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Excessive accumulation of pro-oxidant metals, observed 

in affected brain regions, has consistently been implicated as a 

contributor to the brain pathology including neurodegenerative 

diseases and acute injuries such as stroke. Furthermore, the 

potential interactions between metal toxicity and other 

commonly associated etiological factors, such as 

misfolding/aggregation of amyloidogenic proteins or genomic 

damage, are poorly understood. Decades of research provide 

compelling evidence implicating metal overload in neurological 

diseases and stroke. However, the utility of metal toxicity as a 

therapeutic target is controversial, possibly due to a lack of 

comprehensive understanding of metal dyshomeostasis-

mediated neuronal pathology. In this article, we discuss the 

current understanding of metal toxicity and the challenges 

associated with metal-targeted therapies.

Metal accumulation in the brain, a common phenomenon in 

the pathophysiology of neurodegenerative diseases and 

stroke 

The optimum levels of trace elements and their 

homeostasis in individual organs are essential for maintaining 

vital functions. Nutritional deficiencies and metabolic disorders 

exhibit potential cause-and-effect relationship in many 

pathological conditions. Although many metal ions, some at 

trace levels, are essential for life, excess accumulation can be 

highly toxic and possibly fatal. Neurodegeneration is believed to 

be the most common manifestation of metal toxicity. For 

example, etiological link between abnormal metal accumulation 

in the brain and aging or various neurological disorders, 

including Alzheimer’s Disease (AD), Parkinson’s Disease (PD), 

Amyotrophic Lateral Sclerosis (ALS), Wilson’s Disease (WD), 

and stroke was observed [1-7]. Acute metal toxicity is 

implicated in stroke and certain conditions that result from 
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hereditary defects in the regulation of metal homeostasis. For 

example, the dysregulation of metal ions due to the acute release 

of free iron (Fe) following hemorrhagic stroke causes massive 

neuronal injury [3,8]. Furthermore, neurotoxicity from acute

increase in the level of zinc (Zn) and other transition metals may 

play a critical role after ischemic focal brain injury [9].

Environmental/dietary sources versus genetic factors –Fe

accumulation in the brain during hemorrhagic stroke is thought 

to be due to the breakdown of hemoglobin. However, the source 

and the mechanisms of accumulation of other metals in the 

brain are unclear, because only in a few cases, this could be 

linked to dietary or occupational exposures [10]. It is generally 

believed that both environmental and genetic factors are 

responsible for abnormal metal accumulation in neurological 

conditions. Environmental factors include malnutrition, 

contaminated water, food, and beverages, 

occupational/hazardous exposures, and medical procedures. 

Individual metal ions have specific physiological function(s) as

co-factors for many essential vitamins and proteins. High 

incidences of neurodegenerative diseases, such as ALS, AD, 

and PD, have been observed in employees in the automobile and 

paint industries and in other metal-utilizing factories [11,12]. 

Recent studies suggest that various genetic factors predispose 

neurons to enhanced metal toxicity. These include alterations in 

metal mobility or uptake across the blood-brain barrier and 

metal storage proteins in the brain, including lactoferrin and 

ferritin/transferrin. Friedreich’s ataxia, a genetic disorder of Fe 

metabolism, is caused by insufficient level of the Fe chaperone,

frataxin, which leads to dysregulation of Fe trafficking in 

mitochondria and to mitochondrial genome damage by Reactive 

Oxygen Species (ROS) [13-16]. Similarly, abnormal Fe 

metabolism is responsible for the etiopathogenesis of hereditary 

ferritinopathy [17]. Another well-known, autosomal recessive 

disorder, Wilson’s disease, arises from a lethal mutation in the 

ATP7B gene, which encodes a copper (Cu) transporter, leading 

to supra-physiological, accumulation of free Cu in the brain and 

liver [18]. Aging is another contributor to chronic accumulation 

of brain metals [19]. Fe(III), Cu(II), and Zn(II) ions play critical 

roles in the gradual progression of AD and PD in an age-

dependent manner by stabilizing misfolded amyloid beta sheets 

[20,21].

Thus, complex interactions between genetic 

predisposition and environmental/dietary influences appear to 

induce accumulation of free metal ions in the brain. 

Molecular basis of metal toxicity

As schematically represented in Figure 1, metal dyshomeostasis 

is deleterious to human cells. The intracellular and extracellular 

levels of metals are tightly regulated through a complex 

network. Excessive concentration of non-sequestered metal salts 

could cause cellular toxicity and pathological damage. In 

addition to altering the membrane potential, particularly in 

neurons, metal ions can bind to and affect the activity of 

proteins/enzymes and nucleic acid, which may cause 

cytotoxicity. In addition, the major cause of oxidative toxicity 

from transition metals is the generation of ROS, the most 

pervasive oxidant in cells [22-25]. In addition, many heavy 

metals, such as cadmium and lead, are also pro-oxidant and 

highly toxic. These could cause membrane depolarization by 

blocking calcium-ion influx and cell death [26-28]. 

Individual metal accumulation versus metal homeostatic 

imbalance – As already stated, metal content is tightly 

regulated under physiological conditions in the normal brain 

through sequestration by storage proteins (e.g., ferritin, 

transferrin, and ceruloplasmin). The stored metals are released 

only in response to metabolic needs. Abnormal sequestration 

leading to metal overload is a common feature of neuronal 

pathologies; remarkably, studies have revealed unique charge-

dependent changes in brain metal homeostasis with the 

progression of disease severity in AD and PD [29]. For 

example, the level of divalent Fe(II) or Cu(II) increases in the 

brain during the early phase of AD [30]. Interestingly, in AD 

and PD cases with no evident dietary metal exposure, the 

overall brain metal burden was found unaltered; instead, there is 

a charge-dependent redistribution of specific metals in the 

affected brain regions. For example, increase in Fe in PD 
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patients, is simultaneously associated with decrease in Zn [5]. 

This may imply that the impact of an increase or decrease of an 

individual metal is not restricted to that metal alone, but causes 

a more dramatic overall homeostatic imbalance of metals, 

presumably due to loss of regulation of metals across cell 

membranes. This may be important for formulating metal 

chelation therapy, which should include supplementation of the 

depleted metal, in addition to chelating the increased metal ions.

It is noteworthy that in contrast to AD and PD, for other 

neurological disorders and stroke, there are limited data 

regarding trace metal homeostasis or inter-elemental 

relationships in the brain. A comprehensive database for the 

pathological dyshomeostasis of metals is critical for early 

diagnosis and for improving our understanding of the role of 

metals in neurotoxicity.

Metals cause genomic damage directly and via generation of 

ROS –Oxidative genomic damage is the most common type of 

damage caused by pro-oxidant metals due to ROS generated via

Fenton and Haber-Weiss reactions. In addition, some heavy 

metals including essential metals produce DNA damage via 

direct binding and cause strand breaks [31,32]. Both ROS and 

metals induce a multitude of oxidative modifications in DNA 

bases and sugar moieties, including DNA strand breaks. 

Persistent accumulation of this damage could lead to secondary 

double-strand breaks, which are the most toxic genomic damage 

[33,34]. 

Inhibition of genome repair machinery by metals–While

marked increase in genomic damage is observed in a majority of 

neurodegenerative diseases, the neurons also show decreased 

ability to repair the damage [35,36]. Moreover, the lack of a 

direct correlation between repair deficiencies and expression of 

repair enzymes suggests the involvement of additional 

mechanisms. Repair defects induced by heavy metals have been

commonly attributed to their direct binding to DNA, which 

interferes with the repair machinery’s ability for genome 

damage scanning/recognition and repair [37-39]. We recently 

showed that physiological levels of iron and copper salts 

inhibited the NEIL1/2 enzymes, two key components of the 

oxidized DNA base repair machinery (via base excision repair 

or BER) [6,37,40-43]. Inhibition of these enzymes is due to 

metal binding to themselves rather than to DNA, which involves 

reversible oxidation of cysteine residues in the enzymes. 

Furthermore, these metal ions disrupt protein-protein 

interactions during BER, which is critical for coordinating the 

complete repair at the chromatin level. Thus our studies, in 

contrast to previous observations, suggest that metal-induced 

defects in genome repair is caused by direct binding of redox 

metals to specific repair proteins, which affects their redox state 

and structure/function. It is likely that persistent accumulation 

of genomic damage could elicit inflammatory responses (i.e., 

microglia activation), further contributing to neuronal 

dysfunctions [6].

Metal-targeted therapies: Past and current challenges

Metal chelation therapy has been explored as a strategy to 

eliminate excess metal ions from the body. This treatment has 

had mixed success due to challenges intrinsically associated 

with chelation and the inherent complexity of metal dynamics in 

the body. 

Some metal chelators successfully reduce metal build-up 

in animals and in in vitro models. Although chelators were 

shown to reduce metal accumulation in the humans in clinical 

trials, several challenges prevented their broad application.

First, most available chelating compounds fail to cross the 

Blood-Brain Barrier (BBB). Desferrioxamine B (DB), an iron 

chelator, was one of the first metal chelators used in AD 

patients, where it caused a significant decline in amyloid plaque 

levels and decreased the cognition deterioration rate [44]. 

However, DB caused anemia over time [45]. Clioquinol (CQ), 

another metal chelator, was reported to restore metal 

homoestasis in several animal models of neurodegeneration and 

in AD patients [29,45,46]. CQ efficiently crosses the BBB, 

preferentially binds Cu(II) and Zn(II), and inhibits amyloid-

deposition [47]. However, a CQ derivative, 8-hydroxyquinoline 

(8-OHQ; also named PBT2; Prana Biotechnology), failed in a 

phase III trial due to non- -amyloid 
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plaques in patients with mild AD (Product News, J Gerontol. 

Nurs. 40, 5-6, 2004).

Magnetic resonance imaging data from phase II clinical 

trials indicated that deferiprone (DFP), a metal chelator used to 

treat thalassemia patients, significantly decreases Fe levels in 

the Substantia Nigra (SN) in patients with early or late PD [48]. 

However, after 24-month treatment, the chelation benefits of 

DFP disappeared, and Fe deposition reappeared in the SN. 

These data suggest that a readjusted treatment time should be 

considered for long-term benefits [48].  In contrast to other 

chemical chelators, DFP alleviates Fe accumulation by donating 

chelated Fe to unsaturated transferrin, and allows balanced 

retention and chemical redistribution of Fe in the body [49]. 

In an investigation using a mouse stroke model, the 

ferrous chelator 2,2'-bipyridine was shown to be effective in 

reducing brain injury following Intra Cerebral Hemorrhage 

[ICH] and ischemia [50,51]. Although this chelator appears to 

be promising for preventing brain injury after stroke, recent 

reports suggest that bipyridine does not prevent iron-induced 

damage in three ICH rat models [52]. Thus, its efficacy as a 

therapeutic agent remains unclear.

Natural metal chelators, including curcuminoids and 

catechins, are predominant components of the rural Asian diet 

and are believed to be highly beneficial for combating 

neurotoxicity [43]. Curcumin is the most popular curcuminoid, 

present in turmeric and known for its unique flavor, has a broad 

spectrum of pharmacological properties. In recent years, this 

traditional Indian spice has gained attention for its ability to 

bind metals and protect neurons. For example, curcumin 

protects hippocampal neurons against Pb- and Cd-induced lipid 

peroxidation [53]. 

Catechins comprise another class of potential metal 

chelators commonly found in green tea, berries, cocoa, and 

onions. Epigallo Catechingallate (EGCG) is a common catechin

explored for its chemo-protective and neuroprotective functions. 

Chemically, EGCG possesses iron-chelating properties, by 

possibly neutralization of ferric iron and  formation of redox-

inactive iron in neuronal cells [1]. Although the therapeutic 

potential of natural compounds for acute metal toxicity needs 

further investigation, their inclusion in a balanced dietcould 

provide a cost-effective strategy for reducing the oxidative 

burden in patients with neurodegenerative disorders or stroke.

Challenges and future perspectives

There is compelling evidence linking metal toxicity to neuronal 

dysfunction. In addition, there has been an enormous increase in 

our understanding of the molecular basis of metal neurotoxicity. 

Nonetheless, current metal-targeted therapeutic approaches 

remain to be proven effective. Further, antioxidant therapies 

have not been as effective as expected. This underscores the 

need to explore new approaches to unraveling the bases for 

neuronal pathobiology. Current molecular studies have not 

effectively improved our ability to rationally apply metal-

targeting-based therapeutic approaches. We suggest that recent 

basic discoveries on metal biochemistry may help develop new 

approaches for enhancing efficacy of metal chelation therapy.

For instance, intracellular metal dyshomeostasis involving auto-

depletion of specific metal ions is a common occurrence after 

individual metal overload; thus, metal chelation strategies 

should include supplementation of depleted metals.

Furthermore, because of  reversible oxidation of cysteine 

residues in various proteins, including the key genome repair 

enzymes NEIL1 and NEIL2 by pro-oxidant metals [37,40], 

metal chelation could be combined with specific reducing 

factors [6,29,43]. Thus, the recent advances discussed here

underscore the need to revisit the role of metal toxicity in

neurological diseases and stroke in order to develop new

therapeutic strategy.
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Figure: 1

 

 

Figure 1: Molecular basis for metal neurotoxicity and its 

potential as a therapeutic target. Studies suggest a charge-based 

dyshomeostasis of metals in neurons affected by degenerative 

diseases. Typically, trivalent metals increase in late-stage AD, 

whereas divalent metal ions increase in early AD. The increase 

in metal ions could reversibly inhibit DNA repair enzymes, 

inducing genomic damage. Metal chelation therapy should 

address these challenges based on recent molecular 

understanding of the phenomenon.
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