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Abstract: Alzheimer’s disease (AD) is the leading cause of dementia, affecting approximately 

33.5 million people worldwide. Aging is the main risk factor associated with AD. Drug discovery 

based on nutraceutical molecules for prevention and treatment of AD is a growing topic. In this 

sense, carotenoids are phytochemicals present mainly in fruits and vegetables with reported 

benefits for human health. In this research, the anti-amyloidogenic activity of three carotenoids, 

cryptocapsin, cryptocapsin-5,6-epoxide, and zeaxanthin, was assessed. Cryptocapsin showed the 

highest bioactivity, while cryptocapsin-5,6-epoxide and zeaxanthin exhibited similar activity on 

anti-aggregation assays. Molecular modeling analysis revealed that the evaluated carotenoids 

might follow two mechanisms for inhibiting Aβ aggregation: by preventing the formation of 

the fibril and through disruption of the Aβ aggregates. Our studies provided evidence that 

cryptocapsin, cryptocapsin-5,6-epoxide, and zeaxanthin have anti-amyloidogenic potential  

and could be used for prevention and treatment of AD.

Keywords: Alzheimer’s disease, aging, anti-amyloidogenic activity, cryptocapsin, cryptocapsin-

5,6-epoxide, zeaxanthin

Introduction
Alzheimer’s disease (AD) is the leading cause of dementia, affecting approximately 

33.5 million people worldwide, with 5 million new cases every year.1,2 Aging is the 

main risk factor associated with AD, and the prevalence of the disease has been 

estimated from 0.6% to 8.4% in people at ages between 65 and 85 years.3 Clinical 

features of this neurodegenerative condition include slow loss of memory and reason-

ing skills, speech abnormalities, and disorientation.3–5 The disease culminates in the 

complete custodial care of the patient and finally death, which is usually caused by 

pneumonia.3 The presence of intracellular neurofibrillary tangles and extracellular Aβ 

senile plaques in the brain is a pathological feature of AD.6,7 Aβ is produced by the 

cleavage at the beta site of the amyloid-beta precursor protein (APP) by β-secretase. 

This cleavage leads to the formation of a small soluble APP-β and C-99 fragments, 

which in turn are broken down by the enzyme γ-secretase, generating an insoluble Aβ
42

 

peptide, which polymerizes and deposits in the brain as senile plaques.7,8 Metabolic 

imbalance produces increased quantities of Aβ, thus favoring the formation of amyloid 

fibrils in the brain, which leads to neuronal cell death.4 Aβ stimulates the production of 

neurotoxic reactive oxygen species and brain inflammation that contribute notably to 

the advancement of multifactorial AD.9,10 Consequently, Aβ aggregates are significant 

targets in the development of new therapeutical approaches for AD.
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Several investigations have revealed that compounds 

present in food hold neuroprotective properties, and play a 

significant role in the prevention of different neurodegenera-

tive disorders.11–15 Carotenoids are phytochemicals present 

in fruits, some of which (close to 50) are essential in human 

nutrition due to their provitamin A properties.16 Accumu-

lating evidence indicates that these isoprenoid compounds 

prevent or ameliorate human diseases such as eye disor-

ders, cancer, and cardiovascular diseases.16,17 Nevertheless, 

the effect on brain bioactivity of these compounds has 

been poorly studied, particularly in AD.15,18 Owing to the 

chemical nature of carotenoids and their ability to cross 

the brain membrane and accumulate in neural tissues, these 

compounds have great potential to act as functional agents 

for AD prevention and treatment. The physicochemical 

properties of carotenoids such as presence of keto κ-rings 

(eg, cryptocapsin and cryptocapsin-5,6-epoxide) and β-rings 

(eg, zeaxanthin) might provide to these compounds the 

potential to prevent the formation of Aβ aggregates, or to 

disrupt these aggregates. This paper provides data on the 

anti-amyloidogenic activity of carotenoids containing keto 

κ-rings and β-rings.

Materials and methods
samples and isolation of carotenoid 
standards
Pouteria sapota (mamey) was obtained from the metro-

politan public market in Panama, while Aiphanes aculeata 

(corozo fruit) was collected directly from the tree. Carote-

noid standards were extracted and isolated from the fruits 

according to recommended procedures.19,20 Five hundred 

grams of P. sapota pulp and A. aculeate were homogenized 

separately with 50 g of NaHCO
3
 and extracted exhaustively 

with acetone. A solution of Et
2
O/n-hexane and distilled water 

were added to the acetonic extract. The organic phase was 

concentrated and dried over sodium sulfate (Na
2
SO

4
), then 

diluted with Et
2
O, and saponified with methanolic KOH. 

The saponified mixture was then washed with water, con-

centrated, and dried over Na
2
SO

4
. The crude extract of each 

fruit was subjected to vacuum liquid chromatography using 

aluminum oxide (Brockmann grade III) as the stationary 

phase and increased percentages of ethyl ether in n-hexane as 

the eluent. All reagents and chemicals used for this research 

were of analytical grade.

high performance liquid chromatography-
diode array detection analysis
Further purification of the carotenoids was achieved by high 

performance liquid chromatography-diode array detection 

on an 1100 HPLC system (Agilent, Santa Clara, CA, USA) 

equipped with a diode array detector and a quaternary pump. 

A YMC C30 column (250×10 mm, 5 μm) was used as the 

stationary phase. Elution of the compounds was done by 

means of two solutions (eluents): solution A consisting of a 

mixture MeOH/MTBE/H
2
O (81:15:4) and solution B con-

sisting of a mixture of MeOH/MTBE/H
2
O (6:90:4). A linear 

gradient of 100% of solution A (0 min) to 50% of solution 

A and B (45 min) at 2 mL/min was used.

Carotenoid characterization
Carotenoids were identified by nuclear magnetic resonance 

(NMR) and mass spectrometry (MS). 1H, 13C NMR spectra 

were recorded at 400 (1H), 100 MHz (13C) on an Eclipse 

400 MHz spectrometer (JEOL, Peabody, MA, USA). 

Chemical shifts (δ) were reported in parts per million from the 

residual solvent peak and coupling constant (J) in Hz. Proton 

multiplicity is reported in singlet (s), doublet (d), triplet (t), 

quartet (quart), quintet (quint), septet (sept), multiplet (m), 

and broad (br). The molar mass for each compound was 

measured in a micrOTOF/QIII mass spectrometer (Bruker 

Daltonics, Billerica, MA, USA), in atmospheric chemical ion-

ization (APCI)-positive mode, scanning from 200 to 700 m/z. 

A complete description of the carotenoid characterization by 

NMR and MS is described in Supplementary information.

Aβ42 aggregation assay
The aggregation of Aβ

42
 was assessed by Thioflavin T assay. 

Aβ
42

 recombinant peptide (rPeptide) was resuspended in 1% 

NH
4
OH at a concentration of 1 mg/mL. A concentration of 

10 μM of rAβ
42

 was combined with or without different 

concentrations of each carotenoid (1, 3, 10, and 30 μM). 

A volume of 200 μL of the mixture was plated in a 96-well 

plate. The plate was incubated at 37°C for 48 hours. Then, 

20 μM of Thioflavin T (Sigma-Aldrich) was added and the 

fluorescence was measured using a microplate reader (synergy 

HT BioTek) with a wavelength of 450 nm for excitation and 

485 nm for emission. Curcumin (5 μM) was used as the posi-

tive control. All reactions were performed in the presence of 

0.1% of dimethyl sulfoxide, which was used as diluent for the 

compounds. The half maximal inhibitory concentration (IC
50

) 

was established by adjusting the sigmoidal dose–response 

curve following GraphPad Prism 5 procedure.

In silico molecular modeling
Molecular docking studies with the carotenoids (ligands) were 

carried out on the fibril structure of Aβ
42

 (PDB ID-2BEG) 

comprising 5 Aβ
42

 proteins retrieved from the Protein Data 

Bank. The simple monomer of the beta-fibril model of Aβ
42
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was used as the receptor for docking calculations. Preparation 

of the target peptides and ligands, visualization of data 

structures, ligand minimization, and docking analysis were 

carried out using the CDOCKER protocol in Discovery 

Studio 3.5 software (Accelrys, San Diego, CA, USA). 

CDOCKER is a grid-based molecular docking methodology 

that uses CHARMm force fields. Docking exercises were 

conducted to critically evaluate the extend of binding of the 

ligands with Aβ
42

 and to establish their relative strengths.21

Results
Identification of carotenoids
Fractionation and isolation of the carotenoids from the 

extracts of P. sapota and A. aculeata fruits were com-

pletely achieved by column chromatography using different 

 eluents. Two carotenoids, cryptocapsin and cryptocapsin-5, 

6- epoxide presenting a keto κ-ring at one end of the molecule, 

bearing hydroxyl groups, were isolated from the extracts of P. 

sapota fruit. The presence of these carotenoids in P. sapota 

fruit was identified earlier by Murillo et al.20,22 On the other 

hand, zeaxanthin, a carotenoid bearing only β-ionone hydrox-

ylated rings, was isolated from A. aculeata extract. This 

carotenoid was previously reported in A. aculeate fruit.16,23 

Further purification of the isolated compounds was accom-

plished by high performance liquid chromatography using 

a C-30 column. The chemical nature of each carotenoid was 

fully determined by NMR and MS techniques as described 

in Supplementary material. The chemical structures of the 

isolated carotenoids are presented in Table 1.

Anti-amyloidal activity of carotenoids
In this investigation, Thioflavin T assay was used to evalu-

ate the anti-amyloidogenic activity of cryptocapsin, cryp-

tocapsin-5,6-epoxide, and zeaxanthin. All the carotenoids 

studied exhibited bioactivity in a dose-dependent fashion. 

Cryptocapsin showed higher bioactivity (IC
50

 =1.97 μM), 

while zeaxanthin and cryptocapsin-5,6-epoxide showed 

comparable bioactivity (IC
50

 of 2.29 μM and 2.53 μM, 

respectively) (Table 1 and Figure S1).

Molecular docking of carotenoids
In order to get more insights on the anti-amyloidogenic 

activity of the carotenoids, the molecular interactions by 

which these compounds inhibit Aβ aggregation were studied 

by performing molecular modeling. This analysis is based 

on determination of protein–ligand binding is progressively 

being used for discovery of new drugs.24 So far, there has 

been no report on the use of molecular modeling for identify-

ing carotenoids as potential Aβ inhibitors. For modeling the 

interactions between the protein (receptor) and the ligands, 

the receptor is held rigid, while the ligands are allowed to 

flex during the refinement to specify the ligand placement in 

the binding domain. Ligand energy minimization was car-

ried out in a vacuum, and the peptides were pre-processed 

separately by energy minimization values. Structural details 

for Aβ structure and energy-minimized ligands are displayed 

in Figure 1. Aβ is a short peptide with 42 residues that bears 

two amyloidic areas, one at sequence 16–21 (amyloidic 

region 1) and the second sequence at 32–36 (amyloidic 

region 2).25 For this modeling, only residues from 17 to 42 

were considered as the amino acid sequence from 1 to 16 is 

unstructured (Figure 1A).

Investigations of the protein/ligand complex models, rep-

resented in Figure 2, were based on three criterions: binding 

energy, interacting amino acid residues, and bond distance 

of Aβ protein with each ligand. Results of these docking 

parameters are tabulated in Table 2.

Discussion
Carotenoids have the potential to play a significant role in 

the prevention and treatment of neurodegenerative disorders 

such as AD.18 Investigations of the effect of carotenoids 

on Aβ plaques formation or disruption are limited.18,26 

Amyloid aggregation is a key factor in the pathogenesis 

of AD, thus preventing the polymerization of monomers, 

and has therapeutic potential. Most of the drug discovery 

Table 1 Chemical structures and anti-amyloidal activity of 
carotenoids

Compound IC50 ± SD 
(μM)

O

OH

Cryptocapsin

1.97±0.1

OO

HO

Cryptocapsin-5,6-epoxide

2.53±0.2

HO

OH

Zeaxanthin

2.29±0.2

Notes: Cryptocapsin and cryptocapsin-5,6-epoxide are carotenoids with a keto 
κ-ring at one end on the chemical structure. Zeaxanthin has only hydroxylated 
β-ionone rings. IC50 results were obtained from three independent experiments 
performed in duplicates.
Abbreviations: IC50, half maximal inhibitory concentration; sD, standard deviation.
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studies are focused on prevention of amyloid aggrega-

tion both at preclinical and clinical levels.4 Therefore, we 

studied the anti-amyloidogenic properties of cryptocapsin, 

cryptocapsin-5,6-epoxide (both keto κ-ring carotenoids), 

and zeaxanthin (β-ring carotenoid). Thioflavin T assay 

showed that all the three carotenoids inhibit Aβ aggregation 

in a dose-dependent manner. Molecular modeling was 

performed for achieving more insights on the possible 

mechanism of inhibition. The carotenoids here investigated 

have high bond-free energies (Table 2), which indicates that 

they bind tightly with Aβ
42

 inhibiting aggregation, therefore 

confirming Thioflavin T assay results. The ketone group 

Figure 1 Optimized chemical structures for docking analysis. 
Notes: (A) Three-dimensional structure of Aβ42 fibrils. (B) Carotenoids-minimized energy structure used for molecular modeling.

Figure 2 Molecular modeling of interactions of carotenoids and Aβ42. 
Notes: (A) Cryptocapsin. (B) Criptocapsin-5,6-epoxide. (C) Zeaxanthin.
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of cryptocapsin forms hydrogen bonds with the peptide at 

Glu22 and Asp23, while Gly25 interacts with the hydroxyl 

group of the κ-ring. Cryptocapsin-5,6-epoxide has a very 

similar structure with that of cryptocapsin, differing only in 

the presence of a 5,6 epoxy group in the molecule (Table 1), 

yet it binds differently to the peptide by interacting with 

both amyloidic regions of Aβ forming hydrogen bonds at 

Leu17, Phe19 (amyloidic region 1), and Gly33 (amyloidic 

region 2). This hydrogen bonding is produced by interac-

tion of the hydroxyl group at the κ-ring with Leu17 and 

the ketone group with Phe19, whereas the epoxy group at 

the six-membered ring interacts with Gly33. We hypoth-

esize that differences in the structure of these keto κ-ring 

carotenoids are key in the mode by which they inhibit the 

formation of amyloid fibrils. The interactions of ligands, 

such as cryptocapsin, at no-amyloidic sites of Aβ have 

been associated with disruption and disaggregation of the 

beta-sheet fibril structure.27 Moreover, ligands such as 

cryptocapsin-5,6-epoxide that bind to amyloidic regions 

prevent association of Aβ inhibiting the formation of beta-

fibril.27 Zeaxanthin is a carotenoid that has one hydroxyl 

group at each β-ionone ring. One of these hydroxyl groups 

interacts with two amino acids of Aβ (Val39 and Ile41), 

while the hydroxyl group placed on the other β-ionone 

ring interacts with Gly25. Neither of these amino acids 

is present at amyloidic sites; so, it is very likely that this 

carotenoid may lead to disintegration of beta-fibrils. A 

earlier study showed that the presence of hydroxyl groups 

in the chemical structure of carotenoids is crucial for anti-

amyloidogenic activity.18 Further, the polyene backbone 

in carotenoids inhibits the formation of Aβ fibrils through 

hydrophobic interactions.18,26

The beneficial role of carotenoids to human health due 

to their therapeutic properties is widely known.17,28 There 

are limited studies on clinical intervention of carotenoids in 

aging and age-related diseases.17,29 In general, the level of 

carotenoids in food is low. Modest concentrations of zeaxan-

thin have been found in the serum of individuals consuming 

a diet rich in corn.30 Hence, the potential of zeaxanthin as 

an agent against AD is important since these levels would 

not be achieved by food intake. On the other hand, there is 

no report in the literature about the concentrations in serum 

of cryptocapsin and cryptocapsin-5,6-epoxide. This is the 

first report attributing a biological activity for both caro-

tenoids. At this point, our data, and other studies, indicate 

preliminary information on the possible beneficial role of 

carotenoids in AD.

Conclusion
Healthy aging and related disorders are a growing concern 

worldwide. Clinical intervention for the prevention or treat-

ment of AD and other neurodegenerative disorders through 

nutraceutical molecules is a growing topic. Our study pro-

vided evidence that cryptocapsin, cryptocapsin-5,6-epoxide, 

and zeaxanthin have anti-amyloidogenic potential. The pres-

ent study provides a clue on the role of novel carotenoids 

as possible intervention molecules after further preclinical 

studies in Alzheimer’s animal models.
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Supplementary materials
Characterization of cryptocapsin, 
cryptocapsin-5,6-epoxide, and zeaxanthin 
by nuclear magnetic resonance 
spectroscopy and mass spectrometry 
Cryptocapsin
Mass spectrometry (MS) data APCI (+): 568. Nuclear 

magnetic resonance (NMR) data: 1H-NMR cryptocapsin 

(400 MHz, CDCl
3
): δ0.84 (3 H, s, CH

3
-16′), 1.03 (6 H, s, 

H-16, H-17), 1.21 (3 H, s, H-17′), 1.37 (3 H, s, H-18′), 1.47 

(2 H, m, H-2), 1.48 (1 H, m, H
ax-4′), 1.57 (m, 1 H, H

eq-2′), 1.62 

(2 H, m, H-3), 1.68 (3 H, m, H
ax-2′, H-3′), 1.71 (3 H, s, H-18), 

1.96 (3 H, s, H-19), 1.97 (6 H, s, H-20, H-19′), 1.98 (3 H, s,  

H-20′), 2.03 (2 H, H-4, J =6 Hz), 2.52 (1 H, m, H
eq-4′), 4.51 

(1 H, m, H-3′), 6.14 (1 H, H-8), 6.17 (1 H, H-7), 6.18 (1 

H, d, H-10, J =13 Hz), 6.27 (1 H, d, H-14), 6.34 (1 H, d, 

H-14′, J =11 Hz), 6.35 (1 H, d, H-12, J =14 Hz), 6.48 (1 H, d, 

H-7′, J =15 Hz), 6.53 (1 H, d, H-12′, J =16 Hz), 6.56 (1 H, 

d, H-10′, J =11.0), 6.62 (2 H, m, H-15, H-15′), 6.63 (1 H, m, 

H-11′), 6.66 (1 H, m, H-11), 7.32 (1 H, d, H-8′, J =15 Hz) 

parts per million (ppm). 13C-NMR (100 MHz, CDCl
3
): 

δ12.8, 12.9, 13.0, 19.3, 21.4, 21.9, 25.2, 26.0, 27.1, 29.1, 

29.8, 33.2, 34.4, 39.7, 44.1, 45.4, 49.6, 50.9, 59.1, 70.5, 

72.9, 120.9, 124.1, 125.8, 129.6, 130.3, 130.8, 131.8, 133.7, 

135.4, 135.9, 136.6, 137.1, 137.8, 138.0, 140.8, 142.1, 147.0, 

203.0 ppm.

Cryptocapsin-5,6-epoxide
MS data APCI (+): 584. NMR data: 1H-NMR cryptocapsin-

5,6-epoxide (400 MHz, CDCl
3
): δ0.83 (3 H, s, CH

3
-16′), 0.93 

(3 H, s, CH
3
-17), 1.04 (1 H, m, H

ax-2
), 1.10 (3 H, s, CH

3
-16), 

1.14 (3 H, s, CH
3
-18), 1.21 (3 H, s, CH

3
-17′), 1.37 (3 H, s, 

CH
3
-18′), 1.43 (1 H, m, H-3), 1.49 (1 H, m, H

ax-4′), 1.50 (1 H, 

m, H
eq-2

), 1.70 (1 H, m, H
ax-2′), 1.72 (1 H, m, H

ax-4
), 1.89 (1 H, 

m, H
eq-4

), 1.94 (3 H, s, CH
3
-19), 1.96 (3 H, s, CH

3
-19′), 1.98 

(6 H, s, Me-20, 20′), 2.01 (1 H, m, H
eq-2′), 2.95 (1 H, dd, 

Heq-4′, J =15, 9 Hz), 4.51 (1 H, m, H-3′), 5.90 (1 H, d, H-7, 

J =15 Hz), 6.19 (1 H, d, H-10, J =11 Hz), 6.27 (1 H, m, H-14); 

6.29 (1 H, d, H-8, J =15 Hz), 6.34 (1 H, m, H-14′), 6.37 (1 H, 

d, H-12, J =15 Hz), 6.44 (1 H, d, H-7′, J =15 Hz), 6.51 (1 H, 

d, H-12′, J =15 Hz), 6.56 (1 H, d, H-10′, J =11 Hz), 6.61  

(1 H, m, H-11′, J =11 Hz), 6.63 (1 H, d, H-11), 6.65 (1 H, m,  

H-15), 6.69 (1 H, m, H-15′), 7.32 (1 H, d, H-8′, J =15 Hz) 

ppm. 13C-NMR (100 MHz, CDCl
3
): δ12.7, 12.8, 13.0, 17.1, 

21.1, 21.3, 25.1, 25.9, 26.0, 30.1, 33.1, 34.8, 35.7, 44.0, 45.3, 

50.8, 58.9, 65.5, 70.4, 71.4, 120.9, 124.1, 124.4, 125.3, 129.8, 

131.6, 131.8, 132.5, 133.7, 134.9, 135.2, 136.0, 137.2, 137.5, 

137.8, 140.7, 142.0, 146.9, 202.9 ppm.

Zeaxanthin
MS data APCI (+): 569. NMR data: 1H-NMR zeaxanthin 

(400 MHz, CDCl
3
): δ1.04 (12 H, s, CH

3
-16′, CH

3
-17′, 

CH
3
-16, CH

3
-17), 1.71 (6 H, s, Me-18′, Me-18), 1.98 

(s, Me-19, Me-20, Me-19′, Me-20′), 2.02 (m, H-4′, H-4), 

2.39 (2 H, dd, H-4, H-4′), 4.01 (2 H, m, H-3, H-3′), 6.06–6.18 

(m, H-7, H-7′, H-8, H-8′, H-10, H-10′), 6.24–6.30 (m, H-14, 

H-14′), 6.37 (d, H-12, H-12′ J =15 Hz), 6.54–6.67 (m, H-11, 

H-11′, H-15, H-15′) ppm. 13C-NMR (CDCl
3
, 100 MHz) 12.7, 

12.8, 21.5, 29.2, 29.7, 37.1, 42.5, 48.3, 65.0, 125.4, 125.5, 

126.1, 130.0, 131.2, 132.5, 137.5, 137.7, 138.4 ppm.

Figure S1 Carotenoids inhibit Aβ aggregation.
Notes: IC50 sigmoidal curves calculated by the statistical software package graphPad Prism 6 from the active compounds. graphs represent the sigmoidal curves for the IC50 
calculation of a representative experiment. results represent mean ± sD from samples assayed in duplicates.
Abbreviations: IC50, half maximal inhibitory concentration; sD, standard deviation.
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