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Abstract

Adaptive radiotherapy (ART) aims to adapt the treatment plan to account for inter-

fraction anatomical variations, based on online acquired images. However, ART workflows

are not −yet− routinely used in clinical practice, primarily due to the dramatic increase of

the workload required and the inadequate understanding of optimal methods to maximise

clinical benefit. This thesis reports on investigations of procedures for the automation of

the ART process and the identification of optimal adaptation methodologies.

Investigated auto-segmentation algorithms were found insufficient for an automated

workflow, while a hybrid deformable image registration (DIR), incorporating both intensity-

based and feature-based components, revealed the most accurate and robust performance.

An evaluation method was proposed for interfraction treatment monitoring through dose

accumulation following DIR. The robustness of several treatment methods to observable

anatomical changes were investigated, highlighting cases whereby substantial dosimetric

consequences may arise.

Offline ART workflows were explored, specifically investigating the effects of treatment

monitoring frequency, adaptation method (simple re-plan or re-optimisation addressing

cumulative dose), and adaptation timing. Contrary to simple re-planning, re-optimisation

demonstrated its ability to compensate for under-/over-dose, however, non-uniform dose

distributions and hot-spots may be generated. Therefore established planning techniques

are applicable for re-planning while advanced approaches are required for treatment re-

optimisation accounting for radiobiological consequences.
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Chapter 1

General Introduction

This chapter gives a brief introduction to the basics of cancer, the rationale for external

beam radiotherapy and the various treatment modalities. Online image guidance and

techniques potentially useful in adaptive radiotherapy workflows are also introduced, fo-

cusing on the aspects employed in the thesis. Finally, the scope and layout of the work

presented herein are outlined.

1.1 Cancer

Cell division and multiplication occurs in most tissues of the body in a controlled manner,

with a balance between new cell formation and cell death. Certain distractions of the DNA

(mutations) can lead to uncontrolled cell division and the formation of abnormal offsprings

and tissues (tumours). Tumours can be distinguished into benign or malignant. Benign

tumours are not able to spread (metastasise) nor invade other tissues, while malignant

tumours can, and are therefore characterised as cancerous. Cancer, therefore, refers to a

collection of diseases in which some of the body’s cells initiate uncontrolled cell division
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and formation of abnormal cells or tissues that are able to metastasise and invade other

tissues.

Cancer type, staging, and grading

Cancers are typically classified by the type and location of cell they originated from,

including:

• Carcinoma: Originated from epithelial cells (e.g. skin, tissues that cover internal

organs).

• Sarcoma: Originated from connective or supportive tissues (e.g. bone, muscles).

• Leukaemia: Originated from blood forming tissues (e.g. bone marrow).

• Lymphoma and myeloma: Originated from immune system.

• Blastoma: Originated from embryonic tissues.

• Melanoma: Originated from melanocytes.

Cancer staging describes the size and penetration of the tumour, if or how many lymph

nodes it invaded and whether it has metastasised, typically employing the TNM (Tumour,

Nodes, Metastases) system for solid tumour staging. Tumour grading, on the other hand,

describes the level of tumour cell abnormality observed under microscopic examination

as compared to normal cells.

The choice of potential treatment can depend on the type of cancer, its location, stag-

ing and grading, as well as the patient’s health status. Treatment types may range from

surgery, chemotherapy, radiotherapy, hormonal therapy and other options, or a combina-

tion of multiple techniques.
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1.2 External beam radiotherapy

Radiotherapy is a form of treatment which employs radiation, typically used against

cancer. External beam radiotherapy (hereafter radiotherapy) refers to the techniques

where radiation, in the form of x-rays, gamma rays or accelerated particles, is delivered

from a source outside the patient.

1.2.1 Theory

Radiotherapy aims to deliver adequate radiation dose to the tumour volume, causing

enough damage to ‘control’ −preferably kill− the tumour, while at the same time min-

imising the dose received by the surrounding healthy tissues. Normal tissue cells are

usually more efficient in repairing from radiation damage than cancerous cells, there-

fore, radiation treatment is typically delivered in a number of small fractions to further

minimise their damage, allowing healthy tissue repair.

Radiobiology and radiobiological modelling

Radiobiology is the field that studies the effects of radiation to normal and tumour cells.

Mathematical functions are often applied to patient treatment response and late effect as-

sessment results, to enable thorough analysis and modelling of future treatments −termed

radiobiological modelling. The probability a given amount of radiation, received by a

healthy organ, to cause a certain form of complication is called normal tissue complica-

tion probability (NTCP). On the other hand, the probability of eliminating all clonogenic

tumour cells at the end of the treatment with a given amount of radiation is called tu-

mour control probability (TCP). As demonstrated in Figure 1.1, such knowledge is of

great importance in order to design a radiotherapy treatment which would have a high

probability of tumour control while keeping healthy tissue complication probability at an

acceptably low level.
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Figure 1.1: Generalised dose-response curve for tumour control probability (TCP) and
normal tissue complication probability (NTCP).

One of the most widely used NTCP models is the Lyman-Kutcker-Burman (LKB)

model:

NTCP = 1/
√

2π

∫ t

−∞
exp(−t2/2) dt (1.1)

t =
Deff − TD50

m · TD50

(1.2)

Deff =

(∑
i

viD
1/n
i

)n

(1.3)

where Deff is the dose that, if given uniformly to the entire volume, will lead to the

same NTCP as the actual non-uniform dose distribution, TD50 is the uniformly delivered

dose that would result in 50% chance of complications, v is the fraction of the organ

irradiated uniformly, n is the volume effect parameter, and m is a measure of the slope

of the sigmoid curve.
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The Poisson model with Linear-Quadratic (LQ) modelling of inter-fraction cell survival

is a commonly used TCP model:

TCP = exp

{
−N0 · exp

[
−αD

(
1 +

β

α
d

)]}
(1.4)

where N0 is the initial number of clonogenic cells, D is the total dose delivered in n

equal fractions of size d, α and β are the parameters associated with the initial slope and

degree of curvature of the LQ cell survival curve.

Biologically effective dose (BED) modelling is a method that allows the translation of a

physical dose delivered to tumour or normal tissue, to the biological effect of this radiation

to the corresponding tissue. A simplified BED formula is:

BED = nd

(
1 +

d

α/β

)
(1.5)

where n is the number of fractions and d the dose per fraction.

Radiotherapy volume definitions

The international commission on radiation units and measurements (ICRU) produced

three reports −ICRU 50 [1], ICRU 62 [2], ICRU 83 [3]− which outline recommendations

on prescribing, recording and reporting photon beam therapy. These recommendations,

summarize the radiotherapy volumes as listed below and shown in Fig. 1.2.
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Figure 1.2: Radiotherapy prescription target volumes as defined by ICRU 50, ICRU 62
and ICRU 83 reports.

• Gross tumour volume (GTV): Extent of malignant tumour growth.

• Clinical target volume (CTV): Margin that encompasses sub-clinical microscopic ma-

lignant disease.

• Internal target volume (ITV): Margin around CTV to account for internal movement.

• Planning target volume (PTV): Margin that accounts for geometrical variations in the

CTV and inaccuracies in treatment delivery.

• Treated volume (TV): The volume receiving the prescribed dose (which can be larger

or smaller than the PTV) due to the inability to perfectly conform the dose to the

often complex shape of the PTV, caused by limitations of the irradiation technique.
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• Irradiated volume (IV): The volume receiving a dose considered significant in relation

to normal tissue tolerance.

• Organ at risk (OAR): Healthy tissue whose radiation tolerance may influence a treat-

ment.

• Planning organ at risk volume (PRV): Margin around OAR that accounts for geometric

variations and inaccuracies in treatment delivery.

1.2.2 Treatment modalities

Three-dimensional conformal radiotherapy

As previously discussed, the aim of radiotherapy is to deliver adequate dose to the tumour

while minimising dose to neighbouring healthy tissues. 3D conformal radiotherapy (3D-

CRT) is the term used for those radiotherapy techniques that tailor the dose to the

volumetric shape of the target. This dose conformation is typically achieved with the use

of multi-leaf collimators (MLC’s), which are collimators consisting of multiple individual

leaves whose position can be independently changed, enabling arbitrary beam shapes.

Intensity modulated radiotherapy

Intensity modulated radiotherapy (IMRT) is a form of conformal radiotherapy during

which the intensity of the delivered beam is fine-tuned (or modulated) across the beam’s

profile.

Volumetric modulated arc therapy

Volumetric modulated arc therapy (VMAT) or occasionally referred as intensity mod-

ulated arc therapy (IMAT) is an IMRT technique whereby radiation is delivered while

dynamically rotating around the patient, while dose rate and MLCs also change dynam-

ically.
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TomoTherapy R©

TomoTherapy R© is the name of a commercial product from Accuray R© (Sunnyvale, CA)

which is capable of delivering rotational IMRT treatments while the treatment couch

moves perpendicular to the treatment beam. Effectively, this equipment employs an

IMAT technique to dynamically irradiate thin slices of the patient in a helical delivery

process.

Intensity modulated proton therapy

The differences between photon and proton beam therapy lie in the fundamental physical

interactions each experiences while travelling through matter. As opposed to photons,

protons are slowed and eventually stopped, depositing the bulk of their energy at the end

of their range −called the Bragg peak, Fig. 1.3. A spread-out Bragg peak can be created

by the accumulation of a number of proton beams with different energies. Compared to

photon treatments, this can enable efficient sparing of healthy tissues found in front or

beyond the target region.

 

Figure 1.3: Schematic representation of percentage depth dose curves for x-ray photons
and protons, showing the characteristic proton Bragg peak and a spread-out Bragg peak
being the result of the accumulation of proton beams with different energies.
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Intensity modulated proton therapy (IMPT) can be delivered by spot-scanning tech-

nique. This technique incorporates thin proton ‘pencil’ beams that are steered with the

use of magnets to ‘paint’ the dose onto the target region.

1.3 Image guided radiotherapy

Typical radiotherapy practice currently involves the preparation of a treatment plan based

on an initial high resolution CT scan of the anatomy to be treated. The patient then

undergoes a treatment simulation process during which body or head immobilization

devices are custom created if required and marks or tattoos drawn on the skin. The

combination of immobilization devices, in-room laser lights and skin marks allows the

precise alignment and accurate positioning of the patient for each treatment session.

However, since the treatment and patient positioning are optimised for the anatomy on

the planning CT image, any changes in patient’s anatomy during the treatment course

itslef (which may last for up to 8 weeks) could result in a suboptimal treatment. Also,

given that laser-tattoo alignment is external, this might not reliably correlate to the

position of an internal target at any given instance.

To account for interfraction movements and positioning uncertainties, images of the

patient may be acquired immediately prior to the treatment while patient is on the treat-

ment couch, allowing localization of the internal target and repositioning as required,

thus ensuring the therapeutic beam is correctly targeted at that time. This process is

termed image-guided radiotherapy (IGRT) and can be performed either immediately be-

fore treatment or in real-time throughout treatment for dynamic motion tracking. A wide

variety of online imaging technologies have been developed over the past decade, including

radiation-based systems like electronic portal imaging detectors (EPID), cone-beam CT
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(CBCT), mega-voltage CT (MVCT); and non-radiation-based systems like ultrasound,

camera-based and electromagnetic tracking based systems [4]. The feasibility of a novel

approach for real-time portal imaging, using an optical camera and utilising the Cherenkov

emission effect has been investigated as part of this study, with the experimental proce-

dures and outcomes outlined in Appendix A (p. 169) [5].

All these systems, and especially the volumetric imaging techniques which provide 3D

visualisation of bony and soft tissue anatomy, enable accurate daily positioning of patients

based on soft tissue matching. This daily positioning is typically performed by shifting

the treatment couch which only possesses four degrees of freedom, with the exception of

certain more sophisticated equipment. It is therefore not possible to correct for certain

anatomical changes such as organ deformation and sliding motion using solely simple

couch shifts.

1.4 Adaptive radiotherapy

In 1997, Yan et al. [6] proposed the concept of adaptive radiotherapy (ART), suggesting

the adaptation of the treatment plan to account for interfraction anatomical variations,

based on online acquired images [7]. Such treatment adaptations are currently employed

in routine clinical practice when significant anatomical changes are observed, such as sub-

stantial weight loss. State-of-the-art ART, on the other hand, aims to regularly monitor

the treatment delivery and adapt when necessary (offline ART) [6]; predict the result and

alter it before −or during− the treatment of that day (online ART) [8]; or even track the

change or movement and adapt in real time (real-time ART). [9; 10]

Each of these implementations comes with its own advantages and limitations. Offline

ART can efficiently adapt to gradual changes and can only compensate for random daily
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changes, while, online ART can adapt to random changes but when progressive changes

are observed many adaptations may be required. Even though the majority of the tools and

concepts discussed in the following sections are applicable to both ART implementations,

this thesis will focus on offline techniques. A flowchart of the major processes towards a

potential offline ART workflow is shown in Fig. 1.4.

Interfraction anatomical changes can be random (e.g. level of bladder filling) or grad-

ual (e.g. weight loss) or even a combination of effects. Consequently, optimum treatment

monitoring would require frequent dosimetric evaluations and, potentially, multiple treat-

ment adaptations. Certain limitations such as the dramatic increase in workload and lack

of reliable automation tools currently prevent efficient routine monitoring of delivered

dose throughout the treatment course.

An efficient ART workflow would benefit from robust automatic segmentation solutions

which would decrease manual delineation time; fast and accurate deformable image regis-

tration solutions that would enable correct point-to-point matching of, say, the planning

CT to the daily acquired image for treatment assessment and dose accumulation, while

robust evaluation protocols would be required for quality assurance of these procedures.

Additionally, further assessment of the clinical benefit and optimization of ART workflows

is required.
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Figure 1.4: Flowchart of the major processes towards a possible offline adaptive radio-
therapy workflow, investigated in this thesis.
*: Detailed description and investigation of dosimetric treatment monitoring techniques are outlined in

Chapters 5 and 6. Procedures to assist, automate or evaluate steps towards the dosimetric monitoring

process are discussed in Chapters 2, 3 and 4.

** & ***: The two treatment adaptation techniques, simple re-plan and re-optimisation, are discussed

and investigated in Chapter 8.
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1.4.1 Automatic segmentation

Automated segmentation solutions aim to reduce the manual delineation time, increase ad-

herence to contouring guidelines, assist towards the reduction of inter- and intra-observer

variability by producing consistent starting point structures and enable further imple-

mentation of adaptive radiotherapy procedures by minimising this time-consuming inter-

vention by physicians. Auto segmentation algorithms can be identified in two general

categories: those that do not require prior knowledge and those that utilise prior knowl-

edge [11]. The first group contains threshold and active contour based algorithms which

are generally used for outer body and bone extraction. On the other hand, atlas-based,

model-based, machine learning or hybrid algorithms require prior knowledge and training.

Precise delineation of regions of interest (ROIs) has become more critical with the

widespread implementation of highly conformal dose delivery techniques, such as IMRT

and VMAT. Furthermore, repeat scanning for plan adaptation and re-optimisation when

substantial anatomical changes are observed has been proven advantageous [12; 13]. Re-

grettably, manual contour delineation is a highly time-consuming process [14], which also

suffers from crucial inter- and intra-observer variability [15; 16].

A number of commercial auto-segmentation solutions have become available in recent

years, either as standalone software or integrated to treatment planning systems, while

clinical investigations evaluated their performance [17–21]. Valentini et al. [22] recently

highlighted the importance of such software in radiotherapy and outlined a number of

recommendations for the employed evaluation procedures. The performance of several

such commercial solutions will be investigated in Chapter 2, p.27.
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1.4.2 Deformable image registration

Deformable image registration (DIR) aims to map the location of each individual voxel

in a given image to another reference image, while, in contrast to linear rigid image

registration (RIR) methods, it handles the registration task with a non-linear approach

enabling elastic voxel-to-voxel mapping between images. Following DIR, a voxel-specific

3D mathematical transformation is typically generated, containing information for the

elastic mapping of each image element to the reference image, often referred to as the

deformation vector field (DVF).

DIR algorithms are considered very important for the automation and wider application

of certain adaptive radiotherapy protocols, as the generated DVF can facilitate multiple

processes, including:

(a) Auto-segmentation: Certain auto-segmentation approaches use DIR to register an

anatomical atlas to a given image and then map the atlas contours to this image.

(b) Contour propagation: DIR can be performed between two images of the same patient,

with the manually drawn contours on one image automatically propagated to the

other.

(c) Dose mapping: The DVF following DIR between two images can be applied to the

dose distribution in order to map this to a reference anatomy, or for the dose accu-

mulation on a single frame of reference (deformable dose accumulation − DDA).

(d) Motion compensation: DIR can be applied to multiple images of the same patient

(e.g, real-time 4D imaging) to provide further information on the nature of organ

motion.

DIR algorithms can be identified in two main categories, according to their underlying

physical basis [23]: those inspired by physical models (e.g. optical flow - Demon’s [24],
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viscous fluid flow [25]); and those influenced by approximation and interpolation theories

(e.g. thin-plate spline [26], B-spline [27]), each of which have their own advantages and

limitations. A brief discussion of DIR algorithm components and some advantages and

limitations of each are outlined in Appendix B, p. 180. An exhaustive survey was recently

produced by Sotiras et al. [28].

Several techniques have been proposed in the literature for performance evaluation of

DIR algorithms, using phantoms or patient data. Physical phantoms are tools routinely

used for quality assurance in medical imaging and radiotherapy applications in clinical

settings and have, therefore, been extensively used for DIR assessment [29–36]. The

use of phantoms benefits from their practicality, ease of use and, typically, knowledge of

deformation ‘ground truth’, to which the DIR result can be compared for quantitative

evaluation. However, it is practically impossible to model in great detail every anatomic

and image acquisition factor resulting in real medical images, using a mechanical phantom.

Namely, complex anatomical variations and organ deformations, volume changes due to

weight loss or physiological processes such as rectum filling, various image acquisition

and reconstruction artefacts prevent phantoms’ ability to provide objective means of DIR

evaluation.

Patient images have been chosen by many researchers to provide sufficient realism in

evaluation conditions and seek the performance limits of the evaluated DIR [19; 37–

45]. However, use of clinical data without access to the ground truth of the observed

deformation obscures objective quantitative evaluation.

Patient images artificially deformed with known deformations has been proposed as an

alternative evaluation method, preserving both access to the ground truth and the relevant

image complexity [32; 33; 46] −sometimes referred as digital phantoms. This technique,

however, has several limitations. The realism and complexity of the artificial deformations
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may introduce bias in the evaluation procedure, if too simple or too complex and physically

unrealistic artificial deformations are introduced. Furthermore, it is difficult to properly

modify images in order to model different image acquisition parameters and random

artefacts, introducing additional sources of uncertainty, especially when attempting to

evaluate inter-modality DIR.

The evaluation frameworks can be identified in four main categories:

(a) Landmark tracking: Distance between anatomical landmarks.

(b) Image feature: Comparison of position and shape correspondence of image features.

(c) Contour comparisons: Volumetric or surface comparison of anatomical contours.

(d) Dynamic vector field (DVF): Mathematical evaluation of produced DVF to assess if

DIR was physically realistic; comparison of two DVFs (artificial deformations).

Whichever of these approaches is chosen, of great importance is the similarity metric

and statistical analysis to be employed. Certain measures are sensitive to local and others

to global differences, so it is important to identify the one that is able to highlight the

desired differences.

Deformable registration can be performed between images of the same or different

modality, such as between a planning CT and an online acquired CBCT, complicating

the registration and its evaluation methodology since each imaging modality may possess

different characteristics. In this occasion, when physical phantoms are used these can

simply be scanned using both imaging modalities in order to obtain the ground truth.

Alternatively, if digital phantoms are chosen, a method to resemble, say, a CBCT from

a CT image would be required −a technique investigated in Chapter 3, p.42. Intra- and

inter-modality DIR are investigated in Chapter 4, p. 54.
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1.4.3 Delivered dose estimation

Delivered dose estimation: rights and wrongs

On-line image guidance enables accurate positioning of patients immediately prior to

treatment (discussed in Section 1.3, p.9). Three-dimensional image guidance techniques

such as cone-beam CT (CBCT), mega-volatge CT (MVCT) and others offer good soft

tissue contrast and therefore enable better patient positioning. Moreover, these images

can be used for the estimation of potential dosimetric effects due to anatomical changes

that can not be compensated by the couch shifts during patient positioning.

The widespread incorporation of such technologies in clinical practice triggered the

investigation of dosimetric treatment monitoring and dose accumulation techniques, and

subsequently treatment adaptation if required.

The often synonymous terms “dose mapping” [47; 48], “dose deformation” [49] and

“dose warping” [50–52] have recently become apparent in the literature as a means of

performing inter-fraction treatment monitoring or dose accumulation [53–58]. All three

terms usually refer to the process of mapping a dose distribution associated with one image

to another image (or frame of reference), typically following DIR between the two images.

On the other hand, dose accumulation or deformable dose accumulation is the application

of dose mapping of several instances of a patient’s treatment to a single frame of reference,

followed by a summation or accumulation of these dose distributions. However, a thorough

reading of the literature can reveal subtle but important discrepancies in how these terms

are practically employed for dose of the day calculation and inter/intra-fraction dose

accumulation: one method is to recalculate the dose using a representation of the daily

anatomy (usually a CT, CBCT or MVCT scan or even a planning CT deformed to much

the daily anatomy as observed in the on-board acquired image) −or each phase of a

4-dimensional scan [53; 59; 60]; a second method (which is later shown to be wrong)
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is to directly warp the original dose distribution according to the observed anatomical

deformation (i.e. no dose recalculation step involved) [55–58]. This inconsistency observed

in the literature is investigated in Chapter 5.1, p.69.

Actual delivered dose estimation using online CBCT scans

Kilovoltage CBCT (kV-CBCT) technology is integrated on many clinical linear accelera-

tors and can be used for dosimetric treatment monitoring. Dose calculations require accu-

rate determination of the relationship between image Hounsfield unit (HU) and material

electron density, employing the so-called HU-to-density curves. This is easily achieved

with modern CT scanners dedicated for radiotherapy treatment planning procedures.

However, the use of kV-CBCT for such calculations is hindered by their lower image

quality.

Many authors investigated techniques to overcome the inferior image quality and enable

direct dose calculations on kV-CBCT scans [61–64] or a representation of the anatomy

in these images [60; 65]. A review of the literature has been performed herein, and the

proposed techniques repeated to identify the method of choice to be used in the following

studies.

Phantom based HU-to-density curves A common method for the creation of HU-

to-density curves for the planning CT images is the use of tissue equivalent phantoms with

various regions of known electron density. This procedure involves the CT scan acquisition

of the phantom of choice and the association of image HU to the known density from each

region of the phantom. Similarly, CBCT scans of a phantom can be acquired with the

HU in the acquired images used to create the CBCT specific HU-to-density curves.

Two commercial phantoms have been employed in the literature, the Catphan R© (The

Phantom Laboratory, Salem, NY) and Gammex RMI R© (Gammex 467, Gammex, Middle-

ton WI) [61; 64; 65], creating a separate HU-to-density curve for each choice of scanning
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parameters used. The creation of CBCT-parameter-specific curves for each phantom in

these studies resulted in IMRT dose calculations with accuracy of 97.5% to 99.0% as

compared to dose calculations on planning CT images [61; 64; 65].

The advantage of this method is that the same workflow is applicable for the calcu-

lation of HU-to-density curves for both planning CT and CBCT images, while no user-

subjectivity is introduced. However, the image quality of CBCT scans is influenced by

the size of the imaged object and the scanning parameters used, introducing uncertainties

in the choice of best HU-to-density curve.

Bulk density override Density override techniques typically involve the segmen-

tation of a small number of tissues in the CBCT image and the override of their image

values with the know HU of certain materials. In one such approach, Fotina et al. [64],

performed automatic segmentation based on grey value thresholds, separating the CBCT

images into three sections: tissue, air, bone. These sections were then overridden by the

HU of water, air and bone, respectively. Their dose calculations revealed slightly bet-

ter accuracy as compared to the results following phantom based HU-to-density curve

generation.

The complexity, and potentially accuracy, of density override techniques can increase

with the segmentation of more tissue types. On the other hand, these techniques require

more manual interventions or alternatively the reliance on auto-segmentation algorithms.

Patient/tissue based HU-to-density curves HU-to-density curves may be cal-

culated from patient CT and CBCT data [61; 64]. In this approach, volumes of interest

are drawn in nearly homogeneous density areas within certain anatomical regions in both

CT and CBCT images. Based on the HU-to-density relationships determined from the

CT data, the respective CBCT relationships can be derived.

DIR based density mapping Taking advantage of the optimised dose calculations

on planning CT quality images, an alternative option is the deformable registration of
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the CT image to the online acquired image, here the online CBCT, and the calculation

of dose on the registration result (‘Dose Recalc’ method in Section 5.1.1, p. 71) [60; 65].

This technique can be fully automated but the dose calculation accuracy would depend

on the registration accuracy.

The techniques described above are evaluated and compared in Chapter 5.2, p. 84.

1.4.4 Dose warping for accumulation

Estimation of actual delivered dose during a radiotherapy fraction, can provide important

information on the dosimetric consequence of individual inter-fraction anatomical changes.

Thorough treatment monitoring would require accumulation of these dose distributions

on a single frame of reference, for the identification of cases where treatment adaptation

is required. This procedure requires a robust mapping of each anatomical point on the

online-acquired image to the reference anatomy and the subsequent mapping of daily dose

distributions.

Deformable image registration (DIR) algorithms are essential for the accurate imple-

mentation of these processes, considering all degrees of freedom of underlying anatomical

changes. The accuracy of DIR algorithms is therefore of critical importance and has been

the subject of investigation by several researchers, as discussed in Chapter 4, p. 54.

Dose warping and deformable dose accumulation have been employed in a number

of clinical investigations, including a dose feedback technique in adaptive radiotherapy

frameworks [66], the assessment of planning target volume (PTV) margins [67] and the

examination of parotid gland dose-effect relationships [68], based on dose distributions

recalculated on daily or weekly scans and the accumulation on a single frame of ref-

erence. Consequently, quality assurance and evaluation techniques have been investi-

gated in order to validate the applicability of this dose warping concept. Previous work
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has investigated mathematical models to directly convert DIR errors into dose warp-

ing uncertainties, through the use of patient images and mechanical or digital phantoms

[38; 47; 48; 69; 70], while a number of deformable dosimetric and non-dosimetric gel

phantoms have been produced enabling the experimental evaluation of both DIR and

dose warping [49; 50; 52; 71; 72]. Even though some of these studies revealed promising

results, they have not convinced the radiotherapy community that these uncertainties are

adequately understood [51].

Such studies, and especially the use of deformable dosimeters for the evaluation of

dose warping, are very important as they can reveal the 3D dosimetric impact due to

uncertainties of a given DIR algorithm. However, they possess three important limita-

tions: Firstly, typical physical dosimetric phantoms present limited image complexity and

would not assess the performance limits of the DIR algorithm under evaluation in clinical

scenarios. Second, plan delivery, intrinsic dosimetric and dose reading uncertainties are

present when using any type of dosimeter in physical phantom measurements. The third

limitation is the fact that even where such approaches can offer high precision dosimetric

uncertainty evaluation, they cannot directly inform users about the potential extent of

those uncertainties in practical clinical cases. These issues are addressed in Chapter 6, p.

92.

1.4.5 Plan robustness to anatomical changes

Implementation of inter-fraction dosimetric treatment monitoring workflows in routine

clinical practice requires substantial time and capital investments. Specialised software

are required to assist in a semi-automated workflow with subsequent costs and require-

ments for training of all users. As discussed previously, procedures including automatic

segmentation, deformable image registration, delivered dose estimation and dose warping
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for accumulation can assist towards an efficient treatment monitoring and subsequently

offline ART workflow, nevertheless, physicists and clinicians need to perform thorough

evaluations and establish robust quality assurance procedures.

On the other hand, certain clinically observable anatomical changes may visually seem

considerable but may not result in a clinically critical dosimetric change. Moreover, the

same anatomical change can have a dissimilar dosimetric impact to different treatment

techniques, depending on the properties of radiation involved (e.g. photons vs particle

radiotherapy) or the delivery method (e.g. step-and-shoot vs rotational vs helical).

It is therefore necessary to investigate the importance and necessity of inter-fraction

treatment monitoring and subsequently treatment adaptation for individual cohorts of

patients and treatment techniques. In some of these cases, simple adjustments, consid-

erations or additional constraints to the original plans could make them more robust to

the most common anatomical changes. For the cases were no further optimisations are

available, dosimetric treatment monitoring and treatment adaptations can be beneficial.

These issues are addressed in Chapter 7, p. 107, were the robustness of several treat-

ment plans is assessed under clinically realistic anatomical changes.

1.4.6 Offline adaptive radiotherapy implementations

Offline ART aims to monitor treatment and if a substantial patient-specific change occurs,

adapt the plan for the following fractions. For the implementation of such workflows

three steps need to be decided, based on the available tools, online imaging technique

and other resources. These are: (a) the type of observation that would trigger the need

for treatment adaptation, if any (i.e. anatomical or dosimetric), (b) the details of the

re-planning procedure and (c) adaptation timing and frequency.
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Observation

Observation of anatomical change that would trigger plan adaptation or just further

investigation can be acquired in three ways:

• Clinical observation: When a change is observed or suspected clinically, as for

example substantial weight loss or change of a superficial or palpable tumour.

• Observation on image: When a change is observed on a repeat CT scan or an

online acquired image [12].

• Dosimetric triggering: When a dosimetric change is observed based on recal-

culation of the original plan on a repeat CT or online acquired image [73]. This

dosimetric trigger may come from a single dosimetric evaluation or following accu-

mulation of ‘daily doses’ on a single frame of reference.

Re-planning methodology

For the generation of a new plan one of two options is to be chosen:

• Simple re-plan: New plan creation based on new anatomy, aiming to make subse-

quent fractions deliver the intended dose without considering what dose was actually

delivered up to the point of adaptation.

• Re-optimisation addressing cumulative dose: Re-plan with the same end-

point dosimetric targets as the original plan while addressing the actual delivered

dose up to the point of adaptation, to compensate for potential underdose of target

regions and/or overdose of organs at risk.

When and how often to adapt

Action levels and frequency of adaptation may be affected by both the clinical significance

of observed differences and the available resources. The plan might only be adapted when
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substantial change has been observed, or, it may be adapted as many times as required.

However, in cases of a clinical trial environment, a research study [74] or a hospital with

limited resources, the time and frequency of adaptation may need to be pre-defined.

The influence of each of these steps to actual clinical scenarios of prostate cancer treat-

ments is investigated in Chapter 8, p. 130.

1.5 Scope and layout of work

Inter- and intra-fraction anatomical changes during the course of external beam radiother-

apy can lead to sub-optimal treatment outcomes. Adaptive radiotherapy workflows can

restore or re-optimise the treatment based on the observed anatomical changes. However,

ART is not −yet− routinely used in clinical practise. Some of the main reasons that

hinder wider implementation of ART workflows are: the dramatic increase of workload

required; lack of robust and reliable means of automation; insufficient understanding of

uncertainties involved in certain procedures and methods of assessing these uncertainties;

and inadequate understanding of the optimal methods to maximise clinical benefit. The

aim of this thesis is to assess the steps involved towards a clinically efficient offline ART

workflow, while investigating further evaluation techniques.

Chapter 2 evaluates several commercial auto-segmentation solutions against inter-observer

variability in an attempt to identify their fitness for incorporation into a semi-automated

ART workflow without or with minimal manual intervention.

Chapter 3 evaluates a tool which allows the simulation of CBCT images from CT

datasets, which would be a valuable tool for the evaluation of certain procedures towards

an ART workflow; such as auto-segmentation on CBCT scans, DIR between CT and

CBCT images and others.
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Chapter 4 outlines the evaluation of DIR algorithms in both CT-to-CT and CT-to-

CBCT registration, while further discussion of DIR algorithms is outlined in Appendix B.

Such algorithms are of great importance in offline ART workflows as they can facilitate

auto-segmentation and inter-fraction dose accumulation by determining voxel-to-voxel

correspondence between two images.

Chapter 5 investigates an important inconsistency observed in the literature regarding

the use of DIR algorithms for the estimation of actual delivered dose at a radiotherapy

fraction and examines methods for the calculation of daily delivered dose using on-line ac-

quired CBCT scans. A method for the validation of dose warping is proposed in Chapter

6 and used for the evaluation of a commercial algorithm. The dosimetric consequences of

observed anatomical changes can be reliably inspected with accurate dosimetric monitor-

ing and allow for informed decision regarding potential treatment adaptation.

Chapter 7 examines the robustness of several treatment techniques to clinically ob-

servable anatomical changes, in an attempt to identify the combinations of treatment

techniques and anatomical changes more likely to result in clinically important dosimet-

ric alterations.

The findings of previous chapters are incorporated in Chapter 8 which explores work-

flows towards offline ART, concentrating on the investigation of the effects of treatment

monitoring frequency; the particular method of plan adaptation (i.e. simple re-planning

or re-optimisation accounting for cumulative dose); and adaptation timing.

Finally, Chapter 9 outlines the general outcomes and conclusions of this doctoral thesis,

along with discussion on potential future directions.

Supporting work performed during the PhD period can be found in appendices. Ap-

pendix A describes the investigation into the feasibility of real-time Cherenkov emission

portal imaging during radiation therapy using an optical camera [5]. This technique is
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of particular importance in radiotherapy techniques that lack alternative portal imaging

options, such as Cyberknife R©.

Appendix C outlines the experimental investigation for the production of a patient-

specific 3D printed phantom.
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Chapter 2

Automatic Segmentation

This chapter outlines the evaluation of multiple commercial solutions for automatic seg-

mentation in head-and-neck and male pelvis anatomy against inter-observer variability.

The preliminary results of this study have been presented at the 3rd ESTRO Forum [75]

and UKRO 2015 conferences.

Manual segmentation of regions-of-interest is a highly time consuming process per-

formed by clinicians before treatment planning can proceed. Adaptive radiotherapy often

involves the preparation of a new plan on a newly acquired CT requiring a new manual

segmentation. Accurate and robust auto-segmentation solutions could dramatically re-

duce manual delineation time, therefore, enabling wider clinical implementation of ART.

2.1 Evaluation of multiple auto-segmentation solu-

tions

This study aimed to quantitatively evaluate the accuracy of several commercial auto-

segmentation algorithms for head-and-neck (H&N) and male pelvis anatomies −on CT
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datasets− and compare them against inter-observer variability in terms of spatial accu-

racy, to identify their suitability for clinical use without or with minimal manual inter-

vention.

2.1.1 Methods

Data selection

Twenty four radiotherapy planning CT scans, 12 of H&N and 12 of prostate cancer pa-

tients, were randomly selected for the evaluation of several auto-segmentation solutions.

Gold-standard contours for use in this study were drawn by a senior site-specialist consul-

tant. A further 30 H&N and 15 prostate patient planning CT datasets were selected, the

main regions of interest (ROI) contoured and reviewed by a senior site-specialist consul-

tant, for use as the atlas datasets for the atlas-based auto-segmentation algorithms used

in this study. All CT scans were acquired on a Philips Brilliance Big Bore scanner and

had a slice thickness of 3 mm while H&N patient scans were contrast enhanced.

Auto-segmentation algorithms

Five different auto-segmentation algorithms from four commercial software solutions have

been evaluated in this study:

(a) OnQ rts 2.0 (OSL, Shrewsbury, UK)

(b) Atlas-based segmentation in RayStation 4.5 (RaySearch, Stockholm, Sweden) (RaySta-

tion ABS)

(c) Model-based segmentation in RayStation 4.5 (RayStation MBS)

(d) Smart probabilistic image contouring engine (SPICE) in Pinnacle3 9.8 (Philips, Madi-

son, WI)
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(e) AutoSegment in MultiPlan 5.0 (Accuray, CA)

The auto-segmentation module in OnQ rts employs an atlas-based framework with user

defined atlases. The algorithm picks the best matching atlas based on mutual informa-

tion criterion [76], and specifically by comparing the digitally re-contracted radiographs

(DRRs) of the image and each atlas. Rigid followed by deformable image registration

(DIR), using an intensity-based ‘Demons’ algorithm [24; 32; 77; 78], is then performed

between the atlas and the CT scan to be auto-contoured, with the organ outlines trans-

ferred to the new anatomy after a post-processing step. The Demon’s DIR algorithm is

based on the Maxwell’s Demons model of the diffusion process. The image boundaries

are seen as membranes through which the image diffuses under the influence of demons

forces, utilising image-intensity similarity metrics.

RayStation offers both atlas-based and model-based segmentation algorithms. The

atlas-based algorithm requires user defined atlases, which for this work were identical

to those in OnQ rts. This algorithm identifies the best matching atlas through rigid

registration. Deformable registration (DIR) is then performed between the chosen atlas

and the CT image. The deformation matrix computed during the DIR process is then

applied to the contours associated with the atlas dataset and mapped to the CT image.

In the model-based RayStation algorithm a number of organ models are offered by

the software. Each shape model has been created by an average of 10-50 expert drawn

contours while the main shape variations have been identified by statistical analysis. The

algorithm adjusts the models to match the underlying anatomy using rigid and deformable

registration, without violating the shape constraints included in the model. Following

model-based auto-segmentation, the user may manually add ‘hint contours’ in order to

drive the segmentation in areas of poor result (RayStation MBH h).
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SPICE algorithm combines atlas-based and model-based segmentation, with non user-

defined atlases and multiple steps of DIR. Two pipelines are employed, one for thorax

and H&N [79–81] and another for abdominal and prostate anatomies. It should be noted

that SPICE produces multiple contours for certain organs, namely three sets for parotids,

and two for prostate and rectum. For the purpose of the evaluation, the best matching

set for each patient case was chosen.

AutoSegment in MultiPlan is a semi-automatic model-based algorithm, with manually

defined initialisation points required for the auto-segmentation to proceed. The user is

asked to place a minimum number of initialisation points in specific areas to identify the

area covered by each organ. The algorithm copies the pre-defined organ models to the

image, based on the location of the initialisation points and adjusts the model based on

these points and surrounding image intensity values. It does not currently support H&N

auto-segmentation and was therefore only evaluated here for the male pelvis region. The

required initialisation points used here were defined by a specialist radiographer.

It should be noted that parameters such as registration resolution in all ABS algorithms

and flexibility of models in MBS algorithms, which can be adjusted by the user, were kept

to the default values.

As the main purpose of auto-segmentation procedures in clinical practice are labour and

time saving, the manual procedures required for MultiPlan and optimisation of results

in RayStation MBS h were kept to a minimum. Specifically, for auto-segmentation in

MultiPlan, 14 initialisation points were defined in prostate and 12 in seminal vesicles,

requiring 1-2 minutes. On the other hand, addition of hint contours following model-

based segmentation in RayStation was limited to bladder and rectum in the male pelvis

region, and spinal cord in the H&N region requiring 2-3 (mean: 2.5) and 2-5 (mean: 4)

minutes, respectively.
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The datasets were also manually re-contoured by two additional observers to quan-

tify inter-observer variability against the ‘gold-standard’. The observers were all site-

specialists, with experience ranging from senior consultants to experienced registrar and

an experienced radiographer, all of whom are trained and responsible for manual contour-

ing in the clinical setting at our institution. To strike a balance between relevance and

operator time, manual re-contouring was limited to the most critical regions of interest

in each investigated anatomy, namely brainstem, spinal cord and parotids in H&N, and

bladder, prostate and rectum in male pelvis.

Evaluation

The evaluation of auto-segmentation results was performed by calculating the absolute

volumetric differences, the volume-wise and slice-wise Dice similarity coefficient (DSC)

and mean distance to conformity (MDC) indices, considering the original manually drawn

contours as the reference. DSC is defined as:

DSC =
2|VA ∩ VR|
|VA|+ |VR|

(2.1)

where VA is the auto-segmented volume and VR is the reference volume (Fig. 2.1).

DSC can take values between 1 and 0, with 1 revealing perfect overlap and 0 indicating no

overlap at all between the two contours. Good agreement is generally considered for values

between 0.6 and 0.8, while values above 0.8 indicate near excellent agreement [82]. MDC

is defined as the mean distance that all outlying points in VA must be moved in order to

achieve perfect conformity (overlap) with VR [83] and is measured in units of distance, i.e.

mm, (Fig. 2.1). The volume-wise analysis considers the contours as three-dimensional

volumes while slice-wise analysis only compares the underlying volumes in each slice where

both are present, ignoring mismatch in the z-direction. Volumetric analysis was performed

using ImSimQA software (Oncology Systems Limited, Shrewsbury, UK).
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Figure 2.1: Schematic diagram demonstrating how the Dice simularity coefficient (DSC)
and mean distance to conformity (MDC) are calculated.

The two-sided non-parametric Wilcoxon rank-sum test has been employed for exami-

nation of statistical significance in the slice-wise MDC differences. Mean inter-observer

MDC was compared against each individual algorithm as well as against the mean MDC

of atlas-based (OnQ rts, RayStation ABS), model-based (RayStation MBS, SPICE) and

semi-automatic model-based (RayStation MBS h, MultiPlan) algorithms. Similar algo-

rithms were also compared against each other.

2.1.2 Results

H&N patients

Figure 2.2 shows the mean (± standard deviation) volume-wise DSC and MDC absolute

volumetric differences for the commercial algorithms under evaluation, and inter-observer

variation across all 12 H&N datasets.

The slice-wise MDC for the H&N ROIs across the full cohort, together with statistical

significance of observed differences against mean inter-observer variability are shown in

Figure 2.3.

32



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Brain Brainstem Cord Mandible Parotids Globes

D
SC

Dice Similarity Coefficient (DSC)                       a.

0

5

10

15

20

25

30

Brain Brainstem Cord Mandible Parotids Globes

M
D

C
 [

m
m

]

Mean Distance to Conformity (MDC) b.

OnQ rts RayStation ABS RayStation MBS

Pinnacle SPICE Clinician 1 Clinician 2

0

4

8

12

16

Brain Brainstem Cord Mandible Parotids Globes

V
o

l. 
D

if
f. 

[m
l]

Volumetric Difference (Vol. Diff.)                      c.

Figure 2.2: a. Mean and standard deviation of Dice similarity coefficient (DSC), b.
mean distance to conformity (MDC), c. absolute volumetric differences for head-and-
neck region.
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Figure 2.3: Mean distance to conformity (MDC): mean inter-observer variability (Ob-
server) against individual algorithms and mean of atlas-based (ABS) and model-based
(MBS) algorithms for a. brainstem, b. spinal cord, and c. parotids. * denotes P -
values following comparison against inter-observer variability (*:P 6 0.05; **:P 6 0.01;
***:P 6 0.001)

Figure 2.4 shows the slice-wise MDC histograms as calculated for brain, brainstem,

spinal cord, parotids and mandible contours, respectively. These histograms reveal the

percentage of slices in which a given MDC was observed throughout all test cases. They

are presented in logarithmic scale while only revealing the observed errors in 90% of the

examined slices in order to highlight the most relevant differences between the evaluated

algorithms in terms of likely subsequent manual correction. Figure 2.4d includes an addi-

tional curve which represents the improvement seen after the introduction of hint contours

following RayStation MBS.
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Figure 2.4: Slice-wise mean distance to conformity (MDC) histograms for a. brain, b.
brainstem, c. parotids, d. spinal cord, and e. mandible, across all test cases.
(e.g. for brain the histogram shows that 80% of slices gave an MDC of 6 4 mm for OnQ rts and

RayStation ABS, with MDC of 6 3 mm for RayStation MBS and SPICE.)
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Prostate patients

Figure 2.5 shows the mean (± standard deviation) volume-wise DSC, MDC and absolute

volumetric differences for the commercial algorithms under evaluation and inter-observer

variation, for all 12 male pelvis datasets. The slice-wise MDC and statistical significance

against inter-observer variation for the male pelvis ROIs are shown in Figure 2.6. Figure

2.7 shows the slice-wise MDC histograms as calculated for bladder, prostate, and rectum

contours, respectively.

Of the two atlas-based algorithms in H&N cases, OnQ rts revealed significantly lower

MDC (i.e. better agreement with the gold-standard observer) in brain (P < 0.001), spinal

cord (P < 0.001) and mandible (P < 0.001) with significantly higher MDC in brainstem

(P < 0.001). For prostate cases, RayStation ABS exposed significantly higher MDC in

bladder (P < 0.001) while significantly lower in prostate (P < 0.01).

Of the two fully automated model-based algorithms under evaluation, RayStation MBS

and SPICE, the latter revealed significantly lower MDC in brain (P < 0.05), brainstem

(P < 0.001) and parotids (P < 0.001) for H&N cases and rectum (P < 0.001) for prostate

cases.

Comparing the semi-automatic algorithms, RayStation MBS h and MultiPlan, with

minimal time spent for manual intervention, RayStation MBS h revealed significantly

lower MDC in bladder (P < 0.001) with significantly higher MDC in prostate (P < 0.001)

and rectum (P < 0.001).
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Figure 2.5: a. Mean and standard deviation of Dice similarity coefficient (DSC), b. mean
distance to conformity (MDC), c. absolute volumetric differences for male pelvic region.
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Figure 2.6: Mean distance to conformity (MDC): mean inter-observer variability (Ob-
server) against individual algorithms and mean of atlas-based (ABS), model-based (MBS)
and semi-automated MBS (Semi-auto) algorithms for a. bladder, b. prostate, and
c. rectum. * denotes P -values following comparison against inter-observer variability
(*:P 6 0.05; **:P 6 0.01; ***:P 6 0.001)
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Figure 2.7: Slice-wise mean distance to conformity (MDC) histograms for a. bladder, b.
prostate, and c. rectum, across all test cases.
(e.g. for prostate the histogram shows that 80% of the slices gave an MDC of 6 5.5 mm for OnQ rts and

RayStation ABS, with of 6 3.5 mm for the other algorithms.)
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2.1.3 Discussion

Performance of various commercial auto-segmentation algorithms has been assessed by

spatial comparison of the resulting contours against manually drawn gold-standard con-

tours produced by senior site-specialist consultants, employing the volume-wise DSC and

MDC, slice-wise MDC metrics and absolute volumetric differences. The observed uncer-

tainties were also compared against inter-observer variability, using observers with a range

of expertise representative of that found in many clinics (i.e. suitably trained and per-

forming manual contouring in the clinical setting). This approach is intended to represent

the extent of inter-observer variability in busy radiotherapy departments.

Volume-wise DSC provides a measure of volume overlap but is prone to averaging

effects when compared volumes are either too big or too small relative to the differences

between them. Volume-wise MDC exposes the mean surface-to-surface distance between

two volumes in three dimensions, but may overestimate the contour mismatch in cases

where one of the volumes is either shorter or longer. This is particularly important in

organs like the spinal cord and rectum, where, depending on the institution’s internal

guidelines, contour lengths may vary. Therefore, even though the slice-wise MDC also

employed here ignores differences in superior and inferior directions, it provides detailed

information for the mismatch in the transverse plain, which is arguably the most relevant

in terms of reducing clinician delineation time as this process takes place primarily in the

transverse plane.

A limitation of this study is the use of contours that have been manually drawn by

a single observer as the ’gold-standard’ contours. It could be argued that a commonly

approved delineation by two or more consultants would be a more appropriate and bias-

free method, however, the generally low inter-observer variability observed herein may

justify this choice. Besides, evaluating several auto-segmentation software solutions in
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terms of spatial accuracy, the aim of this study was the comparison of their uncertainty

to inter-observer variability. Under the assumption that a finite inter-observer variability

typically exists, it is herein considered the benchmark.

Furthermore, since the primary aim of auto-segmentation solutions is to save manual

delineation time required by clinicians, it could be argued that this time saving should

be quantified during the evaluation of such algorithms. To do this, clinicians would need

to calculate the time required for manual correction of automatically generated contours.

This investigation was not performed primarily due to limited availability of clinicians,

but also due to the potential bias introduced due to the limited familiarity of clinicians

in ‘correction tools’. Most clinicians have years of experience in manual delineation tools

offered by clinical software, while only occasionally use the correction tools to amend

certain errors. Moreover, manual delineation is occasionally performed in alternate slices

with automatic tools employed for interpolation of the discontinuous contours. On the

other hand, the correction of automatically drawn contours would need to be performed

in every image slice.

Due to the same reasoning, specific values of percentage of slices with a given MDC that

would indicate clinical efficacy in performing manual corrections could not be objectively

identified. It could even be argued that small errors of the order of 1-2 voxels (i.e. 1-3

mm) could be overlooked when evaluated by specialist clinicians, especially in areas of

low contrast.

As mentioned previously, the time spent for the introduction of initialisation points in

MultiPlan and hint contours in RayStation MBS h was restricted, so further gains may

be possible if additional time were taken, but would also hinder the potential time saving.

Adaptive radiotherapy workflows have been shown to be advantageous for H&N and

prostate cases [12; 13], but this can involve re-planning on follow-up CT scans, thereby dra-
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matically increasing the required time for manual organ delineations. Auto-segmentation

algorithms capable of producing results with uncertainties comparable to inter-observer

variability could therefore be used with minimal manual intervention, enabling wider im-

plementation of treatment adaptations. This study has shown that some algorithms are

close to this target for specific structures but that substantial further improvements are

required before this becomes a clinical reality.

2.1.4 Conclusions

A range of auto-segmentation solutions for H&N and male pelvis anatomy have been

evaluated with certain algorithms suggesting comparable uncertainties to inter-observer

variability for specific anatomical structures. However, the generally inferior performance

of these algorithms suggests that further improvements are required before their applica-

tion can progress from reducing clinician delineation time to facilitating semi-automated

treatment planning and adaptive radiotherapy workflows.
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Chapter 3

Cone-beam CT Simulation

This chapter describes the evaluation of a tool that simulates CBCT images out of CT

datasets, offered by a commercial product (ImSimQA, OSL, UK). The results of this

study have been presented at UKRO 2013 conference.

An accurate and robust CBCT simulation tool would be valuable for the evaluation of

certain procedures towards a semi-automated adaptive radiotherapy workflow, introduc-

ing into the evaluation the additional complexity posed by these images while preserving

the ‘ground truth’. Evaluation procedures such a tool may facilitate include: automatic

segmentation of CBCT images, deformable registration between CT and CBCT datasets,

dose calculations on CBCT scans or deformable dose accumulation from an on-line ac-

quired CBCT to a reference CT.
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3.1 Evaluation of cone-beam CT simulation from CT

datasets

This study evaluated a tool, offered by ImSimQA software, that allows simulation of

CBCT images out of CT datasets by introducing various levels of noise, filtering and

cropping original images according to specified field-of-view. Specifically, the similarity

of simulated CBCT images out of CT datasets as compared to actual CBCT scans was

qualitatively and quantitatively assessed.

3.1.1 Methods

CBCT simulation in ImSimQA

The CBCT simulation module in ImSimQA includes two steps, the addition of noise and

the definition of field-of-view (FOV). The CBCT noise generator has 3 components. First,

a Gaussian noise pattern is added for which the user can control its parameters (mean

value and standard deviation of the noise). Second, a ring noise pattern is used as a

texture generating filter −to make the image intensity darker or brighter, for which the

user can control its intensity. The third component combines and processes the combined

pattern. A cylindrical FOV mask is then used to define the new CBCT FOV, the diameter

of which can be controlled by the user.

Data collection

Computed tomography (CT) and CBCT scans of a Catphan R© phantom (The Phantom

Laboratory, Salem, NY) were acquired on a Philips Brilliance (Philips Healthcare, Nether-

lands) and an Elekta Synergy R© equipped with an X-ray volumetric imaging devise (XVI)

(Elekta AB, Sweden). The CT and CBCT scans were acquired with the standard in-house

43



protocol for head-and-neck (H&N) imaging and daily image guidance, respectively. For

CBCT scanning the S20 collimator, F0 filter (i.e. no filter) and Small field-of-view panel

position were employed, acquiring two identical repeat scans with the isocentre positioned

in the centre of the CTP404 module section of the phantom and a third acquisition with

the phantom offset by 50 mm superiorly in the scan plane. Furthermore, a CT scan and

three daily on-board CBCT scans of a H&N and a prostate cancer patient were randomly

selected.

The CT images of the Catphan R© phantom and the patient scans were then imported

into ImSimQA, where varying levels of ‘CBCT’ and Gaussian noise were added. During

the noise addition process, visual comparison of the artificial CBCT images (aCBCT)

and the original CBCT scans was being performed. Five aCBCT images with different

combinations and levels of noise passed the visual assessment and were used for further

evaluation.

Under the assumption that the random photon noise is the only source of noise during

CT imaging, Brooks et al. [84] proposed a formula for the estimation of dose delivered to

the centre of a cylindrical object (D) as a function of the signal-to-noise ratio (SNR), the

slice thickness (b), and the spatial resolution (ε) of the resulting image:

D ∝ (SNR)2

ε3b
(3.1)

Quantitative analysis

To enable a quantitative evaluation of the CBCT simulation results a number of image

quality measures employed in the literature were used [85; 86]:
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Contrast-to-noise ratio (CNR):

CNR =
CT insert − CT background

σbackground
(3.2)

Low contrast visibility (LCV):

LCV = 6.5/
CT polystyrene − CTLDPE

(σpolystyrene + σLDPE)/2
(3.3)

Uniformity index (UI):

UI = |CT periferal ROI − CT central ROI | (3.4)

Signal-to-noise ratio (SNR):

SNR =
CT insert

σinsert
(3.5)

Noise percentage (σ%):

σ% =
σbackground

CT background − CT air

· 100% (3.6)

where CT is the mean pixel value and σ the standard deviation of pixel values within

a certain region of interest (ROI).

Relatively high levels of noise and non-uniformity are typically observed in CBCT

images and therefore some of the above quality measures can be affected by the choice of

ROI within the background. In order to expose the range of potential values due to this

uncertainty, multiple calculations were made for some quality measures using different

regions in the background.
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Additional qualitative evaluation was performed by plotting the profiles of original (CT

and CBCT) and artificial images through certain slices in the uniformity (CTP486 Mod-

ule) and sensitometry (CTP404 Module) regions of the Catphan R© phantom, shown in

Figure 3.1 and regions in the patient datasets.

Figure 3.1: The two modules of the Catphan R© phantom used during the analysis

The analysis was carried out with the use of the open source software ImageJ. All

images were loaded to ImageJ and circular ROIs manually drawn in the middle of certain

phantom inserts and the background. The drawn ROIs had smaller radius (80 mm) than

the inserts (120 mm) to ensure they would be completely contained within the inserts.

ImageJ macros were then used for the calculation of mean and standard deviation of pixel

values within each ROI.

In the patient cases, rectangular ROIs were drawn spanning laterally in a central trans-

verse plane slice (yellow regions seen in Fig. 3.6, p. 50, and Fig. 3.7, p. 51). The analysis

in these cases was restricted to the qualitative evaluation using profile plots through the

ROI regions. This was to avoid uncertainties due to potential misalignment of small ROIs,

the positioning of which in different images would not be reproducible.
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3.1.2 Results

Catphan R© phantom

Figure 3.2 shows the CNR values calculated for polystyrene and low-density polyethy-

lene (LDPE) inserts against the background. Figure 3.3 shows the LCV, UI, SNR and

percentage noise values for the measured and artificial CBCTs. These results reveal that

variations in objective quantitative image quality metrics in the artificial CBCT images

were within the range established by the measured CBCT scans.
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Figure 3.2: Contrast-to-noise ratio (CNR) values for the polystyrene and low-density
polyethylene (LDPE) inserts as calculated for the 3 measured CBCT scans and 5 artificial
CBCTs (aCBCT). Three CNR values were calculated for each image using 3 regions in
the background.
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Figure 3.3: a. Low contrast visibility (LCV), b. uniformity index (UI), c. signal-to-noise
ratio for the teflon insert, and d. percentage noise values as calculated for the 3 measured
CBCT scans and 5 artificial CBCTs (aCBCT). Multiple values were calculated for UI and
percentage noise in each image using different regions in the background.

Figure 3.4 shows profile plots through the sensitometry region of the Catphan R© phan-

tom for the original CT, the 3 measured CBCTs and one of the artificial CBCTs. These

plots demonstrate representative CBCT simulations, particularly in the central region.

The inclusion of the profile plots for the original CT scan highlights the changes intro-

duced by CBCT noise simulation. Figure 3.5 shows profile plots through the uniformity

region, exposing a slight systematic deviation from measurement at the periphery of the

phantom.
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Figure 3.4: Profile plots through the sensitometry region (CTP404 Module) of the
Catphan R© phantom as calculated for the original CT (pCT), the 3 measured CBCTs
and one of the artificial CBCTs (aCBCT) images.
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phantom as calculated for the original CT (pCT), the 3 measured CBCTs and one of the
artificial CBCTs (aCBCT) images.
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Patient cases

Figure 3.6 shows a transverse slice from a H&N patient’s original CT and the respective

profile plots through the marked region for the original CT, 3 measured CBCTs and one

of the artificial CBCTs. Good agreement is observed between the measured and artificial

images, while the changes introduced to the original CT are highlighted (i.e. difference

between green line to the rest of the profiles).
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Figure 3.6: Profile plots through the one slice of the H&N cancer patient datasets -yellow
region shown on the left hand side- as calculated for the original CT (pCT), the 3 measured
CBCTs and one of the artificial CBCTs (aCBCT) images.

Similarly, Fig. 3.7 shows the corresponding profile plots for the prostate cancer patient

case, revealing a slightly less good agreement between the measured and artificial images.

This can be attributed to the small deviation in uniformity observed previously, noise and

artefacts. The larger anatomy in the prostate cancer patient case, compared to the small

H&N anatomy make the accurate uniformity modelling more important. Accordingly,

additional noise and artefacts are also observed when the anatomy is larger.
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Figure 3.7: Profile plots through the one slice of the prostate cancer patient datasets
-yellow region shown on the left hand side- as calculated for the original CT (pCT), the
3 measured CBCTs and one of the artificial CBCTs (aCBCT) images.

3.1.3 Discussion

This study evaluated a tool offered by a commercial software, which facilitates the simula-

tion of CBCT images out of CT datasets, in phantom and patient cases using qualitative

and quantitative measures. In the phantom examination, quantitative image quality

metrics between measured and simulated CBCT images revealed good agreement, while

further qualitative evaluation revealed a slight systematic deviation in the simulation of

non-uniformity observed in CBCT scans. In the patient cases, qualitative evaluation be-

tween the measured and artificial CBCTs showed good agreement in the H&N case with

less good agreement in the male pelvis case.

ImSimQA’s CBCT noise simulation tool could therefore by used to facilitate the evalua-

tion of automatic segmentation of CBCT images, deformable registration between CT and

CBCT datasets (Section 4.2, p.64), or even deformable dose accumulation from a CBCT

to a reference CT, under realistic conditions. Robust evaluation of such procedures would

greatly benefit from the preservation of ‘ground truth’ the simulation of CBCT images

from CT datasets provides. Evaluation of dose calculation on artificial CBCT datasets

would require a more accurate noise simulation algorithm.
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In the patient cases investigated it was observed that the relationship between the HU

in the planning CT and CBCT scans for prostate patient case was opposite to that in

the H&N patient case. This may be attributed to the different filtering employed in each

scanning protocol. In the H&N cases our department’s protocol utilises the Small field-

of-view and no beam filtering. On the other hand, the protocol for pelvis scanning utilises

the Medium field-of-view and a bowtie filter. The absence of bowtie filter in the H&N

scanning protocol may result in overexposure and potentially saturation of areas of the

detector panel [87; 88].

CBCT scans have a larger degree of scatter as compared to diagnostic fan-beam CT,

primarily due to the larger FOV [65; 89]. Furthermore, large scanned objects will result in

additional scatter and hence greater noise and differences in Hounsfield units [90], while,

beam hardening artefacts are also greater for bigger objects [91]. Bow-tie filters, anti-

scatter grids and correction algorithms can minimize these effects to a certain extent. A

relatively simple noise simulation algorithm (i.e. with only few degrees of freedom) such

as the one evaluated in this study, can not adequately simulate all these processes.

The evaluation of worfklows for direct dose calculation or CBCT scans may require

more sophisticated CBCT simulation algorithms. Due to the complexity and range of

artefacts and noise observed in typical CBCT images, a very accurate simulation would

require ray-tracing or even Monte Carlo approaches. In fact, Jia et al. recently developed

an algorithms which combines both of these techniques for the accurate simulation of

CBCT projections out of CT datasets while also incorporating geometric and mechanical

factors from individual commercial CBCT systems [92; 93].
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3.1.4 Conclusions

A commercial tool that enables the simulation of CBCT images using CT datasets was

evaluated in phantom, head-and-neck and male pelvis cases. Representative images were

generated in all cases. Inaccuracies were observed in the simulation of non-uniformity in

the phantom experiment and the simulation of noise and artefact levels in the presence

of large anatomy (i.e. male pelvis).
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Chapter 4

Deformable Image Registration

This chapter outlines the evaluation of deformable image registration (DIR) algorithms

for use in adaptive radiotherapy workflows. The first section describes the evaluation of

several commercial DIR solutions in CT-to-CT registration. The second section describes

the evaluation of these DIR solutions in CT-to-CBCT registration.

DIR algorithms have a key role in certain adaptive radiotherapy workflows, as, by deter-

mining voxel-to-voxel correspondence between two images they can facilitate automatic

segmentation and dose accumulation.

4.1 Evaluation of commercial solutions for CT-to-CT

DIR

This study aimed to quantitatively evaluate the accuracy of several commercial DIR al-

gorithms, using artificial digital phantoms, in CT-to-CT registration for head-and-neck

(H&N) and male pelvis anatomy.
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4.1.1 Methods

Evaluated algorithms

The algorithms under evaluation were:

(a) OnQ rts (OSL, Shrewsbury, UK)

(b) RayStation (RaySearch, Stockholm, Sweden) Hybrid DIR without using controlling

regions-of-interest (ROI)

(c) RayStation Hybrid DIR using controlling ROIs

The DIR algorithm in OnQ rts employs an image intensity-based non-linear optimisa-

tion based on Demon’s algorithm [24]. A multi-resolution iterative procedure is performed

whereby a similarity measure is evaluated in each iteration. The similarity of the images

to be registered is initially evaluated at a coarse image resolution. The boundaries of

objects within the image are seen as membranes through the ‘moving’ image ‘diffuses’

to maximise the similarity. The procedure is then repeated for multiple iteration (the

number of which can be controlled by the user) for finer image resolutions. The estimated

deformation forces are regularised by simple Gaussian smoothing.

The hybrid DIR algorithm in RayStation is based on a mathematical formulation lin-

early composed by four non-linear terms: (1) an image similarity term; (2) a term to

ensure smoothness and invertability of the deformed image grid; (3) a term to maintain

anatomically reasonable deformation computation when ROIs are used; and (4) a penalty

term −employed when controlling ROIs are used− ensuring structures in the two images

will be matched. The first two terms operate under similar principles as the algorithm in

OnQ rts. The third and fourth terms introduce a feature-based component to the algo-

rithm. In addition to the intensity-based similarity metric calculated in each iteration to
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drive the registration, the addition of ROIs allows the algorithm to be also driven by the

spatial correspondence of respective ROIs.

Digital phantom creation

Each patient’s planning CT scan (pCT) was transferred to ImSimQA (OSL, UK, v.3.0.77)

software where clinically realistic artificial deformations have been introduced, following a

procedure previously described by Varadhan et al. [46]. Briefly, ImSimQA offers ‘global’

and ‘local’ deformation simulation options. The user defines control points on the CT im-

ages that can then be displaced individually or in clusters in order to simulate anatomical

movements.

All artificial deformations were based on uncommon but actual clinical observations

during on-line volumetric image guidance at Queen Elizabeth Hospital, Birmingham, UK.

Simulations were confirmed as clinically plausible and realistic following visual inspection

by a site-specialist consultant and a site-specialist radiographer.

H&N cases: Twelve H&N cancer patient CT scans with the associated structure sets

(RTS) were randomly selected. Using the ‘global deformation’ option and by moving the

chin and back of the head by 10-15 mm in opposite directions, backward (DefHN1) and

forward (DefHN2) neck flexion scenarios were simulated for each patient CT scan.

Male pelvis cases: Twelve prostate cancer patient CT scans with the associated

structure sets (RTS) were randomly selected, and three artificial deformations have been

applied to each of these scans. The first deformation (DefPr1) involved the identification of

a rectal ‘gas’ pocket in the planning CT scans and its ‘local’ radial expansion by 5-10 mm,

with a subsequent expansion of the rectum. Bladder expansion (DefPr2) was simulated

by ‘locally’ expanding the bladder upwards by 10-15 mm and by 2-5 mm towards the

prostate and rectum. For the third artificial deformation (DefPr3) an artificial rectal gas

pocket was introduced and expanded with a subsequent radial deformation of the rectum.
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For the introduction of the rectal gas pocket, average Hounsfield Units were measured

from gas pockets observed in the CT scans of other patients and this value was used to

‘paint’ a small region in the rectum. DefPr3 can be considered as a closer approximation

of the potential clinical scenario, but is also more challenging for intensity matching DIR

algorithms, such as the Demon’s, due to the introduction of new features.

Deformable image registration evaluation

The original and artificially deformed CT images, along with the associated DICOM

structure sets (RTS) were then transferred to OnQ rts and RayStation systems. DIR was

performed with the original CT scans set as the target (or stationary) images and the

artificial scans set as the source (or moving) image that is deformed to match the target

image. For RayStation’s hybrid DIR implementation using controlling ROIs, the body

and spinal cord were used in H&N cases, while in male pelvis cases the bladder, prostate

and rectum were employed.

The RTS associated with the source images were automatically deformed with the

resulting deformation matrix and transferred to the target images. DIR performance was

therefore evaluated by comparing the original and DIR-mapped RTS sets, employing the

Dice similarity coefficient (DSC) (Equation 2.1, p. 31) and mean distance to conformity

(MDC) (definition in p. 31) metrics.

Furthermore, the reproducibility of the registrations was also evaluated. Each DIR,

described above, was performed twice and two sets of DIR-mapped contours compared

using the DSC and MDC metrics.
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4.1.2 Results

H&N cases

Figure 4.1 shows the slice-wise MDC histograms calculated for brain, brainstem, parotids,

spinal cord and mandible, following DIR and contour mapping of both sets of artificial

deformations to the original anatomy.

Considering the logarithmic scale of the graphs, it is observed that OnQ rts and

RayStation’s ‘Hybrid’ implementation without the use of controlling ROIs (RayStation

H noROIs) revealed similar performance. On the other hand, the use of controlling ROIs

improved the registration result for all investigated organs.

It is also observed that regions like the brain and mandible, which are usually defined

by bony boundaries and hence one would expect better registration performance, revealed

a larger range of errors. This can be attributed to the fact that these regions were ‘moved’

more as part of the artificial deformations applied.
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Figure 4.1: Mean distance to conformity (MDC) histograms for brain, brainstem, parotids,
spinal cord and mandible, following deformable image registration (DIR) of both sets of
artificial images.
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Male pelvis cases

Figure 4.2 shows the slice-wise MDC histograms calculated for bladder, prostate and rec-

tum, following DIR and contour mapping of all three sets of artificial deformations.

10%

100%

0 1 2 3 4

P
e
rc

e
n

ta
g

e
 w

it
h

 E
rr

o
r

MDC [mm]

Bladder MDC Histogram

10%

100%

0 1 2

P
e
rc

e
n

ta
g

e
 w

it
h

 E
rr

o
r

MDC [mm]

Prostate MDC Histogram

10%

100%

0 1 2 3 4 5 6

P
e
rc

e
n

ta
g

e
 w

it
h

 E
rr

o
r

MDC [mm]

Rectum MDC Histogram

OnQ rts

RayStation H_noROIs

RayStation H_ROIs

Figure 4.2: Mean distance to conformity (MDC) histograms for bladder, prostate and
rectum, following deformable image registration (DIR) of all three sets of artificial images.

Figure 4.3 shows the average volume-wise MDC values calculated following DIR of each

artificial deformation to the original anatomy, individually. It is observed that the use of

controlling ROIs with the ’Hybrid’ implementation improved the registration result for

all three organs, even after the introduction of new features in the artificial image (i.e.

DefPr3, Fig. 4.3c).
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Figure 4.3: Average mean distance to conformity (MDC) charts for bladder, prostate and
rectum following deformable image registration (DIR) between original CT and each set
of artificial deformations.
DefPr1: Existing rectal pocket expansion.

DefPr2: Bladder expansion.

DefPr3: Introduction of artificial rectal pocket and rectal expansion.

Reproducibility

All three investigated algorithms were proven reproducible, with perfect overlap of the

DIR-mapped contours (i.e. DSC = 1, MDC = 0 in all cases).
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4.1.3 Discussion

This study evaluated three DIR algorithms, for CT-to-CT registration of H&N and male

pelvis anatomy, using clinically realistic artificial deformations. The use of the artificial

deformations provided the ground truth to which the results have been compared in terms

of spatial accuracy.

The results showed that all algorithms performed reasonably well in the investigated

scenarios, with the majority of slice-wise errors being less than 2 mm. However, larger

errors (2 − 8 mm) were observed. A closer look at the areas with large errors confirmed

that these were primarily found in areas with low contrast (e.g. brain-brainstem and

prostate-rectum boundaries) or in areas were large deformations were applied during the

artificial deformations (e.g. mandible and top of bladder). In general, the inclusion of

controlling ROIs in the Hybrid implementation of RayStation DIR greatly improved the

registration result and allowed the algorithm to cope with the addition of new features in

the artificial image.

Of note is the relatively poor performance of image intensity-based algorithms when

new features appear (or disappear) on the deformed image (i.e. OnQ rts and RaySta-

tion H noROIs). This type of algorithms generally attempt to determine a voxel-to-voxel

correspondence between the two images to be registered, with the typical underlying

assumption that mass in conserved. For this reason, contour-based or hybrid DIR algo-

rithms are expected to perform better in these scenarios, provided that accurate contours

exist in both image sets to be registered.

The evaluation method herein was based on the evaluation of the original contours

(RTS) against the mapped contours, following DIR between the original and the artificial

CT images. This means that any potential registration errors within each organ would be

ignored. This is arguably of less importance when DIR is used to map contour sets from
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one instance to another but can be of great importance when DIR is used for, say, dose

mapping. Such spatial evaluation when using artificially created deformations, could be

performed by comparing the inverse of the applied three-dimensional deformation matrix

(also called dynamic vector field, DVF) against the DIR-calculated DVF. This procedure

was not performed in this study as not all matrices could be exported from the evaluated

systems. Furthermore, no DICOM file format exists, yet, for the standardisation of the

DVF files. The development of such format and potentially software algorithms to enable

direct comparison of such data becomes more important with the increasing use of DIR

procedures.

4.1.4 Conclusions

This study evaluated the performance of three DIR algorithms, in CT-to-CT registration

of H&N and male pelvis anatomy, using clinically realistic artificial deformations. All

three algorithms revealed good performance under the evaluation conditions, with the

majority of errors being less than 2 mm. In areas of low contrast or when new features

were added to the artificially deformed image, RayStation’s hybrid algorithm with the use

of controlling ROIs retained its good performance while the other two methods exposed

larger errors (2-8 mm).
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4.2 Evaluation of commercial solutions for CT-to-

CBCT DIR

This study aimed to quantitatively evaluate the three DIR algorithms employed in Sec-

tion 4.1 in CT-to-CBCT registration of male pelvis cases. Only this anatomical site was

chosen as manual contouring on CBCT images was not practical (time-wise, experienced

radiographer or specialist physician availability, and limited tissue contrast), while auto-

contouring on CBCT images was not considered sufficient in neither H&N nor male pelvis

anatomies.

4.2.1 Methods

Ten prostate cancer patients previously treated at our institution with daily image guided

IMRT were randomly selected, picking the planning CT with the associated structure set

(pCT, pRTS) and one online acquired CBCT image. Contours were manually drawn

on the CBCT for the critical organs (cbctRTS), namely the prostate gland, bladder and

rectum, by an experienced radiographer. These contours were subsequently considered

the ‘ground truth’ structure sets.

The planning CT images and structure sets of the 12 prostate patients used in Section

4.1, together with the 3 artificially deformed images created using their planning CT

scans (as described in Section 4.1.1, p. 56), were also employed. Noise was then added

to the artificially deformed images, using ImSimQA software in order to convert them

into an approximation of CBCT images, following the workflow described in Chapter

3, p. 42. Specifically, various levels of Gaussian noise were added changing the mean

and standard deviation noise intensity values, followed by varying ring noise patterns to

introduce texture and simulate the non-uniformity of CBCT scans. Finally, the field-of-
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view (FOV) of the image was altered to match that of the actual CBCT FOV.

The registration and evaluation procedures, described in Section 4.1, were then per-

formed.

4.2.2 Results

CT-to-CBCT DIR

Figure 4.4 shows the slice-wise MDC histograms calculated for bladder, prostate and rec-

tum, following DIR and contour mapping between the CT and measured CBCT images.

OnQ rts and RayStation H noROIs reveal similar performance, and inferior to RayStation

H ROIs performance.
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Figure 4.4: Mean distance to conformity (MDC) histograms for bladder, prostate and
rectum, following deformable image registration (DIR) of all CBCT images.
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CT to artificial CBCT DIR

Figure 4.5 shows the slice-wise MDC histograms calculated for bladder, prostate and

rectum, following DIR and contour mapping between the CT and artificially deformed

images with added CBCT noise simulation. It should be emphasised that the artificially

deformed images used for this experiment are the same as those employed in Section 4.1.1

(p. 56). In other words, the results in Fig. 4.5 correspond to the ones in Fig. 4.2 (p.

60) but with the addition of CBCT simulated noise. Comparing the two Figures it is

observed that both image intensity-based-only algorithms (i.e. OnQ rts and RayStation

H noROIs) revealed inferior performance in the presence of CBCT simulated noise. On

the other hand, the use of controlling ROIs in RayStation’s hybrid DIR implementation

revealed similar results.
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Figure 4.5: Mean distance to conformity (MDC) histograms for bladder, prostate and
rectum, following deformable image registration (DIR) of all three sets of artificially de-
formed images with CBCT noise simulation.
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4.2.3 Discussion

This study evaluated three DIR algorithms, for CT-to-CBCT registration of male pelvis

anatomy, using both clinical datasets and artificial datasets.

The use of clinical CT and CBCT data enabled the evaluation of the DIR algorithms

under real conditions. However, an absolute unconditional evaluation is hindered by

the uncertainties involved during the manual delineating of ground truth contours on

low image quality CBCT scans. Delineation uncertainties are diminished by the use of

artificially deformed CT datasets with CBCT noise simulation, which nonetheless are

merely a simplistic simulation and not actual CBCT scans.

Comparing the performance of the three DIR algorithms between the same images with

and without the addition of CBCT noise simulation it is observed that the performance of

RayStation H ROIs was barely affected, while the performance of OnQ rts and RaySta-

tion H noROIs was inferior after the addition of noise. Regrettably, however, this hybrid

DIR methodology may not be practical in busy radiotherapy departments as it involves

an additional ROI segmentation step, which could either be manual or automated but

with the requirement of visual post-validation.

4.2.4 Conclusions

Three DIR algorithms have been evaluated in CT-to-CBCT registration of prostate pa-

tient datasets. All three algorithms (OnQ rts, RayStation’s Hybrid algorithm with and

without controlling ROIs) revealed low errors with the majority being up to 2-3 mm.

The use of controlling ROIs with RayStation’s Hybrid algorithm revealed superior perfor-

mance while being consistent in areas of low contrast or even compared to the registration

of the same artificial deformations prior to the addition of CBCT simulated noise.
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Chapter 5

Dosimetric Treatment Monitoring

This chapter investigates workflows for the estimation of actual delivered dose during

each radiotherapy fraction (i.e. the ‘dose of the day’). The fist section describes a study

aiming to exemplify a certain inconsistency observed in the literature on the use of dose

deformation for delivered dose estimation, the preliminary results of which have been

presented at UKRO 2013 and ESTRO 33 [94] conferences. The second section evaluates

four techniques to allow direct dose calculation on the online acquired cone-beam CT

scans or the representation of the anatomy in these images.

Dosimetric treatment monitoring is a critical part of certain adaptive radiotherapy

workflows. The dosimetric impact of observed anatomical changes can be inspected by

calculating the treatment plan on the new anatomy, while, the cumulative impact of grad-

ual and/or random anatomical changes can be examined by accumulating ‘daily delivered’

dose distributions on a reference anatomy.
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5.1 Delivered dose estimation: rights and wrongs

This study investigates and evaluates two strategies to allow calculation of ‘dose of the

day’ during fractionated radiotherapy. As discussed in Section 1.4.3 (p. 17) two methods

have been employed in the literature: one method is to recalculate the dose on a scan

representing the daily anatomy; while a second method (which is later shown to be mis-

guided) is to directly warp the original dose distribution to the new anatomy following

DIR, without dose recalculation [55–58]. It should be emphasised that this work will not

investigate the alternative use of dose warping, for the accumulation of recalculated dose

distributions on a single frame of reference.

5.1.1 Methods

Creation of digital phantoms

Twelve head-an-neck (H&N) cancer patients, previously treated using intensity modu-

lated radiation therapy (IMRT) with a prescribed dose of 65 Gy in 30 fractions, were

retrospectively selected for this study. Clinically realistic artificial deformations simulat-

ing forward and backward neck flexion and shoulder movement, have been applied to each

patient’s planning CT scan using a commercial simulation software (ImSimQA, OSL, UK)

as previously described in Section 4.1.1 (p. 56).

Backward and forward neck flexion: For the simulation of backward and forward

neck flexion, the mandible-nose region and back of head were moved in opposite directions

by 10-15 mm using ‘global deformation’, as shown in Fig. 5.1a. This global movement

resulted in smaller displacement of the inner structures like the spinal cord, larynx, brain

and brainstem, in the order of 3-6 mm.

Upward shoulder movement: Upward shoulder movement was simulated by ‘lo-

69



a. b. 

Figure 5.1: Examples of artificial deformations applied to patient datasets. The CT
images show the artificial deformation results. Solid lines show the deformed and dashed
lines the original structure sets for a. forward neck flexion, and b. upward shoulder
movement simulation.

cally’ moving the shoulders by 10-15 mm, as shown in Fig. 5.1b. The local deformation

did not have any effect on inner structures, but displaced the region around the planning

target volume (PTV) by 5-10 mm in cases where this was very close to the shoulders.

The aim for all three artificial deformations was to represent clinically observable

anatomical changes while ensuring volume conservation, since part of the evaluation is

based on dose-volume histogram (DVH) analysis. All simulations were based on actual

clinical observations and verified through visual inspection by a specialist clinician and a

specialist radiographer. Volume conservation was quantitatively assessed by comparison

of original and deformed structure volumes and found to be conserved to > 99%. Even

though internal anatomy volumetric changes are often observed in clinical setting, such

simulations were not employed in this study as this would make evaluation difficult, while

not being essential for the evaluation of the strategies to be investigated.
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Deformable image registration and delivered dose estimation

The workflow used here for the evaluation of strategies for actual delivered dose estimation

under anatomic deformation is summarised in Fig. 5.2. The three clinically realistic

artificial deformations described above have been applied to the planning CT scan (CT1)

of each of the twelve H&N patient datasets employed for this study, creating 48 patient-

specific phantoms (CT2), each of which can be assumed to represent a patient’s anatomy

during a hypothetical treatment fraction. Each CT2 was then imported into Monaco

treatment planning system (Elekta AB, Sweden, v3.20) where the original treatment plan

was applied (in order to ensure identical conditions to the original dose calculations, the

original plan was applied as a ‘QA plan’). The dose calculated on CT2 was considered

the ‘true’ distribution (Ground Truth) since this would have been the dose received

by the new anatomy after the delivery of the plan on a hypothetical treatment fraction,

assuming perfect conditions.

Each CT2 and the CT1 with the associated structure set (RTS1) and dose distribution

(RTD1) were sent to OnQ rts (OSL, UK, v2.0). Rigid followed by deformable image

registration, using the Demon’s [24] algorithm, was then applied to the ‘moving’ CT1 scan

in order to match the anatomy in the ‘reference’ CT2 scan, exporting the result as dCT1.

The calculated deformation matrix was then automatically applied to both the RTS1

and RTD1 to generate the DIR-warped structures (dRTS1) and dose (Dose Deform),

respectively. Dose Deform is therefore the direct deformation of the dose distribution

calculated on the planning CT, using the DIR-generated deformation matrix deforming

CT1 to match CT2.

The registration result image, dCT1, and structure set, dRTS1, were exported to

Monaco where the original treatment plan was applied and new dose distribution cal-

culated (Dose Recalc). Hence, Dose Recalc is essentially the dose calculated using the
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Figure 5.2: Workflow diagram illustrating the experimental procedure.

original plan on the planning CT scan deformed to match the artificially created im-

age (n.b. although Dose Recalc is then subject to errors in the DIR algorithm, these

are also present in Dose Deform method, thereby permitting fair comparison against

Ground Truth).

The robustness of both Dose Deform and Dose Recalc methodologies, using OnQ rts

for H&N patients was then assessed by direct comparison with Ground Truth.

Dose comparison and statistical analysis

Dose distributions generated by the three methods described above (i.e. Ground Truth,

Dose Deform and Dose Recalc) were transferred to ProSoma (MedCom, Germany, v3.3.252)
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for evaluation. Each RTD file was individually loaded onto the appropriate artificially

deformed CT (CT2) and the associated RTS for the generation of DVHs for brain, brain-

stem, spinal cord, contralateral parotid, optic chiasm, mandible and high-dose PTV. The

agreement between the generated DVHs was visually inspected for qualitative analysis.

DVH information was then transferred into R programming language (www.r-project.org,

v3.0.1) for quantitative and statistical analysis, comparing clinically relevant dose met-

rics such as the mean, median, maximum or minimum dose received by each struc-

ture. Specifically, the mean absolute differences between Dose Recalc and Dose Deform

against Ground Truth for these measures have been computed. Any differences between

Dose Recalc and Ground Truth will quantify the impact of registration errors, while any

additional differences between Dose Deform and Ground Truth will relate to the errors in-

herent in the Dose Deform methodology. The non-parametric two-sided Wilcoxon signed-

rank test was employed for statistical analysis, examining each artificial deformation sep-

arately to preserve statistical independence.

Further quantitative analysis was performed by measuring the 3D gamma passing rate,

with 3% dose difference and 3 mm distance-to-agreement passing criteria (γ3%/3mm), of

Ground Truth against Dose Deform and Dose Recalc, using CERR [95] Matlab (Math-

Works, Inc., Natick, Massachusetts) toolkit.

5.1.2 Results

Figure 5.3 shows a typical example of DVH comparison between the two delivered dose

estimation strategies against the ‘Ground Truth’ for brain, brainstem, spinal cord, con-

tralateral parotid, mandible and PTV at a single fraction scenario for one patient. It

is clear from this that Dose Recalc (DR) overwhelmingly agrees with the Ground Truth

(GT) curve, which provides confidence in the accuracy of the DIR algorithm in this
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scenario as any substantial errors would be apparent in this comparison. On the other

hand, notable differences are observed between GT and Dose Deform (DD). Of note, good

agreement was observed between Dose Deform and the DVHs for the original planned dose

distribution, which is not included in the figure so as to maintain clarity. A considerable

mismatch is observed at the low dose region in the brain DVH. Following thorough ex-

amination it was revealed that this was caused by a technical limitation of the employed

software, whereby it is unable to maintain and process very small contoured regions (i.e.

smaller than several voxels). During the deformation process, when a small contoured

region gets shrunk to a region smaller than several voxels it gets eliminated.

Figures 5.4a-c illustrate the mean absolute differences between Ground Truth against

Dose Deform and Dose Recalc, comparing single fraction maximum and mean dose to

spinal cord, brain, brainstem, optic chiasm and contralateral parotid for the three artificial

deformations applied. Figure 5.4d shows a similar plot summarising the differences in the

minimum and mean dose to the PTV. Again, the inaccuracies od Dose Deform compared

to Ground Truth can be clearly observed.
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Figure 5.3: Dose volume histograms (DVH) comparing Ground Truth (GT), Dose Deform
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Figure 5.4: Mean absolute difference of maximum and mean doses for Ground Truth
(GT) against Dose Deform (DD) and Dose Recalc (DR), for a. backward neck flexion;
b. forward neck flexion; c. upward shoulder movement; d. similar plot showing mean
absolute difference of minimum and mean dose to the planning target volume (PTV).
The P value is shown when the Wilcoxon test revealed P 6 0.05 comparing DDvsGT and
DRvsGT.

As observed in both the DVHs in Fig. 5.3 and the histograms in Fig. 5.4, Dose Deform

revealed poor agreement with the Ground Truth with the differences revealing statistical

significance (Wilcoxon test, P 6 0.05) in many cases. Conversely, Dose Recalc always

had better agreement with Ground Truth with no statistical significance in the observed

differences. Indeed, extrapolating the mean discrepancies in Fig.5.4a, in estimating the
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maximum dose to the brainstem due to neck flexion, over a 30 fraction course of treatment

when using Dose Deform methodology with the Demon’s algorithm employed here, gives

an expected value of approximately 3.6 Gy. This process revealed errors of between 0.3

and 7.8 Gy for the whole range of deformations and datasets used in this work. On the

other hand, if Dose Recalc method was used, the estimation of maximum dose to the

brainstem would have a mean error of 0.5 Gy (range: 0.0 to 1.1 Gy).

The 3D γ analysis supported the above results: poor agreement was observed between

Ground Truth and Dose Deform with mean γ3%/3mm passing rate of 83.7%. Conversely,

good agreement was found between Ground Truth and Dose Recalc with mean γ3%/3mm

passing rate of 99.8%. Local 3D γ analysis was also performed within various organs and

regions of interest in order to expose local deviations, with the results summarised in Table

5.1. An example of 3D γ map is shown in Fig.5.5, in which backward neck flexion was

applied (Def1). A high mismatch is observed between Ground Truth and Dose Deform

in the anterior region of the patient and the penumbra behind the PTV (Fig. 5.5, top

row), which was found to be due to the anatomy traversing the dose gradient present in

the region as neck flexion was applied. Conversely, good agreement is observed between

Ground Truth and Dose Recalc in the whole irradiated region (Fig.5.5, bottom row).

Local gamma analysis employs the local dose as a normalisation point for the determi-

nation of the percentage difference. On the other hand, global gamma analysis uses the

point of maximum dose throughout the treatment plan as the normalisation point. This

means that differences in regions of much lower dose than the maximum can be underes-

timated and potentially neglected when global gamma analysis is used. Therefore, local

gamma was employed in this study.
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Figure 5.5: Examples of 3D gamma maps with 3%/3mm passing criteria for: top: the
warped dose case (i.e. comparison of Dose Deform against Ground Truth); and bottom:
the dose recalculation on the DIR result case (i.e. Dose Recalc against Ground Truth).
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Table 5.1: 3D gamma passing rate (with 3%/3mm criteria) for Ground Truth against
Dose Deform and Dose Recalc methods, in the entire irradiated volume (Whole volume)
and individual organs and regions of interest.

Ground Truth vs

Dose Deform

Ground Truth vs

Dose Recalc

Anatomy Mean [%] Range [%] Mean [%] Range [%]

Whole volume 83.7 70.8 - 96.8 99.8 98.9 - 99.9

Brain 76.5 22.2 - 99.7 100 99.9 - 100

Brainstem 79.7 42.2 - 99.9 100 99.9 - 100

Spinal cord 85.1 54.9 - 99.9 100 99.9 - 100

PTV 95.6 77.7 - 99.9 99.9 98.8 - 100

C. parotid 85.1 55.1 - 99.9 99.9 99.7 - 100

Mandible 77.3 27.4 - 98.1 99.9 99.5 - 100

5.1.3 Discussion

This study utilised patient datasets and clinically realistic artificial deformations, as well

as clinically optimised Monte Carlo dose calculations in an attempt to validate the dose

warping process for the estimation of actual delivered dose at a radiotherapy treatment

fraction, using methods that have been previously employed in the literature. Direct

deformation of the planning dose to the daily anatomy following DIR, without a dose

recalculation stage (Dose Deform) is associated with statistically significant errors, while

dose recalculated on the DIR result image (Dose Recalc) was more accurate.

In the clinical setting, CBCT scans are often used for daily image guidance. As it is

more challenging for DIR algorithms to register CT-to-CBCT than CT-to-CT images,

DIR result in the former case is generally expected to be inferior. As the main focus

of this study was the examination of the validity of direct dose deformation for actual
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delivered dose estimation (Dose Deform), the more straightforward case is employed to

determine the inherent errors associated with Dose Deform.

As part of this work, the accuracy of the DIR employed in this study was also quantified

by allowing comparison of the artificially deformed structure sets (RTS2) with the DIR

result RTS (dRTS1). The chosen evaluation metrics were the mean distance to conformity

(MDC, described in Section 2.1.1, p. 31) and conformity index (CI):

CI =
VA ∩ VR
VA ∪ VR

(5.1)

where VA is the artificially deformed volume and VR is the registration result volume. A

perfect registration woulkd reveal MDC = 0mm and CI = 1. Our registrations revealed

a MDC always less than 3 mm with a mean value of 2 mm, while CI was greater than

0.70 in all cases with 0.75 mean value. This confirmed that the DIR algorithm used here

performed well in the current scenarios. As noted earlier, the three dose distributions were

copied on the appropriate artificially deformed image and the DVHs were created using the

artificially deformed structure sets. This prevented any potential dosimetric uncertainties

due to differences in structure volumes, resulting from small DIR inaccuracies.

The principal finding of this work, (i.e. that Dose Deform is flawed and inaccurate) can

be extended to the general case of dose warping for delivered dose estimation by consider-

ing the performance of a ‘perfect’ DIR algorithm using each methodology, as illustrated in

Fig. 5.6. If a typical treatment plan aims to deliver > 95% of the prescribed dose to the

entire target, then the boundaries of a given target broadly align with the isodose line for

> 95% of dose to be delivered. In the presence of a real deformation, the actual target will

not be identical to the target in the treatment plan and it may, therefore, be under-dosed

when treatment is delivered (first row in Fig. 5.6). A hypothetical ‘perfect’ DIR algorithm

will accurately deform the planning image to match the anatomy in the daily image and,

80



when the same deformation matrix directly applied to the planned dose distribution, as

with Dose Deform, it would perfectly warp the dose to the new anatomy demonstrating

target coverage identical to the original treatment plan (second row in Fig. 5.6). Con-

versely, recalculating the dose distribution on the dataset resulting from DIR between

the planning and daily image, with the same hypothetical ‘perfect’ DIR algorithm, would

correctly reveal the actual delivered dose distribution (bottom row in Fig. 5.6). The

same principle is applicable to any region of interest or organ at risk in realistic clinical

scenarios. It should be noted that the results of the current work support this theoretical

analysis, finding excellent agreement between both Dose Recalc and Ground Truth, as

well as between Dose Deform and the original planned dose distribution.
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Figure 5.6: a. Schematic diagrams showing an original target (dashed circle), target after
deformation (solid black line), target after deformable image registration (dashed line) and
95% isodose region (pink) for a simple exaggerated scenario. b.-c. Actual data acquired
during this simulation study emphasizing the observed effect on the PTV and spinal cord.
The 95% (orange) and 60% (green) isodose regions are shown, while arrows are pointing
to regions with important differences between the methods under investigation.

With the increasing development of various DIR algorithms we would suggest that the

better the performance of a given DIR, the better the actual delivered dose estimation

using ‘Dose Recalc’ method can get, while the opposite is true for ‘Dose Deform’ method.

It should be emphasised that direct deformation of the calculated dose to a reference

anatomy is an essential step in any dose accumulation process (discussed in Chapter 6,
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p. 92). Accordingly, the aim of this work has not been to refute the use of dose warping,

but merely to highlight that precise adaptive workflows can produce invalid results if not

properly understood.

5.1.4 Conclusions

Calculating the actual delivered dose at a radiotherapy fraction (dose of the day) by di-

rect deformation of the original planning dose to the deformed anatomy following DIR,

without a dose recalculation stage (Dose Deform), was shown to be associated with sta-

tistically, and perhaps clinically significant errors. Dose recalculated on the original image

as deformed to match the new anatomy (Dose Recalc) was more accurate. These findings

demonstrate the potential for misapplication of dose warping procedures observed in the

literature and potentially in clinical practice.
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5.2 Actual delivered dose estimation using on-line

CBCT scans

This study investigates four techniques to allow direct dose calculation on on-line acquired

CBCT images or the representation of the anatomy in these images, for the estimation of

actual delivered dose at a given radiotherapy fraction.

5.2.1 Methods

Data selection

CT (Philips Brilliance, Philips Healthcare, Netherlands) and CBCT (XVITM, Elekta AB,

Sweden) images of the Catphan R© and Rando R© (The Phantom Laboratory, Salem, NY)

phantoms were acquired. Two VMAT plans were created for the Rando phantom, one

simulating a high risk prostate cancer treatment (with a prescribed dose of 74 Gy to the

primary PTV, 71 Gy to the secondary and 60 Gy to the tertiary PTV, in 37 fractions)

and one simulating a head-and-neck cancer treatment (with 65 Gy to the primary PTV,

60 and 54 Gy to the secondary and tertiary PTVs, in 30 fractions).

Moreover, the planning CT and the online CBCT acquired prior to the first fraction

of a head-and-neck and a prostate cancer patient, previously treated with similar plans,

were retrospectively selected. The relevant patient anatomy in these CBCT scans was

visually inspected and confirmed as almost identical to that observed in the planning

CT images. All datasets were transferred to RayStation (RaySearch Laboratories AB,

Stockholm, Sweden) where dose calculations were performed.
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Preparation of CBCTs for dose calculation

Four approaches to allow direct dose calculation on CBCT datasets, previously outlined

in Section 1.4.3, p. 17, were evaluated in this study:

• Phantom based HU-to-density curves were created using the CBCT scans of

the Catphan R© phantom. The image HU in regions with known electron density are

associated for the creation of CBCT specific HU-to-density curves.

• Bulk density override was performed by assigning water equivalent HU to the

whole region of the phantoms seen in the CBCT scans.

• DIR based density mapping methodology was performed as previously de-

scribed (‘Dose Recalc’ method in Section 5.1.1, p. 71) but using both an artificially

deformed CBCT and CT images. Briefly, the CT and CBCT scans were artifi-

cially deformed with the same clinically realistic deformations. The original CT

was then matched to the deformed CBCT following DIR. The treatment plan was

then calculated on the artificially deformed CT and the DIR result CT, for direct

comparison.

• Tissue based HU-to-density curves were created with the manual method

offered by RayStation system. This approach offers sliding bar windows for the

adjustment of tissue specific density thresholds based on the image’s grey level

histogram (Fig. 5.7) and directly visualised on the image as shown in Fig. 5.8.
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Figure 5.7: RayStation’s (RaySearch Laboratories AB, Stockholm, Sweden) implementa-
tion for the generation of tissue specific HU-to-density curves for CBCT images.

a. b.

Figure 5.8: Examples of tissue segmentation following density thresholding on a. the
pelvic area of Rando R© phantom, and b. a head-and-neck cancer patient.
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Evaluation of dose calculation on CBCT images

Original treatment plans were transferred to the CBCT images, following rigid image reg-

istration and recalculated with identical parameters, for all CBCT preparation methods

listed above. Original dose distributions calculated on the CT datasets and those recal-

culated on the CBCT images were exported to CERR Matlab toolkit [95] and compared

using global and local 3D gamma analysis with 1%/1mm (γ1%/1mm) and 0.5%/0.5mm

(γ0.5%/0.5mm) criteria.

5.2.2 Results

The results of global and local 3D gamma analysis for the prostate cancer treatment

scenarios are listed in Table 5.2, with the respective results for head-and-neck cancer

treatment scenarios listed in Table 5.3. It is observed that, for the test cases used herein,

all techniques for dose calculations using online CBCT images provide acceptable results

(i.e. vast majority, > 95%, of voxels in recalculated dose distributions agree with original

dose within 1%/1mm criteria).

In phantom based HU-to-density curve generation, for which the Catphan R© phantom

was employed, the majority of dosimetric differences were observed around bony anatomy

in both pelvic and head-and-neck scenarios. This observation correlates with Guan et al.

[62] results, who exposed higher dosimetric differences when the Catphan R© phantom was

used and attributed these to its Teflon insert which cannot accurately mimic bone, as well

as the small size of inserts that cannot provide correct HU under high scatter conditions.
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The simple bulk density override approach employed herein, with an override of the

whole body with water equivalent HU, proved to be the poorest performing of the inves-

tigated methods. On the other hand, the tissue specific HU-to-density curve generation

technique was the most accurate in all test cases, with the DIR based density mapping

technique revealing similar accuracy.

5.2.3 Discussion

Four approaches to allow dose calculation on CBCT scans, or a representation of the

anatomy in online acquired CBCT images, have been investigated. All techniques revealed

acceptable results in the test cases examined, with the tissue specific HU-to-density curve

generation revealing the highest accuracy. Even though limited test cases were employed

for this study, the results agree with the general conclusions of previous studies which

showed that certain density override and tissue specific HU-to-density curves can provide

more accurate dose calculations [61; 64].

Tissue specific HU-to-density curve generation techniques, and especially the example

investigated herein (i.e. the manual procedure offered by the RayStation system), can be

subjective and user dependent, subject to the choice of each tissue grey level ranges. For

example, bony structures typically have high density regions only on the periphery with

lower density in the center, while differences between adipose and tissue are occasionally

difficult to distinguish. The impact of different tissue density thresholds was investigated

by gradually varying these values using the sliding bars shown in Fig. 5.7, p. 86, while

maintaining visually plausible tissue segmentation results, as seen in Fig. 5.8, p. 86. Dose

calculations were performed on the resulting images and compared, exposing differences

of up to ±1.5%. Therefore, to minimise this uncertainty, the optimum parameters were

identified before this methodology was evaluated and compared to alternative techniques.
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The DIR based density mapping technique showed slightly inferior accuracy to the tissue

specific HU-to-density curve generation technique. However, provided the DIR algorithm

can be proven accurate and robust and with a practical quality assurance procedure put in

place, this method has two important advantages: (a) it can be highly automated, and (b)

DIR between the reference CT and the daily CBCT would need to be performed anyway,

as part of inter-fractional treatment monitoring by deformable dose accumulation.

In terms of clinical workload, phantom based HU-to-density curve generation may be

considered the most efficient as generation of these curves can be created once, for every

CBCT scanning protocol, with quality assurance procedures performed thereafter. Other

techniques can be potentially automated but, with the exception of bulk density override,

their result would require review by an appropriately trained member of staff.

5.2.4 Conclusions

Four techniques to allow calculation of delivered dose at a radiotherapy fraction based on

the online acquired CBCT were evaluated, revealing acceptable accuracy. The generation

tissue specific HU-to-density curves, following manual grey level threshold segmentation

of the CBCT images, revealed the most accurate results but was found to be subjective

and user dependent. DIR based density mapping, which revealed similarly good results,

has the potential to be a good alternative.
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Chapter 6

Validation of Dose Warping

This chapter demonstrates a workflow for the evaluation of dose warping following de-

formable image registration for inter-fractional dose accumulation. This study −and the

majority of this chapter’s content− has been accepted for publication by the British

Journal of Radiology [96].

Robust and clinically relevant validation methodologies of procedures such as dose warp-

ing for inter-fraction dose accumulation are of great importance to inform physicists and

clinicians on the accuracy of DIR algorithms for this task and the uncertainties involved.

6.1 Validation of dose warping in inter-fractional dose

accumulation

In this study, a workflow for the robust validation of DIR and dose warping is presented,

using patient images artificially deformed with clinically realistic deformations and clini-

cally optimised Monte Carlo dose calculations of IMRT plans, quantifying both the spatial

errors in the deformable registration and their dosimetric impact when applied to dose
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accumulation. In contrast to previously proposed evaluation procedures (discussed in

Section 1.4.4, p. 20), this method examines and reports dose warping uncertainties under

clinically relevant scenarios. Although this validation workflow is applicable for different

DIRs and clinical indications, it was here employed specifically for the evaluation of a

commercial software (OnQ rts, Oncology Systems Limited, Shrewsbury, UK) in head and

neck cancer (H&N) patients.

6.1.1 Methods

Data selection

A total of twelve H&N patient datasets, consisting of a DICOM CT dataset, associated

structure set (RTS), 6 MV IMRT plan (RTP) and corresponding dose distribution (RTD),

were selected for this retrospective simulation study. Of the twelve patients used, four

were treated for uni-lateral and eight for bi-lateral H&N cancer, while all treatment plans

were created using the Monte Carlo dose calculation algorithm in Monaco (Elekta AB,

Sweden, v3.20) treatment planning system (TPS). Treatment plans ranged in complexity

with 1-3 target volumes (1 PTV: n = 5, 2 PTVs: n = 3, 3 PTVs: n = 4) while the

prescribed dose per fraction ranged from 2 to 3 Gy.

Artificial deformations

For each patient, the planning CT dataset (pCT) and structures (pRTS) were transferred

to ImSimQA software, where four clinically realistic artificial deformations were manually

introduced to create four ‘CTn’ and ‘RTSn’ datasets (i.e. n referring to the nth deforma-

tion in an assumed inter-fractional dose accumulation workflow), in a process previously

described in Section 4.1.1 (p. 56). Backward (Def1) and forward (Def2) neck flexion,

weight loss (Def3) and upward shoulder movement (Def4) were simulated as shown in

Fig. 5.1 (p. 70). Artificial deformations were based on actual observations during image
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guidance at our institution (Queen Elizabeth Hospital, Birmingham, UK) and visually

inspected by a specialist consultant and a specialist radiographer for clinical relevance.

Volume conservation in critical structures was quantitatively investigated by comparing

the original and deformed volumes.

Deformable image registration and dose warping validation

The performance of the DIR algorithm has been evaluated with the workflow shown in

Fig. 6.1. Following the application of clinically artificial deformations on the planning

CT images (pCT), the new deformed images (CTn) were sent to Monaco TPS where

the original treatment plan was applied as a ‘QA plan’ to ensure identical conditions

(i.e. beam arrangement, isocentre, segment positions, monitor units and monitor units

per segment). The new dose calculated (Dose True) was considered the ‘true’ dose since

this would be the distribution delivered to the patient if the original plan was to be applied

on this anatomy. CTn with the associated structure set (RTSn) and the calculated dose

distribution (Dose True) were then loaded to OnQ rts together with the pCT, where

rigid followed by DIR was performed. pCT was treated as the ‘reference’ and each CTn

as the ‘moving’ image (i.e. deforming back to the original anatomy). The CTn, RTSn

and associated Dose True were deformed accordingly by applying the deformation matrix

calculated during DIR (dynamic vector field). This resulted in warped image (dCTn),

structure set (dRTSn) and dose distribution (Dose Warp), which were then also copied

to pCT.
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Figure 6.1: Flow chart summarizing the dose warping evaluation workflow.
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A ‘perfect’ DIR algorithm would be able to bring the artificially deformed images and

structures back to their original configuration. The registration result was evaluated

following the procedure described in Chapter 4, using the conformity index (CI; Eq. 5.1,

p. 80) and mean distance to conformity (MDC; definition in p. 31) metrics.

Furthermore, for the above situations in which the mass of organs under investigation

is conserved, the same hypothetical ‘perfect’ DIR algorithm would result in agreement be-

tween the dose-volume histograms (DVH) analyses of [Dose Warp, pRTS] and [Dose True,

dRTSn]. Differences in these values can therefore be attributed to DIR inaccuracies and

are evaluated by both visual comparison of the DVHs and by quantitative differences

in clinically relevant dose metrics. The two dose distributions were also compared with

the original plan (Dose Original) in order to expose the dose delivery errors owing to

the introduction of artificial deformation on the original anatomy and the ability of dose

warping to estimate the effect. Evaluation was herein performed utilizing the DVHs of

brain, brainstem, larynx, spinal cord, contralateral parotid and the clinical target volume

(CTV). Spatial evaluation was performed by dose subtraction and 3D gamma analysis

with 2%/1mm criteria calculating the passing ratio for all voxels receiving > 20% of the

maximum dose, for Dose Original, Dose True and Dose Warp.

Statistical analysis

The non-parametric two-sided Wilcoxon signed-rank test was used for statistical analysis

of dosimetric results, comparing the mean absolute differences in mean, median, minimum

or maximum dose within certain structures as calculated by the Dose True, Dose Warp

and Dose Original. This method was chosen since the data did not follow a normal dis-

tribution. Statistical analysis was performed using R programming language (R Core

Team, Vienna, Austria; www.r-project.org) and was carried out for each type of artificial

deformation individually in order to retain statistical independence.
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6.1.2 Results

Deformable image registration evaluation

The evaluation of the DIR algorithm’s performance under the four artificial test conditions

is shown in Fig. 6.2. Figure 6.2a exposes the respective mean values of MDC over the 12

patient data sets used. With the exception of chiasm, the analysis of all volumes revealed

an MDC of 1.2-2.0 mm. Considering the voxel size of the CT scans used for this study

(1.2 mm in the x and y directions, and 2.0 mm in the z -direction), it is observed that the

average registration result is accurate to within 1-2 voxels.

Figure 6.2b shows the mean CI value for each artificial deformation for the data sets

employed. Brainstem, contralateral parotid and mandible revealed mean CI values of 0.7

while cord, brain, body and CTV a CI of > 0.8. Note that even though CTV is not an

anatomically definable structure, it was incorporated in the DIR evaluation process as it

would be used for the dosimetric analysis. Chiasm was the organ that revealed the lowest

CI values (0.4-0.2). As chiasm only covers 2-3 slices, an average inaccuracy of 1-2 voxels

in the z -direction results in very low CI.
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Figure 6.2: Evaluation analysis of deformable image registration (DIR) in the 12 patient
cases under investigation, for the 4 artificial deformations applied (Def1-4). a. Average
mean distance to conformity (MDC); b. average conformity index (CI), for spinal cord,
brain, brainstem, chiasm, contralateral parotid (C. Parotid), larynx, mandible and clinical
target volume (CTV). The error bars in both plots represent the range of values observed,
while the horizontal dashed lines in a. represent the voxel size of the CT scans used in x,
y and z direction.
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Dose warping validation

Examples of single fraction DVHs for the Dose Original, Dose True and Dose Warp for

a typical patient in the four artificial deformations are shown in Fig 6.3. The differ-

ences observed between the Dose Original and Dose True curves clearly demonstrate the

expected dose delivery errors in the presence of the artificial clinically realistic defor-

mations. The warped dose distribution revealed a generally good agreement with the

Dose True. However, regions receiving low dose (i.e. < 20% of prescribed dose) were

occasionally underestimated, as observed in brain, brainstem and spinal cord DVHs in

Fig. 6.3

Figure 6.4 shows a comparison of the actual dose delivery change owing to the presence

of deformations (i.e. |Dose True−Dose Original|), against the estimated change after

warping back to the original anatomy (i.e. |Dose Warp−Dose Original|), which is subject

to errors owing to DIR uncertainties. For the perfect DIR algorithm and when mass

is conserved in the regions under investigation, these values would be identical in all

cases. This comparison revealed good agreement (0.02± 0.03 Gy) with no statistically

significant differences (0.6> P > 0.2 in all cases). It is observed that the minimum dose

received by the CTV is occasionally, but not significantly (i.e. 0.4> P > 0.3 in all cases),

underestimated after dose warping as small spatial uncertainties have bigger effect in

regions with steep dose gradients.
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Figure 6.3: Dose-volume histograms comparing the clinically prescribed [Dose Original,
pRTS], recalculated on the artificial image [Dose True, dRTSn], and warped [Dose Warp,
pRTS] dose distributions, of artificial deformations 1-4 (a.-d.) for a single typical patient.
In situations where the mass of these organs is conserved, a ‘perfect’ deformable image
registration would show agreement between [Dose True, dRTSn] and [Dose Warp, pRTS].
C. Parotid: contralateral parotid; CTV: clinical target volume.
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Figure 6.4: The mean actual dose delivery change introduced by anatomical deformations,
|Dose True−Dose Original| against the mean estimated dose change by deformable im-
age registration-based dose warping |Dose Warp−Dose Original|, for the 12 patient cases
investigated and the 4 artificial deformations applied (a.-d.), in spinal cord, brain, brain-
stem, contralateral parotid (C. Parotid), larynx and clinical target volume (CTV). In
situations where the mass of these organs is conserved, a ‘perfect’ deformable image reg-
istration would result in these values beaing the same for all situations. Max: maximum;
min: minimum.
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To further quantify the clinically relevant accuracy of the dose warping process, Dose Warp

was compared against Dose True in terms of median, mean and maximum or minimum

dose to the brain, brainstem, spinal cord, contralateral parotid and CTV, with the ob-

served differences revealing no statistical significance (i.e. 0.5> P > 0.2 in all cases).

The importance of the DVH parameter utilised depends on the structure and type of

each underlying organ or tissue. Organs with serial architecture (e.g. spinal cord) typically

have a maximum dose threshold beyond which the whole organ may be damaged and,

therefore, maximum dose would be the most relevant metric. On the other hand, organs

with parallel architecture (e.g. parotid gland) may be able to tolerate a higher dose to a

small region without affecting the function of the organ as a whole. In this case the mean

or median dose would be more relevant metrics.

It should be emphasised that small uncertainties can be critical when the original

treatment plan is created to the OAR’s or target region’s tolerance. Therefore, particularly

thorough evaluation of the DIR result consideration of dose warping uncertainties should

be carried out in such circumstances.

Even though non-statistically significant throughout a total of 48 cases investigated, a

number of substantial DIR and dose-warping errors have been observed, as, for example,

in Fig. 6.3a; in this instance, Dose Warp reveals good agreement with Dose True for all

organs except the brainstem, for which a difference of 0.35 and 0.25 Gy in the median

and maximum dose estimation was observed, respectively, being the result of an outlier

MDC error of 3.2 mm in DIR.

Figure 6.5 shows examples of gamma maps (γ2%/1mm) between Dose Original, Dose True

and Dose Warp. Gamma analysis of Dose Original vs Dose True (Fig. 6.5a) illustrates the

differences in dose distribution owing to the applied anatomical deformation. Dose Original

vs Dose Warp (Fig. 6.5b) shows the same differences after warping of Dose True back to
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the original anatomy, while Dose True vs Dose Warp (Fig. 6.5c) illustrates the effect of

warping the recalculated dose distribution to the reference anatomy. Subsequent review

of the 3D gamma maps confirmed that the regions of largest disagreement are situated in

regions that combine dose gradient and displacement, as would be expected, which also

demonstrated in the dose difference map (Fig. 6.5d). Gamma analysis of Dose True vs

Dose Warp in the forward neck flexion simulation (Fig. 6.5c) revealed greater discrepan-

cies at the chin and neck area, which experienced the greatest displacement, while small

differences were observed at the inner body region where anatomical displacement was

smaller.
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Figure 6.5: Three-dimensional gamma analysis (2%/1mm criteria) of a. Dose Original
vs Dose True; b. Dose Original vs Dose Warp; c. Dose True vs Dose Warp, and d. dose
subtraction Dose Original−Dose True
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6.1.3 Discussion

This study demonstrates a DIR algorithm validation workflow for image registration and

dose warping throughout fractionated radiotherapy, while overcoming the three limi-

tations of recent studies that employed physical phantoms for the evaluation of dose

warping [49; 50; 52; 71; 72] that were noted earlier (Section 1.4.4, p. 20): limited im-

age complexity, limited dose measurement accuracy and inability to directly transfer the

findings to clinical scenarios. The workflow has been used for the validation of a com-

mercial algorithm which, largely, demonstrated accurate predictions of the actual dose

distributions under four clinically realistic deformation scenarios. All analysis was per-

formed for single fraction situations in order to simulate the scenario of daily treatment

monitoring that would be most sensitive to errors, as it excludes averaging effects from

daily anatomical variations. Recalculated dose distributions were successfully warped to

the reference anatomy [Dose Warp, pRTS] and revealed good agreement to the ground

truth [Dose True, dRTSn], with the observed differences having no statistical significance

(Wilcoxon test, 0.5> P > 0.2). However, considerable registration and dose-warping

errors have been observed in a small number of cases, a finding that illustrates the impor-

tance of such validation work as a means of highlighting and understanding the nature

and extent of errors in dose accumulation processes and the need for visual inspection of

DIR results. These registration and dose-warping errors were primarily observed in low

contrast regions where intensity-based-only DIR algorithms are known to have inferior

performance.

There are three limitations to the current work. First, deformable registration and

dose warping between two planning CT quality scans, as herein, is perhaps more robust

than would be encountered clinically; even though some radiotherapy centres use CT-on-

rails for daily imaging, typical IGRT procedures employ a range of alternative modalities,
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including CBCT, MVCT or mega-voltage CBCT. These scans have lower image quality

and smaller field-of-view than does CT, which may further compromise DIR performance.

The results of the present study could represent a ‘best case’ scenario for the use of this

algorithm in H&N cases.

Second, as the proposed workflow employs DVH analysis, the mass and volume of

organs under investigation must be conserved. As previously observed, the volume of

tumours and certain organs occasionally decreases during the course of fractionated H&N

radiotherapy [97], a situation that was not simulated herein. Nevertheless, this limitation

is also present in other dose warping evaluation workflows, such as the ones employing

deformable dosimetric gel phantoms, while mass conservation is an underlying assumption

in many DIR algorithms.

The third limitation of the present work is the difficulty in quantitatively determining

the spatial position of observed differences using, for instance, gamma analysis as an eval-

uation test, since the warped (Dose Warp) and calculated (Dose True) dose distributions

are associated with different anatomies. A gamma analysis between them includes effects

of both real anatomical change and errors in deformable registration, the separation of

which is challenging. DVH analysis is applicable however, which is one of the main exami-

nation tools used by physicians and physicists in a clinical setting. This could be construed

as an advantage of the current evaluation workflow, providing clinically meaningful and

organ-specific uncertainty measures, a feature absent from most validation work in the

area.

As discussed previously, a number of studies have investigated techniques for the eval-

uation of dose warping using deformable dosimetric and non-dosimetric gel phantoms

[49; 50; 52; 71; 72]. Even though such evaluation methodologies offer valuable advan-

tages, such as the ability to perform quantitative spatial dosimetric evaluation, their
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ability to offer comprehensive conclusions under clinical conditions is hindered by limited

anatomical complexity, dosimetric and dose-reading uncertainties and inability of clinical

interpretation of results. These techniques could therefore be employed as an initial dose

warping evaluation workflow, while the procedure described herein could provide further

insight and interpretation of the results under clinical scenarios.

6.1.4 Conclusions

This study proposed and demonstrated a workflow for the validation of DIR and dose-

warping performance of any DIR algorithm in cases of mass-conserving deformations.

Using this workflow with H&N patient images artificially deformed with clinically realistic

deformations, the successful propagation of actual delivered dose to the reference anatomy

following dose warping through CT-to-CT DIR, by OnQ rts was confirmed. Larger errors

were occasionally observed, however, highlighting that DIR performance should always be

evaluated and approved before proceeding to dose warping and accumulation in clinical

setting.
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Chapter 7

Plan Robustness to Anatomical

Changes

This chapter investigates the robustness of several radiotherapy techniques to anatomical

changes. Implementation of treatment monitoring workflows in routine clinical setting

require considerable time and capital investments, while the potential treatment adap-

tations translate to requirements for further labour. Furthermore, certain anatomical

changes may not necessarily result in clinically critical dosimetric changes, while the

same anatomical change can have a different effect to individual treatment techniques. It

is therefore important to perform prospective and retrospective studies to identify: (a)

which treatment techniques are more sensitive to anatomical changes, and (b) which pa-

tient cohorts or anatomical changes can result in clinically significant dosimetric changes.

The first section of this chapter describes a retrospective study evaluating the robustness

of three modern radiotherapy techniques for the treatment of nasopharyngeal carcinoma,

to clinically realistic artificial anatomical changes. The treatment planning part of the

study has been performed by Trevor Williams as part of an MSc dissertation. This

section will, therefore, only concentrate on the plan robustness simulation and evaluation.

The results of the planning study have been presented at ICHNO 2015 conference [98],
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while, the preliminary results of the plan robustness study have been presented at the 3rd

ESTRO Forum [99] and UKRO 2015 conferences.

The second section describes a similar retrospective study which evaluated the robust-

ness of VMAT plans for the treatment of high risk prostate cancer, to several clinically

observable anatomical changes.

7.1 Comparison of intensity modulated proton ther-

apy versus rotational IMRT for nasopharyngeal

carcinoma: robustness to anatomical changes

Studies to identify the robustness of treatment plans are important to inform physicians,

physicists and radiotherapy technologist of the therapy techniques more sensitive to cer-

tain anatomical changes, as well as which anatomical changes are more likely to result in

clinically critical dosimetric changes.

Previous studies in the literature investigated the effects of single anatomical change

scenarios to one or two treatment techniques, employing online acquired images or repeat

CT scans. Muller et al. [100] retrospectively investigated the effect of weight loss and

tumour shrinkage to IMPT and IMRT plans of five H&N patients previously treated with

TomoTherapy. New plans were created on the first online acquired MVCT of each patient

and recalculated on weekly MVCT scans. Fukumitsu et al. [101] retrospectively examined

the changes in delivered dose distributions due to changes in aeration of nasal cavities

throughout proton beam therapy in patients treated for nasal cavity or para-nasal sinus

cancers. The original plans were recalculated on repeat CT scans.
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This study examines the dosimetric effects of various anatomical changes occasionally

observed during the course of nasopharyngeal carcinoma (NPC) radiotherapy, to three

modern treatment techniques: volumetric modulated arc therapy (VMAT), TomoTher-

apy, and intensity modulated proton therapy (IMPT). Clinically realistic artificial changes

were retrospectively introduced to the original planning CT scans of ten NPC patients in

order to avoid uncertainties due to dose calculations on online-acquired CBCT scans and

isolate the dosimetric changes observed to the introduced anatomical change only.

7.1.1 Methods

Patient cohort and treatment planning

Ten nasopharingeal carcinoma (NPC) patients previously treated at our institution (Queen

Elizabeth Hospital, Birmingham) were retrospectively selected. For each case a new

VMAT, TomoTherapy and IMPT plan was created. All patients were planned to receive

65, 60 and 54 Gray equivalents (GyE) in 30 fractions to the PTVs of primary tumour

(PTV65), intermediate risk (PTV60) and low risk (PTV54) nodal regions, respectively.

Relative biological effectiveness (RBE) was assumed to be 1.0 for photon and 1.1 for

proton beams.

• VMAT: VMAT plans were created using Monaco treatment planning system as-

suming a 6MV photon delivery on an Elekta Precise Treatment SystemTM equipped

with MLCi2 multi-leaf collimator and employing 3 dynamic arcs.

• TomoTherapy: TomoTherapy plans were designed on a version 5 planning station

for a 6MV delivery on a TomoHDTM machine.

• IMPT: IMPT was planned on an XiO system employing a spot-scanning technique,

3 beams, 0.4 cm pencil beam size and 0.6 cm spot spacing.
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Simulation of clinically realistic anatomical changes

Three anatomical changes previously observed in patients with similar disease were applied

on each patient’s planning CT image using ImSimQA simulation software:

• Partial nasal cavity filling, was simulated by filling 50% of the empty volume,

as shown in Fig. 7.1a,b. The HU used was the mean HU for sinus observed in the

patient cohort employed in this study.

• Weight loss, was simulated by shrinking the body contour by 5 mm in the neck

area. The 5 mm thick region between the boundaries of the two contours −green

region in Fig. 7.1c− was then filled with HU = −1000, to represent air.

• Upward shoulder movement, moving the shoulders by 10-15 mm, as shown in

Fig. 5.1b.

Pre Posta. b. c.

Figure 7.1: Artificial changes introduced for plan robustness evaluation. a. Pre and b.
post partial nasal cavity filling simulation. c. Area of 5 mm shrinkage of body contour
for simplified weight loss simulation.

Dose calculations and analysis

The artificially modified images were sent back to the three treatment planning systems,

where plans were re-calculated retaining identical conditions to the original plans (i.e.

beam arrangement, isocentre, segment positions, monitor units).
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The original plans from the three treatment techniques were firstly compared in terms of

PTV coverage, mean and maximum dose to normal structures. Then, the dosimetric effect

of each artificial anatomical change has been estimated for each treatment technique. This

analysis was based on the comparison of clinically important DVH metrics: minimum dose

to 98%, 95% and 50% of the volume (D98%, D95% and D50%, respectively), maximum

dose to 5% and 2% of the volume (D5% and D2%, respectively) and mean dose (Dmean).

To estimate the potential clinical relevance of the observed differences in dose dis-

tributions following the applied anatomical changes, radiobiological analysis has been

performed using the BioSuite software [102]. The LKB model (Equation 1.1, p. 4) was

employed for NTCP and the Poisson model (Equation 1.4, p. 5) for TCP. NTCP was

calculated using the parameters and endpoints listed in Table 7.1, for the parotid glands

[103], larynx [104] and spinal cord [105]. TCP was calculated under the following assump-

tions: α = 0.4 Gy−1, σ = 0.009 Gy−1, α/β = 10 Gy, homogeneous clonogenic cell density

= 107 cells cm−3 [106].

Table 7.1: Endpoints and parameters used for normal tissue complication probability
(NTCP) modelling.

Organ Endpoint m n TD50 [Gy] α/β [Gy]

Larynx [104]
Grade 2 edema
within 15 months

0.160 0.45 46.3 3

Parotid
Glands [103]

Salivary flow 25% of pre-
treatment flow after 1 year

0.180 1.00 28.4 3

Spinal
Cord [105]

Myelitis necrosis 0.175 0.05 66.5 3
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7.1.2 Results

Evaluation and comparison of original plans

Clinically acceptable plans were produced with all three modalities, achieving dose con-

straints for all target regions and critical organs at risk. IMPT revealed significantly

better PTV conformity (Wilcoxon test, P = 0.008) and achieved significant reductions in

mean dose to certain structures including the larynx (P = 0.002), brain (P = 0.006) and

oral cavity (P = 0.004) [99]. No statistically significant differences were observed between

VMAT and TomoTherapy plans.

Figure 7.2 shows a representative example of the three generated plans for the same

patient. One of the treatment planning aims was the preservation of a low dose ‘central

corridor’ for sparing of the spinal cord. In the coronal and transverse plane images, it

is observed that IMPT plans achieved very low dose to this region while both photon

plans (VMAT, TomoTherapy) revealed similar results with a higher dose bath. Similarly,

greater dose sparing of oral mucosa was achieved by IMPT plans.
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Robustness to anatomical changes

Partial nasal cavity filling simulation

Figure 7.3 shows a representative example of the effect of nasal cavity filling simulation for

the three generated plans. Substantial alteration of the dose distribution in the transverse

plane slice where nasal cavity was artificially filled by sinus is observed for the IMPT plan,

with smaller changes exposed for both photon plans (VMAT and TomoTherapy).
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Figure 7.3: Effect of partial nasal cavity filling simulation to the three generated plans.
On the left, transverse plane images show the original plans with the arrows showing the
dose distribution within the PTV60 (yellow contour). On the right, the change of dose
distribution following nasal cavity filling is shown.
PTV60: planning target volume with a prescription of 60 Gy;

IMPT: intensity modulated proton therapy;

VMAT: volumetric modulated arc therapy.
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The mean absolute differences in important DVH metrics of the target volumes are

shown in Fig. 7.4. It is observed that dosimetric changes for IMPT plans were larger in

the higher dose target regions (CTV65, CTV60, PTV65, PTV60) as, due to the nature

of the disease in the patient cohort studied, these regions were immediately behind the

nasal cavities. Both photon plans revealed smaller differences, with TomoTherapy plans

exposing slightly larger differences in median dose, as compared to IMRT. This may be

attributed to the helical nature of TomoTherapy delivery.
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Figure 7.4: Mean absolute difference between original plan and dose distribution following
partial nasal cavity filling simulation, in minimum dose received by 98%, 95% and 50%
(D98%, D95%, D50%, respectively) of clinical target volumes (CTV) and planning target
volumes (PTV), for the three plans generated.
IMPT: intensity modulated proton therapy;

VMAT: volumetric modulated arc therapy.
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Upward shoulder movement simulation

Dosimetric differences following upward shoulder movement simulation are shown in Fig.

7.5. This comparison is concentrated in medium and low risk nodal regions (CTV60,

CTV54, PTV60, PTV54) which, in the patient cohort used in this study, were positioned

near the shoulders region. IMPT plans revealed substantial changes in the minimum dose

to target regions, while both photon plans experienced smaller changes. TomoTherapy

plans exposed larger differences in median dose, with similarly large differences for VMAT

plans is some occasions. This may be attributed to the dynamic delivery of these plans,

leading to more beamlets being affected by this simulated shoulder movement.
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Figure 7.5: Mean absolute difference between original plan and dose distribution following
upward shoulder movement simulation, in minimum dose received by 98%, 95% and 50%
(D98%, D95%, D50%, respectively) of clinical target volumes (CTV) and planning target
volumes (PTV), for the three plans generated.
IMPT: intensity modulated proton therapy;

VMAT: volumetric modulated arc therapy.
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Weight loss simulation

Figure 7.6 shows the dosimetric consequences of the simplified weight loss simulation in

target regions and organs at risk. Again, substantial changes were exposed in IMPT plans

with generally considerably lower differences for both photon plans. Of special note is the

large difference in median (D50%) and high dose (D2%) to the larynx for IMPT plans.

VMAT plans revealed higher differences in minimum dose (D98%) to target regions, com-

pared to TomoTherapy plans, caused by higher proportion of dose delivered through the

front part of the neck region.
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Figure 7.6: Mean absolute difference between original plan and dose distribution fol-
lowing weight loss simulation, in minimum dose received by 98%, 50% (D98%, D50%,
respectively); maximum dose received by at least 2% (D2%); and minimum dose (Dmin)
of regions-of-interest.
CTV: clinical target volume;

PTV: planning target volume;

PRV: planning organ-at-risk volume;

IMPT: intensity modulated proton therapy;

VMAT: volumetric modulated arc therapy.
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Table 7.2 summarises the mean TCP calculations, throughout the 10 patients em-

ployed in this study, comparing TCP calculation for the original treatment plans against

the TCP following partial nasal cavity filling and weight loss simulations. It should be

emphasised that TCP was calculated for the primary target volume only (i.e. CTV65) as

the assumptions in the underlying model presume, while it was not calculated following

the shoulder movement simulation scenario as the main dosimetric changes would be away

from the main tumour site. These calculations reveal important changes to the TCP for

IMPT treatments under both nasal cavity filling and weight loss scenarios, with lower

and similar changes for VMAT and TomoTherapy plans.

Table 7.2: Mean tumour control probability (TCP) −as calculated for the primary clinical
target volume (CTV65)− before (pre) and following (post) partial nasal cavity filling (D1)
and weight loss (D3) simulation, for the three treatment plans generated.

Mean TCP pre [%] Mean TCP post [%] Mean TCP change [%]

IMPT VMAT Tomo IMPT VMAT Tomo IMPT VMAT Tomo

D1
90.0 89.1 89.5

82.5 88.7 88.7 7.5 0.3 0.8

D3 86.7 87.2 88.4 3.1 1.8 1.1

IMPT: Intensity modulated proton therapy

VMAT: Volumetric modulated arc therapy

Tomo: TomoTherapy

Table 7.3 lists the NTCP values as calculated for the spinal cord, parotid glands and

larynx in the original plans and following weight loss simulation. Due to the position

of the other two artificial changes (i.e. nasal cavities and shoulder region), only minor

dosimetric changes resulting in minimal NTCP changes were observed and are therefore

not listed for clarity. NTCP modelling revealed that original IMPT plans were less likely
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to induce late effects to the parotid glands or the larynx, as compared to both photon

plans. However, a substantial change in probability of inducing grade 2 edema within 15

months after treatment following weight loss was exposed for IMPT plans.

Table 7.3: Mean normal tissue complication probability (NTCP) of organs-at-risk before
(pre) and following (post) weight loss simulation, for the three treatment plans generated.

Mean NTCP pre [%] Mean NTCP post [%] Mean NTCP change [%]

IMPT VMAT Tomo IMPT VMAT Tomo IMPT VMAT Tomo

Cord 0.0 0.1 0.1 0.0 0.2 0.1 0.0 0.1 0.0

Parotids 37.6 45.4 42.2 38.6 46.7 43.0 1.0 1.3 0.8

Larynx 5.1 9.0 9.6 32.6 12.5 12.8 27.5 3.5 3.2

IMPT: Intensity modulated proton therapy

VMAT: Volumetric modulated arc therapy

Tomo: TomoTherapy

7.1.3 Discussion

This study investigated the robustness of three modern radiotherapy techniques for na-

sopharyngeal carcinoma, namely spot-scanning IMPT, VMAT and TomoTherapy, under

three clinically realistic artificial anatomical changes. Even though all techniques achieved

high quality plans, IMPT achieved significantly better target conformity and sparing of

surrounding healthy tissue. Under the investigated anatomical change scenarios, IMPT

exposed important discrepancies to the intended dose distributions. Photon plans were

generally proven more robust, and especially to the nasal cavity filling scenario.
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The results of this study were largely as expected, considering the underlying physical

differences between the examined treatment techniques. Taking advantage of the Bragg

peak, proton plans were able to deposit the required dose to the target region while

greatly sparing surrounding normal tissue. This distinct advantage compared to pho-

ton treatments, however, is also what makes these plans more vulnerable to anatomical

changes. Photon beam plans were more robust not only due to the physical principles of

their percentage depth dose curve formation, but also due to the fact that VMAT and

TomoTherapy treatment are dynamically delivered from many (or all) angles around the

body, making them less sensitive to localised anatomical changes.

The three introduced artificial anatomical changes were simplified simulations of actual

situations observed during image guidance at Queen Elizabeth Hospital, Birmingham.

Partial nasal cavity filling was simulated by ‘filling’ 50% of the empty volume inferiorly

to superiorly. Under the assumption that the present sinus has very high viscosity, its

position would not substantially change during the course of the treatment. If, on the

other hand, the viscosity is low the same simulation would need to be represented by

filling all slices by 50%. This would result in a smaller dosimetric change but would affect

twice as many slices. The weight loss simulation ignores any movement or volumetric

change of internal organs, such as the parotids which have been observed to shrink and

move inwards and downwards during the course of treatment [97]. Such a simulation

was attempted but the results were considered poor and unrealistic utilising the available

software tools, therefore the simplified weight loss with the removal of a thin slap of tissue

was employed.

It could be argued that plan quality is highly dependent on the departments and espe-

cially the planner’s experience with the planning system, delivery hardware and underlying

technique. This is partly true for the plans involved in this study, as the planner has no

clinical experience in proton treatments while being more experienced in TomoTherapy
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than VMAT planning. Provided that the same plan quality, robustness and dosimetric

constraint considerations have been employed for the generation of all plans, the impact

on robustness to anatomical changes would be diluted.

7.1.4 Conclusions

The robustness of IMPT, VMAT and TomoTherapy treatment plans for nasopharyngeal

carcinoma treatment to clinically realistic anatomical changes was investigated. High

quality plans were achieved with all three techniques. Spot-scanning IMPT revealed signif-

icantly better target conformity while significantly reducing dose to peripheral structures,

however, it was severely affected by anatomical changes with possible dramatic changes

to delivered dose distributions and clinical outcomes. On the other hand, both rotational

IMRT techniques exposed similar differences between them and proved considerably more

robust than proton treatments under the investigated scenarios.

The results suggest that regular monitoring of proton treatment is required in order to

observe any potential anatomical changes and adapt the treatment to retain the original

dosimetric targets. In the case of both photon treatments, nasal cavity filling variations

are less likely to produce clinically critical dosimetric changes, while planning strategies

to refrain beams from entering through or just above the shoulders can minimise the

risk of suboptimal treatments due to shoulder movements. Weight loss, and especially

considering the parotid gland movements and tumour shrinkage typically concurrently

observed in clinical setting may result in sub-optimum photon treatments.
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7.2 Volumetric modulated arc therapy for prostate

cancer: robustness to anatomical changes

A similar worklfow was performed for the evaluation of prostate cancer VMAT plan

robustness to certain clinically observable anatomical changes.

Previous studies investigated the dosimetric changes during radiotherapy for prostate

cancer caused by inter-fraction anatomical changes. Godley et al. [53] used daily in-room

CT scans (CT-on-rails) on which the daily dose was directly recalculated using the original

plan, to assess the effects of anatomical changes to IMRT treatments. Thor et al. [107]

utilised an average of 9 offline repeat CT scans in order to estimate the ‘motion-inclusive’

actual delivered dose to bladder and rectum of 38 prostate cancer patients treated with

IMRT. The original planned and motion-inclusive dose distributions were then retrospec-

tively associated with late effect outcomes. Varadhan et al. [108] employed online CBCT

and MVCT scans to directly re-calculate the daily delivered dose distributions and assess

dosimetric effects of anatomical change to IMRT and TomoTherapy plans.

This study examines the dosimetric effects of various clinically observable anatomical

changes to prostate cancer patients treated with VMAT. This is achieved by employing

realistic artificial deformations, thus eliminating uncertainties involved during dose calcu-

lations on on-line acquired scans while enabling the isolation and association of observed

dosimetric changes to individual and controlled anatomical changes.
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7.2.1 Methods

Patient cohort and treatment planning

Five high risk prostate cancer patients previously treated at our institution were randomly

retrospectively selected and new single arc VMAT plans were created on RayStation TPS,

assuming a delivery on an Elekta Versa HDTM with an AgilityTM multi-leaf collimator

and flattening filter free mode. The prescribed dose was 74 Gy in 37 fractions with PTV

margins and dose constraints as listed in Table 7.4.

Table 7.4: Planning target volume (PTV) margins and dose volume constraints employed
for high risk prostate cancer treatment planning.

Margins Constraints [Gy]

PTV1
Prostate & SV + 10 mm margin

in all directions
min>56.2

PTV2
Prostate & SV + 10 mm margin

except 5 mm towards rectum
min>67.3

PTV3
Prostate only + 5 mm margin

except 0 mm towards rectum

min>70.3

73.3<median<74.7

SV: seminal vesicles

min: minimum
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Simulation of clinically realistic anatomical changes

Three anatomical changes previously observed in patients with similar disease were applied

on each patient’s planning CT scan, using ImSimQA simulation software (as previously

outlined in Section 4.1.1, p.56):

• Rectal expansion, was simulated by introducing an artificial rectal gas pocket

and radially expanding the rectum by 5-10 mm.

• Bladder expansion, was simulated by 10-15 mm superior expansion and 2-5 mm

expansion towards the prostate.

• Weight loss, was simulated by shrinking the body contour by 5 mm and filling

the region between the original and shrunk body contours with HU = −1000, to

represent air.

Dose calculations and analysis

The artificially modified images were sent back to RayStation where the original plans

were re-calculated, with identical conditions (i.e. beam arrangement, isocentre, segment

positions, monitor units). This process simulated the clinical image guidance protocol

performed at our institution, whereby daily positioning is based on soft tissue matching

(i.e. the prostate). Therefore, the prostate (target) will always be at the isocentre in

the presence of small volumetric changes of bladder or rectum. The original and new

dose distributions were then compared to expose the effect of each of the introduced

anatomical changes. As two of the artificial changes involved the expansion of rectum

and bladder, direct comparison of DVHs for these organs would be misleading. Similarly,

dose-volume constraints and radiobiological analysis using these values would be vague.

The actual volume of each organ receiving a specific, clinically important amount of dose

was therefore evaluated.
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7.2.2 Results

Rectal expansion simulation

Figure 7.7 shows the mean volume of rectum receiving high dose before and after the sim-

ulation of rectal expansion. Considerable differences are observed, with the mean rectal

volume receiving 74 Gy increasing by almost a factor of 3 while the volume receiving 70 Gy

increasing by 30%. Considering the QUANTEC recommendations [109], which suggest

that particular effort should be made to minimise these volumes as they can significantly

impact the complication probability, these results may be translated as clinically critical.

0

2

4

6

8

10

74 Gy 70 Gy

V
o

lu
m

e 
[c

m
3
]

Rectum

Pre Post

Figure 7.7: Rectal volume (mean across 5 cases) receiving a dose of 74 and 70 Gy before
(Pre) and after (Post) rectal expansion simulation.
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Bladder expansion simulation

Figure 7.8 shows the change in mean bladder volume receiving a dose of 74, 60 and 50 Gy

following bladder expansion simulation. In this case, the bladder volume receiving 74 Gy

has not increased noticeably. However, the volumes receiving 60 Gy and 50 Gy increased

by 13% and 36%, respectively.
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Figure 7.8: Bladder volume (mean across 5 cases) receiving a dose of 74, 60 and 50 Gy
before (Pre) and after (Post) bladder expansion simulation.
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Weight loss simulation

Figure 7.9 shows the mean dosimetric changes observed in rectum, bladder and PTV3

following weight loss simulation. Of note is the potential of hot and cold spot formation

within the target region in this scenario, even if daily image guidance is based on soft

tissue matching.
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Figure 7.9: Rectal and bladder volume receiving a dose of 74, 70, 60 or 50 Gy; maximum
dose (Dmax), maximum dose received by at least 2% (D2%), minimum dose received by
50%, 98% (D50%, D98%, respectively) of the primary planning target volume (PTV3)
before (Pre) and after (Post) weight loss simulation (mean across 5 cases).

128



7.2.3 Discussion

This study investigated the robustness of VMAT plans for prostate cancer under three

clinically realistic artificial anatomical changes. Considerable dosimetric changes were

exposed following the three simulations which may translate in alterations to the otherwise

expected critical clinical outcomes.

A limitation of this study is the simplicity of anatomical changes introduced. As ob-

served by Crevoisier et al. [110], bladder and especially rectal volume changes can cause

different displacement of the prostate and seminal vesicles as large as 8.4 mm and 15.6,

respectively. Using the available tools, these changes could not be simulated. Further-

more, combinations of the individual anatomical changes applied in this study may be

observed in clinical situations, which can lead to more sever dosimetric changes to those

observed in this analysis.

7.2.4 Conclusions

The robustness of prostate cancer VMAT plans to clinically observable anatomical changes

was assessed. Rectal and bladder expansion revealed important dosimetric changes to the

respective organs at risk, while small changes were observed following weight loss simu-

lation. Important changes to the minimum dose received by the primary PTV following

weight loss simulation was exposed.
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Chapter 8

Adaptive Radiotherapy

Workflows

This chapter outlines the evaluation of several offline treatment adaptation workflows in

prostate cancer patient cases receiving VMAT treatments. The outcomes of the work

described in previous chapters are combined in order to perform a complete offline ART

workflow.

8.1 Adaptive radiotherapy techniques in prostate can-

cer treatments

Current IMRT and VMAT techniques in prostate cancer treatments achieve highly confor-

mal plans to the target region with steep dose gradients to minimize dose to neighbouring

healthy tissues. Inter-fraction target (prostate or prostate and seminal vesicles) displace-

ments relative to the treatment beam and deformation of bladder and rectum [111; 112]

may, therefore, result in a sub-optimal treatment or incorrect assumptions about the dose
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being received. On-line image guidance, especially the use volumetric imaging which pro-

vides sufficient soft tissue contrast, was proven efficient in ensuring target coverage and

normal tissue sparing [113]. However, some anatomical changes can not be compensated

with simple patient positioning adjustments following on-line image guidance.

Adaptive radiotherapy techniques have been investigated in an attempt to compensate

for these inter-fraction anatomical changes. Yan et al. [114] used on-line portal images and

off-line CT scans acquired during the first 4 days of treatment, calculated the systematic

and random set-up errors, target motion and deformation for each patient and created a

new patient-specific PTV which was subsequently used for treatment adaptation. On the

other hand, both prostate and rectum variations were monitored and considered during

treatment plan adaptation in two further studies, using off-line repeat CT scans [115] in

one case and weekly CBCT scans in the other [116]. Liu et al. [66] evaluated treatment

adaptation techniques by incorporating dose feedback based on dose calculated on repeat

CT scans, when cumulative dose to the target exceeded the pre-defined tolerance.

This study aimed to investigate several treatment plan adaptation workflows in prostate

cancer patient cases, in an attempt to identify the most efficient method for:

A. Dose accumulation method,

B. Dosimetric monitoring frequency,

C. Treatment plan adaptation method,

D. Treatment plan adaptation timing;

while aiming for resource viable and widely applicable implementations.
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8.1.1 Methods

Patient cohort and treatment planning

Ten prostate cancer patients previously treated at our institution with daily CBCT-guided

IMRT were retrospectively selected from a pool of cases that required a plan evalua-

tion during the course of treatment due to a noticeable anatomical change (e.g. weight

loss/gain, large deviations in bladder/rectum volume). The planning CT, structure sets

and all daily CBCT scans were transferred to RayStation TPS where new single arc

VMAT plans created assuming a delivery on an Elekta Versa HDTM with an AgilityTM

multi-leaf collimator, 6 MV beams and a prescribed dose of 74 Gy in 37 fractions to the

primary PTV (and the dose-volume constraints listed in Table 7.4, p. 124).

A. Dose accumulation method for dosimetric treatment monitoring

Dosimetric treatment monitoring was performed by directly calculating the original plan

on CBCT images, using the tissue specific HU-to-density curve generation method which

revealed the highest accuracy during evaluation study outlined in Section 5.2, p. p. 84.

Dose calculated on each CBCT was then accumulated on the patient’s planning CT

following DIR between the two images, employing RayStation’s hybrid DIR with the use

of controlling ROIs (prostate and rectum), which was shown to be the most accurate when

evaluated in Section 4.2 (p. 64). The same algorithm without the use of controlling ROIs

was also used in order to quantify the dosimetric consequence of potential DIR accuracy

differences. The accumulated dose distributions using the two DIR methods were then

compared.

B. Dosimetric treatment monitoring frequency

Daily dosimetric treatment monitoring was compared against weekly monitoring. Weekly

dose distributions were estimated by calculating the original plan on the first CBCT of
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each week into treatment, giving it a ‘weight’ of 5 fractions, and then accumulating on

the planning CT image following DIR (RayStation’s Hybrid with controlling ROIs).

C. Treatment plan adaptation method

Two methods for off-line plan adaptation were investigated:

i. Simple re-plan

A new plan was created based on the new anatomy and the original dosimetric tar-

gets, ignoring the ‘actual delivered dose to date’ estimated by dosimetric treatment

monitoring and dose accumulation.

ii. Re-optimisation (i.e. addressing cumulative dose to date)

The accumulated dose was taken into account and therefore the new plan aimed to

address potential over-dose of organs at risk or under-dose of target regions.

The new plan was created on the original planning CT, modified to match the anatomy

in the respective CBCT. The modification was performed by copying the outer body

contour from the appropriate CBCT onto the planning CT and compensating for excess

tissue by introducing HU = 0 (i.e. water) when the patient gained weight or HU = −1000

(i.e. air) when tissue was lost. The rest of the image and contours were kept unchanged.

This was considered sufficient as it enabled the compensation of the gradual anatomical

change of weight loss or gain. On the other hand, changes in bladder and rectal volume

are random −if the patient does not fully comply with the preparation instructions−

and therefore the original contours would suffice. In all cases, the original plan was

calculated on all CBCTs up to the point of adaptation and the adapted plan calculated

on the remaining CBCTs. Recalculated dose distributions were then accumulated on

the planning CT images, following DIR, to allow for dosimetric comparison of the two

workflows.
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D. Treatment plan adaptation timing

Three treatment adaptation time points were simulated for all patients and for each of

the two adaptation methodologies. These were either immediately after fraction 20, 25

or 30 (out of a total of 37 fractions). Fixed time points were chosen in order for the

adaptation results to be directly comparable and to examine whether the investigated

adaptation methodologies are affected by this choice. Immediately after fraction 20 was

chosen as the first time point since it would be unlikely for a treatment adaptation to

be dosimetrically justified earlier based solely on inter-fractional anatomical changes. On

the other hand, the last time point was chosen to be after fraction 30 so as to allow for a

few remaining fractions for potential dose compensation.

Analysis

3D gamma analysis with 1%/1mm passing criteria (γ1%/1mm) was used for the comparison

of dose accumulation methodologies. This analysis was chosen in order to identify and

localise small deviations between the two methods. Since previous results suggested that

RayStation’s Hybrid algorithm with the use of controlling ROIs showed the most accurate

and consistent performance, it was here considered to ‘gold-standard’ to which the same

algorithm without the use of controlling ROIs was compared to.

DVH evaluations were employed for qualitative investigation and comparison of dosi-

metric monitoring frequency, treatment plan adaptation method and timing workflows.

Moreover, analysis included the comparison of clinically important DVH metrics: mini-

mum dose to 98%, 95% and 50% of the volume (D98%, D95% and D50%, respectively),

and maximum dose to 2% of the volume (D2%).

Biologically effective dose (BED) (Eq. 1.5, p. 5) metric was employed −as a qualitative

measurement and as an attempt to give clinical context to the observed results− for the

comparison of these methodologies for changes in dose to the rectum and, specifically,
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the region intersecting with the PTV2 therefore receiving highest dose. The following

assumptions were made for the calculation of BED in this region:

• Intersection between PTV2 and rectum ≈15% of rectal volume.

Rectum and PTVs were delineated according to the CHHiP trial protocol (register

number ISRCTN97182923) [117], i.e. outlined as solid organ by defining the outer

wall starting from the anus to the recto-sigmoid junction, while PTV2 included the

prostate −or prostate and seminal vescicles− with a 10 mm margin except 5 mm

towards the rectum. This assumption was made in accordance to QUANTEC [109],

which indicates that higher dose (> 70 Gy) regions as the driver of rectal toxicity.

• α/β = 3

Value employed in QUANTEC [109].

• Dose delivered to this volume relatively uniform, approximated by median dose.

Furthermore, the resulting high dose regions following treatment adaptations were com-

pared against the estimated rectal tolerance, assuming a tolerance of 70 Gy in 15% of the

rectal volume (CHHiP trial). The BED of a rectal region uniformly irradiated with 70 Gy

in 37 fractions was calculated and compared against the BED following each treatment

adaptation method.

8.1.2 Results and Discussion

A. Dose accumulation method

Figure 8.1 shows an example of a gamma map (γ1%/1mm) comparing the accumulated

dose distributions by dose warping following DIR by RayStation’s hybrid DIR with and

without controlling ROIs. It is observed that most of the ‘failing’ voxels are concentrated
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in and around the rectum, area where the use of controlling ROIs showed enhanced regis-

tration accuracy. This result highlights the dosimetric uncertainties introduced by image

registration uncertainties, previously observed and discussed in Chapter 4.

1

5
[γ]

Figure 8.1: Three-dimensional gamma analysis (1%/1mm criteria) comparing accumu-
lated dose distributions using RayStation’s Hybrid deformable image registration algo-
rithm with and without controlling regions-of-interest (prostate and rectum). [Green:
bladder; orange: rectum; red: PTV3; pink: PTV1; PTV: planning target volume.]

The use of RayStation’s hybrid algorithm without using controlling ROIs revealed im-

portant differences as compared to the same algorithm along with the use of controlling

ROIs, especially in the rectum area. This is partly due to poor performance of the DIR

algorithm in the rectal region −which has relatively low contrast compared to the sur-

rounding tissues, while new features (e.g. rectal gas) may appear in certain daily images−

but also due to the steep dose gradients present between the PTVs and the rectum whereby

even small registration inaccuracies can lead to substantial dosimetric uncertainties.

The Hybrid DIR algorithm with controlling ROIs was therefore used for the remaining

of the study.
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B. Dosimetric monitoring frequency

Figure 8.2 shows DVHs for a single representative −median− case, comparing daily

against weekly dose monitoring. Minor differences are observed in dose accumulation

at the target (PTV3) while noticeable differences are exposed in bladder and especially

rectum. This observation can be attributed to the systematic and random nature of vol-

ume and shape change experienced by these organs, the full extend of which can be best

captured by daily monitoring.
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Figure 8.2: Dose volume histograms of a single representative patient case showing ac-
cumulated dose distributions following daily and weekly treatment monitoring. PTV:
planning target volume.

Even though the example shown in Fig. 8.2 was a median case in terms of the extent

of observed differences, this result was systematic throughout the test cases, highlighting

the importance of daily dosimetric monitoring in anatomical regions were random changes

are expected (e.g. pelvis).

Daily monitoring was therefore employed for the rest of the study.
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C. Treatment plan adaptation method

Figure 8.3 shows DVHs for a single typical patient case (who experienced weight gain

during radiotherapy treatment), comparing the original plan intention against the actual

delivered dose up to fraction 25. A small under-dose of PTV3 is observed, along with a

considerable under-dose of PTV2 and PTV1. Of note is the lower dose received by the

rectum compared to the original treatment plan.

Figure 8.4 shows DVHs comparing the two adaptation methods against the original

plan intention and the result of the original plan without adaptation. Dotted lines show

the intention of each method for the remaining of the treatment and the intention of the

original plan for the whole treatment, while straight lines show the actual accumulated

dose at the end of the treatment for each case. As discussed earlier, simple re-plan

method created a new plan with the original dosimetric aims and constraints, therefore,

its intention looks similar to the original plan (green dotted line). Since it does not account

for the cumulative dose to date, the PTV2 and PTV1 under-dose observed in Fig. 8.3

have only been restrained rather than compensated (green line). It is also observed that

the final dose distribution following simple re-plan is slightly ‘hotter’ than the intended

dose distribution in all PTVs, rectum and bladder, which can be attributed to anatomical

changes after treatment adaptation. On the other hand, re-optimisation method aims

to compensate for the under-dose observed in Fig. 8.3 by delivering additional dose to

the regions within the PTVs which have been under-dosed; resulting in ‘hotter’, non-

uniform dose distributions (red dotted line). It is observed that this task has been mostly

achieved since the minimum dose to the PTVs matches or exceeds the original intention

(red line). Regrettably though, due to the presence of further anatomical changes following

the adaptation, the median and maximum dose to all PTVs and maximum dose to the

rectum exceeded the original intentions.
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Figure 8.3: Dose volume histograms for a single patient, showing the original plan inten-
tion and actual delivered dose up to fraction 25.
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Figure 8.4: Dose volume histograms for a single patient comparing two adaptation meth-
ods immediately after fraction 25 (intention for remaining of treatment and actual accu-
mulated dose at the end of treatment) against the original plan intention and the actual
delivered dose without adaptation.
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As observed in Fig. 8.4, the rectal volume receiving 70 Gy in the cumulative DVH

following adaptation by re-optimisation (red straight line) is 9.8%, being lower than the

assumed maximum tolerance of 15%. Figure 8.5 shows BED as calculated for the rec-

tum/PTV2 intersection region in the same patient case, comparing the two adaptation

methods immediately after fraction 25, against the estimated rectal tolerance. Even

though the cumulative dose following adaptation by re-optimisation seemed well in tol-

erance through DVH analysis, BED calculations suggest that the region of rectum inter-

secting with PTV2 exceeded tolerance. This is caused due to the presence of hot-spots in

this region during the last 12 fraction, following re-optimisation.
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Figure 8.5: Biologically effective dose (BED) for a single patient, as calculated for the
region of the rectum intersecting with planning target volume 2 (PTV2), comparing two
adaptation methods immediately after fraction 25 against the estimated maximum rectal
tolerance.

Figure 8.6 shows the dosimetric differences for another patient case, comparing the

two adaptation methods and the result of the original plan without adaptation against

the original plan intention. Substantial differences are observed in the two PTV regions

between the original plan intention and its result without adaptation, while increased

median dose to the rectum was also observed. Simple re-plan only managed to limit the

PTV underdose and excess dose to the rectum. Re-optimisation achieved a compensation
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for the underdose of the PTVs up to fraction 25 with only a small excess dose to the

target regions, rectum and bladder.
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Figure 8.6: Dosimetric differences for a single patient comparing two adaptation methods
immediately after fraction 25 and the actual delivered dose without adaptation against
the original plan intention.
D95%: minimum dose received by at least 95% of volume;

D98%: minimum dose received by at least 98% of volume;

D2%: maximum dose received by at least 2% of volume;

D50%: maximum dose received by at least 50% of volume;

ART: adaptive radiotherapy;

PTV: planning target volume;

The 2 examples of results discussed here are representative of the 2 main observations

throughout the test cases employed. Both examples demonstrate the inability of simple

re-plan adaptation method to compensate for under-dose of target regions up to the point

of plan adaptation, while, the dose-per-fraction and the cumulative dose to organs at risk

remain similar to the original plan intentions. Therefore, provided that before treatment
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adaptation the observed target underdose is small or the reason of adaptation is excess

dose to organs at risk, simple re-plan method may result in the desired dose distribution.

Re-optimisation method achieved a compensation of PTV underdose in both examples,

as intended. However, in the first case (Fig. 8.8) excess dose was delivered by the end

of the treatment, in both the target regions and organs at risk. This was the result of

further anatomical changes after plan adaptation. Moreover, the additional dose intended

to be delivered by the adapted plan in an attempt to compensate for underdosage in

target regions, may seem within tolerance when assessed using cumulative DVHs but

could exceed tolerance when assessed radiobiologically (Fig. 8.5). On the other hand, the

second example (Fig. 8.6) demonstrates that if minimal anatomical changes occur after

plan adaptation, re-optimisation can compensate for underdosage of target regions while

keeping within tolerance or even reducing dose to organs at risk.
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To summarise adaptation methodology findings, for the 10 patient cases investigated

in this study:

Simple re-plan

• Can not compensate for under/over dose.

• Does not introduce ‘hot-spots’ in OARs nor non-uniform dose distributions in target

regions.

• Conventional planning and plan assessment protocols are applicable.

Re-optimisation

• Can compensate for under/over dose.

• May generate non-uniform dose distributions in target regions and ‘hot-spots’ in

target regions or organs at risk.

• Further anatomical changes after adaptation may have a greater effect due to excess

dose and non uniformity.

• Cumulative DVHs may not be adequate in generating and assessing the adapted

plan. Radiobiological analysis may be required to estimate the effect of new dose

distribution to target regions and organs at risk.
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D. Treatment plan adaptation timing

Figure 8.7 shows DVHs for another typical patient case, comparing the original plan in-

tention against the actual delivered dose up to fraction 20, followed by DVHs comparing

the two treatment adaptation methods immediately after fraction 20 against the original

plan intention and the actual delivered dose without adaptation, in certain regions of

interest. Figures 8.8 and 8.9 show similar plots for the same patient case for adaptation

immediately after fraction 25 and 30, respectively. Concentrating on the actual accu-

mulated dose following simple re-plan (green straight line) it is observed that coverage

of PTV2 is closer than the original intention when plan was adapted immediately after

fraction 25, compared to when adapted after fraction 20 or 30. PTV3 coverage, on the

other hand, is ‘colder’ when plan was adapted after fraction 30 compared to adaptations

after fraction 20 and 25. Focusing on the re-optimisation intention (red dotted line), it is

seen that as the plan adaptation is delayed this intended dose distribution gets ‘hotter’,

especially in PTV2 and bladder. The actual accumulated dose following re-optimisation

is closer to the original intention when re-optimisation was performed after fraction 30,

compared to adpatations performed after fraction 20 and 25.
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Figure 8.7: Dose volume histograms (DVHs) for a single patient showing the original plan
intention and the actual delivered dose up to fraction 20, followed by DVHs comparing
two adaptation methods immediately after fraction 20 against the original plan intention
and the actual delivered dose without adaptation.

145



Original plan intention Original NO ART

Simple re-plan intention Simple re-plan final

Re-optimisation intention Re-optimisation final

Patient 01 - One adaptation immediately after fraction 25

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

V
o

lu
m

e
 [

%
]

Dose [Gy]

PTV3

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

V
o

lu
m

e
 [

%
]

Dose [Gy]

PTV2

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

V
o

lu
m

e
 [

%
]

Dose [Gy]

PTV1

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

V
o

lu
m

e
 [

%
]

Dose [Gy]

Rectum

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

V
o

lu
m

e
 [

%
]

Dose [Gy]

Bladder

Intention up to fraction 30

Actual up to fraction 30

Bladder

Rectum

PTV1

PTV2

PTV3

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

V
o

lu
m

e
 [

%
]

Dose [Gy]

Original plan intention vs. actual delivered up to fraction 25

Figure 8.8: Dose volume histograms (DVHs) for a single patient showing the original plan
intention and the actual delivered dose up to fraction 25, followed by DVHs comparing
two adaptation methods immediately after fraction 25 against the original plan intention
and the actual delivered dose without adaptation.
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Figure 8.9: Dose volume histograms (DVHs) for a single patient showing the original plan
intention and the actual delivered dose up to fraction 30, followed by DVHs comparing
two adaptation methods immediately after fraction 30 against the original plan intention
and the actual delivered dose without adaptation.

147



Figure 8.10 shows the mean dosimetric differences across all 10 patient test cases, com-

paring the two adaptation methods applied immediately after fraction 20, 25 or 30 and

the actual delivered dose without adaptation against the original plan intention. Simple

re-plan revealed better agreement with the original plan intention when applied imme-

diately after fraction 25 compared to fraction 20 −in both target regions and organs at

risk− while when applied after fraction 30 showed the largest differences. Re-optimisation

exposed good agreement with intended dose when applied following fraction 25 and 30,

compared to its application after fraction 20, in target regions. Cumulative dose to organs

at risk was kept the closest to the intended dose distribution when re-optimisation was

applied after fraction 30.
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Mean differences across 10 test cases
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Figure 8.10: Mean dosimetric differences across 10 patient cases comparing the two adap-
tation methods immediately after fraction 20 (f20), 25 (f25) and 30 (f30) and the actual
delivered dose without adaptation against the original plan intention.
PTV: planning target volume;

D95%: minimum dose received by at least 95% of volume;

D98%: minimum dose received by at least 98% of volume;

D2%: maximum dose received by at least 2% of volume;

D50%: maximum dose received by at least 50% of volume;

ART: adaptive radiotherapy.
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To summarise adaptation timing comparison findings, for the 10 patient cases investi-

gated in this study:

Simple re-plan timing

• Adaptation after fraction 20 was too early.

Since the patients involved in the study showed relatively poor bladder and rec-

tum preparation compliance after the simulated treatment plan adaptation and/or

experienced further anatomical changes (e.g. weight loss/gain).

• Adaptation after fraction 30 was too late.

Since all the patient cases employed experienced substantial anatomical changes

throughout the treatment course, relatively high dosimetric changes occurred up to

fraction 30. Adapting for the last 7 fractions resulted in only a small benefit.

• Adaptation after fraction 25 revealed closest result to the original intention.

Since further anatomical changes have, on average, less of an effect compared to

adaptation after fraction 20; while more fractions benefit from adapted plan com-

pared to adaptation after fraction 30.

Re-optimisation timing

• Adaptation after fraction 20 was too early.

As mentioned above, further anatomical changes were observed during the last 17

fractions in most cases, affecting the adapted plan. However, the final cumulative

dose distribution following re-optimisation after fraction 20 was, on average, closer

to the originally intended than any of the simple re-plan strategies.

• Adaptation after fraction 30 revealed closest result to the original intention.

However, the intended dose distributions for the remaining of the treatment typically
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include substantial ‘hot-spots’, in an attempt to compensate for target underdose

in just 7 fraction, occasionally found near or within organs at risk.

• Adaptation after fraction 25 revealed slightly inferior results to adaptation after

fraction 30.

Target coverage was, on average, very similar. Organs at risk received slightly higher

dose due to further anatomical changes.
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Alternative method: re-optimisation using dose constraints per fraction

An additional variable may be used during re-optimisation method: the plan can be re-

optimised based on accumulated dose using dose constraints for the final distribution (as

before), while also introducing dose constraints for the remaining fractions (e.g. consid-

ering the rectal constraint of maximum 15% of volume receiving 70 Gy, for adaptation

immediately after fraction 25, this constraint would be adjusted so as a maximum of 15% of

volume to receive 22.7 Gy for the remaining of the treatment). This could −theoretically−

allow the flexibility to, say, compensate for target region underdose while preserving low

dose per fraction for organs at risk.

The practicality of this method was explored employing 5 of the patient cases used for

the previous parts of this study. Three new plans were created taking into account the

accumulated dose, while, for the remaining of the treatment 1 of the following constraints

was used:

(i) Original dose constraints for both target regions and organs at risk;

(ii) Original dose constraints for target regions only;

(iii) Original dose constraints for organs at risk only.

No figures were included for the evaluation results of this method, to retain clarity, as

these were similar to previous findings. The results can be summarised as follows:

• In scenario (i) the results were very similar to simple re-plan.

Re-optimisation would attempt to compensate for, say, underdose in PTV2 which

covers part of the rectum. To achieve this, additional dose would need to be delivered

to the rectum which is prevented by the dose constraints.
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• In scenario (ii) the results were very similar to re-optimisation.

Considering the example above, no constraints related to rectal volume would pre-

vent compensation of PTV2 underdose.

• In scenario (iii) the results were very similar to simple re-plan.

(Same as first example)

No benefit in dose distributions was observed during re-optimisation method when

additional constraints for the remainder of the treatment were included. However, these

constraints may be too conservative for the specific scenarios (e.g. certain organs may be

able to tolerate high doses during the last part of the treatment while others may not).

Further investigations towards various tissue tolerances under such circumstances could

allow for additional flexibility during treatment re-optimisation and potentially greater

benefit.
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Limitations

There are 3 limitations to this study. First, the small number of patient cases employed

(n = 10) restricts confidence in any conclusions. Second, the application of a single

re-plan since some cases could have benefited from more adaptations. This choice was

made for simplicity and to retain similarity between the compared methods. Of course

daily re-optimisation would allow superior target coverage while maintaining organ at

risk constraints. Third, the fact that patient cases employed were chosen from a pool

of patients that experienced substantial anatomical changes throughout the treatment

course may represent the worst case scenario and not the average clinical practice. This

choice was made for two reasons: to evaluate ART workflows in cases that would benefit

the most (i.e. choosing random patients would mean that some of them may not have

required treatment adaptation in the first place); and, amplify the dosimetric differences

(i.e. large anatomical changes lead to considerable dosimetric changes and difference in

performance between different methods would likely be noticeable).

Furthermore, it could be argued that using daily treatment monitoring and employing

a voxel-to-voxel matching DIR algorithm, the dosimetric analysis could have been per-

formed based on the actual tumour region (or the CTV) rather than the PTV. The choice

of analysis based on PTV was based on the fact that the treatment adaptation would

be designed using the PTVs, as well as to account for the uncertainties involved during

manual delineating of contours used to drive the hybrid DIR algorithm and those involved

during DIR (investigated in Chapter 4, p. 54).

Radiobiology-based adaptation

As shown earlier −Figures 8.4 and 8.5− radiobiological analysis of treatment adaptation

could suggest that certain tolerances may be exceeded while cumulative DVH analysis
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suggests the opposite. This finding was observed during re-optimisation method, during

which an additional dose may be delivered in target regions that have been underdosed

but may simultaneously mean that additional dose is subsequently delivered to sensitive

normal tissues. Employing additional dose constraints was investigated, in an attempt to

control this effect but was shown to have minimal benefit when conventional constraints

are used. Alternatively, radiobiology-based constraints could be explored in an attempt

to control re-optimisation in a more flexible and potentially clinically meaningful manner.

8.1.3 Conclusions

This retrospective study investigated several workflows towards offline adaptive radiother-

apy in prostate cancer cases receiving VMAT treatments.

Dose accumulation: Out of the investigated DIR algorithms evaluated, Raystation’s

hybrid DIR algorithm with the use of controlling ROIs revealed the best results due to

the additional advantage of being driven by these contours in areas of low image contrast

and areas were new features appeared or disappeared.

Dosimetric treatment monitoring frequency: Weekly dosimetric treatment mon-

itoring was found insufficient when compared to daily monitoring, primarily due to the

random nature of the main anatomical changes observed in the pelvis region during

prostate cancer radiotherapy. In such cases where random anatomical changes are ex-

pected, daily monitoring would be recommended, while in areas were mainly systematic

changes are observed (e.g. cancer in the head and neck region) weekly monitoring may

suffice.

Treatment adaptation method: The inability of simple re-planning during treat-

ment adaptation to compensate for under/over-dose up to the point of adaptation was

exposed. On the contrary re-optimisation method allows such dose compensations. How-
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ever, in order to achieve dose compensation, ‘hot-spots’ may be generated near or within

sensitive tissues. Such dose distributions may seem within tolerance when assessed us-

ing cumulative DVHs but radiobiological analysis can expose the opposite. Additionally,

depending on the tumour type, extend and area the underdose occurred, simple ‘boost’

of dose delivery for the remaining of the treatment may not suffice. Therefore, conven-

tional treatment planning protocols applicable to simple re-planning may not be ade-

quate for re-optimisation procedures, for which alternative planning techniques −such as

radiobiology-based optimisation− would need to be further investigated.

Treatment adaptation timing: Since simple re-planning can not compensate for

under/over-dose, a late treatment adaptation (after fraction 30 out of 37) was not benefi-

cial in the cases investigated herein. On the other hand, if treatment is adapted midway

through treatment, further anatomical changes after the adaptation may hinder its suc-

cess. Adaptation by simple re-planning immediately after fraction 25 was found to give

the best results in this study. Similar issues were experienced during adaptation by re-

optimisation, when this was performed midway through treatment. The best results for

this method were observed when applied immediately after fraction 30, however, this

coincides with the creation of the most sever ‘hot-spots’ when target region underdose

occurred.
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8.1.4 ART in head-and-neck cancer treatments

Radiotherapy treatment for cancers in the head and neck (H&N) region is particularly

challenging due to the large number of sensitive structures typically surrounding the tar-

get volumes. Advanced techniques, such as IMRT, VMAT, TomoTherapy and others,

facilitate highly conformal treatment plans with good coverage of PTV regions while en-

abling acceptable sparing of critical organs at risk [118]. However, anatomical changes

such as tumour shrinkage, changes in normal glands and mucosa, or weight loss occa-

sionally observed during the course of treatment [97; 119–121], can lead to suboptimal

dose distributions [74; 122–125]. Such anatomical changes and deformations can not be

compensated using simple patient re-positioning during online image guidance.

Adaptive radiotherapy (ART) techniques have been retrospectively and prospectively

investigated, in an attempt to compensate for these anatomical changes [54; 59; 74; 126;

127]. Due to the gradual nature of the main changes observed during H&N radiother-

apy, as well as the technical challenges involved and time restrictions in online ART

workflows, offline ART has been suggested as the most practical option for this patient

cohort in routine clinical practice [127]. Wu et al. [74] retrospectively simulated an of-

fline ART workflow, employing six weekly helical CT scans for treatment monitoring and

re-planning. Mid-course, bi-weekly and weekly adaptations were investigated, revealing

3%, 5% and 6% reductions in mean dose to the parotids, respectively (assuming 1 week

delay between re-scan and actual implementation of adapted plan). Schwartz et al. [54]

performed a prospective clinical trial during which re-planning was performed based on

daily CT-on-rails scans. Significant reductions of the mean dose to parotids were observed

following both one or two adaptations during the course of treatment. To conclude, the

main H&N ART studies presented in the literature utilised high quality CT scans for the

dosimetric monitoring, offline ART was performed, while only the ‘simple re-planning’
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technique was considered.

In this thesis, ART workflows for H&N cancer cases were not investigated for the

following reasons:

• CT-to-CBCT DIR was considered unreliable

The performance of available DIR algorithms for CT-to-CBCT registration in the

H&N region was not considered reliable nor could be reliably evaluated, particularly

in the low contrast regions (e.g parotids, tumour and nodal boundaries, optic chiasm,

optic nerve). RayStation’s Hybrid algorithm with the use of controlling ROIs could

potentially assist in reliable and accurate registration results, however, this would

require contouring of soft tissue ROIs which could not be reliably performed due to

relatively low image quality.

• Low CBCT image quality

CBCT scans employed during IGRT in our institution are sufficiently good for

patient positioning based on 3D bone matching. However, soft tissues have low

contrast and can not be accurately identified. This is true for both parotid glands

and tumour boundaries. Manual contouring of these regions would, therefore, be

very time consuming and potentially inaccurate, especially considering the lack of

contouring expertise in this type of images.

• CBCT auto-contouring considered unreliable

Likewise, CBCT auto-contouring was considered unreliable, mainly due to the lack

of ‘ground truth’ which would need to be acquired through manual contouring.

The introduction of artificial changes to represent tumour shrinkage/weight loss

and concurrent change of parotid volume and position was not feasible using the

available software tools.
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Improvements in CBCT image quality could improve the prospects of offline ART

following the workflows investigated in this thesis. Immediate improvements, to a certain

extent, could be achieved by altering the imaging parameters and subsequently increasing

the imaging dose. However, it would be difficult to justify such action lacking palpable

indications of potential clinical benefit. Two potential ways to overcome this issue were

hypothesised, under the assumptions that weekly treatment monitoring would suffice for

this patient cohort (considering the gradual nature of changes typically observed in H&N

patients), and that higher quality (and dose) CBCT scans would provide sufficient low

contrast visibility: (a) perform low-dose CBCT scans 4 times a week and a high-dose

CBCT once a week; or (b) perform planar imaging 4 times a week and a high-dose CBCT

once a week, during IGRT.

Considering the finding of the prostate cancer ART investigations performed in Section

8.1 (p. 130) the likely similarities and differences applicable to H&N ART under similar

conditions are summarised below:

Dose accumulation: Assuming manual contouring of at least critical soft tissue

structures (e.g. parotids, GTV/CTV, optic structures) could be performed on online

CBCT scans, RayStation’s Hybrid DIR algorithm with the use of controlling ROIs would

be expected to produce the best registration results. Due to the relative rigidity of the

head and neck region and the large number of bony structures present, most DIR algo-

rithms would be expected to produce good results, except in low contrast regions.

Dosimetric treatment monitoring frequency: Weekly dosimetric treatment mon-

itoring would be expected to be sufficient, compared to daily monitoring, since most of

the anatomical changes observed in this patient cohort are typically gradual (exceptions

include nasal cavity filling and swelling variations).
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Treatment adaptation method: Simple re-planning is expected to be the most

appropriate option for H&N ART. This is not only because of the relatively small and

infrequent expected changes of target dose, but also due to the risks associated with

the potential introduction of hot-/cold-spots for compensation of under-/over-dose of

certain regions. As observed in the previous investigation, anatomical changes occurring

after plan adaptation by re-optimisation may result in sever over-dose of organs close to

the treatment target, which in the case of H&N patients might have substantial clinical

consequences.

Treatment adaptation timing: As Schwartz et al. [54] observed in their prospective

ART trial, typically one and occasionally two treatment plan adaptation is expected to

be required. In their study, the average fraction the first replan was performed was 15.5

out of 30-33 fractions in total (i.e. midway through treatment), while the mean fraction

for the second replan was 20.5.
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Chapter 9

Summary

This chapter summarises the main results of the work outlined in this thesis and discusses

possible future directions for a wider implementation of adaptive radiotherapy workflows

in routine clinical practice.

9.1 Discussion and Conclusions

Auto-segmentation

Several auto-segmentation algorithms have been evaluated on CT datasets of head-and-

neck and prostate cancer patients (Chapter 2, p. 27). The results revealed generally

greater uncertainties to inter-observer variability. At this stage, none of the evaluated

algorithms would be adequate for incorporation into a semi-automated ART workflow

without or with minimal manual corrections. Auto-segmentation on CBCT datasets was

considered unreliable, primarily due to considerable uncertainties in the potential evalu-

ation of the results, arising from relatively low soft tissue contrast and limited specialist

experience of manual contouring in such datasets.
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Deformable image registration

DIR is an important tool for adaptive radiotherapy procedures as it can provide voxel-

to-voxel correspondence between two image datasets, thus enabling contour and dose

mapping for treatment monitoring. Three DIR algorithms have been evaluated in Chap-

ter 4 (p. 54) for CT-to-CT and CT-to-CBCT registration. The use of controlling ROIs

(contours drawn in both images) to drive the registration, in addition to the image in-

tensity based algorithm offered by RayStation’s hybrid implementation proved the most

accurate and robust method, especially in areas of low contrast. Regrettably though, the

superior performance of this hybrid implementation comes with the additional require-

ment of accurate manual or automated segmentation of regions of interest in the CT and

CBCT datasets, which may be time consuming or even practically impossible due to poor

image quality.

Dosimetric treatment monitoring

Dosimetric treatment monitoring is an integral step for certain offline ART workflows,

allowing the assessment of dosimetric impact caused by observed anatomical changes

on online or repeat scans. Chapter 5 (p. 68) initially investigated a controversy in

the literature, in a methodology to calculate actual delivered dose in a radiotherapy

fraction or different stages of a 4D-CT scan. This investigation confirmed that direct

dose deformation following DIR between the original and a repeat CT scan, without a

dose re-calculation step, (herein ‘Dose Deform’) is not appropriate. It was also shown

that, dose recalculated on the original image as deformed to match the new anatomy

(herein ‘Dose Recalc’), can reveal accurate results. This later method can be useful when

direct dose calculation on the online-acquired image is unreliable, and provided DIR

performance is accurate.

162



The accuracy of various methods for direct dose calculation on CBCT images acquired

during image guidance was then inspected. Highest accuracy was revealed using the ‘tis-

sue based HU-to-density curve generation’ approach, during which the CBCT image is

segmented into various pre-defined tissue types, the mass density of which is then used

during dose calculations. Due to its high accuracy, this method was afterwards chosen

during the investigation of ART workflows. However, this method is subjective and man-

ual, and therefore not ideal for routine clinical practice.

Deformable dose accumulation

The ability to accumulate delivered dose from any given fraction on a single frame of refer-

ence is of great importance, as the cumulative effects of random or gradual changes can be

assessed, enabling accurate clinical decisions for treatment adaptations. Furthermore, ac-

cumulated dose can be fed back to the treatment planning system in order re-optimise the

new treatment plan based on delivered dose to date. This process can be facilitated using

DIR algorithms, following the registration of each daily image to the reference anatomy

and the subsequent warping of re-calculated dose distributions. A new method for the

evaluation of this process has been presented in Chapter 6 (p. 92), and subsequently

applied for the evaluation of a commercial algorithm.

Plan robustness

Investigation of treatment plan robustness to frequently observable anatomical changes is

an important process prior to the potential decision for clinical implementation of dosi-

metric treatment monitoring and ART, as it enables the identification of cases that would

benefit from treatment interventions. Chapter 7 (p. 107) investigates the robustness of

several treatment techniques in nasopharyngeal carcinoma and prostate cancer cases. In
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the nasopharyngeal carcinoma cases, proton (IMPT) and photon (VMAT, TomoTherapy)

plans were compared under clinically realistic artificial anatomical changes. IMPT plans

were severely affected by anatomical changes with possible dramatic changes to delivered

dose distributions and clinical outcomes. In contrast, both rotational IMRT techniques

revealed smaller but occasionally considerable dosimetric alternations. In the prostate

cancer cases, the robustness of VMAT plans was investigated under clinically realistic

scenarios, revealing considerable dosimetric changes in some cases.

Adaptive radiotherapy workflows

Several techniques towards a clinically justifiable, resource viable and widely applicable

ART workflow were investigated in Chapter 8, p. 130. The investigation was concentrated

on prostate cancer patient cases treated with daily CBCT-guided VMAT, and incorpo-

rated the findings and techniques outlined in previous chapters to identify optimum: dose

accumulation method, dosimetric monitoring frequency, treatment adaptation technique

and adaptation timing. For the particular patient cohort and treatment technique daily

dosimetric treatment monitoring by direct dose calculation on CBCT scans and accumu-

lation using RayStation’s hybrid DIR with the use of controlling ROIs is recommended.

In terms of adaptation method, simple re-plan exposed the inability to compensate for

potential under-/over-dose up to the point of adaptation contrary to re-optimisation that

allows dose compensation. Re-optimisation, however, can produce hot-spots in an at-

tempt to achieve these dose compensations which can induce unexpected radiobiological

outcomes. In the scenario of single plan adaptation, execution within the third quarter

of treatment fractions was found favourable for both techniques.
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9.2 Future directions

Improvement in auto-segmentation and DIR algorithms

Further improvements in auto-segmentation and DIR algorithms would be required be-

fore their implementation in automated or semi-automated ART workflows with no or

with minimal manual interventions. Auto-segmentation for CBCT or repeat CT images

can be replaced by ‘auto-re-contouring’ following DIR (or contour mapping) between the

planning CT and a CBCT. However, the evaluation of either auto-segmentation or DIR

involving a CBCT scan is hindered by the low soft tissue contrast occasionally seen in

these images. Improvements in CBCT image quality would therefore enhance the perfor-

mance of these processes.

Optimisation of planning software to facilitate ART workflows

As discussed throughout this thesis, an efficient offline ART workflow would benefit from

a robust auto-segmentation algorithm which would minimise manual contouring time; an

accurate and robust DIR algorithm to facilitate dose accumulation and contour mapping;

functions for practical dose calculations on daily online acquired scans (e.g. dose calcula-

tion on CBCTs, compensation for limited field-of-view); and convenient re-planning and

re-optimisation capabilities with enhanced capabilities (e.g. radiobiological optimisation

and assessment). Currently not many commercial treatment planning systems (TPS) in-

corporate the full range of these processes, meaning that the users would need to purchase

individual software resulting in additional technical and data handling concerns. Thus,

TPS incorporating the above processes are crucial for wider implementation of ART in

routine clinical setting.
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Design of clinical ART protocols

Clinical ART protocols would need further development with inter-disciplinary input,

including: evaluation and quality assurance procedures for new software tools and work-

flows; specialized training; pre-defined adaptation triggers and adaptation techniques for

individual patient cohorts.

Investigation and understanding of radiobiology following adaptations

Radiobiological considerations would need to be integrated into the ART decision-making

process, and during the acceptance of adapted plans. New radiobiological or dose-volume

constraints may be required in order to allow treatment re-optimisation by dose com-

pensations and consequent non-uniform dose distributions in target regions. Application

of dosimetric treatment monitoring and correlation of dose-effect relationships to actual

accumulated dose distributions, rather than estimates based on original plans, is expected

to provide better correlations and allow improvements in radiobiological modelling.

Investigate radiobiology-based plan optimisations

As mentioned above, radiobiological consideration may by vital during plan adaptation,

and especially when re-optimisation is performed. Further development of radiobiology-

based plan optimisation may allow safer and reliable implementation of this technique.

MRI-guided ART

Drawbacks associated with the quality of online acquired x-ray based images, such as

CBCT and MVCT, may be overcome with the clinical implementation of MR-linacs

[128–131] or MRI-equipped cobalt radiotherapy [132] systems. The very good soft tis-
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sue contrast in MR images may allow for improved auto-segmentation and DIR algorithm

performance, as well as easier assessment of their results [133].

Online ART

Online ART can efficiently adapt to random daily changes, in contrast to offline ART

workflows. A new plan can be created −or the existing re-optimised− based on the

daily anatomy, following the online scan, and while the patient remains immobilized

on the treatment couch [134; 135]. The whole adaptation process, therefore, needs to

be performed very quickly, including potential clinical decision making and plan quality

assurance tests. Dedicated planning protocols and plan acceptance should be developed

while additional pressure and responsibilities are put towards radiotherapy radiographers,

physicists and clinicians tasked with the process.

Plan-of-the-day techniques, whereby several plans are created for a given patient with

the most appropriate one chosen following the assessment of an online-acquired scan

[136; 137] are less technically challenging and are currently finding their way in rou-

tine clinical practice. The implementation of this online ART technique requires spe-

cialised training of radiotherapy radiographers assigned for choosing the appropriate plan

[138; 139], some authors investigated algorithms for automatic selection of the appropri-

ate plan-of-the-day [140]. Plan-of-the-day ART techniques are particularly useful in cases

with predictable, frequent and substantial anatomical changes, such as bladder cancer

treatments. RAIDER [141] is a phase II clinical trial currently underway investigating

the feasibility and long term outcomes of this ART technique in bladder cancer treatments.
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ART based on tumour response

The main ART objective discussed throughout this thesis has been the adaptation against

anatomical changes. However, certain researchers are proposing the application of the

same principles for adaptation of the treatment plan according to tumour response. This

response could be either observed through repeat CT, MRI or functional imaging tech-

niques such as PET [142–145].

Clinical trials to investigate actual clinical benefit from ART

Once efficient and robust ART workflows are established prospective clinical trials would

need to investigate their actual clinical benefit. This would be especially important for

offline adaptive radiotherapy techniques utilising plan re-optimisation method were, as

discussed in this theses, non-uniform dose distributions can be generated in the target

regions and hot-spots in certain healthy tissues.
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Appendix A

Cherenkov Emission Imaging in

Radiotherapy

A.1 Real-time Cherenkov emission portal imaging dur-

ing radiotherapy: a proof of concept study

This appendix outlines the investigation of real-time portal imaging during radiotherapy

using an optical camera, utilising the Cherenkov emission effect. This technique can be

especially useful for radiotherapy equipment that lack alternative portal imaging options,

such as CyberKnife R©. This work, and the content of this appendix, has been accepted

for publication by the ‘Physics in Medicine and Biology’ journal [5].

A.1.1 Introduction

Cherenkov radiation is emitted when charged particles travel faster then the speed of

light in a given dielectric medium [146]. During x-ray radiotherapy, secondary electrons
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are predominantly generated from Compton scattering which have sufficient energy to

produce Cherenkov Emission (CE) in water or tissue. CE was shown to be measurable

with an optical imaging system, given that the main wavelength of emission is within

the visible spectrum and shown to be proportional to radiation doses deposited in the

medium [147].

The incorporation of CE in electronic portal imaging device (EPID) detectors has re-

cently been investigated [148], while Cherenkov radiation imaging has been utilised as

a dosimetry technique during photon [149–152], electron [149; 153] and proton [154] ra-

diotherapy. Furthermore, real-time superficial dosimetry has been demonstrated in both

animal and human studies [155; 156].

EPID-based portal imaging may be employed for pre-treatment positioning or intra-

fraction tumour tracking. While some commercial linear accelerators incorporate portal

imaging equipment, the CyberKnife system does not offer such option. Due to the fact

that this system utilises multiple non-coplanar and non-isocentric beams, a conventional

portal imaging device would not be practicable.

In this study the feasibility of real-time CE portal imaging during CyberKnife radio-

therapy is investigated. This would enable real-time verification of in-patient targeting

and treatment delivery accuracy.

A.1.2 Methods

A medical linear accelerator (CyberKnife R©, Accuray, Sunnyvale, CA) irradiated a par-

tially filled water tank (300× 300× 350 mm) using a 60 mm diameter circular beam of 6

MV energy at a dose rate of 10 Gy per minute at 800 mm source-axis-distance (SAD), as

shown in Fig. A.1a. A number of attenuating materials were placed on a moving platform

between the beam source and the water tank, while an opaque 10 mm thick white solid
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water slab (Solid Water HE, Gammex Inc, Middleton, WI) was placed at the beam exit

face to ensure that only the CE due to radiation at the exit face would be imaged. A

gated electron-multiplying-intensified-charged-couple device (emICCD) (PI-MAX4: 512

EM, Princeton Instruments) with a commercial lens (Cannon EF 135 mm f/2L USM)

positioned at the exit face at a small incident angle (to reduce direct radiation to the

camera) imaged the induced CE at the surface of the solid water slab. Image acquisition

was synchronised with the beam pulses using the trigger signal from the accelerator in

order to maximise the signal-to-background ratio [157].

Water 
Tank

emICCD Camera

Medical Linear 
Accelerator 
(CyberKnife)

Solid 
Water 
Slab

Moving 
Platform

Radiation 
Beam

Attenuating 
Material Field of View

a.

110 
mm

350 mm

60 mm

i

ii
iii

iv v

c.

20 mm

wood

lead

Figure A.1: a. Schematic diagram of the experimental setup; b. lead/plywood graticule
with c. its corresponding schematic, and d. tissue equivalent rods (RMI phantom).

A number of attenuating materials were used to assess the resolution and contrast of the

measured CE at the exit face. For assessment of the resolution a graticule was constracted

from a number of lead sheets (2× 60× 20 mm) spaced at regular intervals using plywood

separators, Fig. A.1b,c. To asseess the contrast of the measured CE a number of 28 mm
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diameter tissue equivalent rods (RMI 467 phantom, Gammex Inc, Middleton, WI) were

used Fig. A.1d.

The water tank was filled to a depth of 110 mm, and the phantoms were placed such

that the lower 50% of the radiation beam travelled through the phantom and the water,

whereas the upper 50% of the beam travelled through the phantom and air, before being

measured at the exit face through the solid water slab. CE images were acquired at 30

frames per second (fps) with each frame accumulating CE for 5 radiation pulses. All data

were background-subtracted using images with no radiation. The background-subtracted

images (30 frames for static and 3 frames for dynamic) were then median-filtered to

produce the CE images for data analysis.

CE-based static and dynamic portal images were visually inspected for an initial proof-

of-concept validation. Resolution and contrast were assessed by analysing the profile

plots through the two regions of the static images, facilitating quantitative evaluation.

Resolution was quantified by measuring the distances of the minima in the profile plots,

associated with the position of the lead sheets. To measure relative contrast, the mean

percentage decrease of signal in the profile plots due to the presence of the tissue equivalent

rods was calculated with respect to the normalised maximum.

The experimental configuration for contrast assessment in the static configuration was

replicated on an Elekta Synergy R© (Elekta AB, Stockholm, Sweden) linear accelerator with

portal images being acquired using the iViewGTTM system, to allow direct comparison

of CE-based portal imaging against current technology. For this experiment a 240× 240

mm square beam of 6 MV nominal energy at a dose rate of 3.6 Gy per minute at 1000

mm SAD was employed, with portal images acquired for 50 monitor units (or 0.33 Gy to

1000 mm SAD) acquisitions.

172



A.1.3 Results

A Chereknov image using the stationary graticule is shown in Fig. A.2 along with profile

plots of the measured CE intensity. The intensity profiles though both air and water are

self-normalised to allow quantitative analysis of the detected resolution, corresponding to

the distance between each lead sheet, Fig. A.2b,c and Table A.1. The lowest separation

of 3.40 mm (spacing ‘v’ in Fig. A.1c) is clearly evident in the portal image (Fig. A.2a)

and measured as 3.58 mm and 3.92 mm for radiation travelling through air and water,

respectively. Larger errors are observed at the two edges of the detected signal, which is

primarily due to data capture geometry and beam divergence. Each lead sheet with a

width of 2 mm is visible, highlighting the potentials of higher resolution imaging.

a. b. c. 

Figure A.2: a. Cherenkov emission portal image of the graticule phantom acquired from
the beam exit face: the white dashed lines represent the profiles used to calculate the
contrast for the radiation travelling through (b.) water and (c.) air.
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Table A.1: The actual and measured distances between lead sheets from resolution gratic-
ule phantom.

Actual [mm]
Recovered [mm]

Air Water

i 10.40 10.60 10.80

ii 8.80 8.50 8.42

iii 6.00 6.00 5.92

iv 4.40 4.42 4.58

v 3.40 3.58 3.92

Portal images in the presence of tissue equivalent rods were analysed and the intensity

profiles used to assess the measurable relative contrast for each phantom. Figure A.3

shows example portal images of the ‘SB3 Cortical Bone’ phantom as well as the corre-

sponding self-normalised profile plots.
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Figure A.3: a. Cherenkov emission portal image of the ‘SB3 Cortical Bone’ tissue equiv-
alent rod with b. the associated normalised profile plots; c. EPID-based portal image of
the same tissue equivalent rod (intensities inverted to match the CE intensities) with d.
the associated normalised profile plots.
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The use of tissue equivalent phantoms demonstrate that CE emission detected at the

exit face are sensitive to small contrasts often seen in biological tissue. As seen in Fig.

A.4 and summarised in Table A.2, for tissue equivalent rods with 28 mm diameter, a

contrast in CE up to 15% was observed with an electron density of 1.69 relative to water,

with similar contrast seen for beam passing through the air and water-filled part of the

water tank. On the other hand, EPID-based portal images revealed higher contrast for

beam travelling through the empty part of the water tank, with lower contrast for beam

travelling through the water-filled part.

Real-time video (30 fps) CE imaging of a moving graticule and a tissue equivalent rod

was recorded (snapshots shown in Fig. A.5, and video available in supplementary material

of paper in PMB website [158]). Even though of inferior image quality due to the sub-

stantially lower number of frames in each median-filtered stack, the periodic movement

(0.25 Hz) of the phantoms can be observed.

Table A.2: Properties of tissue equivalent rods together with the relative Cherenkov
emission (CE) and EPID-based portal image contrast.

Name if tissue

equivalent rod

Electron

density relative

to water

Relative CE

contrast [%]

Relative EPID

contrast [%]

Air Water Air Water

SB3 Cortical Bone 1.69 15 14 19 12

CB2 - 50 CaCO3 1.47 12 11 16 10

CB2 - 30 CaCO3 1.28 10 10 15 8

B200 Bone Mineral 1.10 9 10 13 8

IB Inner Bone 1.09 8 10 13 8

BRN-SR2 Brain 1.04 9 8 12 7
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Figure A.4: Normalised profile plots of EPID-based (left) and Cherenkov emission (CE)-
based portal images for a number of tissue equivalent rods.
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A.1.4 Discussion and Conclusions

The use of CE-based portal imaging was demonstrated using both a highly attenuating

resolution phantom and tissue mimicking phantoms. It was shown that objects with as

little as 3.4 mm separation are easily detected, while tissues with relative electron density

of greater than 28% (with respect to water) demonstrate CE contrast of 8% or greater.

Video rate CE portal imaging was achieved to monitor movements of the graticule and

tissue equivalent phantoms in real-time. Therefore, CE-based portal imaging, a novel

imaging technique during radiation therapy, can be potentially applied for systems that

lack alternative options such as EPID.

Contrary to EPID-based portal imaging, CE portal imaging only utilizes visible optical

photons produced at the exit surface through the CE effect while only charged particles

above a threshold energy can cause CE. This minimizes the contribution of scattered

radiation, resulting in higher measured contrast when radiation passes through water or

tissue (as compared to EPID-based portal image), which highlights for the first time the

additional benefits of CE portal imaging over EPID-based techniques.

The demonstration of CE-based portal imaging can be potentially useful in many ap-

plications. Given that the use of CE for detection of entrance and exit dose has been

previously demonstrated, the current work indicates that this method could also be used

to detect small deviations in patient positioning and intra-fraction anatomical movements.
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Appendix B

Deformable Image Registration

Algorithms

B.1 Review of DIR algorithms

This appendix provides a brief introduction to DIR algorithms and discusses their main

components along with their advantages and limitations. Several reviews have been re-

cently published in the literature with exhaustive overviews of DIR algorithms their math-

ematical and computational formulations [28; 159].

B.1.1 Introduction

Image registration is the process of defining correspondence between two images; in other

words, transforming two images into one coordinate system. Typically two images are

considered, one of which is referred as the moving image (or floating, source) and the

other one the stationary image (or fixed, target, reference). In this setting, the moving

image undergoes a transformation so as to ‘match’ the stationary image. The goal of
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the image registration process is to find the optimal transformation that achieves perfect

correspondence.

Rigid image registration (RIR) algorithms typically model the transformation between

the two images purely rigidly, or linearly (and for the image as a whole). Six degrees of

freedom exist in the transformation model, three rotational and three translational (even

though a few other RIR options exist with 9 or 12 degrees of freedom).

Deformable image registration (DIR) algorithms, on the other hand, can model each

image voxel independently with multiple parameters for each, resulting in hundreds to

millions of degrees of freedom. For instance a commonly used 512 × 512 × 100 image

matrix with three parameters for each voxel would employ 78, 643, 200 parameters.

DIR algorithms can generally be described by three main components:

(a) Transformation or deformation model

(b) Similarity metric or objective function

(c) Optimization method

B.1.2 Transformation or deformation model

The transformation model (also called deformation model) employed in the DIR algo-

rithm determines the underlying relationship between the coordinates of the two images

to be registered. The complexity and flexibility of the model is typically proportional to

the degrees of freedom it possesses, but in general, the more complex the model the more

computationally demanding the optimisation becomes. Moreover, each model is typi-

cally based on several assumptions regarding the underlying deformation to be estimated,

limiting its applicability to certain scenarios.
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According to Holden [23], transformation models employed by DIR algorithms can be

identified in two main groups according to their underlying physical basis:

(i) those influenced by physical models,

e.g. elastic model, diffusion model, viscous fluid flow model and others.

(ii) those influenced by approximation and interpolation theories,

e.g. free form deformations, radial basis functions, elastic body splines and others.

One of the most widely used physical models is the Demons formulation which is in-

spired by the diffusion model and specifically Maxwell’s Demons [24]. In this approach

the image boundaries are seen as membranes through which the image diffuses under

the influence of Demons forces. The computation of these forces can be highly efficient

and robust with advanced programming techniques and has therefore attracted the inter-

est of researchers and manufacturers of commercial products. It generally utilises image

intensity-based similarity metrics and therefore possesses the advantages and limitations

discussed below.

One of the most important techniques based in the interpolation theory are the thin-

plate splines which lie under the radial basis functions family. Here the displacement value

at a given point is a function of its distance to another given reference point. The advan-

tage of these techniques is that the result in highly smooth while feature-based similarity

metrics can be employed. In addition to the advantages and limitations of feature-based

techniques discussed below, another important limitation is their inefficiency to allow for

large local deformations, since the deformation field as a whole is affected by neighbouring

forces.
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B.1.3 Similarity metric or objective function

The similarity between the two images is computed in each iteration of the DIR algorithm

in order to ‘drive’ the registration. Depending on the similarity metric of choice, the aim

of the registration is to maximise or minimise it, meaning that (near-)perfect overlap

between the images is achieved and it is therefore also referred as the objective function.

These similarity metrics can be:

(i) Feature-based,

(ii) image intensity-based,

(iii) hybrid

Feature-based (or geometric) techniques utilize landmark points, lines or segmented

surfaces (e.g. organ contours) to drive the registration and typically aim to minimise

the distance between the corresponding features in the two images. These features must

therefore be defined in both images requiring an additional step of manual or automated

feature extraction. An advantage of these methods is their applicability to both intra-

and inter-modality image registrations with consistent accuracy. Furthermore, they can

be more robust in situations were their is lack of volume conservation between the two

image instances or when new features appear in one of the images. Their limitation is

the requirement of feature extraction which may occasionally be a very time consuming

process, while when automated feature extraction techniques are employed potential errors

will be translated into registration errors.

Image intensity-based (or iconic) techniques employ grey level similarity measures aim-

ing to maximise the similarity between the two images. Such similarity measures include

the cross correlation, sum of squared differences, mutual information and correlation ratio.
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The advantage of intensity-based techniques is that they do not require prior feature ex-

traction and are typically fully automatic. However, they are generally more robust when

used for intra-modality registrations than inter-modality cases, even though advanced

techniques and the use of mutual information measure can archive good inter-modality

image registration results. Another limitation is the general assumption that both images

share the same characteristics (i.e. one-to-one correspondence exists).

Hybrid techniques combine the characteristics and requirements of both feature-based

and intensity-based techniques in an attempt to combine the advantages of each and

amplify their performance. In these cases, one of the techniques could serve as the initial-

isation step before the other commences; or one could serve as a constraint for the other;

or they may be coupled as a single algorithm.

B.1.4 Optimization method

As mentioned earlier, the aim of image registration algorithms is the identification of the

optimal transformation that would perfectly align the two image sets, by maximising (or

minimizing) the similarity metric. Optimisation approaches aim to drive the registration

through the high-dimensional solution space while avoiding local maxima (or minima).

One of the most commonly employed techniques in medical image registration is the

‘coarse-to-fine’ approach. In this technique a number of registration steps are performed

at coarser image levels first before moving to finer image levels.
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Appendix C

3D Printed Phantom

C.1 Design and development of a patient specific 3D

printed phantom: a feasibility study

This appendix outlines the procedure performed for the preparation of a patient-specific

3D printed phantom.

C.1.1 Introduction

Phantoms are tools routinely used for medical imaging and radiotherapy related commis-

sioning and quality assurance procedures in clinical setting. As discussed in Section 1.4.2

(p. 15), physical or digital phantoms may be chosen for the evaluation of certain workflows

such as DIR algorithm performance, each having its own advantages and limitations.

The aim of this project was to investigate the feasibility of creating a patient-specific

3D printed phantom for the evaluation of workflows for dose calculation on CBCT scans,

DIR and deformable dose accumulation.
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C.1.2 Methods

A workflow has been implemented for the construction of a patient-specific 3D printed

phantom, consisting of two steps: the modification of patient datasets into ‘printable’

file format and the investigation of water to contrast agent concentrations to replicate

realistic CT contrast. The feasibility study was concentrated on male pelvis anatomy for

simplicity.

Preparation of 3D printed phantom

The planning CT and manually drawn contours (RTS) of a prostate cancer patient were

randomly selected and transformed into ‘printable’ objects through the following steps:

• Import CT and RTS data into 3DSlicer software (v. 4.3.1, www.slicer.org, [160])

using the radiotherapy module [161], then transform the RTS contours into 2D

surface layers using the model making module.

• Load 2D surface models into MeshLab software (v. 1.3.2, meshlab.sourceforge.net)

and perform ‘Poisson surface reconstruction’ to transform the 2D surface layers to

3D triangular mesh surfaces.

• Load 3D triangular mesh of each contour to slic3r software (slic3r.org) for the gen-

eration of a ‘G-code’ (i.e. file format containing instructions for the 3D printer).

• Load the generated G-code to the 3D printer (RepRapPro Medel, reprappro.com)

and ‘print’ individual hollow organs.
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C.1.3 Results

Figure C.1 shows the original radiotherapy structure set (RTS) of a prostate cancer pa-

tient and their transformation into 2D surface layers, using the model making module of

Slic3r software. The 2D surface layers were then transformed into hollow 3D triangular

meshes surfaces as shown in Fig. C.2.

Figure C.1: Left: A transverse slice showing the original contours of regions of interest of
a prostate cancer patient. Right: Original contours transformed into 2D surface layers.

Figure C.2: The prostate patient regions of interest contours transformed into 3D trian-
gular mesh surfaces.
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Figure C.3 shows the final 3D printed plastic hollow organs, glued together as seen in

the original patient CT scan.

Figure C.3: The patient-specific 3D printed plastic hollow organs, glued together as seen
in the original patient CT scan. The lower part shown in the image is a stand made of
tissue mimicking wax in order to keep the organs in the upright position.

C.1.4 Discussion and Conclusions

This study investigated the feasibility of creating a patient specific phantom using a 3D

printer. The devised workflow allowed for the replication of individual organs of a prostate

cancer patient, as outlined the patient’s CT scan.

The original intention involved the filling of these organs with different solutions of

water to contrast agent concentrations, in an attempt to resemble a simplified patient

specific CT scan. This would allow the investigation of various protocols of CT and

CBCT imaging, in pursue of optimal workflows for dose calculation on CBCT scans,

DIR and deformable dose accumulation. However, the achieved organ replicas were not

watertight hindering the continuation of the investigation.

Further investigations could explore the use of 3D printers with different printing ma-

terials.
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