field along with the benefits and drawbacks of utilising each.

2. Develop and implement an automated framework for the provisioning and

management of public cloud infrastructure in a SME.

Based upon the knowledge obtained in the preceding objective, the researcher should

be placed in a SME that is planning on carrying out a migration of their non -cloud

infrastructure to the public cloud. The researcher should carry out a case study within

this SME. This case study should involve the observation, analysis and documentation

of the organisations existing processes for the creation of their IT environments and

how these processes are to be used in the context of migrating their existing

infrastructure to the public cloud. The case study should also include the gathering of

functional and non-functional requirements in regards to the design of the planned

automated migration framework as it will be used in the SMEs infrastructure

migration project. Based on the information outputted by the case study, the

researcher should be in a position to begin developing and implementing the

automated framework within the case study organisation.

3. Utilise the automated framework to replace the SME’s colocation-based IT

environments with those on the public cloud for validation of the framework in an

industry-based setting.

Fulfilling this objective will require the researcher to participate heavily in the SMEs

infrastructure migration project. By utilising the automated framework, it is planned

that the researcher will be able to replace the SMEs existing infrastructure with that

of the public cloud.

4. Gather and analyse detailed statistics on the efficiency capabilities of the

automated framework in the context of creating IT environments in the public

cloud in comparison with the SMEs previous method.

In carrying out the previous research objective, each execution of the framework will

be scrutinized by the researcher, the data outputted by these executions will be

analysed and categorised in order to form the metrics pertaining to the efficiency

7

benefits of utilising such a framework. These efficiency benefit metrics have been

described in the Research Aim section.

5. Test the automated framework under a range of difference conditions.

It is planned that the framework is to be tested under various conditions in a series of

secondary experiments in order to prove that variables in the execution of the

framework can be controlled and modified in order to cause the results to differ. The

ability to change and identify variables which ultimately effect the behaviour and data

returned from the framework, it is expected that a better understanding of how to

positively and/or negatively affect the framework can be found.

6. Survey the wider audience of SMEs in order to validate results from the automated

framework in a generalizable fashion.

A survey questionnaire is planned to be created as part of this body of work. This

survey will be distributed to active members of the software development world,

preferably employees of companies with experience in cloud technologies. The aim

of this survey and its distribution is to find a link between the use of IaaS and IaC

tools and efficiency in the process of provisioning IT infrastructure. Thus proving the

hypothesis of this thesis in the context of the wider audience of software development

organisations.

1.4 Contribution

As contributions to the field, this thesis presents an automated framework consisting

of automated IaC tools which has successfully rebuilt and configured an SME’s co-

location based VM environments on AWS’s IaaS platform. This thesis also presents

data pertaining to the efficiency benefits in the environment creation process the SME

has gained by implementing the automated framework. To validate these efficiency

benefits in the context of the audience of wider organisations, an industry -based

survey was created and distributed, this survey draws correlations between efficiency

in the environment creation process and each respondent’s use of IaC tools and IaaS.

8

1.5 Methodology

This section outlines the research methodology followed in order to achieve the above

research objectives. This section matches the methods chosen with the research

objectives defined above.

1. Analyse existing frameworks that allow for the migration of non -cloud

infrastructure to the public cloud platform.

The researcher performed a li terature review of existing cloud migration frameworks

via IEEE Xplore Digital Library and other academic sources, initially taking a broad

view, inclusive of all service models of cloud computing, later focusing on just

frameworks pertaining to the migration of non-cloud infrastructure to the IaaS

platform. This was done in order to build a wide knowledge base pertaining to existing

techniques, potential challenges, pitfalls and lack of innovation in current approaches

in order to ultimately make the most informed decisions when developing and

implementing such a system in an industry-based setting.

2. Develop and implement an automated framework for the provisioning and

management of public cloud infrastructure in a SME.

Achieving this objective involved the placement of the researcher in a local SME,

while there, the researcher carried out a case study. This case study was carried out

in order to analyse and gain an in-depth understanding of how the SME’s colocation -

based IT environments were previously created and how it was planned to migrate

these environments to AWS’s IaaS platform.

Qualitative methods were adopted from the case study approach in order to engage

with the members of the organisation the research was carried out in. This was done

through semi-structured interviews, these interviews determined what specific metrics

were to be measured and how to measure them, namely, each phase in the environment

creation process, alongside the time and effort overheads incurred by carrying out

each phase. Graham cites that properly performed semi-structured interviews are

possibly the most important form of interviewing in case study research; the reasoning

for this is that the semi-structured interview allows for more focus than that of an

unstructured interview and allows for a less rigid and open communication experience

than that of the structured interview (Graham, 2010). Semi-structured interviews were

9

deemed more appropriate than the unstructured interview type as the researc her

already had a basic understanding of the subject area and had prepared a set of

questions for each interview. Conversely, the structured interview was deemed too

restrictive for this purpose as the researcher understood their own lack of advanced

knowledge in the area and did not want the interviewees to rely on binary “yes” and

“no” answers. Instead, it was aimed to guide the interviewees in the way the researcher

had predefined while allowing them to be able to respond naturally to open ended

questions in order to expose the researcher to parts of the environment creation

process that the researcher may have overlooked or neglected to take into account

properly.

This case study also included the gathering of client requirements as a means to design

the migration project and define its scope and limitations. Lastly, this case study

involved working with staff employed by the organisation in order to create the

baseline networking components on AWS’s IaaS platform so that the framework

would be capable of building environments that the organisation’s development and

quality assurance departments would eventually be able to access and utilise the same

way they accessed the existing colocation-based environments.

Once the above had been performed, the researcher had enough information to create

the high-level architecture of the automated framework. Amaral et al. defines the

“build” methodology as consisting of the design and creation of a novel software

system to prove that is it possible (Amaral, 2011). Following the build method, the

researcher developed a working prototype of the framework based on the high-level

architecture, alongside all associated IaC scripts required for the framework to

function.

3. Utilise the automated framework to replace the SME’s colocation-based IT

environments with those on the public cloud for validation of the framework in an

industry-based setting.

The researcher played an active role in the migration project within the SME in order

to achieve this research objective. The researcher oversaw the execution, monitoring

and troubleshooting of every run of the automated framework when it was used to

rebuild the SME’s existing colocation-based environments, and create new

environments on AWS’s IaaS platform. This method is defined by Amaral et al. as the

experiment method, in which a system is evaluated under the scrutiny of the

10

researcher in order to answer a specific research question or achieve a specific

research objective (Amaral, 2011). Throughout the course of this stage, data

pertaining to the time and effort involved in the rebuilding of existing environments,

and the creation of new environments in AWS were systematically retrieved and

documented for analysis. The above metrics have been described in the Research Aim

section.

4. Analyse and interpret detailed statistics on the efficiency capabilities of the

automated framework in the context of creating IT environments in the public

cloud in comparison with the SME’s previous method.

The primary focus in achieving this research objective was the logical categorisation

and statistical analysis of the quantitative data retrieved throughout the course of this

project. The semi-structured interviews with staff members revealed the manual

dataset of time and effort overheads involved in the organisation’s previous

environment creation process. This manual dataset was categorised and compared

with the second dataset, the automated dataset, which was retrieved during the

execution of the automated framework. Through this categorisation, statistical

analysis and comparison, both datasets were interpreted in a meaningful way in order

to display the efficiency benefits of implementing the automated framework on the

IaaS platform when compared with the previous method utilised by the SME to create

their environments.

5. Test the automated framework under as many different conditions as possible.

By performing a range of secondary experiments, it was possible to test the framework

under all conditions possible given the context the framework was created in. By first

identifying and then modifying controlled variables in the execution of the

framework, it was possible to create separate categories of framework executions and

compare their results with one another. In doing so, the researcher demonstrated how

the modification of certain variables effect the data outputted by the framework and

how optimisations may be applied to the framework to make it perform faster.

6. Survey the wider audience of SMEs in order to validate results from the automated

framework in a generalizable fashion.

The survey questionnaire was created with the aim to achieve the above research

objective by gaining an insight into the correlation between efficiency in the process

11

of provisioning IT infrastructure and the use of IaaS and IaC tools. This survey was

distributed to a range of employees currently working in software development

companies that are independent from the organisation the case study was carried out

in. In doing so, two separate sets of data were gathered, one detailed set that is specific

to the case study organisation, another less detailed set that aims to reflect a wider

audience of software organisations. The full survey has been exported through a series

of screenshots and can be found in Appendix D of this document.

1.6 Research Delimitation

This thesis is limited to the lower levels of IaaS, i.e. VM instances and the networks

they reside on, other models of cloud technologies such as SaaS, PaaS, etc. will not

be covered in great detail. This project is also limited to the set of technologies chosen

by the case study organisation to best suit its needs. Therefore, technologies excluded

from this set will not be covered in a comprehensive manner. Instead, justification of

the usage of certain technologies over others will be discussed.

The company this work is being carried out on is a SME focusing on web-based

application delivery. The company will be discussed as minimally as possible to avoid

legal issues and to ensure the educational findings of this research will not be

compromised in any way.

12

Chapter 2. Background and Literature Review

The topics of cloud computing and IaC technologies are relatively new, all being

established in their modern forms the last decade or so. Overviews of both

technologies comprise a significant section of this chapter, alongside the potential

benefits and risks of adopting them. The topic of IaaS is the main focus in the cloud

computing section as this is the specific technology this body of work deals with. A

Cloud Service Provider (CSP) comparison is also detailed in this chapter, it contains

a comprehensive evaluation of the three major CSPs in operation at the time of

writing. This chapter progresses with a short section on the convergence and

interconnectivity of IaaS and IaC technologies, detailing issues brought about through

the scalability of IaaS which IaC tools can potentially offer a solution for. The chapter

also contains a state of the art section on the current liter ature on frameworks for the

migration of non-cloud infrastructure to the IaaS platform. The literature review

concludes with an examination of the contents of the chapter alongside a section

outlining the necessity of the case study and survey portions of this body of work.

2.1 Cloud Computing

2.1.1 Cloud Computing History

In the early 1950s, computers were large, expensive and monolithic; the execution of

a single program meant solving a complex problem but it would take up the resources

of the entire machine and usually needed an end-user with in-depth knowledge of the

mainframe present to ensure it was running correctly. As time passed, interest in

computers among the scientific community increased, as did investment into more

advanced equipment. Because of this, execution times shortened to such a degree that

the expenses associated with running an idle machine while the users interpret data

and prepare the next job became more and more of a concern. This brought about the

concept of queueing jobs for a machine to process using simple job monitoring

systems, allowing all of the resources of the computer to be at use at any given time.

This was an imperfect system though, the new model bolstered productivity but

caused conflicts between users who constantly wanted more time on the mainframe

13

(Creasy, 1981) John McCarthy, a renowned professor at the Massachusetts Institute

of Technology, realised this need and recalls formulating the idea for the progenitor

to what we know as modern cloud computing as early as 1955 (McCarthy, 1992).

McCarthy describes this concept as ‘time -sharing’ and defines it as ‘an operating

system that permits each user of a computer to behave as though he were in sole

control of a computer, not necessarily identical with the machine on which the

operating system is running.’ (McCarthy, 1992)

Influenced by his lectures and writings on the subject, and frustrated by the expense

and constraints of single-user mainframes, other MIT professors began taking an

interest and implementing his ideas, among them was Fernando J. Corbató. As a result

of this combined effort, the ‘Compatible Time -Sharing System’ (CTSS) was

demonstrated on the university owned IBM 709 in November 1961. The CTSS

supported four separate users operating Friden Flexowriter teleprinter terminals, each

of which were directly connected to the input/output channel of the mainframe.

Development continued on the CTSS until it was rolled out to users in MIT in the

summer of 1963 (Walden, 2012). In this same year, the MIT science reporter John

Fitch interviewed Corbató while he demonstrated the CTSS running on MIT’s IBM

7090, the episode was titled ‘A Solution to Computer Bottlenecks’, a fitting title,

acting as a premonition to our contemporary application of computer time -sharing

(Corbató, 1963). Needless to say, time-sharing systems boomed in this period, the

cost efficiency alone was enough to surge the usage of computers in academic and

business organisations into never before seen levels. The concept of sharing one

mainframe for several users became so widespread and normalised that the single-

user machine setup of the past quickly became redundant.

The next significant breakthrough was on 2 nd August 1972 when IBM rolled out the

world’s first computer capable of creating and running several virtual images of its

own operating system (IBM, 2015). The Virtual Machine Facility/370 (VM/370) was

the product of 13 years of research programs, all heavily influenced by MIT’s CTSS

and, as such, it sought to overcome several of the constraints and issues present in

CTSS. The VM/370 provided “multiple users with seemingly separate and

independent IBM System 370 computing systems. These VMs are simulated using

IBM System 370 hardware and have its same architecture” (Creasy, 1981). This

revolutionary new system allowed organisations to scale their computing reso urces

while eliminating several traditional overheads, namely the installation, housing and

14

running of new mainframes. As a new technology, the VM/370 was a huge success.

In 1981, 9 years after its release, IBM estimates that 50,000 users were still runnin g

virtual machines provided by the VM/370 (Creasy, 1981). While the hardware and

software of contemporary times have advanced far beyond the scope of the VM/370,

many of the principles remain the same to this day, for example: The VM/370 allows

for multiple users to access separate instances providing them with full operating

system abstraction, meaning one VM cannot disrupt the operation of another VM

(Creasy, 1981). It was the seminal system all of our modern VMs are based on and

was an important catalyst to the evolution of cloud computing in the decades that

followed.

The aforementioned technologies continued to develop over the next several years but

failed to garner much of the attention they deserved. Over two decades after IBM’s

VM/370, several events occurred that led to an unanticipated and unprecedented spike

in the demand for advancement in the distributed computing sector, these events led

to what we know as the Internet Explosion. Defined by PC Magazine as:

“The period of tremendous growth of the Internet in the latter half of the 1990s.

In the 1994-1996 time frame, it changed from a scientific and governmental

research network to a commercial and consumer marketplace.” (PC Magazine,

2015)

This era saw the coining of the term ‘cloud’ when telecommunication companies

began utilising Virtual Private Network (VPN) services with dynamic routing

capabilities. VPNs allowed Internet providers to distribute bandwidth in a balanced

and efficient manner across the network according to the needs of their clients, this

allowed for on-demand scalability. Aptly so, VPNs became known as the ‘telecom

cloud’. This type of network utilisation is an important milestone in the evolution of

distributed computing as it is clearly a precursor to cloud computing (Kaufman, 2009).

In 1999, a massive change in the software industry occurred as SalesForce.com was

created by Marc Benioff with the intention “to deliver business applications as a

service over the Internet” (Benioff, 2009). Salesforce introduced the model where a

client application could be hosted in a cost efficient manner and accessed on-demand

through the Internet, it became the first provider of enterprise services over a

distributed network of computers. Salesforce was extremely successful and influential

15

in the technology sector, its fundamentals and business model set the baseline that

modern cloud providers still abide to.

In 2002, Amazon announced their first entrance into the cloud market by launching

Amazon Web Services (AWS), although this service was aimed specifically at

developers that were partnered with Amazon as it only al lowed them to interface with

features from Amazon.com through an external website (Amazon, 2002). The initial

release of AWS may not have been an industry changing phenomenon but it did set

the stage for Amazon’s most popular services later in the decade.

Amazon Simple Storage Service (S3) was launched in March 2006 initially offering

cloud-based storage infrastructure for any file up to 5 gigabytes (Arrington, 2006).

The real innovation brought about by S3 was the pricing model, allowing for

customers to pay nothing up front and pay only for the storage that they use, a model

that quickly became a standard for cloud providers over the years. In June 2006,

Google released Google Docs and Spreadsheets (eventually becoming just Google

Docs), allowing users to collaboratively edit cloud-based documents in real-time

(Google, 2006). In August 2006, Amazon Elastic Compute Cloud (EC2) was released,

allowing users to access to a fully scalable virtual environment complete with a

preloaded operating system of their choice. Similar to S3, the main advertised features

was the pay-per-use pricing model and the potential for simple and cost effective

scalability (Barr, 2006). Although it wasn’t realized by many at the time, 2006 was a

huge turning point in the IT industry as hardware and software were, for the first time,

being leased out for personal use by trusted vendors and proven business giants

through the medium of the Internet. Factor this with the ubiquity of high speed

Internet availability and the rise in prominence of the smartphone in this era, it is

unsurprising that the cloud changed from a buzzword that few outside the industry

really understood to a household item in the years that followed.

Most modern cloud computing vendors offer clients much more than they did 10 years

ago: full processing, storage and networking hardware as a service, all available

through the pay-per-use pricing scheme initiated by Amazon S3. This standard has

been set through years of consumer interest alongside massive investment and

competition between industry giants such as Google, Amazon, Microsoft and IBM.

2014 was the first ever year to see public cloud IaaS workloads surpass that of on-

premises infrastructure in terms of growth. Vice president of Gartner remarks that

16

“cloud IaaS is not merely a matter of hardware rental, but an entire data centre

ecosystem as a service.” (Gartner, 2015)

2.1.2 Modern Cloud Computing Definition

Cloud is still an evolving paradigm, the most recent and widely accepted National

Institute of Standards and Technology (NIST) definition describes the overall model

as being comprised of five essential characteristics, th ree service models and four

deployment models. This definition has been visually outlined in Figure 1 and

explained in-depth in the section that follows.

There are five essential characteristics of cloud computing, they are listed and

described below.

1. Broad Network Access

Cloud hosted resources can be accessed over a network from any location via a

wide range of devices (smartphones, tablets, laptop, etc.).

2. Rapid Elasticity

Services from the cloud provider can be quickly (sometimes automatically)

expanded to cater for fast scalability, be it with computing power or storage space

of a single VM or expanding the capabilities of an entire network of servers.

Abstracting the provisioning of resources to a seamless level from the end users

perspective is the main aim of this characteristic.

3. Measured Service

Cloud providers automatically control and measure the services they provision via

a metering system. Supplying provider and client with statistics of use, allowing

full transparency on either side. This system is typically modelled after the pay -

per-use paradigm, made famous with Amazon’s S3 service.

17

Figure 1: Cloud Computing Overview

 (Cloud Security Alliance, 2011)

4. On-Demand Self-Service

Clients must be supplied with a means to manage their own cloud computing

capabilities independently of the provider, there should be no need for discussion

between customer and provider regarding immediate and regular up and

downscaling of services.

5. Resource Pooling

The pooling of the cloud providers computing resources allow for them to support

of a multi-tenant model of client use with little to no transparency of real physical

machine usage to the end-user. This characteristic makes the providers resources

seem limitless in the eyes of the client as virtual resources can be leased out as

physical machines dynamically according to client demand.

The service models of cloud computing relate to the type of service being offered by

the CSP. Three distinct service models exist , each with their defining characteristics

and uses.

1. Software-as-a-Service

18

When a provider offers a cloud-based application to a client through a network,

this software is typically accessible by various devices through a web browser. A

key characteristic of this service model is that the cl ient does not manage or

control the underlying infrastructure the application is running on, regardless of

the operating system, network configuration or storage type the application uses.

This adds a huge layer of abstraction that is not visible to the end-user, as long as

the client is accessing the software through a compatible medium, the actual user

experience should be indistinguishable from that of a locally installed program.

Examples of this type of service would be G-Mail, Facebook, Twitter, etc.

2. Platform-as-a-Service

When a provider offers a cloud-based environment for the client to deploy their

own code to. The underlying infrastructure of the environment provided is not

controlled or managed by the client, however, the client has full control ov er the

deployed applications and configuration settings for the environment that is

hosting the client code. Examples of this type of service would be Google App

Engine and Microsoft Azure Web Sites.

3. Infrastructure-as-a-Service

When a provider offers computing infrastructure to a client that is accessible

through a network; this infrastructure encompasses any kind of computing

hardware, from processing power to storage to network components. Anything

other than the pay-per-use pricing system for this model is uncommon. The client

has full control over all software that runs on the leased device, which is typically

a virtual machine running on a much more powerful physical machine, taking this

into account, dynamic scaling of resources from the physical machi ne to a virtual

instance can be achieved at an on-demand basis. Examples of this type of service

would be Microsoft Azure, Amazon EC2, Amazon S3 and Google Compute

Engine.

The deployment models of cloud computing represent the different types of cloud

environments. All service models can be implemented on any deployment model of

cloud computing, these deployment models are divided by ownership of the physical

machinery offering cloud capabilities.

1. Public cloud

19

Resources are made available to the general public over a network. The CSP

manages and maintains the data centres that are being leased, the physical

machinery for this type of model resides on the premises of the CSP.

2. Private cloud

Resources are provisioned within the limits of a single organisation. This type of

cloud can be owned and managed by the organisation they operate within, a third

party or a combination of both. Private cloud data centres can be hosted on or off

the premises of the organisation that uses it.

3. Community cloud

A multi-tenant model that provides resources to a specific collective of individuals

or organisations with common computing concerns (geographical location,

security requirements, company policy, etc.). This type of model may be owned

and operated by a member of the community it caters to or a third party vendor,

the machinery may exist on or off premises of the provider.

4. Hybrid cloud

Resources are delivered by a combination of two or more cloud deployment

models. Each separate cloud remains its own entity in this model but can be linked

to one another to allow data flow throughout the combined cloud network (Mell,

2011).

2.1.3 Infrastructure as a Service (IaaS) Benefits

Modern cloud computing technologies are being adopted on a global scale at a

phenomenal rate. Global trends have shown that cloud computing is no longer a

technology in its infancy and can potentially provide several benefits to the adopting

organisation (RightScale, 2015).

Resource savings are widely cited as being a major positive effect of implementing

cloud services, this is due to the lower maintenance cost of whatever service is being

provided, for IaaS, the cost savings from not having to buy, house, power, cool and

secure new servers are clear (Khajeh-Hosseini, et al., 2010)

20

However, other benefits related to resource savings may not be as apparent. The fact

that when third party infrastructure is introduced, the technical staff in the adopting

organisation that were in charge of physical server maintenance may find that their

quality of work has improved dramatically as they can spend their time more

productively. They are no longer required to spend laborious hours or days monitoring

these servers and troubleshooting issues related to hardware, instead, these

responsibilities belong to the CSP as it is part of the service they are offering (Mell,

2011, p. 3).

While it may not be directly related to savings, enhanced tracking of resource

spending should certainly be mentioned in this section. It is simple to track the cost

of buying the hardware in a traditional infrastructure setup, but with the cost of initial

setup and maintenance, tracking the total cost of a single environment over a period

of time is a difficult task and will undoubtedly require a large degree of estimation.

AWS claims to solve this problem with cost allocation tags, these tags can be attach ed

to every separate component in the AWS environment (e.g. EC2 instances, S3 buckets,

etc.) in order to granulate the billing process in a transparent report that can be

generated on demand to detail hourly, daily or monthly costs of each component

(Amazon, 2015). Like many others, the company this project is being carried out in

does not have an infrastructure cost calculation system as detailed as this,

infrastructure costs of environments are manually derived and estimated from the

overall cost of each physical server, travel expenses for engineers, hours taken to

install the server along with the colocation provider fees. The ability to calculate with

great precision the cost of a set of static environments that a specific department uses

or the cost of temporary test environments that are used specifically for one project

are examples of how this cost allocation tag can greatly benefit organisations.

Scalability is also a factor in the decision to migrate to the cloud, the ability to

provision one or several new servers or increase the specifications of existing servers

in a matter of minutes from a command line or web portal grants organisations

unprecedented cost effective control over the scale of their IT infrastructure.

Instagram is a prime example of, what started as a small business, grew at an

unanticipated fast rate and handled their IT infrastructure with relative ease through

Amazon’s public cloud.

21

Instagram is a photo-sharing based social networking platform, it was launched on

October 6 th 2010 and within 24 hours 25,000 users had registered to use the

application. Just over 2 months later, 1 million people were actively using Instagram,

this skyrocketed to 80 million in 2012. By the end of 2013, just 3 years after the initial

launch, Instagram had 150 million active users (WeRSM, 2013). Instagram’s IT

infrastructure is hosted in Amazon’s public cloud, using EC2 instances and S3 storage

to cater for its extraordinary upsurge in consumer demand. In 2012 Instagram

discussed their IT infrastructure on their official engineering blog, they stated that

self-hosting their infrastructure was not an option they had explored due to their

content with cloud services. Their principles for catering f or rapid growth are to:

 “Keep it very simple

 Don’t re-invent the wheel

 Go with proven and solid technologies when you can trust” (Instagram, 2012)

This is a very clear message that sums up the standard AWS deliver, along with this

was the fact that Instagram only employed 3 networking engineers at that time even

though they were running hundreds of servers, a scenario that was completely unheard

of until IaaS became available. It is argued that, without the simple scalability and

versatility of the cloud infrastructure, Instagram would never have been able to cater

for the frantic growth it experienced without numerous outages due to lack of capacity

and overheads associated with expanding and managing a traditional data centre.

In both 2014 and 2015, RightScale, a cloud portfolio management industry leader,

conducted two surveys of 1068 and 930 technical professionals, respectively,

regarding their organisations experience of adopting cloud computing. The results

show that 93% of respondents report that they are in the process of, or have already

adopted cloud technologies. Respondents of these surveys reported a wide range of

benefits from switching to the cloud computing model. Those most pertinent to this

body of work have been extracted from both surveys and plotted in Figure 2 to show

to the reported benefits and increase in reported benefits from the 2014 results to the

2015 results:

22

Figure 2: Cloud Computing Reported Benefits

On average, the amount of respondents reporting the above benefits increased by over

5% from the results of the 2014 survey to the 2015 survey. It should be noted that

29% of the SME respondents have reported to be out of the experimental phase and

are using their cloud technologies heavily, seeking to optimize costs along with

operations. However, of the large enterprise respondents, only 18% reported to be in

this phase (RightScale, 2014) (RightScale, 2015). It is clear that implementing cloud

technologies correctly can have huge positive impacts on a business, these benefits

are increasing a dramatic rate as the cloud market is becoming larger, more mature

and competitive.

2.1.4 Infrastructure as a Service Risks

While the benefits of adopting IaaS have been presented, the potential disadvantages

have not yet been discussed; these include datacentre downtime along with company

security and privacy concerns.

Datacentre downtime has been a widely discussed area since the advent of modern

cloud computing and still is to this day. In a survey published in the International

Journal of Cloud Computing and Services Science, researchers gathered a list of 78

53% 52%

48%

34% 33% 34%

57% 57%

51%

41% 40% 39%

4% 5%
3%

7% 7%
5%

0%

10%

20%

30%

40%

50%

60%

Enhanced
Scalability

Faster Access to
Infrastructure

Higher
Availability

IT Staff Efficiency Higher
Performance

Cost Savings

2014 2015 Increase from previous year

23

major public cloud outages between 2007 and 2012; a large portion of which are

accredited to power outages and hardware issues. Natural disasters, vehicle accidents

causing damage to servers or dependant equipment, chain reactions caused by s ingle

pieces of power components failing are all documented sources of datacentre

downtime, warning potential clients of the dangers of adopting cloud computing (Li,

2013). Downtime of leased servers can be catastrophic, each physical device may be

split up into several virtual machines, meaning if one physical server goes down any

virtual instances being hosted on that device are also inaccessible. This can lead to

servers being out of sync with one another, developers working o n the latest code

release with no adequate environment to test against or prematurely interrupted client

transactions if a production instance was effected. These are just a few symptoms of

datacentre downtime, it is estimated that organisations can lose a s much as €4,250 per

minute of total downtime (Khan, 2014).

CSPs all have their own Service Level Agreements (SLAs), these SLAs describe the

CSPs commitment to availability of their service, be it database hosting, virtual

machine instances, storage, etc.. Typically, a CSP will propose a 99.95% availability,

as is the case with Google, Azure and Amazon, meaning that the provider is

guaranteeing that the virtual machines provisioned on their infrastructure will be

unavailable to external connections for no longer than 4 hours and 23 minutes a year

(Microsoft, 2015) (Amazon, 2013) (Google, 2015). This may not seem like much but

if the previous estimate of total funds lost per minute of downtime is applied to

99.95% availability, the total amount lost per year is €1,117,750 (Khan, 2014). These

outages are never pre-empted, therefore warnings cannot be given, a prime example

of this is the AWS outage in 2011 where a bolt of lightning struck a generator in

Amazon’s Dublin based data centre which subsequently caused a fire that left the

backup generators unusable, while some services were restored fully in a matter of

hours, S3 storage was not at full working capacity for 2 days (Miller, 2011). This

incident is of course an infamous one that has never recurred and has almost no chance

of doing so, in reality the majority of outages do not occur in one single block, rather

dozens of small incidents that may last very short periods of time for a variety of

reasons. This 99.95% availability still means just over 5 minute s of downtime a week

is allowed, even this could cause huge problems for any organisation that hosts client -

facing sites capable of financial transactions. If, at any time, there are a number of

users purchasing items or sending money, their transactions could be completely lost

24

due a 5 minute outage on the CSP’s side. Due to the SLA, this scenario is legally

allowed to occur every week of the year, the organisation that hosts their sites on

these servers will have absolutely no grounds for compensation. For any organisation,

careful consideration must be taken when examining what services should be migrated

to cloud, as no vendor can offer 100% availability with complete certainty.

Security in cloud computing has been an area of controversy since it’s services

became widely available for businesses, and rightly so: in 2014 it was reported that

the UK based Institute and Faculty of Actuaries claims to have accessed 47 million

NHS patient’s medical records on the cloud for the purpose of determining insurance

premiums (Khan, 2014). In a study by Khan and Al-Yasiri, 95% of SME interviewees

stated that data security and privacy were a concern for them (Khan & Al-Yasiri,

2015). Gibson et al. outlines the high risk of security issues associated with the multi-

tenancy involved in IaaS; CSPs host data for several other companies or organisations,

sometimes this data is hosted in the same data centre or even on the same physical

machine, which can lead to a higher risk of data leaks than self -hosting (Gibson, et

al., 2012). Dawoud et al. purports that these types of activities are possible in multi-

tenant environments on either the CSP side by exploiting the elevated privileges of

the hypervisor in order to access the memory of a VM it is managing or on the client

side by the use of malicious programs on interlinked VMs to spy on the data being

past to the hypervisor from other VMs it is managing (Dawoud, et al., 2010). This is

another vital risk to consider when adopting the cloud’s services, a company that hosts

any sensitive information on the cloud is potentially leaving itself open to a litany of

cyber-attacks that its previous infrastructure may have prevented. However, there are

two sides to this debate, while in some cases traditional IT infrastructure will allow

for more control over sensitive data and a perceived risk reduction of data loss, but,

as cloud technologies are becoming more and more adopted and invested in, CSPs are

increasing security to quell the concerns of potential and existing clients. Proper

utilisation of CSP security groups has been outlined by Jin et al. as a highly ef fective

method of restricting access to cloud-based VMs, they act as a network firewall on

the CSP’s side and are highly configurable to suit the client’s needs (Jin, et al., 2016).

Vaquero, et al. cites Amazon’s Virtual Private Cloud (VPC) virtual networking

component as an effective means of dealing with the security issues involved in the

multi-tenant architecture of IaaS (Vaquero, et al., 2011).

25

Along with the above, there are a huge variety of standards and certificates available

for cloud compliance, covering every one of these is beyond the scope of this thesis,

instead a list of standards have been derived from the Cloud Standards Customer

Council’s whitepaper titled “Cloud Security Standards: What to Expect and What to

Negotiate”, this paper recommends compliance requirements an organisation should

seek out when adopting cloud technologies (Cloud Standards Customer Council,

2016). This project pertains to IaaS and the business this project is being carried out

for is a real estate and asset management organisation with a client base located

primarily in the United States, these considerations were taken into account to fu rther

concentrate the scope of security requirements and compile a concise list of focused

security standards that are appropriate to the business and the project being carried

out, these standards will be described and compared on a CSP level later in this paper.

1. ISO 27018

First published in 2014, ISO 27018 is one of the most recent and possibly the most

pertinent standard to public cloud computing security from the International

Standards Organisation. It is related to the security requirements of public CSPs

who store and transmit personally identifiable information of their clients.

Organisations awarded this certificate have proved to uphold an internationally

recognised set of security frameworks in relation to security around information

that might identify an individual and their personal details, an essential

requirement to this project considering the large amount of client related

information the business stores (ISO/IEC, 2014).

2. PCI-DSS (Payment Card Industry – Data Security Standard)

A standard largely revolving around the secure handling of sensitive cardholder

information. It is comprised of several requirements for organisations that

electronically store, process or transmit any details of payment cards (PCI

Security Standards Council, 2015).

3. ISO 27001

An internationally recognised standard which defines a framework of security

requirements for information security management systems, its main aims are to

protect the information of personnel and to systematically evaluate and manage

information security risks. This standard is highly recommended to organisations

26

that deal with information regarding the financial sector (Certification Europe,

2015).

4. SSAE 16 (Statement on Standards for Attestation Engagements)

Developed by the America Institute of Certified Public Accountants, this auditing

standard relates to the control objectives and activities of information in the target

organisation. This standard pertains highly to organisations that host client data

and offer IaaS (Frost, 2015).

5. FIPS 140-2 (Federal Information Processing Standard)

A United States federal standard created by NIST, it specifies the security

requirements of storing, maintaining and implementing cryptographic modules to

protect sensitive information. This standard is particularly pertinent to United

States government organisations (National Institute of Standards and Technology,

2001).

6. FedRAMP (Federal Risk and Authorisation Management Program)

Administration for the United States government have collaborated with the

National Institute of Standards and Technology (NIST), the Department of

Defence (DOD), the Department of Homeland Security (DHS) and several other

government and non-government organisations to develop FedRAMP. At a high

level, the FedRAMP assessment process includes applying a set of state -of-the-

art, transparent and reusable security standards to individual cloud technology

offerings. Assessments are carried out by impartial third party assessment

organisations on a CSPs demonstration environment, the result of which will be a

full audit of a CSPs offering in order to determine if the system offered is secure

enough for US federal government use. Effectively, FedRAMP offer CSPs the

mark of approval for one of the highest standards of security possible. One of the

main aims of FedRAMP is to bolster the current state of security in the cloud

sector as a whole, while encouraging the global community to adopt cloud

technologies (VanRoekel, 2011). At the time of writing, there are only 15 IaaS

offerings compliant with FedRAMP (FedRAMP, 2015).

While it is not directly related to IaaS security concerns, the European Union’s

General Data Protection Regulation (GDPR) merits mention in this section; the GDPR

was passed in April 2016 and is due to be enforced in May 2018, shortly after this

27

thesis has been finalised (Nadeau, 2018). In short, the GDPR sets out a rigorous

regulatory framework pertaining to the processing, storing and deletion of data

between consumers and organisations that handle their data; the GDPR encompasses

the personally identifiable information of all European Union citizens (Blackmer,

2016). Failure to abide by the GDPR can lead to fines from the European Commission

of up to 4% of the non-compliant organisation’s income or €20 million, whichever is

higher (EUGDPR.org, 2018). It is expected to have a huge impact on the field of cloud

computing, especially in the area of IaaS where organisations utilising IaaS may not

be aware if their client’s data is being stored and processed is accordance with the

GDPR framework (Webber, 2016). The ramifications of GDPR can only be speculated

at the time of writing, as it has not yet come into effect, therefore, it will not be

discussed any further in this thesis.

2.2 Cloud Service Provider Comparison

There are numerous IaaS providers active in the market today, for the implementation

side of this body of work, the following three were examined as they are considered

to be the prominent market leaders (Knorr, 2016) (Maguire, 2015):

1. Amazon Web Services

2. Microsoft Azure

3. Google Cloud Engine

What follows is a brief overview of each offering under similar headings along with

an availability comparison of each CSPs virtual machine and storage offering.

2.2.1 Amazon EC2

Elastic Cloud Compute (EC2) is Amazon’s IaaS offering, it allows users to create,

modify and destroy scalable computing instances from a wide variety of operating

systems through Amazon Machine Images (AMIs) in a matter of minutes via a web

service interface or through an API (Amazon, 2015).

28

EC2 billing is specific to the instance type being used, as a whole, billing is based on

a pay-per-use model. Users are billed on a monthly basis and are under no obligation

to fulfil a minimum monthly amount of instance hours. Amazon offer a free tier

account to new AWS customers for a year, this includes:

 “750 hours of EC2 running Microsoft Windows Server, Linux, RHEL, or SLES

t2.micro instance usage

 750 hours of Elastic Load Balancing plus 15 GB data processing

 30 GB of Amazon Elastic Block Storage in any combination of General Purpose

(SSD) or Magnetic, plus 2 million I/Os (with Magnetic) and 1 GB of snapshot

storage

 15 GB of bandwidth out aggregated across all AWS services

 1 GB of Regional Data Transfer” (Amazon, 2015)

Clients are charged by hours their instances are on, partial instance hours are billed

as full hours. Organisations will benefit greatly here by automating the stopping and

starting of instances outside and inside of business hours respectively (Amazon,

2015). Amazon have a total of 38 predefined machine specifications that users can

create instances from, ranging from 1GB RAM with 1 core to 244GB RAM with 36

cores (Amazon, 2015).

1. On-Demand Instances

Scalable computing resources are available on-demand and paid for by hour of

use, recommended for systems with unpredictable workloads that may need

additional capacity and need to be available within user specified times.

2. Reserved Instances

Allows users to purchase instances for a given length of time in one up -front

payment, recommended for systems with a constant, predictable workload that

require a set amount of capacity for a predefined set of time. There is a limit of

20 reserved instances per availability zone per user.

3. Spot Instances

29

Similar to on-demand instances in that computing resources are paid for hourly,

spot instances are provisioned to the highest hourly bidder, prices obviously rise

and fall given peak hours. It is a supply and demand type system where the user

never pays more than they have agreed to pay but may lose their instances if they

are outbid. Recommended for non-critical applications that can easily recover

when interrupted (Amazon, 2015).

AMIs are pre-packaged environments, at their most basic, AMIs contain an out -of-

box operating system. Clients have the option to choose pre-configured public AMI

or create one of their own based on an existing operating system. Amazon boast a 1 -

Click launch function that swiftly deploys a preconfigured AMI with a single click.

Advanced users will benefit from using custom AMIs as the image can contain

applications, libraries, data and configuration settings. Take for example, if a user has

specific custom applications that are configured in a certain way that is not default to

the operating system’s out of box settings then they can define all of this in an AMI

their own, configured the way they want it and use this image to spawn as many as

they need without additional application installs or configuration, AMIs can be set to

private, so only the client that created it can view and use it, or public, so everyone

using EC2 can use it. Elastic Block Storage (EBS) is Amazon’s data persistence

feature for EC2 instances, allowing clients to switch off their instances when they are

not being used and turn them back on when they are being used (Amazon, 2015).

Amazon’s Virtual Private Cloud (VPC) lets users create their own virtual networking

environment that EC2 instances reside in. VPCs operate using an IP range specified

by the user, combined with Security Groups and network ACLs, full control over

instance and Internet communication is handed to the user. Existing IT infrastructure

can be joined to VPCs via encrypted VPNs that come with AWS (Amazon, 2015).

2.2.2 Azure Virtual Machines

Azure virtual machines are Microsoft’s IaaS platform, allowing customers to

provision computing resources from multiple operating systems “nearly

instantaneously” through a web portal with Azure Resource Manager (ARM) or

Azure’s own API (Microsoft, 2015). Users are billed monthly per minute of VM use.

There are no upfront costs or termination fees. When the instance is shut down and

30

the cores the VM was using are no longer allocated to it, then billing is suspended. A

month’s free trial with $200 prepaid into the users account is offered by Azure, all

services are available in this trial. Azure do offer a 12 month prepay option that

entitles users to a 5% discount on all Azure services, this discount is relative to the

pay-per-use model. This option is only available with a minimum purchase of $6000,

Microsoft have a strict no refund policy for this service and users subscriptions are

set to renew automatically with the same amount as purchased initially. All funds

remaining in the users account at the end of the 12 month period with be absorbed by

Microsoft (Microsoft, 2015) Azure has a total of 52 different predefined instance

types for users to provision, ranging from 0.75GB RAM with 1 core to 448GB R AM

with 32 cores (Microsoft, 2015).

ARM allows users to define and group their infrastructure as logically related

resources from the web portal or API. This system of management works from an

application level to a higher level infrastructure level and all components in between,

examples of resources covered by ARM are virtual machines, data storage, virtual

networks and 3rd party services. Customers can save these configurations as ARM

templates in order to redeploy entire environments without additional setup, these

templates encapsulate a greater level of infrastructure compared to AWS AMIs, which

are specifically designed to define configuration on a virtual machine level. ARM

templates are JSON files that let customers define their deployment and configuration

of their systems in a declarative way, dependencies are dealt with automatically

through ARM analysis prior to any execution of defined resources. This caters for

repeatability and scalability through the simple updating of single or multiple

components in any given network setup (Microsoft, 2015). Azure offer five types of

storage systems.

1. Blob

Binary Large Object (BLOB) storage is recommended for large files that need to

be stored on a long term basis, each BLOB can be up to 50GB and are replicated

three times in the data centre they are stored in for redundancy and high

availability purposes. This type of storage is external to instances, accessible from

anywhere on the Internet, and persistent.

2. Table

31

Similar, but not full SQL tables, Azure offer storage of very large tables spanning

millions of rows and columns. Like Blob storage, tables are replicated three times

in the data centre they reside in. This type of storage is external to instances and

persistent.

3. Local disks

Each Azure instance has at least one predefined local disk, it can be a hard disk

drive or solid state drive. This type of storage is internal to instances and is not

persistent.

4. XDrives

XDrives are virtual disk drives that reside outside of any instance, they can be

mounted on any Azure instance and behave just like local disks. They are based

on the Blob storage system, so they are persistent and not dependant on the

instance they are mounted on (Microsoft, 2015).

5. Queue

Azure offers a persistent queue storage system for messages that can be accessed

from any location, instances can connect to the queue to send messages to

machines. The messages are limited to 64KB in size but the queue its elf can store

up to 100TB of messages (Cremers, 2012).

Azure Virtual Network provides a means for building virtual networking topologies

capable of integrating with existing infrastructure through VPNs or Azure’s own

alternative: ExpressRoute. Users can define their own set of private IPs, subnets and

traffic flows and run WAN optimizers, load balancers, and application firewalls in

the Virtual Network. Azure fully supports hybrid applications that simultaneously

work from both an external IT network and the Azure Virtual Network (Microsoft,

2015).

2.2.3 Google Compute Engine

Google’s IaaS offering is called Google Compute Engine, it supports Ubuntu, Debian,

Red Hat, SUSE, and Windows operating systems on Google’s highly available

32

infrastructure. Like AWS and Azure, this service is managed through a web portal

and/or API (Google, 2015).

Google Compute Engine’s pricing model follows the standard pay-per-use model,

users are charged for leased computing capacity on a 10 minute basis and 1 minute

increments thereafter on a monthly basis. Instances running for more than 25% of a

month qualify for a sustained use discount, this discount is automatical ly applied

when instances run over a certain amount of time in any one billing period, it is limited

to a net discount of 30% for instances that run continuously for an entire month

(Google, 2015). Compute Engine has a library of 18 different machine specifications

to create instances of, ranging from 0.6GB of RAM with 1 core to 208GB of RAM

with 32 cores (Google, 2015).

Compute Engine offers two different types of storage:

1. Persistent disks

Users have the option of specifying a hard disk drive or a solid state drive for

persistent storage. These disks are independent of instances and can be attached

to any instance type. They are replicated in the region they reside for data

redundancy for high availability and support snapshotting in order to attach a disk

preloaded with data to any instance. Persistent disks can be used as boot devices

for instances.

2. Local SSDs

These disks are attached to the instance when it is created, they are fully dependant

on the instance they are attached to and will not persist when the instance is

powered down or terminated. These disks are not replicated, do not support

snapshots and cannot be used as boot devices for instances (Google, 2015).

Compute Engine provides its own networking hierarchy, allowing for multiple

networks with multiple instances in each. Users define defined a gateway IP for each

network and a network range for IPs of instances inside of that network. By default,

all instances inside of a network can communicate with each other but all external

incoming traffic is blocked by a configurable firewall. Routes allow for the handling

of outgoing network traffic from an instance while VPNs can be set up to allow for

existing external infrastructure to communicate with Compute Engine networks

(Google, 2015).

33

Product Outages Total Downtime (minutes) Availability (%)

Amazon S3 37 6.78 99.9987

Amazon EC2 14 6.92 99.9988

Google Cloud Storage 7 0.58 99.9998

Google Compute Engine 103 132 99.9749

Azure Object Storage 103 44.38 99.9916

Azure Virtual Machines 66 153.6 99.9738

Table 1: Cloud Offering Downtime

(CloudHarmony, 2015)

2.2.4 Availability Comparison

As previously mentioned, Google, Azure and Amazon all offer 99.95% availability

for their IaaS offerings (Microsoft, 2015) (Amazon, 2013) (Google, 2015). However,

analysis of the outages from October 25 th 2014 to October 25 th 2015 from Google,

Amazon and Azure IaaS and storage offerings show that not one CSP had downtime

extended past their SLA, as can be seen in Table 1 . The data from Table 1 was used

to make the following three graphs, which show a visual comparison of average yearly

downtime, average yearly outages and average yearly availability of the aggregated

compute and storage services offered by the three IaaS providers

Figure 3: Average Yearly Downtime

6.85

66.29

98.99

0

20

40

60

80

100

120

AWS Google Cloud Microsoft Azure

M
IN

U
TE

S

Average Yearly Downtime

34

Figure 4: Average Yearly Outages

2.2.5 Instance Price Comparison

What follows is a price comparison of an instance from each CSP per hour, the

instance types chosen for comparison are based on the environments recreated as part

of this body work. These machines are have the following basic specifications:

8.00GB RAM, 2 cores, these metrics were taken into account when selecting the

instances to compare.

Figure 5: Average Yearly Availability

25.5

55

84.5

0

10

20

30

40

50

60

70

80

90

AWS Google Cloud Microsoft Azure

O
U

TA
G

ES
Average Yearly Outages

99.99875

99.98735

99.9827

99.97

99.975

99.98

99.985

99.99

99.995

100

AWS Google Cloud Microsoft Azure

A
V

A
IL

A
B

IL
IT

Y
(%

)

Average Yearly Availability

35

CSP AWS Google Cloud Microsoft Azure

Instance Name t2.large n1-standard-2 A5

Cores 2 2 2

RAM (GB) 8 7.5 14

Storage (GB) Elastic Block

Storage

None 135

Storage Type HDD N/A HDD

Cost $/hr 0.134 0.19 0.32

Table 2: CSP Instance Comparison

(Amazon, 2015) (Azure, 2015) (Google, 2015)

AWS’s t2.large instance type matches the machines to be replaced more adequately

than Google and Azure, both of which did not offer identical compute power in their

instances, therefore the compute power of the instances chosen for comparison had to

be rounded down for Google and up for Azure.

Google’s n1-standard-2 instance type had insufficient RAM and cost more than

AWS’s t2.large instance type, whereas Azure’s A5 instance type had an excessive

amount of RAM and cost far more than Google’s n1-standard-2 and AWS’s t2.large.

It should be noted here that the compared Azure instance includes 135GB storage

space, but, as this disk is not persistent, it is of no interest to company this project is

being carried out for. Figure 6 summarises the derived data in a simple chart form:

36

Figure 6: Instance Price Comparison

2.2.6 Security

At the time of writing, each of the CSPs considered for this project have achieved all

of the previously discussed security requirements bar Google Cloud Compute which

is only missing the FIPS 140-2, this data is outlined in Table 3.

Security Certificates AWS Google Cloud Compute Microsoft Azure

ISO 27018 Yes Yes Yes

PCI-DSS Yes Yes Yes

ISO 27001 Yes Yes Yes

SSAE 16 Yes Yes Yes

FIPS 140-2 Yes No Yes

FedRAMP Yes Yes Yes

Table 3: CSP Security Certificate Comparison

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cost $/hr

Instance Price Comparison

t2.large n1-standard-2 A5

37

2.2.7 Results

While all appear similar in regards to their interfaces (web portal alongside REST

API), networking capabilities and security standards, AWS stood out above the rest

in fulfilling the specific requirements for the organisation. The T2.Large EC2 instance

type matches the organisation’s needs more closely than Google and Azure, taking

this specific instance type into account, the above charts shows that AWS offer

cheaper instance runtime while maintaining the lowest average downtime, lowest

average outages and highest average availability for their virtual machine and storage

services, these were all important factors that were considered when determining the

CSP for this project. Along with these, Amazon’s maturity in the sector and their

variety of instance types led to the conclusion that AWS should be chosen for the

implementation side of this project.

2.3 Infrastructure as Code

Infrastructure as Code is a relatively new paradigm, allowing for all aspects of IT

infrastructure and their configurations to be scripted out as code; the design of entire

networks can be defined and source controlled as though it is application or database

code which allows for granular change management, uniformity of servers and the

potential for rapid scalability (Nelson-Smith, 2013).

It is not completely clear when the term ‘Infrastructure as Code’ was coined, sources

indicate that the term came about after the release of AWS EC2 (Nelson-Smith, 2013).

Configuration management code is discussed as a precursor to IaC in the following

sections, though not explicitly stated by many sources, the seemingly interchangeable

terms configuration management code and IaC are not one in the same.

Modern interpretations refer to both configuration management and IaC as one in the

same; the definition of the term by Kief Morris, the author of book titled Infrastructure

as Code is as follows:

“Infrastructure as Code is an approach to infrastructure automation based o n

practices from software development. It emphasizes consistent, repeatable

38

routines for provisioning and changing systems and their configuration.” (Morris,

2016)

However, it is the author’s opinion that the divide between con figuration management

code and IaC is clear: configuration management tools allow for components residing

above the operating system layer (i.e. directories, application configuration, etc.) to

be scripted out and executed as code while IaC tools allow for the lower level

components such as virtual machines and the virtual networks they reside on to be

scripted out and executed as code.

Information on the history of Infrastructure as Code is scarce, but, the first

documented use of this type of technology dates as far back as 1993 when Mark

Burgess, a post-doctoral researcher at Oslo University, created a small, open source

command line tool that allowed him to automate the configuration management of

workstations in the university in order to eliminate tedious tasks associated with

manually setting these machines up, allowing him to get his work done in a more

efficient manner. Burgess dubbed this tool “The Configuration Engine”, or CFEngine

as it is more widely known (CFEngine, 2014).

Burgess describes CFEngine as:

“A very high level description language for UNIX machine -park configuration,

intended to assist the administration of a local area network by defining the setup

of all machines centrally from one file.” (Burgess, 1993)

This early form of automated configuration management through code allows for a

single file to specify the configuration of several machines, once the CFEngine

program is compiled on each machine, the configuration file is then passed to each

machine in the network and each one executes the same file (Burgess, 1993). It is

clear from reading the above that Burgess pioneered the idea of Infrastructure as

Code; the same basic principles of self-describing code, portability and even similar

execution methods can be seen in modern day configuration management and IaC

tools.

Throughout the 90s, Unix systems evolved and became more complex, the initial

release of CFEngine began to show its flaws and limitations when used against

different Unix platforms, this, along with the fact that there was a lack of research

and development in the configuration management area led to Burgess continuing his

39

work. In 1998, Burgess presented a paper called Computer Immunology at the Twelfth

Systems Administration Conference, the landmark piece of work envisioned a type of

self-healing computer system comparable to the human immune system (Burgess,

1998, p. 283).

In this paper, Burgess scornfully notes the massive amount of time system

administrators need to spend diagnosing and fixing problems related to management

of a network of computers and discusses the possibility of autonomous system

maintenance, whereby faults in a system can be detected and fixed automatically

without the need for human intervention. This is similar to way that most human

immune systems can easily dispatch routine problems such as headaches, fatigue and

small injuries without the need to be hospitalised for dedicated medical care by a

health professional. Burgess furthers this analogy by writing that “it is as though all

of our machines are permanently in hospital” (Burgess, 1998, p. 283). The system

Burgess proposed to fix this prevalent problem can be summarised as a network of

machines in which a “healthy” computer state is defined and automatically pushed to

every machine on that network, this state data will then be enforced upon each

machine to ensure every node in the network is in a healthy, uniform state (Burgess,

1998, pp. 283-288). As a direct result of the Computer Immunology paper, a major

research effort in Oslo University took place with Burgess at the forefront, leadin g to

the release of CFEngine 2 in March 2002, this new version featured machine learning

and anomaly detection based on the ideals introduced in the Computer Immunology

paper (CFEngine, 2014) (Burgess, 2002). Over 20 years later, Burgess’s ideals are

clearly incorporated as the core principles that modern day automated configuration

management tools adhere to. Tools created years after the initial CFEngine, like

Puppet and Chef, are based on the idea that a computer’s state can be defined through

code and pushed from a central location across multiple machines in an automated

fashion in order to create a uniform network of computers (PuppetLabs, 2015) (Jacob,

2012).

For a whole 12 years, CFEngine ran unopposed in the automated configuration

management field; finally, in 2005, a competitor emerged when Luke Kanies, an

active user of CFEngine 2, created a Ruby-based, model-driven automation tool

known as Puppet (PuppetLabs, 2015). Recalling the origins of Puppet in an interview

with John Willis and Damon Edwards from DevOps Café in 2010, Kanies revealed

that, as a system administrator years before creating Puppet, he was frustrated with

40

the fact that research and development in the area of configuration management

automation was not being paid the at tention it deserved (Kanies, 2010).

Kanies remembers speaking with several experts in the field about his dissatisfaction

with the advances, or lack thereof, that CFEngine had made with its virtually

unopposed reign in the sector. While many agreed with him, he found an unsettling

prevalent theme among them: an acceptance of the fact that CFEngine had been, and

was the only industry standard tool in that area, and that it did not appear to be

relinquishing its monopoly at any time in the foreseeable future, as no other

conceivable alternatives were available. Another motivating factor for Kanies to leave

his job and create Puppet, was that he felt as though there was an unnecessary gap of

knowledge between system administrators and developers in terms of configuration

of servers through code. He believed this gap could be bridged by making

configuration management code less intimating to developers by creating

modularised, granular libraries of self-describing code and treating these the same as

database or application code libraries. Kanies hoped this would help encourage both

departments to learn how to add their own configuration requirements to their servers

through code, code that both, development and operations departments could easily

understand (Kanies, 2010).

In 2009, Chef was released by a company called OpsCode, now Chef (Robbins, 2009).

Like Puppet, Chef is a Ruby-based automated configuration management tool based

around the core concepts of defining a machines desired state through code and

centralised modelling of infrastructure (Chef, 2015). Adam Jacob, one of the original

creators of Chef, recalls the reasoning behind making the tool in a presentation he

made at Chef Conf 2012: Jacob was working as an IT infrastructure consultant,

building networks for start-up companies. Much like Kanies with CFEngine, Jacob

was an avid user of Puppet in his day-to-day work but was dissatisfied with the

standard of configuration management tools on the market at the time. He began

creating Chef to increase efficiency in his company while also abstracting complex

networks through self-describing code to the point where they would translate well

enough to be understandable to, and to be re-used for each individual client in his

company’s customer base (Jacob, 2012)

Each tool discussed above has more similar than unique aspects, all three were created

by those tasked with system administration, who were attempting to create a faster

41

and more efficient way of automating the configuration of systems, and, in doing so,

whether deliberately or inadvertently, contributed greatly to the DevOps field by

creating a means of cross-functional collaboration between developers and operations,

which is a defining feature in the DevOps culture (Dyck, 2015).

With the inception of Puppet in 2005 and Chef in 2009 into the configuration

management sector, the monopoly once held by CFEngine was no more. The

widespread, and continuing success of the three tools caused a previously absent

competitive market to develop around them, this, coupled with the advent of cloud

computing, prompted research and development in the area to progress at a rapid rate

(Nelson-Smith, 2013). As with any emerging market, the configuration management

software niche became flooded with new competitors, each offering different tools,

examples of such include: Rudder, Ansible, SaltStack and Rex (Rudder, 2015) (Gerla,

2013) (SaltStack, 2015) (Rex, 2015).

Arguably, the value of these tools were not seen in their entirety until the advent of

AWS’s EC2 in 2006 (Dadgar, 2014). Maintaining server health and uniformity

throughout an expanding and contracting network via automated methods allowed

early cloud adopters to realise the benefits of tools such as CFEngine, Puppet and

Chef by managing the configuration of their servers with unprecedented efficiency,

and their popularity has grown alongside cloud technologies (Nelson-Smith, 2013).

Puppet is a prime example of this: in an interview in 2009, Puppetlabs founder Luke

Kanies stated that Puppet had 1,200 users (Matt Asay , 2009). Less than 5 years later,

in 2014, TechCrunch reported that Puppet had over 18,000 u sers, a client base

increase of 300% per annum (Lunden, 2014). Along with this, in November 2015, the

standard library of resources for Puppet modules had over 4.85 million downloads

(PuppetLabs, 2015).

Relatively speaking, the need for several brand new machines to be setup from scratch

rarely arose until the advent of the disposable cloud instance (Morris, 2016). The

introduction of IaaS meant that in-house operation costs went down and IT scalability

possibilities sharply increased (Nelson-Smith, 2013). The ability to easily create

large-scale increases to IT infrastructure at the rapid rate AWS was offering was

revolutionary, but, anyone in a technical operations role could see daunting tasks

ahead of them. Automated configuration management tools ensured that these tasks

were not associated with the manual configuration of each individual server, while

42

scripting out the configuration of machines is a massive step forward in terms of

efficiency and scalability, it did leave a large gap in automation where system

administrators still needed to manually manage all aspects of the higher level

infrastructure components, such as those associated with virtual machines and

networks, including but not limited to:

 Virtual private networks

 Subnets

 IP allocation for machines

 Storage assignment for machines

 Access control lists

Along with all of this, a manual log of changes to networks and VMs would need to

be kept, typically for disaster recovery and rollback reasons. If an adopting

organisation is not satisfied with their experience with one CSP, they may choose to

switch providers or revert back to their original infrastructure setup; to do this, they

would have to spend a vast amount of time and resources documenting every aspect

of their networks before they could migrate them to a different datacentre. This was

the scenario until very recently when tools were created to manage these lower level

infrastructure components, one such tool is Terraform. Terraform was released in

2014, it was written by Mitchell Hashimoto of Hashicorp with the intention solving

the problems described above while granting a means of documenting and source

controlling the configuration of entire networks through code (Hashimoto, 2015).

Terraform aims to create a software-managed datacentre, that is, a virtualised network

of computers, the components of which are abstracted into a libraries of execu table

code similar to any lower level configurations of which are defined through code

(Dadgar, 2014).

The evolution of the configuration management tool since its inception has taken a

steady path towards encompassing every aspect of IT infrastructure, from the most

basic software configuration change to creating entire networks comprised of

virtualised hardware. A recurring theme throughout this history has been the aim to

improve the storing of infrastructure configuration through abstract libraries of self-

describing code that both developers and operation engineers can understand, manage

43

and contribute to. The evolution of configuration management code to IaC has led to

a convergence of the two terms, with IaC being the more popularly used term.

2.3.1 Infrastructure as Code Benefits

As discussed above, the benefits of implementing IaC are numerous. As of yet, in this

thesis, none of these claims have been backed up by concrete statistics, this section

aims to verify these claims. In January 2015, Microsoft commissioned Forrester, an

independent research based consulting firm, to determine whether or not

implementing IaC technologies and principles enhances the speed of software delivery

from development to production without compromising their defined processes and

security (Forrester, 2015).

Efficiency in the environment lifecycle, including creation, configuration and

destroying of environments has been proposed as a benefit from implemen ting IaC,

plainly because it removes the bulk of human error by providing a means of an

automated and repeatable execution process for operations which were previously

manual. To cover every single one of these operations is beyond the scope of this

thesis, but, a short list from the authors experience as an environment manager

follows:

 Configuring server hardware specifications.

 Installing/configuring operating systems.

 Installing/configuring applications.

 Applying correct patches to installed applications.

 Adding and removing machines to and from the correct domain.

Repeating all of the above operations on a day-to-day basis can be cumbersome for

any system administrator, and delays can occur in the application lifecycle due to

human error in the environment configuration process which may require a great deal

of troubleshooting to identify. For example, a new environment has been created to

test a new feature, during the development phase, this feature branch has been

deployed to the new environment and is throwing errors in several places where it

was previously working. Several software engineers are debugging through the code

44

they added in order to diagnose the problem. After many hours it is found that the

operating system installed on the environment i s missing several patches required by

the new feature, or, that the server is running an outdated version of a database engine,

or, that a disk drive is missing, or, that certain directories were not set up as they

should have been. Regardless of the exact culprit, the cause here is due to one or many

mistakes in manual configuration that an operations engineer will have to take time

out of their day to fix. This is a purely hypothetical situation, but, instances of delays

directly related to mistakes made in the manual configuration of environments have

been widely reported. Forrester surveyed 300 IT professionals involved with the build

and release of software and asked them:

“Where in the application release life cycle do you have the greatest friction?”

Friction, in this context, relates to errors, misconfigurations or conflicts which

directly cause delays. The majority of respondents stated that the provisioning and

configuration of infrastructure is the 2 nd highest area of friction, followed closely by

the provisioning and configuration of applications (Forrester, 2015). It should not be

acceptable that the misconfiguration of environments results in second and third

highest areas of delays, these are the bottlenecks that IaC was designed to eliminate.

Forrester surveyed a mix of 150 development and operations engineers from different

companies that had already adopted IaC frameworks and asked them the following

question:

“What benefits have you achieved from utilising infrastructure as code?”

It should be noted that respondents were allowed to choose one or many benefits in

order to answer this question, results pertinent to this area have been plotted in Figure

7. It can be surmised that the correct implementation of IaC can potentially provide

organisations with greater efficiency in the overall environment lifecycle.

45

Figure 7: Reported benefits of IaC

Along with greater efficiency, comes repeatability, in the context of IaC, repeatability

infers simple scalability. In the section above, the scenario where a single server

needed to be manually setup was constructed. If, instead of a single server, multiple

servers needed to be setup manually, then the situation changes greatly. The

probability of human error causing delays in the initial setup increases relative to the

number of servers to setup. People inevitably make mistakes when performing

repetitive and mundane tasks, just like the calculator removes human error when

performing mathematical calculations, IaC removes human error when provisioning

and configuring servers. The ability to programmatically declare the desired state of

a server once and apply it in an automated fashion to an array of servers allows

organisations to scale rapidly. In a case study by Puppetlabs, Ben Hainline, a

production operations engineer at Infusionsoft, was interviewed and queried on

Infusionsoft’s experience with the configuration management tool. Hainline conveyed

that the repeatable nature of Puppet allowed Infusionsoft to double the size of its

infrastructure without hiring extra system administrators; Hainline is also quoted as

saying “one person can manage 200 servers with Puppet” (PuppetLabs, 2015).

Another benefit of implementing IaC is the potential for resource saving. As

previously mentioned, every aspect of environment creation that was once manual can

now be scripted through higher level tools, such as Terraform, for virtual machine

provisioning and network integration, while lower level configuration management

tools, such as CFEngine, Puppet and Chef, handle the internal configuration of the

virtual machine itself. Therefore, if a new environment needs to be setup, operations

engineers need not spend hours or days carrying out manual tasks, they simply need

to specify their requirements through code, execute said code, and carry on with their

25%

31%

31%

32%

Easier system of creating and destroying
environments

Faster application lifecycles

Fewer configuration errors

Faster configuration workflows

What benefits have you achieved from utilising infrastructure as code?

46

other work. This type of workflow dramatically cuts costs associated with

environment creation; when infrastructure provisioning and configuration tasks take

less staff and fewer hours to complete, the organisation saves money. Mozilla’s

DevOps department uses Terraform to provision and maintain its IT infrastructure and

claims that the use of IaC allows for an environment to be fully setup in a single

working day, when they compared their pre-Terraform environment creation

workflow to their current setup, Mozilla estimated that they save up to 500 operations

staff hours per year (Hashicorp, 2015). It can be concluded that the benefits of

adopting IaC have proven to be exhaustive (Hashicorp, 2015) (PuppetLabs, 2015)

(Forrester, 2015).

2.3.2 Infrastructure as Code Risks

IaC is not without its risks and potential pitfalls, the benefits are difficult to overstate

but can only be achieved when IaC is implemented correctly through changing how

the adopting organisation treats IT infrastructure by educating and fostering close

collaboration between operations and software engineers.

Organisations that have never utilised IaC and are planning to adopt it may encounter

problems; nearly a third of organisations in this situation that were surveyed by

Forrestor stated that they feel their staff lack the expertise to implement IaC

effectively (Forrester, 2015). Taking this into account, new staff may need to be hired

or existing staff may need to undergo intensive training and possibly move to different

roles in order to create and maintain IaC for organisations that have no previous

history in the area. Questions pertaining to the skillset required and actual

responsibilities of these new or retrained staff then arise. Will these new or retrained

staff be operations based with development knowledge, vice -versa, or will an entire

new team, dedicated to IaC need to be created? The bulk of cited problems with IaC

relate to its adoption because it is not a traditional paradigm in the IT field, rather it

is an interdepartmental technology that requires a great deal of effort to adopt and

utilise to reap its benefits.

Monetary investment and staff training are naturally required when adopting any type

of new technology, but adoption of IaC is not as simple as a new tool that one person

or one department will use, it is of paramount importance that both development and

47

operations departments are equally involved in all aspects of IaC. This is because a

wide variety of interdepartmental problems can stem from an incorrect adoption of

IaC and associated principles. Forrestor surveyed 150 IT professionals already

utilising IaC and found that the conflict between development and operations

department preference for specific tools and languages is the most difficult area when

adopting IaC (Forrester, 2015). It is true that development and operations play two

completely different roles in most organisations and forcing them to integrate and

collaborate will inevitably cause conflicts of interest, especially if the benefits of IaC

are not realised by everyone involved.

2.4 Infrastructure as Code and Infrastructure as a Service

The intersection of IaC and IaaS should be clear to any reader at this point, the two

are complimenting technologies and have evolved to co-exist with one another. A

point that should be considered here is that without the affordable scalability potential

offered by IaaS that IaC would not have become as popular and as powerful of a tool

as it is today, as discussed above, t rends show that IaC usage and progress as a

technology has increased significantly in the years after the release of EC2. It is cited

that IaC is the natural path of progression for IT management to take in the cloud era,

Morris is one such author, remarking that:

"The Infrastructure as Code approach is essential for managing cloud

infrastructure of any real scale or complexity” (Morris, 2016).

Morris outlines challenges in managing the overwhelming amount of affordable

infrastructure offered by the cloud, the most relevant to this paper are:

1. Server Sprawl

The ability to create new servers on-demand with little cost overhead can lead to

IT teams being unable to manually manage them properly. Server sprawl can lead

to configuration drift.

2. Configuration Drift

When new servers are created, the initial configuration may be consistent at the

time, but over time, new systems and updates are rolled out, but the existing

48

servers are not updated. This leaves the old servers outdated in terms of software

updates and essential configuration, and they are said to be in a state of

configuration drift, which can lead to snowflake servers.

3. Snowflake Servers

When a server is different from all others but the difference cannot be replicated,

a change has taken place on this server that causes it to either work for some

unknown reason (Morris, 2016).

The challenges outlined above all stem from the element of human error, that is, the

reliance on manually provisioning and configuring systems. Morris later concludes

that the adoption of IaC technologies can be a solution to all of the above if

implemented correctly through automated, standalone processes that require little to

no human intervention (Morris, 2016).

The case study section of this body of work relies heavily on IaC tools in order to

automate the migration of old, and creation of new environments in the cloud. The

process to automate the above is based on the princip les of effective use of IaC

outlined by Burgess and later by Morris (Burgess, 1998, p. 283) (Morris, 2016).

2.5 Infrastructure as a Service Migration

Cloud migration has been defined as the deployment of an organisation’s digital

assets, services, IT resources or applications to the cloud (Pahl, et al., 2013). Security

issues involved with the migration of sensitive data from non-cloud infrastructure to

IaaS have been covered extensively in existing literature (Khan & Al-Yasiri, 2015)

(Vu & Asal, 2012) (Manvi & Krishna Shyam, 2014). Another cited issue in the field

is the process of the migration of non-cloud infrastructure to the IaaS platform, in

particular, its technical aspects and lack of automation (Hwang, et al., 2015). This

issue is particularly under researched in an industry-based setting. The migration

process itself requires careful planning and typically involve custom ad-hoc execution

plans based on client requirements, as the ultimate solution will inevitably vary from

one client to another (Pahl, et al., 2013). A search of IEEE Digital Xplore online

library revealed that there have been four generalizable frameworks proposed to

49

handle the migration of non-cloud infrastructure to IaaS, what follows is an overview

of these frameworks, outlining the overall purpose and limitations of each.

The Migration Assessment Tool (MAT) presented by Mateescu, et al. is an online web

application that provides organisations with a detailed assessment of their non -cloud

infrastructure and determines what kind of IaaS solution would best suit their needs

(Mateescu, et al., 2014). The MAT architecture consists of a presentation layer which

handles user interaction, a business layer which creates and updates objects based on

the users input and a data layer which contains objects in a database that MAT

references and compares to the users input. All of the above components interoperate

with one another in order to take an organisation’s existing, non -cloud infrastructure

as an input, map out the infrastructure within the MAT database and compute the best

possible cloud-based solution and for the client. While this framework does pertain

to the field of migration of existing non-cloud infrastructure to IaaS, it covers only

pre-migration phase activities, it does not address the technical complexity aspects

involved in carrying out such a migration or provide an automated, repeatable process

for the migration itself.

Khan and Al-Yasiri have proposed a cloud migration framework for SMEs, this

framework is based off the general cloud adoption challenges and solutions obtained

from 72 interviews the researchers held as part of their study, interviewees range from

representatives from SMEs, representatives from CSPs and developers who specialise

in cloud technologies (Khan & Al-Yasiri, 2015). Khan and Al-Yasiri’s framework

aims to be generalizable to all service models of cloud computing and deals with all

phases involved in the migration process, it’s broad aim is to provide a stepwise guide

for SMEs to follow for their cloud migration project (Khan & Al-Yasiri, 2015). This

framework is broken down into the following three stages:

1. Cloud Requirement Stage (CRS)

This initial stage involves the assessment of client requirements regarding what

services are to be migrated to what platform, knowledge applied in this stage is

based on CSP advice and market studies.

2. Cloud Preparation Stage (CPS)

50

This middle stage is comprised of a comprehensive analysis of the adoption plan

obtained in the CRS, this stage involves risk assessment regrading regulatory

compliance, potential security issues and data classification.

3. Cloud Migration Stage (CMS)

This final stage outlines the migration and testing of live systems to the selected

cloud platform

This framework is centred on industry-based, real-world requirements. It presents a

guide for SMEs to decide what they can migrate, and the risks involved in doing so,

there is only a small section covering the actual process of migration. As the

framework encompasses all service models of cloud computing, and all service

models are inherently different from one another, the migration process outlined in

this paper does not cover any specific details on the process and technical details of

how the migration of existing non-cloud infrastructure can be achieved.

Sabiri et al. present a framework based on the Architecture Driven Modernization

(ADM) paradigm, the researchers describe a framework where legacy systems are

modernized to best suit the cloud platform (Sabiri, et al., 2015). The architecture of

this framework is comprised of a business layer which processes user requests and

implements business logic and a data layer which stores all data for the application

(Sabiri, et al., 2015). This framework involves the building of a Platform Specific

Model (PSM) of the existing system to migrate and a Platform Independent Model

(PIM) which is used to transform the PSM. The overall aim of this framework is to

modify the existing system so that the architecture of the system fosters portability to

a range of different platforms. This is achieved through a three step process:

1. Reverse Engineering

This first stage is comprised of the analysis of the source code of the legacy system

in order to discover components, relationships and dependencies within the

business logic, data layer and infrastructure layer of the system. From this

analysis, a PSM representation of the system is derived, which is then transformed

via the PIM transformation rules.

2. Transformation Upgrade

51

This second stage involves the optional addition of functionalities to the PIM

outputted in the Reverse Engineering stage.

3. Forward Engineering

This final stage is comprised of the transformation of the PIM back to a PSM, the

final output of this stage is the generation of the codebase for the new PSM (Sabiri,

et al., 2015).

This framework proposes a model-based approach for the analysis and modernisation

of a legacy system so that it can function on a cloud -based platform. This framework

does not deal with the cloud migration process in any capacity, nor does it address

the challenge of automation or implementation complexity involved the migration

process.

At the time of writing, the CMO framework proposed by Hwang et al. is possibly the

most pertinent piece in literature regarding the automated migration of non -cloud

infrastructure to the IaaS platform (Hwang, et al., 2015). In their paper, Hwang, et al.

describe the end-to-end process of cloud migration in its entirety, encompassing pre-

migration, migration and post-migration phases; they also provide a semi-automated

approach to the live migration of non-cloud infrastructure to IBM’s Softlayer IaaS

offering (Hwang, et al., 2015). The migration itself is performed by a three step

process, all of which is orchestrated by IBM’s Business Process Management (BPM)

software:

1. The Provision Stage

This first stage is almost completely automated, it comprises the provisioning of

the gateway, virtual network and VMs in Softlayer which match the non-cloud

infrastructure chosen to migrate. After these resources are provisioned, a Java -

based application configures them to behave in the same way their non -cloud

equivalents do.

2. The Network Setup Stage

This stage involves the manual creation of a WAN connecting the non -cloud

datacentre with the virtual cloud-based network created in The Provisioning Stage.

3. The Migration Stage

52

The final stage in the process entails the live migration of the VMs themselves,

this is achieved by utilising third party migration tools such as VMWare Site

Recovery Manager, vSphere Replication and VMWare Converter, all which CMO

supports varying levels of automation for (Hwang, et al., 2015).

The CMO effectively tackles the issues of migration complexity and lack of

automation in the migration process outlined by Mateescu et al. and Manvi and

Krishna Shyam respectively, and it does so with great efficiency (Mateescu, et al.,

2014) (Manvi & Krishna Shyam, 2014). In experimental results obtained from the

CMO under laboratory settings, the time taken to migrate a small datacentre is 44

hours, whereas, the time taken to migrate a single VM with 200GB of disk attached

is just over three hours (Hwang, et al., 2015). However, the CMO is specific to IBM’s

Softlayer as the target IaaS platform, and does not take into account other CSPs,

therefore the issue of vendor lock-in is prevalent here (Hwang, et al., 2015). The live

migration approach may be applicable for mission critical systems that require this

type of migration with as little down-time incurred as possible, but live migration

capability of CMO means that infrastructure is migrated to the cloud as-is. Using a

live migration for legacy data centres containing a large amount of test environments

where the issues of configuration drift, snowflake servers and server sprawl have

already occurred will not solve this issues, rather, it will move the problems to a

platform where the client is charged more for not solving them (Morris, 2016). The

CMO has yet to be tested outside of a laboratory setting, therefore it lacks the validity

of having been used in an industry-based setting (Hwang, et al., 2015).

The frameworks cited above all deal with various phases and activities involved in

the migration of non-cloud infrastructure to the IaaS platform, for the purpose of

clarity, the features of these frameworks have been summarised and plotted out in

Table 4 and Table 5. Table 4 shows the specific phases each framework addresses;

whereas, Table 5 shows the limitations and features of each framework.

Framework Pre-Migration Migration

MAT Yes No

Khan and Al-Yasiri Yes No

Sabiri et al. Yes No

CMO Yes Yes

Table 4: Existing Migration Frameworks Phase Comparison

53

Framework Vendor

Lock-in

Handles

Migration

Complexity

Automated

Migration

Industry

Tested

MAT No No No No

Khan and Al-Yasiri No No No No

Sabiri et al. No No No No

CMO Yes Yes Yes No

Table 5: Existing Migration Frameworks Features and Limitations Comparison

The MAT and the frameworks proposed by Sabiri et al. and Khan and Al-Yasiri all

address the pre-migration phases of assessment and planning. They are all free from

the issue of vendor lock-in as they are cloud agnostic in their methods. However, they

offer no form of automated migration, they do not deal with the technical complexity

of performing such a migration and they have never been tested in an industry setting.

To the author’s knowledge, the CMO is the only available framework that handles an

end-to-end migration scenario, encapsulating the assessment and planning activities

in the pre-migration phase alongside the technical process of the migration of non -

cloud infrastructure to the public cloud. The CMO offers a semi -automated approach

to the migration process but it is specific to IBM’s Softlayer IaaS platform and has

not been tested in an industry setting (Hwang, et al., 2015).

2.6 Conclusion

It is clear from reading the above that cloud computing is the most recent product of

several decades of IT evolution from relatively simple beginnings in the 1950s. As a

technology, the modern form of cloud computing is highly disruptive, and is rapidly

changing the world of IT.

This is especially true for the IaaS model which recently outperformed its on -premises

equivalent in terms of workloads, as mentioned above. The market is in a state of

transition as organisations with IT infrastructure flock to major CSPs to take

advantage of the many proposed benefits of adopting leased infrastructure.

The risks of adopting the IaaS approach are sti ll widely controversial, with the ever

emerging media reports of compromised cloud-based data and data centre outages

causing havoc to organisations. It is the opinion of the author that human beings

54

mistrust change, and a change as dramatic as leasing out IT infrastructure through the

Internet is bound to be met with scepticism, intense scrutiny and bias for several years

after reaching mainstream popularity. Organisations wary of IaaS should be made

aware that major CSPs aim to offer the most secure service possible, constantly

striving to win the most stringent security awards available. The six mentioned in this

chapter were the most recommended to have for those seeking secure 3 rd party

infrastructure, but they are six of numerous accreditations and awards that most major

CSPs hold. IT security should be a high priority for any sized organisation with IT

infrastructure, but most organisations security standards do not come close to

matching that of industry giants such as Microsoft, Google or Amazon, eac h of which

have years of experience in managing large scale data centres in a highly secure

manner. Natural disasters occur, as does human error, as do power outages, the effects

of each of these can materialise in any data centre, be it a small, on -premises server

room with a single rack or a huge CSP data centre.

The benefits of adopting IaaS are numerous, among them are the elimination of cost

overheads associated with procuring, housing and maintaining physical servers

alongside the ability to scale at will to virtually unlimited capacity or rapidly

downsize without incurring significant cost associated with decommissioning of

physical machinery. Although the ability to scale at will with little restriction raises

problems of its own, with configuration drift, non-uniformity of environments and

undocumented changes to infrastructure and server configuration among the top

offenders (Morris, 2016). It is argued by many that the solution to these problems

come in the form of IaC (Dadgar, 2014) (Forrester, 2015) (Morris, 2016) (Nelson-

Smith, 2013). The relatively new idea that entire networks, including the granular

configuration of individual servers can be scripted out, source controlled and

deployed in a repeatable manner to overcome the issues of maintaining the plethora

of IT infrastructure available as a service through cloud computing.

New organisations have the choice to either create their entire IT systems native to

the cloud or build their own data centre, however, prior to the launch of AWS’s EC2

in 2006, the option to build cloud-native IT systems was not available and the de facto

standard was to build a datacentre using physical servers (Barr, 2006). For

organisations with IT infrastructure pre-dating 2006, the option of migrating the cloud

is available, but the process of doing made extremely difficult by the fact that each

organisation has its own specific migration requirements and the solution chosen for

55

migration is typically custom built for the each individual organisation (Pahl, et al.,

2013). There are frameworks such as the MAT and the frameworks proposed by Sabiri

et al. and Khan and Al-Yasiri which aide organisations in the planning and assessment

phases of their cloud migration projects, but these frameworks do not handle the

technical complexity of performing such a migration, nor do they offer any form of

automated and repeatable process for the migration of large sets of testing

environments (Mateescu, et al., 2014) (Sabiri, et al., 2015) (Khan & Al-Yasiri, 2015).

CMO presented by Hwang, et al. does address the aforementioned issues of migration

complexity and automation in the migration process (Hwang, et al., 2015). This

framework does offer an automated and repeatable process, but it is locked to IBM’s

Softlayer IaaS platform, has not yet been tested outside of laboratory conditions and

does not solve the issues of configuration drift, snowflake servers or server sprawl

(Hwang, et al., 2015) (Morris, 2016). From analysing existing literature in the area,

the conclusion can be drawn that there currently exists no automated framework that

allows for the migration of non-cloud infrastructure to the IaaS platform that has been

tested in an industry-based setting and deals with the issues outlined by Morris

(Morris, 2016). In fact, at the time of writing, the only available industry-based paper

in the IEEE Digital Xplore Library on the migrat ion of existing, non-cloud

infrastructure to the IaaS platform is Khajeh-Hosseini, et al., however, no migration

was carried out as part of this study (Khajeh-Hosseini, et al., 2010) .

56

Chapter 3. Design and Implementation

This chapter provides context regarding the architectural and design and

implementation involved in this body of work. This chapter starts with a brief outline

of the case study carried out in the target organisation. This is followed by detailed

sections pertaining to the architecture and specific technologies used in the

implementation of an automated framework of interlinked IaC and configuration

management scripts. This is followed by a use case of the framework which provides

a clear context to its preceding sections and a knowledge base of the sequence of

technical processes involved in the running of automated framework. This chapter

ends with a section on the experimental use of the framework which allowed the case

study organisation to migrate their existing colocation based IT environment

infrastructure to AWS’s IaaS platform and create new IT environments on AWS’s

IaaS platform.

3.1 Case Study

The case study took place over the course of a 5 month period and involved the

placement of the researcher within the target SME. The overall purpose of the case

study was the gathering of functional and non-functional requirements for the

automated framework in the context of the case study organisation. The case study

also shaped the creation of a detailed project plan for the automated migration of the

case study organisations non-cloud infrastructure to the AWS IaaS platform. The

above was done through a phased process consisting of two distinct phases, both of

which are outlined below, followed by a detailed description of each phase throughout

the 5 month period:

1. Exploratory Phase

2. Project Planning Phase

57

3.1.1 Exploratory Phase

This phase began on the 1st of November 2015 and ended on the 22nd of January 2016.

The purpose of this phase was to gather client requirements, which were then used to

construct the architectural design of the framework. In order to achieve this, a detailed

analysis of the organisation’s traditional manual environment creation process was

carried out, with a focus on the tasks performed, alongside the time and effort

overheads imposed by carrying out each task. By engaging with staff belonging to the

organisation, the researcher built a base of knowledge around the manual in-house

environment creation process the organisation followed to create their environments

and also identified three key participants in the organisations manual environment

creation process, each working within an individual and unconnected technical

department in the organisation.

The researcher conducted semi-structured interviews with these three staff members.

These interviews revealed an in-depth set of tasks that each participant must carry out

before handing the environment over to the next participant. From the se interviews,

the researcher grouped each task that takes place in chronological order during the

entire manual environment creation process and abstracted them into the following

six high-level groups:

1. Provisioning of the new infrastructure.

This task comprises the creation of a new virtual machine from an existing virtual

machine. Included in this task are IP address, compute power and storage

allocation. This task is largely manual and is performed by a member of the

infrastructure department.

2. Documentation of the new infrastructure.

Documenting the specifications, location in the network and name of the new

environment is done by amending a Visio diagram with the above information.

This diagram is stored in a shared location that relevant employees within the

organisation have access to. This task is completely manual and is performed by

the infrastructure department.

3. Performing Active Directory domain operations.

58

This task involves two steps, the first is carrying out a Sysprep on the new

machine. Sysprep is a Windows specific generalisation tool which is used when

one Windows computer is cloned from another Windows computer, it remove all

traces of a previous machine from the cloned machine (Microsoft, 2017). The

second step in this task is to rename the new machine to a meaningful name that

falls in line with the organisations server naming conventions. The third and final

step is to add the machine to the correct organisational unit in the domain, which

essentially allows the new server to become part of the organisations network of

computers (Desmond, 2008).

4. Creating the Domain Name System (DNS) entries for the environment.

There are two separate kinds of DNS entries to be setup in this task. The first are

simple Active Directory DNS entries which allow users connected to the

organisations internal network to connect directly to the new server using the A

and CNAME entries created in this task. The second type of DNS entries requi red

for creation at this stage are the external DNS entries which allow users outside

of the organisations network to connect to the sites on the new server via a web

browser. These external DNS entries are not hosted within the organisation, rather,

they are hosted by a third party DNS provider. This task is completely manual and

is performed by the infrastructure department.

5. Setting up the environment specific configuration on server.

This task involves the modification of configuration files on the new server so

that the old environment values are removed from them and the new environment

values are inserted into them. Specific examples of these configuration files

include system files such as the HOSTS file and machine.config file, along with

application and website specific configuration files such as web.config and

app.config files. Internet Information Services configuration files also need to be

modified in this step. This step is completely manual and is performed by the

release management department.

6. Deploying the organisation’s Application and Database (A&D) codebase to the

new server.

The final step in the process is the deployment of the latest release of the

organisations A&D codebase to the new server. There is a large amount of code

59

from a range of different branches that is required to be deployed at this step ,

specifics on the size and number of branches that are deployed are discussed in

section 4.1.3 of this thesis. This step is largely automated by existing deployment

procedures, however, manual input is required in multiple places, and a significant

amount of manual work is involved in monitoring the deployments and

troubleshooting errors if they occur. This step is performed by the release

management department.

These processes are heavily referenced in the sections that follow and play an

important role in the architecture of the working system. The results of these

interviews also formed the benchmark for the manual environment creation timings

that became a key comparative variable in later sections of this document, the full

transcripts of said interviews can be found in Appendices A, B and C. Once the

researcher had a comprehensive understanding of the organisation’s manual in-house

environment creation process, this phase ended and was succeeded by the Project

Planning Phase.

3.1.2 Project Planning Phase

This phase took place between the 25 th of January 2016 and the 1st of April 2016. The

scope of the migration project for the case study organisation was created in this

phase. The initial project scope entailed a complete migration of the organisation’s

testing, staging and production environments to AWS’s IaaS platform . As the project

was being planned, the scope began to narrow due to two impediments, one major

impediment and one less severe, both will be discussed in this section. The researcher

believes these impediments and their consequence merit discussion in this section as

both had a direct effect on the design and implementation of the framework and should

give the reader an understanding of how industry requirements and academic research

are not always aligned with one another.

The first impediment pertains to security which has been detailed by Sadiku, et al. as

the greatest challenge when adopting public cloud infrastructure (Sadiku, et al.,

2014). This security issue pertains to the compliance issues with data belonging to

the clients of the case study organisation. One client in particular has a specific

agreement with the case study organisation that they reserve the right to inspect the

60

physical machinery that their sensitive data resides on, inclusive in this clause is any

data which relates to personally identifiable information. The implication was that,

the servers that host the front-end applications that the clients interact with and enter

data into, along with the servers that host the databases which contain the client

interaction information and associated data must be geographically locatable and

accessible if that client wishes to inspect it. In the case study organisation, this is

typically done via the client sending out an IT engineer on their behalf to inspect the

machine for physical faults and ensure it has not been tampered with in any way. The

client has an agreement with the organisation that no specific reason needs to be given

for this kind of inspection to be warranted.

This was an issue as it was found that Amazon follow a shared responsibility model,

visualised in Figure 8, in which the client who is leasing infrastructure is responsible

for all aspects of the data they host on that infrastructure, who can access it and how

it’s accessed, whereas AWS assumes the responsibility for securing the lower level

layers, starting from the virtualisation layer of the physical machines all the way down

to the security of the facilities in which the machines reside (Amazon, 2016).

Figure 8: AWS Shared Responsibility Model

61

The responsibility of the security of physical machines is out of the control of AWS’s

clients, therefore, AWS do not allow any of their clients to physically inspect the

computing machinery in their data centres, nor do they disclose the specific location

of their machines or data centre buildings to their clients (Amazon, 2016).

As a result of this, the project scope had to be narrowed down to exclude all

production and 3rd party testing environments, as these environments inherently

contain sensitive client information. Only data necessary for functional testing of the

organisation’s systems that is not linked to any real person was allowed to be hosted

on AWS infrastructure as part of this project. The project moved ahead regardless of

this, encapsulating only internal test environments tha t contain dummy data required

for development and testing.

At the project outset, eight existing internal testing environments needed to be

migrated to the public cloud in a very small amount of time in order to minimize

downtime for staff who would be act ively using these environments. Another

requirement that was agreed upon was the building of new testing environments native

to the cloud. A system needed to be created that was versatile enough to handle both

of these scenarios without differentiation.

It was planned to migrate the existing test environments directly to AWS, meaning

they were going to be exported as machine images from the colocation centre and

directly imported as AMIs across the Internet to the AWS data centre. AMIs are stored

in S3, and there is no transfer cost involved in incoming data , therefore, this approach

was seen as a straightforward and economically feasible one (Amazon, 2016).

Following this approach, each individual environment would need to follow a

relatively simple migration process, outlined below:

1. Take server off the organisation’s domain.

2. Sysprep and shutdown instance.

3. Export server as a machine image.

4. Import machine image to AWS as an AMI.

5. Launch as an EC2 instance.

6. Add instance to the organisation’s domain .

62

7. Modify all DNS entries that referenced the old machine to point to new instance

in the cloud.

However, upon further scrutiny, problems with this approach quickly began to

emerge. The cost overhead associated with duplicating each of individual

environment’s disk drives in AWS is one such factor. For instance, if eight

environments with 250GB of disk space were migrated following this approach, then

there would be eight imported AMIs taking up a combined total of over 2TB of disk

space and eight instances with separate storage also taking up a combined total of

over 2TB of disk space, essentially this would be doubling the amount of provisioned

S3 storage. Along with this, applying patches, installing updates and new applications

to each separate AMI and its associated instance also becomes a problem as

maintenance of this type of system is potentially very inefficient and lacks scalability

if more environments were to be migrated. This type of system also neglects new

environments that are created native to the cloud, so an entirely different system

would need to be designed for creating these new environments in AWS. Therefore,

need for a single AMI that has the minimum amount configured on it (i.e. specific

operating system, disk drives, etc.) arose. The environment specific configurations

were to be defined through IaC in the form of Terraform and configuration

management in the form of Puppet. Any updates that needed to be installed can be

done through either configuration management code on the instances themselves or

installed on the single AMI that the process would build instances from.

The concept of building new machines in the cloud brought about its own challenges,

and led to the second impediment, which pertains to a section of the environment

creation process that could not be automated through code, namely the setting up of

the external DNS entries for the websites that are hosted on the environments. In the

case study organisation, existing networking layer components such as internal IP

addresses, internal and external DNS entries can all be reused for machines that were

to be rebuilt in the cloud. For new machines being built in the cloud, all of these

entries needed to be created. It was desired that any infrastructure, including

networking, created in the cloud could be done through source controllable IaC.

However, an issue was recognised early on in the case study that limited the scope of

the automation. The DNS service provider that the case study organisation was

subscribed to offered no Application Programming Interface (API) for the creation

and modification of DNS entries, essentially meaning tha t the DNS provider did not

63

allow for IaC tools to create and manage DNS entries. These external DNS entries

had to be created manually for any new environments being built in the cloud, which

became a large gap in the process of automation.

3.1.3 Functional Requirements

Based on the above, the following functional requirements the framework were

derived:

1. The framework should be capable of rebuilding the case study organisation’s

existing internal testing environments on an IaaS platform in an automated

fashion.

2. The framework should be capable of creating new testing environments belonging

to the case study organisation on an IaaS platform in an automated fashion.

3. The framework should be capable of outputting meaningful errors and terminating

upon a non-zero exit code of any underlying script.

3.1.4 Non-Functional Requirements

The non-functional requirements for the framework are as follows:

1. The framework should be capable of achieving the functional requirements with a

single server image.

2. The framework should only have a single human operator.

3. The framework should abstract the underlying processes to the operator in a

meaningful way for troubleshooting purposes.

4. The framework should have a single entry point of execution.

5. The framework should have a single point of monitoring.

64

3.2 Framework Architecture

Based on above requirements derived from the case study, the high-level architecture

of the automated framework was devised. The basic layout of this architecture is

visualised in Figure 9, each component outlined in this diagram will be discussed in

the sections that follow.

The Exploratory Phase revealed the key processes that the framework must automate

and run in a very specific order to be successful. These processes range from system

administration to database administration to developer tasks. It was not possible to

automate the entirety of these processes through a single programming language or

toolset, the researcher acknowledged that the framework would consist of a large

number of different types of scripts that needed to be run in a particular order, the

time spent running each of these scripts manually would be too much of an overhead

to gain a significant efficiency benefit from. Therefore, the researcher first set out to

determine a suitable engine capable of running different scripts in sequential order

and in a variety of a languages while still handling errors and outputting log messages

for informational and debugging purposes. It was planned that this engine would

account for the foundation of the framework, the single suite that acts as an abstract

front end for user input while also running the complex code the framework consists

of.

Figure 9: Framework Architecture Overview

65

3.2.1 The Build Server

A build server, commonly known as an automation or continuous integration server,

is a software tool dedicated to compiling, executing and deploying source code

through repeatable steps that the user explicitly defines (DevIQ, 2017). A build server

typically has the capability of running several different types of scripts from a variety

of languages. It allows users to define, modify and execute processes that can be

comprised of a variety of different types of source code, essentially chaining a set of

scripts together to act as a single process. As the scripts are all linked to one another

by the build server, the user only needs to enter in a single set of parame ters that all

scripts in the process share. This allows for multiple scripts to be executed in sequence

via a single user interaction while allowing each script to share a common set of

variables defined by the user (Alexandrova, 2016). The terminology for a process or

job that a user defines in a build server is called a build configuration, or simply, a

build (Melymuka, 2012). Therefore, all subsequent references to processes or jobs

that are handled by the build server will herein be referred to as “builds”.

The concept of build chaining is highly important in the design of the framework, a

build chain is a series of linked builds which execute sequentially in order to achieve

a desired result. The idea of sharing user parameters from one build to another

expands the idea introduced above, whereby, a single set of parameters is shared

throughout several scripts that make up a single build. With build chaining, this same

single set of parameters can be shared throughout several individual builds in a build

chain with only a single user interaction to start the chain of builds (Melymuka, 2012).

This concept, and its importance in the framework is discussed more in late r sections

of this chapter.

3.2.2 API Components

An API is a tool designed to give programmers a method of accessing an external

software system and integrating it into their own software system (Michel, 2013).

Similarly, web service APIs are APIs that can be interacted with through the Internet,

they are designed to give external software programmatic access to certain functions

of a web application, for instance, the Google API allows for programmers to utilise

66

Google search functions directly from their own software (Gosnell, 2005). Web

service APIs are vital architectural elements that make up the framework, the IaC

scripts that execute as part of the framework query different web service APIs through

HTTP to automate a variety of tasks. There are three API components that the

framework interacts with:

1. Cloud Service Provider (CSP)

2. Active Directory (AD)

3. Version Control System (VCS)

These APIs, and their specific purposes, are discussed in this section.

The Cloud Service Provider API allows for new virtual machine instances to be

created and configured in the public cloud. This API component is interacted with via

an IaC tool which authenticates to the user’s CSP account and sends a HTTP request

to create a new virtual machine on the CSP’s infrastructure. These operations are

performed purely through code, with minimal human intervention.

The Active Directory API allows for the programmatic addition of servers to an

organisational unit within an Active Directory domain. This API also grants the

ability to add, remove and modify internal DNS entries through code.

Adding a server to an Active Directory organisational unit within a domain grants the

server the same privileges as any other server in that organisat ional unit, this

essentially makes the new server part of the organisation’s network of computers

(Desmond, 2008). In most cases, this will mean that users in the internal network will

be able to access the machine, and all group policy rules defined for that

organisational unit will be enforced on it (Solomon, 1998).

The DNS in Active Directory resolves hostnames to IP addresses; address records

resolve hostnames to an IP address, while Canonical Name (CName) records map an

alias to a hostname, provided the hostname already has an address record in place

(Desmond, 2008). For example, the following address record resolves all requests to

the sample.com hostname to the 10.40.69.216 IP address:

sample.com IN A 10.40.69.216

67

Changing the IP address of this record would direct requests to the sample.com

hostname to the IP address of a different machine. Provided the above address record

is in place, the following CName record resolves requests to the web.sample.com to

the sample.com hostname, which in turn, resolves to the 10.40.69.216 IP address:

web.test.com IN CNAME example.com

The addition and modification of these DNS records play an integral part in the

framework and is discussed in later sections of this thesis.

The Version Control System (VCS) API provides functionality to programmatically

add and modify files in a VCS repository. In the framework, it is used to add, modify

and track changes to IaC files in an automated fashion. In this way, the self-describing

IaC scripts act as documentation of the public cloud infrastructure. All changes to the

infrastructure is done through versioned code, which can be reverted back to previous

states. This feature also allows for disaster recovery, if a virtual machine is ever

unintentionally destroyed, corrupted or compromised in any way, it can be replaced

or reverted back to a known working state via the IaC script that was added to the

VCS.

3.2.3 Framework Builds

There are four builds in the framework, they are automated abstractions of the

processes outlined in the Exploratory Phase and are listed in order of execution below:

1. Provisioning Build

2. Domain Build

3. Configuration Build

4. Deployment Build

Each build is composed of several different kinds of scripts. For architectural

purposes, the scripts themselves will not be discussed in this section, rather , an

overview of each build is covered here, and the scripts themselves are covered in more

detail in the Technologies Used section.

68

Figure 10: Overview of the Build Chain

The Provisioning Build is the first in the build chain, it automates the first two steps

in the environment creation process, which are:

 Provisioning of the new infrastructure.

 Documentation of the new infrastructure.

Using an IaC tool, the Provisioning Build firstly interacts with the CSP API in order

to authenticate to the organisation’s CSP accoun t, it then creates a new virtual

machine in the cloud. The end results of this first operation are a new cloud-based

virtual machine and a self-describing IaC script that essentially documents the new

virtual machine in the cloud.

The final operation the Provisioning Build carries out is the addition of the new IaC

script to the VCS, it does this by interacting with the VCS API . The automated

addition of new scripts that describe environments is not functionally necessary for

the framework to carry out an automated environment creation, but, incomplete

infrastructure documentation and the inability to easily roll-back to a previously

known working state both have the potential to become large issues in a disaster

recovery scenario. By storing the resulting IaC scripts in the VCS, the new

69

infrastructure is documented in a central location and it allows the organisation to

have version controlled executable scripts that provide a history of known working

states, these are indispensable in a disaster recovery situation.

The Domain Build is the second build in the chain, it automates the third step in the

environment creation process, which is:

 Performing Active Directory domain operations.

The Domain Build performs several operations that comprise what is described above

as domain operations. Firstly, the new cloud-based virtual machine is queried to

ensure it is available, following its creation and initial boot. Then, the new virtual

machine is renamed from its default name. A command is issued to add the new virtual

machine to the Active Directory domain. Lastly, the domain controllers are synched

to ensure that the new machine entry is propagated through the Active Directory

forest.

It is at this stage that the new virtual machine has become part of the organisations

network of computers. The organisation the framework is implemented in use Active

Directory internal DNS entries to for a variety of purposes (RDP, SQL sessions, inter -

system communications, etc.), these internal DNS entries are essential for this specific

organisation, but may not necessarily be required elsewhere. A requirement for the

organisation was to have the creation and modification of these internal DNS entries

automated, which is the last operation the Domain Build performs.

The Configuration Build is the third build in the chain, it automates the fifth step in

the environment creation process, which is:

 Setting up the environment specific configuration on server.

The Configuration Build executes configuration management code in order to install

applications and configure environment specific settings on the new virtual machine.

Examples of operations performed in this build through configuration management

code are:

1. Windows service creation

2. Windows service configuration

3. Directory creation

70

4. Assignment of directory and file permissions

5. Internet Information Services configuration

6. Application installation

7. Application configuration

8. Modification of environment specific configuration files (HOSTS, machine.config,

etc.)

All of these configuration management operations prime the new virtual machine for

use and ultimately facilitate the deployment and correct operation of the organisations

Application and Database code.

The Deployment Build is the last build in the chain, i t automates the sixth and final

step in the environment creation process, which is:

 Deploying the organisation’s codebase to the new server.

The Deployment Build calls existing builds which deploy all Application and

Database code to the new virtual machine, populating all application directories

created by the Configuration Build with compiled code that comprise the applications

and deploys the databases that the applications use. The success of this build is the

final requirement before a virtual machine can be considered a fully-fledged test

environment that can be handed over to a development or testing department.

As discussed in the Project Planning Phase section, it was not possible to automate

the fourth step (Creating the external DNS entries for the environment) in the

environment creation process, this is a consequence of carrying out this research in a

real-world industry setting as opposed to a hypothetical laboratory environment. This

step remains a manual step in this implementation of the framework.

A chain of linked build configurations that contain calls to the underlying scripts were

required to allow for the framework to have single user interface. This single user

interface prompts the user for parameters, the values the user provide s are passed to

each build in the chain which ultimately determine the framework’s behaviour and

end result. For example, the user can provide the build chain with different instance

types which determine the compute power of the instance that the IaC tool will create

or different machine images on which to base the instance being provisioned. The

71

theory behind the build chain is simple, each build configuration is linked in

sequential order, meaning that, when one build finishes, the next begins. The user

interacts with the first build in the chain, executing it with a set of parameters that

determine what kind of machine to create and where to create it, when this first build

is successful, the next build in the chain is executed with the same set of param eters

that the user initially supplied, and so on until the end of the build chain is reached,

the basic overview of this system is shown in Figure 10.

3.2.4 Framework Prerequisites

The framework presented above essentially recreates existing non -cloud IT

environments in the public cloud, therefore, it is assumed that a structured network

infrastructure is already in place for the organisation that is utilising it and the

necessary networking components on the CSP’s side are also already in place. As pre -

requisites for the operation of the framework, the adopting organisation must already

have the following components in place:

1. An existing internal network infrastructure

An Active Directory domain with at least one domain controller is required for

the framework to operate. Active Directory objects such as computer accounts and

internal Active Directory DNS are modified during the execution of the

framework.

2. A build server with pre-configured deployment processes

The front-end for the framework is to be configured in a build server such as

Jenkins or TeamCity. This build server must already contain a deployment process

for the applications and databases that reside on the environment to be rebuilt in

the public cloud. This build server must be capable of accessing all of the API

components outlined in section 3.2.2.

3. At least one existing fully configured IT environment in place

This existing environment is used to fashion the configuration management scripts

that will define that environment in the cloud. The existing IT environment must

72

be placed in an Active Directory domain, and have standard CName and A record

Active Directory DNS associated with it.

4. A pre-configured VCS

The dynamically created infrastructure as code scripts and the pre-configured

configuration management scripts must be source controlled in a VCS that the

build server can access via an API. A file share that the build server can access

would be adequate as a pre-requisite but a VCS is the ideal storage scenario for

this code.

5. A CSP account

In order for the framework to create new infrastructure in the public cloud, it

requires a CSP account to interact with. The API keys for this CSP account must

be provided to the framework in order for it to interact with the specific account.

6. A pre-configured virtual network on the CSP side

Networking components for each of three major CSPs considered in this study are

discussed in section 2.2 of this thesis, a common element from all three CSPs is

the virtual network offering. This virtual network is required for the framework

to operate as the framework creates instances within a user -defined subnet. The

framework expects this subnet to already be in place, in order for a subnet to be

created on the public cloud, it needs a virtual network to reside in.

3.2.5 Summary

This architecture presents a framework in which the user carries out a single

interaction with a web based front-end in the form of a build server. Defined in this

build server are four chained build configurations, which are comprised of a variety

of scripts. These scripts interact with three API components in order to provision ,

document and fully configure a new virtual machine in the cloud so that it can be used

as a testing environment.

73

Figure 11: Technologies Used

3.3 Technologies Used

This section describes the technologies used in this implementation of the framework

within the case study organisation. The scripts that comprise each of the four builds

described in the Framework Architecture section above are discussed in this section.

Included in this discussion is a description and justification of the choice of the

software tools and programming technologies used in this particular instance of the

framework.

3.3.1 Cloud Service Provider - AWS

AWS’s IaaS platform was chosen as the CSP for this implementation of the

framework, sections 2.2.4 and 2.2.5 of this thesis deal with the choice of this

particular CSP over others that were considered for use in this study.

74

Technology Name Software Name Version

Build Server TeamCity Enterprise 10.0.2

Infrastructure-as-code tool Terraform 0.9.8

Version Control System SVN 1.9.3

Configuration Management tool Puppet 3.4.3

General Purpose Automation PowerShell 4

Table 6: Summary of technologies used in the framework

3.3.2 Build Server – TeamCity

At the time of implementation, the case study organisation was already running a

TeamCity build server to handle their application and database code deployments, it

was decided that this build server would be the most appropriate engine for the

framework.

The decision to use TeamCity in this implementation of the framework took into

account the convenience of having the build server on-boarded and actively used in

the case study organisation, along with unique benefits of using TeamCity over other

build servers such as Jenkins or Team Foundation Server. TeamCity supports build

chaining, parameter sharing across builds and a single user interface for build chains

without any additional plugins or modification of code (Melymuka, 2012). Whereas,

at the time of the design phase, Jenkins allowed for build chaining as standard but

only allowed for parameter sharing across builds in a chain via a custom plugin

(Whetstone, 2016). Under similar constraints, Team Foundation Server only allowed

for build chaining through the use of custom code (Jacob, 2009).

3.3.3 Infrastructure-as-code - Terraform

Terraform was chosen for the IaC tool in the framework, it is used for creating

virtualised instances in AWS, assigning storage to the new instances and placing the

instances in the correct network. Terraform was chosen because it is an open -source

and standalone command-line tool that uses a simple, declarative programming

language to define the scripts it runs (Brikman, 2017).

75

Figure 12: Sample Terraform Script

Terraform is also cloud-agnostic, meaning that it can build infrastructure from code

on a wide variety of infrastructure hosts, including AWS, Microsoft Azure and Google

Cloud (Brikman, 2017) (Terraform, 2016). This is compared with tools such as AWS’s

alternative called CloudFormation which currently only works on AWS’s

infrastructure, and Azure’s ARM template deployments which are specific to

Microsoft’s infrastructure (Somwanshi, 2015) (FitzMacken, 2016).

Terraform works by making API calls to a CSP in order to provision and configure

infrastructure in the cloud, it abstracts the complexity of this process into simple

Terraform scripts that determine what kind of API calls to make and what CSP to

make the calls to (Brikman, 2017). A very simple Terraform script is outlined in

Figure 12, this script authenticates to AWS using the access and secret keys defined

in the provider section and builds a virtual instance in AWS’s us-east-1 region.

3.3.4 Version Control System - Subversion

Subversion was chosen for the VCS component in the framework for a variety of

reasons. It is open source and was already being used by the case study organisation

as version control for their application and database code as it integrates with the

TeamCity build server without the need to install any additional software (Revyakina,

2016). Subversion also has a simple command line interface that allows for the

automation of all actions carried out by the framework, specifically, the checking-out

of local copies of source, addition of new files to source and modification of existing

files in source (Collins-Sussman, et al., 2011).

76

Figure 13: Sample Puppet Script

3.3.5 Configuration Management - Puppet

Puppet was chosen as the configuration management tool for the framework. Puppet

was chosen over other tools in the area for its ease of use through its command line

interface, its simple and self-documenting language along with its wide user base and

versatile user-driven community of pre-configured modules (PuppetLabs, 2015)

(Lunden, 2014). A simple puppet script is shown in Figure 13, when executed, this

script will:

 Create a directory at ‘D:\websites\site1’.

 Create an application pool for ‘site1’.

 Create an IIS site for ‘site1’ with bindings for the site on the HTTP port 80 for all

requests going to ‘site1-webqa.test.net’. Meaning that, all requests to

‘http://site1-webqa.test.net’ will be forwarded to this site.

The complexity and volume of Puppet scripts to run as part of the framework is

completely dependent on the amount of configuration to change from its default OS

setting. For the case study organisation, a large amount of configuration is required

for each instance to be fully configured. In total, 111 Puppet scripts were written for

the case study organisations configuration management code repository. From the

gathering of requirements to development and testing, these scripts took the

77

researcher approximately 4 working weeks to complete, after which, the configuration

of environments was no longer manual.

At this stage in the development phase, a simple command line program was used to

execute Terraform scripts to provision instances, and programmatically add the new

IaC scripts to the Subversion VCS. Following this, system administration tasks such

as creating internal and external DNS entries and adding the new instance to the

organisations domain were performed manually. The instances were then configured

with the Puppet scripts using a separate command line program which made multiple

calls to the Puppet command line interface in order to run the large amount of Puppet

scripts which configured the instance. Finally, the TeamCity builds that compile and

deploy the organisations application and database code were manually kicked off.

What was missing at this stage was a general purpose automation tool capable of

performing the system administration tasks alongside combining each of the above

steps to execute in order with only a single user interaction. Windows PowerShell was

chosen as the automation tool to achieve this.

3.3.6 General Purpose Automation – PowerShell

Windows PowerShell is Windows native automation framework, it is an extension of

the built-in command line tool (cmd.exe) that comes with every version of Windows

(Stanek, 2014). It was chosen as the general purpose automation tool for the

framework for a variety of reasons, mainly due to the fact that it is a Window’s native

tool designed for the automation of system administration tasks through a command

line interface and the case study organisation is running a purely Windows-based

infrastructure. It also required no installation on the case study organisation’s

machines as these machines are running the Windows Server 2012 R2 operating

system, this operating system comes with PowerShell v4.0 built-in as standard (Ring,

2013). Upon further assessment, it was found that PowerShell has the capabilities of

automating all of the manual system administration steps outlined in the previous

section, as it allows for the programmatic modification of Active Directory objects

such as machine and internal DNS entries (Talaat, 2013) (Microsoft, 2017). It is also

supported as a standard build runner in TeamCity, meaning that the TeamCity build

server integrates with PowerShell, giving it the ability to define build configurations

that execute PowerShell scripts (Alexandrova, 2015).

78

In the framework, PowerShell scripts perform the following four functions:

1. Automates the addition of the new AWS instance to the organisation’s domain .

2. Automates the addition and modification of internal Active Directory DNS entries .

3. Executes the Terraform, SVN and Puppet command line tools in the appropriate

order and validates the execution output appropriately.

4. Programmatically starts the deployment of the organisation’s Application and

Database code.

While TeamCity is capable of simple execution of the Terraform, SVN and Puppet

command line tools, PowerShell is needed for debugging and error handling purposes.

For instance, the Terraform script that creates the instance in the cloud can be

executed by TeamCity, but no error handling or output validation is performed on the

running of this script. The TeamCity builds that deploy the organisations Application

and Database code already existed prior to this research, PowerShell scripts were

written to create simple web queries to call the function in TeamCity that executes

these pre-existing deployment builds.

3.3.7 Summary

The above sections describe the technologies used in this implementation of the

framework and also justify the use of each specific technologies. Figure 11 provides

a visual guide as to how these technologies are used in the framework, while Table 6

summarises these technologies and the specific versions used in this implementation

of the framework.

3.4 Framework Use Case

This section provides a use case for the framework to demonstrate how each process

identified in the Exploratory Phase was automated. The individual steps in the process

can be described under the following headings:

1. User Interaction

79

2. Provisioning Build

3. Domain Build

4. Configuration Build

5. Deployment Build

3.4.1 User Interaction

The process begins with the initial user interaction, this interaction consis ts of the

user navigating to the TeamCity build server’s web based front end and executing the

Provisioning Build, which is the first build in the chain. In order to execute this build,

the user must provide it with a set of parameters that will be passed throughout the

chain and determine several factors about the environment to build. These parameters

and their role in the framework are as follows:

1. Amazon Machine Image ID

As discussed in section 2.2.1 of this thesis, Amazon Machine Images (AMI) are

Amazon specific machine image templates. Amazon Machine Images consist of

pre-configured operating systems that new instances are created from (Amazon,

2015). As a parameter in the framework, the AMI ID links to the unique identifier

of the AMI to base the new environment on.

2. Environment Name

The name of the environment to create will determine the environment’s name in

AWS in order to differentiate it from other environments. It will also determine

what internal DNS names will be created or modified. For instance, if the test.qa

environment name is chosen then the Terraform script that is generated for this

environment will create an instance with an environment name tag populated with

test.qa in AWS, similarly, the CNames added to the internal DNS will contain a

reference called test.qa which will link to the instance name and private IP address

parameters.

3. Instance Name

80

The name of new EC2 instance in AWS to create. This is used as the computer

name on the machine itself and in Active Directory.

4. Instance Type

Amazon has a range of predefined machine specifications that instances can be

based on (Amazon, 2015). This parameter determines the compute power of the

instance to build.

5. Organisational Unit Path

Active Directory categorises domain resources such as machines into

Organisational Unit (OU) paths, adding a machine to an Organisational Unit path

will enforce all Group Policy configuration for that OU path on the machine

(Microsoft, 2017). This parameter determines the OU path the new environment

will be added to when it is added to the organisation’s Active Directory domain.

6. IP Address

The IP address that will be assigned to the new instance.

7. Security Group

In AWS, security groups control traffic to and from instances in the cloud, they

act as virtual firewalls for each instance (Amazon, 2017). This parameter

determines what security group to add the new instance to.

8. Subnet ID

The unique identifier of the AWS subnet to add the new instance to.

9. API Keys

In order for the framework to connect to a specif ic AWS account, API keys must

be provided to the framework.

10. Region

The region parameter determines the AWS region the new EC2 instance will be

created in.

11. Cost Code

81

A custom tag for the new EC2 instance which allows for chargeback of AWS

resources to a certain project or department, this is an optional parameter as it is

not required to create a new instance.

3.4.2 Provisioning Build (PB)

The Provisioning Build is initiated by the build server on receipt of the user request

containing the above parameters. Firstly, the Provisioning Build executes a

PowerShell script which spawns a new Terraform script based off a pre-defined

template, the values in the template Terraform script are transformed with the values

the user provides to the build chain, this operation is portrayed with dummy values in

Figure 14.

This new Terraform script is saved to the local disk and is then executed via a call to

the Terraform command line interface. Upon execution, the script interacts with the

AWS API in order to create a new instance based on the contents of the Terraform

script, this interaction contains several calls to the AWS API, the complexity of these

calls are abstracted by Terraform, which reveals only self-describing IaC files to the

end user.

Following the creation of the new instance in the cloud, the PowerShell script then

interacts with the Version Control System API in order to save the new IaC script to

the VCS.

PowerShell Script

Resulting Terraform Script

Transforms

Template Terraform Script

Figure 14: Terraform Script Transformation

82

3. Verifies success

1. Initial Request

Provisioning

Build
CSP API VCS API

4. Adds new files to repository

4. Verifies success

Build Server

2. Triggers

2. Verifies success

User

3. Creates VM

Figure 15: Provisioning Build Sequence Diagram

This script represents the executable documentation of the instance that Terraform

just built in AWS, it contains all the information pertaining to the instance and allows

for changes to the instance to be made through source controlled code , see Figure 14

for a reference to this final Terraform script. Storing this information in the VCS also

caters for disaster recovery scenarios; given a situation where the instance has become

corrupt and needs to be destroyed and recreated in the exact same way it was originally

created then it can be done so via the Terraform script that resides in the VCS. The

operations carried out in the Provisioning Build are visualised in sequence diagram

form in Figure 15 for clarity, once these operations complete, and no errors have been

thrown throughout the build, the build server triggers the next build in the chain.

3.4.3 Domain Build

At the time the Domain Build is triggered, a new instance exists in AWS but is not

linked to the organisations network of computers in any way. The Active Directory

manipulation capabilities of PowerShell are utilised in this build in order link the new

instance to the organisation’s network.

Based on the Organisational Unit Path parameter supplied by the user, a PowerShell

script queries the Active Directory API in order to add the newly created AWS

83

instance to a specific OU within the organisation’s domain . This effectively adds the

new instance to the organisation’s network of computers.

Once this operation completes, a PowerShell script queries the Active Directory API

once again, this time it performs a search for DNS entries pertaining to the

Environment Name the user provided as a parameter. There are two separate cases in

this situation:

1. Creation case

If no records are found, the script will create them using a PowerShell cmdlet from

the Active Directory library, the values of these entries are based on the IP

Address, machine name and environment name parameters the user supplied to the

build chain.

2. Modification case

If such records are found, the script changes them from their old IP address to the

IP address of the new instance, this new IP address is based on the value specified

by the user. This operation changes any internal DNS references to an existing

environment to the new environment in the cloud. In the case where an

environment does exist, this step is used to redirect all traffic to that environment

to the new cloud-based instance, which is essential when rebuilding old, in-house

environments and reusing these networking components. This operation is

portrayed in Figure 16 for clarity, it shows the redirection of traffic based on

Active Directory DNS modifications. The user attempting to access the

environment before the Domain Build is run will have their request forwarded to

the old in-house environment, and after the Domain Build is run, the user will

have their requests forwarded to the new cloud-based environment.

84

User Old DatacenterAD

Legend CSP

Resolves request to

in-house machine

Request pre-DB

execution
Resolves request to

cloud instance

Request post-DB

execution

Makes request

to environment

Figure 16: Redirection of Traffic via DNS

At this point, the new cloud-based instance has all the necessary networking

components in place for it to be interacted with like any other test environment in the

organisations fleet of environments. The sequence of events that occur in Domain

Build are outlined in Figure 17 and Figure 18. Two diagrams were created as there

are two separate scenarios which can occur depending on the presence of existing

DNS entries for the environment in question. Figure 17 outlines the events that occur

in the creation case outlined above; whereas, Figure 18 outlines the events that occur

in the modification case outlined above. Once these operations are complete, the next

build in the chain is triggered.

85

DNS APIBuild Server

1. Triggers

2. Adds instance

to domain

2. Verifies success

Domain

Build
AD API

3. Checks for existing DNS entries

3. Returns null

4. Creates new DNS entries

4. Verifies success1. Verifies success

Figure 17: Domain Build Sequence Diagram Part 1

DNS APIBuild Server

1. Triggers

2. Adds instance

to domain

2. Verifies success

Domain

Build
AD API

3. Checks for existing DNS entries

3. Returns existing entries

4. Modifies existing DNS entries

4. Verifies success1. Verifies success

Figure 18: Domain Build Sequence Diagram Part 2

86

3.4.4 Configuration Build

Only after the new machine can be accessed via a UNC path from a remote machine

in the same domain can the Configuration Build be executed. This build performs the

following actions:

1. Copies all files required for Puppet to run on the new instance from the TeamCity

server.

2. Executes the Puppet installer on the new instance.

3. Executes the Puppet configuration management code on the new instance.

The end result of the above three operations is a machine that has been configured to

behave as though it is a functioning test environment. All applications required for

the organisations code base to function on the instance have been installed, all

environment specific configuration has been performed and any required files and

directories have been created and put in place by the Puppet scripts. The actions

carried out by the Configuration Build have been outlined in Figure 19:

Build Server

1. Triggers 2. Copies required files

2. Verifies success

Configuration

Build
New Instance

3. Installs Puppet client

3. Verifies success

4. Executes Puppet scripts

4. Verifies success1. Verifies success

Figure 19: Configuration Build Sequence Diagram

87

Once all of these operations have been confirmed as having run successfully, the final

build in the chain is triggered.

3.4.5 Deployment Build

The final build in the chain is the Deployment Build, this build utilises PowerShell

automation in the form of simple web queries to programmatically trigger existing

TeamCity build configurations that compile and deploy the organisation’s Application

and Database source code.

The Deployment Build is dependent on all other builds in the chain to have run before

it, as it utilises internal DNS entries to locate the environment to deploy the code to.

These internal DNS entries were either created or modified to point to the new

instance in the cloud during the Domain Build. It is also dependant on the

Configuration Build being run before it for a variety of reasons. The simplest to

explain here is the directory structure and access control lists that the Configuration

Build sets up, the Deployment Build writes the compiled source code to these

directories on the target machine, therefore it is dependent on them being present with

the necessary security assigned to them before being able to function correctly.

The Deployment Build is configured to iterate through a list of build configuration

identifiers in order to execute the deployment of the organisations application and

database code. For clarity, a simple version of this PowerShell function follows in

Figure 20, this function uses a pre-authenticated WebClient object to execute a build

configuration based on its build configuration identifier, a large list of these build

configuration identifiers are hardcoded into the Deployment Build, it loops through

each of these identifiers and runs this function against each one in order to execute it.

Once the deployments are triggered, another PowerShell script monitors the success

of these deployments to the new environment. Once all deployments have been

verified as having finished successfully, the cloud-based environment is in the exact

same state as any other new, manually built, in-house environment. Provided the

external DNS entries have been setup manually, following the success of the

Deployment Build, the new environment can be handed over to a development

department for use.

88

Figure 20: Sample PowerShell Function

89

Chapter 4. Results

This chapter presents the results of the industry-based case study and experiments

pertaining to the execution of the automated framework alongside the results of the

survey questionnaire. The overall goal of the data collection, analysis and

presentation is to provide the reader with a concise set of structured quantitative

comparative metrics in order to determine if the adoption of automated public cloud

and IaC technologies can provide greater efficiency to SMEs cur rently manually

managing a traditional in-house, or colocation-based data centre. The findings

outlined in this chapter make evident the efficiency benefits of employing public

cloud and IaC technologies in the environment creation process.

4.1 Creation/Recreation Experiment Context

The experiment methodology is defined by Amaral et al. as one where a system is

evaluated under the scrutiny of a researcher in order to answer a specific research

question or achieve a specific research objective (Amaral, 2011). This experiment

pertains to the controlled recreation of existing, and creation of new IT testing

environments on AWS’s IaaS platform via the automated framework. This experiment

will be referred to as the Creation/Recreation experiment.

4.1.1 Creation/Recreation Experiment Aims

The aims of the Creation/Recreation experiment conducted as part of this thesis can

be compartmentalised into two, high-level categories. The first is to test the

functionality of the automated framework in order to assess whether or not it satisfies

the functional and non-functional requirements outlined in sections 3.1.3 and 3.1.4 of

this thesis. Inclusive of this test is the confirmation that framework has the capability

to reliably rebuild existing, and create new environments on the public cloud,

configure them according to specification and deploy the organisation’s codebase to

them in order to provide working environments for the target organisation in as much

of an automated fashion as possible. The rate of error, manual troubleshooting time

and time spent on each build in the overall process are encompassed in this test. The

90

second category in this experiment is the efficiency comparison between the case

study organisation’s previous co-location based environment creation process with

the new environment creation process handled by the framework. This comparison is

based on effort and timing metrics outputted by the build server when executing the

framework in order to recreate existing, and create new environments on the public

cloud. Data pertaining to the timing and effort metrics from the organisation’s

previous environment creation process was obtained through semi -structured

interviews in the case study portion of this research , outlined in section 3.1.

4.1.2 Network Architecture

The organisation the framework was implemented in utilised a co -location

infrastructure to host their testing environment before the framework rebuilt them in

AWS’s IaaS platform.

In the co-location infrastructure paradigm, the client purchases all of the

infrastructure hardware, typically racks of physical servers and storage arrays, while

the co-location service provider rents space in a secured networking facility for the

client-owned hardware to operate in, along with the bandwidth to and from the data

centre (Reichard, 1998). In most cases, the physical security, housing, powering and

cooling of the physical machines are the responsibility of the co -location service

provider, it is the client’s responsibility to manage the software on the physical

machines and the to ensure that the network they create in the data centre is secured

by appropriate networking devices such as firewalls and switches. Once the physical

devices are installed and configured, an internal network comprised of these devices

is created within the co-location provider data centre, this network may then be

connected to the client’s existing network. One method of connecting an existing

client network with the co-location data centre network is by creating a Virtual Private

Network (VPN) that act acts a secure tunnel for traffic to be transmitted between two

separate networks, devices called VPN gateways are deployed to both the client

network and the co-location network in order for traffic to be sent to and received

from the VPN (Gottlieb, 2012).

In this experiment, the organisation was leasing server space in a co -location data

centre located in Sterling, Virginia in the United States, the architecture of this co-

91

location infrastructure was relatively simple, a VPN allowed users and servers from

the on-site office to connect the off-site co-location data centre, this VPN utilised a

100Mbps link. A physical VPN gateway device on the on-site office side of the VPN

processed requests to and from the co-location centre across the VPN. On the co-

location centre side of the VPN, a virtual router acted as the gateway to the network.

A virtualised WAN firewall filtered traffic from the VPN gateway device which was

then sent to a WAN switch. The WAN switch then sent this filtered traffic to a LAN

firewall before it entered the internal co-location LAN the test environment servers

resided on. The structure of the internal co-location LAN was divided up into two

VLANs, each with their own subnet:

1. Development (Dev) VLAN for environments dedicated to development work.

2. Quality Assurance (QA) VLAN for environments dedicated to internal testing

work.

For the sake of clarity, this architecture has been plotted out in Figure 21.

92

Dev VLAN QA VLAN

LAN Firewall

WAN Switch

WAN Firewall

VPN Gateway

VPN
Gateway

On-site office network

Co-location data centre

Figure 21:On-site office to co-location datacentre diagram

93

As discussed in section 3.2.4, in order for the framework to function, certain

networking components were required to be built in AWS. The structure of this

network is similar to that of its co-location counterpart. However, the naming of

certain components are specific to AWS, these components are covered briefly in the

section that follows.

AWS’s virtual network offering is called a Virtual Private Cloud (VPC), V PCs have

previously been briefly covered in this thesis in section 2.2.1. The framework creates

instances within a pre-defined subnet, in order for subnets to exist in AWS, a VPC

must be present to house them. Similar to connectivity between an on -site network to

a co-location centre network, a VPN is required to access instances that reside in a

VPC as, by default, instances created within a VPC are not accessible d irectly from a

private network, a VPN must be setup for this to be achieved (Amazon, 2017). AWS’s

Customer Gateway and Virtual Private Gateway components are required for a VPN

connection to be made to a specific VPC (Amazon, 2017). A Customer Gateway is a

hardware or software-based device that manages traffic to and from the client’s

private network and the specific AWS VPC they are connecting to, whereas a Virtual

Private Gateway is virtualised VPN connector on AWS’s side of the VPN (Amazon,

2017). The filtration of traffic within the VPC is done with AWS Security Groups,

which act as virtual firewalls (Amazon, 2017).

Users residing in the on-site office network connect to the cloud-based environments

through the VPN, the speed of this link matches the on-site office to the co-location

data centre VPN link at 100Mbps. On the on-site office side of the VPN, a software-

based AWS Customer Gateway is used to process inbound and outbound traffic to and

from the VPC. On the AWS side of the VPN, a Virtual Private Gateway device

connects the VPC back to the on-site office network. Traffic within the VPC is routed

by a virtual router and filtered by AWS Security Groups before reaching the

destination test environment server. Similar to the layout of the VLANs in the co -

location datacentre network, environments are logically divided from each other via

private subnets according to their type:

1. Development (Dev) private subnet for environments dedicated to development

work.

2. Quality Assurance (QA) private subnet for environments dedicated to internal

testing work.

94

 The architecture described has been plotted out in Figure 22.

95

AWS Network

Dev Subnet QA Subnet

Security Groups

Virtual Private
Gateway

VPC

Customer
Gateway

On-site office network

Virtual Router

Figure 22: On-site office to AWS diagram

96

4.1.3 Environment Specification

This section discusses the specifications of the non-cloud environments that were

recreated in AWS alongside the cloud-based instances that the framework built. The

case study organisation’s testing environments consist of a single VM each. This

single VM runs Windows Server 2012 R2, it acts as a website, services, file s hare and

database server for the organisations codebase to be developed and tested on. In terms

of machine specification, it was desired by the case study organisation to recreate

their existing testing environments utilising servers with specifications as similar to

their existing equivalents as possible. The cost comparison and instance comparison

outlined in sections 2.2.5 and 2.2.7 of this thesis show the comparison of different

CSPs offerings of instance types as similar to the case study organisation’s servers

which have 8.00GB of RAM installed alongside two processors. It was aimed to match

this type of compute power as closely as possible with the cloud-based environments

by choosing AWS’s t2.large instance type which has 8.00GB of RAM installed

alongside two processors (Amazon, 2017).

System Summary Co-location environments AWS environments

OS Name Microsoft Windows Server

2012 R2 Standard

Microsoft Windows Server

2012 R2 Standard

Version 6.3.9600 Build 9600 6.3.9600 Build 9600

System Manufacturer VMWare, Inc. Xen

System Model VMWare Virtual Platform HVM domU

System Type x64-based PC x64-based PC

Processor Intel(R) Xeon(R) CPU

E7540 @ 2.00GHz

Intel(R) Xeon(R) CPU E5-

2676 v3 @ 2.40GHz

Processor Count 2 2

BIOS Version Phoenix Technologies LTD

6.00

Xen 4.2.amazon

Installed Physical

Memory (RAM)

8.00GB 8.00GB

Table 7: System comparison of non-cloud and cloud environments

97

The m4.large instance type has similar specifications to the co-location based

environment servers, however, this instance type was not chosen as the t2.large

instance type is far more cost effective and is recommended by AWS to be more

suitable for testing environments that may not be under heavy load for a prolonged

period of time (Amazon, 2017). A basic system information comparison between the

existing co-location based environments and their cloud-based equivalents is

displayed in Table 7. It shows that the cloud-based t2.large environments have a

different processor with a slightly faster processor clock speed than the co -location

based equivalents. While the compute power of the servers are similar, they are not

identical, this is a recognised limitation as the three CSPs considered for this research

offer only preconfigured server specifications and do not allow for custom

specifications to be made by the user (Amazon, 2015) (Microsoft, 2015) (Google,

2015). The t2.large instance type chosen was the closest specification instance type

available on AWS at the time the project was carried out.

In terms of storage, the environments being compared are almost id entical, as AWS

allows for the creation of custom AMIs which can have EBS volumes of user -defined

sizes attached to them, these EBS volumes act as hard disk drives for all instances

that are created from that AMI (Amazon, 2015). The only difference between the two

is the storage manufacturer due to the change in hosting platform. A summary of the

storage comparison is presented in Table 8.

Storage Summary Co-location environments AWS Environments

Name VMWare Virtual Disk SCSI

Disk Device

AWS PVDISK SCSI Disk

Device

Media Type Hard disk drive Hard disk drive

Drive Count 4 4

Total Capacity (GB) 250 250

Table 8: Storage comparison of non-cloud and cloud environments

98

Platform Type Name Version

Database Management System SQL Server 2014 12.0.5000

Web Server Software Internet Information Services 8.5.9600.16384

Service Bus System NServiceBus 6

Table 9: Basic test environment software systems

Due to the multi-functioning single server paradigm utilised by the case study

organisation to host their testing environments, the platforms outlined in Table 9 are

required to be installed and configured on the server in order for the organisation’s

websites, services and databases to run on.

Along with the above several default configurations must be modified to allow for the

single server to act as a website host, file share, service handler and database server.

These modifications are numerous and it is outside of the scope of this thesis to list

them all, without digressing too far, some examples of some of these modifications

follow.

 The creation and configuration of Internet Information Services (IIS) websites and

application pools.

 The creation of local users and groups.

 The enabling and disabling of Windows features.

 The enabling of specific SQL Server configurations (SSRS, SSIS, SSMS, etc.).

 The creation and configuration of file shares and access control lists on

directories required by the organisation’s websites and services.

 The installation of custom applications to support certain function ality of the

websites and services (payment processing, document generation, geolocation,

etc.)

This single server environment architecture also requires all of the organisations

codebase to be deployed and correctly installed on single server. At the time of

writing, each of the organisation’s test environments contain over 55GB of

organisation specific website, service and database code from 174 individual

codebases, the breakdown of this codebase is shown in the Table 10.

99

Software Type Count Combined Size (GB)

Websites 35 1.56

Services 79 1.63

Databases 60 52

Total 174 55.19

Table 10: Organisation software on test environments

4.1.4 Process Variables

In the context of experimental design, Antony defines a process as a transformation

of inputs into outputs, process variables are the inputs to a process that has an effect

on its output (Antony, 2003). The two different types of process variables are

controlled and uncontrolled, both of which are present in this experiment, the y are

discussed in this section (Antony, 2003).

 Controlled Variables

The majority of variables in this experiment are controlled, as the nature of automated

computer processes allow for the exact same set of variables to be inputted into a

process in order to obtain the same output. These controlled variables are listed below:

1. The AMI to provision

The AMI used throughout the course of this experiment did not change, it was an

OVF export of a base Windows Server 2012 R2 machine from the co-location

based infrastructure that was imported into AWS as an AMI. Therefore, an

identical base instance was used in both the previous manual environment creation

process and the framework environment creation process in this experiment.

2. The build server

The TeamCity build server that executes the framework scripts did not change

throughout the course of this experiment and remained a static entity in regards to

compute power and installed components.

3. The IaC scripts

100

The template IaC and associated wrapper scripts that provision new environments

in AWS remained static from their first stable release and did not chan ge

throughout the course of this experiment.

4. The applications residing on the environments

No additional applications required to be installed or configured on the testing

environments throughout the course of this experiment.

5. The configuration management scripts

As no additional applications or configurations required to be installed on test

environments while the experiment was taking place, the configuration

management scripts that configure the new environment in AWS remained the

same throughout the course of this experiment.

6. Instance type

The t2.large instance type being provisioned did not change throughout the course

of this experiment. As mentioned in section 4.1.3, the compute power of this

instance type is not identical to the colocation based environment machines but it

was chosen for use in this experiment as it matches the colocation based

environments as closely as possible.

7. Storage allocated to the instance

The storage allocated to all instances being provisioned remained static

throughout the experiment. As mentioned in section 4.1.3, the capacity of the

drives attached to both the AWS based instances and the colocation based

environments are identical, only the storage manufacturer changes due to the

change in hosting platform.

 Uncontrolled Variables

While the controlled variables are numerous due to the stat ic nature of automation,

there were uncontrolled variables in this experiment of varying severity. These

variables are a symptom of carrying out industry-based research, as opposed to

carrying out experiments in a laboratory scenario where the context has been devised

specifically to execute the experiments. As such, variables such as those that follow

101

have been cited as an inevitable consequence of performing industry -based research

(Costely & Armsby, 2007).

1. Network latency across the VPN

All users, including developers and testers, along with services and servers

residing in the on-site office network shared the same VPN link to the AWS’s

based environments. While this link was more than adequate to maintain the

functioning of business processes such as regular development and quality

assurance testing on AWS environments, it did pose a significant risk to the

functioning of the framework and the validity of the timing data obtained from it.

This variable was remediated as much as possible by performing framework

executions out of the regular working hours of developers and testers. Framework

executions took place one at a time at night or on weekends. This remediation also

satisfied a request from operations engineers from within the case study

organisation, who did not want to risk network traffic saturation of the VPN link

during business hours with the combined resource intensive execution of the

framework and the regular development and testing processes.

2. Shared tenancy of the TeamCity build server

The TeamCity build server hosted deployment processes for all technical staff in

the case study organisation, execution of the framework meant that a significant

amount of resources from the TeamCity build server were dedicated to th e

framework and could not be used by others until it was released. Conversely,

execution of other resource intensive processes from the TeamCity build server

such as deployment of code to existing environments by developers or testers

could have a negative effect on the performance of the framework itself. Similar

to the previous uncontrolled variable described above, this variable was

remediated as much possible by only executing the framework outside of regular

working hours to ensure that the case study organisation’s technical staff had the

adequate resources available to them during their working hours and to ensure

consistency in the execution of the framework and resulting data obtained from it.

3. Changes to organisational code and deployment process

This variable encompasses the changes the case study organisation development

staff made to the organisation’s code base which was deployed via the framework.

102

This variable was unavoidable and uncontrollable in the experiment, as the

company the framework was implemented in is a software solutions provider with

several active development teams. The changes to the deployed code base varies

from release cycle to release cycle, over time, different functionalities, bug fixes

and code optimisations were added by development staff on the request of the

organisation’s clients and project management department. Attempting to halt all

development work across the 174 code bases that comprise the organisations

websites, services and databases was beyond the remit of t he researcher. A

potential remediation to this uncontrolled variable is to take the revision numbers

of each code base from the beginning of the experiment and only deploy every

code base from that revision. This way, uniformity throughout this specific st ep

in the experiment could be completely controlled. This method may work in a

devised, laboratory setting, however, consider that one of the key claims made in

this thesis is that the framework has the capabilities of creating working

environments through code for an organisation in the software development

industry, the validation of the framework’s requirements lies in its ability to

successfully create environments that can be used with as little time and manual

effort overheads incurred as possible. If outdated code was deployed through the

framework, the target environment would not be in a working state for developers

or testers to work on. Therefore, if this variable was controlled by the method

stated above then all results from the framework would be completely void and

the inclusion of these results would be disingenuous as the development or testing

team the environment was handed to after the framework execution would need to

deploy updated versions of the codebase to the environment before they would be

able to use it. This variable should be recognised as a limitation of this research

when examining the results of this experiment.

4.1.5 Creation/Recreation Experiment Scope and Conduction

This section details the extent and conduct of the Creation/Recreation experiment in

regards to the existing environments that were rebuilt and the new environments that

were created on AWS’s IaaS platform via the framework.

As previously mentioned in the Project Planning section of this thesis, eight in -house

environments were scheduled for recreation in AWS’s IaaS platform in this

103

experiment. Along with the initial eight environments for recreation, 35 new test

environments were created native to the public cloud. All environments designated to

reside in AWS were placed on a rigid migration schedule by the organisation’s project

management office, ranging from the 9 th of September 2016 to the 30 th of January

2017. As the process of rebuilding each environment incurred downtime of that

environment for the duration of the framework execution, this schedule needed to be

signed off by the managers of individual development departments. Once the scope

of the migration project was agreed and the timelines were put in place, the researcher

assumed full control over the environment and the experiment began.

The researcher firstly allocated a timeslot for the framework to execute, thi s was

either during the evening if on a working weekday, or any time during a weekend or

bank holiday. At the beginning of this timeslot, the researcher gathered the necessary

values for the specific environment to be recreated and inputted these into the

framework at the User Interaction stage, detailed in 3.4.1. The framework was left to

execute and checked by the researcher at regular intervals for errors. If a terminating

error was thrown and the build chain stopped, the researcher attempted to remediate

the issue, if remediation was possible, the build chain was resumed immediately from

its point of failure. In the cases where the researcher was not able to solve the issue,

then technical support staff from within the organisation investigated on the next

business day. Once the issue was resolved, the build chain was resumed the following

evening. Following the success of the framework, the researcher gathered the raw

timing data from the build server UI and, where applicable, retrieved timing estimates

from supporting technical staff who dealt with error remediation. These timings and

effort metrics were inputted into a spreadsheet. This process was repeated for each

environment recreated by the environment and each environment created native to the

public cloud.

4.2 Creation/Recreation Experiment Results

The results of the Creation/Recreation experiment are detailed in this section.

104

4.2.1 Data Analysis

This section describes the analysis and interpretation of the raw data obtained through

the semi-structured interviews held in the case study portion of this body of work and

the data obtained through execution of the automated framework in the context of the

Creation/Recreation experiment.

 Data Classification

There were two main data sets for analysis in the Creation/Recreation experiment,

they are the Manual timings, and the Automated timings.

The Manual timings data set was derived from the semi -structured interviews held in

the Exploratory Phase of the case study. The researcher analysed the transcripts of

each interview and extracted the list of manual tasks the interviewees had performed

during manual environment creation scenarios. These tasks were then mapped to their

appropriate estimated timings provided by the interviewees. These tasks and their

associated timings were then categorised into the appropriate groups for comparison

with the automated timings data set. The transcripts for these interviews can be found

in Appendix A, Appendix B and Appendix C of this thesis. All tasks in this set have

an effort overhead of 100%, as each task is carried out manually and therefore requires

the full attention of the person carrying it out, this is opposed to automated tasks

where the user simply needs to issue a command to have the whole task executed

programmatically.

The Automated timings data set is comprised of the raw data obtained from TeamCity

execution logs of the framework, alongside estimates of any manual work that needed

to be performed during each run of the framework. The majority of timing data that

comprises this set was retrieved from the TeamCity front -end. TeamCity build chains

allow for the individual execution details of each build in the chain to be accessed

through a single web-based interface, these details include the ordering, status and

execution times of each build in the chain (Alexandrova, 2016). By using the build

chain interface, the researcher was able to create a central repository of execution

timings. The build chain interface also exposes terminating errors that caused the

build chain to fail, these were entered in along with the estimated troubleshooting

105

time the researcher or supporting technical staff spent to solve the errors and restart

the build chain from its point of failure. The rate of failure of the framework should

be of interest of any reader, as it shows how automated tasks can be more efficient in

terms of time and effort, but also may be more unreliable than manually performing

these tasks in practise. After each run of the framework, execution timin gs, rates of

error and manual troubleshooting times for each build were extracted and placed in

an Excel spreadsheet for later analysis. Along with the above, the researcher manually

entered the category of the framework run into the spreadsheet. These cat egories are

divided into two separate subsets, either Recreation or Creation, depending on the

environment in question.

The Recreation timings were taken from execution runs of the framework where an

existing, in-house machine is being recreated on public cloud infrastructure. The

Creation timings were taken from execution runs of the framework where a new

environment is created native to public cloud infrastructure. As previously mentioned

in section 3.1.2, the creation of the external DNS entries required for each

environment to function was not automatable due to the case study organisation’s

subscription to a DNS provider that did not provide an API for programma tic

interaction. Therefore, the creation of these external DNS entries was performed

manually for newly created environments that fall into this subset. This task is not

applicable to environments in the Recreation subset as these entries were already in

place for environments that had previously existed in -house. The timings for this task

were derived from the manual estimates provided by staff in the semi -structured

interviews and is the same as the timing for external DNS creation in the manual set.

The volume of data in the Automated set was far larger than that of the Manual set,

but it was still manageable enough for the researcher to manually parse and enter this

set into an Excel spreadsheet for analysis. The automated timings were gathered on a

per-build basis, meaning that, each build in the chain provided its own raw timing

data broken down into the following sections:

1. Provisioning Build

2. Domain Build

3. Configuration Build

4. Deployment Build

106

The Manual timings set had each individual task matched to an approximate time it

took to complete with no form of categorisation of tasks. Whereas, the automated

timing set was already categorised as outlined above. Therefore, the researcher

classified the tasks in the manual timings set to match those from the auto mated timing

set, factored in the troubleshooting work and external DNS entry creation and created

the following data groups common to both for comparison:

1. Provisioning Tasks

2. Domain Operations

3. Server Configuration

4. Deployment of Codebase

5. Troubleshooting

6. External DNS Creation

 Data Analysis

The timing data for both sets outlined above is relatively simple and does not contain

excessive levels of complexity. The Manual set contains a single set of approximated

timings for each task, these timings were retrieved from semi-structured interviews

with staff belonging to the case study organisation who previous carried out these

tasks on a regular basis. The Automated set contains a significantly larger volume of

data as it was taken from repeated, real-world runs of the automated framework.

Therefore, following classification, it was necessary to find the most appropriate

calculation of the average timings for each data group in the automated data set.

The data for the automated timings did not contain a large amo unt of lower or higher

extremes, due to the nature of automation itself, the execution times follow a regular

pattern. Therefore, the researcher calculated the averages of the automated runtimes

by calculating the mean average of each data group. There were some manual tasks

that needed to be performed during the automated process for troubleshooting errors

when the framework failed, to ensure uniformity in results comparison, the mean

average was calculated for these timings to find the most appropriate mi dpoint of data.

The above data groups from the Automated timings data set were compared to the

107

same data groups from the Manual timings data set. As the timings for each data group

varied greatly, the researcher calculated the time in minutes per data group, as some

tasks from the Automated data set take seconds, where other tasks take hours.

Similarly, some tasks from the Manual data set have been approximated to take

minutes to carry out, whereas other tasks from the same set have been cited to take

several hours. This was necessary for comparative purposes as it is desirable to group

all data together in a standard, uniform manner.

4.2.2 Sample Size

Varying sample sizes are present for each of the above sets, what follows is a

discussion of the sample sizes from the Manual timings dataset and Automated

timings dataset along with the Creation and Recreation subsets of the Automated

timings dataset.

Data from the Manual timings dataset were extracted from transcripts of the semi -

structured interviews with the case study organisation staff members, these interviews

were held by the researcher in the Exploratory Phase of the case study. It can be said

that the sample size for this set is limited to a single sample as the timings for a

manual environment creation or migration are based on approximations provided by

various staff members that were previously tasked with carrying out the manual steps

in the environment creation process. Manual creations or migrations of environments

theoretically could have taken place to provide a more ample sample size, but this

was not possible to carry out due to resource constraints and the practical nature of

performing industry-based research. In that, the researcher was not in a position to

request that three technical engineers from within the organisation halt their work to

manually create several test environments and detail the time and effort is took to

perform each task to generate a larger sample size for this dataset . Due to this

constraint, the sample size and quality of this sample is relatively poor when

compared with the Automated dataset.

Data from the Automated dataset were obtained directly from the TeamCity build

chain execution logs of the framework. These timings are far more precise and reliable

than the manual timings set as these timings were captured automatically and in real-

time by TeamCity. In total, 39 execution logs are included in the sample size for this

108

set. Similar to the limitation for the Manual timings set, the sample size for the

Automated timings set was restricted by the case study organisations requirements.

Each test environment that was generated via the automated framework was done so

on-demand as a requirement for the case study organisation’s development or testing

departments. Once the environment instance has been created at the beginning of the

framework execution, it immediately incurs a direct cost overhead to the organisation.

Therefore, the researcher could not execute the framework to generate test

environments at will in order to increase the sample size for this set, as the cost effect

of doing so would cause an unfeasible amount of strain on the resources that the

organisation had dedicated to this project.

The Automated timings set is broken down into two subsets, Recreation and Creation.

The Recreation subset consists of timing data retrieved from the execution of the

framework where an existing, in-house machine is being recreated on public cloud

infrastructure. A total of 8 execution logs are included in this subset. The Creation

subset consists of timing data retrieved from the execution of the framework where a

new environment is created native to public cloud infrastructure. A total of 31

execution logs are included in this subset.

4.2.3 Comparison of Manual and Automated Datasets

The Manual Timings and Automated Timings datasets are presented and compared in

this section, by plotting the raw data from each dataset on the same charts, a clear

comparison of timings from both processes can be seen. In this instance, the

Automated Timings dataset is a general view of the dataset, it is comprised of the

combined average means of the Creation and Recreation subsets.

 Overall Process Comparison

The most important area of the results are presented here. The comparison of the

overall environment creation process when performed manually and when performed

through the automated framework is shown here. Figure 23 is by far the most

simplistic, and possibly the most significant illustration of data in this entire

document.

109

Figure 23: Data Set Comparison: Automated vs. Manual

It makes no distinction between tasks, rather, it combines all tasks in both processes

to display an overall comparison of the automated and manual processes in terms of

timings for both.

It can be seen in Figure 23 that the automated process as a whole is 360% faster than

the manual process. The manual process itself takes 2,250 minutes or 37.5 hours in

total, whereas, the automated process takes 489 minutes or 8.15 hours.

 Individual Task Comparison

Figure 24 demonstrates a more detailed breakdown of this overall process comparison,

it shows each task and their associated timings in a side-by-side comparison. Figure

24 provides a more detailed view of the efficacy of the automated framework than

Figure 23. One can see from Figure 24 that, in the highest performing task the

framework can handle the Provisioning Tasks 8,092% faster than the manual process,

even in the lowest performing task, the framework can handle the Deployment of Code

140% faster than the manual process.

Total

Automated 489

Manual 2250

0

300

600

900

1200

1500

1800

2100

2400

M
in

u
te

s
Data Set Comparison: Automated vs. Manual

110

Figure 24: Task Comparison: Automated vs. Manual

 Task Proportion Comparison

These data sets varied greatly not only in actual timings, but also in terms of

proportion of time taken to complete various tasks in view of the overall process.

Figure 25 shows the proportion of time each task took to complete in the manual

process, whereas, Figure 26 shows the proportion of time each task took to complete

in the automated process. It is evident from Figure 25 and Figure 26 that the

operations in the Deployment of Codebase task take the most time to perform

regardless of the use of public cloud and IaC technologies, in fact, the proportion of

time this task took to complete in the automated process increased by over 91% when

compared to the manual process. While it only accounts for a small portion of time in

both processes, it is worth mentioning that the proportion of time to complete the

External DNS Creation task increased by over 207% in environments created by the

automated process. Speculation as to why these increases in proportional time

occurred is covered in the Discussion chapter of this document.

Provisioning
Tasks

Domain
Operations

Server
Configration

Deployment
of Codebase

External DNS
Creation

Trouble
Shooting

Automated 0.69 32.33 66.39 347.08 40.00 23.36

Manual 60.00 270.00 750.00 810.00 60.00 300.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

M
in

u
te

s
Task Comparison: Automated vs. Manual

111

Figure 25: Manual Timings: Breakdown of overall process

One can also see from Figure 25 and Figure 26 that the proportion of time taken to

perform the Provisioning Tasks, Domain Operations, Server Configuration and

Troubleshooting tasks have all been reduced by a significant factor. Server

Configuration is the most pertinent area to focus on here as these tasks are the second

most time consuming to carry out in both the automated and the manual process. These

tasks take up exactly one third of the total time in the manual process.

Whereas, in the automated process, Server Configuration tasks only account for

13.5%. Another interesting metric comparison to note from Figure 25 and Figure 26

is the discrepancy between the proportions of time spent on the Troubleshooting task.

In the manual process, the Troubleshooting tasks account for 13.3% of the total

process time, whereas, in the automated process only 2.4% of the total process time

is spent on these tasks.

2.67%

12.00%

33.33%
36.00%

2.67% 13.33%

Manual Timings: Breakdown of overall process

Provisioning Tasks

Domain Operations

Server Configration

Deployment of Codebase

External DNS Creation

Troubleshooting

112

Figure 26: Automated Timings: Breakdown of overall process

 Effort Comparison

Not only is the automated process several magnitudes faster than the manual

equivalent, the effort overhead involved is also decreased significantly. The only

tasks in the automated set that contain any effort overhead are the Troubleshooting

and External DNS Creation tasks. While it was impossible to automate the External

DNS Creation task, the framework does allow for a reduction in manual

troubleshooting time of 4.8 hours per environment, which is a proportional decrease

in time of 96%. The automated process contains only a fraction of manual work,

calculated by adding the averages of the Troubleshooting and External DNS Creation

tasks. The total manual work involved in the manual process is 2,250 minutes or 37.5

hours, whereas, the total average manual work involved across all runs of the

automated process is a mere 52 minutes, this comparison reveals a difference between

the two metrics. In total, the manual process requires over 43 times more manual

effort than that of the automated process.

0.15%

6.84%

13.54%

68.88%

8.18%

2.41%

Automated Timings: Breakdown of overall
process

Provisioning Tasks

Domain Operations

Server Configration

Deployment of Codebase

External DNS Creation

Troubleshooting

113

 Error Tendency

The last metric presented in this section is the tendency for error in the environment

creation process. In the manual dataset, error occurrence was not collected as a

variable for comparison, as no accurate estimate could be given. The occurrence of

errors was mentioned in every interview held with the case study organisation staff

members, but no official error rate was declared. Instead, each interviewee allocated

a relatively large amount of time for manual verification and troubleshooting purposes

to pre-empt the time needed to deal with errors in the manual process.

Error occurrence was collected as a variable for the automated process, as these errors

are exposed through the TeamCity front-end and are visible whenever they occur. The

researcher encapsulates the time taken to resolve errors that occur during the run of

the automated process in the Troubleshooting task, the timings of which were

presented earlier in this section.

Across all 39 runs of the framework, the rate of error was relatively high. On average

per framework run, at least one of the builds in the chain failed 51.8% of the time.

Figure 27: Rate of Error in Automated Process

0 1 2 3 4

Runs 19 13 4 1 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Fr
am

e
w

o
rk

 R
u

n
s

Rate of Error in Automated Process

114

Meaning that, in practise, the framework was more likely to fail with a termina ting

error than it was to succeed. This failure rate may seem unacceptably high, but the

vast majority of these errors only occurred once during that specific framework run.

In other words, if the framework failed once, it was more than likely not going to fail

again after it was restarted. Figure 27 shows the breakdown in the rate of error across

framework runs, 19 framework runs ran completely autonomously with no human

intervention, whereas, 13 framework runs failed with a single error, the cause of

which needed to be identified and resolved before the framework could be started

again from its point of failure, after which the build chain continued without any

subsequent errors. The remaining seven of framework runs failed more than once. As

one can expect, the time spent troubleshooting framework runs with multiple errors

increases with the amount of errors that occur. Figure 28 shows the median average

time spent troubleshooting the automated environment creation process per error

occurrence, note that the data visualised in Figure 27 and Figure 28 are comparing

different metrics, but they are almost a mirror image of one another.

This infers that, the most frequent types of framework executions succeeded with

fewer errors and fewer troubleshooting times, whereas, the least frequent types of

framework executions failed with more errors and more troubleshooting times. The

causes of, and remediation to these failures are covered in the Discussion chapter of

this document as this current section is reserved for results only.

Figure 28: Median troubleshooting time per error occurrence

0
10
20
30
40
50
60
70
80
90

100
110

0 1 2 3 4

M
in

u
te

s

Number of Errors

Median troubleshooting time per error
occurrence

115

4.2.4 Comparison of Creation and Recreation Data Datasets

The Creation and Recreation subsets that comprise the Automated dataset are

presented and compared in this section. The layout of this section follows the same

format as the preceding section.

As previously discussed, the framework is built to handle two distinct scenarios,

either the creation of a new environment, native to public cloud i nfrastructure, or the

recreation of an existing, in-house environment on public cloud infrastructure. These

subsets of data were compared in order to determine if the same metrics presented in

section 4.2.3 vary in any form when the framework is building a new environment or

recreating an old environment.

 Overall Process Comparison

As a whole, the overall process timings between the Creation and Recreation subsets

are far closer to one another in value than the Automated and Manual sets are to one

another. This comparison is illustrated in Figure 29.

116

Figure 29: Data Set Comparison: Creation vs. Recreation

While the comparison of the two subsets are not as dramatically juxtaposed as

previous comparisons, there is a large discrepancy between the two that should be

addressed. 73 minutes or 16.59% of a difference was recorded in average process

timings between the two subsets.

 Individual Task Comparison

A view of the individual task comparison between these two subsets reveal that most

tasks are relatively similar in timings, which is what was expected when comparing

two sets of automated process timings that are largely performing the same actions.

Figure 30 presents the average time taken to perform each individual task from both

subsets of data.

Total

Creation 513

Recreation 440

0

100

200

300

400

500

600

M
in

u
te

s
Data Set Comparison: Creation vs. Recreation

117

Figure 30: Task Comparison: Creation vs. Recreation

The disparity in timings seen in Figure 29 is easily accounted for by examining Figure

30, the External DNS Creation task is the main culprit for the difference in the overall

process timings, adding an extra 60 minutes to the Creation timings. This is because,

in the Recreation process, these entries were already in place and, therefore, did not

need to be created, so this task was only applicable to the Recreation process . Were

this task removed from the Creation timings, then the Recreation timings would be 13

minutes faster than the Creation timing sets.

In terms of manual effort overhead, task proportion and error rates between the two

subsets, the data are relatively identical, bar the External DNS Creation task,

therefore, further detailed comparisons of these results are not warranted. If it was

possible to automate the External DNS Creation task, the two subsets would be so

similar that a comparison of timings would be completely redundant.

4.2.5 Summary

The overall trend in data goes to show that the automated process is far more efficient

and more autonomous than the manual process. The framework itself is far from

perfect, but even with its tendency for failure, it is by far a more efficient system for

Provisioning
Tasks

Domain
Operations

Server
Configration

Deployment
of Codebase

External DNS
Creation

Trouble
Shooting

Creation 0.74 32.22 67.48 308.09 60.00 19.41

Recreation 0.60 32.54 64.19 425.06 0.00 31.25

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

M
in

u
te

s
Task Comparison: Creation vs. Recreation

118

creating new, and rebuilding old environments in the public cloud. In terms of process

comparison between the two framework execution scenarios, creation and recreation,

the only significant difference is the time taken to perform the single remaining static

manual task. The results show that, if it were possible to automate the External DNS

Creation task, the process of creation and recreation would be practically identical in

terms of timings.

4.3 Secondary Experiments

This section details the secondary experiments carried out as part of this thesis. The

purpose of these experiments is to test the framework in scenarios where controlled

variables are intentionally modified by the researcher in order to demonstrate the

efficacy of the framework when executing under different cond itions. By doing so,

the research objective where the framework is tested under as many conditions as

possible is achieved.

The environments created via the framework for the secondary experiments were not

used by the organisation the framework was implemented in, as these environments

were built for the purpose of extensive testing of the framework. Along with this, the

controlled modification of process variables inferred that the environments were

being created via a non-standard method to all other environments recreated and

created by the framework in the Recreation/Creation experiment, it was not desirable

for the organisation’s development or testing departments to work on non -standard

environments, regardless of how insignificant the modification to the environment

creation process was. As it was planned that the environments created as part of these

secondary experiment were not to be used by the organisation the framework was

implemented in, the External DNS Creation task did not take place for thes e

environments as this was not automated as part of the framework and carrying out this

task was a redundant step. Therefore, this task is not represented in the timing data

presented in the sections that follow.

The time spent troubleshooting these environments were relatively low compared to

the results presented in the Recreation/Creation experiment. As the secondary

experiments were conducted in a short span of time, changes to the 174 code bases

119

deployed to the environments were minimal, which resulted in a generally low rate of

error and predictable patterns for error correction.

Two secondary experiments were carried out by the research to achieve the research

objective, both follow the same methodology as the Recreation/Creation experiment

outlined by Amaral (Amaral, 2011). These secondary experiments took place under

the same context as the Recreation/Creation experiment, in that, they were conducted

via the same implementation of the framework, in the same organisation and were

used to create the same environments. The only difference in these experiments is the

controlled modification of process variables. The first experiment consists of the

modification of the instance type process variable, this experiment will hencef orth be

referred to as the Instance Type experiment. This experiment involves the carrying

out of full framework executions in order to create environments of varying compute

power. The second consists of the modification of the storage allocated to the instance

and the AMI to provision process variables, this experiment will henceforth be

referred to as the Storage Capacity experiment. This experiment involves the carrying

out of full framework executions in order to create environments with varying

amounts of storage allocated to them.

4.3.1 Instance Type Experiment Context

The purpose of Instance Type experiment is to determine whether or not the

performance of the automated framework is affected by the compute power of the

instance it is targeting. By changing the controlled variable of the instance type being

provisioned, this experiment demonstrates how the framework behaves when

instructed to build environments of varying compute power.

As mentioned above, the Instance Type experiment modifies the instance type process

variable, this variable is outlined in 4.1.4. In the Recreation/Creation experiment, the

t2.large instance type was provisioned for all environments built via the framework,

therefore, the t2.large is the baseline instance type for comparison. This experiment

encompasses the automated framework execution when instance types being

provisioned are set to the t2.medium, the baseline t2.large and the t2.xlarge instance

types. The compute power of all three of the aforementioned instance types have been

detailed in Table 11.

120

Instance Type RAM (GB) vCPUs

t2.medium 4 2

t2.large 8 2

t2.xlarge 16 4
Table 11: Instance Types used

Taking the already established baseline of the t2.large instance type into account, the

above instance types were chosen by the amount of RAM and vCPUs allocated to

them relative to the t2.large instance type. The t2.xlarge instance type has twice the

amount of RAM and vCPUs allocated to it than the t2.large. Whereas, t he t2.medium

instance type has half the amount of RAM allocated to it than the t2.large, but has the

same amount of vCPUs as this is the minimum amount of vCPUs available for instance

types in the t2 instance family with 4GB of RAM (Amazon, 2017).

 Instance Type Experiment Scope and Conduction

The scope of the Instance Type experiment encompasses the automated creation of

new environments via the framework when the instance type variable is modified in

a controlled manner. For the purpose of eliminating errors in measurements and

calculating an accurate average for the results, the framework built three

environments from each instance type. The framework built three environments of the

t2.medium instance type, then built 3 environments of the t2.large instance type and

finally built three environments of the t2.xlarge instance type.

The conduction of this experiment was similar to the conduction of the

Recreation/Creation experiment, where the researcher allocated a timeslot for the

framework to run on out of business hours if the framework execution took place on

a weekday or anytime during a weekend. Following the success of the framework

execution, the researcher manually entered the timing data into a spreadsheet for later

analysis. To ensure that there was as little interference as possible in the results, only

a single framework execution took place at any given time throughout the course of

this experiment.

4.3.2 Instance Type Experiment Results

The results of the Instance Type experiment are detailed in this section.

121

 Data Analysis

This section describes the analysis and interpretation of the raw data obtained through

execution of the automated framework in the context of the Instance Type

experiments.

Similar to the Recreation/Creation experiment, the raw data was gathered via the

TeamCity build chain interface, alongside estimates of all manual troubleshooting

tasks if they needed to be performed. The following categories are included in the

Instance Type experiment dataset:

1. Provisioning Tasks

2. Domain Operations

3. Server Configuration

4. Deployment of Codebase

5. Troubleshooting

The mean average for each of the above categories of timing data obtained from the

Instance Type experiment was calculated. Following this, the time taken for eac h task

in minutes was calculated as some builds take hours, while others take seconds and it

was desirable to group all data in a single format in order for it to be readable.

 Sample Size

A total of nine environments were created through the framework in this experiment,

making a total sample size of three datasets for each instance type.

 Comparison of Instance Type Datasets

The Instance Type datasets are presented and compared in this section, the raw data

from each dataset is plotted out on the same char ts in order to provide a clear

comparison of timings from all three datasets.

122

 Overall Process Comparison

The timing data from the framework executions involved in the Instance Type

experiment as a whole process are presented and compared in this section. Figure 31

shows the overall difference in timings between framework executions when the

instance type variable is modified.

Figure 31 shows that the type of instance being built by the framework has an effect

on the overall execution times of the process as a whole. The t2.medium instance type

has the lowest amount of compute power allocated to it and, on average, takes the

longest to provision, configure and deploy to. The t2.large instance type is as close to

the mid-point in compute power as was possible in this experiment, environments set

to this instance type are created 23 minutes or 3.6% faster than environments of the

t2.medium instance type.

Figure 31: Instance Type Experiment Overall Comparison

t2.medium 370

t2.large 357

t2.xlarge 289

0

50

100

150

200

250

300

350

400

M
in

u
te

s

Instance Type Experiment: Overall Process Comparison

123

Figure 32: Instance Type Experiment Task Comparison

This difference in framework execution times is not a significant one, consider ing

that the compute power of the environment being created was effectively halved.

However, this difference in timings is far greater with the t2.xlarge instance type.

Environments set to the t2.xlarge instance type were created 68 minutes or 23.5%

faster than their t2.large equivalents and 81 minutes or 28% faster than their

t2.medium equivalents.

 Individual Task Comparison

Figure 32 shows a breakdown of the overall process, displaying each task and the

associated average time taken for each task. Figure 32 shows that the compute power

of the environment being created significant ly affects the Deployment of Codebase

task, while all other tasks are relatively the same throughout each instance type if

uncontrolled variables such as network latency across and the VPN and the shared

tenancy of the TeamCity build server are taken into account. Whereas, the Domain

Provisioning
Tasks

Domain
Operations

Server
Configration

Deployment of
Codebase

Trouble Shooting

t2.medium 0.93 28.38 62.17 274.87 3.33

t2.large 1.11 28.95 65.79 251.39 10.00

t2.xlarge 0.88 33.83 62.19 187.29 5.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

M
in

u
te

s
Instance Type Experiment: Task Comparison

124

Operations task took the least amount of time for the t2.medium, followed by the

t2.large instance type.

The t2.xlarge instance type took the longest to complete the Domain Operations step.

No significant differences can be seen in the timing data for the Server Configuration

tasks, this can be attributed to the identical configuration management scripts that

were run on the each instance in this experiment. The main gains in efficiency based

on compute power can be seen in the Deployment of Codebase task which largely

resulted in the t2.xlarge instance type handling this task 46.7% faster than the

t2.medium and 34.2% faster than the standard t2.large instance type.

4.3.3 Storage Capacity Experiment Context

The purpose of the Storage Capacity experiment is to determine whether or not the

performance of the framework is affected by the amount of storage allocated the

environment being provisioned. This test will demonstrate how the framework

behaves in circumstances where the allocated s torage space of the environment being

provisioning is modified. It is expected that the framework will be capable of creating

environments with less storage space allocated to them faster than that of

environments with more space allocated to them.

The Storage Capacity experiment modifies the storage allocated to the instance

variable, in order to do this, the AMI to provision variable also needed to be modified.

These variables are outlined in section 4.1.4. Environments covered in the

Recreation/Creation experiment were allocated four drives, with a combined total of

250GB of disk space. These four drives are required for the framework to execute as

the configuration and deployment of the target organisation’s application and

database code are dependent on these four drives being present and for these four

drives to have adequate space for the code base to be deployed to and operate in.

This experiment encompasses the automated framework execution when the storage

allocated to the instance being provisioned is set to varying amounts. The storage

capacity allocated to environments in the Recreation/Creation experiment acts a

baseline capacity in this experiment, a lower capacity storage amount relative to the

baseline and a higher capacity storage amount relative to the baseline are also used in

this experiment.

125

Baseline AMI Capacity (GB) Used (GB) Free (GB)

C 70 44 26

D 100 65 35

E 40 27 13

F 40 1 39

Total 250 137 113

Table 12: Baseline AMI Storage

As the four drives are required for the framework to execute in the context of the

target organisations environments, the following storage options will be used in this

test. Table 12 outlines the storage allocated to environments already created by the

framework. Table 13, the Low Capacity AMI and Table 14. The High Capacity AMI

outline a difference of overall provisioned storage space of 20% from the baseline.

The Low Capacity totalling at 20% lower than the Baseline, and the High Capacity

totalling at 20% higher than the Baseline. This specific metric was chosen as 20%

lower storage space than the Baseline is close to the minimum amount required for a

working test environment to function. An increase of more than 20% storage space

was chosen as it corresponds with the amount reduced in the Low Capacity test .

Comparing the framework execution time against an increase of 90% would be an

interesting test, but would offer no real value without an accompanying test where the

storage was reduced by 90%, which, as outlined above, was impossible to perform.

The capacity on the C drive could have been reduced further, but it is not currently

possible to reduce a Windows EBS system volume (AWS, 2010). The instance type

chosen for the instances in this test was the t2.large, this is to reflect the instance type

used in the Recreation/Creation experiment tests.

Low Capacity AMI Capacity (GB) Used (GB) Free (GB)

C 70 46 24

D 75 65 10

E 40 27 13

F 15 1 14

Total 200 139 61

Table 13: Low Capacity AMI Storage

126

High Capacity AMI Capacity (GB) Used (GB) Free (GB)

C 70 46 24

D 140 65 75

E 50 27 23

F 40 1 39

Total 300 139 161

Table 14: High Capacity AMI Storage

Drives attached to environments built from the High Capacity AMI were extended

drives based on the Baseline AMI, these extended drives were not filled with any data.

The new capacity on these extended drives was comprised of empty space. The

discrepancy of free space across the drives from the Low Capacity, Baseline and High

Capacity tests is recognized but not addressed in the experiment as doing so would

void the experimental methodology followed. It was desired to keep the contents and

integrity of the disk drives standard throughout the experiment. For instance, adding

an unnecessary 65GB file to the D drive in the High Capacity AMI to reflect the

amount of free space on that drive in the Low Capacity tests would introduce a new

variable to the test case that was not apparent in the original Recreation/Creation

experiment. All drives begin with the same type and volume of data throughout each

of these tests.

 Storage Capacity Experiment Scope and Conduction

The scope of the Storage Capacity experiment encompasses the automated creation of

new environments via the framework when the storage allocated to the instance and

the AMI to provision variables are modified in a controlled manner. For the purpose

of eliminating errors in measurements and calculating an accurate average for the

results, the framework built three environments from each AMI. In order to achieve

this, the researcher created two separate AMIs for each storage type that was not the

baseline as the baseline AMI was the same used in the Recrea tion/Creation experiment

and Instance Type experiment. One AMI was created for the Low Capacity test and

one AMI was created for the High Capacity test. The framework built three

environments from the low capacity AMI, then built 3 environments from the ba seline

AMI and finally built three environments from the high capacity AMI.

127

The conduction of this experiment was similar to the conduction of the

Recreation/Creation experiment, and the Instance Type experiment where the

researcher allocated a timeslot for the framework to run on out of business hours if

the framework execution took place on a weekday or anytime during a weekend.

Following the success of the framework execution, the researcher manually entered

the timing data into a spreadsheet for later analysis. To ensure there was as little

interference as possible in the results, only a single framework execution took place

at any given time throughout the course of this experiment.

4.3.4 Storage Capacity Experiment Results

The results of the Storage Capacity experiment are detailed in this section.

 Data Analysis

This section describes the analysis and interpretation of the raw data obtained through

execution of the automated framework in the context of the Storage Capacity

experiments. Similar to the Recreation/Creation experiment and the Instance Type

experiment, the raw data was gathered via the TeamCity build chain interface,

alongside estimates of all manual troubleshooting tasks if they needed to be

performed. The following categories are included in the Storage Capacity experiment

dataset:

1. Provisioning Tasks

2. Domain Operations

3. Server Configuration

4. Deployment of Codebase

5. Troubleshooting

The mean average for each of the above categories of timing data obtained from the

Storage Capacity experiment was calculated. Following this, the time taken for each

task in minutes was calculated as some builds take hours, while others take seconds

and it was desirable to group all data in a single format in order for it to be readable.

128

 Sample Size

A total of nine environments were created through the framework in this experiment,

making a total sample size of three datasets for each instance type.

 Comparison of Storage Capacity Datasets

The Storage Capacity datasets are presented and compared in this section, the raw

data from each dataset is plotted out on the same charts in order to provide a clear

comparison of timings from all three datasets.

 Overall Process Comparison

The timing data from the framework executions involved in the Storage Capacity

experiment as a whole process are presented and compared in this section. Figure 33

shows the overall difference in timings between framework executions when the

storage allocated to the instance the framework is targeting is modified.

129

Figure 33: Storage Capacity Experiment Overall Process Comparison

Figure 33 shows that the storage allocated to the instance being built by the framework

has an effect on the overall execution times of the process as a whole. The exp ected

result was that instances allocated less storage will be provisioned, configured and

deployed to faster than instances with more allocated storage, this expectation was

proven by this experiment, yet the results do not follow a linear pattern. The ti me

taken for the framework to build environments from the Low Storage AMI was by far

the lowest. On average, the Low Storage environments were built 74 minutes, or

26.1% faster than environments built from the Baseline AMI and 19 minutes, or 6.7%

faster than environments built from the High Storage AMI.

 Individual Task Comparison

Figure 34 shows a breakdown of the overall process, displaying each task and the

associated average time taken for each task.

Low Storage 283

Baseline 357

High Storage 302

0

50

100

150

200

250

300

350

400

M
in

u
te

s
Storage Capacity Experiment: Overall Process

Comparison

130

Figure 34: Storage Capacity Experiment Task Comparison

Figure 34 shows that the storage allocated to the environment being created by the

framework can have a dramatic and non-linear effect on the speed of various tasks.

The main tasks responsible for timing discrepancy in this experiment are the Server

Configuration and Deployment of Codebase tasks, while a ll other tasks take relatively

the same amount of time. An unexpected result is the increase in time require for the

Server Configuration task to complete as the storage allocated to the environment is

increased. The Low Storage AMI handles this task faster than the Baseline AMI,

similarly the Baseline AMI handles this task faster than the High Storage AMI. The

Deployment of Codebase task is the main culprit for the unpredicted skew in timing

data, taking far longer for the Baseline AMI than the Low Storage or High Storage

AMI. Another unanticipated difference to note here is the slight difference in timing

between the Low Storage and High Storage AMIs. The Low Storage AMI handles this

task slightly faster than the High Storage AMI.

Provisioning
Tasks

Domain
Operations

Server
Configration

Deployment of
Codebase

Trouble Shooting

Low Storage 0.97 29.87 60.38 182.20 10.00

Baseline 1.11 28.95 65.79 251.39 10.00

High Storage 0.93 29.13 75.23 188.55 8.33

0.00

50.00

100.00

150.00

200.00

250.00

300.00

M
in

u
te

s
Storage Capacity Experiment: Task Comparison

131

4.4 Survey

The results of the survey questionnaire are presented in this section. The overall aim

of the survey questionnaire results are to corroborate the correlation between the use

of IaC tools and public cloud infrastructure and efficiency in the environment cre ation

process found via the experimental results outlined in the previous sections. This

corroboration was achieved by surveying and obtaining data from a wider audience

of participants that represent other organisations independent from the organisation

the researcher carried out the case study, framework implementation and subsequent

experiments in.

The survey research method was employed in order to achieve the research objective

pertaining to the surveying of the wider audience of SMEs in order to valid ate the

results obtained from the automated framework discussed above in a generalizable

fashion. The survey method allows for inferences to be made about a population based

on information obtained from a smaller subset of that population (Schonlau, 2002).

The survey was created with the aim to investigate if a correlation exists between

efficiency in the process of provisioning IT infrastructure and the use of IaaS and IaC

tools in the context of the wider audience of software engineering organisations. The

survey respondents were comprised of technical employees currently working in

software engineering companies that are independent from the organisation the case

study and experiments were carried out in.

4.4.1 Sampling

Etikan et al. defines exponential non-discriminative snowball sampling as a non-

probability based sampling technique in which the initial research participant, or

participants, recruits at least one more participant, those participants then recruit at

least one more participant each, and so on until sampling has ended (Etikan, 2016).

This sampling technique was adopted for retrieving respondents to the survey. The

sample set was initially seeded by the connections of the researcher known to be

working in the field. This initial pool of potential respondents was limited to 8 people.

Alongside this, a staff member employed within the case study organisation was aware

of the survey and its distribution model, they voluntarily provided contact details for

132

5 of their previous work colleagues. This was key to extending the reach of the survey

beyond potential participants that were known personally to the researcher. This led

to the final seed pool of potential participants, which totalled at 13.

All survey respondents were asked to forward the survey onto their connections, based

on the criteria that their connection is working for an SME and has the necessary

knowledge to fill out the questions in the survey. This snowball process continued

until it was apparent that no more survey respondents were being received. By the

time the survey was closed, 19 respondents, each a member of a different SME

operating inside of the Republic of Ireland, attempted the survey. Of those, 13 finished

the survey completely. 11 of the completed responses qualified for inclusion into the

final results set. The 2 excluded respondents failed to qualify for the final results set

because they showed a lack of understanding in their organisation’s environment

creation process that may have compromised the validity of the results if their answers

were included. These 2 respondents stated that they did not know whether or not IaC

tools are used in their organisation’s environment creation process. The use of these

tools are key comparative variable in the results.

Due to the sampling method chosen, it is impossible for the researcher to calculate

response and refusal rate, as it is not known exactly how many respondents recruited

other respondents. According to the Irish Times, there are 139 technology SMEs

operating in the Republic of Ireland (Irish Times, 2017). If this is taken as the total

population size, then the final set of 11 respondents can be said to represent 7.91% of

that population.

4.4.2 Measurement Procedures

A web-based survey questionnaire was chosen as the method of delivery for this

portion of the research. This method was deemed most appropriate as interviewing

each potential subject was not practical in terms of the time and resource overhead

involved.

The questionnaire itself consists of a mixed of open and closed -ended questions, with

the bulk of data being derived from a matrix question consisting of dropdown menus.

The initial draft was created with the intention of encompassing as much as possible

but was deemed far too long when the survey was tested amongst the researcher’s

133

peers, the final draft consists of 13 questions. Each question in the final draft was

designed with the research question and hypothesis in mind. The introd uction page of

the survey consists of a brief message thanking the respondent for taking the survey

and explaining what the results will be used for and why they are needed. The survey

begins with classification questions in order to eliminate respondents deemed outside

of the scope of the research, for instance: those not aware of how environments in

their organisations are provisioned or how many people are involved in the

environment creation process. After the classification questions, the central matri x

question is posed. This page begins with an introduction, explaining the terms used

in the question and specifying the importance of the participants understanding of the

terms. The respondent is then prompted to translate the following tasks into their own

organisations environment creation process and provide timings for each of the

following processes:

 Provisioning of new environment.

 Domain operations.

 Configuration of server/servers.

 Deployment of codebase.

For each of the above, the respondent is given a choice of the following timings:

 1 - 10 minutes

 10 - 30 minutes

 30 - 60 minutes

 1 - 2 hours

 2 - 5 hours

 5 - 8 hours

 8 - 16 hours

 16 - 24 hours

 1 - 2 days

 2 - 3 days

134

Appended to the end of this question is a free text box for the participant to input any

steps, and associated timings, that the researcher did not account for. Once the main

matrix question is complete, the respondents have entered the bulk of the data th at the

final results set will consist of. The remaining questions are close -ended and were

used to categorise each of the respondents qualified for inclusion into the final results

set. These classification questions are largely optional but were included to give to

researcher a more expansive view of the respondent’s organisations environment

infrastructure and automation tool usage. The full survey has been exported through

a series of screenshots and can be found in Appendix D in this document.

4.4.3 Data Collection

The survey went live and the researcher began looking for adequate respondents on

26th of August 2016. The feedback from the survey was received between 28 th of

August 2016 to 26 th of September 2016, the survey was subsequently closed on 3 rd of

October 2016 after a week of respondent inactivity. After the survey was closed, the

data itself was exported into Microsoft Excel for the researcher to analyse and

interpret.

4.4.4 Respondent Category Comparison

Due to the volume and variation of raw data retrieved through the survey

questionnaire regarding the timings of each respondent’s environment creation

process, the results have been simplified in order to display them as part of this thesis.

Firstly, each respondent was categorised based on their answers to the classification

questions at the beginning of the survey, this allows for a meaningful comparison and

differentiation between respondents.

 Category A - Three respondents using IaC tools on in-house infrastructure

 Category B - Three respondents using IaC tools on public cloud infrastructure

 Category C - Three respondents not using IaC tools on in-house infrastructure

 Category D - Two respondents not using IaC tools on public cloud

infrastructure

135

Secondly, the midpoint of the timings provided by each respondent for each step in

their organisation’s environment creation process was extracted, i.e. if a respondent

stated that the provisioning step in their process took 10 - 30 minutes, then the value

extracted is 15 minutes, similarly, if a respondent stated that the deployment of their

application and database code base step took 4 - 8 hours then the value extracted is 6

hours or 21,600 minutes. Because of the difference in the amount of respondents in

each of the above categories, the results had to be simplified again by finding the

median average of each timing in each category. The resul ts plotted out in Figure 35

show a clear comparison between categories which suggest that Category B, those

utilising infrastructure as code tools alongside public cloud, alongside Category A,

those utilising infrastructure as code tools in-house both have a dramatically lower

environment creation time compared to the other respondent categories.

Category A respondents are over 13 times more efficient than Category C respondents

and over 29 times more efficient than Category D respondents. While Category B

respondents are over twice as efficient as respondents in Category A and several

magnitudes more efficient than respondents from Category C and Category D. The

timespan an environment is actively used for before being destroyed is an important

metric derived from the survey results.

Figure 35: Respondent Category Timing Comparison

A B C D

Minutes 105 30 1440 3120

0

500

1000

1500

2000

2500

3000

3500

M
in

u
te

s

Respondant Category Timing Comparison

136

The majority of Category A and Category B respondents stated that their

environments are used for a maximum of one year before being destroyed, whereas,

the majority of Category C and Category D respondents stated that their environments

are active for at least a year before being destroyed.

The number of servers that comprise a test environment in the respondent’s

organisation is another important metric, it should be mentioned that, like the case

study organisation, all respondents in Category B declared that their test environments

consist of a single server. However, at least one respondent from all other categories

declared that over ten servers comprise a single test environment in their organisation,

which may explain why the average environment creation time is several magnitudes

higher than those in Category B. While the above is a major variable to take into

consideration when assessing the viability of Figure 35, an undisputable factor

relating to efficiency and cost savings in the environment creation process was

revealed by the survey results. This factor is the amount of staff members involved in

the respondents environment creation process. Figure 36 outlines the average number

of staff members required to perform tasks in the environment creation process acro ss

each category of respondents.

Category B respondents require only a single person to perform tasks which are

largely automated by IaC tools and public cloud infrastructure.

Figure 36: Staff involved in environment creation process

0

1

2

3

A B C D

Repondent Category

Staff involved in environment creation process

137

One can see that all other respondents involve no less than an average of two staff

members in their environment creation process.

4.4.5 Summary

The survey results main use in this body of work is to support or refute the

Creation/Recreation experiment results. From reading the above, one can see that the

survey results corroborate the results obtained from the Creation/Recreation

experiment. These results show how the proper use of IaC tools and public cloud

infrastructure can lead to a highly efficient environment creation process when

compared with those not using IaC and/or public cloud infrastructure . For the intents

and purposes of this body of work, the survey results are an adequate compliment to

the Creation/Recreation experiment results.

4.5 Review of Results

This section provides an in-depth review and discussion of the results presented in

the above sections in order to provide a meaningful interpretation of the data and its

impact in the field of study. Throughout this section, context for certain phenomena

outlined but not explained in the above results sections is provided. To ensure as much

of a logical flow as possible, this section reviews and discusses the results in the same

order that they were presented in above.

4.5.1 Review of Creation/Recreation Experiment Results

The results of the Creation/Recreation experiment are reviewed and discussed in this

section, covering each section that merits discussion in the order they were presented.

 Review of Overall Process Comparison Results

The overall comparison between the manual and automated processes are presented

in section 4.2.3.1 of this thesis. The data outlined in this section demonstrates the

138

efficiency capabilities that these technologies can provide to an organisation when

they are implemented correctly. Figure 23 is the best method of visualizing the

difference in timings between the two processes. It shows that, when the processes

are compared, the automated process is 360% faster than the manual process. The data

this figure illustrates is an adequate means for answering the research question inside

of the context of the organisation the framework was implemented in.

A valid question arises when examining Figure 23 one pertaining to the

generalizability of the manual process timings in the context of the wider audience.

It could be argued that the case study organisation had an extremely inefficient

environment creation process and the automated timing comparison is intentionally

providing a false equivalency to bolster the efficacy of the framework. However, the

survey results presented in section 4.4.4 show that organisations not utilizing IaC

tools take, on average, relatively the same time to create environments through their

manual processes. The results of the survey questionnaire carried out as part of this

study also show that organisations that have implemented IaC tools have a far more

streamlined environment creation process than that achieved in the case study via the

automated framework. To further this point, external industry -based surveys detailed

in sections 2.1.3 and 2.3.1 of the Background and Literature Review chapter also

present data suggesting that faster access to infrastructure and faster configuration

workflows are two of the most cited benefits of implementing IaaS and IaC tools

(RightScale, 2014) (RightScale, 2015) (Forrester, 2015). Therefore, from the above,

one can conclude that the comparison between the overall manual and automated

processes is indeed valid, and that similar results could be obtained if the framework

was to be implemented in an organisation that was not currently utilizing IaC tools or

IaaS.

 Review of Individual Task Comparison Results

The individual task comparison between the manual and automated processes is

presented in section 4.2.4.2. Figure 24 visualizes varying discrepancies between the

timings in the automated and manual processes, all tasks are faster when run under

the automated system, but some outrank others by several magnitudes in terms of

speed. Figure 25 presents the proportion of time taken for each task in the manual

139

process and Figure 26 presents the proportion of time taken for each task in the

automated process.

From examining the data presented in this section, one can see that the Provisioning

Tasks and Server Configuration tasks perform the best under the automated system .

This is because these tasks are comprised almost entirely of the automated

modification of simple IaC and configuration management scripts and the execution

of them in order to create and configure the new resources in AWS. When these tasks

are performed manually, it becomes drastically more time-consuming not because of

the complexity involved, or level of skill required to perform these tasks, but simply

because a human cannot carry these tasks out as fast as the scripts can. One would

need to login to the AWS web portal, navigate to the appropriate sections of the UI,

then create and tag each of these numerous resources by hand and verify that they

have been created and tagged properly. Whereas, Terraform does all of this is the span

of seconds, as opposed to minutes. Similarly, it would be impossible for a human to

login to a cloud-based instance via RDP and perform all the server configuration by

hand faster than a Puppet script. Puppet reduces the time taken for this server

configuration by several magnitudes. By utilizing the full power of the AWS API

through Terraform and the configuration management potential of Puppet, all actions

performed in these tasks under the automated system are run instantaneously.

This is not quite the case for the tasks performed in the Domain Operations section,

which is why these tasks do not perform as well under the automated system when

compared to the Provisioning Tasks or the Server Configuration tasks. The Domain

Operations task involves wait periods where the framework itself is not performing

any operation other than polling the new instance for connectivity. The new instance

firstly needs to perform its initial boot after it has been created; once reachable, the

new server is renamed and added into the organisations domain. These operations

require the new server to go through an initial boot of the operating system, followed

by two subsequent reboots, all of which take a relatively large amount of time to

perform. The time taken for the new server to boot for the first time and to reboot

following the rename and addition to the domain takes up the largest portion of time

in the Domain Operations task under the automated system. Once these operations are

complete, a synchronization of the domain controllers within the Active Directory

forest is performed, this is performed in order for the rename and addition of the new

instance to register across the organisation’s network. This synchronization only takes

140

a few seconds to perform, but verifying this synchronization takes about three minutes

due the amount of domain controllers in the network, increasing the overall time spent

waiting in this task. All of the above means that, the bulk of the time allocated to

performing the Domain Operations task in the automated s ystem is actually spent

waiting for the instance to become available when booting from a shutdown state and

waiting for the domain controllers to be synchronized. The reason why the automated

system can handle this task more efficiently than the manual process is because the

scripts poll the new instance for connectivity at short, regular intervals and the

automation continues to run the moment the instance is available.

Outlier instances that were quicker to boot than the average brought down the average

time taken to perform the Domain Operations task in the automated system, these

outlier instances were polled regularly by the automated system and were configured

immediately after they became available. The researcher argues that, these outliers

saved minutes on each environment as the human actor who knows that it takes an

average of thirty minutes for an instance to be available after it is created and another

five minutes to become available in subsequent reboots will not want to waste their

time trying to connect to an instance that may not currently be available, and will

more than likely wait over the average thirty minutes for an instance to finish its

initial boot and wait over the average five minutes for subsequent reboots to take

place before attempting to carry on with their tasks.

The time spans in the boot and reboot times of these instances can be attributed to the

type of operating system running on them and the amount and size of disk drives

attached to them. The operating system used in the case study organisation for test

environments was Windows Server 2012 R2 with four disk drives attached, which

reached a combined total of 250GB of disk space. In a study performed by Mao and

Humphrey on the performance of various virtual machines boot t imes on different

IaaS platforms, Linux servers performed far faster than Windows servers of the same

specifications when boot times were compared against AWS infrastructure (Mao &

Humphrey, 2012). This study also outlined the increase in initial boot times when

more disk space has been allocated for the instance being provisioned (Mao &

Humphrey, 2012). Therefore, one could argue that, if the case study organisation had

opted to use Linux-based operating systems with a single, small disk drive attached

for their test environments, then the time spent waiting for the server to become

available following creation and subsequent reboots could be brought to a minimum.

141

It is of the opinion of the researcher that, the time spent performing the Domain

Operations tasks in the automated system could theoretically be brought to the same

performance standard as those in the Provisioning Tasks or Server Configuration tasks

if more efficient AWS resources were used in place of Windows servers with large

disk drives attached. This is a hypothesis in this paper and this current body of work

has no metrics to back this claim up in an industry-based setting.

The lowest performing task in the automated system when compared with the manual

process is the Deployment of Codebase task. This can be attributed to the fact that the

scripts that run in this section are calling existing deployment processes that are

configured on the TeamCity build server. Meaning that, the limitation on efficiency

in this task is benchmarked by pre-existing deployment processes, if these deployment

processes take an hour when executed manually, then they will take an hour when

executed through the automated process. The reason the automated framework

handles this task significantly faster than the manual process is because of the volume

of deployment processes that require to be executed. Another significant factor here

is the specific order in which the codebase requires to be deployed. At the time of

writing, the Deployment of Codebase task consists of the execution of 174 existing

deployment processes. Similar to the time savings in the Provisioning Tasks and

Server Configuration tasks, the Deployment of Codebase task is made faster by the

automated system because a human is unable login to the TeamCity build server web

portal, locate each of these deployment processes and execute them with the correct

parameters as fast as the scripts in the framework do. Simil ar to the discussion on the

Domain Operations task in the above section, in the manual process, the human user

would need to execute each deployment process in a specific order and wait for it to

complete before kicking off the next deployment process. The automated process

handles all of this through code which polls for the completion of each deployment

process before executing its dependent deployment processes. This ordering is

specific to the case study organisation, as their legacy systems are tightly coupled.

Their requirement was that certain database code needs to be deployed prior to the

code of applications and services which utilize those databases. Taking the above in

account, the time savings outlined in this comparison may not be generalizable to the

wider audience of software engineering organisations, those with loosely coupled

systems may not be bound by this specific constraint as, theoretically, they could

deploy all of their systems codebase at one time, in no specific order. If this was the

142

scenario for the case study organisation, then it is the opinion of the researcher that

the results would be different for this specific task and only a slight efficiency benefit

would be found when performing this task through the automated framework.

Proportionally, the time taken to execute the Deployment of Codebase task in the

automated process almost doubled. This is because the bulk of the time allocated to

this task in the both the manual and the automated processes is spent waiting for the

completion of existing deployment processes in the TeamCity build server. Therefore,

the real time spent performing this task in the automated system did not rise, but the

time taken for other tasks in the overall automated process dropped by several

magnitudes and the time spent on the Deployment of Codebase task did not, this

caused the overall proportion of time spent on this task in the automated process to

increase dramatically. The same effect can be seen for the External DNS Creation

task, which remained to be the only static manual task in the process. This task had

to be completed manually for each new environment to be created native to AWS

infrastructure, therefore, the real time spent on this task for environments built via

the framework did not increase or decrease, but, because of the overall savings in time

across the process as a whole, the proportion of time spent on this task in the

automated timings data set increased considerably.

 Review of Effort Comparison Results

The effort overhead involved in both the manual and automated processes are an

invaluable metric presented in this study. It was mentioned in section 4.2.3.4 that all

tasks in the manual process can be said to have an effort overhead of 100% as they

are carried out in a completely manual fashion, requiring the full attention of the

human performing them. The name of the automated data set would imply that all

tasks were automated and the effort overhead is null, however, it was impossible to

automate the External DNS Creation task via IaC tools as no API was made available

by the DNS provider the case study organisation was subscribed to at the time.

Therefore, this element of static manual work remained for all new environments

created native to public cloud infrastructure throughout the course of the case study.

The effort overhead of performing the manual External DNS Creation is added to by

the Troubleshooting task. Due to the fact that the framework is error prone, a manual

143

troubleshooting time needed to be allotted to the majority of environments built via

the automated process.

While there is still a proportional decrease of 96% in effort overhead when using the

automated framework, this still accounts for almost an hour of work, on average per

environment. Taking into account that 39 environments were built via the framework,

and the average work week is 40 hours, one can arrive at the conclusion that almost a

full working week of manual effort for a single staff member was put into the building

of all of these environments in AWS via the automated framework. Opinions may

vary on how acceptable this level of overhead is in terms of effort, especially when

factored with the error prone nature of the framework. For instance, the case study

organisation no longer creates environments through the manual method, and, at the

time of writing, it is actively using the framework as it is several magnitudes faster

than their previous manual method. However, in the survey results, respondents from

Category B, those utilizing IaC tools and public cloud infrastructure, stated that they

can provision, configure and deploy to a new test environment, on average, in the

space of 30 minutes. Similarly, respondents from Category A, those utilizing IaC tools

on in-house infrastructure, stated that they can perform the same operations, on

average, in the span of 105 minutes.

One can see that the use of IaC tools and IaaS has allowed for an impressive

proportional decrease in time and effort overheads for the case study organisation,

however, cross referencing the data from the case study with the data from the survey,

it is apparent that the survey respondents from Category A and Category B have a far

more streamlined and efficient environment creation processes by their own

implementation of IaC tools when compared with automated framework implemented

in the case study organisation.

 Review of Error Tendency Results

The causes of, and remediation to the errors in the framework execution were recorded

by the researcher but were not presented in the Results chapter as they were

encountered sporadically and followed no discernible pattern on which preventative

code could have put into place to stop them from recurring. What is meant by this is

that the causes of failures were either networking related or caused by the errors in

144

the case study organisations codebase which failed to deploy correctly to the new

environment.

Networking issues encapsulates all communication or authentication problems

between any of the components in the framework. These components are detailed in

the Framework Architecture section at 3.2. If any one of the numerous transactions

between the components in the framework failed then the framework itself would

throw an error and stop. Therefore, if any internal or external server, web service or

API could not be contacted at any time during the framework execution then the

framework would fail, and a networking issue is said to have caused this failure. What

follows are examples of these networking issues which did occur at least once on

framework execution and subsequently caused the framework to throw an error.

1. A timeout in establishing a connection from the TeamCity server to the VCS

server.

2. A dropped connection from the TeamCity server to the VCS server.

3. A malfunction in the Active Directory domain controller that the TeamCity

server utilizes which caused an issue authenticating the TeamCity service user

to the VCS server.

4. The TeamCity server service stopped unexpectedly.

5. A system reachability test failed in AWS when building a new instance.

6. Adding the new instance to the Active Directory domain failed as there was

already a server with the same name in the domain.

The first four of above the issues caused problems to other departments within the

organisation and had to be investigated and resolved by the infrastructure department

which deals with all networking issues for the organisation. Once these issues were

resolved, the framework was simply executed from its initial point of failure. The last

two issues outlined above were remediated by destroying the instance being built, and

recreating it with different parameters. This covers the networking issues, which

account for only a small proportion of errors encountered in runs of framework, the

main cause of errors pertained to issues with the organisations Application and

Database codebase and is discussed in the following section.

145

When the Deployment Build is executed, all of the organisation’s Application and

Database code is compiled and deployed to the new instance. This step in the process

is the most likely portion of the framework to throw an erro r, this is because the

Deployment Build is dependent on 174 individual codebases to be in a stable state,

and to be compatible with a new environment at the time the build is executed. The

compilation of these codebases failed occasionally and a fix needed to be put in place

by a developer for the framework to deploy it correctly. But application and service

compilation failures do not represent the majority of deployment errors, rather, the

deployment of the database code caused the majority of errors.

The researcher noted that, the bulk of changes made to the database code which caused

errors to be thrown on deployment to new AWS environments were actively being

deployed elsewhere. Meaning that, the changes put into the database codebase were

deployed successfully to existing environments that developers were already using,

but not deployed successfully to new environments that contained no previous data.

The cause being that, developers were making changes to database code which

contained references to existing entries in the database that their code required to be

present if a deployment was to be successful. In most cases, it was found that these

entries were typically manually entered into existing test environments that were

actively being used. As these entries were not present on new environments, the

deployment of the database code failed and the error was communicated to the

developer who made the breaking change so they could resolve the issue. The fix was

usually a block of code at the beginning of the failing script that checks for the data

that is being referenced, if it is not found, the script creates it in order to continue

without error. Once the fix was made, the framework was executed from its previous

point of failure. The above description of the database deployment errors may not be

clear to those with little experience in the software engineering or database

administration field, but to those with this experience, the above should read as a

standard software development issue which is regularly encountered in the field,

especially when multiple and parallel streams of development are taking place across

large applications and databases.

In summary, the overall cause of errors encountered by the framework were not to do

with the code the framework is made from or issues with the framework itself. The

errors were mainly pertaining to the infrastructure the framework is built on and

communicates with, alongside the sheer volume of external code that it compiles and

146

deploys to new environments. Whether or not these results are generalizable to other

organisations depends entirely on the volume and stability of the codebase for their

specific systems.

4.5.2 Review of Secondary Experiment Results

The results of the secondary experiments carried out as part of this thesis are presented

in sections 4.3.2 and 4.3.4. The results of these experiments demonstrate the

difference in execution times and possible efficiency benefits and drawbacks when

parameters supplied to the framework are modified in a controlled manner.

 Review of Instance Type Experiment Results

The execution timings of the framework vary according to the compute power of the

environment it is instructed to create. The expected result from this experiment was

that the instances that are allocated more compute power will be provisioned,

configured and deployed to faster than instances with less allocated compute power,

this expectation was proven by this experiment. Figure 31 illustrates this comparison

in the context of the process as a whole, it shows that environments of the t2.medium

instance type takes by far the longest to create via the framework. Environments of

the baseline instance type, the t2.large, follow closely behind environments of the

t2.medium instance type, being created 3.6% faster. An interesting point to note here

is that environments of the t2.xlarge instance type are built 23.5% faster than their

t2.large equivalents, a great deal faster than the difference between the t2.medium and

t2.large instance types. While this proves that environments of higher compute power

are built faster by the framework, this large gap in execution times between instance

types merits review and discussion. Figure 32 shows the execution timings for each

build in the framework by instance type. The main gains in efficiency stem from the

Deployment of Codebase task. From examining the build logs for this task across each

framework execution in this experiment, the researcher observed that the 79 services

that are deployed and installed as part of this task installed and were able to start far

faster on environments set to the t2.xlarge instance type. The 60 databases that were

built against the t2.xlarge environments also built significantly faster than the t2.large

and t2.medium equivalents. This non-linear discrepancy in timing data may be

147

attributed to the type of resource the framework consumes when it is executing and

t2.xlarge instance type having more of that resource than the other two instance types

in this experiment, this is covered in the section that follows.

The instance types chosen for this experiment all belong to the t2 instance type family

as the baseline instance type for the Creation/Recreation experiments was the t2.large

instance type, it was desired to choose instances from the same family of lower and

higher compute power for this specific experiment in order to ensure uniformity in

the results throughout each experiment. Take into account that the compute power of

instances in AWS are offered at pre-defined specifications, AWS offer no service

whereby instances of client defined compute power can be created (Amazon, 2017).

Referring back to Table 11, one can see that the differences in compute power between

these instance types do not follow a completely linear pattern, the RAM assigned to

each instance type increases in regular increments, beginning at 4GB for the

t2.medium, the t2.large instance type has twice the amount of RAM installed on it,

totalling at 8GB of RAM. This figure is doubled again for the t2.xlarge inst ance type

which has 16GB for the t2.xlarge. However, the amount of vCPUs allocated the

instance types chosen for this experiment do not increment in the same fashion. The

t2.medium and t2.large instance types both have two vCPUs allocated to them,

whereas the t2.xlarge instance type has four vCPUs allocated to it. This implies that

RAM may not be as important as a factor in framework efficiency as processing power

brought about through vCPU allocation. The results are skewed between instance type

comparison as a result of this as the t2.medium and t2.large instance type have the

same amount of vCPUs allocated to them. The reason the t2.medium instance type

was included in this experiment is because it is the only instance type in the t2 family

with 4GB of RAM allocated to it. Which is half the RAM as the baseline t2.large

instance type. The t2.medium instance type was the only available instance type which

was closest to half the compute power of the t2.large instance type at the time

(Amazon, 2017). The results of this experiment indicate that the increased amount of

vCPUs allocated to the t2.xlarge instance type are responsible for the discrepancy in

framework execution timing between the instance types in this experiment.

The Instance Type experiment demonstrates how the framework behaves when the

instance type variable is modified. The results demonstrate how environments of

higher compute power can be provisioned, configured and deployed to faster than

environments of lower power. These results also demonstrate the importance of the

148

vCPU specification when building environments via the framework , allowing

environments to be created far faster relative to the amount of vCPUs dedicated to the

instance.

 Review of Storage Capacity Experiment Results

The execution timings of the framework differ when the storage allocated to the

environment being provisioned is modified. It was expected from this experiment that

the framework would be capable of provisioning, configuring and deploying to

environments with less storage capacity allocated to them than environments with

higher storage capacity allocated to them. This result was expected in part from results

obtained from Mao and Humphrey’s study which indicate that AWS EC2 instances

with less storage attached boot faster than instances with more storage attached (Mao

& Humphrey, 2012). The results plotted in Figure 33 do show that instances built

from the Low Capacity AMI are completed far faster than AMIs with higher storage

capacity associated with them. However, they also show a non -linear pattern whereby

instances built from the Baseline AMI appear to take the most amount of time while

instances built from the High Capacity AMI take range in the middle of the Low

Capacity AMI and High Capacity AMI.

From examining the results plotted in Figure 34, one can see that the bulk of the

Provisioning Tasks, Domain Operations and Troubleshooting times for all three AMIs

in this experiment are relatively the same when variables such as the shared tenancy

of the TeamCity server and network latency are taken into account. The Server

Configuration tasks timings increment according to how much storage is allocated to

the instance, starting at 60.38 minutes for the Low Capacity AMI, incrementing by

8.95% to reach 65.78 minutes for the Baseline AMI, then incrementing a further

14.34% to 75.23 minutes for the High Capacity AMI. The difference in timings for

this specific task pales in comparison to the difference in the Deployment of Codebase

task. The Deployment of Codebase task took the shortest amount of time for the Low

Capacity AMI, totalling at 182.20 minutes, this increased by 37.97% to reach 251.39

minutes for the Baseline AMI, from there, it decreased by 24.99% at 188.55 minutes

for the High Storage AMI. Taking into account the results of the Instance Type

experiment, where the timings for the environment being built by the framework

decreased in time depending on how much compute power was allocated to the

149

instance it was building, one would expect to either see a similar pattern in the this

experiment or no difference at all considering each instance was of equal compute

power at the t2.large specification.

The results of this experiment were unexpected as the researcher had full control over

storage allocated to each AMI. This experiment is unlike the Instance Type

experiment where explainable discrepancies in timing data arose from the non-

customisable nature of instance compute power specification in AWS. The storage

type used in each of the framework executions in the Storage Capacity e xperiment

was identical, all storage devices were AWS PVDISK SCSI hard disk drives . The

storage allocated to each AMI was modified in a controlled manner as described in

section 4.3.3. The causes of the non-linear distribution of average timings in this

experiment are not known, specific sets of data for each of the framework executions

in this experiment were analysed yet no concrete cause could be found.

4.5.3 Review of Survey Results

The results of the survey questionnaire have been cross refer enced in the above

sections to corroborate the Creation/Recreation experiment results, but have not yet

been discussed individually. This section details a review and discussion o f the survey

results in order to provide a meaningful interpretation of them. For the sake of clarity,

a brief description of the respondent categories follows as these categories are

referenced several times in the section that follows:

 Category A - Respondents using IaC tools on in-house infrastructure

 Category B - Respondents using IaC tools on public cloud infrastructure

 Category C - Respondents not using IaC tools on in-house infrastructure

 Category D - Respondents not using IaC tools on public cloud infrastructure

The survey results are presented in section 4.4, the main finding outlined in this

section is that Category B respondents have, on average, the most efficient

environment creation process when compared with all other categories of respondents.

One can see this data visualized in Figure 35. This chart also shows that Category A

respondents also have a relatively short environment creation process, but is still over

150

three times as long as those from Category B. However, these results were expected,

and they do not refute any preconceived notions about the efficiency capabilities of

IaC running on in-house infrastructure and IaC coupled with IaaS. A result that was

not expected was discrepancy in timing data retrieved from Category C and Category

D respondents. From reading the Background and Literature Review chapter and

reviewing the results from the Recreation/Creation experiment, one would expect that

Category D respondents would have a far more efficient environment creation process

than Category C respondents. As using in-house server infrastructure with no

automated IaC tools would indicate that these respondents should have the longest

environment creation process of all respondents. Whereas, the survey results reveal

that Category C respondents have the longest environment creation proces s times than

all other respondent categories. The raw data obtained from the survey itself does not

provide any discernible pattern of variables that could be used to explain this

unexpected result.

As previously stated in section 4.2.4.2, each respondent entered the approximate

timespan their test environments are actively used for before being destroyed. The

majority of Category A and Category B respondents stated that their environments are

used for a maximum of one year before being destroyed, whereas, the majority of

Category C and Category D respondents stated that their environments are active for

at least a year before being destroyed. This metric merits reit eration and discussion

as it pertains to an issue previously described in section 2.4 in the Background and

Literature Review chapter. The longer an environment is left active, the more it

changes and diverges from how it was originally built. An issue known as

configuration drift; the ability to confidently destroy and efficiency create

environments from IaC scripts ensures that environments are always in a uniform and

reproducible state and can stop the effects of configuration drift (Morris, 2016). A

suggestion from this data is that the use of IaC tools allows for the adopting

organisation to prevent the issue of configuration drift from growing to unmanageable

levels by regularly destroying their existing environments and creating new

environments in their place. While the respondents were never asked about

configuration drift or it’s symptoms in their test environments, the results i mply that

Category A and Category B respondents destroy their environments so regularly that

any significant configuration drift is not allowed to occur. By cross referencing the

timings provided by each respondent category with the average lifespan of the ir

151

environments, it can be implied that the process of creating new environments from a

known state is a relatively common and quick task to complete for respondents using

IaC tools, and more so for those using a combination of IaC tools and IaaS. While th e

opposite can be suggested for respondents not using IaC tools, who have a

significantly more time consuming environment creation process. These efficiency

comparisons have mainly been drawn between timing data thus far, and have

neglected to mention the amount of staff members involved.

The amount of staff members involved in the environment creation process directly

impacts the cost of the entire process and the involved staff members work. This data

for each respondent category is presented in Figure 36. From this chart, one can see

that respondents utilising a combination of IaC tools and IaaS involve, on average, a

single staff member in their environment creation process, while all other categories

involve at least two, and at most three. The following hypothetical scenarios aim to

provide the reader with a proper grasp on how the use of IaC tools and the amount of

staff members involved in the process impacts the overall cost of the process:

 Scenario A: A single staff member executes interlinked IaC scripts that run for

four hours in order to provision, configure and deploy to an environment.

 Scenario B: Two staff members manually carry out tasks simultaneously th at

take four hours to provision, configure and deploy to an environment.

In Scenario A, the effort overhead and cost overhead in terms of work hours is

minimal, as the staff member is just executing an automated process and carrying on

with their other work while the job is executing. The only real work the single staff

member needs to perform is monitoring for, and possibly troubleshooting, errors that

may occur during the execution of the IaC scripts.

However, in Scenario B, the absence of IaC automation causes the effort and cost

overhead for the entire process to become several times that of Scenario A, as the two

staff members involved are required to dedicate four hours of their time to creating

the environment while ignoring all other work. Essentially, Scenario B is taking a full

working day in terms of work hours, as two staff members are required to put in four

hours of work each and the time taken in work hours is twice what it would be if a

single staff member was performing these tasks. While Scenario A can take as little

as a few minutes of real work hours to perform, assuming no errors occur in the

152

execution of the IaC scripts. These are purely hypothetical scenarios, and offer only

anecdotal evidence based on the researcher’s own experience, th is current body of

work has no metrics to prove how these specific types of situations occur in practice.

However, the categorized and aggregated data obtained from the survey does reveal

clear patterns. One conclusion that can be derived from the results is that the

combined use of IaC tools and IaaS is associated with a highly efficiency environment

creation process. One can also see from the survey results that the use of IaC tools on

in-house infrastructure is also associated with a slightly less efficient environment

creation process than those using a combination of IaC and IaaS. The last inference

from the survey data is that, regardless of the use of IaaS or in -house infrastructure,

those who do not use IaC tend to have the most time consuming environment creation

process.

4.6 Limitations

This thesis is focused on the relationship between the use of public cloud computing

and associated automation technologies, namely IaC and configuration management

tools. Technologies outside of the remit outlined above are out of the scope of any

conclusions to be derived from this research. Results and conc lusions that arise from

the undertaking of industry-based research are inherently only truly applicable to the

specific context in which that research takes place (Costely & Armsby, 2007). Taking

the above into account, one of the most important limitations of the results from the

case study, implementation of the automated framework within the case study

organisation and subsequent experiments are their poten tial lack of external validity.

Meaning that, the case study, implementation and experiments all took place within a

specific organisation, any conclusions derived from these results are specific to that

organisation and may only have limited viability to the wider community, the

researcher recommends that others should not flippantly use these results and

conclusions to generalise the wider community as a whole.

The case study, framework implementation and experiments all took place within a

small to medium sized software solutions enterprise based in the Republic of Ireland,

this organisation had been active for twenty years at the time of writing. Although the

physical location of the organisation may be of little importance in this section, it

153

does merit inclusion here if the results of this research are put under severe scrutiny.

The size and age of the organisation should be important limiting factors when

examining the conclusions from this research as both the size and age of an

organisation are indicators of that organisations likelihood to support their own legacy

systems. These legacy systems may be built upon monolithic architecture and be

comprised of deprecated technologies, these types of systems have been documented

as obstacles when moving to the cloud (Menychtas, et al., 2013). This is opposed to

a recently founded organisation with modern and versatile systems that may have been

created with modern platforms such as the cloud in mind, therefore migration of these

newer systems may be a very easy task.

Across all experiments conducted as part of this thesis, the uncontrolled variables

described in section 4.1.4.2 should also be considered as being limitations. Variables

such as network latency and shared tenancy of system hardware and software were

uncontrollable in this thesis as the research itself took place in an industry setting as

opposed to a hypothetical laboratory scenario. These variables were unmeasurable

and must be taken into account when interpreting the results of the experiments. While

these variables may have had an impact on the final results set for each experiment

carried out as part of this thesis, i t should also be mentioned that the value of industry

based research and the results obtained from it can show a valuable, real-world results

that a would be impossible to simulate in devised scenarios (Costely & Armsby,

2007).

A limitation specific to the Creation/Recreation experiment is t he manual timings

dataset which was derived from the semi-structured interviews with staff members.

The timings retrieved from the interviewees were taken during each interview,

requesting this level of detail for each specific task from each interviewee at a single

time introduces the possibility of error on the interviewee’s part. It should be

mentioned here that each timing is an estimate from a single source who was put in

an interview situation with very little prior knowledge of the questions that were to

be asked. That being said, all interviewees were given an open invitation to make

further contact with the researcher if they felt that they had any corrections to the

answers they gave in their respective interviews, no follow up interactions between

interviewees and the researcher ever occurred, so one must assume that the

information derived from the interviews is correct.

154

There are also limitations specific to the secondary experiments carried out as part of

this thesis. In the Instance Type experiment, it was desired to test the framework under

conditions where it built environments under the following specifications .

1. The same compute power used in the Creation/Recreation experiment which acts

as a baseline.

2. Half the compute power of the baseline

3. Double the compute power of the baseline

It was planned that the above would provide a linearly decreasing scale of timing data

starting. The highest being obtained from environments built with half the compute

power of the baseline, the mid-point being the baseline compute power specification

and the lowest timing data from environments built from the double the compute

power of the baseline. However, for reasons explained in sections 4.3.1 and 4.5.2.1,

it was not possible to select compute power specifications for environments that

entirely satisfied the above requirements and the researcher was forced to use instance

types which increased non-linearly in allocated vCPUs. In turn, this choice caused the

results to be skewed in favour of the instance type with the most vCPUs allocated to

it. While this should be included as a limitation, this experiment did prove that the

expected result would be found, in that, the more compute power allocated to an

environment, the faster the framework can build it, it also provided an interesting

explanation for the results obtained from carrying out this experiment. This result

may provide a useful base of information to those wishing to carry out performance

testing across instance types in AWS.

A limitation specific to the Storage Capacity Experiment resides in its resu lts and the

failure on the researchers part to explain the phenomena that occurred which skewed

the results sets presented in section 4.3.4. As with the above limitation for the Instance

Type experiment, the results from the Storage Capacity experiment did prove that the

expected result would be found, in that, the framework can build environments with

less storage allocated to them faster than environments with more storage allocated

to them. However, the non-linear fluctuations in timing data obtained from the

framework building the different AMIs used in this experiment are its main limitation.

Environments from both the Low Capacity AMIs and High Capacity AMIs were built

far faster than the Baseline AMI. This result was not expected and due to time and

155

resource constraints, the results could not be investigated to any rea l scientific degree,

leaving room for future research in this area.

156

Chapter 5. Conclusions and Future Work

This final chapter aims to provide the reader with a discussion of the thesis,

recommendations for future research and ends with general conclusions reached by

this thesis.

5.1 Discussion

The aims of this research were to develop and implement an automated framework

that allowed for a SME to migrate their colocation-based IT infrastructure to AWS’s

IaaS platform and gather metrics pertaining to the efficiency benefits of implementing

such a framework in an industry-based setting. It was also planned to prove the

generalisability of these efficiency benefits in the context of the wider audience of

SMEs.

These aims have been achieved in this thesis. When discussing the design and of the

framework itself, the state of the art in cloud migration frameworks in the Background

and Literature Review chapter should be mentioned as the basis for what has already

been created in the field and what the gaps of knowledge were present at the time.

The final deciding factors for the design of the framework were dependant on the

results from the industry-based case study, as the framework was not only required to

satisfy theoretical baselines of the academic world, but also provide real -world

functional value to an enterprise. The aim to design and devel op the framework has

been realised by the above.

The case study also allowed for the gathering of timings pertaining to the

organisations previous colocation-based environment creation process. The

Creation/Recreation experiment consisted of the organisati ons internal testing

environments being recreated on AWS’s IaaS by the framework, this experiment

allowed for the gathering of timing data relating to the frameworks execution time.

These two sets of timing data were compared to reveal that the overall pro cess of

building IT environments on the public cloud via the framework is 360% faster than

using the SME’s previous environment creation process. This satisfies the aim to

157

gather metrics pertaining to the efficiency benefits of implementing such an

automated framework.

In order to test the boundaries of the framework as much as possible, the secondary

experiments were carried out. These experiments test the framework under different

operating modes in order to demonstrate how the resources made available th rough

IaaS can affect the environment creation process under the framework. These

resources were compute power and storage capacity, the results of these experiments

show how an increase in compute power can have a clear effect on how quickly an

environment can be created and how a decrease in compute power can have a negative

effect, slowing down the environment creation process time. The storage capacity test

demonstrates how a lower amount of storage allocated to an environment causes the

environment to be built faster via the framework, whereas increasing the storage

allocated to the environment has the opposite effect, causing longer creation times.

One of the main limitations from the results of the case study and subsequent

experiments are their lack of external validity. The aim to prove the generalisability

of the above was achieved by performing the industry-based survey questionnaire.

The results of which corroborate the results obtained from the case study and

experiment in the context of the wider audience of software engineering SMEs based

in the Republic of Ireland. By comparing environment creation times between

respondents utilising public cloud or infrastructure as code technologies to

respondents not utilising either, the results show that public cloud and infrastructure

as code tools have staggering efficiency benefits to those who use them.

5.2 Conclusions and Research Implications

From a high level examination of the results as a whole, one can arrive at the

conclusion that the utilization of automated IaC tools, coupled with IaaS allow for a

dramatically more efficient IT environment creation process than that of a manual,

in-house equivalent. The case study and experimental results answer the research

question adequately in the context of the specific organisation the case study and

experiments were carried out in. While the survey results corroborate these findings

by demonstrating how other organisations using automated IaC tools and IaaS have a

158

highly efficient environment creation process. The survey results can be used to

answer the research question outside of the context of the case study organisation.

The results presented in this thesis are novel as there has never been such a specific

type of study performed in the field to date that prove the real-world efficiency

capabilities of implementing an automated system comprising of IaC tools and public

cloud infrastructure. The researcher argues that the previously cited studies by

Jamshidi et al., Hay et al., Mateescu et al. and Khajeh-Hosseini et al. can be used to

highlight the lack of research in this particular area and the need for an industry-based

study outlining the design and proving the benefits of implementing public cloud and

infrastructure as code technologies in practise (Jamshidi, et al., 2013) (Hay, 2011)

(Mateescu, et al., 2014) (Khajeh-Hosseini, et al., 2010).

Throughout the Literature Review chapter of this document, several surveys and

articles are cited that make claim to the benefits of IaC and cloud computing,

efficiency in the area of provisioning new IT infrastructure being key among them,

the results presented in this study support the results of other stu dies cited in this

thesis, at least in the area of efficiency (RightScale, 2014) (RightScale, 2015)

(Forrester, 2015) (PuppetLabs, 2015) (Hashicorp, 2015) (Morris, 2016).

5.3 Recommendations for Future Research

Research carried out as part of this thesis included the development and

implementation of an automated framework comprised o f IaC and automation

software which recreated existing, and created new IT environments on Amazon’s

public cloud infrastructure. However, this source code was created specifically for

the case study organisation’s adoption and continued use of Amazon’s pub lic

infrastructure, generalising this code so it will function for other organisations, and

building environments on other CSP’s public cloud infrastructure was beyond the

scope of this project. Also, at the time of writing, this organisation is actively using

this framework and retains the rights to its source code. Therefore, the researcher’s

main recommendation for future research is the development, successful

implementation and open-source distribution of a unified, cloud-agnostic framework

which has the capabilities to migrate existing, and create new environments on any

CSP’s public cloud infrastructure. This primary recommendation is similar to that of

159

Jamshidi et al., who state that there is a requirement for an established framework

based around the migration of in-house infrastructure to the IaaS platform, and that

more research into this specific area is required (Jamshidi, et al., 2013). The

architecture of the automated framework which was created and utilized in the

experimental portion of this body of work is outlined in section 3.2 and the specific

technologies used in this implementation is outlined in section 0. It is hoped that this

architecture and specific technologies may be used by future researchers as a blueprint

for the development of the aforementioned unified framework.

The main focus of the case study and primary experiment was an efficiency

comparison in the environment creation process between a purely manual process,

performed on in-house infrastructure and an automated process comprised of IaC tools

performed on public cloud infrastructure. This study was the first of its kind, but was

highly focussed on the area of efficiency. Taking the above into account, several

questions pertaining to the potential benefits or drawbacks of implementing public

cloud infrastructure still remain, there is ample room for future research in the area

of comparative studies between the use of public cloud infrastructure and in-house

infrastructure. For example, future research in this area may include industry-based

studies targeting quantitative metrics such as the scalability potential or the monetary

effects associated with the utilization of IaaS over in-house infrastructure in a real-

world setting. In terms of qualitative future research, studies encompassing the effect

of adopting public cloud infrastructure on staff belonging to the organisation, and

clients of the organisation could potentially be carried out.

The survey questionnaire created and distributed as part of this thesis is of

questionable scientific value when examined in isolation from the case study and

primary experiment. The main limitations are its sample size and sample method,

which may be used to dispute the generalisability of the results obtained, these were

limiting factors due to time and resource constraints in this project. For future

surveys, the researcher recommends that a dedicated study is performed, one which

targets a specific and relatively small population. If this dedicated study were to take

place, the researcher carrying it out should consider the resources required to

distribute the survey to a representative base of willing respondents while utilising a

more adequate sampling method than the snowball sampling method chosen in this

body of work. Nevertheless, in future surveys pertaining to the ef ficiency capabilities

160

of public cloud infrastructure coupled with IaC tools, the results presented in this

thesis can act as a benchmark for expected results.

It is the opinion of the researcher that, all of the above recommendations for future

research are viable studies, which would potentially influence the collective

understanding of the relatively under researched field.

161

BIBLIOGRAPHY

Alexandrova, J., 2015. PowerShell. [Online]

Available at: https://confluence.jetbrains.com/display/TCD9/PowerShell

Alexandrova, J., 2016. Build Chain. [Online]

Available at: https://confluence.jetbrains.com/display/TCD10/Build+Chain

Alexandrova, J., 2016. Defining and Using Build Parameters in Build Configuration. [Online]

Available at:

https://confluence.jetbrains.com/display/TCD9/Defining+and+Using+Build+Parameters+in+

Build+Configuration

Amaral, J. N., 2011. About Computing Science Research Methodology, Alberta: University of

Alberta.

Amazon, 2002. Amazon.com Launches Web Services. [Online]

Available at: http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=irol-

newsArticle&ID=503034&highlight=

[Accessed 30 July 2015].

Amazon, 2013. Amazon EC2 Service Level Agreement. [Online]

Available at: https://aws.amazon.com/ec2/sla/

Amazon, 2015. Amazon. [Online]

Available at: https://aws.amazon.com/ec2/pricing/

[Accessed 1 December 2015].

Amazon, 2015. Amazon EBS Product Details. [Online]

Available at: https://aws.amazon.com/ebs/details/

[Accessed 2 December 2015].

Amazon, 2015. Amazon EC2. [Online]

Available at: https://aws.amazon.com/ec2/

Amazon, 2015. Amazon EC2 Instance Purchasing Options. [Online]

Available at: http://aws.amazon.com/ec2/purchasing-options/

Amazon, 2015. Amazon EC2 Instances. [Online]

Available at: https://aws.amazon.com/ec2/instance-types/

Amazon, 2015. Amazon EC2 Product Details. [Online]

Available at: https://aws.amazon.com/ec2/details/

Amazon, 2015. Using Cost Allocation Tags. [Online]

Available at: http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-

tags.html

Amazon, 2016. Amazon S3 Pricing. [Online]

Available at: https://aws.amazon.com/s3/pricing/

162

Amazon, 2016. Overview of Security Processes, s.l.: Amazon Web Services Ltd..

Amazon, 2017. Adding a Hardware Virtual Private Gateway to Your VPC. [Online]

Available at: http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_VPN.html

[Accessed 11 June 2017].

Amazon, 2017. Amazon EC2 Instance Types. [Online]

Available at: https://aws.amazon.com/ec2/instance-types/

[Accessed 12 June 2017].

Amazon, 2017. Security Groups for Your VPC. [Online]

Available at:

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

[Accessed 14 February 2017].

Antony, J., 2003. Fundamentals of Design of Experiments. In: Design of Experiments for

Engineers and Scientists. Edinburgh: Elsevier, pp. 8-16.

Arrington, M., 2006. Amazon: Grid Storage Web Service Launches. [Online]

Available at: http://techcrunch.com/2006/03/14/amazon-grid-storage-web-service-

launches/

[Accessed 21 February 2016].

AWS, 2010. Shrink an EBS - How ??. [Online]

Available at: https://forums.aws.amazon.com/message.jspa?messageID=177749

[Accessed 12 March 2016].

Azure, 2015. Azure Instance Pricing Calculator. [Online]

Available at: https://azure.microsoft.com/en-us/pricing/calculator/

Barr, J., 2006. Amazon EC2 Beta. [Online]

Available at: https://aws.amazon.com/blogs/aws/amazon_ec2_beta/

[Accessed 2 August 2015].

Benioff, M., 2009. Introduction. In: Behind the Cloud. San Francisco(California): Josset-Bass,

p. 17.

Bergmayr, A., Brunelière, H., Izquierdo, J. L. C. & J., G., 2013. Migrating Legacy Software to

the Cloud with ARTIST. 2013 17th European Conference on Software Maintenance and

Reengineering, Genova, IEEE, pp. 465-468.

Brikman, Y., 2017. Chapter 1. Why Terraform. In: Terraform: Up and Running. s.l.:O'Reilly

Media, Inc., pp. 5-20.

Burgess, M., 1993. Configuration Engine V2.0, Oslo: cfengine.com.

Burgess, M., 1998. Computer Immunology. Twelfth Systems Administration Conference (LISA

’98), Boston, USENIX.

Burgess, M., 2002. cfengine 2.0.0. [Online]

Available at: https://lists.gnu.org/archive/html/info-gnu/2002-03/msg00010.html

[Accessed 12 November 2016].

163

Certification Europe, 2015. What is ISO 27001. [Online]

Available at: http://certificationeurope.com/what-is-iso-27001/

CFEngine, 2014. The History of CFEngine. [Online]

Available at: https://auth.cfengine.com/the-history-of-cfengine

[Accessed 7 November 2015].

Chef, 2015. An Overview of Chef. [Online]

Available at: https://docs.chef.io/chef_overview.html

Cloud Security Alliance, 2011. Security Guidance for Critical Areas of Focus in Cloud

Computing V3.0, s.l.: Cloud Security Alliance.

Cloud Standards Customer Council, 2016. Cloud Security Standards: What to Expect & What

to Negotiate, s.l.: Cloud Standards Customer Council.

CloudHarmony, 2015. CloudSquare: Service Status. [Online]

Available at: https://cloudharmony.com/status-1year-of-compute-and-storage-and-dns-

group-by-regions-and-provider

Collins-Sussman, B., Fitzpatrick, B. W. & Pilato, C. M., 2011. Version Control with Subversion.

2nd ed. Chicago: Subversion.

Corbató, F. J., 1963. A Solution to Computer Bottlenecks. [Online]

Available at: https://www.youtube.com/watch?v=Q07PhW5sCEk&feature=related

[Accessed 4 July 2015].

Costely, C. & Armsby, P., 2007. Methodologies for undergraduates doing practitioner

investigations at work. Journal of Workplace Learning, 19(3), pp. 131-145.

Creasy, R. J., 1981. The Origin of the VM/370 Time-Sharing System. IBM Journal of Research

and Development, September.25(5).

Cremers, R., 2012. Everything you need to know about Windows Azure queue storage to

build disconnected and reliable systems. [Online]

Available at: http://robbincremers.me/2012/03/07/everything-you-need-to-know-about-

windows-azure-queue-storage-to-build-disconnected-and-reliable-systems-2/

Dadgar, A., 2014. Automating Infrastructure Management with Terraform. [Online]

Available at: https://www.youtube.com/watch?v=WdV4eYZO5Ao

[Accessed 18 October 2016].

Davis, D. & Lowe, S. D., 2015. 2015 State of Virtualization and Storage Management - Survey

Results, s.l.: ActualTech Media.

Dawoud, W., Takouna, I. & Meinel, C., 2010. Infrastructure as a service security: Challenges

and solutions. Informatics and Systems (INFOS), 2010 The 7th International Conference on,

Cairo, IEEE.

Demeyer, S., 2011. Research Methods in Computer Science, Antwerp: University of Antwerp.

Desmond, B., 2008. Active Directory. 4th ed. s.l.:O'Reilly Media.

164

DevIQ, 2017. Build Server. [Online]

Available at: http://deviq.com/build-server/

Duan, Y., Cao, Y. & Sun, X., 2015. Various “aaS” of everything as a service. 16th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), Takamatsu, IEEE, pp. 1-6.

Dyck, A., 2015. Towards Definitions for Release Engineering and DevOps. Florence,

IEEE/ACM, p. 3.

Etikan, I., 2016. Comparision of Snowball Sampling and Sequential Sampling Technique.

Biometrics & Biostatistics International Journal, 3(1), pp. 1,2.

F5 Networks, 2009. Trends in Enterprise Virtualization Technologies, s.l.: F5 Networks.

FedRAMP, 2015. FedRAMP Compliant Systems. [Online]

Available at: https://www.fedramp.gov/marketplace/compliant-systems/

FitzMacken, T., 2016. Azure Resource Manager overview. [Online]

Available at: https://azure.microsoft.com/en-us/documentation/articles/resource-group-

overview/

Forrester, 2015. Infrastructure As Code: Fueling The Fire For Faster Application Delivery, s.l.:

Forrester.

Frey, S. & Hasselbring, W., 2011. Model-Based Migration of Legacy Software Systems to

Scalable and Resource-Efficient Cloud-Based Applications: The CloudMIG Approach. Lisbon,

Portugal, Proceedings of the 1st International Conference on Cloud Computing, GRIDs, and

Virtualization, pp. 155-158.

Frost, 2015. SSAE 16 Overview. [Online]

Available at: http://www.frostssae16.com/overview/

[Accessed 23 November 2015].

Gartner, 2015. Gartner Says Worldwide Cloud Infrastructure-as-a-Service Spending to Grow

32.8 Percent in 2015. [Online]

Available at: http://www.gartner.com/newsroom/id/3055225

Gerla, T., 2013. Hello Ansible!. [Online]

Available at: http://www.ansible.com/blog/2013/03/04/hello-ansible

Gibson, J., Rondeau, R., Eveleigh, D. & Tan, Q., 2012. Benefits and challenges of three cloud

computing service models. Sao Carlos, IEEE, pp. 198 - 205.

Google, 2006. Google Announces Google Docs & Spreadsheets. [Online]

Available at: http://googlepress.blogspot.ie/2006/10/google-announces-google-

docs_11.html

Google, 2015. Adding Local SSDs. [Online]

Available at: https://cloud.google.com/compute/docs/disks/local-ssd

[Accessed 12 December 2015].

165

Google, 2015. Google Cloud Platform Instance Calculator. [Online]

Available at: https://cloud.google.com/products/calculator/

Google, 2015. Google Compute Engine Pricing. [Online]

Available at: https://cloud.google.com/compute/pricing

Google, 2015. Google Compute Engine Service Level Agreement (SLA). [Online]

Available at: https://cloud.google.com/compute/sla?hl=en

Google, 2015. Machine Types. [Online]

Available at: https://cloud.google.com/compute/docs/machine-types

Google, 2015. Networking and Firewalls. [Online]

Available at: https://cloud.google.com/compute/docs/networks-and-firewalls

Google, 2015. What is Google Compute Engine?. [Online]

Available at: https://cloud.google.com/compute/docs/

Gosnell, D. M., 2005. Anatomy of a Web API. In: Professional Web APIs : Google, eBay,

Amazon.com, MapPoint, FedEx. Hoboken(New Jersey): Wiley.

Gottlieb, A., 2012. The benefits of Colocation facilities for the Next-generation Enterprise

WAN. [Online]

Available at: http://www.networkworld.com/article/2223058/cisco-subnet/the-benefits-of-

colocation-facilities-for-the-next-generation-enterprise-wan.html

[Accessed 1 July 2017].

Graham, B., 2010. Continuum Research Methods : Case Study Research Methods. 1st ed.

London: Continuum.

Hashicorp, 2015. Mozilla uses Terraform and Atlas by Hashicorp to embrace infrastructure as

code, s.l.: Hashicorp.

Hashimoto, M., 2015. Mitchell Hashimoto on Consul, Terraform, Atlas, Go as a Language for

Tools [Interview] (3 June 2015).

Hay, B., 2011. Storm Clouds Rising: Security Challenges for IaaS Cloud Computing. Kauai, HI,

IEEE, pp. 1 - 7.

Hwang, J., Huang, Y. W., Vukovic, M. & Anerousis, N., 2015. Enterprise-scale cloud migration

orchestrator. Ottawa, IEEE, pp. 1002-1007.

IBM, 2015. VM History and Heritage. [Online]

Available at: http://www.vm.ibm.com/history/

IDG Enterprise, 2017. Tech Forecast Study 2017, s.l.: IDG Enterprise.

Instagram, 2012. What Powers Instagram: Hundreds of Instances, Dozens of Technologies.

[Online]

Available at: http://instagram-engineering.tumblr.com/post/13649370142/what-powers-

instagram-hundreds-of-instances

166

International Telecommunication Union, 2015. ICT Facts and Figures – The world in 2015,

Geneva: International Telecommunication Union.

Internet World Stats, 2017. World Internet Users and 2017 Population Stats. [Online]

Available at: http://www.internetworldstats.com/stats.htm

[Accessed 7 May 2017].

Irish Times, 2017. Top 1000 - Industry: Technology. [Online]

Available at: http://www.top1000.ie/industries/technology

ISO/IEC, 2014. ISO/IEC 27018:2014. [Online]

Available at: https://www.iso.org/obp/ui/#iso:std:61498:en

[Accessed 8 October 2015].

Jacob, A., 2012. Opscode Chef State of the Union Part 1: Chef, Past and Present. [Online]

Available at: https://www.youtube.com/watch?v=bAWjqE5FCxI

Jacob, S., 2009. How to Chain TFS Builds?. [Online]

Available at: https://blogarchive.claritycon.com/blog/2009/08/how-to-chain-tfs-builds/Sajo

Jacob (Alumni)

[Accessed 24 January 2017].

Jamshidi, P., Ahmad, A. & Pahl, C., 2013. Cloud Migration Research: A Systematic Review.

Cloud Computing, IEEE Transactions on, 1(2), pp. 142 - 157.

Jin, C., Srivastava, A. & Zhang, Z. L., 2016. Understanding security group usage in a public

IaaS cloud. San Francisco, IEEE, pp. 1-9.

Kanies, L., 2010. Episode 17: Luke Kanies on DevOps Cafe: History of Puppet & DevOps.

[Online]

Available at:

http://hwcdn.libsyn.com/p/2/c/8/2c844d2632f63e9b/Episode_17.mp3?c_id=2916961&expi

ration=1447368145&hwt=c0e68f369da6f7ee70129f59aff91ee5

[Accessed 12 November 2015].

Kaufman, L., 2009. Data security in the world of cloud computing. Security & Privacy, IEEE,

7(4), p. 61.

Khajeh-Hosseini, A., Greenwood, D. & Sommerville, I., 2010. Cloud Migration: A Case Study

of Migrating an Enterprise IT System to IaaS. Miami, FL, IEEE, pp. 450 - 457.

Khan, N. & Al-Yasiri, A., 2015. Framework for Cloud Adoption: A Roadmap for SMEs to Cloud

Migration. International Journal on Cloud Computing: Services and Architecture, 5(5/6), pp.

01-15.

Khan, S. U., 2014. Elements of Cloud Adoption. Cloud Computing, IEEE, May, 1(1), pp. 71 -

73.

Kitchenham, B. et al., 2002. Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on Software Engineering, 28(8), pp. 721-734.

167

Knorr, E., 2016. 2016: The year we see the real cloud leaders emerge. [Online]

Available at: http://www.infoworld.com/article/3018046/cloud-computing/2016-the-year-

we-see-the-real-cloud-leaders-emerge.html

[Accessed 1 June 2017].

Li, Z., 2013. The Cloud's Cloudy Moment: A Systematic Survey of Public Cloud Service

Outage. International Journal of Cloud Computing and Services Science, 2(5), p. 321 – 331.

Lunden, I., 2014. Puppet Labs Raises $40M More To Take Its IT Automation Business Global.

[Online]

Available at: http://techcrunch.com/2014/06/19/puppet-labs-raises-40m-to-take-its-it-

automation-business-global/

[Accessed 17 August 2017].

Maguire, J., 2015. Cloud Computing Market Leaders. [Online]

Available at: http://www.webopedia.com/Blog/cloud-computing-market-leaders-2015.html

[Accessed 18 June 2016].

Manvi, S. S. & Krishna Shyam, G., 2014. Resource Management for Infrastructure as a Service

(IaaS) in Cloud Computing: A Survey. Journal of Network and Computer Applications, Volume

41, pp. 425-438.

Mao, M. & Humphrey, M., 2012. A Performance Study on the VM Startup Time in the Cloud.

Honolulu, IEEE.

Mateescu, G., Vlădescu, M. & Sgârciu, V., 2014. Auditing cloud computing migration.

Timisoara, IEEE, pp. 263 - 268.

Matt Asay , 2009. Reductive Labs nails $2 million in funding--Q&A. [Online]

Available at: http://www.cnet.com/news/reductive-labs-nails-2-million-in-funding-q-a/

McCarthy, J., 1992. Reminiscences on the History of Time Sharing. IEEE Annals of the History

of Computing, 14(1), pp. 19-24.

Mell, P., 2011. The NIST Definition of Cloud Computing, Gaithersburg: National Institute of

Standards and Technology.

Melymuka, V., 2012. Enhanced Techniques. In: TeamCity 7 Continous Integration Essentials.

Birmingham: Packt Publishing Ltd, pp. 88 - 92.

Melymuka, V., 2012. Getting Started with TeamCity. In: TeamCity 7 Continous Integration

Essentials. Birmingham: Packt Publishing Ltd, pp. 10-13.

Menychtas, A., Santzaridou, C. & Kousiouris, G., 2013. ARTIST Methodology and Framework:

A Novel Approach for the Migration of Legacy Software on the Cloud. Timisoara, IEEE, pp.

424-431.

Michel, J. P., 2013. Web Service APIs and Libraries. Chicago: ALA Editions.

Microsoft, 2015. 12-Month Prepay Offer. [Online]

Available at: https://azure.microsoft.com/en-us/offers/ms-azr-0026p/

[Accessed 12 December 2015].

168

Microsoft, 2015. Azure Resource Manager overview. [Online]

Available at: https://azure.microsoft.com/en-us/documentation/articles/resource-group-

overview/

Microsoft, 2015. FAQ About Azure for Research. [Online]

Available at: http://research.microsoft.com/en-us/projects/azure/faq.aspx

Microsoft, 2015. SLA for Virtual Machines. [Online]

Available at: https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_0/

[Accessed 12 November 2015].

Microsoft, 2015. Virtual Machines. [Online]

Available at: https://azure.microsoft.com/en-us/services/virtual-machines/

Microsoft, 2015. Virtual Machines Pricing. [Online]

Available at: https://azure.microsoft.com/en-us/pricing/details/virtual-machines/

Microsoft, 2015. Virtual Network. [Online]

Available at: https://azure.microsoft.com/en-us/services/virtual-network/

Microsoft, 2017. Active Directory Cmdlets in Windows PowerShell. [Online]

Available at: https://technet.microsoft.com/en-us/library/ee617195.aspx

[Accessed 12 January 2017].

Microsoft, 2017. Organizational Units. [Online]

Available at: https://technet.microsoft.com/en-us/library/cc978003.aspx

[Accessed 14 February 2017].

Microsoft, 2017. Sysprep (System Preparation) Overview. [Online]

Available at: https://docs.microsoft.com/en-us/windows-

hardware/manufacture/desktop/sysprep--system-preparation--overview

[Accessed 31 December 2017].

Miller, R., 2011. Outage in Dublin Knocks Amazon, Microsoft Data Centers Offline. [Online]

Available at: http://www.datacenterknowledge.com/archives/2011/08/07/lightning-in-

dublin-knocks-amazon-microsoft-data-centers-offline/

[Accessed 27 September 2015].

Morris, K., 2016. Infrastructure as Code. Sebastopol: O’Reilly Media, Inc..

National Institute of Standards and Technology, 2001. SECURITY REQUIREMENTS FOR

CRYPTOGRAPHIC MODULES, Gaithersburg: National Institute of Standards and Technology.

Nelson-Smith, S., 2013. Chapter 1. The Philosophy of Test-Driven Infrastructure. In: Test-

driven Infrastructure with Chef (2nd Edition). Beijing: O'Reilly Media, Inc..

Pahl, C., Xiong, H. & Walshe, R., 2013. A comparison of on-premise to cloud migration

approaches. Malaga, European Conference on Service-Oriented and Cloud Computing, pp.

11-13.

PC Magazine, 2015. Definition of:Internet explosion. [Online]

Available at: http://www.pcmag.com/encyclopedia/term/45221/internet-explosion

169

PCI Security Standards Council, 2015. PCI Security Standards: Getting Started. [Online]

Available at: https://www.pcisecuritystandards.org/security_standards/getting_started.php

PuppetLabs, 2015. Continuous Integration at Infusionsoft with Puppet Enterprise. [Online]

Available at: https://puppetlabs.com/case-studies/continuous-integration-at-infusionsoft-

with-puppet-enterprise

PuppetLabs, 2015. Frequently Asked Questions. [Online]

Available at: http://docs.puppetlabs.com/guides/faq.html#whats-special-about-puppets-

model-driven-design

PuppetLabs, 2015. Frequently Asked Questions. [Online]

Available at: http://docs.puppetlabs.com/guides/faq.html#what-is-puppet

PuppetLabs, 2015. stdlib. [Online]

Available at: https://forge.puppetlabs.com/puppetlabs/stdlib

Reichard, K., 1998. Web Hosting and Colocation: A Helping Hand For Business, New York:

Mixed Media.

Revyakina, E., 2016. Subversion. [Online]

Available at: https://confluence.jetbrains.com/display/TCD9/Subversion

[Accessed 9 April 2016].

Rex, 2015. (R)?ex Deployment & Configuration Management. [Online]

Available at: http://www.rexify.org/

[Accessed 24 December 2015].

RightScale, 2014. State of the Cloud Report, s.l.: RightScale.

RightScale, 2015. State of the Cloud Report, s.l.: RightScale.

Ring, J. E., 2013. How to Install Windows PowerShell 4.0. [Online]

Available at: https://social.technet.microsoft.com/wiki/contents/articles/21016.how-to-

install-windows-powershell-4-0.aspx

[Accessed 5 August 2017].

Robbins, J., 2009. Announcing Chef. [Online]

Available at: https://www.chef.io/blog/2009/01/15/announcing-chef/

[Accessed 18 September 2017].

Rudder, 2015. FAQ. [Online]

Available at: http://www.rudder-project.org/site/documentation/faq/#about_rudder

Sabiri, K., Benabbou, F., Moutachaouik, H. & Hain, M., 2015. Towards a cloud migration

framework. Marrakech, IEEE, pp. 1-6.

Sadiku, M. N. O., Musa, S. M. & Momoh, O. D., 2014. Cloud Computing: Opportunities and

Challenges. IEEE Potentials, 33(1), pp. 34-36.

SaltStack, 2015. [Online]

Available at: http://saltstack.com/enterprise/

170

Schonlau, M., 2002. Conducting Research Surveys via E-mail and the Web. Santa Monica: US:

RAND Corporation.

Schonlau, M., 2002. Conducting Research Surveys via E-mail and the Web. Santa

Monica(California): RAND Corporation.

Solomon, D. A., 1998. The Windows NT kernel architecture. Computer, 31(10), pp. 40 - 47.

Somwanshi, S., 2015. Choosing the Right Tool to Provision AWS Infrastructure. [Online]

Available at: https://www.thoughtworks.com/insights/blog/choosing-right-tool-provision-

aws-infrastructure

[Accessed 20 June 2016].

Stanek, W., 2014. Chapter 1. Windows PowerShell Essentials. In: Windows PowerShell : The

Personal Trainer for Windows PowerShell 3.0 and Windows PowerShell 4.0. Seattle: Stanek &

Associates, pp. 23-30.

Talaat, S., 2013. PowerShell 3.0 Advanced Administration Handbook. In: Managing Active

Directory with PowerShell. Olton: GB: Packt Publishing, pp. 173-188.

Terraform, 2016. Providers. [Online]

Available at: https://www.terraform.io/docs/providers/

VanRoekel, S., 2011. Security Authorization of Information Systems in Cloud Computing ,

Washington: Chief Information Officers Council.

Vaquero, L., Rodero-Merino, L. & Morán, D., 2011. Locking the sky: a survey on IaaS cloud

security. Computing, 91(1), pp. 93-118.

Vu, Q. H. & Asal, R., 2012. Legacy Application Migration to the Cloud: Practicability and

Methodology. Honolulu, 2012 IEEE Eighth World Congress on Services, pp. 270-277.

Walden, D., 2012. The Compatible Time Sharing System (1961–1973) Fiftieth Anniversary,

Washington DC: IEEE Computer Society.

WeRSM, 2013. The Complete History of Instagram. [Online]

Available at: http://wersm.com/the-complete-history-of-instagram/

Whetstone, K., 2016. Parameterized Trigger Plugin. [Online]

Available at: https://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Trigger+Plugin

[Accessed 12 December 2016].

Zainal, Z., 2007. Case study as a research method. Jurnal Kemanusiaan, pp. 1-6.

171

Appendices

Appendix A. Interview with infrastructure member

 This interview took place on the 13/11/15, from 11:05 to 11:18

Researcher: Good morning, [name omitted], thanks for taking the time out of your

day for this interview. I’ve booked this room for 30 minutes but I know you are busy

with work so I only plan on it lasting about 10 minutes or so.

Infrastructure member: No problem, I’m happy to help.

Researcher: Good to hear, so I’m hoping to cover the manual steps involved in the

test environment creation process from an infrastructure perspective in this interview.

You are already aware that I’m conducting this research as part of the master’s degree

I am studying for so I’m going to try to get as much information about the process

from you as possible. I’m aware of a few of the steps involved in your part of the

process, I am going to list them out and I want you give me a rough estimate on how

long it has taken you to perform them in the past. Be sure to stop me at any stage if

you think that I’ve missed anything or if I’ve made a mistake in the steps you take.

Infrastructure member: Alright.

Researcher: So the first step is to the create the actual virtual machine in VMWare,

so I would assume that you would need to choose how much compute power the

machine will have along with storage and so on.

Infrastructure member: Well, we start out finding the next free IP address in the

subnet the machine should reside in then we just take an existing test environment

that is up to date and signed off on by QA and clone that. So we would get the same

CPU and RAM but would have to assign storage manually for the drives attached to

the new machine. All of these are small tasks.

Researcher: Do you have an estimate in minutes or hours for each of these tasks?

Infrastructure member: Let’s say all of those tasks take a maximum of 30 minutes.

There’s no point in splitting them because some of them could take a few seconds.

172

Researcher: So at this stage the machine is up and running, so you would need to

document it.

Infrastructure member: We do documentation, but usually not until later on in the

process. Once we are done with all other tasks and hand over the machine to the

release management team then we would add the environment document to a Visio

diagram along with all details like machine name, spec and storage. We also add it to

list on SharePoint of the machine name and IP and hostname of the box that we would

have to update so anyone can RDP to the box and access sites externally without

needing to ask us for the details.

Researcher: Is there any other kind of documentation done for these new machines?

Infrastructure member: Not really, we always provide the details of the machine to

whoever requested it because the diagram is internal to infrastructure and they might

not have a link to the SharePoint page. It’s just so they know what the machine name

is and have links to the sites on the machine once they are setup.

Researcher: How long do you think that whole documentation process takes you?

Infrastructure member: Not a whole pile of time really, all the information is

already there, it’s just putting it down on paper outside of VMWare. I would say it

could take another 30 minutes.

Researcher: Alright, so that’s provisioning and documentation out of the way, I’m

moving onto the domain and DNS operations now as long as you’re confident that we

haven’t missed any task.

Infrastructure member: I am.

Researcher: Good, so next you’d need to add the new machine to the domain and

create the DNS entries, do you have an estimate on how long this take s?

Infrastructure member: Sure, but you have missed a few steps, we first need to

Sysprep the machine and rename so we can add it to active directory because it’s a

clone and its name was copied with it, so there is already an entry in active directory

from the machine it was cloned from. We’d also need to find the correct OU

[organisational unit] in the domain to add the new machine to. Then we need to install

all Windows updates on the new machine and finally reinstall SCCM [System Centre

Configuration Manager] as a GUID [Globally Unique Identifier] in the local registry

173

needs to update to let the network know that it’s a new machine as opposed to the

machine it was cloned from. After this I reboot the machine for the last time and make

sure all services are up and running.

Researcher: OK, I’ll mark that down in my notes. Let’s just break up the domain

operations from the other configuration you described. How long do the domain

specific tasks you’ve described take?

Infrastructure member: It depends on the size of the drives and how powerful the

machine is, the server needs to restart a few times during this so I would say it took

me half a day for everything the last time I did it for [name omitted]’s test

environment.

Researcher: OK, so would be about 3 hours for the domain operations and another 2

for the configuration of the Windows updates, reinstalling SCCM and verifying the

services?

Infrastructure member: Yes, I would say that’s accurate.

Researcher: Alright, so DNS and any other networking would come next, can you

break these down into steps and tell me how long each one would take?

Infrastructure member: Yeah, we have a standard set of internal and external DNS

to add for each of these environments. Internal takes about a half an hour, then we set

up each of the external DNS entries manually and it’s a tedious process. Last time,

[name omitted]’s environment took me two hours of copying and pasting into a web

form to get it all setup.

Researcher: Alright, so internal is half an hour and external takes another two hours?

Infrastructure member: Yeah, that sounds about right, sometimes it can take longer

if a production issue occurs or I get called into meetings.

Researcher: So is there anything else you can think of that we haven’t cover ed here

today? I know you’ve mentioned that you need to make sure the services are up and

running earlier, but is there any other form of manual verification of the changes

you’ve made?

Infrastructure member: I do ping tests against the machine hostname and IP and

make sure everything is OK and nothing has slipped through the cracks. I RDP to the

174

machine and make sure it’s hooked up the correct DC [domain controller] and make

sure there are no networking related issues in the event viewer. The only other wo rk

I would do for this is if someone came back to me about connectivity or incorrect

storage.

Researcher: OK, I would classify that as manual verification in my list, do you know

how long you usually spend verifying all of the changes and updates you make to

these new environments?

Infrastructure member: Everything I’ve just mentioned can take up to 2 hours, that’s

only if something strange has happened to that box and I need to troubleshoot. If

everything’s done correctly then it might take 30 minutes.

Researcher: So are you OK with me finding a middle ground there and documenting

that there is usually an hour of manual verification in this process?

Infrastructure member: Sure

Researcher: OK, one last question before we finish up. Do all of these tasks requ ire

your full attention? I mean, are they tasks that you can carry out while doing some

other more important form of work?

Infrastructure member: I would need to be there performing each of these tasks

manually, so they would take up all my focus while I’m doing them. If more important

work came up then I would have to stop making the environment and put it on hold

until I had capacity to do it or [manager’s name omitted] would prioritise it for

someone else so they could do it.

Researcher: OK, that’s fair enough. I think we’re about done here so. Thanks so

much for taking part today and I’ll speak to you later if I have any questions.

175

Appendix B. Interview with Release Management member

 This interview took place on the 27/11/15, from 14:30 to 14:38

Researcher: Good afternoon, [name omitted], thanks for coming to the interview

today. I’ve booked this room for 30 minutes in case there is a lot to discuss, but the

last interview with [name omitted] took less than 15 minutes.

Release Management member: You’re grand, we can take our time and go through

everything.

Researcher: Good to hear, so you already know what I plan on covering here: the

manual steps involved in the test environment creation process from release

management perspective. It should go without saying that I’m conducting this

research as part of my master’s degree. I’m confident that I’m aware of all of the steps

involved in your part of the process, but I’m not aware of how long each task actually

takes. I am going to list them out and I want you give me a rough estimate on how

long it takes you to perform them. Be sure to stop me at any stage if you think that

I’ve missed anything or if I’ve made a mistake in the steps you take.

Release Management member: Will do.

Researcher: So once infrastructure have finished their work on provisioning,

documenting and creating all the networking for the new environment, the first step

you take is to clear down all environment specific data from the new machine. Can

you tell me how long that usually takes?

Release Management member: Data? Not long, we know what folders are holding

data from the old environment so clearing them down is simple enough and it’s not

exactly mandatory unless there’s no disk space available. Let’s say in total this could

take 30 minutes.

Researcher: Alright, you said it’s not mandatory, but is it a regular task that you

would perform?

Release Management member: It would be, yeah, just in case the machine is going

to be used for testing large uploads from the front end.

176

Researcher: OK, and do you think this is a symptom of taking clones for

environments that are currently active, as opposed to creating new environments from

a base operating system image?

Release Management member: Of course, if we took a brand new vanilla Windows

box then we wouldn’t have to do this, but we’d need to spend hours or days

configuring the machines by hand, a load of applications and directories and

configuration are taken over into new clones so we only have to change few things on

them to get them running as opposed to installing and configuring everything from

scratch.

Researcher: That’s interesting, I’ll mark that down in my notes. Is there any other

step you need to take to clean down anything else that is environment specific? Do

you need to reinstall applications or Windows features that are effected by the cloning

process to avoid duplication of IDs in the network?

Release Management member: Ah, if you’re talking about services and features then

it’s a long enough process. We would need to uninstall some of our own custom

internal services, replace all environment specific content in their configuration files,

then install them again and make sure they’re working. Along with this there are some

applications and Windows features that are hooked up to the network like MSMQs as

they won’t function unless a new GUID [Globally Unique Identifier] needs to be put

in the registry and that’s how the network tells the new machine from the machine is

was cloned from.

Researcher: Alright, and how long would all that take?

Release Management member: Making sure there’s been nothing added since the

last environment was created and actually carrying it out usually takes a few hours.

Researcher: Do you remember how many hours the last it took on the last

environment

Release Management member: I suppose for [name omitted]’s environment, it took

about 2 to 3 hours, you need to restart the machine at least once for the updated

registry keys to propagate when you’re done, the old entries are stored in memory and

there’s no sure way to get them out everywhere without a reboot.

Researcher: I’ll mark it down as 2.5 hours if you’re OK with that

177

Release Management member: Sure

Researcher: OK, so the next part would be updating all configuration files for the

environment, so I have listed here: HOSTS file, web.configs, machine.config and

app.configs

Release Management member: There are few more in that list but they’d fall under

the same umbrella as the web and app.config files. The HOSTS and machine.config

files are easy, there’s only one of each to update. The others are in multiple locations

across different drives on the machine, it would take a full day to do this manually

but we’d normally do this through a search and replace program from a server with

access to the new clone and look for the name of the machine the new one was cloned

from and replace it with the new value, same goes for any web links, anything

environment specific really we would need to find and replace, and there could be

over 50 files to make several different replacements in.

Researcher: Do you have an estimate on this whole process? Take enough time to

think and try to be as verbose as possible because it sounds like there’s a lot going on

in this step.

Release Management member: With connecting to the server, modifying the HOSTS

and machine.config then connecting to another server and searching the whole

machine remotely, I supposed this step could take the best part of a day.

Researcher: Was that how long this step took for [name omitted]’s environment?

Release Management member: I would say so, 4 and 6 hours sounds about right.

Researcher: I’ll put that down as 5 then.

Release Management member: OK.

Researcher: Is there any other replacement of environment variables you need to

perform? Are the IIS [Internet Information Services] sites and application pools in a

stable state at this point?

Release Management member: Ah, the IIS site bindings do need to be updated too.

So I suppose this could take another 2 hours as well.

Researcher: Alright, I’ll put down 7 hours for the whole process of updating these

configuration files then. So we’ve covered clearing down the residual data from the

178

previous environment, reinstalling applications and services and replacing

configuration files. I’m going to move on to the code base deployment section as long

as you’re satisfied we haven’t missed anything so far.

Release Management member: Yeah, I think we’ve got everything in those steps

alright.

Researcher: So is the only remaining step deploying out certain applications from a

certain feature or release branch?

Release Management member: We always deploy out the latest release of everything

to these machines so we know that the codebase is a reflection of the versions

deployed to production.

Researcher: So all services, web sites, databases and everything else goes out in this

step? TeamCity handles most of this so surely it’s a case of kicking off the builds and

waiting till they are done.

Release Management member: There are a few configuration variables that need to

be setup in TeamCity for this to work, without getting into details, there are about 4

different variables that need to be defined before we kick any of the builds off.

Researcher: Ok, and how long does the preparation stage take?

Release Management member: I would give this an hour considering you need to

connect to the machine and extract these variables from the box itself and add them

to TeamCity.

Researcher: And the deployment of the code base?

Release Management member: There are over 170 different builds that need to be

kicked off, nearly all of them require additional user input to specify what branch to

build, this, along with monitoring the success of the deploys. I wouldn’t commit to

having everything deployed from scratch in anything under a full da y, just to take

deployment failures and troubleshooting into account.

Researcher: That’s a long time for manual verification, is it an error -prone process?

Release Management member: Deployments could fail if something was done

incorrectly before this point as we are relying on a lot manual work to have been done

correctly up to this point. and the environment that the new environments was cloned

179

from may not be able to support the latest release of code, there has been tables or

schemas missing from databases or site folders missing from the machine that new

code depends on. All of this needs to be taken into account.

Researcher: OK, that’s very good information, I’ll take that down in my notes for

later. So if we were to break the full deployment process down: deployment

preparation is an hour, then the deploy of the code base itself takes about 3 hours if

nothing goes wrong. Then you’re saying that you leave doing manual verification of

the builds and doing any additional troubleshooting can take another 4 hours, bringing

the total up to a day’s work.

Release Management member: Conservatively, yes.

Researcher: Alright, I was going to ask you about manual verification of the whole

process, but I think we’ve covered it already in the last answer.

Release Management member: I think so, the verification is mostly in the monitoring

of the builds, one of them is sure to fail if something that precedes it was done

incorrectly.

Researcher: That’s fair enough, so I have one last question if you’re confident that

we have covered all and any tasks in your part in the process.

Release Management member: I am, we’ve definitely talked about all the tasks we

perform when a new environment comes in.

Researcher: Alright then, do all of these tasks require your full attention? Can these

tasks be done while you’re carrying out some other form of work?

Release Management member: There are too many manual tasks here, so I need to

pay full attention, if I don’t the deployments could fail and I could spent hours chasing

my tail on a configuration file I missed. Monitoring the deployments is the only part

where I can take a short break to look at something else, but that’s about a 10 minute

window, enough to read an email, and make a quick response to it. I would have to be

there to catch failures fast in case a deployment does fail.

Researcher: That’s perfect, we are all done so. Thanks so much for taking part today

and I’ll speak to you later if I have any questions.

180

Appendix C. Interview with Database Administration member

 This interview took place on the 20/01/16, from 17:05 to 17:18

Researcher: Good evening, [name omitted], thanks for meeting me today. I’ve

booked the room for 30 minutes but the other interviews were over and done with

within 15 minutes.

Database Administrator: That’s fine, I’ll be heading away after this anyway.

Researcher: Alright, we’ll wrap this up quick enough so. You know that I’m

conducting research as part of the master’s degree here in [company name omitted],

and it is directly related to the process I’ve built around creating new test

environments in the cloud from code. I finished a prototype of it recently, but a new

requirement has come in from management to include the latest scrubbed production

databases in these test environments. At the moment, it’s a manual process that you

perform, but eventually, this process will be integrated into my framework so it will

be completely automated. I plan on covering all the manual steps involved in this

process alongside estimates from yourself on how long each step takes. Are you OK

with providing this to me?

Database Administrator: Sure, the scrubbing process itself takes a few days, and it’s

just replacing real data linked to clients with dummy data, but it’s only done every

few months so I’m not sure if you want details on this.

Researcher: I wouldn’t say so, the way I see it working is that these databases will

be purged of real data and replaced with dummy data then they will be placed in a

central location that my process will be able to pull them from and restore them to the

new server

Database Administrator: Alright, so what tasks are you looking for estimates on

then?

Researcher: Everything bar the scrubbing process, as it falls out of scope of what

I’m doing. So if you were to start with a completely blank machine from infrastructure

I assume there’s some preparation work you need to do before you copy the scrubbed

databases over to the machine to restore them.

Database Administrator: There’s a few things to do alright.

181

Researcher: OK, let’s start with the preparation work then.

Database Administrator: Alright, so first we would RDP [remote desktop protocol]

to the machine and ensure the SQL services are running.

Researcher: and how long would that normally take?

Database Administrator: About 10 minutes or so

Researcher: OK, and are there connections you need to setup to make sure the SQL

services are operational?

Database Administrator: We would need to setup the SSRS [SQL Server Reporting

Services] connection on the new machine, this can take up to an hour.

Researcher: Alright, what is the purpose of setting this up?

Database Administrator: Without the SSRS connection setup, the reports that the

databases call will not be accessible, the front-end will break if certain pages that call

the reports are accessed

Researcher: OK, so this would be classified as a prerequisite to restoring the

databases?

Database Administrator: Yes.

Researcher: Alright, is there any other preparation task involved here?

Database Administrator: We need to run a set of scripts to allow for the databases

to be restored, in these scripts, server level logins are created along with the setup of

linked servers and a few other small things that need to be setup.

Researcher: Alright, and how long would these scripts take to run?

Database Administrator: I would say another 10 minutes or so

Researcher: OK, so we’re at the stage now where the databases can be copied over

to the new server and restored, correct?

Database Administrator: Yes, we usually start the copy of the databases beforehand

as there is over 27GB of databases in 30 different files that need to be copied over, it

can take about 2 hours to copy over if they are not on the same network.

182

Researcher: and AWS machines are not on the same network as where the scrubbed

databases reside?

Database Administrator: No, they are on the [network name omitted] network.

Researcher: Alright so once this is done, it’s just a case of running the database

restore statements?

Database Administrator: Yeah, we have scripts saved to do this so I suppose you’ll

be taking these and automating them into your process down the line.

Researcher: That’s the plan anyway. How long does the restore actually take?

Database Administrator: In total, the restores can take 5 hours, but a lot of that is

just waiting around for large databases to restore.

Researcher: Alright, and once the restores are complete then your part in the process

is over?

Database Administrator: No, I need to run another set of scripts after the restore to

make sure there’s no orphaned users on the server and take the databases out of read

only mode so release management can deploy to them.

Researcher: Alright, is there any other function to the scripts you run at this stage?

Database Administrator: There are some users set up so QA can test the

functionality before handing off to dev, that’s about it really.

Researcher: Alright, and how long does it take to run these scripts on average?

Database Administrator: It can take up to 45 minutes or so.

Researcher: OK, it sounds like we’re about done here unless you can think of

anything we’ve missed so far.

Database Administrator: There are the TDE [Transparent Data Encryption]

certificates that need to be imported for encrypted data to be accessed.

Researcher: Alright, and are these already scripted out?

Database Administrator: Yes, but the cert files need to exist on the machine before

we run the scripts, the scripts just import the files into the SQL server

183

Researcher: OK, and how long exactly would copying the certificate files over and

running the scripts take?

Database Administrator: Assuming you’ve already created a SQL session to the box,

then it would take 10 minutes.

Researcher: and if you didn’t have a SQL session created?

Database Administrator: 15 max.

Researcher: Alright, one last question, it sounds like you don’t need to be paying full

attention to a lot of the steps as copying takes an hour and the restores take an hour.

How much effort would you say in hours is involved in this process?

Database Administrator: The prep is the only real section that requires my full

attention, but the copies, scripts and restores can fail for lots of reasons so you need

to be monitoring them. There could be networking issues, drives not mapped correctly

or scripts run in the wrong order, stuff like that happens all the time. So it’s not a case

of “I’m going to run these scripts and come back in 5 hours”. You’d really need to be

paying a bit of attention to the whole process to make sure everything is copied to the

right location and the databases are being restored to the right place. Plus, you’d need

to make sure everything is working after the scripts do run. All the steps need to be

done in a specific order so I can’t just write one script that will do everything and

kick it off.

Researcher: Alright, I think we can wrap it now. Thanks so much for coming in and

participating today, [name omitted], your contribution will play an important part in

my final result.

184

Appendix D. Survey Questionnaire

185

186

187

188

	An Industry-Based Study on the Efficiency Benefits of Utilising Public Cloud Infrastructure and Infrastructure as Code Tools in the IT Environment Creation Process
	tmp.1594923187.pdf.Qwntp

