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ABSTRACT 

Although cytoglobin is widely considered a tumour suppressor, re-expression plays a 

role in disease progression in a subset of oral squamous cell carcinomas (OSC), but the 

mechanism of action is not understood. In this thesis, we developed a new OSC cell 

model to study the effects of cytoglobin over-expression on cellular phenotype and 

resistance to cisplatin. Microarray analysis of cytoglobin-expressing cells showed 

significantly altered transcripts related to stress response, adhesion and locomotion, 

and metabolism. Treatment of cytoglobin-expressing cells with cisplatin revealed a 

greater response in p53-regulated target expression (MAP3K5, NQO1, CDKN2A and 

GADD45A) compared to non-expressing cells. Further investigation showed this was 

associated with higher CHK1, p53 and p21 protein levels, suggesting enhanced 

activation of p53 signalling pathways. Furthermore, cytoglobin-expressing cells were 

more resistant to cisplatin-induced apoptosis and altered their cell cycle distribution. 

These changes were linked to reduced total cellular and mitochondrial superoxide. 

Collectively, these findings demonstrate for the first time that cytoglobin over-

expression is associated with resistance to cisplatin-induced cytotoxicity and that the 

mechanism involves p53 signalling.  In conclusion, we propose expression of cytoglobin 

may afford tumours cells a survival advantage in the harsh environmental conditions of 

the developing tumour as well as resistance to drugs like cisplatin. 
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1.1     Cytoglobin as a Hemeprotein 
Heme (ferriprotoporphyrin IX) is a critical cofactor that mediates the function of many 

heme-containing proteins within aerobically respiring cells. Its biosynthesis occurs in 

the mitochondria through the incorporation of a ferrous (Fe2+) iron atom into the 

protoporphyrin-IX complex by ferrochelatase (Ajioka et al., 2006; Tsiftsoglou et al., 

2006) and this moiety is then subsequently incorporated into apoproteins to produce 

hemeproteins such as cytochromes (e.g. cytochrome P450), metabolic enzymes (e.g. 

peroxidases) and oxygen-binding globins (e.g. hemoglobin) (Ponka, 1999) (Figure 1). 

The globin protein superfamily includes a collection of heme-bound metalloproteins that 

are able to bind to diatomic ligands such as oxygen, carbon dioxide and nitric oxide and 

share a characteristic globin fold, comprised of eight α-helical chains in a 3-over-3 

arrangement (Wajcman et al., 2009) (Figure 2).  

The two most studied globins are the oxygen transporter hemoglobin and oxygen 

storing, nitric oxide-metabolising myoglobin, and both have been found to also exhibit a 

peroxidase function (Vinogradov and Moens, 2008; Wajcman et al., 2009). These globins 

are pentaco-ordinated; that is, the iron atom has its 5 co-ordination sites occupied by 

nitrogen atoms within the heme and a proximal histidine residue of the globin protein 

(highly conserved His113) whilst its distal 6th bond is freely available to reversibly 

associate with diatomic ligands (Wilson and Reeder, 2008) (Figure 1c). Other members 

of the globin superfamily; neuroglobin (NGB) and cytoglobin (CYGB), contain hexaco-

ordinated hemes where all co-ordination sites are bonded and the distal 6th site is bound 

by another histidine residue (highly conserved His81) that directly competes with the 

ligand to bind the heme (Gorr et al., 2011; Weber and Fago, 2004). The presence of 
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conserved cysteine residues within these hexaco-ordinated globins (at Cys46 and Cys55 

in NGB, at Cys38 and Cys83 in CYGB) have been found to form a redox-sensitive 

disulfide bond (Hamdane et al., 2003; Tsujino et al., 2014). Dithiothreitol (DTT)-

mediated reduction of the disulfide bond in CYGB, for instance, re-positions His81 

slightly away from the heme increasing ligand access to the heme and permits 

regulation of their affinity (Hamdane et al., 2003; Lechauve et al., 2010; Makino et al., 

2011). Studies investigating the oxygen affinity of hexaco-ordinate globins have found 

both His81 binding and disulfide bond formation affects ligand affinity, with overall 

CYGB oxygen affinity (P50) greater than that of myoglobin, being ~1 Torr and 2.8 Torr, 

respectively (Fago et al., 2004; Hamdane et al., 2003; Wright and Davis, 2015). 

1.2  Cytoglobin Discovery and Structure 
CYGB was initially identified in a proteomic screen of a fibrotic rodent liver that aimed to 

develop understanding of the hepatic stellate cell (HSC) activation process (Freitas et al., 

2005; Kawada et al., 2001). The globin was significantly up-regulated in activated HSCs, 

in association with other activation markers alpha smooth muscle actin (αSMA) and 

collagen 1α1 (COL1A1) (Kawada et al., 2001).  The protein has since been found in a 

number of vertebrates including fish, birds, amphibians, mice, and humans, of which the 

latter two share 95% primary sequence similarity (Asahina et al., 2002; Burmester et al., 

2002; Kugelstadt et al., 2004; Pesce et al., 2002; Wawrowski et al., 2011; Xi et al., 2007). 

Phylogenetic profiling of globin family proteins suggests that CYGB is most closely 

related to avian Globin E and is likely to share a common ancestor with Myoglobin, with 

which it has ~25 % sequence similarity (Burmester et al., 2002; Burmester et al., 2004; 

Kawada et al., 2001; Kugelstadt et al., 2004; Pesce et al., 2002). 
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Figure 1 - Heme synthesis and its incorporation into protein. 
(a) The heme biosynthetic pathway takes place in both the mitochondria and cytosol, 
starting with the conversion of succinyl coenzyme A (CoA) supplied by the tricarboxylic acid 
cycle into δ-aminolevulinic acid that then is shuttled into the cytosol for further processing 
into the protoporphyrinogen IX complex that is returned to the mitochondria for 
manufacture into heme. (b) The heme is planar with a central ferrous (Fe2+) iron atom held in 
place by four co-ordination bonds (blue lines) to nitrogen atoms of a tetrapyrrole complex. In 
its ligand-bound state, the iron is ferrous and in its unbound state is ferric (Fe3+). (c) Heme 
forms the prosthetic group of proteins such as globins where the heme is tethered to a 
histidine residue of the protein (shown as part of polypeptide chain, [R]n) via its 5th co-
ordination bond of the iron atom, leaving the remaining 6th co-ordination site available to 
bind diatomic ligands such as oxygen, carbon monoxide and  nitric oxide. Figure adapted 
from Tsiftsoglou et al. (2006) and molecular structures created with Isis Draw v. 2.3. 
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Figure 2 - Globins share a conserved 3/3 fold assembly in their tertiary structure. 
(a) The globin fold is made of eight α-helices arranged so there are three stacked above each 
other (each set shown in blue and green), with two α-helix hinges (shown in grey) between 
them. The heme is anchored by the conserved His113 residue between helices E and F. (b) 
CYGB protein structure adapted from the RCSB protein databank (PSB ID = 1URV), showing 
the eight helices labelled A to H and the position of the heme moeity. 
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Like the other globins, CYGB contains the conserved globin fold and a heme group 

(Figure 2b) within its active site that is surrounded with non-polar residues to create a 

hydrophobic environment to tightly regulate the redox state of the central iron atom (de 

Sanctis et al., 2004; Sawai et al., 2005). CYGB is 190 amino acids in length; almost a third 

longer than the average length of the other globins (Pesce et al., 2002; Trent and 

Hargrove, 2002). The increased size is due to the presence of extended N and C termini, 

suggested to be due to a direct seven codon duplication event and acquisition of an 

additional exon, respectively, during its evolution (Burmester et al., 2002). The longer 

termini have potential to be protein interaction sites that may regulate or permit CYGB 

function, but the actual purpose for these extensions is unknown. It has, however, been 

recently suggested that the N terminus offers some stability to CYGB (Tangar, 2015) and 

further that the termini may be responsible for facilitating lipid binding to cardiolipin 

and oleate (Reeder et al., 2011). The quaternary structure of CYGB has been under 

debate. Crystal structures indicate it exists as a homo-dimer with the interaction 

interface at the E helix mediated in part by intermolecular disulfide bonding and the 

heme pockets extending outwards (de Sanctis et al., 2004). However, later studies using 

a laser light scattering technique found this conformation was far less common than 

monomeric CYGB at physiological concentrations (Lechauve et al., 2010). Recent work 

has also shown the existence of CYGB monomers, dimers and tetramers and that 

polymerisation is associated with lower affinity for carbon monoxide and cyanide 

(Tsujino et al., 2014). 

1.3.   Cytoglobin Gene Structure and Expression 
The locus encoding CYGB in humans is at chromosome position 17q25 and consists of  

four exons separated by three intronic sequences; B12-2 (i.e. the second amino acid of 
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the 12th codon in the B α-helix), G7-0 and H36-2, the latter of which does not occur in 

other hexaco-ordinate globin sequences (Trent and Hargrove, 2002) (Figure 3). 

Compared with other vertebrate globin family members, the CYGB gene has the lowest 

mutation rate, suggesting that the gene encodes a protein with a highly conserved 

function (Trent and Hargrove, 2002; Wystub et al., 2004). There are several 

transcription factor binding sites in the regulatory region of CYGB (but notably not one 

for TATA-binding protein (TBP)) and these include sites for Hypoxia Inducible Factor 1 

(HIF1), Stimulatory Protein 1 (SP1), Activator Protein 1 (AP1), Nuclear Factor kappa B 

(NFkB) and cellular erythroblastosis virus E26 oncogene homolog 1 (c-Ets-1) sites (Guo 

et al., 2006; Guo et al., 2007; Wystub et al., 2004) NFkB and Sp1 transcription sites are 

situated in the CpG-rich island in the promoter, suggesting that epigenetic control of 

CYGB expression is possible (Oleksiewicz et al., 2011). Most recently, members of the 

tumour suppressor protein 53 (p53) family, ∆Np63 and TAp73, have been found to 

directly regulate expression of CYGB (three recognition sites for ∆Np63 were found in 

the promoter) and this was associated with diminished oxidative stress and apoptosis 

(Latina et al., 2015). 

Important mechanisms of CYGB gene regulation include promoter hypermethylation 

(Shaw et al., 2009) and histone modification. Expression of CYGB in cancer cell lines can 

be restored; at least partially, by treatment with de-methylating agents (Shivapurkar et 

al., 2008; Xinarianos et al., 2006), such as 5-aza-2-deoxycitidine as demonstrated in head 

and neck cancer cell lines (Shaw et al., 2006; Shaw et al., 2009).  CYGB transcripts were 

increased in 12/14 lung cancer cell lines and decreased in 7/8 of normal bronchial cell 

lines following 18 h incubation with 100 nM trichostatin (TSA), which is a type 1 and 2 
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Figure 3 - Cytoglobin Gene Structure. 
The CYGB gene is located on chromsome 17q25 and is made up of four exons and three 
introns, two of which are conserved with other hexaco-ordinated globin members. The 
numbers depict the number of bases (not to scale) within each region of the sequence. 
Figure adapted from Asahina et al. (2002) and Trent and Hargrove (2002). 



8 
 

histone deacetylase (HDAC) inhibitor (Oleksiewicz et al., 2013). It is proposed that 

either TSA interferes with normal HDAC function of chromatin decondensation and 

enhances access to the transcription machinery (Dokmanovic et al., 2007) or modifies 

transcription factors like HIF1α or NFκB, which result in altered CYGB expression 

(Oleksiewicz et al., 2013; Xu et al., 2007). Recently, rodents with reduced thyroid 

function have been shown to down-regulate CYGB within their hippocampus and 

transcripts could be restored to normal levels (and protein increased, but not to control 

levels) 24 h after an intravenous injection of triodothyronine (T3), indicating hormonal 

regulation is a component of controlled CYGB expression (Oliveira et al., 2015). 

1.4.   Cytoglobin Distribution 
CYGB expression has been reported within a range of organs for example the liver, 

oesophagus, brain, retina and heart (Burmester et al., 2000; Fordel et al., 2004; Geuens 

et al., 2003; Hundahl et al., 2010; McRonald et al., 2012; Nakatani et al., 2004; Schmidt et 

al., 2004; Shigematsu et al., 2008). The globin has been found to be mainly expressed 

within fibroblast-related cell types including myofibroblasts, osteoblasts and HSCs, but 

expression has also been detected within neurones and epithelial cells (Hundahl et al., 

2010; Nakatani et al., 2004; Schmidt et al., 2004; Shigematsu et al., 2008). The cellular 

location of CYGB is still debated. CYGB has been reported to be in the cytoplasmic 

compartment within epithelial cells (Gorr et al., 2011; Shigematsu et al., 2008), 

hepatocytes (Shigematsu et al., 2008), hepatic stellate cells (Kawada et al., 2001), 

osteoblasts and fibroblasts (Schmidt et al., 2004). However, there has also been nuclear 

CYGB staining reported in the brain (Geuens et al., 2003; Man et al., 2008), liver, cardiac, 

lung, and kidney tissues (Geuens et al., 2003), as well as in hepatocytes (Shigematsu et 

al., 2008), melanocytes (Fujita et al., 2014), and muscle progenitor cells (Singh et al., 



9 
 

2014). Therefore, it remains unclear where in the cell CYGB localises, and this may be 

dependent upon context and cell type. Interestingly, CYGB has been observed in both 

cytoplasmic and nuclear regions in some cell types (Fujita et al., 2014; Man et al., 2008; 

Schmidt et al., 2004). Although work with a CYGB-GFP (GFP, Green-Fluorescent Protein) 

fusion construct failed to find a nuclear targeting motif or any evidence of active nuclear 

import (Hodges et al., 2008; Hundahl et al., 2010; Kawada et al., 2001; Schmidt et al., 

2004), splicing of a nuclear localisation signal of a known nuclear protein to the N 

terminus of CYGB does however enable nuclear localisation of the globin (Itoh et al., 

2013). This indicates CYGB has the potential to move across the nuclear envelope but 

the mechanism may be independent of a nuclear localisation sequence and may even 

involve simple diffusion (Geuens et al., 2003) or binding to other nuclear-targeted 

proteins. 

1.5   Possible Cytoglobin Functions 
Although the exact functions of CYGB are presently unknown, there is accumulating 

evidence in favour of a cytoprotective role. The most recent view of CYGB function is 

that it is involved in protecting cells against oxidative, fibrotic and hypoxic stress and 

thus has a tumor suppressor nature (Oleksiewicz et al., 2011). The vast array of 

potential functions for CYGB in normal cells seems to depend on specific cellular 

contexts and includes regulation of oxygen status, an antioxidant function through the 

detoxification of both ROS and RNS, a molecular oxygen shuttle to prolyl hydroxylases 

and other metabolic processes, cell survival and oxidative DNA damage protection 

(Asahina et al., 2002; Halligan et al., 2009; He et al., 2011; Hodges et al., 2008; Man et al., 

2008; Mimura et al., 2010; Nakatani et al., 2004; Singh et al., 2009; Smagghe et al., 2008; 

Stagner et al., 2005; Tateaki et al., 2004; Xu et al., 2006). Very few downstream effectors 



10 
 

of CYGB have been identified, but there are transcripts that have been found to be 

regulated in response to CYGB over-expression, including collagen 1α1 (COL1A1), 

mitochondrial uncoupling protein 2 (UCP2), cyclin D1 (CCND1), DNA methyltransferase 

1 (DNMT1) and splicesome assembly factor 40 (PRPF40) (see Table 4).  

1.5.1   Oxygen Sensing and Storage 
It was logically assumed that as a globin protein, CYGB was involved in oxygen 

metabolism, and it had already been shown to bind oxygen with high affinity (see 

section 1.1). CYGB also shares some structural similarity with myoglobin (MB), 

especially in the primary structure of the heme-binding site (Trent and Hargrove, 2002) 

and has an oxygen affinity similar to that of MB (Fago et al., 2004; Hamdane et al., 2003). 

Therefore, early suggestions were that CYGB would operate to store and transport 

oxygen intracellularly to the mitochondria in cells lacking MB (Fago et al., 2004; Kawada 

et al., 2001; Trent and Hargrove, 2002). Expression of CYGB has also been found induced 

following hypoxia and fibrosis (see sections 1.6.1 and 1.6.2), which implied that it may 

act as an oxygen reserve during hypoxia. However, the fact CYGB is present at low 

concentrations within cells (Liu et al., 2012) and has slow ligand dissociation rates 

(Lechauve et al., 2010; Smagghe et al., 2008) makes a MB-like role seem unlikely. Also, 

the cell types where CYGB is expressed are not associated with high metabolic rates 

unlike the occurrence of MB or NGB in smooth muscle cells and neurones, respectively, 

and this further implies a role outside of simple oxygen transport and storage. However, 

the idea of CYGB acting to supply oxygen to particular biochemical reactions has 

recently resurfaced with the observation that CYGB expression in murine hepatic 

stellate cells can impair paracetamol metabolism and hepatocyte necrosis was lessened, 

particularly after low oxygen stress (Teranishi et al, 2015). Upon binding carbon 
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monoxide (CO) or oxygen, the expected movement of the distal His81 residue away from 

the heme is accompanied with distortion of the E helix and adjustments in the positions 

of amino acids within the CD-D helix region of CYGB (Makino et al., 2011). This 

conformational change has been hypothesised to form the basis of a signalling pathway 

where ligand-bound CYGB translates information about the oxygen status of the 

environment into a structural rearrangement that in turn leads to the downstream 

modulation of factors related to the oxygen response; potentially through altered gene 

expression (Geuens et al., 2003). However as stated by Schmidt et al (2004), there is no 

clear explanation for why a gas sensor should be restricted to fibroblast-like cells.  

1.5.2.    Enzyme Activity 
CYGB from rodent HSCs were found to exhibit peroxidase activity and could metabolise 

linoleic acid hydroperoxide and hydrogen peroxide (H2O2) (Kawada et al., 2001), the 

latter of which was later confirmed by (Asahina et al., 2002). Most recently, CYGB's 

peroxidase ability was reported to involve production of an intermediate tyrosine free 

radical, which was inhibited by glutathione (Ferreira et al., 2015). There have also been 

reports to suggest CYGB has some limited superoxide dismutase (SOD) activity. A CYGB 

construct that lacked the N and C terminal extension sequences found in wildtype CYGB 

was reported to exhibit SOD activity that was lost almost completely when using double 

cysteine mutated CYGB (Trandafir et al., 2007). Although this study found the activity of 

the truncated construct was a fraction (~ 6 %) of that shown by bovine SOD, it was still 

higher than the activities of MB (0.2 %) or NGB (<0.1 %). Studies have additionally 

shown CYGB operates as an effective nitric oxide dioxygenase (NOD) in the presence of 

electron donor reduced cytochrome b5 (Gardner et al., 2010; Smagghe et al., 2008). This 

was associated with improved preservation of aconitase activity after continuous nitric 
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oxide treatment; an enzyme that metabolises citrate within the tricarboxylic acid cycle 

(Tortora et al., 2007). Nitric oxide inhibits complex IV activity within the mitochondrial 

electron transport chain (ETC) when oxygen is in short supply (Petersen et al., 2008). 

CYGB expression was additionally reported to show an inverse correlation with 

intracellular nitric oxide concentration in vascular fibroblasts and CYGB's NOD activity 

was able to mediate protection against nitric oxide-induced apoptosis (Jourd'heuil et al., 

2012) and improve nitric oxide-impaired respiration rates (Halligan et al., 2009), so 

CYGB detoxification of nitric oxide might restore respiratory function. Other detrimental 

consequences of chronic nitric oxide treatment include aberrant hypoxic signalling in 

normal oxygen conditions through inhibition of prolyl hydroxylase that regulates HIF1A 

activity (Berchner-Pfannschmidt et al., 2007; Metzen et al., 2003). CYGB is known to 

afford cells protection against hypoxic stress (see section 1.6.1), so the NOD activity of 

CYGB may facilitate this in part by hindering the nitric oxide-activated hypoxia response.  

Under oxidising conditions, CYGB was found to cause lipid peroxidation of lecithin 

liposomes (Reeder et al., 2011). This study found oxidation of lipids by CYGB was five 

times more rapid than that by MB, suggesting this reactivity may be critical to CYGB's in 

vivo function. Although this seems to contradict observations that show CYGB to be an 

antioxidant (see section 1.5.3.2) and reduces lipid peroxidation biomarkers after 

oxidative stress (Kawada et al., 2001; Xu et al., 2006), the physiological level of CYGB is 

low enough that a signalling; rather than cytotoxic, role for the CYGB-generated lipid 

peroxides is possible (Ascenzi et al., 2013). Lipids are the basis of many important 

signalling molecules and lipid rafts provide a scaffold for certain proteins to transduce 

signals from activated membrane-associated receptors, such as integrins and RasGTPase 

(Santos and Schulze, 2012; Simons and Toomre, 2000). Peroxidation of lipids generates 
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intermediate signalling molecules such as inositol triphosphate (IP3) and 

lyophosphatidic acid (LPA) that serve to regulate various processes like cell survival, 

migration and inflammatory responses (Hannun and Obeid, 2008; Leonarduzzi et al., 

2000; Mills and Moolenaar, 2003). Indeed, binding of ligands has been shown to induce a 

structural change in CYGB (see section 1.1) and the binding of lipids such as cardiolipin 

and oleate to Fe3+ CYGB causes a shift towards the pentaco-ordinated iron state (Reeder 

et al., 2011), so together these might initiate signalling pathways through either binding 

other proteins and/or enhancing production of lipid second messengers. In conclusion, 

even though CYGB shows enzymatic potential as a peroxidase, NOD and SOD, the 

activities reported for these are relatively low, so it is unclear yet whether these have 

physiological importance. 

1.5.3.    Antioxidant 

1.5.3.1.    Defining Oxidative Stress and the Antioxidant Response 

Oxidative stress describes a cellular environment that consists of significantly elevated 

reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) that are generated 

from, for example, aerobic mitochondrial respiration and as a by-product of xenobiotic 

metabolism (Ray et al., 2012a; Schieber and Chandel, 2014). ROS are free radicals with 

at least one unpaired outer shell electron that reacts more readily than molecular 

oxygen. ROS have many endogenous extracellular functions (this is reviewed in detail by 

Janssen-Heininger et al., 2008). For instance, critical signalling factors involved in cell 

survival such as the regulator of the mitogen-activated protein kinase cascade, apoptosis 

signal-regulated kinase 1 (ASK1, aka. MAP3K5, Ray et al., 2012a) and transcription 

factor NFkB (Wang et al., 2002) are redox-regulated. However, ROS in excess are 
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extremely damaging to cellular components, oxidising DNA bases, proteins and lipids 

that in turn detrimentally lead to mutations, changes in activity and compromise 

membranes, respectively.  

There are a wide variety of free radicals with different half lives and properties that 

influence the molecules they can interact with. These include superoxide (O2•-), H2O2, 

hypochlorous acid (HClO), peroxyl radicals (HOO-), hydroxyl radicals (•OH), nitric oxide 

(NO•) and peroxynitrite (ONOO-) (Murphy et al., 2011). A major endogenous source of 

ROS is the mitochondria and production pathways are shown in Figure 4. The 

mitochondrial complexes 1 (NADH:ubiquinone oxidoreductase) and complex 3 

(ubiquinol:cytochrome c oxidoreductase) are the primary sources of superoxide and can 

be responsible for both oxidative stress and the increased conductance of mitochondrial 

uncoupling proteins (UCP) for protons during thermogenesis (Brand et al., 2004). In 

contrast to H2O2, •OH cannot diffuse very far, has a short half life and is very reactive, 

making it one of the most toxic cellular radicals (Klaunig et al., 2011; Schieber and 

Chandel, 2014; Valko et al., 2006). For instance, •OH initiates the lipid peroxidation chain 

reaction, whereby the fatty acid hydrocarbon tails of phospholipids are oxidised leading 

to amplified ROS generation that compromise membrane structure and function (Valko 

et al., 2006). Surplus of ROS also damages DNA through base oxidations and promoting 

lesions such as strand breaks and cross-links, each of which; if unrepaired, contribute to 

genetic instability, mutation and aberrant cell signalling - factors strongly implicated in 

tumorigenesis (Hanahan and Weinberg, 2011; Klaunig et al., 2011). Proteins can be  
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Figure 4 - Endogenous Sources of ROS. 
The mitochondria are a major source of ROS within cells. Under aerobic conditions, oxygen is 
reduced to water by accepting a pair of protons and two pairs of electrons within the 
electron transport chain, whilst ATP is produced from the energy release caused by the 
transfer of electrons between the four mitochondrial complexes. However, electron transfer 
can be uncoupled from the complexes 1 and 3 and reduces molecular oxygen to form 
superoxide which is subsequently metabolised by superoxide dismutase in both 
mitochondrial and cytosolic compartments to form hydrogen peroxide. This can be further 
metabolised by redox-active transition metal ions to form hydroxide (i.e. the Fenton reaction 
that uses ferrous ions (Fe2+) obtained from local storage pools within cells). Figure adapted 
from Holmstroem et al. (2014) and information provided in Hamanaka and Chandel (2010), 
Kamata et al. (1999) and Sena et al. (2012). Electron transport chain (ETC), Peroxynitrite 
(ONOO-), FA (Fatty acids), superoxide (O2

•-), superoxide dismutase (SOD), hydrogen peroxide 
(H2O2), hydroxide (•OH), nitric oxide synthase (NOS) and NADPH oxidase (NOX). 
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post-translationally modified or damaged by ROS through oxidation of Cysteine thiols 

that can react with other oxidised Cysteine residues to form disulfide bridges or oxidised 

further into sulfenic acid, which can subsequently react with nitrogen of a local amino 

acid to form sulfenyl amide, with glutathione or irreversibly with H2O2 to generate 

sulfonic acid (Ray et al., 2012a). Such structural modifications would alter protein 

activity and adversely affect intracellular signalling, as well as changing transcription 

factors activity and thus gene expression. In all, oxidative stress contributes to the 

development of a host of pathologies such as inflammation, neurodegenerative disease 

and cancer (Vurusaner et al., 2012).  

In order to evade or delay the deleterious effects of oxidative stress on cellular 

macromolecules and address the redox homeostatic balance, a variety of defensive 

proteins are activated that are collectively referred to as antioxidant response factors. 

Expression of these antioxidants is implemented by redox-sensitive Keap1 that has over 

20 Cysteine thiol groups, of which some are highly vulnerable to oxidation by 

electrophiles or ROS (Niture et al., 2010; Yamamoto et al., 2008). Oxidation of Keap1 

causes a conformational change, such that the associated transcription factor Nuclear 

Factor E2-related Factor 2 (Nrf2) - the major regulator of the antioxidant response - is 

liberated and translocates into the nucleus where it assembles with other factors to bind 

antioxidant or electrophile response elements (AREs or EpREs, respectively) (Copple et 

al., 2008; Niture et al., 2010). These regulatory sites are upstream of an array of 

enzymatic and non-enzymatic antioxidants that ultimately result in senescence, and 

repair or apoptosis. Keap1 normally sequesters Nrf2 in the cytosol via an interaction 

with E3 ubiqutin ligase Cul3 that targets Nrf2 for proteasomal degradation, while in the 
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nucleus Bach1 competes to bind ARE and thereby represses antioxidant gene expression 

in non-oxidising conditions (Niture et al., 2010). There are hundreds of Nrf2-inducible 

antioxidant factors and these include glutathione peroxidase (GPX), glutathione-S-

transferase (GST), SOD, thioredoxin (TRX) and several drug efflux transporters 

(Holmstroem and Finkel, 2014).  

Nrf2 also controls glutathione (GSH) synthesis via increasing expression of 

glutamylcysteineteine synthetase (Trachootham et al., 2008). GSH is a tripeptide of 

critical importance, acting as the primary non-enzymatic reductant within cells 

(concentrations can reach 10 mM) and it can efficiently detoxify ROS (Reuter et al., 

2010). GSH is maintained in the cytosol in its reduced state by an NADPH-dependent 

glutathione reductase, whilst in the endoplasmic reticulum it is oxidised to GSSG that 

may enable the formation of disulfide bonds required for some protein assemblies 

(Chakravarthi et al., 2006). As GSH contains a Cysteine residue and thus a sulfydryl 

group, it can be used to reduce a number of oxidising molecules through enzyme-

mediated reactions (e.g. GPX conversion of H2O2 to water) or directly conjugating to 

oxidants via GST, producing oxidised GSSG (López-Mirabal and Winther, 2008). The 

reversible reaction between GSH and GSSG enables redox homeostasis to occur as under 

oxidative stress, so when GSH is readily available it detoxifies ROS and oxidised proteins.  

Thioredoxin (TRX) is another critical antioxidant that contains two oxidisable Cysteine 

residues and has overlapping functions with the GSH antioxidant system in reducing 

protein disulfides (Holmgren and Lu, 2010). TRX is NADPH-dependent and transfers 

electrons from this cofactor to its active site to supply to antioxidant enzymes like TRX-

peroxidase and promote their activity (Lu and Holmgren, 2014). TRX maintains the 
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activity of transcription factors like p53 and NFkB in this manner that allows a response 

to altered cellular redox state to be mounted. NFkB is another transcription factor 

activated in response to oxidative stress through ROS-activation of IkB kinase that is 

responsible for targeting the NFkB inhibitor IkB for ubiquitin-mediated degradation and 

thus liberating the factor to enter the nucleus and initiate changes to gene expression 

(e.g. GADD45 for inhibition of apoptotic c-Jun N-terminal kinase (JNK)) (Trachootham et 

al., 2008).  

HIF1 is another transcriptional factor that responds to oxidative stress and regulates cell 

survival. It is a heterodimer of HIF1α and HIF1β (aka. ARNT), the latter of which is 

constitutively present in cells, unlike its partner HIF1α that is only stabilised in low 

oxygen conditions. This occurs because prolyl hydroxylases (PHD); dependent on 

ascorbate, 2-oxoglutarate, and oxygen for their function, have limited oxygen available 

to hydroxylate the degradation domain of the HIF1α subunit that normally promotes 

ubiquitin-mediated proteasomal degradation through the Von-Hippel Lindau protein 

(D'Angio and Finkelstein, 2000; Harris, 2002; Myllyharju, 2013). ROS can regulate HIF1 

through promoting the Fenton reaction (Figure 4) that inactivates PHD that relies upon 

Fe2+ for its activity, but also by direct S-nitrosylation of HIF1 that stabilises the protein 

(Trachootham et al., 2008). HIF1 enhances the transcription of genes containing the 

hypoxia response element (HRE; sequence RCGTG) and includes numerous targets 

involved in regulating apoptosis, cell cycle progression, angiogenesis and glycolysis 

(Harris, 2002; Majmundar et al., 2010; Semenza, 2000). 
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1.5.3.2.     Cytoglobin as an Antioxidant 
Expression of CYGB decreases cellular ROS and its expression was down-regulated in 

Nrf2 knockout diabetic murine heart tissue (He and Ma, 2012), suggesting CYGB is a 

component of the Nrf2-regulated antioxidant response system. CYGB can detoxify ROS 

through its peroxidase, SOD and NOD activities (see section 1.5.2) and the disulfide bond 

formed between Cys38 and Cys83 of the globin has been shown to be redox regulated 

(see section 1.1), which together suggest CYGB has importance in detecting changes to 

oxygen tension and elicits antioxidant functions to enable the cell to maintain redox 

homeostasis.  

Indeed, CYGB expression increases after exposure to oxidative stressors and is 

associated with protection against oxidative damage. Peroxide-treated MCF7 human 

breast cancer cells showed an up-regulation of a number of antioxidant genes; including 

CYGB (Chua et al., 2010). CYGB is also up-regulated in N27 rodent mesencephalic cells 

following treatment with nitric oxide-generating paraquat (Moran et al., 2010). N2a 

neuroblastoma cells also showed a time-dependent H2O2-inducible CYGB expression, 

and stable CYGB knockdown after treatment with H2O2 caused significantly impaired 

viability as determined by reductase turnover of MTT (see section 2.9.2) (Li et al., 2007). 

CALU1 and H358 human lung cancer cells also showed enhanced viability following 

treatment with H2O2 after CYGB transfection that also corresponded with reduced 

depletion of cellular GSH (Oleksiewicz et al., 2013). G361 human melanoma cells with 

high levels of CYGB expression have elevated total cellular ROS levels when CYGB is 

knocked down and this sensitised cells to H2O2-induced apoptosis (Fujita et al., 2014). 

Viability after H2O2 treatment was also increased in CYGB over-expressing NRK49F 

rodent kidney fibroblast cells and was reversed by CYGB knockdown (Nishi et al., 2011). 
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Mimura et al (2010) confirmed CYGB over-expression increased protection against 

oxidants in CYGB over-expressing, H2O2-treated NRK49F cells and also showed this in 

H2O2-treated HEK293T rodent kidney fibroblasts. This study also found CYGB 

expression increased in rodent remnant kidney models and transgenic over-expression 

of CYGB in these rodents protected them against nephrectomy-induced oxidative stress 

damage, including reduced excretion of oxidised deoxyguanosine (Mimura et al., 2010). 

This confirmed oxidative stress protection exhibited by CYGB in vitro also occurred in 

vivo. 

CYGB expression has also been linked to protection against DNA damage. In liver 

tumours of CYGB knockout C57BL/6 mice with chronic choline deficiency, the absence of 

CYGB was associated with enhanced levels of p53 binding protein (53BP-1) and gamma 

histone H2 variant (γH2AX) (Thuy et al., 2015) and these proteins are known to be key 

biomarkers of DNA damage (Mohammad and Yaffe, 2009). In TE671 human 

medulloblastoma cells, transfection with CYGB-GFP resulted in lower total cellular ROS 

concentrations after treatment with synthetic oxidant Ro19-8022; a cell-permeable 

photosensitiser that generates singlet oxygen (Will et al., 1999), and this correlated with 

decreased oxidative DNA damage (Hodges et al., 2008). Protection against oxidative 

DNA damage was also demonstrated after buthionine sulfoximine (BSO) treatment in 

TE-8 human oesophageal cancer cells with CYGB over-expression but not in NE-1 

normal oesophageal cells showing physiological levels of CYGB (McRonald et al., 2012), 

which suggests the protective effect depends on a threshold level of CYGB being reached. 

CYGB over-expression in C2C12 murine myoblasts treated with menadione increased 

viability by almost 20 % relative to controls and siRNA-mediated CYGB knockdown was 

able to reverse this effect (Singh et al., 2014), indicating oxidant protection in these cells 
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was CYGB-regulated. Furthermore, CYGB knockdown in these oxidant-treated cells also 

correlated with depleted GSH, indicating decreased oxidative stress. The nitric oxide-

impaired respiration of NIH3T3 murine fibroblasts was increased with stable CYGB 

knockdown, which could be reversed by stably transfecting CYGB into these cells 

(Halligan et al., 2009), which suggests the NOD activity reported for CYGB (see section 

1.5.2) has physiological relevance. 

The physiological importance of CYGB's peroxidase activity (see section 1.5.2) was 

shown with the over-expression of CYGB enabling increased cell survival in SH-SY5Y 

human neuroblastoma cells following H2O2 treatment (Fordel et al., 2006) and in rodent 

HSCs after treatment with ferric nitrilotriacetate or arachidonic acid (Xu et al., 2006). 

Most recently, H226 human keratinocytes with CYGB knockdown showed increased 

apoptosis following treatment with H2O2 and were also shown to have higher ROS levels 

after doxorubicin treatment (Latina et al., 2015). Xu et al (2006) found CYGB expression 

blocked ROS-induced differentiation of the cells into myofibroblasts and decreased 

concentrations of the products of lipid peroxidation; namely malondialdehyde (MDA) 

and 4-hydroxynoneal, which together support an antioxidant function. The study by 

Hodges et al (2008) also showed CYGB over-expression caused reduced lipid 

peroxidation, as determined by using cis-paranaric acid, which is a fatty acid that can 

integrate into membranes of the cell and lose its fluorescence upon oxidation 

(Steenbergen et al., 1997). Reduced MDA levels were also reported in CYGB over-

expressing transgenic Sprague-Dawley rats with hypoxia-ischemia brain injury 

compared to control groups (Tian et al., 2013). 
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Together, these data strongly support the hypothesis that CYGB promotes cell survival 

through homeostatically modulating oxidative stress, although the exact mechanism by 

which CYGB does this remains to be determined. Functions determined to date are 

summarised in Figure 5. 

1.6 Pathologies Linked to Cytoglobin 

1.6.1. Hypoxia 
CYGB has also been implicated in the hypoxic signalling pathway. The CYGB promoter 

region contains two HIF1-binding HRE sites at positions -141 and -448 upstream of the 

transcriptional start site and an erythopoietin binding site at position -144 (Wystub et 

al., 2004). Mutation of each or all of these sites in BEAS-2B bronchial epithelial cells was 

found to cause up to a third less or a complete lack of CYGB promoter activation by 

hypoxia exposure, respectively (Guo et al., 2007). Electromobility shift and ChIP analysis 

within this study also demonstrated these HREs are functional, suggesting CYGB can be 

induced by hypoxic stress signalling. Several studies have reported a time-dependent 

induction of CYGB during hypoxia. For instance, hypoxia treatment led to significant up-

regulation of CYGB in HN33 murine hippocampus cells, Swiss CD1 mice (Fordel et al., 

2004) and also in heart and liver tissue of rodents (Schmidt et al., 2004). HIF1 dominant-

negative knockout mice failed to induce CYGB upon hypoxic treatment, further affirming 

the globin is up-regulated in a HIF1-dependent mechanism (Fordel et al., 2004). Hypoxia 

treatment of OSC cell lines was shown to significantly increase HIF1A expression and 

this positively correlated with CYGB expression (Shaw et al., 2009). However, CYGB up-

regulation following hypoxia was not as pronounced in rodent brain tissue (Li et al., 

2006), with only approximately 20 % induction observed after 3 days of hypoxia. It is 

worth considering that the severity and duration of hypoxic stress defined by the studies  
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Figure 5 - Currently proposed functions of CYGB. 
The tumour suppressor-like and oncogene-like functions that CYGB is shown to be associated 
with are summarised in the diagram above. The expression level of CYGB is associated with which 
phenotype prevails within the tumour. 
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investigating hypoxic regulation of CYGB varied. For instance, the hypoxia oxygen 

tension exerted relative to normal was 10 % oxygen in the study by (Li et al., 2006), 1 % 

in that of (Fordel et al., 2004), 9 % within the studies of (Schmidt et al., 2004) and 0.1 % 

in the experiments of (Singh et al., 2014), which would have inevitably altered the 

change in CYGB transcript observed in each case. So, the fact Li et al (2006) could not 

confirm CYGB up-regulation following hypoxia may have been due to the oxygen tension 

not being low enough to permit the augmentation of CYGB expression reported after 

hypoxic stress by many groups. 

Interestingly, Singh et al (2009) showed that out of all the tissue types examined, CYGB 

was most abundant in the heart; a tissue that displays extreme sensitivity to oxygen 

stress, which is consistent with the hypothesis that CYGB is acting to protect against the 

potential damage from low oxygen conditions. Immunohistochemical studies have 

shown CYGB expression is significantly co-localised with carbonic anhydrase IX (CAIX) 

(a HIF1α target) and PHD2 (a negative regulator of HIF1α, see section 1.5.3.1) in hypoxic 

breast cancer tissue (Gorr et al., 2011), which further implicates CYGB in the regulation 

of hypoxia signalling. The correlation between CYGB and CAIX distribution was also 

found by work in our laboratory in idiopathic pulmonary fibrotic tissue (Carpenter, 

2010) and in studies with tissue from normal human stomach, breast, liver and bladder 

and  tissue from human glioblastoma multiforme cells (Emara et al., 2010). Together, 

these studies show CYGB is expressed in cells that have mounted the hypoxia signalling 

response. Interestingly, Gorr et al (2011) additionally found that CYGB is expressed in 

both von Hippel Lindau (vHL) protein-deficient and -proficient RCC4 human renal 

carcinoma lines during hypoxia, which implies hypoxic stress up-regulation of CYGB can 
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occur independently of HIF1α, as expression can occur with or without HIF1α-

degradation by vHL protein (see section 1.5.3.1).  

Over-expression of CYGB within rodent pancreatic beta cells (Stagner et al., 2009) and 

Sprague-Dawley rodent brain tissues (Tian et al., 2013) promoted survival and 

preserved tissue histology following chronic ischemia, and the latter study showed this 

was associated with reduced caspase 3 activity. Further evidence of the molecular 

regulation of CYGB under hypoxia was found in hypertrophic C57BL/6 murine cardiac 

tissue where CYGB transcription from the AP1 and nuclear factor of activated T cells 

(NFAT) promoter sites could be enhanced by hypoxia and this depended on functional 

calcineurin (Singh et al., 2009), which is a calcium ion-regulated phosphatase that 

participates in multiple signalling pathways including apoptosis and NFkB signalling (De 

Windt et al., 2000; Uchino et al., 2008).  

Although there is substantial evidence showing CYGB is a hypoxia response gene and its 

expression is associated with increased protection from hypoxia-mediated damage, little 

is known about how CYGB may achieve this. CYGB has been hypothesised to shuttle 

oxygen towards specific oxygen-requiring reactions like PHDs that would mediate a 

negative feedback mechanism on HIF1α activity and thus reduce the extent of damage 

caused by activation of pathways by hypoxia, or CYGB may afford protection through the 

detoxification of ROS that are increased when a cell experiences ischemia-reperfusion 

(Hodges et al., 2008; Oleksiewicz et al., 2011; Stagner et al., 2005; Tian et al., 2013). It 

has also been speculated that because hypoxia involves the creation of a reducing 

cellular environment, the Cys38-Cys83 disulfide bond present in CYGB would be broken 

and reduce the affinity of the globin to the bound oxygen ligand (see section 1.1), which 
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would thereby cause release of oxygen into the hypoxic cell (Hamdane et al., 2003; 

Lechauve et al., 2010). This would implicate CYGB in sensing oxygen tension and 

mediating oxygen release much like MB in smooth muscle cells, but the low 

concentration and slow kinetics of ligand dissociation (see section 1.5.1), coupled with 

the fact that this function would be apparently restricted to fibroblast-like cells (see 

section 1.4) imply that this general role is unlikely. However, it is reasonable to 

hypothesise that the oxygen tension changes occurring within hypoxic cells may be 

transduced by CYGB into a signal to activate the hypoxic response pathway (via 

conformational changes induced by disulfide bond reduction) and this response is 

specific to either fibroblast cells or the molecular context of these.  

1.6.2. Fibrosis 
Fibrosis describes the substantial increase in collagen deposition and accumulation of 

other extracellular matrix (ECM) components that forms scar tissue. Liver fibrogenesis 

is characterised by the activation of HSCs into myofibroblasts, which secrete high 

quantities of ECM that in turn distorts sinusoid tissue architecture and eventually results 

in compromised liver function and blood perfusion (Bataller and Brenner, 2005). The 

composition of the ECM during fibrosis is also altered; increased levels of collagen type 1 

are observed in addition to raised laminin, chondroitin sulfate proteoglycan and 

hyaluronan levels (Alcolado et al., 1997) in addition to changes in expression of cell 

surface integrin receptors (Friedman, 2008). In their inactive state, HSCs function to 

store vitamin A, but activation induces them to differentiate into myofibroblasts. The 

activation of HSCs is mediated by cytokines like TGFβ1 (which can be sourced from the 

catalysis of latent TGFβ1 by matrix metalloprotease 9 (MMP9)), ROS, platelet-derived 

growth factor (PDGF) and nitric oxide (Friedman, 2008). Biomarkers of active HSCs 
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include expression of αSMA and myocyte enhancer factor-2 (Bataller and Brenner, 

2005).  

Several studies have shown CYGB expression is induced in response HSC activation 

during fibrosis. Protein extracts from rodent HSCs after activation were analysed by 2D-

PAGE coupled with mass spectrometry and it was found that along with usual 

biomarkers of activation, a new 21 kDa protein was dramatically up-regulated in a time-

dependent manner (Kawada et al., 2001). The researchers named the unknown protein 

STellate cell Activation-associated Protein (STAP) to reflect this. Subsequent 

investigation by degenerative PCR and comparing the amplicon to the rodent cDNA 

library revealed it encoded a globin, had a homologous gene in humans (Asahina et al., 

2002) and also that it could be detected at high levels in rodent liver following 

thioacetamide (TAA)-induced fibrosis (He et al., 2011; Kawada et al., 2001). STAP was 

later renamed CYGB and its up-regulation at both protein and mRNA levels by fibrotic 

stress was confirmed in rodent (Tateaki et al., 2004) and murine liver (Man et al., 2008), 

in bone marrow-derived mesenchymal stroma cells from C57BL/6 mice (Cho et al., 

2009; Mimura et al., 2010), following carbon tetrachloride-induced fibrosis, in fibrotic 

regions of chronically inflamed WBN/Kob rodent pancreatic tissue and in Transforming 

Growth Factor beta 1 (TGFβ1)-activated primary rodent HSCs in vitro (Nakatani et al., 

2004). A study comparing protein expression profiles of myofibroblasts from HSCs or 

portal mesenchyme used 2D-PAGE coupled with MALDI-TOF mass spectrometry to 

show CYGB was among the markers characterising HSC-derived myofibroblasts 

(Bosselut et al., 2010). Furthermore, up-regulation was noted to be specific to fibrotic 
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stress and not to others like osmolarity, heat or ultraviolet (Reeder et al., 2011), 

implying that CYGB elicits a function related to the fibrotic response.  

COL1A1 expression was also found inversely correlated with CYGB after 12 h of 

treatment in the liver tissue of carbon tetrachloride-induced Balb/C mice and it was 

notable that up-regulation of COL1A1 occurred a full 24 h past the time at which the 

highest CYGB expression was observed (Man et al., 2008), implying that CYGB 

accumulation is a pre-requisite for significant COL1A1 up-regulation in this context. In 

agreement with this idea, Shivapurkar et al (2008) reported transient CYGB over-

expression in H2228 (lung adenocarcinoma), H2887 (NSCLC cancer) and HCC 1569 

(breast cancer) cells resulted in a greater than 2-fold down-regulation of COL1A1, 

indicating that CYGB may modulate levels of transcripts required for collagen 1 

production. CYGB is expressed predominantly in fibroblast-like cells such as osteoblasts 

and HSCs, which are known to secrete higher levels of collagen compared with other cell 

types (Schmidt et al., 2004), and coupled with the fact CYGB expression was 

simultaneous to enhanced collagen synthesis in the study by Kawada et al (2001), these 

data suggest CYGB may be involved in collagen synthesis. Indeed, over-expression of 

CYGB augmented induction of COL1A1 in TGFβ1-activated HSC (Nakatani et al., 2004). 

Inflammation, steatosis and several biomarkers of fibrosis were elevated in CYGB 

knockout compared to wildtype C57BL/6 mice subjected to chronic choline deficiency, 

and these mice also exhibited greater oxidative stress that was reflected in the down-

regulation of a number of anti-oxidant genes such as GPX6 in HSCs isolated from this in 

vivo model (Le Thi Thanh Thuy et al., 2015). This implies the fibrosis response is in part 

mediated through enhanced oxidative stress and the absence of CYGB exacerbates this. 
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CYGB over-expression in HSCs was also shown to prevent differentiation into 

myofibroblasts and further that it could reduce liver damage caused by chronic carbon 

tetrachloride treatment in Sprague-Dawley rats when CYGB was administered via 

recombinant adenovirus 2 (rAAV)-mediated carrier injection, before and after damage 

(Xu et al., 2006). Within these in vivo models, CYGB over-expression correlated with 

reduced pro-collagen 1, TGFβ1 and αSMA as well as to a preserved liver tissue histology 

and function, suggesting CYGB could inhibit development of the fibrotic phenotype in 

vivo. Furthermore, protection against fibrotic damage was also found in remnant kidney 

model Wistar rats that showed CYGB over-expression resulted in diminished renal 

dysfunction (determined by serum creatinine and urine protein concentration), 

decreased collagen and αSMA immunostaining of kidney tissue, and greater 

conservation of kidney histology (Mimura et al., 2010), which collectively demonstrates 

CYGB is anti-fibrotic. This is in agreement with the findings of Xu et al (2006) who 

showed suppression of HSC differentiation with CYGB over-expression and is further 

supported by the observation that CYGB is crucial to the inhibition of HSC activation by 

arundic acid (Cui et al., 2012). CYGB over-expression in TAA-induced fibrotic liver of 

Sprague Dawley rats caused a reduction in collagen 1 deposition and induced apoptotic 

cell death in HSC-T6 rodent HSC line in a CYGB concentration-dependent manner (He et 

al., 2011).  The impaired viability identified in this study seems at odds with the findings 

by other groups showing that CYGB expression is actually able to promote survival 

following oxidative stress, but this discrepancy may be due to differences in cell type 

and mechanisms of cell death triggered by fibrosis and oxidative stress.  
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1.6.3. Cytoglobin and Cancer 

1.6.3.1. Tumorigenesis 
Tumorigenesis is a complex process characterised in part by the exhibition of 

uncontrolled cell growth, increased metabolic demand and desensitisation to regulatory 

signals (Hanahan and Weinberg, 2011). Genetic instability is another key hallmark of the 

cancer phenotype and is what enables cancer cells to acquire other phenotypes such as 

increased proliferation and apoptosis evasion (Hanahan and Weinberg, 2011). To 

facilitate these mutations, cancer cells must compromise DNA detection and repair 

mechanisms and deregulate epigenetic control, such that during multi-step tumour 

progression the cancer genome acquires gains and losses of chromosome regions and 

aberrant gene expression to mediate their survival (Hanahan and Weinberg, 2011). One 

inducer of mutation is oxidative damage, whereby production of ROS increases levels of 

8-oxo-dG bases in the genome that normally triggers protective proteins like p53 to 

initiate DNA repair mechanisms, but these responses can become overwhelmed or 

impaired by mutations leading to defective protein function and irreparable DNA 

damage (Ralph et al., 2010; Vurusaner et al., 2012). This allows propagation of further 

DNA damage to lead to other oncogenic properties.  

1.6.3.2. Cytoglobin Expression in Cancer  
Changes in CYGB expression have been linked to many cancer types. The first link was 

made within tylosis with oesophageal (TOC) cancer. Tylosis describes a genetic disorder 

characterised by hyperkeratosis of the skin of the palms and soles of the feet that is 

accompanied with oral leukoplakia and a greater risk of oesophageal cancer (Risk et al., 

1999). Haplotype analysis identified the CYGB gene to be one of two complete genes 

physically located in the same chromosome region responsible for the TOC phenotype 
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and the methylated CYGB coding sequence did not show any tylosis-associated 

mutations (Langan et al., 2002). Subsequently, another gene within this region named 

RHBDF2 (a transmembrane protein involved in epidermal growth factor signalling 

(EGF)) was identified to contain missense mutations (that result in a change in an 

encoded amino acid) and caused promotion of proliferation and down-regulation of EGF 

receptors within tylotic relative to normal tissue (Blaydon et al., 2012). CYGB was 

significantly down-regulated in TOC patient oesophageal biopsies by almost two thirds 

that of normal tissue (McRonald et al., 2006) and has also been reported to be within a 

deleted chromosome region in ovarian cancers, in addition to the RHBDF2 and PRCD 

(progressive rod-cone degeneration) genes (Wojnarowicz et al., 2012). Together, these 

studies suggested that loss of CYGB expression may be important in tumorigenesis. CYGB 

expression was subsequently found to be significantly down-regulated; primarily by 

promoter hypermethylation (see section 1.3), in lung (Xinarianos et al., 2006), oral 

(Shaw et al., 2009), ovarian (Chen et al., 2014; Wojnarowicz et al., 2012), colon, bladder, 

breast (Shivapurkar et al., 2008) and skin (Fujita et al., 2014) cancers, lending support to 

the hypothesis made by Shivapurkar et al (2008) and others that CYGB may function as a 

tumour suppressor.  

1.6.3.2.1. Cytoglobin as a Tumour Suppressor  
CYGB over-expression has also been reported to impair proliferation in various models, 

including in CYGB knockout C57BL/6 mice (Thuy et al., 2011), H358 human lung 

adenocarcinoma (Oleksiewicz et al., 2013),  ovarian cancer (Chen et al., 2014), G361 and 

G32TG melanoma cells (Fujita et al., 2014) and U2OS human osteosarcoma (John et al., 

2014). Xenografts of G361 human melanomas with stably silenced CYGB implanted into 

nude mice showed greater proliferation rates compared with CYGB expressing 
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melanoma controls (Fujita et al., 2014), which further demonstrates CYGB is linked to 

reduced tumor growth. Changes to proliferation rate have also been linked to alterations 

of the cell cycle. For example, CYGB-negative liver tumours had higher cyclin D1 (CCND1) 

levels compared to wildtype (Thuy et al., 2011). Up-regulated CCND1 expression was 

also reported in CYGB over-expressing SKOV-3 ovarian cancer cell lines that showed 

reduced proliferation and an increased G1:S cell cycle phase ratio (Chen et al., 2014). 

Cell cycle arrest and CCND1 expression could be reversed by knockdown of CYGB, 

suggesting regulation of cell cycle advancement is CCND1-dependent. CYGB over-

expressing U2OS human osteosarcoma cells were similarly reported to undergo G1 

arrest following doxorubicin treatment (John et al., 2014) and the authors suggest this 

might be one of the functional consequences of CYGB's interaction with p53, also found 

by this study. 

CYGB expression is increased in MCF7 and MDA-MB-468 breast cancer cells after ROS-

induced DNA damage triggered by treatment with an aryl hydrocarbon receptor (AhR) 

agonist, whilst doxorubicin treatment induced a milder increase in CYGB expression 

(McLean et al., 2015). The AhR-mediated up-regulation of CYGB was found to involve 

p38 and JNK signalling pathways. A link between DNA damage response and CYGB was 

also demonstrated in vivo within hepatic tumours of CYGB knockout C57BL/6 mice, 

where chronic choline deficiency and the lack of CYGB expression was found to 

significantly raise DNA damage proteins 53BP-1 and γH2AX (Thuy et al., 2011). 

Doxorubicin treatment of stable CYGB-GFP over-expressing U2OS human osteosarcoma 

cells resulted in up-regulation of CYGB protein in correlation with expression of p53 

(John et al., 2014); a critical regulator of stress responses and initiator of DNA damage 
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repair (Kruiswijk, et al., 2015, Soussi and Winman, 2015) that is commonly mutated 

within cancers; including OSC (Leemans et al., 2011; Waridel et al., 1997a). CYGB over-

expression decreases oxidative DNA damage after treatment with BSO in TE-8 human 

oesophageal cancer cells (McRonald et al., 2012) and Ro19-8022 in TE671 human 

medulloblastoma cells (Hodges et al., 2008), mediated by its ROS scavenger ability. One 

would surmise from this that CYGB protects the cell from potential oncogenic mutations 

within an oxidising environment and is therefore a key tumour suppressor. In support of 

this hypothesis, CYGB knockout C57BL/6 mice were more likely to develop hepatic 

tumours following chronic choline deficiency (Le Thi Thanh Thuy et al., 2015) and this 

effect was also seen following N,N-diethylnitrosamine (DEN) treatment (Thuy et al., 

2011). CYGB loss in these tumours was also shown to be linked to higher V-Akt Murine 

Thymoma Viral Oncogene Homolog 1 (AKT) phosphorylation, which is an oncogenic 

protein involved in multiple hallmarks of cancer including proliferation, survival and 

angiogenesis and is also linked to radiotherapy resistance (Bussink et al., 2008; Hanahan 

and Weinberg, 2011; Hsieh et al., 2011). A negative correlation between CYGB and 

phospho-Akt was also seen by Xu et al (2013) in human glioma tumours.  

Other phenotypes important to tumour progression are enhanced invasive abilities and 

motility. Reduced migration associated with CYGB over-expression was demonstrated in 

murine NIH3T3 fibroblasts and was supported by immunocytochemical staining that 

showed higher levels of stress fibres and focal adhesions (Nakatani et al., 2004). The 

rearrangement of the actin cytoskeleton; which includes stress fibres, is necessary to 

generate intracellular tension for directional cell movement. The expression and re-

distribution of focal adhesion complexes is also important for mediating traction and the 

whole process is regulated by RhoGTPases (Schmitz et al., 2000). CYGB over-expressing 
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NIH3T3 fibroblasts in the Nakatani et al (2004) study treated with a RhoA RhoGTPase 

inhibitor could not induce the actin cytoskeletal changes observed in the control or AKT 

activation, suggesting the Rho signalling pathway may help mediate the effects of CYGB 

on cell motility. Indeed, a study in WM35 human melanoma cells examining proteome 

changes induced by over-expression of another RhoGTPase Cdc42; which is responsible 

for maintaining cell polarity for directional migration, reported significant CYGB up-

regulation (Kabuyama et al., 2006).  Together, these suggest a hypothesis where CYGB 

may be positioned within a feedback mechanism to allow control of RhoGTPases and 

this concept is discussed further in section 7.1. 

The anti-fibrotic behaviour of CYGB (see section 1.6.2) is also supportive of a role in cell 

motility and invasion, since this includes CYGB-linked changes to the synthesis and 

release of collagen 1 and MMPs that promote attachment of cells to the ECM and provide 

a matrix against which they can move (Rohani et al., 2014), and this is strongly 

associated with tumour metastasis (Thomas et al., 1999). Over-expression of CYGB was 

also reported to impair both migration and invasion in H358 and CALU1 lung cancer 

cells (Oleksiewicz et al., 2013).  

1.6.3.2.2. Cytoglobin as an Oncogene 
Whilst CYGB has been frequently linked to tumour suppressor-like activities, it has also 

shown oncogenic properties within certain cellular contexts. For example, there are 

some tumours that show up-regulation of CYGB. High levels of CYGB expression have 

been reported in human glioblastoma multiforme cells (Emara et al., 2010), as well as in 

a subset of OSC (Shaw et al., 2009), lung (Xinarianos et al., 2006), melanoma (Fujita et 

al., 2014), alveolar soft part sarcoma (ASPS) (Genin et al., 2008), breast (Gorr et al., 
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2011) and ovarian (Chen et al., 2014) cancers. Furthermore, CYGB over-expression was 

associated with increased motility in CALU1 lung cancer cells if they were oxidatively or 

hypoxically stressed (Oleksiewicz et al., 2013), and with enhanced proliferation in 

murine myogenic progenitor cells (Singh et al., 2014). Solid tumours commonly 

experience hypoxia within their centre because of the high proliferation/angiogenesis 

ratio. CYGB is up-regulated by and affords protection from hypoxia signalling-mediated 

damage (see section 1.6.1). This would potentially create a situation where tumours 

showing CYGB expression have a growth advantage compared to those without and thus 

gives rise to oncogenic behaviour of CYGB. Additionally, CYGB's anti-oxidant and anti-

fibrotic effects (see sections 1.5.3.2 and 1.6.2) could promote a microenvironment 

favourable to tumorigenesis by maintaining tumour cell function amidst the 

development of adverse tumor pathologies. 

There are also links between CYGB expression and tumour grade. Chen et al (2014) 

found that low-grade ovarian tumours were more likely to show CYGB expression than 

higher-grade ones, which demonstrates not only do some tumours express CYGB, but 

also indicates they require its silencing for advancement. Similarly, lower grade human 

glioma exhibited CYGB expression and in higher grade tumours the reduction of CYGB 

expression was correlated with an increased blood vessel density and propensity for 

tumour recurrence (Xu et al., 2013). Shaw et al (2009) reported that OSC tumours with 

high CYGB expression levels demonstrated characteristics of higher grade tumours such 

as mandible invasion. A recent in silico analysis of lung adenocarcinoma gene expression 

data by Latina et al (2015) revealed co-expression of tumour suppressor P63 and CYGB 

was associated with poor prognosis.  
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Xu et al (2013) found glioma patient survival significantly improved with CYGB (median 

survival time of 62.5 months compared with just 23.8 months for low expression 

patients). However, CYGB expression does not appear to be a good biomarker of tumour 

incidence or prognosis. CYGB expression in breast cancer tissue did not predict patient 

survival (Gorr et al., 2011) or correlate with metastasis in the subset of CYGB-expressing 

lung cancer biopsies (Xinarianos et al., 2006). Examination of historical periodic biopsies 

from patients with oral epithelial dysplasia (but no history of OSC) did not show a 

correlation between CYGB hypermethylation and the onset of malignancy (Hall et al., 

2008).  

Although CYGB is silenced in many tumours and has shown an ability to protect cells 

against the emergence of DNA mutations, aberrant signalling and cell damage caused by 

excessive ROS, there are tumours that show up-regulation of CYGB and these have 

enhanced tumour pathologies, including invasion and resistance to oxidative stress and 

hypoxia. CYGB has therefore been hypothesised to exhibit a complex 'bimodal' 

behaviour (see Figure 5); similar to the growth arrest and proliferation capabilities 

demonstrated by TGFβ1 (Akhurst and Derynck, 2001; Bachman and Park, 2005; Pardali 

and Moustakas, 2007). The beneficial or detrimental effects of CYGB expression on 

tumour development seem influenced by the metabolic, environmental and cell type 

context (Latina et al., 2015; Oleksiewicz et al., 2013).  

1.6.3.3. Cytoglobin and Cancer Therapy  

1.6.3.3.1 Radiotherapy and Cisplatin 
Tumor recurrence in OSC remains a problem, with local tumours arising from the 

surgical excision margins (the "field carcinogenesis" effect) and metastases due to the 
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advanced stage at clinical presentation (Braakhuis et al., 2010; Leemans et al., 2011). 

Cisplatin (cis-diamminedichloroplatinum(II)) is an effective genotoxic drug used 

routinely in the management of solid tumours, including OSC. The mechanism by which 

cisplatin exerts its cytotoxicity is not completely understood, but it appears to involve a 

number of pathways. For the drug to elicit its activity, it must first enter the cell and this 

is mainly accomplished through copper solute transporter CTR1 (Dasari and 

Tchounwou, 2014). Secondly, the drug must be activated by hydrolysis where cis-chloro 

atoms of the structure are exchanged with water molecules, forming a highly 

electrophillic product capable of interacting with proteins and DNA (Brozovic et al., 

2010; Dasari and Tchounwou, 2014). Activated cisplatin damages DNA through cross-

linking strands and forms adducts between protein and DNA, and these distortions 

trigger the cell to stall replication, arrest the cell cycle, recruit repair machinery and 

induce apoptosis (Dasari and Tchounwou, 2014; Siddik, 2003a). Cisplatin-damaged DNA 

is detected by either nucleotide excision repair (NER) or mismatch repair (MMR) 

machinery which unsuccessfully attempt lesion repair and inevitably triggers the 

intrinsic apoptosis cascade (Galluzzi et al., 2012). This response involves halting the cell 

cycle at S-phase before a robust stalling in G2/M, which allows for repair process to take 

place (Shen et al., 2013). Both cisplatin-induced responses are mediated by the tumour 

suppressor p53, whose expression and mutational status has been reported to be 

important in determining responsiveness to cisplatin treatment, for instance in ovarian 

carcinoma SKOV-3 cells and NSCLC H358 cells (Fujiwara et al., 1994; Kanamori et al., 

1998). Cisplatin leads to p53 activation through ataxia-telangiectasia mutated (ATM) 

and ATM-Rad3-related (ATR) kinase, which in turn results in the transcriptional 

activation of p53 targets including DNA repair enzymes, cell cycle and apoptosis 
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regulators that all participate in the protection of the cell against the detrimental effects 

of cisplatin (Siddik, 2003a). Aside from DNA damage, cisplatin also increases cellular 

oxidative stress that occurs either by interfering with mitochondrial ETC complex 

expression (as a consequence of mitochondrial DNA damage) or through depleting 

antioxidants (such as GSH) that potentiates cisplatin cytotoxicity (Marullo et al., 2013).  

Cisplatin is usually provided in the clinic in combination with 5-fluorouracil in the first 

treatment phase (induction), with radiotherapy treatment (concomitant) or as a second 

treatment step to either surgery or radiotherapy (adjunct) (Hanna et al., 2013; 

Vermorken and Specenier, 2010). Most head and neck cancer patients present at an 

advanced stage (Monnerat et al., 2002) and are normally treated with cisplatin for the 

drug has shown to significantly improve response to treatment (Forastiere et al., 2003). 

A major barrier to therapeutic success is cisplatin resistance (Galluzzi et al., 2012; 

Kelland, 2007) and tumours with this resistance are likely to also be resistant to other 

platinum-based chemotherapies (Schuler et al., 2010). There are many ways solid 

tumours can acquire resistance to cisplatin. For example, elevated levels of glutathione, 

over-expression of γ-glutamylcysteinetene synthetase or the conjugation enzyme GST 

are associated with reduced sensitivity to cisplatin treatment, due to better cisplatin 

detoxification (Brozovic et al., 2010). This has been demonstrated in head and neck 

tumours that display increased GST expression (Nishimura et al., 1996). Other 

resistance mechanisms include over-expression of drug transporter proteins, increased 

expression/activity of repair machinery, and aberrant p53 activity resulting in defective 

apoptosis (Choi and Kim, 2006; Siddik, 2003a) and these resistance mechanisms are 

discussed by (Kartalou and Essigmann, 2001). Interestingly, cisplatin resistance has 

been associated with regulation of some proposed downstream transcripts of CYGB. 
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Reduction in miR29b, for example, desensitised CP70 ovarian carcinoma cells to the 

cytotoxic effects of cisplatin partially through COL1A1 suppression that impaired 

integrin-based activation of survival signalling through Extracellular signal related 

kinase 1/2 (ERK1/2) activity (Roskoski Jr., 2012; Yu et al., 2014). UCP2 over-expression 

in human colon cancer line HCT116 can reduce toxicity of DNA-damaging 

chemotherapeutic drugs etoposide and doxorubicin (Derdak et al., 2008a). Later work 

revealed UCP2 was down-regulated following cisplatin treatment in these cells 

(Santandreu et al., 2010) and that UCP2 inhibition corresponded to enhanced ROS levels 

in human acute promyelocytic leukemia (MX2) cells (Mailloux et al., 2010). This 

relationship was also found in breast cancer cells (Pons et al., 2015).  

Radiation therapy is often combined with cisplatin in treatment regimens because it has 

been shown to enhance relapse-free survival. In a study of 331 NSCLC patients, it was 

found daily combination of cisplatin with radiotherapy led to 26 % survival after 2 years 

(compared with 13 % with radiotherapy alone) and 31 % were without recurrence 

(compared to 19 % with radiotherapy alone) (Schaakekoning et al., 1992). Head and 

neck cancer trials with 167 late-stage cancer patients showed that combined treatment 

also improved 5 year survival (53 % compared with 40 %) and recurrence was only 

prevalent in 18 % of cases (compared with 31 % in the radiation-only group) (Bernier et 

al., 2004).  Radiation therapy is a non-specific method (targeted to the immediate 

tumour locality) that damages DNA of tumour or normal cells directly or through the 

generation of ROS from ionisation of cellular water molecules, resulting in caspase 3-

mediated apoptosis (Baskar et al., 2012; Cohen–Jonathan et al., 1999). Thus combining these 

two treatments enhances oxidative stress-induced damage and cell death to the tumour. 

Radiotherapy resistance is unfortunately another common problem due to the low 
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oxygen tensions created within solid tumour masses by poor blood perfusion which 

limits radiation-induced oxidative stress required for toxicity (Koukourakis et al., 2006). 

HIF1α activation has also been identified as a radio-resistance marker in human 

embryonic kidney (HEK293) cells (Harada et al., 2012). Together, cisplatin and 

radiotherapy resistance make it difficult to create a successful treatment regimen for 

advanced OSC patients, so research into factors affecting cisplatin resistance would be 

beneficial. 

1.6.3.3.2 Cytoglobin and Therapy Resistance 
Very little information exists about CYGB expression and sensitivity to chemotherapy 

and radiotherapy, which are commonly used to treat malignancies. Knockdown of CYGB 

expression in human glioma cells was reported to increase both oxidative stress and 

efficacy of radiotherapy (Fang et al., 2011). This suggests that CYGB's ROS scavenging 

(see section 1.5.3.2) and its ability to protect against hypoxia (see section 1.6.1) may be 

how the sensitisation was achieved in the study by Fang et al (2011). This raises the 

possibility that CYGB over-expression may contribute to the radio-resistance exhibited 

by other tumours. In terms of chemotherapeutic agents, the mitochondria uncoupling 

protein 2 (UCP2) transcript that is down-regulated in CYGB over-expressing lung and 

breast cancer cell lines (Shivapurkar et al., 2008) has been shown to suppress ROS and 

cell death following treatment with different chemotherapeutic drugs in HCT116 colon 

cancer cells (Derdak et al., 2008b). CYGB over-expression in C2C12 murine myoblasts 

was reported decrease apoptosis following etoposide treatment (Singh et al., 2014) and 

furthermore, knockdown of CYGB expression was found to augment oxidative stress 

induced by doxorubicin in breast cancer cells (Latina et al., 2015). U2OS human 

osteosarcoma cells that over-express CYGB were found to undergo G1 arrest following 
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doxorubicin (John et al., 2014). Together, these studies lead to the hypothesis that CYGB 

over-expression in tumour cells may cause altered sensitivity to radio- and chemo- 

therapy. Coupled to the cytoprotective roles observed for CYGB so far, this may identify 

this globin as a potential therapeutic target in cancers that over-express it. It is therefore 

important to investigate the role CYGB has within the stress response and the tolerance 

of tumour cells to chemotherapeutic agents, including cisplatin. 
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1.8. Hypotheses and Objectives 
We hypothesised CYGB over-expression affects expression of stress-related transcripts 

and phenotype of oral squamous carcinoma cells in response to pro-oxidant cisplatin. 

We aimed to further understand CYGB's mechanism of action in the stress response. 

The objectives of this study were: 

 Generate and validate a new stable CYGB over-expressing cell model using an 

oral squamous carcinoma cell line with negligible endogenous CYGB expression. 

 

 Investigate changes to the transcriptome caused by CYGB over-expression, since 

there have been several indications in the literature that CYGB might function to 

regulate gene expression to mediate its cytoprotective abilities. To do this, a 

whole genome cDNA microarray study was conducted. 

 

 Examine the dependence of stress-related genes after cisplatin treatment on 

CYGB over-expression, since cisplatin resistance is a frequent problem in head 

and neck cancer and CYGB is reported to determine tumour response to other 

drugs such as doxorubicin. To achieve this, real time quantitative PCR was used 

to explore stress-related transcript changes identified by the microarray. 

 

 Investigate the phenotype of CYGB over-expressing cells to deepen 

understanding of how CYGB functions independently and in response to cisplatin. 

To address this objective, cell survival, caspase activation, mitochondrial 

reductase activity, oxidative stress and cell cycle distribution was assessed. 



 

 

 

CHAPTER TWO:  

Materials and Methods 
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2.1 Cell Culture 

2.1.1 Cell Lines and Media Preparation 
Human oral squamous cell carcinoma cells (OSC; cell line identifier PE/CA-PJ41) were a 

gift from Dr. T. Liloglou (Roy Castle Foundation, University of Liverpool). This cell line 

derived from the oral squamous epithelium of a female oral cancer patient, has a 

methylated CYGB (CYGB) promoter and thus expresses the globin at low levels (Shaw et 

al., 2009). Stable cell line derivatives of PE/CA-PJ41 that over-express CYGB were 

generated by introducing cDNA encoding the human CYGB gene by plasmid transfection 

and then later selecting for stable expressing clones. 

For screening purposes, two cell lines were used to compare CYGB expression levels 

achieved in PE/CA-PJ41 derived cells. Human Embryonic Kidney 293 (HEK293) CYGB+ 

cells (previously generated in our laboratory) were used as a highly expressing positive 

control (Carpenter, 2010). Normal Oesophageal (NE-1) cells were a gift from Dr. Janet 

Risk (University of Liverpool) and used to represent a cell line with physiological levels 

of CYGB expression, as they previously have been found to express the globin in the 

same order of magnitude as that observed in several normal tissues (McRonald et al., 

2012).  

2.1.2 Continual Cell Culture 
All cell culture was carried out with aseptic conditions in a class II tissue culture hood 

(Aura B4, Bio Air, Italy). Cultures were maintained in vented cap T75 flasks (Corning, 

USA) at 37°C in a humidified 5% CO2 incubator. For transgenic PE/CA-PJ41 cells, 

cultures were maintained in selective (G418 sulfate; 600 µgml-1) media upon revival and 

the selective pressure removed immediately prior to use in experiments to ensure that 

this antibiotic did not interfere with the assays. Only cell cultures between passages 7 
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and 30 were used for experiments. Cultures were checked daily and immediately prior 

to experiments with an inverted light microscope to check cell general morphology and 

for any signs of contamination. Splitting regimens for each cell type are described in the 

following sections. All reagents were pre-warmed to 37°C before use. 

2.1.3 Cell Lines 

2.1.3.1 PE/CA-PJ41 and Their Transgenic Derivatives 
PE/CA-PJ41 cells were maintained in RPMI-1640 media (Sigma) supplemented with 10 

% FBS, 1% L-glutamine, 100Uml-1 penicillin and 100 µgml-1 streptomycin. Cells were 

passaged 1:6 once attaining approximately 70% confluence. Spent media was removed 

and cultures washed once with 3 ml of phosphate buffered saline (PBS). Cells were then 

detached from the tissue culture plastic using 1 ml of Trypsin-EDTA (Life Technologies, 

UK) that was gently rocked over the culture and incubating at 37°C for 5 min. Once most 

cells had detached, 2 ml complete media was added to quench trypsin activity and the 

cell suspension transferred into a 15 ml centrifuge tube (Falcon) and centrifuged at 

1500 rpm for 5 min at room temperature. Resulting cell pellets were re-suspended in 6 

ml media and 1 ml of this was added to a fresh T75 flask along with 10 ml of complete 

media and returned to the incubator for maintained culture. 

2.1.3.2 HEK293 CYGB+ 
HEK293 CYGB+ (Human Embryonic Kidney over-expressing CYGB) cells previously 

generated in our laboratory were maintained in DMEM (low glucose, Sigma) 

supplemented with 10 % FBS, 1% L-glutamine, 100Uml-1 penicillin and 100 µgml-1 

streptomycin. Cells were passaged 1:10 once around 70 % confluence was attained. 

Spent media was removed and cell detachment was carried out as described in section 

2.1.3.1. Cell pellets were re-suspended in 10 ml media and 1 ml of this was added to a 
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fresh T75 flask along with 10 ml of complete media and returned to the incubator for 

maintained culture.  

2.1.3.3 NE-1  
NE-1 (Normal Oesophageal) cells were maintained in Keratinocyte Serum-Free Media 

(Gibco) supplemented with Epidermal Growth Factor 1-53, Bovine Pituitary Extract, 

100Uml-1 penicillin and 100 µgml-1 streptomycin. Cells were passaged 1:4 once 

approximately 70 % confluence was achieved. Cell detachment was conducted as 

described in section 2.1.3.1, although trypsin activity was quenched with Soybean 

Trypsin Inhibitor (Gibco) and suspensions were centrifuged at 700 rpm for 7 min to 

pellet the cells. Cells were seeded into fresh T75 flasks with complete media and returned 

to the incubator for maintained culture. 

2.1.4 Cryopreservation of Cell Lines 
To ensure a viable stock of low passage cells were always available for experimentation, 

cell cultures from a T75 flask were detached with trypsin and pelleted as described in 

section 2.1.3. Cell pellets were re-suspended in 3 ml freezing media (10 % (v/v) sterile-

filtered DMSO in FBS) and 1 ml aliquots dispensed into cryovials (Corning), labelled with 

cell line name and passage number. The vials were transferred to a -80°C freezer 

overnight before long-term storage in vapour phase liquid nitrogen. 

2.1.5 Revival of Cell Lines 
To revive cells, cryovials were thawed rapidly in a 37°C water bath to avoid crystal 

formation. Suspensions were then transferred drop-wise from cryovials to 4 ml of pre-

warmed complete media before being centrifuged as described in section 2.1.3, as 

appropriate for the cell line to spin off the DMSO within the freezing solution. Cell pellets 

were re-suspended in 2 ml complete media and split 1:2 into fresh T75 flasks, before 
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being moved into a 37°C humidified 5% CO2 incubator for culture. Media was exchanged 

for fresh the following day. 

2.1.6 Mycoplasma Detection 
To confirm that the cell cultures being used for experiments were free from Mycoplasma 

sp. contamination, the EZ-PCR Mycoplasma Detection Kit was used according to the 

manufacturer’s instructions. Briefly, media samples were taken from each actively 

growing cell culture and centrifuged twice; firstly at 250 xg for 4 min to remove cell 

debris and then the resulting supernatant at 16,000 xg for 10 min to pellet any 

Mycoplasma. The pellet was re-suspended in 50 µl of the buffer solution provided and 

subjected to PCR using primers that target the conserved prokaryotic 16S rRNA gene, 

producing an amplicon of 270 bp. PCR products from each sample, along with the 

positive control sample provided within the kit and a 100 bp DNA ladder (NEB) were 

loaded onto a 2 % (w/v) agarose gel and separated by electrophoresis. All cell cultures 

were demonstrated to be negative for Mycoplasma before cryostocks were made (see 

appendix 3). 

2.1.7 Viable Cell Counting for Seeding 
To ensure reproducible numbers of cells were seeded for each experimental replicate, 

cell counts were performed using a Neubauer haemocytometer. When cultures were 70 

% confluent, cells were detached and trypsin activity quenched as described in section 

2.1.3.  A 20 µl aliquot from the total trypsin/media volume (3 ml) was taken for counting 

and added to 20 µl of a 1:10 dilution of 0.4 % trypan blue (Sigma) and mixed gently. Ten 

microliters of the diluted cells were then added to each chamber of the haemocytometer 

and drawn under the coverslip by capillary action, before being viewed under the 10 X 

objective of the microscope (Nikon Eclipse TS100 light microscope). Cells were counted 
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that were present within the middle 25-square area, along with those on both the left 

and top border of this central square. Trypan blue is a negatively charged dye that 

selectively stains cells with compromised membranes (i.e. dead cells). Only cells that 

were bright and successfully excluded the trypan blue dye were counted to ensure that 

cell counts obtained reflected the number of live cells in the stock cell suspension being 

assessed. The viable cell counts from two chambers were averaged and used in Equation 

1 to calculate the cell density per millilitre in the cell suspension. 

Equation 1 – Cell density calculation. 

Cells per ml in suspension =  

average cell count x dilution factor (2) x conversion factor (104) 

 

2.2 Chemicals and Treatments 
All chemicals were purchased from Sigma Aldrich-UK unless otherwise stated.  Cisplatin 

stock solutions were prepared fresh immediately before use as a 2 mM solution, using 

25°C PBS as the solvent and then prepared as the working concentrations with pre-

warmed complete media. Etoposide stock solutions were similarly prepared, but as a 5 

mM stock solution that were stored at 4°C between uses. Hydrogen peroxide stocks 

were similarly prepared, but immediately before use. Antimycin A was dissolved in 

DMSO solvent to obtain a 5 mM stock solution and stored in single-use aliquots at -20°C 

and again working concentrations were made with complete media. All cell treatment 

studies were started on day 0 with fresh complete media and ended after 48 h in the 

case of cisplatin and etoposide, 24 h for hydrogen peroxide and 1 h for Antimycin A. All 

treatments were performed in biological triplicates and a minimum of technical 

duplicate, with the exact number of technical replicates stated in the figure legends. 
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Solvent-only controls were included in each treatment set, which contained cells 

provided with the equivalent solvent volume to the highest concentration of drug 

treatment. 

2.3 Vector Preparation 

2.3.1 Acquisition of pCMV6-AC Vector Containing Human CYGB cDNA 
Sequence 
The pCMV6-AC vector (PrecisionShuttle™ mammalian vector with non-tagged 

expression, PS100020, Origene) containing human CYGB cDNA (TrueClone™ Human 

Full-Length cDNA clone, SC321813, Origene) was used for transfection (Figure 6).  

2.3.2 Transformation of Chemically Competent M182 Bacteria 
The plasmid was propagated in chemically competent E. coli strain M182. Ice cold 

bacteria (100 µl) and DNA (100 µg) were mixed and heat shocked at 42°C for 2 min. 

Cells were recovered in 500 µl LB medium at 37°C with shaking (225 rpm) for 50 min. 

Cells were then centrifuged briefly (5000 rpm, 3 min) and re-suspended in fresh LB 

media (500 µl). Bacteria were then spread on selective (Ampicillin 100 µgml-1) LB-agar 

plates that were inverted and incubated at 37°C overnight. The following day, well-

isolated colonies were chosen at random and used to inoculate LB selective medium 

which was incubated at 37°C overnight with shaking before plasmids were extracted. 

2.3.3 Plasmid Isolation and Quantification 
Plasmids DNA was isolated with the Isolate Mini Kit (Bioline) according to the 

manufacturers’ suggested 'ISOLATE Plasmid Mini Kit (high copy number plasmid DNA)' 

protocol. Plasmid quality and quantity was determined with a NanoDrop instrument. 



50 
 

 

 

 

 

 

 

 

Figure 6 – Precision Shuttle pCMV6-AC Vector Map showing the multiple cloning 
region EcoRI site into which the human CYGB cDNA sequence had been previously 
inserted. 

The human CYGB cDNA insert is under the regulation of the viral CMV promoter to promote 

constitutive expression in mammalian cells. The positions of the bacterial (ampicillin; Amp
r
) 

and mammalian selection (G418 sulfate (Geneticin/Neomycin/Neo
r
) antibiotic resistance 

genes are shown, along with the multiple cloning site sequence. Map adapted from 
TrueClone Vector Guide (Origene). 
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2.3.4 Human CYGB cDNA Insert Sequencing 
The Human CYGB cDNA insert was validated through DNA sequencing (Genomics 

Facility, University of Birmingham, UK) using VP1.5 (5'-GGA-CTT-TCC-AAA-ATG-TCG-3’) 

and XL39 (5’-ATT-AGG-ACA-AGG-CTG-GTG-GG-3’) primers (Alta Biosciences, UK), 

checking the product against the NCBI BLAST database reference sequence for CYGB 

mRNA (NM_1342683), which re-confirmed the sequence as wildtype and in frame. 

2.4 Cell Transfections 

2.4.1 G418 Sulfate Selection and Optimisation 
To determine the optimal concentration of G418 sulfate required to select for selection 

of resistant cell clones, a G418 sulfate cell survival assay was conducted. PE/CA-PJ41 

cells were seeded at 55,000 cell per well into a 12-well plate and incubated at 37°C. 

Spent media was aspirated and replaced with fresh media containing G418 sulfate 

antibiotic (0, 200, 400, 600, 800 and 1000 µgµl-1, Roche), every 48 h for 10 days. Cell 

density at each time point was determined through crystal violet staining (see section 

2.9.1).  

2.4.2 Transfection Methodology 
In order to determine the success of the optimised transfection conditions, PE/CA-PJ41 

cells were seeded at 35,000 cell per well onto a 12-well plate and incubated at 37°C 

overnight to achieve 60 % confluence the following day. Cells were transiently 

transfected according to the manufacturers’ instructions with a transfection mixture 

composed of the pCMV6-AC-CYGB plasmid (1 µg) and Turbofectin 8.0 (Origene) in a 3:1 

(v/w) ratio (3 µl) in serum-free RPMI-1640 (100 µl), which was vortexed and left to 

incubate at room temperature for 25 min before being added to the cells in complete 

RPMI-1640 (2 ml) in a drop-wise fashion. Plates were tilted gently a few times to ensure 



52 
 

even distribution of the transfection mixture and incubated at 37°C for 48 h. The 

cultures were then each analysed for transient CYGB expression through RTqPCR and 

western blotting.  

For stable cell lines, PE/CA-PJ41 cells were seeded into 100 mm tissue culture dishes 

three days before transfection until a density of approximately 60% was reached. Cells 

were transfected with pCMV6-AC CYGB plasmid (1 µg) and Turbofectin 8.0 in a 3:1 

(v/w; Origine) ratio (3 µl) in serum-free RPMI-1640 (100 µl) as per the manufacturer’s 

instructions. Cultures were then incubated for 48 h prior to being split 1:10 and re-

seeded into separate 100 mm dishes. Selective media (G418 sulfate 600 µgµl-1; Roche) 

was applied the following day and exchanged every 2-3 days until there was an absence 

of cells within the control (un-transfected, 600 µgµl-1 G418 sulfate) cell culture. From 

this point, ‘islands’ of transfected cell colonies were monitored and harvested when they 

reached approximately 100 cells per colony, utilising the cloning ring protocol 

(Mathupala and Sloan, 2009). Stable clones were propagated in selective medium for 

further analysis. 

2.5 Molecular Biology Techniques  

2.5.1 RNA Isolation, Quantification and cDNA Synthesis 
Total RNA was isolated from cells using the Absolute RNA MiniPrep Kit (Agilent) with 

direct lysis of cells on the culture plate according to the manufacturer protocol. Briefly, 

cells were grown to around 70% confluence on either 6 well plates (or 100 mm dishes in 

the case of the whole genome microarray samples) before lysis with 350 µl lysis buffer 

supplemented with 0.01 % (v/v) β-mercaptoethanol (β-ME). Lysate was collected with a 

cell scraper, transferred to a pre-filter spin column and centrifuged at 13,600 rpm for 5 

min in order to homogenise the sample. Filtrate was then mixed with an equal volume of 
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70 % (v/v) ethanol and vortexed briefly before being transferred to an RNA binding spin 

column. The membrane-bound RNA in the spin column was then washed with low salt 

buffer and subjected to on-column DNase I digestion for 15 min at 37°C to remove 

contaminating DNA.  RNA was then washed with a sequence of low and high salt buffers 

as per the manufacturer’s instructions, before elution in 30 µl RNase-free water and 

storage at -80°C until required. Reverse transcription was carried out with the Tetro 

cDNA Synthesis Kit (Bioline) in which 500 ng total RNA and oligo dT primers were used. 

cDNA was stored at -20°C until required.  

2.5.2 SYBR Green Real Time Quantitative PCR (RTqPCR) 
For RTqPCR, SYBR-Green primers were used and their sequences are listed in Table 1. 

Primers optimised for RTqPCR were obtained from PrimerDesign (University of 

Southampton). cDNA samples for singleplex PCR were prepared with cDNA template (25 

ng), PrecisionPlus qPCR 2x mastermix (PrimerDesign), Nuclease-free water (Qiagen) 

and either the gene of interest or housekeeping  primer pair in a total reaction volume of 

20 µl. A standard 2-step protocol was employed for RTqPCR using a Stratagene 

Mxp3005 instrument (1 cycle of 10 min at 95°C and 50 cycles of 15 seconds at 95°C and 

30 seconds at 60°C). Primer specificity was confirmed in each experiment by the 

presence of a single peak within the SYBR green dissociation melt curve carried out after 

the PCR cycling step (see appendix 2). Cycle threshold values for both samples and the 

standard curve were obtained and used to calculate log fold changes through the Pfaffl 

ddCt method (see Equation 2) where the reaction efficiency was available (Livak and 

Schmittgen, 2001; Pfaffl, 2001), using β-actin (ACTB) or the combination of TATA-

binding protein (TBP) and β-2-microglobulin (B2M), as indicated in the figure legend for 

the normalisation factor, and untreated or un-transfected cells as a calibration control. 
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For the stable clone screen, NE-1 cell CYGB expression was used for calibration controls 

and HEK293 CYGB+ expression used as a positive control.  

Equation 2 - Pfaffl Equation for calculation fold changes in mRNA expression.  
Where E is the Efficiency of the reaction, dCt is the difference in cycle thresholds between the control 
and sample PCR, target is the gene of interest and ref is the house-keeping gene. 
 

Fold Change = (Etarget)dCttarget(control-sample) 

                 (Eref)dCtref(control-sample) 

2.5.3 PCR and Agarose Gel Electrophoresis 
Routine PCR was carried out with cycling conditions of 1 cycle of 98°C for 30 seconds; 

30 cycles of 98°C for 10 seconds, 64°C for 30 seconds and 72°C for 1 minute; 1 cycle of 

72°C for 10 min. A Phusion High-Fidelity PCR Kit (NEB) was used as per the 

manufacturer's instructions. PCR products were separated on a 2 % normal melting 

point agarose gel (1x TBE agarose supplemented with 5 µl gel red) by electrophoresis 

for 45 min at 80 V and imaged with UV transillumination. 

2.5.4 Protein Isolation and Quantification 
Whole cell protein was isolated as follows using ice-cold Radioimmunoprecipitation 

(RIPA) buffer (1 M Tris HCl pH 7.6, 150 mM NaCl, 1 % Triton X-100, 0.5 M EDTA, 10 % 

sodium deoxycholate and 200 mM NaF) supplemented with mammalian protease 

inhibitor cocktail (1:100 dilution; Sigma). Cells were incubated with RIPA buffer for 15 

min on ice with occasional vortexing before being centrifuged at 14,000 rpm for 12 min 

at 4°C. Protein-containing supernatant was stored at -80°C until needed. Concentrations 

were assayed using Bradford Reagent (BioRad), with absorbance measured at 595 nm 

against a standard curve of bovine serum albumin (1 mgml-1 BSA, 0 to 10 µgml-1; Sigma). 
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Table 1 – Sequences of oligonucleotide primers.  

Gene Symbol Forward (Sense) Reverse (Anti-Sense) 

RTqPCR primers (Primer Design, UK) 
CYGB CYGB ATCCTCATCCTCATCTTCATCCT CTGGGTCTGGTTACAAACATCA 
Beta-Actin BACT (vendor unique assay) 
TATA-Binding 
Protein 

TBP GTTTGCCAAGAAGAAAGTGAAC GGGTCAGTCCAGTGCCAT 

Beta-2-
microglobulin 

B2M (vendor unique assay) 

NAD(P)H 
Dehydrogenase 
(Quinone) 

NQO1 GCAGACCTTGTGATATTCCAGTT ATGGCAGCGTAAGTGTAAGC 

Cytochrome C 
Oxidase Subunit 7C 
(Mitochondrial) 

COX7C CATTTGCTACACCCTTCCTTGT GAGTTCTAGTTTGATCCACTTCCA 

Matrix 
Metalloprotease 1 

MMP1 GCACTGAGAAAGAAGACAAAGG CTAAGTCCACATCTTGCTCTTG 

Integrin Alpha 2 ITGA2 TGAGTAATTTCTTTGGCAACCTTC ACTTTGGACCGCTGGAGAG 
Mitogen-activated 
protein kinase 
kinase kinase 5 

MAP3K5 CATGAAGGGGTTGACAGAGC GTACTGGCTAGAACTTGCTTGT 

Rho GTPase 
activating protein 18 

ARHGAP18 CTTTCAGGCTGTCCAGAATCT CAGGTAGGAGGATGACAAGAAG 

Cyclin-dependent 
kinase inhibitor 2A 

CDKN2A ATGTCCTGCCTTTTAACGTAGATA CTCACTCCAGAAAACTCCAACA 

Growth arrest and 
DNA-damage-
inducible, alpha 

GADD45A TACTCCCTACACTGATGCAAG CATCTGCAAAGTCATCTATCTCC 

BCL2/adenovirus 
E1B 19kDa 
interacting protein 
3-like 

BNIP3L GCTTTGGGGCTAGGCATCTA TTCACAGGTCACACGCATTTC 

gDNA Incorporation PCR primers (Invitrogen, UK) 
Neomycin resistance  
region 

Neo
r
 TGGCCACGACGGGCGTTCCTTG GCAGCCGCCGCATTGCATCAG 

Cytoglobin exon 1-
exon2 region 

CYGB  
ex1-2 

CCACCGCCGCCGCCGAGCAAA TGGGGGCTCCGCTCCATCTCCA 
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2.5.5 Western Blotting 
Twenty micrograms of protein were heat denatured by mixing with an equal volume of 

2 x Laemelli buffer at 95°C for 5 min before loading onto a 12.5 % SDS-polyacrylamide 

gel (acrylamide:bisacrylamide 12.5 %, Tris-HCl pH 8.8, SDS 0.1 %, TEMED 1.5 µlml-1 and 

15µlml-1 Ammonium persulfate (APS)) and run for 90 min at 120 V. Separated proteins 

were transferred onto a 0.2 µm PVDF membrane (Millipore) using a mini trans-blot 

electrophoresis tank (Biorad) at 4°C, 120 V for 90 min and then blocked with 5 % non-

fat dry milk (20 ml per membrane, Marvel) in TBST (Tris-buffered saline, 0.05 % Tween-

20) on a rocking platform for 1 h at room temperature, to block non-specific binding. 

After three 5 min washes with TBST (20 ml each), the membrane was incubated with 

primary antibody (see Table 2) in blocking buffer overnight on a rocking platform at 4°C.  

After three further 5 min washes with TBST, the membrane was incubated with Goat 

anti-mouse HRP-conjugated secondary antibody in blocking buffer for 1 h as before. The 

membrane was washed with TBST twice and TBS once before being visualised with the 

ECL SuperSignal Chemiluminescent system (ThermoScientific) and Amersham 

Hyperfilm (GE Healthcare) using an X-ograph machine (AGFA Curix60). 

2.5.6 In-Cell Enzyme-Linked Immunosorbent Assay (ELISA) 
In-Cell ELISA was used to determine a semi-quantitative measurement for CYGB 

(Abnova), cyclin D1 (SantaCruz), p21 (SantaCruz), Chk1 (SantaCruz) and p53 (Life 

Technologies) protein expression in each cell clone. Cells were seeded into 24 well 

plates in triplicate on three separate days to reach approximately 70% confluence after 

two days. After treatments, cells were fixed with 300 µl 3.7 % paraformaldehyde (pH 

7.4) and incubated for 12 min at room temperature on a rocking platform before being 

washed three times with 1x PBS (500 µl). Permeabilisation buffer (0.01 % Triton X-100  
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Table 2 – Antibody Details Used in Western Blotting and In-Cell ELISA Experiments. 

Antibody Dilution Catalogue Number Company 

Primary Antibodies 
Anti-CYGB mouse 
monoclonal M02, 
clone 1A1 

1:500 WH0114757M2 Abnova 

Anti-β-actin mouse 
monoclonal, clone AC-
74 

1:10,000 A2228 Sigma 

Anti-cyclin D1 mouse 
monoclonal antibody 

1:500 Sc-246 SantaCruz 

Anti-CHK1 mouse 
monoclonal antibody 

1:500 Sc-8408 SantaCruz 

Anti-p21 mouse 
monoclonal antibody 

1:500 Sc-6246 SantaCruz 

Anti-p53 mouse 
monoclonal antibody, 
clone PAB1801 

1:500 13-4000 Life Technologies 

 
Secondary Antibody 

Goat anti-mouse HRP-
conjugated antibody 

1:1000 A16066 Life Technologies 
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in 1x PBS) was added to each well and incubated for 30 min on a rocking platform. 

Blocking buffer containing 3 % BSA in 1x PBST (0.05 % Tween-20 in 1x PBS) was added 

in blocking buffer were added as required and left to bind on a rocking platform at room 

temperature for 1 h. Wells were washed three times with 1x PBST again for 15 min as 

before. Mouse monoclonal primary antibody was then added in blocking buffer and 

incubated for 1 h at room temperature again on a rocking platform, before wells were 

washed three times with 1x PBST again for 15 min as before. Goat anti-mouse HRP-

conjugated secondary antibody was then added in blocking buffer and incubated for 1 h 

at room temperature on a rocking platform. After three washes with 1x PBST, 250 µl of 

prepared SigmaFAST OPD Substrate (Sigma) was added to each well and developed in 

the dark for 12 min (the point at which the solution became discriminately yellow 

compared with the no primary control background wells) and the reaction was stopped 

by addition of 100 µl of 2 N sulfuric acid. Solutions were transferred from each well to a 

white-walled 96 well plate and absorbance read at 492 nm using the Infinite 200Pro 

microplate reader (Tecan Trading AG, Switzerland). Absorbance was corrected for no 

primary antibody controls and normalised to cell density, as determined by crystal 

violet staining (see section 2.7.1). 

2.5.7 Genomic DNA Isolation 
Cells were seeded into 6 well plates at a density in order to achieve a 50 % confluence 

the following day. To obtain genomic DNA extracts, the DNeasy Blood and Tissue Kit 

(Qiagen) was used. Cells were washed in warmed PBS before being detached from the 

tissue culture plastic (see section 2.1.3). Cell pellets were re-suspended in 200 µl PBS 

supplemented with 20 µl proteinase K (600 mAUml-1) and 4 µl RNase A (100 mgml-1). 

Cell suspensions were mixed by gentle vortexing and allowed to incubate at room  
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Figure 7 – Whole Genome cDNA Microarray Workflow. 
LST421 and LST223 RNA isolates were extracted and checked for integrity before being 
cyanine-dye labelled ready for hybridisation. The microarray used for hybridisation was the 
Agilent SurePrint G3 Human Gene Expression 8x 60K v1 Microarray. Transcriptomic 
differences between LST421 (CYGB+) and LST223 (NCE) OSC clones were analysed in 
biological triplicate. 

 

 

 

 



60 
 

temperature for 2 min. Cells were then lysed with 200 µl Buffer AL and incubated at 

56°C for 10 min, before undergoing the manufacturer’s 'Purification of Total DNA from 

Animal Tissues (Spin-Column)' protocol. Eluted genomic DNA was quantified for 

downstream procedures (NanoDrop). 

2.6 Whole Genome cDNA Microarray Analysis 
To identify downstream transcriptional targets of CYGB, CYGB+ (LST421) and no 

cytoglobin-expressing (NCE) (LST223) clones were harvested for their RNA on three 

separate occasions. In the interest of cost, only one representative clone of each model 

(i.e. one CYGB+ and one NCE) was used for this microarray experiment. The workflow of 

the experiment is provided in Figure 7. RNA samples were cyanine-labelled and 

hybridised to an Agilent SurePrint G3 Human Gene Expression 8x 60K v1 Microarray by 

the Genomics Facility (University of Birmingham) before bioinformatics analysis was 

carried out using GeneSpring (Dr. Timothy Williams, University of Birmingham) to 

identify transcripts that are differentially regulated and these are provided in appendix 

tables 7 and 8. RNA quantity and quality was confirmed with the 2100 Agilent 

Bioanalyser. RNA samples were assayed by RTqPCR to confirm the expression of CYGB 

in each cell line prior to microarray preparation. Fifty nanograms of total RNA was used 

to generate cyanine-labelled cRNA according to the Agilent Two-Colour Microarray-

Based Gene Expression Analysis (Low Input Quick Amp Labelling) protocol. NCE 

samples were cyanine 3 labelled and CYGB+ samples were cyanine 5 labelled. cRNA was 

quantified (Nanodrop) and added to Agilent SurePrint G3 Human Gene Expression 8x 

60K v1 Microarray and 300 ng cRNA was hybridised exactly to the manufacturer's 

protocol (Genomics Facility, University of Birmingham). The hybridisation recipe for 

each sample set is provided in appendix 6. Lists of differentially expressed genes 
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generated by the analysis of Dr. T. Williams were identified through parametric testing 

and Benjamini and Hochberg correction for multiple testing correction (p value 0.05). 

Gene Ontology (GO) analysis was performed by myself using PANTHER (v10.0) Gene 

List Analysis tools; namely the Statistical Over-Representation Test and the Functional 

Classification Test that are found at http://www.pantherdb.org/tools/genexAnalysis.jsp 

(Mi et al., 2013; Thomas et al., 2006) . This analysis software uses the binomial statistic 

to identify under or over represented gene groups with an alpha threshold of 0.05 or 

lower. Selected transcriptional changes observed in the array samples were further 

validated by RTqPCR (see section 2.5.2). 

2.7 Heme Quantification (Ferrous Hemochromogen Method) 
Elevated cellular abundance of ferroporphyrin, containing CYGB, was inferred by 

measuring total cellular heme proteins, as established by a variation of the pyridine 

hemochromogen assay (Berry and Trumpower, 1987). This assay relies on the different 

absorption spectra between oxidised and reduced heme iron. Cells from 70 % confluent 

6 well plates were scrape-harvested into RIPA buffer (500 µl) before being added to a 

solution containing 20% v/v niacin, 200 mM NaOH and 600 µM potassium ferricyanide 

(500 µl) to fully oxidise the heme iron. Absorbance measurements were taken with a 

single-beam spectrophotometer at 557 nm and 575 nm wavelengths. A few milligrams 

of sodium dithionite were then added to each sample to reduce the ferric heme and after 

1 minute, absorbances were taken at the aforementioned wavelengths again. Absorption 

differences between the two wavelengths were then calculated and then also between 

the oxidised and reduced spectra, which enabled the heme concentration to be 

calculated using Beers Law (A=ecl) where the length (l) was 1 cm and the extinction 

http://www.pantherdb.org/tools/genexAnalysis.jsp
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coefficient of iron protoporhyrin (e) was 32.4 mM-1cm-1. Concentrations were 

normalised to total protein determined by  the Bradford Assay (see section 2.5.4).  

2.8 Confocal Microscopy 
Cells were seeded onto 22mm coverslips within 6 well plates and allowed to adhere 

overnight. The following day, cells were washed once with 500 µl ice-cold PBS and fixed 

with 300 µl 4% paraformaldehyde (pH 7.4) for 12 min at room temperature on a rocker. 

Fixative was aspirated and the coverslips washed twice for 5 min with PBS. Cells were 

permeabilised with 0.1 % Triton X-100 for 10 min at room temperature, before being 

washed twice for 5 min each with wash buffer (0.05 % Tween-20 in PBS; PBST, 500 µl). 

Coverslips were then blocked with 2 % BSA in PBST for 1 h at room temperature on a 

rocker while humidified chambers were prepared. These chambers consist of a petri 

dish which has a sheet of parafilm atop of distilled water-soaked filter paper and the 

coverslips are placed cell-side up onto the parafilm for antibody incubations and 

washes. These humidified chambers have successfully been employed by other labs to 

reduce the amount of antibody being used for later incubations but ensuring the fixed 

cells do not dry out (Duke University and Medical Centre, 2015). Once the cells had been 

blocked, coverslips were washed with PBST twice as before and primary mouse anti-

CYGB antibody (1:400 in blocking buffer, Abnova) was added to the coverslips and 

incubated at 4°C overnight. Coverslips were then washed again in PBST as before and 

anti-mouse FITC-secondary antibody (1:200 in blocking buffer, DakoCytomation) was 

added and incubated for 1 h at room temperature in the dark. Coverslips were moved 

into a dark room to enable the subsequent steps of washing with PBST before the 

samples were incubated with Hoescht 33342 dye (2 µgml-1 stock, 1:8000 (final 

concentration 0.25 ngml-1) for 10 min to counterstain the cell nuclei. Cells were then 
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washed a final time in PBST before being mounted onto microscope slides with non-

fluorescent mounting media (50 µl, Hydromount) and allowed to dry for 1 h at room 

temperature before being kept in the dark at 4°C until confocal microscopy analysis. 

Fluorescent images were obtained with the Leica Confocal Microscope (Leica 

Microsystems) using a 63x oil immersion (NA 1.32) objective (excitation wavelengths 

were 405 nm for Hoescht 33342 and 488nm for FITC). All images were processed 

identically and overlaid using the free ImageJ (version 1.47) software. 

2.9 Cytotoxicity Analysis 

2.9.1 Crystal Violet Method 
The crystal violet assay was used for cell survival assessment. Cells (3.8 x 104 per well) 

were seeded in triplicate into 96 well plates to achieve 70% confluence the following 

day. Media was exchanged for treatment media containing drug for durations stated in 

the figure legend. Following treatment, cells were then washed once with PBS, air dried 

and stained with crystal violet (0.05% (w/v) in PBS) for 30 min at room temperature. 

Cells were washed with PBS before being allowed to air dry at room temperature. A        

10 % acetic acid solution (100 µl) was added to solubilise the crystal violet before the 

solutions were transferred to a fresh 96 well plate and absorbances read at 570 nm 

using an Infinite 200Pro microplate reader (Tecan Trading AG, Switzerland) against a     

10 % acetic acid blank. 

2.9.2 Tetrozolium Salt (MTT) Mitochondrial Reduction Method 
The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay 

was utilised to assess mitochondrial reductive capability as an indicator of cell viability. 

Cells were seeded in triplicate into 96 well plates at 3.8 x 104 cells to achieve 70% 

confluence the following day. Media was exchanged for treatment media containing drug 
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for durations stated in the figure legend. Following treatment, cells were washed once 

with PBS and fresh media containing 0.5 mgml-1 MTT was added to each well and 

incubated for 2 h at 37°C. At the end of this incubation period, the MTT-containing 

media was removed and fixed with 3.7 % paraformaldehyde (pH 7.4, 12 minutes at 

room temperature), before being washed with PBS once and the MTT formazan product 

soluabilised with DMSO (100 µl). The samples were transferred to a 96 well plate and 

absorbances read at 570 nm using an Infinite 200Pro microplate reader (Tecan Trading 

AG, Switzerland) against a DMSO blank. The fixed cells were then subjected to the crystal 

violet assay as described in section 2.9.1. 

2.9.3  Sulforhodamine B (SRB) Assay 
The Sulforhodamine B (SRB) Assay described by Skehan et al was used as another in 

vitro cytotoxicity assay (Skehan et al., 1990; Vichai and Kirtikara, 2006). The acidic dye 

has a great affinity for basic amino acids within cellular proteins and binds in a 

stoichiometric fashion such that the colorimetric absorbance value is directly 

proportional to the protein content and hence cell number. Cells (2 x 105 per well) were 

seeded into 24 well plates and allowed to settle overnight in a 37°C incubator. The 

following day, media was exchanged for treatment media containing drug for durations 

stated in the figure legend.  Following treatment, cells were washed with warm PBS and 

then fixed with 250 µl ice cold 10 % trichloroacetic acid (TCA) and incubated at 4°C for 

30 min. Cells were subsequently washed with 500 µl dH2O three times and air dried at 

room temperature for 1 h. Cells were stained with 100 µl 0.4 % (w/v) SRB in 1 % acetic 

acid for 10 min at room temperature, before the unbound dye was removed by washing 

three times with 500 µl 1 % acetic acid and plates left to dry once more at room 

temperature. Two hundred microliters of 10 mM Tris-HCl (pH 10) was used to 
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soluabilise bound SRB for 30 min on a rocker at room temperature before sample 

absorbances were read at 510 nm using the Infinite 200Pro microplate reader (Tecan 

Trading AG, Switzerland). Mean changes in absorbances were compared with untreated 

controls and corrected with a 10 mM Tris-HCl (pH 10) blank. 

2.9.4  Caspase 9 Activation Luminescence Assay 
To test for the activity of caspase 9 the Caspase-Glo 9 Assay (Promega) was used. This 

assay relies on the principle that active caspase 9 will cleave the target substrate; Z-

LEHD-aminoluciferin, liberating aminoluciferin to react with ATP and oxygen via 

luciferase to generate a light signal that is proportional to the amount of active caspase 9 

within the culture. Cells (3.8 x 104 cells per well) were seeded into a 96 well plate and 

allowed to settle overnight at 37°C, before being treated to cisplatin at 0 µM, 7.5 µM or 

15 µM for 48 h. Following treatment, the plate was allowed to adjust to room 

temperature, before the Caspase-Glo 9 Assay was carried out according to the 

manufacturer’s instructions (Promega). Briefly, 100 µl Caspase-Glo 9 reagent was added 

to each sample well and incubated for 45 min in the dark at room temperature, before 

luminescence was measured using an Infinite 200Pro microplate reader (Tecan Trading 

AG, Switzerland) and a 1 second integration time with no attenuation. A parallel plate 

was prepared to use for protein quantification through the Bradford assay (see section 

2.5.4) and these protein estimates were used to normalise the luminescence signal. A 

positive control of 200 µM etoposide to induce apoptosis was also included to confirm 

the functionality of the assay. 

2.10 Proliferation Assay 
Cells were seeded in triplicate at 4 x 104 cells per well into 24 well plates, to attain 

~10% confluence the following day. Fresh media was provided at the end of day 2. On 



66 
 

each day of the five day time course at the same time each day, cells were aspirated of 

media and washed with PBS before being fixed with 4% paraformaldehyde (500 µl) for 

12 min at room temperature. Cells were then washed twice with PBS underwent crystal 

violet staining as described in section 2.9.1. Absorbance was converted into cell number 

by interpolating from a crystal violet calibration curve using non-linear regression (see 

appendix 9). 

2.11 Oxidative Stress Analysis 

2.11.1 DCFDA Assay 
Intracellular ROS levels were assayed by measuring the oxidation of 2',7'-

dichlorodihydrofluoroscein-diacetate (H2DCFDA), which is hydrolysed by esterases in 

cells to yield H2DCF which can be oxidised in the presence of ROS to a fluorescent 

product (Chen et al., 2010). Fluorescence is therefore proportional to the ROS 

concentration within the cell. Cells were seeded into 6 well plates on three separate days 

at 3 x 105 cells in order to attain 70% confluence the following day, whereupon the cells 

were treated. After the treatment interval, spent media was removed and 2 ml of fresh 

media was added to each well with DCF diacetate added to a final concentration of 10 

µM and incubated for 3 h at 37°C. Cells were then washed with PBS before being 

detached as described in section 2.1.3, ensuring a single cell suspension by prolonging 

trypsin incubation to 15 min. Cell pellets were re-suspended in 1 ml sterile PBS, mixed 

through pipetting and transferred to a flow cytometry-compatible tube. Samples were 

vortexed vigorously prior to analysis. Analysis of fluorescence was carried out by flow 

cytometry with the BD FACS Calibur and CellQuest Pro software (Becton-Dickinson) 

along with Weasel software (Walter and Eliza Hall Institute of Medical Research, 

Australia). Cells without DCF diacetate treatment were used for blank controls and 
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10,000 viable events per sample were analysed for their median fluorescence intensities 

(excitation 488nm and emission 520 nm). Gating was used to remove dead cells from 

the analysed population, as determined from their light scattering properties. As a 

positive control, 48 h H2O2 (200 µM) was used. 

2.11.2 Mitochondrial Superoxide (O2-) MitoSox Red Assay 
Mitochondrial superoxide was quantified through measuring oxidation of MitoSox Red 

dye (a variant of dihydroethidium; Life Technologies). We assessed the blue to red 

fluorescence shift of the hydroethidine probe that is selectively oxidised by superoxide 

to become 2-hydroxyethidium that fluoresces (Held, 2015). Fluorescence is proportional 

to the concentration of superoxide within the mitochondria. Cells were seeded into 

black-walled, clear-bottom 96 well plates at 3.8 x 104 cells in order to attain 70% 

confluence the following day, whereupon the cells were treated as stated in the figure 

legend. One hour prior to the end of the time interval, antimycin A was added at a final 

concentration of 20 µM to positive control cells and incubated at 37°C for the rest of the 

time course. After the treatment interval, spent media was removed, cells washed once 

with pre-warmed PBS (100 µl) and 100 µl of fresh media was added to each well with 

MitoSox Red dye added to a final concentration of 10 µM and incubated for 30 min at 

37°C. Fluorescence was determined using an Infinite 200Pro microplate reader (Tecan 

Trading AG, Switzerland) at the excitation wavelength 510 nm and fluorescence was 

measured at emission wavelength 580 nm. Cells without MitoSox Red treatment were 

used for blank controls. 

2.11.3 Glutathione (GSH) Assay 
To assess total reduced glutathione (GSH) within cells, a fluorescence-based technique 

was used where ortho-phthalaldehyde (OPT) reacts with reduced glutathione to 
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generate a fluorescent isoindole product (Hissin and Hilf, 1976). GSH is a primary 

cellular antioxidant tripeptide that enables redox homeostasis within cells, maintaining 

oxidising species within certain limits to ensure the appropriate redox-regulation of 

proteins for a variety of cellular processes (Circu and Aw, 2010). When treated to high 

levels of ROS (for instance during oxidative stress), GSH becomes oxidised to GSSG 

(gluathione disulfide) that removes the potentially detrimental reactive oxygen species 

from the cell. This depletes the GSH pool and raises GSSG levels that have the potential 

to react with cysteineteine thiols of proteins and modulate their activity, which could 

disrupt normal signalling and elicit toxicity if aberrantly induced (Circu and Aw, 2012). 

Cells were seeded into 6 well plates to achieve 50% confluence the following day before 

being treated with 0 µM, 7.5 µM or 15 µM cisplatin for 48 h. After treatment, cells were 

washed in pre-warmed PBS before being scrape harvested into 450 µl of ice-cold lysis 

buffer (0.1% Triton X100 in PO4-EDTA buffer (100 mM NaH2PO4 and 5 mM Na2-EDTA, 

adjusted to pH 8.0). Lysates were transferred into ice-chilled eppendorfs, whilst 2 µl was 

removed for protein quantification through the Bradford assay (see section 2.5.4). Ice 

cold protein precipitation buffer (50 µl; 50 % (w/v) trichloroacetic acid in PO4-EDTA 

buffer) was added to the lysates prior to centrifugation at 13000 rpm at 4°C for 5 min. A 

100 µl sample of each supernatant containing reduced GSH was taken and added to 1.8 

ml PO4-EDTA buffer in a 3 ml polystyrene fluorescence cuvette, along with 100 µl of 

fresh OPT (1 mgml-1 100% methanol), before being incubated for 15 min at room 

temperature in the dark on a rocker. A GSH standard curve was made using a 0.1 mgml-1 

stock solution and were prepared identically to the test samples, but were provided with 

5 % (w/v) trichloroacetic acid in PO4-EDTA buffer. Fluorescence of each prepared 

sample was subsequently read using a PerkinElmer LS50B luminescence spectrometer 
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(excitation at 340 nm and emission at 420 nm, slit width set at 12 nm). Glutathione 

levels in each sample were normalised to total protein content of the sample via the 

Bradford assay (see section 2.5.4). 

2.12 Cell Cycle Analysis 
Cells were seeded into a T25 flask at 3 x 105 cells and allowed to settle overnight at 37°C 

before being treated with cisplatin (0 µM, 7.5 µM or 15 µM) for 48 h. After treatment, 

cells were washed in pre-warmed PBS before being detached as described in section 

2.1.3. Harvested cell pellets were washed with PBS before being re-suspended in 500 µl 

PBS whilst ice cold 70 % ethanol (3 ml) was added drop-wise before being stored at 4°C 

until all samples were obtained for analysis. Fixed samples were centrifuged at 250 xg 

for 5 min, washed in PBS and then re-suspended in a solution of 500 µl PBS : 50 µl RNase 

A (1 mgml-1  stock) : 5 µl Propidium iodide (PI; 1 mgml-1) prior to a 45 minute 

incubation in the dark at room temperature. PI-stained sample fluorescence was 

analysed by flow cytometry (excitation 535 nm, emission 617 nm, BD FACS Calibur) and 

analysed for cell cycle phase proportions using freely available Weasel software (see 

section 2.11.1). Cells without PI treatment were used for blank controls and 10,000 

viable events per sample were analysed. Gating was used to remove dead cells and 

debris from the analysed population. 

2.13 Cell Motility Assessment 
Cells were seeded at 4 x 104 cellml-1 into culture insert chambers (Ibidi, Germany) and 

each placed into a 24 well plate and cells allowed to adhere overnight at 37°C. These 

inserts consist of a square silica chamber with a centre wall that allows for two 

confluent sheets of cells to be separated by a defined gap of ~500 µm (Figure 8). Inserts 

enable greater reproducibility than conventional scratch assays and also do not damage 
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the cells or the underlying surface (Ibidi, 2015). The next day, the inserts were carefully 

removed and the cultures washed briefly with warmed PBS before 1% FBS-containing 

media was added. The closure of the gap was followed over 6 h, with regular images of 

the gap taken every 7 min. A similar experiment was carried out again, but with 

measurements taken every 30 min, and CYGB+ cells treated with either human CYGB 

siRNA (25 nM CYGB siRNA (Qiagen), 1.25 µl TransIT siQuest (Mirus Biosciences)), or 

negative siRNA (25 nM Scrambled Sequence Silencer #2 siRNA (Ambion), 1.25 µl 

TransIT siQuest (Mirus Biosciences)) in order to attempt reversal of any CYGB+ 

phenotype, according to the manufacturer’s protocol (preliminary optimisation 

experiments with different concentrations of transfection reagent and siRNA were 

previously carried out by our laboratory). Three biological replicate images (in technical 

duplicate) were analysed with the Cell IQ software to determine percentage wound 

closure. Data was exported and analysed with the cell-free area at time zero being 

defined within the software (conversion factor of 1 pixel = 0.698 µm) and then all 

subsequent images automatically measured from this to determine the area of the 

wound that was covered at each time point expressed as a percentage.  

2.14 Oxygen Consumption Rate Analysis 
The MicroRespiration System (Unisense) was used for assessment of oxygen use within 

the transgenic clones. The system utilises a Clark-electrode based system that can 

sensitively monitor oxygen changes within a series of closed glass micro chambers. The 

1 ml glass chambers containing cell suspensions of each transgenic clone in fully aerated 

cell culture media (5 x 105 cells ml-1; media was fully aerated by bubbling through air 

overnight) were submersed in a circulating water bath maintained at 37°C.   
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Figure 8 – Ibidi Insert used for the motility assay.  

Culture inserts provided a reproducible and sharp cell-free gap that allows for the 
quantification of cell movement rates (see section 2.13). Briefly, cells are seeded into each 
chamber of the silica-based template so that full confluence is achieved for the start of the 
experiment. Once cells have adhered, the insert is gently removed with sterile tweezers and 
media placed atop of the cells as required for treatment. 
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Measurements were collected every 30 min over the course of 6 h to follow the 

depletion of oxygen from the media on four separate occasions and each measurement 

was averaged from signals detected over a period of 50 seconds. To interpolate oxygen 

concentrations from the signals detected, two points of calibration were obtained 

according to the manufacturer's instructions. An aliquot of fully aerated cell culture 

media was used for the 100 % saturation control (which was equated to a concentration 

of 210.1 µmolL-1) and the anoxic control was obtained from a solution of sodium 

hydroxide and sodium ascorbate; each at 0.1 M, prepared freshly for each week of 

experiments. The microsensor was pre-polarised as per the manufacturer's instructions 

to ensure the signal stabilised before measurements were taken and was cleaned briefly 

with distilled water after calibration before use. The accompanying software; 

SensorTrace, was used to export results for analysis. To determine the rate of oxygen 

depletion for each transgenic clone, the natural logarithm of the concentrations 

exported for each time point were calculated and then plotted. Linear regression was 

then used to calculate their respective gradients that were directly proportional to the 

rate of oxygen reduction, expressed as µmolL-1h-1 of oxygen. 

2.15 Intracellular ATP Determination 
To quantify levels of total adenosine triphosphate (ATP) within each cell clone, the 

Mitochondrial ToxGlo Assay (Promega) was used. This kit relies on the fact that an 

increase in ATP will increase supply to the luciferase within the ATP Detection Reagent 

generating a proportional increase in the light signal. Cells (3.8 x 104 per well) were 

seeded into a white-walled 96 well plate in technical triplicate and allowed to adhere 

overnight at 37°C. The following day, the amount of intracellular ATP was determined 

for each transgenic clone and control cell line by using Mitochondrial ToxGlo Assay 
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(Promega), according to the manufacturer's instructions. A calibration curve of serially 

diluted ATP standards (Sigma) was prepared in order for the quantity of ATP in the cell 

extracts to be determined. Luminescence values were obtained using an Infinite 200Pro 

microplate reader (Tecan Trading AG, Switzerland) and a 1 second integration time with 

no attenuation. 

2.16 p53 Genotyping 
Sequencing of p53 was conducted as directed by the relevant IARC protocol (IARC, 

2010). Briefly, gDNA isolates from cell clone LST421 (CYGB+) and LST223 (NCE control) 

were obtained as described in section 2.5.7 and were used as template (25 ng) for a 

standard PCR reaction provided within section 2.5.3. PCR was carried out for p53 exons 

4 to 8 as these are reported to be the most frequently mutated sites (Hollstein et al., 

1991) and are the region encoding the DNA binding portion of the gene (Andrews et al., 

2004). Primer pairs were used for both PCR and sequencing reactions and their 

sequences are provided in Table 3 and were obtained from Invitrogen, UK. Amplified 

PCR products were separated by 2 % normal melting point agarose gel electrophoresis 

against a 100 base pair ladder (NEB). Expected PCR bands for each exon were located by 

placing the gel above a UV transilluminator, excised from the gel and transferred into an 

eppendorf. The PCR product was subsequently separated from the gel and isolated using 

the QIAquick PCR Purification kit (Qiagen), exactly according to the manufacturer's 

instructions. Eluted products were sequenced with the ABI 3730 Capillary Sequencer 

(Applied Biosystems) by the Genomics Department (University of Birmingham) and 

analysed by myself with freely available Sequence Scanner Software (v1.0, Applied 

Biosystems). Sequences for each p53 exon assessed were compared to their respective 

wildtype sequences through using the nucleotide BLAST pair-wise sequence alignment 
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online database (NLM, 2015). Sequence discrepancies were compared to the 

chromatogram within the Sequence Scanner software to determine if the base difference 

was due to software misreads. Forward and reverse sequence reads were compared to 

determine the bases in the poorly resolved region at the start of the sequence reaction. 

Table 3 - p53 exon primers used for both PCR and sequencing reactions 

Exon Forward (Sense) Reverse (Anti-Sense) Amplicon 
Size 

4 TGCTCTTTTCACCCATCTAC ATACGGCCAGGCATGAAGT 353 bp 
5 TTCAACTCTGTCTCCTTCCT CAGCCCTGTCGTCTCTCCAG 248 bp 
6 GCCTCTGATTCCTCACTGAT TTAACCCCTCCTCCCAGAGA 181 bp 
7 AGGCGCACTGGCCTCATCTT TGTGCAGGGTGGCAAGTGGC 177 bp 
8 TTCCTTACTGCCTCTTGCTT AGGCATAACTGCACCCTTGG 231 bp 

 

2.17  Statistics 
Microarray data were kindly analysed in-house by Genespring software by Dr. T. 

Williams (University of Birmingham), with parametric testing where variances were not 

assumed equal (Welch t-test), p-value cut-off was set at 0.05, and multiple testing 

correction of Benjamini and Hochberg False Discovery Rate. Differential expression was 

considered if the gene changed by ≥ 2 fold. All data were assayed for significance using 

SPSS (v21, IBM) software. Data were assessed for conformity to the normal distribution 

and for homogeneity of variance. Normally distributed datasets underwent parametric 

testing; ANOVA with post-hoc Tukey analysis if the variances were equal, and paired 

student t-test with unequal variances if the variances were unequal. Non-normal data 

were analysed with Kruskal-Wallis and post-hoc Mann Whitney U tests. All experiments 

were performed in at least biological triplicate (on three separate occasions), each time 

in a minimum of technical duplicate (triplicates where expense allowed). Data are 

expressed as the mean ± standard error of the mean and, statistical significance was 

accepted when p values were below the alpha threshold of 0.05. 
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3.1  Introduction 
Transient CYGB over-expressing in vitro models have been used to explore CYGB 

function following oxidative, hypoxic or xenobiotic stress, as well as to determine its 

genetic regulation (Shaw et al., 2009; Xinarianos et al., 2006). However, this method of 

studying over-expression is not robust since the levels of globin expression will vary 

between experimental replicates. Furthermore, the long-term effects of CYGB up-

regulation on cell signalling and phenotype cannot be examined in such a system due to 

the restricted time that the over-expression is maintained for (Recillas-Targa, 2006), so 

a stable cell model with a consistent level of over-expression is a powerful experimental 

tool to study the biology of CYGB. 

Whilst there are three stable in vitro models of CYGB knockdown in existence within N2a 

murine neuroblastoma cells (Li et al., 2007), G361 human melanoma cells (Fujita et al., 

2014) and NIH-3T3 murine fibroblasts (Halligan et al., 2009), there are four stable CYGB 

over-expressing in vitro models reported to date, within bone osteosarcoma cell line 

U2OS (John et al., 2014), two non-small cell lung cancer (NSCLC) lines (Oleksiewicz et al., 

2013; Shivapurkar et al., 2008) and rodent hepatocytes (Gardner et al., 2010). Currently, 

three CYGB over-expressing in vivo models exist within Wistar rodents (Nishi et al., 

2011) and a remnant kidney model of these (Mimura et al., 2010), and AAV-vector-

Sprague Dawley rats (Xu et al., 2006). These cell models have been collectively vital in 

the discovery of phenotypes linked to CYGB expression, such as reduced motility and 

protection against apoptosis and fibrosis (see sections 1.5 and 1.6). Recently, attention 

has turned towards employing CYGB over-expressing in vitro models for investigating 
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the mechanism of CYGB function within phenotypes relevant to cancer, such as the DNA 

damage response (John et al., 2014).  

One of the aims of this thesis was to characterise the biological function of CYGB  in both 

cisplatin-stressed and unstressed cells within the context of oral cancer cells that are 

commonly found resistant to cisplatin (see section 1.6.3.3.1) and do not endogenously 

express CYGB (Shaw et al., 2006). To achieve this aim, we required a cell line that offered 

significantly enhanced CYGB expression that would enable its downstream effects to be 

studied. However, CYGB expression is strikingly down-regulated in oral squamous cell 

carcinoma (OSC) (Shaw et al., 2006). 

Therefore, it was necessary to develop a new cell model that stably over-expressed 

CYGB significantly above background levels and for this the PE/CA-PJ41 cell line was 

chosen. The PE/CA-PJ41 cell line is an oral epithelial squamous cell carcinoma line that 

exhibits negligible levels of CYGB expression (Shaw et al., 2009) (see section 2.1.3.1) and 

is therefore suitable for the artificial induction of CYGB via plasmid transfection. In this 

chapter, the development and validation of PE/CA-PJ41 cell clones showing stable CYGB 

over-expression (CYGB+) is presented. These CYGB+ cell clones (and no CYGB 

expressing (NCE) cell controls) are used in the following chapters to investigate the 

mechanism of CYGB function. 
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3.2  Results 

3.2.1  G418 Sulfate Optimisation 
Resistance of cells transfected with the pCMV6-AC plasmid to G418 sulfate antibiotic is 

conferred by the neomycin resistance gene (Neor) and this enables selection of 

successfully transfected clones (i.e. those that have taken up the plasmid). To establish 

the concentration of the antibiotic to use for this, a survival curve was carried out with 

PE/CA-PJ41 cells cultured in media with increasing concentrations of G418 sulfate, and 

cell number measurements were taken every 2 days. The results showed a reduced cell 

number with increasing concentration of antibiotic; as expected, and higher 

concentrations of G418 sulfate led to earlier decreases in cell number (Figure 9). The 

data demonstrated that total cell death was reached within 6 days for all concentrations 

studied. A treatment of 600 µgml-1 (0.6 mgml-1) G418 sulfate was chosen for stable cell 

line selection, as it was the lowest concentration able to cause total cell death within 4 

days and would therefore could remove non-transfected cells from the culture 

population. 
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Figure 9 – Determination of the G418 sulfate concentration in complete media to use 
in stable cell line selection and maintenance.  
PE/CA-PJ41 cell survival following treatment to the selection antibiotic; G418 sulfate, was 
calculated every 48 hs for a total of 10 days. At each time point, cultured were washed with PBS, 
fixed and stained with 0.05 % crystal violet before being solubilised with 10 % acetic acid and 
absorbance read at 595 nm in a spectrophotometer. Blank-corrected absorbance was converted 
into cell number (through a calibration curve before comparison to the day zero untreated 
control. Survival (%), the number of cells remaining following treatment expressed as a 
percentage of the untreated control for that time point. Results are the mean of three 
experiments carried out in triplicate ± standard error. 
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3.2.2  CYGB Transient Transfection 
To confirm the transfection procedure generated cells that had taken up the pCMV6-AC 

CYGB plasmid and expressed the human CYGB cDNA insert successfully, a transient 

transfection was undertaken with PE/CA-PJ41 cells. Levels of CYGB induced in transient 

clones from this process were determined by RTqPCR and western blotting was used to 

confirm the presence of translated protein. For RTqPCR, NE-1 cell line cDNA was chosen 

for a physiological control level of expression as these cells had previously been found to 

express the globin in the range found within a panel of normal tissue biopsies 

(McRonald et al., 2012). PE/CA-PJ41 cells were induced to express CYGB by 

approximately 12 fold by the transient transfection, relative to the un-transfected 

parental cells and this was statistically significant (Figure 10b; t test, p =0.043). 

Western blotting confirmed the expression of the CYGB protein (Figure 10a). 

Unexpectedly, the apparent mass of the band was approximately 70 kDa – much higher 

than the previously cited 21 kDa monomeric weight of CYGB (Hamdane et al., 2003; 

Lechauve et al., 2010). However, since the band appeared at the same position in the 

positive control HEK293 CYGB+ cell line extract (a cell line chosen because it had 

previously been characterised by our laboratory and found to express the globin 

abundantly (Carpenter, 2010)), it is highly likely that the antibody used is selectively 

binding to CYGB and that the transient transfection yielded CYGB expression at the 

protein level. This CYGB band was also absent from the NCE controls. Furthermore, 

Tsujino et al (2014) recently reported that separation of purified CYGB protein 

preparations results in monomeric, dimeric, and even tetrameric (~ 70 to 80 kDa) 

variants that each displayed differing ligand affinities (which may determine CYGB 

function). This report of a higher molecular weight band for CYGB strengthens our the 
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conclusion that the 70 kDa band observed in CYGB+ samples is indeed the intended 

globin protein. The detection of the β-actin band across all samples demonstrates equal 

loading of protein between wells. Together, transcript and western blotting data confirm 

the suitability of the PE/CA-PJ41 cell line to act as a model for CYGB over-expression and 

also confirms that un-transfected PE/CA-PJ41 cells express negligible levels of CYGB and 

was a suitable negative control. 

To confirm that the plasmid used for the transfection procedure contained the wildtype 

sequence of human CYGB cDNA, the plasmid used for transfection was sequenced to 

determine the inserted DNA sequence (see section 2.3.4). The sequence obtained for the 

PCR product using the forward VP1.5 primer covered the entire sequence between the 

start and stop codons and this could be aligned to the reference CYGB mRNA sequence 

(NM_134268.4) present within the BLAST database. It also matched to the sequence 

provided by the manufacturer (Origene). BLAST sequence alignment showed a 97 % 

identity between the sequences (see appendix 4). The reverse primer XL39 

unfortunately failed to accurately read the sequence (data not shown). 
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(a) 
 

 

 

                    

            

 

(b) 

 

Figure 10 – Transient transfection of PE/CA-PJ41 cells results in induction of CYGB 
mRNA and protein expression. 
(a) Whole cell protein isolates were taken from each transiently transfected PE/CA-PJ41 clone 
(CYGB+) and control lines after 24 h and then separated by SDS-PAGE before being probed for 
both CYGB protein and β-actin. (b) Expression of CYGB was quantified by SYBR Green qRT-PCR 
on RNA isolated obtained from un-transfected PE/CA-PJ41 cells and PE/CA-PJ41 CYGB+ cells, 24 
h post-transfection with the pCMV6-AC vector that included the human CYGB cDNA sequence. 
NE-1 cell (physiological) and HEK293 CYGB+ cell (positive) RNA isolates were included as 
controls. Data was normalised to β-actin expression using the Pfaffl ddCt method from Ct values 
averaged across two biological replicates. Fold change CYGB mRNA relative to NE-1 ± standard 
error. PE/CA-PJ41 induced to express CYGB mRNA almost 12 fold by transient transfection. 
Comparison to PE/CA-PJ41, Student’s t test, **p = < 0.01. 
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3.2.3 CYGB Stable Transfection 
Once the conditions for transfection had been optimised and the concentration of G418 

sulfate selected (see sections 3.2.1 and 3.2.2), stable transfection could be undertaken of 

the PE/CA-PJ41 cells with the human CYGB cDNA insert-containing pCMV6-AC. The 

workflow for the generation of the CYGB over-expressing OSC model is shown in Figure 

11 and is described in section 2.4. The goal of this was to obtain cell clones that stably 

over-expressed the CYGB transcript and protein at a level that would be sufficient to 

amplify the downstream effects of the globin and hence enable analysis in future 

experiments. 

Expression of the CYGB transcript was significantly induced in several of the clones 

propagated for screening in comparison to the un-transfected PE/CA-PJ41 parental 

control cell line (Figure 12, as assessed with t-test, non-equal variances, p value = < 0.05 

in all cases). The HEK293 CYGB+ and NE-1 CYGB transcript expression values were 

included as a positive and physiological control, respectively. Expression of CYGB 

protein within stable clones was determined by western blotting and further quantified 

with in-cell ELISA (Figure 13). The western blot indicated that those clones identified to 

have CYGB transcript over-expression similarly expressed the CYGB protein (Figure 

13a), and the in-cell ELISA experiment confirmed this (Figure 13b). The difference 

between CYGB protein expression in LST32 and the average of all three NCE controls 

was statistically significant (t-test (unequal variance), p = 0.001). 

Stable clones exhibited a range of CYGB transcript over-expression including some that 

were close to physiological values. Therefore, a series of transfected cell clones were 

identified that represented low, medium and high CYGB over-expression compared to 
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the physiological-equivalent level found in NE-1 cells. Hence, all subsequent verification 

of stable CYGB expression was conducted within the following cell clones: LST421, 

LST54 and LST32 (that were all CYGB+ and exhibited high, medium and low over-

expression, respectively) and LST223, LST42 and LST82A (that were all equivalent to 

the expression found within the un-transfected parental cell line and are collectively 

referred to as no CYGB expressing or NCE control clones). The NCE controls had 

undergone the exact same transfection procedure and culture as the CYGB+ clones, but 

remained comparable with the parent, un-transfected PE/CA-PJ41 cell line in terms of 

CYGB transcript and protein expression, hence it is reasonable to suggest that these 

would be an appropriate control against which changes in the CYGB+ clones could be 

compared.  
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Figure 11 – Workflow for the generation of stably over-expressing CYGB positive 
PE/CA-PJ41 (OSC) cell clone models. 
Production of stable cell clones that exhibited stable CYGB over-expression was carried out as 
shown. Successful transfection of the pCMV6-AC CYGB plasmid was selected for using G418 
sulfate antibiotic selection at a concentration (0.6 mgml-1) that had been optimised. Selective 
media was exchanged every 2-3 days until cell populations were confluent enough for 
screening and cryostocks were made of those that displayed CYGB expression. Stable cell 
clones expressing the inserted human CYGB cDNA sequence were confirmed to be 
mycoplasma negative prior to cryopreservation and to maintain a robust system, clones were 
only used between passages 7 and 30. 

Transfection with 
pCMV6-AC-CYGB 

plasmid

Successfully transfected 
clones selected for with 
0.6 mgml-1 G418 sulfate

Propagation of 
vector positive cells 
in selective media

Screening for cells with 
plasmid containing human 

CYGB DNA

Clones chosen for further 
analysis



86 
 

 

 

Figure 12 – Stable transfection of PE/CA-PJ41 cells results in cell lines that showed markedly induced CYGB mRNA expression (black bars) and a 
selection that showed comparable expression to the un-transfected parental population (open bars). 
Expression of CYGB mRNA was measured by SYBR Green qRT-PCR on RNA isolated obtained from un-transfected PE/CA-PJ41 cells and PE/CA-PJ41 cells that were 
transfected with the pCMV6-AC vector that included the human CYGB cDNA sequence. After 48 h of incubation with the vector, cells were split 1:10 and underwent 
selection with 600 µgml-1 G418 sulfate in complete media until ‘islands’ of a hundred or so cells emerged that were harvested and cultured. RNA isolates were 
obtained once these cultures reached a cell density of 70 % in a 6-well plate. Data was normalised to β-actin expression using the Pfaffl ddCt method from Ct values 
averaged across three biological replicates. Fold change of CYGB mRNA relative to NE-1 ± standard error.  Clones chosen for further analysis are highlighted in red. 
Comparison to PE/CA-PJ41, t test (unequal variances) * p < 0.05, ** p value = < 0.01. 
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Figure 13 – Stable transfection of PE/CA-PJ41 cells results in clones that express 
high levels of the CYGB protein and a selection of clones that showed expression 
equivalent to the un-transfected parental population. 
Clones were screened for CYGB protein expression by (a) western blotting and (b) In-Cell 

ELISA. Compared to NCE average (t-test (unequal variances), *p < 0.01). 
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3.2.4 CYGB cDNA Genomic Incorporation 
To ensure the human CYGB cDNA sequence carried into the successfully transfected 

clones by the pCMV6-AC CYGB plasmid was incorporated stably within the genome, total 

gDNA was extracted from the clones and subjected to standard PCR to amplify a region 

of the G418 sulfate resistance gene and also a region of the human CYGB cDNA sequence.  

The TrueClone™ human full-length CYGB sequence is provided in its cDNA format, hence 

primers were designed to amplify a sequence at the junction between exon 1 and 2 to 

detect the sequence’s insertion into the genome. These primers enabled amplification of 

the artificially inserted cDNA sequence but not endogenous CYGB genomic sequences 

that contains introns. Primer sequences for both Neor and CYGBex1-2 sequences are 

given in Table 1. 

Integration of the Neor gene was confirmed in all transfected clones by the presence of a 

162 bp Neo-specific product and that was not present in the un-transfected parental 

PE/CA-PJ41 cell line (Figure 14). Insertion of the CYGB cDNA sequence was verified in 

the successfully transfected clones by the existence of an additional 275 bp CYGB-

specific band (Figure 14). 
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Figure 14 – PCR analysis of genomic DNA shows CYGB cDNA recombination within 
stably transfected PE/CA-PJ41 clones, but not in the NCE negative transfected 
clones. 
Isolated genomic DNA from the G418 sulfate resistant clones subjected to standard PCR with 
primers designed to amplify either a sequence within the CYGB cDNA (a 275 bp region 
overlapping the junction between exons 1 and 2) or a 162 bp region within the 

Neomycin/G418 sulfate (Neo
r
) gene.  An aliquot of the plasmid preparation used for the 

transfection process; Plasmid 1a, was used for a positive control, whilst PE/CA-PJ41 gDNA 
isolates (that underwent the PCR as per the other samples) were included as a negative 
control. As technical controls, a control 1.3kb fragment, along with no templates controls for 
each primer set were amplified of which the latter showed no reagent contamination. 
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3.2.5 Heme Quantification 
CYGB as a heme protein requires the inclusion of the heme moiety for normal biological 

function and hence it was important to characterise the CYGB+ transgenic clones for the 

presence of the ferroporphyrin (heme) group. To do this, the ferrous hemochromogen 

assay was employed, the basis of which is that protein containing a heme group, when 

reduced by sodium dithionite, undergoes a spectral shift from 557 to 575 nm (see 

section 2.7). The total absorption difference between oxidised and reduced spectra 

peaks enables calculation of the total heme content of the sample. Analysis by this 

method demonstrated that medium and high expression CYGB+ cell clones (LST421 and 

LST54, respectively) had greater quantities of heme, whilst the low expression clone 

(LST32) was within the range of the mean values of the three NCE clones (Figure 15). 

LST421 and LST54 clones were found to have a higher heme content (0.735 nM heme 

ngµl-1 protein ± 0.34 and 0.987 nM heme per ngµl-1 protein ± 0.37, respectively), relative 

to that quantified across the three NCE clones (0.41 nM heme ngµl-1 protein ± 0.037) but 

these differences were not statistically significant (Kruskal-Wallis, p = 0.643).   
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Figure 15 – Heme content is high in the stably transfected PE/CA-PJ41 cells 
expressing CYGB, but not in the NCE negative transfected controls. 
Ferroporphyrin (heme) in each cell clone was quantified through the ferrous 
hemochromogen assay. There was an observed trend for greater heme levels in CYGB+ 
relative to NCE control clones. Whole cell protein isolates were obtained and added to an 
oxidising solution containing niacin. The absorbance difference between 557 nm and 575 nm 
was obtained, before the heme was reduced by dithionite addition and the absorption 
difference measured again. The total absorption difference between oxidised and reduced 
spectra was then calculated that enabled the calculation of total heme content through 
Beer’s Law. Concentrations were normalised to total protein content (in ngµl-1) determined 
by the Bradford Assay. Measurements were the average of biological triplicates ± standard 
error. No statistically significant differences were found between means of each CYGB+ to 
the average of three NCE controls (Kruskal-Wallis, p = 0.643). 
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3.2.6 Intracellular Distribution of CYGB Protein 
As a further assessment of the expression of the transfected CYGB protein, as well as 

determining where within the cell CYGB is localised, transfected clones were examined 

by immunocytochemistry and confocal microscopy. To confirm the specificity of the 

secondary FITC-conjugated antibody for the primary target antibody, cultures were 

incubated with just the secondary antibody, but otherwise underwent an identical 

protocol to the test samples. These controls showed no green fluorescence (see 

appendix 1), which confirmed the fluorescence detected in the test samples was specific 

to the presence of the target primary antibody.  

Successfully transfected CYGB+ clone cultures exhibited substantially greater 

fluorescence (Figure 16) compared to the NCE clones (Figure 17). The CYGB+ clones 

analysed by this method showed comparable levels of staining to that observed for the 

HEK293 CYGB+ positive control, whilst the NCE controls each demonstrated little or no 

fluorescence and were visibly similar to the un-transfected PE/CA-PJ41 parental cells. In 

terms of protein localisation, fluorescence indicated that CYGB was located diffusely 

mainly within the cytoplasmic region of the cell, although there was some overlap with 

the nuclear compartment, as indicated by the concurrent staining of the Hoechst dye and 

FITC-conjugated secondary antibody (Figure 16).  
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Figure 16 – The transfected CYGB protein is localised mainly to the cytosol in CYGB 
expressing cells. 
Fixed cell cultures were immunostained for CYGB protein (Monoclonal murine anti-human 
CYGB antibody, 1:500) using a FITC-conjugated secondary antibody (1:200) and 
counterstained with the nuclear stain, Hoechst (1:8000). Inserts show a magnified cell within 
the image. Secondary-only stained cultures were devoid of green fluorescence, suggesting 
the specificity of the antibody for the primary target (appendix 1). Representative confocal 
images are shown. Stably transfected PE/CA-PJ41 cells expressing CYGB show green 
fluorescence and hence the presence of the CYGB protein in these cells. Scale bar 50 µm. 
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Figure 17 – CYGB protein is negligible in negative transfected, NCE cell clones. 
Fixed cell cultures were immunostained for CYGB protein (Monoclonal murine anti-human 
CYGB antibody, 1:500) using a FITC-conjugated secondary antibody (1:200) and 
counterstained with the nuclear stain, Hoechst (0.25 ngml-1). Inserts show a magnified cell 
within the image. Secondary-only stained cultures were devoid of green fluorescence, 
suggesting the specificity of the antibody for the primary target (appendix 1). Representative 
confocal images are shown. Negative transfected PE/CA-PJ41 cells show no green 
fluorescence and hence a lack of CYGB protein expression. Scale bar 50 µm. 
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3.2.7  Respiratory Function 
Since there have been hypotheses in the literature that suggest CYGB may influence 

cellular respiration (Halligan et al., 2009; Stagner et al., 2009), and oxygen use is an 

important indicator of the energy requirements of a cell that could influence some 

assays that would employed in future experiments, we also assessed oxygen 

consumption rates along with levels of ATP within the transfected clones.  

No collective trends related to CYGB over-expression were identified in either oxygen 

consumption rates (Figure 18) or ATP levels (Figure 19). There was a gradual increase 

in mean oxygen consumption rate from low (LST32) to high (LST421) CYGB expression 

but none are significantly different from the NCE clone average (t-test (unequal 

variances), p = > 0.05). LST32 clones showed higher ATP concentrations of 10.58 µM ± 

0.06 compared to NCE controls (8.68 µM ± 0.03). LST421 clones showed slightly higher 

ATP concentrations of 9.29 µM ± 0.45 than the NCE controls, whilst LST54 showed 

similar concentrations to NCE controls. None of these differences were statistically 

significant (one way ANOVA, p = 0.721). Although no association with CYGB expression 

could be established, ATP production did show some variability between CYGB+ clones, 

with concentrations varying in total by approximately 1.3 µM within CYGB+ clones and 

by negligible amounts within NCE clones. 
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Figure 18 – No differences were observed in the basal oxygen consumption rates of 
CYGB+ clones when compared to NCE clones. 
Oxygen consumption rates were assessed through a Clark electrode-based system. 
Measurements were taken every 30 min (an average was taken from signals recorded over a 
50 second duration) across a 6 h period to determine the oxygen decline within the culture 
media. The experiment was repeated on four separate occasions. Calibration controls of 100 
% saturation media (aerated overnight) and 0 % anoxic control solution (0.1 M sodium 
hydroxide/sodium acsorbate) were employed to enable interpolation of oxygen 
concentrations. To determine the rate of oxygen depletion for each transgenic clone, the 
natural logarithm of the concentrations exported for each time point were calculated and 
then plotted. Linear regression was then used to calculate their respective gradients that 
were directly proportional to the rate of oxygen reduction, expressed as µmolL-1h-1 of 
oxygen. There were no statistically significant differences when compared to NCE controls (t-
test (unequal variances), p > 0.05). 
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Figure 19 – Basal ATP concentrations in CYGB+ clones and NCE controls. 
ATP production by the transfected clones was determined through a luciferase-based assay 
where the light signal generated is proportional to the quantity of intracellular ATP. There 
were no statistically significant differences between NCE controls and CYGB+ clones (one-
way ANOVA, p = 0.721). 
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3.2.8  p53 Genotype 
An important genetic alteration within many cancers is mutation of the p53 gene 

(Leemans et al., 2011) and this is an early inactivation event in 40 to 60 % of HNSCC 

tumours (Waridel et al., 1997b), leading to disruption of its central stress-responsive 

functions of cell cycle regulation, apoptosis and DNA repair. Mutations within p53 have 

been linked to radio and chemotherapeutic resistance (Hoffmann et al., 2008), which 

makes it an important target to explore for its mechanism of action and regulation. 

Additionally, there have been recent reports connecting CYGB to members of the p53 

protein family, such as p53 itself (John et al., 2014) and ∆Np63 (Latina et al., 2015), 

which increases the importance for the mutational status of p53 to be established in the 

CYGB+ clones used in future experiments. We sequenced the p53 gene within the CYGB+ 

clone LST421 to determine whether the gene was wildtype in our cell model. 

Exons 4 to 8 of p53 that encode the DNA binding domain region were chosen for analysis 

since they are where most (> 85 %) mutations have been cited to occur (Hollstein et al., 

1991; Leroy et al., 2013). All analysed exons between 4 and 8 showed no nucleotide 

differences to the reference sequence that could not be attributed to software error or 

poor resolution at the start of the sequence reaction (Figure 20 to Figure 24, see p53 

sequencing chromatograms file on the supplementary CD-ROM). Any discrepancies 

resulting from the latter were investigated by examining the sequence obtained from the 

opposing read direction for the region. Thus, the p53 gene appears to be wildtype within 

the parent PE/CA-PJ41 cell line and CYGB+ clones. 
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Figure 20 – p53 Exon 4 Forward Read in CYGB+ clone LST421. 
PCR products were sequenced by direct sequencing and the basecalls obtained were used to conduct a pairwise BLASTn search 
against the FASTA sequence for exon 4 (GenBank Accession Number JF923569.1). Discrepancies resulting from software errors are 
shown with a red star, whilst bases circled were checked in the corresponding opposite read sequence and confirmed to match the 
p53 exon 4 reference sequence. No mutations were found within the regions sequenced, suggesting that this p53 exon is wildtype in 
CYGB+ clones. 
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Figure 20 (continued) – p53 Exon 4 Reverse Read in CYGB+ clone LST421. 
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Figure 21– p53 Exon 5 Forward Read in CYGB+ clone LST421. 
PCR products were sequenced by direct sequencing and the basecalls obtained were used to conduct a pairwise BLASTn search 
against the FASTA sequence for exon 5 (GenBank Accession Number JF923570.1). Discrepancies resulting from software errors are 
shown with a red star, whilst bases circled were checked in the corresponding opposite read sequence and confirmed to match the 
p53 exon 5 reference sequence. No mutations were found within the regions sequenced, suggesting that this p53 exon is wildtype in 
CYGB+ clones. 
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Figure 21 (continued) – p53 Exon 5 Reverse Read in CYGB+ clone LST421. 
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Figure 22 – p53 Exon 6 Forward Read in CYGB+ clone LST421. 
PCR products were sequenced by direct sequencing and the basecalls obtained were used to conduct a pairwise BLASTn search against the FASTA sequence 

for exon 6 (GenBank Accession Number JF923571.1). Discrepancies resulting from software errors are shown with a red star, whilst bases circled were 

checked in the corresponding opposite read sequence and confirmed to match the p53 exon 6 reference sequence. No mutations were found within the 

regions sequenced, suggesting that this p53 exon is wildtype in CYGB+ clones. 
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Figure 22 (continued) – p53 Exon 6 Reverse Read in CYGB+ clone LST421. 
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Figure 23– p53 Exon 7 Forward Read in CYGB+ clone LST421. 
PCR products were sequenced by direct sequencing and the basecalls obtained were used to conduct a pairwise BLASTn search against the FASTA 

sequence for exon 7 (GenBank Accession Number JF923572.1). Discrepancies resulting from software errors are shown with a red star, whilst bases 

circled were checked in the corresponding opposite read sequence and confirmed to match the p53 exon 7 reference sequence. No mutations were 

found within the regions sequenced, suggesting that this p53 exon is wildtype in CYGB+ clones. 
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Figure 23 (continued) – p53 Exon 7 Reverse Read in CYGB+ clone LST421. 
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Figure 24– p53 Exon 8 Forward Read in CYGB+ clone LST421. 
PCR products were sequenced by direct sequencing and the basecalls obtained were used to conduct a pairwise BLASTn search against the FASTA sequence for exon 8 

(GenBank Accession Number JF923573.1). Discrepancies resulting from software errors are shown with a red star, whilst bases circled were checked in the 

corresponding opposite read sequence and confirmed to match the p53 exon 8 reference sequence. No mutations were found within the regions sequenced, 

suggesting that this p53 exon is wildtype in CYGB+ clones. 
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Figure 24 (continued) – p53 Exon 8 Reverse Read in CYGB+ clone LST421. 
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3.3 Discussion 
The use of stable CYGB over-expressing transgenic cell lines has been previously 

instrumental in extending understanding of CYGB function. In this chapter, stably 

transfected PE/CA-PJ41 cells that over-express CYGB to a low, medium or high level 

were generated and validated. This is a unique OSC in vitro cell model that was 

subsequently used to examine the impact of CYGB over-expression on the transcriptome 

(see chapter 4) and also on cellular phenotypes both before and after treatment to the 

chemotherapy drug cisplatin (see chapters 5 and 6).  

CYGB gene silencing in the PE/CA-PJ41 cell line is strongly epigenetically regulated, with 

the promoter exhibiting in excess of  96 % methylation and culture in media containing 

5-aza-2-deoxycitidine induced CYGB mRNA > 350 fold, highlighting the importance of 

methylation in regulating its expression (Shaw et al., 2009). The PE/CA-PJ41 cell line 

provided an ideal system for over-expression as it does not endogenously express CYGB. 

Additionally, > 60 % of OSC tumours, and the PE/CA-PJ41 cell line, contain a methylated 

CYGB promoter, suggesting it may function as a tumour suppressor (Shaw et al., 2013, 

Shaw et al., 2009).  

Although CYGB is down-regulated in a number of tumours (Oleksiewicz et al., 2011), 

around 15 % of NSCLC samples within one study were found with CYGB up-regulation 

(Xinarianos et al., 2006) (see section 1.6.3.2.2). Five in seven head and neck tumour cell 

lines displayed a concurrent increase in both hypoxia inducible factor 1A (HIF1A) and 

CYGB transcripts following hypoxic treatment (see section 1.6.1, Shaw et al., 2009). Most 

recently, three melanoma cell lines were shown to have strikingly increased CYGB 

expression above that observed for other tumours screened in the study, which the 



110 
 

authors propose is due to a pre-existing high ROS level in pre-malignant cells of this type 

(Fujita et al., 2014). These reports show CYGB expression is cell-specific and regulated 

by cellular environment, which complicates the perception of CYGB as a simple tumour 

suppressor gene and implies that re-expression of CYGB has a role in tumorigenesis. 

Thus, the OSC cell model presented in this chapter that aimed to stably induce CYGB 

over-expression to study its function should also improve understanding of its activity in 

relation to cancer-related phenotypes. 

The main objective of this chapter was to genetically modify PE/CA-PJ41 cells so CYGB 

was stably over-expressed to enable further investigation into its function in subsequent 

chapters. Transfection of PE/CA-PJ41 cells was achieved with the pCMV6-AC plasmid 

containing the human CYGB cDNA sequence regulated by the cyclomegalovirus (CMV) 

promoter. This vector also contains the G418 sulfate resistance gene that enabled 

positive selection of successfully transfected clones. A 97 % identity of the insert with 

the reference CYGB sequence was confirmed and the remaining sequence difference 

could mainly be attributed to the poor resolution towards the end of the sequence read.  

The heme quantification attempted in Figure 15 was not as conclusive as hoped. The 

assay demonstrated medium and high expression CYGB+ clones exhibited greater total 

heme levels, but the third; lowest, CYGB+ clone showed similar levels to the NCE 

controls. Although this assay can give an indication as to whether the total heme content 

is increased in CYGB+ clones (which can be assumed to be due to the increased 

abundance of heme-containing CYGB due to the transfection process), it is limited in its 

sensitivity as it does not directly quantify the CYGB-specific heme; rather, it quantifies 

the total heme content of cells. As CYGB only represent a small fraction of the total 



111 
 

cellular heme content, the difference attributed to CYGB expression is likely to be quite 

small and difficult to quantify. Our data, however, supports the conclusion that induced 

CYGB over-expression from the transfection has resulted in more heme-containing; 

rather than apoprotein, proteins, that can be assumed to be due to the induced over-

expression of CYGB. 

Twenty five transgenic clones that had G418 sulfate resistance were selected and 

propagated for further screening, of which 16 exhibited significant levels of CYGB 

expression above background parental cell PE/CA-PJ41 levels. The remaining 9 

transfected clones were resistant to G418 sulfate but did not express the CYGB gene any 

differently to the parent cell line.  

Of the 16 CYGB over-expressing clones, three were chosen for further analysis; LST421, 

LST54 and LST32 that exhibited high, medium and low over-expression respectively, 

and all displayed CYGB mRNA levels above NE-1 cells that were used as a physiological 

reference level of expression (see section 3.2.2). These three CYGB over-expressing 

clones are herein collectively referred to as CYGB positive clones (or CYGB+ clones). The 

CYGB+ clones exhibit different extents of expression because of the random integration 

of the CYGB cDNA sequence from the vector into the genome. The insertion site may, by 

chance, occur within a heterochromatic region that could diminish transcription of the 

neighbouring transgenic sequence and result in differences in expression between 

otherwise genetically identical clones with the same inserted gene (Kleinjan and van 

Heyningen, 1998). 

Of the 9 transgenic clones not expressing CYGB mRNA, three were selected for further 

analysis (LST223, LST42 and LST82A) and were used as transgenic controls for 
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subsequent experiments since they had undergone the same selection pressures as 

CYGB+ clones but did not successfully express the CYGB transcript or protein any 

differently to the parental PE/CA-PJ41 cell line. These clones are herein collectively 

referred to as NCE control cells.  The inclusion of three CYGB+ and three NCE clones in 

all experiments described in the following chapters is important to determining CYGB-

specific responses, since changes observed in one CYGB+ clone should be reproducible 

in a further, set of independent CYGB+ clones and also reveal evidence of any gene-dose 

effects observed between high, medium and low expression clones. These 3 CYGB+ 

transgenic clones were verified to over-express CYGB at the protein level by western 

blotting and in-cell ELISA, and contained greater mean heme concentrations indicating 

that the assembly of the over-expressed globin protein included the heme group that 

makes its functional.  

All three clones demonstrated genomic incorporation of the human CYGB cDNA 

sequence as well as a mostly cytoplasmic localisation of the CYGB protein, as assessed by 

confocal microscopy. Our finding that the transgenically expressed CYGB was also in this 

cellular compartment is in agreement with others who report as such in epithelial cells 

(Gorr et al., 2011), hepatocytes (Shigematsu et al., 2008), hepatic stellate cells (Kawada 

et al., 2001) and fibroblast-like cells (Schmidt et al., 2004) (see section 1.4). This also 

suggests that clones have physiologically relevant levels and location of CYGB. Partial 

nuclear staining of the CYGB primary antibody was also detected in the CYGB+ cells, 

which has similarly been reported in hepatocytes (Shigematsu et al., 2008), myoblasts 

(Ye et al., 2006) and neuronal cells (Geuens et al., 2003).  
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It has been reported by Halligan et al that over-expression of CYGB within fibroblasts is 

correlated with an increase in oxygen metabolism, compared to cells with the CYGB 

transcript depleted through short-hairpin RNA (shRNA)-mediated knockdown (Halligan 

et al., 2009). A link between CYGB and oxygen metabolism was also suggested by 

Stagner et al (2009). As far as we are aware, these are the only reported instances of 

such a finding, but these necessitated that transgenic clone respiratory function should 

be assessed because many of the assays planned in this thesis to investigate CYGB 

function (for example, cell death analysis) have chemistries that depend upon oxidative 

metabolism (for instance, reductase-mediated MTT assay and ATP-dependant Caspase-

Glo assay) so it is important to characterise this in the cell model.  

Although not significantly different to average NCE oxygen consumption rates, CYGB+ 

clones exhibited a similar trend to that reported by Halligan et al (2009), where 

increasing CYGB expression is correlated to a corresponding slight rise in basal oxygen 

metabolism and a rise in ATP within the lowest over-expressing CYGB+ clone (LST32) 

compared to the NCE control. However, as neither ATP nor oxygen consumption is 

different collectively between NCE and CYGB+ clones, it seems unlikely that this will 

strongly interfere with the experiments described in later chapters.  

ATP levels in NCE clones showed the least variability and did not show a difference 

when compared to CYGB+ clones. Within CYGB+ clones, there was a difference within a 

range of approximately 1.3 µM, which suggested that there are clone-specific differences 

in ATP concentration but these are small, not statistically significant, and unlikely to 

influence results presented in the following chapters. The phenomenon of some inter-

CYGB+ clone heterogeneity in these assays is expected, as it is known that variation in 
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expression within transgenic clones generally may arise due to stochastic cell-inherent 

events (Stockholm et al., 2007). The stable transfection procedure can also contribute to 

deviation of responses between genetically identical clones because of the lack of 

control over where the cDNA sequence inserts into the genome. Non-specific insertion 

within a clone may occur in a gene site that causes its mutation or disrupts its regulation 

that would affect related signalling cascades just within that one clone (Wurtele et al., 

2003). 

We also characterised the mutational status of p53 gene in CYGB+ clones by sequencing 

exons 4 to 8; regions known to contain most of the reported mutations (Hollstein et al., 

1991) and discovered that these regions do not harbour any mutations, suggesting 

wildtype p53. This is in agreement with the findings in chapter 4 that show significantly 

regulated p53 targets in cisplatin-treated CYGB+ clones and also chapter 5 that shows 

CYGB+ clones display greater resistance to cisplatin whose response is primarily 

mediated through p53 signalling (see section 4.1). 

In an attempt to overcome the inter-clone variability caveat and make stronger 

conclusions of how CYGB over-expression influences phenotype, methodologies that 

work on different principles for each endpoint measure were employed in following 

chapters. For instance, cytotoxicity assessments following cisplatin treatments utilised 

MTT in addition to crystal violet and sulforhodamine B assays that measured cell 

survival by quantifying reductase activity, nuclear DNA, and protein, respectively. 

Secondly, the experiments were conducted within three independent CYGB+ and NCE 

clones to reduce the possibility of observing clone-specific phenotypes.  
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The successful generation and authentication of three stable CYGB+ clones reported in 

this chapter provided a new cell model system to evaluate the transcriptomic and 

phenotypic alterations that occur before and after cisplatin treatment in an OSC cell 

context (see chapters 4, 5 and 6). These studies importantly furthered understanding of 

previously reported findings associated with CYGB function such as impaired 

proliferation and resistance to oxidative and chemical stressors. 
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4.1  Introduction 
CYGB up-regulation has been observed following hypoxia (Burmester et al., 2007; Fordel 

et al., 2004; Guo et al., 2007), fibrotic (Man et al., 2008; Tateaki et al., 2004) and 

oxidative stressors (Chua et al., 2009; Li et al., 2007). These findings have enabled 

researchers to begin to identify regulatory sites for the CYGB gene (see section 1.3). 

There is emerging evidence that part of CYGB's function involves mediating change to 

the transcriptome as part of the cellular response to hypoxic and oxidative stresses. For 

example, CYGB expression was found to be co-induced with HIF1A transcripts in hypoxic 

head and neck cancer cells (Shaw et al., 2009).  Lung cancer (NCI-H2228 and NCI-2887) 

and breast cancer (HCC 1569) cells that transiently over-expressed CYGB were found to 

reduce mRNA expression of collagen (COL1A1), PRP40 pre-mRNA (PRPF40) and 

Uncoupling protein 2 (UCP2) (Shivapurkar et al., 2008). It has also been found CYGB 

over-expression is associated with down-regulation of COL1A1 (Man et al., 2008; 

Shivapurkar et al., 2008) and CNND1 (Chen et al., 2014). A brief summary of their 

functions are provided in Table 4.  

Liver tissue from mice injected with carbon tetrachloride to induce fibrosis also showed 

a change in the ratio of CYGB:COL1A1 mRNA; increasing at 24 h and decreasing at 48 h 

post-treatment (Man et al., 2008). There is also evidence from a transiently CYGB over-

expressing BEAS2B (transformed normal bronchial epithelial cell) model treated with 

oestrogen-like compound ZEA, where CYGB reduced the time-dependent increase in 

ROS (in association with decreased apoptotic cell death), which in their subsequent 

microarray of wildtype ZEA treated versus untreated samples involved changes in genes 
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Table 4 – Transcripts Putatively Down-Regulated with CYGB Over-Expression. 
 

Gene Name Symbol Description References 
Pre-mRNA 
processing factor 
40 

PRPF40 Critical ribonuclear  factor of the spliceosome 
involved in processing precursor mRNA sequences 
newly transcribed by RNA polymerase II into mature 
mRNA, through the removal of non-coding introns 
and ligation of exons. Up-regulated in in pancreatic 
tumours. Found to negatively regulate Neural 
Wiskott-Aldrich Syndrome Protein (N-WASP) that 
normally activates Cdc42 RhoGTPase for assembly of 
filopodial actin chains. 

Ritchie et al., 
2009 
 
Thakur et al., 
2008 
 
Mizutani et 
al., 2004 

DNA 
Methyltransferase 
1 

DNMT1 Plays an important role in epigenetic regulation of 
gene expression by methylating cytosine bases 
primarily at promoter sites (that have a high 
proportion of GC dinucleotides) and interacting with 
histone deacetylases that together suppress 
transcription. Thus it is key for modulating tumour 
suppressor gene expression. 

Robertson et 
al., 2000 

Uncoupling Protein 
2 

UCP2 This is an inner mitochondria membrane carrier 
protein whose activity involves ROS-induced transport 
of H+ ions from the intermembrane space to the 
matrix and this acts to detoxify superoxide radicals 
that result from uncoupled electron transfer between 
complexes of the electron transport chain. Over-
expression has been associated with chemoresistance 
in breast cancer, in part because of its ability to 
counter the oxidative stress caused by drugs like 
cisplatin. 

Brand and 
Esteves, 2005 
 
Pons et al., 
2015 

Collagen, Type I, 
Alpha 1 

COL1A1 This gene encodes the alpha chain of collagen fibrils 
that are present within the extracellular matrix and 
act as ligands for specific integrins (such as integrin 
α2) and activate downstream signalling that includes 
promoting migration. It can be over-expressed in 
tumours and linked to the promotion of tumour 
development such as the transition to metastasis 
through altering ECM composition and outside-in 
signalling from integrins and discoidin receptors. 

Plant et al., 
2009 
 
Vazquez-Villa 
et al., 2015 
 
Moser et al., 
1996 

Cyclin D1 CCND1 Encodes a growth phase one (G1) cell cycle regulator 
that binds to and promotes the activity of cyclin 
dependent kinase 4 and 6 (CDK4/6) to trigger entry 
into the DNA synthesis 'S' phase of the cell cycle. This 
is achieved by the CCND1-CDK4/6 complex-mediated 
phosphorylation of retinoblastoma protein, which in 
turn liberates the transcription factor E2F to enable 
the transcription of S-phase genes. It  is found over-
expressed in breast cancer and has also been 
reported to participate in the expression of genes 
related to DNA damage repair, but this is independent 
from CDK activity. 

Burhans and 
Heintz, 2009b 
 
Yu et al., 2001 
 
Musgrove et 
al., 2011 
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associated with DNA damage, repair and replication (So et al., 2014), so it is feasible that 

CYGB over-expression may also elicit changes to these gene groups. 

Little is known about how CYGB may be linked to these changes. CYGB could operate 

directly as a transcription factor, associate with other factors that alter gene expression, 

or affect cellular functions (e.g. levels of ROS, GSH etc.) that in turn elicit transcriptional 

changes. Rather than a direct interaction with transcription factors, CYGB may influence 

the activity of other factors that cause transcriptional changes. More recent studies 

report that p53 could be stabilised by CYGB (John et al., 2014). A detailed discussion of 

p53 function and regulation is beyond the scope of this thesis, but in summary it is a 

critical tumour suppressor gene that encodes a transcription factor that, upon activation 

by cellular stress, controls expression of a variety of genes involved in the signalling 

cascades of cell survival and apoptosis. The reader is directed towards two good reviews 

on p53 function and its ability to act as a protective protein and signal for cell death 

(Kruiswijk et al., 2015; Soussi and Wiman, 2015).  

DNA strand breaks are known to trigger p53 activation in part through inducing ATM 

kinase-mediated phosphorylation of both p53 and its inhibitory protein mouse-double 

minute 2 (MDM2), which subsequently promotes p53 activity to signal DNA repair 

machinery to attempt repair of the damage (Meek, 2004) (see section 1.6.3.3.1). 

Oxidative DNA damage has been found significantly reduced in neuronal cells 

transiently transfected with GFP-labelled CYGB (Hodges et al., 2008) but this effect may 

be linked to non-physiological levels of the globin (McRonald et al., 2012). CYGB has 

shown an ability to impair p53 degradation (John et al., 2014). This interaction raised 

expression of p21 (a known p53 transcriptional target) and mediated activation of the 
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G1/S checkpoint upon doxorubicin treatment, increasing evidence in favour of a p53-

promoting function for CYGB. Other research groups have also reported results that 

suggest p53 may be activated by CYGB (Latina et al, 2015). 

It is known that cisplatin; a commonly used cancer chemotherapeutic agent, activates 

p53 signalling to promote cell cycle arrest and the DNA damage response (see section 

1.6.3.3.1). Thus investigating the changes in transcriptional targets of p53 following 

cisplatin in CYGB+ clones generated by our study in chapter 3 may further explore the 

hypothesis that CYGB is able to regulate p53 activity and afford the cell an enhanced 

ability to respond to cisplatin. In chapter 3, the p53 was found to be wildtype in the 

CYGB+ clones used in this study, so this indicates the cells would be capable of p53 

signalling. 

The discovery of CYGB-associated transcriptional changes has already permitted greater 

insight into its role in protection against oxidative, hypoxic and fibrotic stressors (see 

section 1.5). It is as yet unknown if CYGB over-expression affects other transcripts. 

Investigation into this would help further interpret the phenotypes that manifest 

following induced CYGB expression in cancer cells. We aimed to examine the 

transcriptomic changes that occurred in response to CYGB over-expression and then 

identify how a subset of these changes were altered following cisplatin treatment. In this 

chapter, results are presented for a whole human genome cDNA microarray study in the 

new CYGB+ OSC model. Because of microarray cost constraints, only four selected 

transcripts were assessed in CYGB+ clones following 48 h cisplatin treatment and these 

results are also presented.  
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The microarray data presented in this chapter identified numerous changes connected 

to CYGB over-expression in our OSC cancer cell model that could be grouped into gene 

ontological groups relating to stress responses, biological regulation and migration. 

From the array findings, several transcripts were selected that were representative of 

the biological categories and were validated in other CYGB+ and NCE control clones. An 

enhanced response of p53 target transcripts was found in CYGB+ controls following 

cisplatin treatment, suggesting that promotion of p53 activity is part of CYGB's stress 

response function.  
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4.2 Results 

4.2.1 Microarray Design and Validation of CYGB Status 
Prior to microarray analysis, RNA was first assessed using a Agilent 2100 Bioanalyser, 

which confirmed the samples to be of sufficient quality to generate cyanine-labelled 

cRNA for the hybridisation step (Figure 25). 28S/18S rRNA ratios were all above 2 (see 

appendix 5) indicating the nucleic acid was of good quality and all approached the 

theoretical ratio for human 28S/18S rRNA of 2.7 (5034 bp / 1870 bp) (Schroeder et al., 

2006). The RNA Integrity Number (RIN) is a classification system developed by Agilent 

to categorise how degraded or intact RNA samples are on a scale between 1 and 10; 

higher numbers indicating more intact RNA (Schroeder et al., 2006). It is suggested for 

microarray experiments RINs above 9 are preferred and above 5.2 are recommended; 

the samples obtained for the current study all provided RINs of 10 demonstrating that 

the RNA was of the highest quality possible and suitable for hybridisation (Diaz and 

Barisone, 2011). 

 

Expression levels of the CYGB transcript in each clone line were confirmed by RTqPCR 

within each RNA sample prior to microarray hybridisation. As expected, CYGB 

expression was detected in LST421 (CYGB+) samples while lack of expression was 

confirmed in LST223 (NCE) samples (Figure 26). The CYGB transcript was significantly 

induced within the CYGB+ clone by approximately 16 fold, relative to the NCE clone (t-

test (unequal variance), p = < 0.001). Together, these results confirmed the suitability 

and authenticity of CYGB+ and NCE RNA samples for the subsequent microarray 

experiment. 
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Figure 25 – Agarose Gel Image of RNA samples used for microarray experiment. 
LST421 (CYGB+) and LST223 (NCE) clones were each cultured in 10 cm dishes to attain 70 % 
confluence the following day, before RNA was isolated. Samples were quantified and 
checked for integrity using an Agilent Bioanalyser. The 28S and 18S rRNA bands are shown 
for each sample. Sample electropherograms, RNA Integrity Numbers (RINs), along with 
concentrations are provided in appendix 5. RNA Samples from each clone were extracted 
from three independent cultures. 
 

La
d

d
er

 

LS
T4

2
1 

re
p

 1
 

LS
T4

2
1 

re
p

 2
 

LS
T4

2
1 

re
p

 3
 

LS
T2

2
3 

re
p

 1
 

LS
T2

2
3 

re
p

 2
 

LS
T2

2
3 

re
p

 3
 

 

28S 

 

 

18S 

 



124 
 

 

 

Figure 26 – Confirmation of CYGB expression in CYGB+ and NCE cell lines by 
RTqPCR. 
LST421 (CYGB+) and LST223 (NCE) clones were each cultured in 10 cm dishes to attain 70 % 
confluence the following day, before RNA was isolated. Expression of CYGB mRNA was 
measured by SYBR Green qRT-PCR on RNA isolates. NE-1 and HEK293 CYGB+ RNA isolates 
were included as physiological and positive controls, respectively. Data was normalised to β-
actin expression using the Pfaffl ddCt method from Ct values averaged across three biological 
replicates. Average mRNA fold change ± standard error. CYGB+ clones exhibited 16 fold 
greater expression of CYGB relative to the NCE clone controls. Compared to NCE control, t-
test (unequal variance), ** p = < 0.01. 
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4.2.2 Transcriptome Changes in CYGB Positive OSC Cells 
Differences in expression were considered statistically significant between CYGB+ and 

NCE clone samples if they were 2 fold or greater (i.e. they showed either a  ≥ 2 fold 

increase or ≤ 0.5 fold decrease). Biological triplicates of each clone were analysed. To 

identify the GO annotations for the array results, the PANTHER (v10.0; Protein ANalysis 

THrough Evolutionary Relationships) Gene List Analysis Tool was used (see section 

2.6). A full summary of the biological processes the altered transcripts grouped into is 

shown in appendix 7 and 8, whilst a chart showing the distribution of genes altered in 

each process is provided in Figure 27. Table 7 lists example transcripts for each of the 

biological processes, with those investigated further and used to validate the microarray 

that were representative of each of these groups are italicised. All microarray data, along 

with PANTHER Gene Lists are also provided in on the supplementary CD-ROM. 

 

Gene ontological analysis with PANTHER showed that up-regulated transcripts in 

CYGB+ clones included major changes in groups for cell processing (GO:0009987), 

metabolic process (GO:0008152) and response to stimulus (GO:0050896). For the 

down-regulated targets, groups altered included genes involved in adhesion 

(GO:0022610), biological regulation (GO:0065007), cell processing (GO:0009987), 

localisation (GO:0051179) and response to stimulus (GO:0050896) (Figure 27, Table 5 

and Table 6). Selection of genes for microarray validation was made on the criteria of 

them being representative of particular gene groups identified by the PANTHER Gene 

List Analysis Tool and/or had been previously reported to be linked to CYGB in the 

literature. These included genes related to cellular adhesion and locomotion (ITGA2), 

stress-induced apoptosis (BNIP3L, MAP3K5, GADD45A and NQO1) and metabolic 
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processes (COX7C, ARHGAP18 and CDKN2A). The majority of genes represented on the 

microarray did not show significant change - a total of only 529 transcripts (0.88 % of 

the transcript probes on the array) were affected by CYGB over-expression relative to 

the NCE control sample. In total, 328  genes were significantly down-regulated and 201 

genes were up-regulated. A comprehensive list of the fold changes and other 

information for each transcript is provided in Appendix 7 and 8, whilst the gene 

ontological categories regulated (with associated genes shown) is provided in Table 7. 
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Figure 27 – Charts showing the distribution of transcript changes to occur grouped 
by biological process. 
Genes that were changed by 2 fold or more in LST421 (CYGB+) relative to LST223 (NCE) 
clones were uploaded to the PANTHER Gene Analysis Tool that enabled classification of the 
gene transcripts into ontological groups, summarised as percentages of the total number of 
changed transcripts. A full gene list within each category for down-regulated and up-
regulated transcripts is provided in tables 5 and 6, respectively. 
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Table 5 – Summary of transcripts that were significantly down-regulated within 
LST421 (CYGB+) clones. 
Genes that were changed by 2 fold or more in LST421 (CYGB+) relative to LST223 (NCE) 
clones were uploaded to the PANTHER Gene Analysis Tool that enabled classification of the 
gene transcripts into ontological groups. 
 

GO 
Code 

Description Genes ID Down-regulated 

0006915 Apoptotic 
process 

BNIP3L 

CD40 
 

CRYZL1 
DSCAM 

 

STAT2 
TNFSF14 

 

TRAF6  

0022610 Biological 
adhesion 

ADAMTS1 

AGAP3 

ARVCF 
 

CFH 

DSCAM 

FLT3 
 

HAS3 

ITGA2 

ITGB6 
 

ITGB8 

JAG1 

NRP1 
 

PAPLN 

TSPAN1 
 

0065007 Biological 
regulation 

ADAMTS1 

ADPRH 

AGAP3 

ANGEL1 

ARHGAP18 

ARHGAP27 

ARHGEF40 

ATP11C 

BDKRB1 

BNIP3L 

BRWD1 

CAV3 

CBFA2T2 

CD40 

CHD8 

CSTB 
 

DCAF5 

DCBLD2 

E2F8 

EREG 

FLRT3 

FNBP1 

FOXB1 

FOXL1 

FZD4 

FZD7 

GABPA 

GRHL1 

GZF1 

HES2 

HIF1A 

HKR1 
 

HMGA2 

HOMEZ 

HOXA9 

IFNAR2 

IFNGR2 

IRS1 

ITSN1 

KCNJ15 

LHX6 

NKX3-1 

NPAS2 

NRP1 

NUCB2 

OXTR 

PAPLN 

PDK1 
 

PKIB 

PLAGL2 

PLCB2 

PPARG 

PRMT5 

PTK6 

RAVER1 

RIN2 

RPRD1B 

RUNX1 

SLC4A11 

SOX7 

SSH2 

STAT2 

SUPT16H 

SYTL1 
 

SYTL4 

TCF7L1 

TEP1 

TIMP3 

TNFRSR14 

UNCX 

WFDC2 

ZNF138 

ZNF217 

ZNF219 

ZNF329 

ZNF512B 

ZNF573 

ZNF626 

ZSCAN2 

 
 

0071840 Cellular 
component 
organisation 
or biogenesis 

ADPRH 

ATP11C 

BNIP3L 

BRWD1 
 

CHD8 

FANCC 

HAS3 
 

HSPA13 

HSPA2 

NGDN 
 

PRMT5 

SNX5 

SSH2 
 

SYT16 

SYTL1 

SYTL4 
 

0009987 Cellular 
process 

(continued 
overleaf) 

ADAMTS1 

ADPRH 

AGAP3 

ANKRD1 

APEX1 

ARHGAP27 

ARHGEF40 

ARVCF 

ASPH 

ATP11C 
AVP 
B3GNT3 
BCAR3 

 

BDKRB1 

BNIP3L 

BRWD1 

BTG3 

CALML4 

CAP2 

CAV3 

CBFA2T2 

CD163L1 

CD40 

CD82 

CDH3 
 

CEP250 

CFH 

CHD8 

CNTRL 

CPVL 

CXADR 

DCAF5 

DCBLD2 

DEPDC7 

DIAPH2 

DPY19L4 

DSCAM 
 

DSCR3 

E2F8 

EMP1 

EPS8L2 

EREG 

ESCO2 

FAM179B 

FANCC 

FGF7 

FLRT3 

FMNL3 

FNBP1 
 

FOXB1 

FOXL1 

FZD4 

FZD7 

GABPA 

GADD45A 

GINS1 

GNB4 

GPR68 

GPR88 

GRHL1 
   HAS3 
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Table 5 (continued). 
 

GO 
Code 

Description Genes ID Down-regulated 

0009987 Cellular 
process 

(continued) 

HMGA2 

HOMEZ 

IFNAR2 

IFNGR2 

IL12RB2 

IL1RAP 

IRS1 

ITCH 

ITGB6 

ITGB8 

ITSN1 

JAG1 
KCNJ15 

KIF16B 

LGALS8 
 

LGR4 

LMCD1 

LRIG3 

LRRCC1 

MAP1B 

MAP3K5 

MAP3K5 

MCM8 

MLH3 

MYLK2 

NEK11 

NEK9 

NGDN 

NRP1 
OSGEP 

 

OXTR 

PAPLN 

PARD6B 

PDK1 

PEX3 

PKIB 

PLAGL2 

PLCB2 
PLEKHF2 

POLE2 

PPARG 

PRKCE 

PRMT5 

PROCR 

PTGER4 
 

PTK6 

RUNX1 

S100A4 

SEMA3A 

SEMA6C 

SGK494 

SLC4A11 
 

SNX21 

SNX5 

SRD5A1 

SSH2 

STAT2 

SUPT16H 

SYTL1 
SYTL4 

TCF7L1 

TIMP3 

TNFRSF14 

TNS4 

TRAF6 

TRAPPC10 

TSPAN1 

TSPAN4 

UGT1A6 

VAPB 

WEE1 

WRB 

ZNF573 
  

0032502 Developmental 
process 

ADAMTS1 

ADPRH 

ANKRD1 

B3GNT3 

BACH1 

BNIP3L 

BRWD1 
 

CD40 

CDH3 

CRYZL1 

DSCAM 

EMP1 

FGF7 

FLRT3 
 

GABPA 

HES2 

HIF1A 

HOXA9 

IL12RB2 

JAG1 

LMCD1 
 

MYL9 

NFE2L3 

NKX3-1 

NRP1 

PBX4 

PTK6 

RBMS2 
 

RUNX1 

SEMA6C 

SGK494 

SSH2 

STAT2 

TNFRSF14 

TRAF6 
 

0002376 Immune 
system process 

ACSS2  

ALOX12 

ARHGEF40 

BNIP3L 

CD40 

CFH  
 

DSCAM 

GBP1 

GPR88 

GPX2 

HSPA13 

HSPA2 
 

IL12RB2 

JAG1 

NRP1 

PPARG 

PROCR 

PTK6 
 

RUNX1 

S100A4 

SEMA3A 

SEMA6C 

SH2D2A 

STAT2 
 

TNFRSF14 

TRAF6 

TSPAN1 

WEE1 
 

0051179 Localisation ADPRH 

ALG10B 

AP1G2 

AP4S1 

ATP11C 

BNIP3L 

CAV3 

CD163L1 

CFH 
 

CMTM8 

CPNE1 

DCBLD2 

DSCR3 

FNBP1 

ITSN1 

KCNJ15 

KIF16B 

MYLK2 
 

NRP1 

PARD6B 

PEX3 

PIGU 

PLEKHF2 

PROM2 

PTGER4 

PTK6 

RIN2 
 

SBF2 

SLC13A3 

SLC19A1 

SLC35A3 

SLC37A1 

SLC37A2 

SLC39A8 

SLC4A11 

SLC5A3 
 

SLC7A2 

SLC7A8 

SNX5 

SYTL1 

SYTL4 

TEP1 

TRAPPC10 

TRPM4 

VAPB 
 

0008152 Metabolic 
process 

ARHGEF40 

AVP 

B3GNT3 

BACH1 

BDKRB1 

CBR1 
 

CBR3 

CDH3 

DHRS4 

DHRS4L1 

DHRS4L2 

DSCAM 
 

FER1L4 

GPR88 

HES2 

HOXA9 

ITSN1 

LGR4 
 

LRIG3 

MYL9 

MYLK2 

NRP1 

OXTR 

RUNX1 
 

SEMA3A 

SSH2 

SYTL1 

SYTL4 

TSPAN1 
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Table 5 (continued). 

GO 
Code 

Description Genes ID Down-regulated 

0032501 Multicellular 
organismal 

process 

ARHGEF40 
AVP 

B3GNT3 

BACH1 

BDKRB1 

CBR1 

CBR3 

CDH3 
 

DHRS4 

DHRS4L1 

DHRS4L2 

DSCAM 

FER1L4 

GPR88 

HES2 
HOXA9 

ITSN1 

LGR4 

LRIG3 

MYL9 

MYLK2 

NRP1 

OXTR 
 

RUNX1 

SEMA3A 

SSH2 

SYTL1 

SYTL4 

TSPAN1 
 

 

0050896 Response to 
stimulus 

APEX1 

ARHGEF40 

BNIP3L 

CD40 

CD82 

CFH 

DCBLD2 

EREG 

FZD4 
 

FZD7 

GBP1 

GPR88 

GPX2 

HMGA2 

HSPA13 

HSPA2 

IFNAR2 

IFNGR2 
 

IL12RB2 

IRS1 

ITGB6 

ITGB8 

LHX6 

MLH3 

NFE2L3 

NRP1 

OXTR 
 

POLE2 

PPARG 

PROCR 

PTK6 

SH2D2A 

STAT2 

TCF7L1 

TIMP3 

TNFRSF14 
 

TSPAN1 

TSPAN4 

UGT1A6 

WEE1 
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Table 6 – Summary of transcripts that were significantly up-regulated within LST421 
(CYGB+) clones. 
Genes that were changed by 2 fold or more in LST421 (CYGB+) relative to LST223 (NCE) 
clones were uploaded to the PANTHER Gene Analysis Tool that enabled classification of the 
gene transcripts into ontological groups. 
 

GO code Description Genes ID Up-regulated 

0006915 Apoptotic 
process 

GADD45G 

GDF11 
 

GDF15 

IL6  
 

LIF  

TGFB1 
 

  

0022610 Biological 
adhesion 

ANGPTL4 CFB CTNNA1 FER  

0065007 Biological 
regulation 

APBB3 

CAST 

CDC42EP1 

CHD1 

CXCL1 

FER 
 

GDF15 

GNAZ 

IL6 

JUNB 

LIF 

MAF1 
 

MAP4K4 

MLXIP 

MYO10 

PITX1 

SEL1L3 

SERPINA3 
 

SGSM3 

SMAD7 

SQSTM1 

SYTL3 

TBC1D1 

TGFB1 
 

UIMC1 

YAF2 

ZFPM1 

ZMYND15 

ZNF13 
 

0071840 Cellular 
component 

organisation or 
biogenesis 

ATG12 

CDC42EP1 

CHD1 
 

CTNNA1 

FLNC 

HSPA6 
 

IQSEC2 

KRT80 

MAF1 
 

MYO10 

SGSM3 

SYNPO 
 

SYTL3 

TBC1D1 

TUBA3C 

UIMC1 
 

0009987 Cellular process ADRBK2 

ADSSL1 

ANGPTL4 

AOX1 

APBB3 

ATG12 

BAIAP2L2 

BCR 

BSG 

CARD11 

CDC23 

CDC42EP1 

CDC42SE2 

CDK11B 
 

CDKN2A 

CFB 

CHD1 

CLEC11A 

CSF2 

CTNNA1 

CXCL1 

CXCL2 

DPM3 

ELL2 

FER 

FLNC 

FOXP4 

GADD45G 
 

GAS6 

GDF11 

GDF15 

GNAZ 

GRB14 

GRK6 

HTRA1 

IL6 

IMPA2 

IQSEC2 

JUNB 

KRT80 

LCN2 

LIF 
 

LRSAM1 

MAF1 

MAP4K4 

MFSD3 

MLXIP 

MSH3 

MYO10 

NEURL1B 

PRICKLE1 

PTPRM 

RALBP1 

RARG 

S100A9 

S1PR3 
 

SGSM3 

SLC36A1 

SMAD7 

SPIRE1 

SPRY4 

SQSTM1 

STK10 

SYNPO 

SYTL3 

TBC1D1 

TGFB1 

TUBA3C 

UIMC1 

ZFPM1 
 

0032502 Developmental 
process 

CDC42EP1 

CLEC11A 

CTNNA1 

FER 

FLNC 
 

GADD45G 

GDF11 

KRT80 

LIF 

LMO4 
 

MAML1 

MYO10 

PRICKLE 

SPRY4 

SYNPO 
 

TBC1D1 

TGFB1 
 

 

0002376 Immune system 
process 

ABCC3 

CFB  

CSF2 

CXCL1 
 

CXCL2  

FER 

GADD45G 

HSPA6 
 

IL6 

KLK5 

LIF 

LRSAM1 
 

PXDNL 

S100A9 

SMAD7 

TXNRD1 
 

ZFPM1 
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Table 6 (continued). 

GO Code Description Genes ID Up-regulated 

0051179 Localisation ABCC3 

AKR1C3 

AP3B1 

CFB 

CXCL1 
 

CXCL2 

FER 

ISCA1 

KLK5 

LCN2 
 

MFSD3 

MYO10 

RAMP1 

REEP2 

REEP5 
 

SEC31B 

SGSM3 

SLC35E2B 

SLC36A1 

SLMO1 
 

SPIRE1 

SYTL3 

TBC1D1 

TUBA3C 
 

0040011 Locomotion CXCL1 
 

CXCL2 
 

FER 
 

MMP1 
 

 

0008152 Metabolic 
process 

ABCC3 

ACRC 

ADRBK2 

ADSSL1 

AOX1 

APBB3 

ARSI 

ATG12 

BCR 

CAST 

CDC42EP1 

CDK11B 

CES1 

CFB 

CHD1 
CHPF2 

CLU 

COX7C 

CYB5R4 
 

CYB5RL 

CYP27B1 

CYP4F11 

CYP4F12 

DHFR 

DHRS11 

DPM3 

ELL2 

FER 

FOXP4 

GALNT14 

GDA 

GDF11 

GDF15 

GNAZ 

GRK6 

HES5 

HMOX1 
HSPA6 

HTRA1 

HYI 

IDS 

IMPA2 

IP6K1 

ISCA1 

JUNB 

KLK5 

LCN2 

LMO4 

LNPEP 

MAF1 

MAP4K4 

MLXIP 

MSH3 

MYO10 

NADK 

NQO1 

PHGDH 
 

PTPRM 

PXDNL 

RALBP1 

RARG 

REEP2 

REEP5 

RPL28 

S100A9 

SCLY 

SEL1L3 

SERPINA3 

SGSM3 

SLC35E2B 

SLC3A2 

SMAD7 

SPIRE1 

SQSTM1 

STK10 

TAF8 
 

TBC1D1 

TGFB1 

THOC3 

TRIM37 

TRMU 

TXNRD1 

UIMC1 

UPP1 

YAF2 

ZFPM1 

ZMAT2 

ZMYND15 

ZNF513 
 

 

 

 

 
 

0032501 Multicellular 
organismal 

process 

GRK6 

HES5 
 

LIF 

MYO10 
 

PRICKLE1 

SYTL3 
 

TAGLN3 

ZFPM1 
 

 

0050896 Response to 
stimulus 

ABCC3 

ATG12 

BCR 

CDC42EP1 

CDC42SE2 
 

CFB 

CSF2 

CXCL1 

CXCL2 

FER 
 

GADD45G 

GDF11 

GDF15 

GNAZ 

HSPA6 
 

KLK5 

LIF 

LMO4 

MAP4K4 

MSH3 
 

SMAD7 

SQSTM1 

STK10 

TGFB1 

UIMC1 
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Table 7 – Fold changes of significantly changed transcripts in CYGB+ cells. 
Only transcripts with ≥ 2-fold change (i.e. 0.5 = 2 fold down-regulated and 2.0 = 2 fold up-
regulated) were considered significant. For ease of interpretation, an arrow next to the gene 
symbol is provided to indicate significant up ( ▲  ) or down ( ▼  ) regulations in CYGB positive 
cells relative to NCE control. Transcripts used for array validation are in bold and italicised. 
 

 Gene name Gene symbol Accession 
number 

Fold change  
(u = up; d = down) 

P value 

Biological Adhesion and Locomotion 

Matrix 
metalloprotease 

1, interstitial 
collagenase 

MMP1 ▲ NM_002421 u 4.70 1.44 E-07 

Integrin alpha 2 
subunit 

ITGA2 ▼ NM_002203 d 2.17 4.83 E-03 

Angiopoietin-like 
4 

ANGPTL4 ▲ NM_139314 u 2.26 7.84 E-03 

Integrin beta 6 ITGB6 ▼ NM_000888 d 2.01 5.81 E-04 
Integrin beta 8 ITGB8 ▼ NM_002214 d 2.70 7.76 E-05 

Matrix 
metalloprotease 

14 

MMP14 ▼ NM_004995 d 2.52 3.26 E-08 

Tissue inhibitor 
metalloprotease 3 

TIMP3 ▼ NM_000362 d 2.27 1.87 E-05 

Response to Stress 

Mitogen-activated 
protein kinase 
kinase kinase 5 

MAP3K5 ▼ NM_005923 d 2.87 6.38 E-06 

BCL2/adenovirus 
E1B 19kDa 

interacting protein 
3-like 

BNIP3L NM_004331 d 1.91 1.72 E-03 

Glutathione 
peroxidase 2 

(gastrointestinal) 

GPX2 ▼ NM_002083 d 2.43 8.79 E-06 

Growth arrest and 
DNA-damage 

inducible alpha 

GADD45A NM_001924 d 1.93 9.86 E-05 

NAD(P)H 
dehydrogenase 

quinone 1 

NQO1 ▲ NM_000903 U 2.28 8.53 E-07 

BTB and CNC 
homology 1, basic 

leucine zipper 
transcription 

factor 1 

BACH1 ▼ NM_206866 d 2.22 6.69 E-04 

CD40 TNF receptor 
superfamily 
member 5 

CD40 ▼ NM_001250 d 2.40 6.30 E-06 

Peroxisome 
proliferator-

activated receptor 
gamma variant 3 

PPARG ▼ NM_138711 d 2.79 9.28 E-06 

Heat shock 70kDa 
protein 2 

HSPA2 ▼ NM_021979 d 2.33 9.44 E-05 
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Table 7 (continued). 

Gene name Gene symbol Accession 
number 

Fold change 
(u = up; d = down) 

P value 

Metabolic Process 
Cytochrome c oxidase 

subunit VIIc 
COX7C ▲ NM_001867 u 2.36 2.44 E-04 

Cyclin-dependent kinase 
inhibitor 2A 

CDKN2A ▲ NM_058197 u 2.17 6.17 E-04 

Rho GTPase activating 
protein 18 

ARHGAP18 ▼ NM_033515 d 2.14 6.69 E-04 

Tumour growth factor 
beta 1 

TGFB1 ▲ NM_000660 u 2.20 3.49 E-03 

Autophagy related 12 
homolog ( S. cerevisiase) 

ATG12 ▲ NM_004707 u 2.38 2.67 E-04 

HtrA serine peptidase 1 HTRA1 ▲ NM_002775 u 6.75 4.05 E-10 
Myosin 10 MYO10 ▲ NM_012334 u 3.21 0.126 

SMAD family member 7 SMAD7 ▲ NM_005904 u 2.18 3.01 E-04 
CDC42 effector protein 
Rho GTPase binding 1 

CDC42EP1 ▲ NM_152243 u 2.10 4.56 E-07 

Jun B protooncogene JUNB ▲ NM_002229 u 2.01 6.77 E-04 
Heme oxygenase 

(decycling) 1 
HMOX1 ▲ NM_002133 u 2.60 1.36 E-05 

Retinoic acid receptor 
gamma 

RARG ▲ NM_000966 u 2.06 3.35 E-03 

Cytochrome P450 family 
27 subfamily B 
polypeptide 1 

CYP27B1 ▲ NM_000785 u 2.39 2.43 E-03 

Cytochrome P450 family 
4 subfamily F 

polypeptide 11 

CYP4F11 ▲ NM_021187 u 3.46 3.44 E-05 
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4.2.3 Validation of Transcriptome Changes  
RTqPCR was used to assess whether selected targets were altered in a similar manner to 

those found by the array and across a panel of independent CYGB+ clones. Transcripts 

found to be similarly regulated would then be more likely to be related to up-regulation 

of CYGB expression and not a clone-specific effect. 

All gene targets analysed by RTqPCR in the LST421 (CYGB+) clone followed the same 

trend as the microarray data (Figure 28), demonstrating array integrity. Furthermore, 

agreement between the microarray data and gene expression in other CYGB+ clones was 

found. NQO1 mRNA was found up-regulated in CYGB+ clones with medium and high 

over-expression of the globin (LST54 and LST421, and Figure 28e). ITGA2, MAP3K5, 

ARHGAP18 and CDKN2A transcripts were demonstrated to be down-regulated in the 

same CYGB+ clones (Figure 28). NQO1 up-regulation correlated with levels of CYGB 

expression in the different clones and with 2.31 fold (± 0.29) in LST421 and 1.32 fold (± 

0.05) in LST54, relative to the NCE control and both of these were statistically significant 

changes, as determined by Kruskal-Wallis, post-hoc Mann Whitney U testing (both p = 

0.05, Figure 28e). ITGA2 mRNA identified to be 1.33 fold (± 0.14) down-regulated in 

LST421 clones was found similarly repressed in LST54 clones (1.33 fold ± 0.15) relative 

to NCE controls (Figure 28b), although no statistical significance was found within this 

dataset (one-way ANOVA, p = 0.455). MAP3K5 was reduced by 1.54 fold (± 0.06) in 

LST421 clones, whilst the target was repressed less so in LST54 clones (1.05 fold ± 0.19) 

(Figure 28c) compared with NCE controls, but these changes were not statistically 

significant (one-way ANOVA, p = 0.463).  ARHGAP18 was also found to be down-

regulated by approximately the same extent in LST421, LST54 and LST32 CYGB+ clones 

(1.22 fold ± 0.13, 1.25 fold ± 0.10 and 1.14 fold ± 0.10, respectively, Figure 28d) 
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compared to NCE controls, but this was not statistically significant (one-way ANOVA, p = 

0.833). BNIP3L mRNA expression exhibited a titrated repression in CYGB+ clones, with 

the lowest CYGB over-expressing clone showing the strongest repression (2.70 fold ± 

0.12), and collectively CYGB+ clones showed a down-regulation of BNIP3L compared to 

NCE controls (Figure 28g) and no statistical significance was found in this dataset (one-

way ANOVA, p = 0.081). CDKN2A was reduced by 1.75 fold (± 0.07) in LST54 clones, 

whilst the target was repressed more so in LST32 clones (by 2.27 fold ± 0.38) and was 

up-regulated strongly by 5.86 fold (± 1.98) in LST421 compared with NCE controls 

(Figure 28a), but none showed statistical significance by t-test (unequal variances) 

(LST421, p= 0.238; LST54, p = 0.340; LST32, p = 0.276). COX7C and GADD45A genes did 

not show regulation with CYGB expression, with low and medium CYGB over-expressing 

clones showing approximately equal levels to that of the NCE controls (Figure 28f and 

h). The increases in COX7C and GADD45A expression in LST421 clones relative to the 

NCE controls were not statistically significant (one-way ANOVA, p = 0.068 and t-test 

(unequal variances), p = 0.238, respectively). 

 

 

 

 

 

 



137 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 
 

(f) 

 

(g) 

 

(h) 

 

Figure 28 – Transcript changes that occur within LST421 (CYGB+) clones also occur within other CYGB+ clone derivatives of PE/CA-PJ41. 
Expression of (a) CDKN2A (b) ITGA2 (c) MAP3K5 (d) ARHGAP18 (e) NQO1 (f) COX7C (g) BNIP3L and (h) GADD45A were all quantified by RTqPCR using RNA 
that was isolated from other PE/CA-PJ41 CYGB+ clones and compared to expression within the NCE controls. Data was normalised to the average of TBP 
and B2M expression using the Pfaffl ddCt method from Ct values averaged across three biological replicates. Fold change in mRNA expression ± standard 
error is shown for each target. Compared with NCE controls, Kruskal-Wallis, post-hoc Mann Whitney U, * p = 0.05. 
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4.2.4  Transcriptional Changes Following Cisplatin Treatment  
Some of the transcripts identified from the microarray study in CYGB+ clones are known 

to be stress response targets, including CDKN2A, GADD45A, NQO1 and MAP3K5. To 

investigate the role of these differentially expressed transcripts under conditions of 

cellular stress, cells were treated with 7.5 µM 48 h cisplatin (this concentration and time 

was chosen from concentration-response studies in section 5.2.3 that showed this was 

approximately the IC40) and the levels quantified before and after treatment by RTqPCR. 

CDKN2A was greatly up-regulated in all three CYGB+ clones following 48 h of 7.5 µM 

cisplatin treatment, with a trend towards increased expression at lower CYGB over-

expression (LST421 (17.38 fold ± 3.90), LST54 (20.99 fold ± 2.71) and LST32 (32.32 fold 

± 17.73) compared to the NCE control (3.55 fold ± 1.90) (Figure 29). The difference 

between LST421 or LST32 clones and NCE controls for CDKN2A expression was not 

significant in either case (t-test (unequal variances), p = 0.102 and p = 0.347, 

respectively), but the LST54 fold change was significant (t-test (unequal variances), p = 

0.025). GADD45A conversely exhibited a decline in expression with increasing CYGB 

over-expression (Figure 29), and CYGB over-expressing clones showed lower expression 

than NCE control, exhibiting 2.04 fold ± 0.01 (LST421), 1.11 fold ± 0.06 (LST54), and 

0.51 fold ± 0.53 (LST32) expression, respectively. The difference between LST421 and 

NCE was significant (t-test (unequal variances), p = 0.044). NQO1 showed a positive 

correlation between NQO1 expression and increasing CYGB over-expression following 

7.5 µM cisplatin treatment (LST421 (220.53 fold ± 42.24), LST54 (23.73 fold ± 6.60) and 

LST32 (23.44 fold ± 12.61) relative to the NCE controls (16.05 fold ± 5.81) (Figure 29). 

The difference between LST421, LST54 or LST32 and NCE controls was not statistically 

significant (t-test (unequal variances), p = 0.119, p = 0.571 and p= 0.733, respectively). 
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Additionally, MAP3K5 transcripts were induced in all three CYGB+ clones (LST421 (3.71 

fold ± 1.81), LST54 (2.86 fold ± 0.95) and LST32 (14.65 fold ± 4.24) above the 

expression exhibited by the NCE clones (1.03 fold ± 0.19) and the increase was 

statistically significant in LST421 and LST54 clones (Kruskal-Wallis test with Mann-

Whitney U post-hoc test, p = 0.05 for both) (Figure 29). 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 29 – Selected transcript changes in CYGB+ clones in response to 48 h 7.5 µM cisplatin treatment. 
Expression of (a) CDKN2A (b) GADD45A (c) NQO1 and (d) MAP3K5 were all measured by qRTPCR on RNA that was isolated from other PE/CA-PJ41 CYGB+ 
clones after 48 h treatment to 7.5 µM cisplatin and compared to expression within the respective NCE control. NCE control expression after cisplatin 
treatment is shown relative to NCE untreated control. Data was normalised to the average of TBP and B2M expression using the Pfaffl ddCt method from Ct 
values averaged across three biological replicates. Fold change in mRNA expression ± standard error is shown for each target. Compared with respective NCE 
controls, t-test (unequal variances), * p = < 0.05 and ** p = < 0.01, Kruskal-Wallis with Mann Whitney U test, # p = < 0.05. 
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4.3 Discussion 
In this chapter, we hypothesised that CYGB over-expression may be able to alter stress 

response transcripts within the transcriptome since it has previously been linked to 

stress-response phenotypes (see section 1.5). We present evidence for CYGB over-

expression significantly influencing the transcription of genes within several ontological 

categories and to our knowledge this is the first study to identify these transcript groups 

differentially regulated in CYGB over-expressing OSC cancer cells. We show in this 

chapter a new set of transcriptional changes associated with CYGB over-expression that 

relate to migration and cell survival following stress. We also identified p53 targets; 

NQO1, MAP3K5, GADD45A and CDKN2A, to respond more greatly to cisplatin treatment 

in CYGB over-expressing clones, suggesting CYGB may elicit its protective function 

against cisplatin cytotoxicity (see chapter 5) in a p53-dependent manner.  

It is important to validate the array results with RTqPCR because of the potential for 

clone specific effects on the transcriptome not directly related to CYGB expression. We 

used RTqPCR to validate the array with eight selected transcripts within three 

independent CYGB+ clones. All 8 transcripts in the RTqPCR study using samples from 

LST421 were found to match the changes in the array and were also consistent in all 

three CYGB+ clones for 5/8 of the transcripts validated. The 3 targets that did not show 

similar trends in expression across the three untreated CYGB+ clones did however show 

significant induction following treatment with cisplatin. Interestingly, significant 

regulation of these three stress-response (and p53-regulated) transcripts - MAP3K5, 

CDKN2A and GADD45A - was only evident in CYGB+ clones that over-expressed higher 

CYGB levels (LST421) before treatment.  
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It was only after cisplatin treatment that the expression of these transcripts could be 

observed in medium and low over-expressing CYGB+ clones. This could either be just a 

clone-specific effect or more likely indicate a threshold effect where significant 

regulation of these transcripts will occur in the context of high, but not low over-

expression of CYGB, as has been previously observed for ROS depletion by CYGB after 

oxidant stress (McRonald et al., 2012). Regulation of stress-response transcripts within 

cisplatin-treated CYGB+ clones (that appears dependent on the expression level of 

CYGB) suggests higher levels of the globin could lead to a greater response in these 

stress transcripts and that cells with lower levels of CYGB over-expression require the 

cisplatin stress for the effect to manifest.  

To date, there has been only one other study to examine gene expression following 

transgenic CYGB expression, which identified four down-regulated transcripts; UCP2, 

PRPF40A, DNMT1 and COL1A1, in transiently transfected CYGB over-expressing NSCLC 

lines all related to the response to hypoxic stress (Shivapurkar et al., 2008). Although we 

did not find corroborating down-regulations for UCP2, DNMT1 or COL1A1 in our array 

study, we did find significantly reduced expression of the paralogous transcript to 

PRPF40A; PRPF40B (2.48 fold down-regulated, p = 0.005), in CYGB+ clones. 

In this chapter, we identified 201 genes that were significantly up-regulated by CYGB 

over-expression and 328 genes that were down-regulated relative to NCE controls. For 

up-regulated transcripts in CYGB+ clones, major changes occurred in groups for cell 

processing (GO:0009987), metabolic process (GO:0008152) and response to stimulus 

(GO:0050896). For the down-regulated targets in CYGB clones, groups altered included 

genes involved in adhesion (GO:0022610), biological regulation (GO:0065007), cell 
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processing (GO:0009987), localisation (GO:0051179) and response to stimulus 

(GO:0050896). By examining the differentially altered genes in these ontological groups 

more closely, it became clear that there were genes being regulated in the CYGB+ clone 

relating to migration signalling (such as MMP1, ITGA2, ARHGAP18, MMP14, TIMP3, 

CDC42EP1 and CTNNA1), cell survival following oxidative stress (such as NQO1, MAP3K5, 

BNIP3L, GADD45A, PRDX5, GPX2, BACH1, UIMC1 and ATG12) and cell cycle regulation 

(such as CDKN2A, CDK11B, GADD45G, SMAD7, E2F8 and STK10). Transcripts to validate 

the microarray findings were chosen from each ontological group to be representative of 

them - migration (ITGA2 and ARHGAP18), oxidative stress survival (NQO1, MAP3K5, 

GADD45A and BNIP3L) and cell cycle regulation (CDKN2A) - and most of these changes 

could be confirmed in three independent untreated CYGB+ clones, confirming that they 

were directly related to CYGB and not just clone-specific artefacts. Overall, the 

ontological groups that were identified by the array as being significantly altered in 

CYGB+ over-expressing clones were consistent with phenotypic changes already 

reported in the literature.  

CYGB over-expression has been previously linked to reduced motility and invasive 

properties in NSCLC and ovarian cancer cell lines, although the molecular basis of this 

effect is unknown (Chen et al., 2014; Oleksiewicz et al., 2013) (see section 1.6.3.2). In 

chapter 5, we present data showing medium and high expression CYGB+ clones show 

increased migration compared with NCE controls (see section 5.3.1), and this is 

consistent with regulation of transcripts related to motility signalling seen in the 

microarray data presented here and also by the down-regulation of cell migration-

related PRPF40 transcript observed by Shivapurkar et al (2008) (Table 4). There is 

evidence that CYGB may elicit motility changes by signalling through the cytoskeleton 
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regulator Rho GTPase (Nakatani et al., 2004), and further that the globin is a target of 

Cdc42 (Kabuyama et al., 2006). Interestingly, our microarray identified an effector 

protein of Cdc42; CDC42EP1, to be significantly up-regulated in CYGB over-expressing 

cells. We also saw significant down-regulation of ARHGAP18, a positive regulator of 

RhoA GTPase activity, in the panel of CYGB+ clones. It is also of note to mention RhoA 

GTPase can be activated directly through oxidation (Aghajanian et al., 2009). As we also 

found CYGB+ clones showed suppression of oxidative stress (see section 6.3.3) it may be 

possible CYGB activity may indirectly regulate RhoA signalling by interfering with 

control of its redox status (discussed further in section 7.1). 

Rho GTPases co-ordinate cell movement in a complex signalling pathway by establishing 

polarity (through Cdc42 GTPase), membrane protrusion (through Rac1 GTPase) and 

actin cytoskeletal reorganisation (through RhoA GTPase) (Karlsson et al., 2009). Our 

array found CYGB+ clones down-regulated Rho-Type GTPase-Activating Protein 18 

(ARHGAP18), which encodes a protein that suppresses stress fibre and focal adhesion 

formation at the leading edge of motile cells through inhibition of RhoA GTPase activity 

(Maeda et al., 2011) and ARHGAP18 loss has been associated with a greater propensity 

for melanoma growth and vascularisation in vivo (Chang et al., 2014b). We also found 

ITGA2 was significantly reduced in CYGB+ clones. The product of this gene forms part of 

an integrin receptor - α2β1 - that has an important role in initiating Rho signalling, 

whereby collagen 1 activation of the receptor signals for FAK-mediated Rho family 

GTPase activation to trigger directional migration (Rohani et al., 2014). This integrin has 

also been implicated in epithelial to mesenchymal transition that is required for tumour 

metastasis, as inhibition of this receptor reduces hepatocarcinoma cell invasion (Yang et 

al., 2003) and liver metastasis of melanoma cells (Yoshimura et al., 2009). Our 
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laboratory has recently demonstrated that HSC-T6 (rodent hepatic stellate) and LX2 

(human hepatic stellate) cells cultured upon a collagen 1-coated substratum down-

regulate CYGB and its protein in a time and collagen 1 concentration-dependent manner 

(Stone et al., 2015). Of particular note, integrin α2 (ITGA2) transcripts were elevated 

following attachment to collagen 1 (Stone et al., 2015). Interestingly, the results of this 

chapter found that highly over-expressing CYGB+ clones markedly repressed ITGA2 

expression relative to NCE controls, which is consistent with the relationship between 

these transcripts previously reported.  

Our array revealed several biomarkers of the antioxidant response were appreciably 

altered in CYGB+ clones. These included down-regulation of BACH1 (a negative regulator 

of Nrf2 and thus antioxidant gene transcription), GPX2 (a glutathione-dependent 

enzyme involved in H2O2 detoxification), MAP3K5 (a regulator of both JNK/p38 and 

GADD45A signalling, that promotes oxidative stress-induced apoptosis) (Ray et al., 

2012b). The antioxidant response signalling pathway and its importance in maintaining 

cellular redox homeostasis is described in section 1.5.3.1. Induction of antioxidant gene 

transcription in CYGB+ clones suggests that CYGB-expressing cells will have reduced 

levels of oxidative stress and this was confirmed by the reduction in total cellular ROS 

and mitochondrial superoxide and higher reduced glutathione levels in CYGB+ clones 

(see section 6.3.3). NAD(P)H dehydrogenase (NQO1) transcripts encode a NADH-

dependent reductase found within the mitochondrial electron transport pathway that 

limits oxidative stress by reducing quinones and their reactive derivatives, thereby 

preventing these molecules from generating ROS by reacting with diatomic oxygen 

(Vasiliou et al., 2006). As a result, NQO1 has potential to reduce the toxicity of pro-

oxidant anti-cancer drugs and this has been demonstrated for doxorubicin in hepatic 
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cholangiocarcinoma (KKU-M214) cells, where knockdown of NQO1 increases sensitivity 

(Zeekpudsa et al., 2014). Supporting these observations, CYGB+ clones showed higher 

NQO1 expression compared to NCE controls that was maintained following 48 h 7.5 µM 

cisplatin, whilst CYGB+ clones also had greater resistance to cisplatin (see section 5.3.3). 

Untreated CYGB+ clones significantly up-regulate NQO1 compared to NCE controls, 

which suggests that CYGB-expressing cells are better adapted for minimising oxidative 

stress and this is consistent with other research groups identifying CYGB as an 

antioxidant (see section 1.5.3.2). Indeed, we found in chapter 6 (see section 6.2.3) that 

CYGB+ over-expression was associated with lower mitochondrial superoxide levels 

which is consistent with evidence by other groups showing NQO1 over-expression 

linked to superoxide depletion (Dinkova-Kostova and Talalay, 2010).  

Another stress-response gene identified by our array, BCL2/Adenovirus E1B 19kDa 

Interacting Protein 3-Like (BNIP3L), was down-regulated in CYGB+ clones. BNIP3L 

encodes a mitochondria-targeted factor of the Bcl2-homology domain 3 (BH3) family 

that exerts a pro-apoptotic function by associating with and inhibiting Bcl-2 and Bcl-xL 

(Imazu et al., 1999), which normally prevent mitochondria outer membrane 

permeabilisation and release of cytochrome c (Czabotar et al., 2014). A correlation 

between in vivo BNIP3L knockdown and increased resistance to radiotherapy-induced 

cell death has been reported (Fei et al., 2004), supporting a role in tumour suppression. 

The reduced expression of BNIP3L within CYGB+ clones may partly explain other 

research groups' findings that CYGB knockdown in glioma cells leads to sensitisation to 

radiotherapy (Fang et al., 2011), potentially by promoting expression of factors like 

BNIP3L that trigger intrinsic cell death. p53 is a critical regulator of the response to 

stress-inducing agents including genotoxins, inducing NQO1, GADD45A, CDKN2A, and 
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MAP3K5 targets that were all found differentially regulated in CYGB+ clones treated with 

cisplatin. This suggests that CYGB over-expression causes an enhanced p53 response 

following cisplatin stress. This was further supported in CYGB over-expressing clones 

relative to NCE controls by the greater induction of p53 protein following cisplatin 

treatment and this trend was reversed in untreated clones (see section 5.2.5). 

Interestingly, the protein product of NQO1; whose transcript is increased in CYGB+ 

clones, has been found to directly stabilise p53 independently of MDM2 regulation and 

is most effective following oxidative stress (Asher et al., 2002). Additionally, the p14ARF 

product of the CDKN2A locus up-regulated in CYGB+ clones has been reported to 

increase stability of p53 by inhibiting MDM2 activity (Zhang et al., 1998) and its binding 

to retinoblastoma protein (Brown et al., 2004). The other CDKN2A product p16INK4a is 

able to prevent CDK4/6 activity and thus blocks progression past the G1 phase of the 

cell cycle (Brown et al., 2004). These data are consistent with recent reports by other 

research groups that CYGB interacts with p53 and modulates transcriptional activity 

(John et al., 2014) and the transcriptional up-regulation of NQO1 and CDKN2A we find in 

CYGB+ clones may indicate a p53 regulatory mechanism being activated upon cisplatin 

treatment.  

Some of the transcripts that did not show an association with CYGB expression in 

untreated cells except for the highest CYGB over-expressing clone were further 

investigated following cisplatin treatment. Cisplatin-treated CYGB+ clones with the two 

highest levels of over-expression demonstrated higher levels of NQO1, MAP3K5, CDKN2A 

and lower levels of GADD45A transcripts than NCE controls, where the latter two mRNAs 

depended on the level of CYGB expression (Figure 29d, a and b). To our knowledge, this 

is the first time these transcripts have been linked to CYGB following cisplatin stress. 
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Evidence that four of the p53 targets identified on the microarray were also significantly 

preferentially regulated in other CYGB+ clones in this chapter is, to our knowledge, the 

first evidence for a causal link between the reported CYGB-p53 association and a 

downstream p53 transcriptional response following cisplatin stress. 

The discovery that DNA damage stress response targets (such as the DNA damage 

recognition gene GADD45A and MMR genes MSH3 and MLH3) were significantly 

regulated in CYGB+ clones, is in agreement with previous reports showing CYGB 

expression can protect against ROS-induced DNA damage (Hodges et al., 2008; 

McRonald et al., 2012) and also with reports that CYGB is up-regulated by stress (John et 

al., 2014; Latina et al., 2015; Li et al., 2007; Nishi et al., 2011). GADD45A is down-

regulated in all clones following cisplatin treatment (in association with increasing CYGB 

over-expression) than in NCE controls, which is expected with an improved DNA 

damage response. It is interesting that GADD45A expression also shows a dependence on 

CYGB over-expression level. Genotoxins stimulate GADD45A expression; in part through 

p53-dependent mechanisms (Xiao et al., 2000), which promotes synthesis of a protein 

that interacts with factors involved in DNA repair and cell cycle regulation (such as 

proliferating cell nuclear antigen (PCNA) and CDK2/cyclinB1) (Liebermann and 

Hoffman, 2008). The interaction with PCNA occurs as part of the NER DNA damage 

repair response involving blockade of replication and promotion of repair machinery 

(Hildesheim and Fornace, 2002). GADD45A also promotes G2/M checkpoint activation 

through inhibiting the kinase activity of CDK2/cyclinB1 complex and thus mitosis 

(Kastan and Bartek, 2004) and has also been found to protect cells against aneuploidy 

and tumour formation (Hollander et al., 1999). GADD45A also activates the p38/JNK 
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signalling pathway that regulates p53 activity and apoptosis (Gupta et al., 2006; 

Hildesheim et al., 2002).  

Another transcript in the stress response category that is significantly up-regulated in 

CYGB+ clones is Mitogen-activated protein kinase (MAP3K5); also known as apoptosis 

signal-regulating kinase 1 (ASK1). MAP3K5 transcripts are enhanced in all CYGB+ clones 

after cisplatin treatment compared to their modest down-regulation in NCE controls. 

This a serine/threonine protein kinase that activates the p38 /JNK signalling cascades 

upon detection of oxidative stress through the dissociation of thioredoxin (Matsukawa 

et al., 2004; Tobiume et al., 2001) and it has been reported that ASK1 triggers 

inflammatory responses that in turn generates ROS for promotion of tumour 

progression (Kinoshita et al., 2013). ASK1 has been found up-regulated in gastric cancer 

and linked to tumour proliferation (Hayakawa et al., 2012).  

It was interesting to observe that cell cycle regulators were differently expressed in 

CYGB+ clones, with a number being up-regulated like CDKN2A, GADD45G and CDK11B. 

There is increasing evidence that indicates a role for CYGB in cell cycle regulation and 

this is discussed in section 1.6.3.2. Treatment of breast cancer MDA cells with hydrogen 

peroxide showed up-regulation of a number of antioxidant transcripts, including CYGB 

that occurred with cell cycle arrest at G1/S-phase (Chua et al., 2010). A more direct link 

that implies cell cycle regulation may be a downstream effect of CYGB was reported in a 

study of ovarian SKOV-3 cancer cells transfected with CYGB that showed greatly reduced 

CCDN1 levels and increased G1 arrest (Chen et al., 2014). It is certainly logical to expect 

cell cycle genes to be affected by CYGB over-expression, given the protection that CYGB 

offers cells against DNA damage since it would allow a greater opportunity for repair to 
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be attempted. CDKN2A encodes the cell cycle regulator p16ARF, which inhibits CDK4 to 

prevent its interaction with CCDN1 that normally promotes S-phase entry (Giono and 

Manfredi, 2006; Kastan and Bartek, 2004). The fact CDKN2A levels are enhanced more 

so in CYGB+ clones indicates that these cells would be better equipped to activate the 

G1/S checkpoint after cisplatin treatment.  

In this chapter, we identified and validated novel transcripts that are differentially 

regulated by CYGB in OSC cancer cells, with some showing a dependence on cisplatin 

treatment for their association with CYGB over-expression to be revealed. These 

transcripts were related to migration (ITGA2 and ARHGAP18) and protection against 

stress-induced damage (MAP3K5, NQO1, GADD45A, CDKN2A and BNIP3L).  

As the CYGB protein is cytoplasmic and does not contain any known nuclear-targeting 

motifs (Kawada et al., 2001), it would be necessary for the protein to associate with or 

regulate activation of a transcription factor to specifically alter the transcriptome. It 

must also be noted that associations between CYGB over-expression and a gene target 

may be due to indirect regulation. Recently, CYGB has been shown capable of entering 

the nuclear compartment by splicing a nuclear localisation sequence to its N terminus 

(Itoh et al., 2013) that suggests it is at least small enough to move across the nuclear 

membrane and its inherent nuclear expression within neurones has also been reported 

(Geuens et al., 2003) suggests a possible nuclear function in these cell types. There is 

also a recent report showing evidence for an interaction between CYGB and p53, where 

CYGB can promote stabilisation of p53 (John et al., 2014). Thus, it is possible for CYGB to 

be acting by some as yet unidentified mechanism to specifically regulate the expression 
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of gene categories identified in this chapter and by Shivapurkar et al (2008) and hence 

deserves further investigation. 

Also in this chapter, it is shown that CYGB+ clones exhibit an enhanced response of a 

number of known p53 targets, namely GADD45A, MAP3K5, CDKN2A and NQO1, which 

supports the idea that CYGB may indeed be increasing p53 signalling in this cell model. 

These could be validated in three independent CYGB+ clones. Although this chapter 

cannot show how the CYGB protein modifies transcription, it is clear that over-

expression of CYGB results in a number of significantly altered mRNAs and furthermore, 

part of the transcriptional response to CYGB over-expression is control of p53-target 

expression following cisplatin stress. A summary of this is shown in Figure 30. These 

changes have importance in predicting CYGB function, such as the protection afforded to 

cancer cells against genotoxin cytotoxicity. The phenotypic alterations resulting from 

CYGB over-expression predicted from the findings of this chapter is the focus of chapter 

5. 
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Figure 30 – Summary of downstream targets related to CYGB over-expression. 
Transcripts that showed a change in expression within the CYGB+ clones found by the 
experiments in chapter four (in blue); along with those reported by Shivapurkar et al (2009) 
and Oleksiewicz et al (2011) (in orange), are shown. Transcripts have been grouped into 
broad categories for ease of interpretation, but some may have an involvement in more than 
one phenotype, as described in the discussion of chapter four. Transcripts are shown with 
blunted arrows if down-regulated and a complete arrow with transcripts up-regulated by 
CYGB over-expression. Transcripts regulated by 48 h 7.5 µM cisplatin treatment are shown 
with dotted lines. Targets of with p53 binding sites in the promoter are labelled with a star 
(information for this was obtained from the GeneCards Human Genes Database). 
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5.1  Introduction 
Limited evidence exists that examines the role of CYGB in the response to chemo- and 

radio- therapy (see section 1.6.3.3.2). Response to radiotherapy in human glioma cells 

has been demonstrated to improve with CYGB knockdown (Fang et al., 2011). 

Doxorubicin treatment of U2OS cells stably expressing GFP-CYGB was found to induce 

the conjugate's expression levels and this occurred in parallel with p53 accumulation, 

which also could be demonstrated in these cells after etoposide treatment (John et al., 

2014). C2C12 murine myoblasts also showed reduced apoptotic cell death in response 

to etoposide if CYGB is stably over-expressed (Singh et al., 2014). Most recently, breast 

cancer cells were shown increase ROS levels when CYGB was knocked down with 

doxorubicin treatment (Latina et al., 2015). Together, these studies suggest CYGB has an 

important function in determining tumour cell response to chemotherapeutic agents 

and suggests further that CYGB might participate within therapy resistance mechanisms. 

The results presented in chapter 4 showed CYGB over-expression could differentially 

regulate of a number of genes and a subset of these were validated in multiple CYGB 

over-expressing clones. Transcripts were related to migration (ITGA2 and ARHGAP18), 

cell cycle regulation (CDKN2A), and cellular response to stress-induced damage 

(MAP3K5, NQO1, GADD45A, and BNIP3L), which added to the growing list of transcripts 

that are potentially downstream of CYGB (Figure 30). Four of these transcripts; NQO1, 

CDKN2A, GADD45A and MAP3K5, are known to be regulated by p53 as discussed in 

section 4.3 and these targets were significantly regulated in CYGB+ clones after cells 

were treated for 48 h with 7.5 µM cisplatin. In combination with our data, there is 

emerging evidence that CYGB associates with p53 function (John et al., 2014; Singh et al., 
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2010). This suggests over-expression of CYGB influences p53 function and ultimately the 

response of cells to cytotoxic agents such as cisplatin, which activates the p53 signalling 

pathway (see section 1.6.3.3.1). As CYGB over-expression was linked to the significant 

alteration of transcripts involved in migration and stress response from our study in 

chapter 4, we hypothesised that CYGB may alter the phenotypes associated with these 

transcriptional changes. We further postulated that changes in p53-related functions 

such as apoptosis activation and cell cycle regulation in CYGB+ clones treated with 

cisplatin should be observed, since there were significantly regulated p53 targets 

following treatment.  

In the current chapter, we present data for the effect that CYGB over-expression had on 

phenotypes related to tumorigenesis in our OSC cancer cell model. We show CYGB+ 

clones have altered migratory and mitochondrial reductive abilities, as well as a reduced 

cytotoxicity response to cisplatin. Significant gene expression changes observed in 

CYGB+ clones (presented in chapter 4) were consistent with these phenotypes. To our 

knowledge, we also show for the first time evidence for CYGB's ability to alter cell cycle 

distribution both prior to and following cisplatin treatment and that factors associated 

with the DNA damage detection response including CHK1 and p21 were significantly 

increased with CYGB over-expression. 
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5.2 Results 

5.2.1 Effect  of CYGB on Cell Motility 
Motility of CYGB+ clones was examined with a wound healing assay, where a cell-free 

gap between two opposing cell sheets was created (see section 2.13) and the closure of 

the gap was quantified. Medium (LST54) and high (LST421) over-expressing CYGB+ 

clones were significantly more mobile than NCE controls (Figure 31). At 3 h, for 

instance, NCE controls had left 30.2 % (± 8.03) of the gap, whilst LST421 and LST54 

clones left only 19.7 % (± 6.33) and 7.3 % (± 3.79), respectively. A representative image 

from one experiment is shown in Figure 32 and also provided in movie format on the 

Supplementary CD-ROM.  

This suggests there was a CYGB "dose" dependent effect on cell migration where levels 

closer to normal physiological CYGB levels (such as in LST32 clones) give a slower 

migration rate, whilst higher levels of CYGB expression (as demonstrated by LST421 and 

LST54 clones) leads to faster migration rates. The difference between the NCE 

measurements and the CYGB+ clones was not found to be statistically significant (one-

way ANOVA, p > 0.05 for all time points).  

If the effect on migration rate were related directly to CYGB expression, then siRNA-

mediated knockdown of CYGB expression would be expected to reverse the phenotypes 

observed in the CYGB+ clones. The highest CYGB over-expressing clone, LST421, was 

chosen for this RNA interference (RNAi) study and it was indeed observed that CYGB 

siRNA treated cultures had impaired ability to close the cell-free gap by 3 h (55.3 % ± 

3.13), compared with wildtype CYGB+ clones (67.5 % ± 4.50, Figure 33a), but this was 

not statistically significant (Kruskal-Wallis, p= 0.276).  Surprisingly, experiments using a 



157 
 

scramble RNAi sequence also caused knockdown of CYGB expression and this was also 

associated with reduced cell motility (Figure 33). Further experiments are required with 

another negative siRNA control to fully validate this experiment. 
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Figure 31 – CYGB+ clones close a cell-free gap faster than NCE control clones. 
CYGB+ and NCE clones were seeded into silica culture templates in a 24 well plate to reach full confluence the next day. The templates were removed immediately 
prior to the experiment, leaving a 500 µm ± 50 µm cell-free region between two confluent cell sheets. Cells were then left to migrate towards each other in low serum 
(1% FBS) media to limit any proliferation that would otherwise confound the results. The closure of the gap was monitored over 6 h using the Cell IQ microscope to 
record both bright field images and gap measurements every 7 min across three biological replicates (technical duplicate). Data was analysed with the cell-free area at 
time zero being defined within the software (conversion factor of 1 pixel = 0.698 µm) and then all subsequent images automatically measured from this to determine 
the area of the wound that was covered at each time point expressed as a percentage. % gap closure relative to time zero control ± standard error. 
No significant differences were found between CYGB+ and NCE clones at any time (one-way ANOVA, p = > 0.08). 
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Figure 32 – Representative Bright field images of CYGB+ and NCE clones show CYGB+ clones close the cell-free gap more quickly. 
CYGB+ and NCE clones were seeded into silica culture templates in a 24 well plate to reach full confluence the next day. The templates were removed 
immediately prior to the experiment, leaving a 500 µm ± 50 µm cell-free region between two confluent cell sheets. Cells were then left to migrate 
towards each other in low serum (1% FBS) media to limit any proliferation. The closure of the gap was monitored over 6 h using the Cell IQ 
microscope to record both bright field images and gap measurements every 30 min across three biological replicates (technical duplicate). 
Representative images from 0, 1, 2 and 3 h are shown for each clone. 
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     (a)                                              (b) 

  
 

 

Figure 33 – siRNA-mediated knockdown of CYGB expression on motility of LST421 (CYGB+) clones. 

(a) Following 24 h of CYGB or negative siRNA transfection, LST421 CYGB+ clones were seeded into silica culture templates in a 24 well plate to reach 
full confluence the next day. The templates were removed immediately prior to the experiment, leaving a 500 µm ± 50 µm cell-free region between 
two confluent cell sheets. Cells were then left to migrate towards each other in low serum (1% FBS) media to limit any proliferation that would 
otherwise confound the results. The closure of the gap was monitored over 6 h using the Cell IQ microscope to record both bright field images and 
gap measurements every 30 min across two biological replicates (technical duplicate). (b) RTqPCR of RNA isolated from siRNA-transfected cultures. 
Data was normalised to the TBP expression using the Pfaffl ddCt method from Ct values averaged across three biological replicates. Average mRNA 
expression ± standard error. No significant differences compared to untreated control, Kruskal-Wallis, p = > 0.05. 
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5.2.2 Proliferation of Cells with CYGB  Over-Expression  
The influence of CYGB expression on cellular proliferation was assessed using the crystal 

violet assay, taking measurements every day for a 4 day duration as described in section 

2.10, to develop a growth curve profile. There was no statistically significant difference 

in proliferation between CYGB+ clones and NCE controls (Figure 34). Reduced cell 

numbers were observed at the start of the time course in LST421 and LST54 clones on 

day one (1425 cells ± 489 for LST421 and 1829 cells ± 825 for LST54; not statistically 

significant (one-way ANOVA, p=0.055)) and day three (10800 cells ± 1474 for LST421 

and 14104 cells ± 398 for LST54; not statistically significant (one-way ANOVA, 

p=0.293)), relative to NCE controls on these days (3176 cells ± 512 on day 1 and 16375 

cells ± 914 on day 3). On day 4, LST421 and LST32 clones also has reduced cell densities 

than NCE controls (17644 cells ± 1275 for LST421 and 15202 cells ± 1149 for LST32 

(not significant, Kruskal-Wallis, p = 0.408) compared to 20071 cells ± 1474 for NCE 

controls), whilst the LST54 clone gave surprisingly higher densities compared with the 

NCE controls. LST421 and LST54 cells were higher than NCE controls at day two (15171 

cells ± 2338 for LST421 and 14827 cells ± 1477 for LST54 compared to 9118 cells ± 

1107 for NCE controls, but this was not significant (Kruskal-Wallis, p = 0.099)). Overall, 

there is an indication that CYGB over-expression can impact on proliferation but the 

results from this assay are inconclusive. 
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Figure 34 – Effect of CYGB expression on cell proliferation. 
Cells were seeded at equal numbers as described in section 2.10 in complete media for four 
days and cell densities were measured daily using the crystal violet method and interpolated 
as cell number using a crystal violet calibration curve. Measurements for each day were 
normalised to their respective day zero seeding densities. Results for three NCE clones were 
averaged. Data points are the average of three biological replicates. Mean normalised 
absorbance ± standard error. There were no statistically significant differences between 
CYGB+ clones and NCE controls at any day (all p > 0.05, see text). 
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5.2.3 Effect of CYGB on Cisplatin Survival 
Viability of CYGB+ and NCE clones following 48 h of cisplatin treatment was examined 

by three cytotoxicity endpoint assays (MTT, Crystal Violet and SRB) as described in 

section 2.9. The crystal violet assay enables staining of cell nuclei that gives an indirect 

way to determine cell number, the MTT assay provides a measure of mitochondrial 

reductase function and hence cell viability, and the SRB assay quantifies total cellular 

protein.  

As expected, all three assays showed a concentration-dependent reduction in cell 

number with increasing cisplatin concentration. The IC50 (the 50 % inhibitory 

concentration) was estimated to be 10 µM cisplatin, thus the concentrations either side 

of this (the IC40 (7.5 µM) and IC60 (15 µM)) were selected for use in subsequent 

experiments to investigate the responses of CYGB+ clones to cisplatin. Overall, CYGB+ 

clones treated with 7.5 µM cisplatin for 48 h showed a trend towards increased viability 

compared with NCE controls, as determined by all three cytotoxicity assays, and this 

effect was maintained in the two highest-expressing CYGB+ clones until the IC60 

concentration (Figure 35).  

As assessed by the MTT assay, LST421 clones exhibited greater survival (46.7 % survival 

± 3.00) than NCE clones (42.5 % ± 1.33) following treatment with 7.5 µM cisplatin, but 

this was statistically insignificant (one-way ANOVA, p = 0.336, Figure 35a). The LST54 

clone also exhibited a non-statistically significant trend towards increased viability to 

NCE controls (49.9 % ± 1.99) at this concentration. Likewise, the crystal violet assay 

indicated survival was enhanced in CYGB+ clones (LST421 (65.4 % ± 1.76), LST54 (53.9 

% ± 1.41) and LST32 (53.01 % ± 1.61)) compared with NCE clones (45.5 % ± 1.78) at 7.5 
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µM cisplatin (one-way ANOVA, p = 0.709), which was a trend maintained for all 

concentrations of cisplatin studied (excluding 15 µM and 20 µM cisplatin) (Figure 35b).  

Results from the SRB assay support this trend in LST421 and LST32 clones between 2.5 

µM and 10 µM cisplatin, with 7.5 µM cisplatin exhibiting 140.1 % (± 4.79) and 90.5 % (± 

6.16), respectively, of the cell population remaining relative to NCE clones (89.3 % ± 

4.81) (statistically insignificant, as assessed by the Kruskal-Wallis test, p = 0.055, Figure 

35c). LST54 cells were determined to have similar levels of SRB staining to NCE controls 

for most of the intermediate cisplatin concentrations.  
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 (a)                                 

 

(b)                   (c) 

  

Figure 35 – Effect of CYGB expression on clone survival following cisplatin treatment. 
Cells were treated with cisplatin for 48 h, before undergoing (a) the (MTT) assay, (b) Crystal Violet (CV) assay and (c) Sulforhodamine B (SRB) assay (see 
section 2.9) to assess the response of CYGB+ clones to cisplatin-induced cell death. Data are the average of three biological replicates (in technical triplicate) 
± standard error. For the MTT assay positive control, a quadruplicate set of readings were taken in the LST421 clone. One-way ANOVA with post-hoc Tukey  
* p < 0.05 and **p < 0.01. 
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5.2.4  Effects of CYGB on Cell Cycle Distribution 
We hypothesised that we would also be able to detect CYGB-dependent cell cycle 

changes following cisplatin treatment as we observed increased survival following 

cisplatin treatment in CYGB+ clones (see section 5.2.3). Cell cycle distributions are 

shown in Figure 36 and Figure 38, whilst representative cell cycle histograms and dot 

blots to show the singlet gate are shown in Figure 37 and Figure 39. Secondly, 

expression of four proteins related to cycle regulation; cyclin D1, p21, p53 and CHK1, 

were quantified using in-cell ELISA assays to determine if the findings of the cell cycle 

analysis could be validated further, as well as provide insight into the mechanism of 

CYGB action (see section 5.2.5). 

In the absence of treatment, CYGB over-expressing clones were marginally more likely 

to be in S-phase compared to NCE controls, although this was statistically insignificant 

(one-way ANOVA, p = 0.143, Figure 36a and Figure 38a). There was a also a trend 

towards greater S-phase accumulation with increasing CYGB over-expression (LST421 

(high, 29.8 % ± 2.07) > LST54 (medium, 28.3 % ± 1.74) > LST32 (low, 22.2 % ± 1.67)) 

relative to the NCE controls where only 24.0 % ± 1.51 cells were in S-phase. 

Treatment with cisplatin (7.5 µM) for 24 h caused an accumulation of cells in S-phase 

that was followed by G1 accumulation of cells at 48 h and 72 h (Figure 36). After 72 h, 

50.3 % (± 7.93) of LST421 and 43.2 % (± 5.59) LST54 CYGB+ clones were in G1, 

compared to just 34.9 % (± 3.15) of NCE controls, although this difference was 

statistically insignificant (Kruskal-Wallis test, p = 0.333). At 15 µM, there were clear 

differences between CYGB+ and NCE clones in S-phase distribution at 24 h and 

persisting across the later time points (Figure 38). At 24 h of 15 µM cisplatin, 62 % (± 
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10.51), 42.2 % (± 1.934) and 32.3 % (± 5.69) of LST421, LST54 and LST32, respectively, 

were within S-phase, compared with just 35.6 % (± 2.60) of NCE clones (insignificant, 

one-way ANOVA, p=0.958). By 72 h, this increased further to 67.3 % (± 12.72), 39.1 % (± 

3.42) and 36.9 % (± 7.12) of LST421, LST54 and LST32, respectively, whilst NCE 

samples only had 29.3 % (± 3.65) within this cycle phase, although none of these 

differences were found to exhibit statistical significance with the Kruskal-Wallis test (p = 

0.292). 
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Figure 36 – Effect of CYGB and 7.5 µM Cisplatin on Cell Cycle Distribution. 
Cells were seeded into T25 flask prior to being treated or not with 7.5 µM cisplatin for 24 h, 48 h or 72 h. After these durations, cells were harvested, fixed and 
stained with propidium iodide (PI) and analysed by flow cytometry, as described in section 2.13. Proportions of cells in each stage of the cell cycle were 
assessed and expressed as percentages across three biological replicates and corrected for the unstained cell control. There were no statistically significant 
differences between group means (all p values > 0.05, see text). 
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Figure 37 – Representative Cell Cycle Distributions for LST421 (CYGB+) and LST223 (NCE) clones following 7.5 µM cisplatin treatment. 
Cells were seeded into T25 flask prior to being treated with cisplatin for 24 h, 48 h or 72 h. After these durations, asynchronous cells were harvested, 
fixed and stained with propidium iodide (PI) and analysed by flow cytometry, as described in section 2.13. Gating was carried out for viable cells across 
three biological replicates and corrected for the unstained cell control for cell cycle analysis. Example dot blots and histograms of viable cells are also 
shown, along with the singlet population gate (red outline). 
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Figure 38 – Effect of CYGB and 15 µM Cisplatin on Cell Cycle Distribution. 
Cells were seeded into T25 flask prior to being treated or not with 15 µM cisplatin for 24 h, 48 h or 72 h. After these durations, asynchronous cells were 
harvested, fixed and stained with propidium iodide (PI) and analysed by flow cytometry (see section 2.13). Proportions of cells in each stage of the cell 
cycle were assessed and expressed as percentages across three biological replicates and corrected for the unstained cell control. There were no 
statistically significant differences between group means (all p values > 0.05, see text). 
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Figure 39 – Representative Cell Cycle Distributions for LST421 (CYGB+) and LST223 (NCE) clones following 15 µM cisplatin treatment. 
Cells were seeded into T25 flask prior to being treated or not with 15 µM cisplatin for 0, 24 h, 48 h or 72 h. After these durations, cells were harvested, 
fixed and stained with propidium iodide (PI) and analysed by flow cytometry, as described in section 2.13. Gating was carried out for viable cells across 
three biological replicates and corrected for the unstained cell control for cell cycle analysis. Example dot blots and histograms of viable cells are also 
shown, along with the singlet population gate (red outline). 
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5.2.5  Expression of Proteins Related to Cisplatin-Induced Cell Cycle 

Change 
Cisplatin causes DNA adduct formation that leads to DNA strand breaks (see section 

1.6.3.3.1) and these are detected by ATR kinases that transduce the DNA damage signal 

into activation of CHK1 that via CDC25 contributes to cycle arrest (Patil et al., 2013; 

Wagner and Karnitz, 2009), and phosphorylation of p53 by CHK1 aids its stabilisation 

for recruitment of DNA repair machinery to the cisplatin-damaged site (Ali et al., 2012; 

Pabla et al., 2008). Quantification of cell cycle associated proteins following treatment of 

cells with cisplatin levels for 48 h demonstrated that as expected, p21, p53 and CHK1 

proteins were all up-regulated in all cell clones (Figure 40).  

p21 expression in high and medium expressing CYGB+ clones was higher compared to 

NCE controls after cisplatin treatment. In untreated LST421 and LST54 clones, there was 

an increase of p21 expression by 1.08 fold (± 0.15), 1.69 fold (± 0.39), respectively, 

compared with NCE controls. After treatment with cisplatin (7.5 µM for 48 h), LST421, 

LST54 and LST32 increased p21 expression by 2.72 fold (± 0.67), 2.52 fold (± 0.65) and 

2.33 fold (± 0.62), respectively, compared with untreated NCE controls (LST54 and 

LST32, p = 0.021 and p = 0.04, respectively, t-test (paired)). After treatment with 

cisplatin (15 µM for 48 h), LST421, LST54 and LST32 increased p21 expression by 4.39 

fold (± 1.08), 4.89 fold (± 0.75) and 4.61 fold (± 0.49), respectively, compared with 

untreated NCE controls, and at 15 µM, the expression in LST32 was statistically 

significant (t-test (paired), p = 0.027). 

Cyclin D1 levels were higher in CYGB+ clones than NCE controls across cisplatin 

concentrations. After 7.5 µM cisplatin treatment, LST54 and LST32 over-expressing 

clones had higher cyclin D1 expression (8.83 fold (± 1.21), and 11.49 fold (± 1.38), 
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respectively) above the NCE controls (non-significant, t-test (paired), p > 0.05). At 15 

µM, LST421 and LST32 over-expressing clones had higher cyclin D1 expression (12.34 

fold (± 5.39) and 14.63 fold (± 5.46), respectively) above the NCE controls. None of the 

differences at 15 µM were significant (one-way ANOVA, p = 0.865). 

p53 expression was lower in untreated high and medium expressing CYGB+ clones (0.75 

fold (± 0.01) and 0.80 fold (± 0.09), respectively) compared to NCE controls. The 

difference between LST421 clones and NCE controls was statistically significant (t-test 

(paired), p =0.003). After 7.5 µM cisplatin, LST54 and LST32 increased p53 expression 

by 2.54 fold (± 0.65) and 2.63 fold (± 0.66), respectively, above the untreated NCE 

control. After 15 µM cisplatin for 48 h, LST54 and LST32 increased p53 expression by 

2.42 fold (± 0.17) and 2.72 fold (± 0.14), respectively, above the untreated NCE control. 

At 15 µM, the expression in LST54 and LST32 were significant (t-test (unpaired),              

p = 0.04 and 0.021, respectively). 

CYGB+ clones all increased CHK1 expression following cisplatin treatment. Before and 

after 7.5 µM cisplatin, there was a trend towards increased CHK1 expression with 

increasing CYGB expression. At 7.5 µM, LST421, LST54 and LST32 increased CHK1 

expression by 2.11 fold (± 0.59), 2.50 fold (± 0.65), and 3.50 fold (± 0.76), respectively 

compared to the NCE control (significant, t-test (paired), p = 0.00, 0.044 and 0.009, 

respectively). At 15 µM the effect was more pronounced with LST421, LST54 and LST32 

increasing CHK1 expression by 4.50 fold (± 0.34), 5.84 fold (± 0.16), and 6.00 fold (± 

0.74), respectively, to NCE untreated control. The expression at 15 µM in LST32 was 

significant (t-test (paired), p = 0.027). 



174 
 

Interestingly, p53, cyclin D1 and CHK1 protein expression in CYGB+ was dependent on 

the level of CYGB over-expression, with a trend towards higher expression of  these 

proteins with lower CYGB over-expression. 
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Figure 40 – CYGB+ clones exhibit differential expression of cell cycle associated factors following cisplatin treatment. 
Cells were seeded into 24 well plates before treatment to 0µM, 7.5 µM or 15 µM cisplatin for 48 h. Cell cycle associated factors (a) p21 (b) cyclin D1 (c) p53 
and (d) CHK1 were semi-quantified in CYGB+ and NCE clones, using indirect In-Cell ELISA. Representative western blots are provided that show antibody 
binding specificity in LST421 clone samples for (left to right) 0µM, 7.5 µM and 15 µM cisplatin (excluding p21 and CHK1 due to western blot development 
technical issues). Luminescent signals were corrected with no primary antibody labelled controls and normalised to cell number, as determined by crystal 
violet staining following the ELISA assay. Data are in normalised relative luminescence units (RLU) relative to the untreated NCE control to show the relative 
induction of the protein. They are the average of three biological replicates ± standard error.  
Compared to NCE, t-test (paired),*p<0.05, **p<0.01. 
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5.3 Discussion 
The previous chapter showed how stable over-expression of CYGB altered transcripts 

associated with migration and the stress response, including changes in four known p53 

targets following cisplatin treatment. This current chapter characterised the effects of 

CYGB on cell phenotype, with particular focus on migration, proliferation, cell cycle 

distribution, and survival following cisplatin treatment. We found that high CYGB over-

expression caused both tumour suppressor-like and oncogenic phenotypes in our OSC 

cell model and as far as we are aware, presents the first evidence of these in a oral 

cancer and cisplatin-treated context.  

This study found medium and high expressing CYGB+ clones showed increased cell 

migration. In contrast, low over-expression of CYGB reduced migration relative to NCE 

controls. All CYGB+ clones also showed resistance to cisplatin-induced apoptosis, which 

we show in chapter 6 is associated with reduced caspase 9 activation. Finally, this study 

demonstrated changes in cell cycle parameters with CYGB+ clones following treatment 

with cisplatin that included more pronounced accumulation of cells in G1-phase and 

differences in average induction of CHK1, p53 and p21 proteins. These changes are 

discussed in more detail in the following sections.  

5.3.1 Effect of CYGB Expression on Migratory Behaviour 
In the current study, medium and high expression CYGB+ clones could close a cell-free 

area significantly faster than NCE controls. Previous studies in other cell lines (NSCLC) 

have shown that CYGB impairs migration before stress but migratory potential could be 

enhanced following peroxide-induced oxidative stress (Oleksiewicz et al., 2013). 

Furthermore, reduced invasiveness by CYGB over-expression was reported in ovarian 

SKOV-3 cells (Chen et al., 2014) and NIH3T3 fibroblasts (Nakatani et al., 2004). 
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Interestingly, in the current study, the low expression CYGB+ clone showed a trend 

towards migration inhibition. Together, these suggest CYGB's effect on migration is 

dependent on cell type as well external factors like stress.  

Based on the fact we saw different migratory responses with different CYGB over-

expression levels, one explanation is that cell migration outcome is sensitive to the level 

of CYGB expressed. A similar concentration-dependent effect on migration has been 

previously reported in human vascular smooth muscle cells in relation to PDGF-β 

receptor signalling where high concentrations of PDGF-β is inhibitory whilst lower 

amounts is stimulatory (Clunn et al., 1997), and this was dependent on FAK 

phosphorylation (Hauck et al., 2000). FAK signalling has been linked to activation of 

Rac1 GTPase that generates ROS to oxidise low molecular weight protein tyrosine 

phosphatases (LMW-PTP) and subsequently activate RhoA, so it is possible that as an 

antioxidant, CYGB might intervene directly or indirectly in this (see section 7.1 for more 

detail). Alternatively, the difference between migratory behaviour in CYGB+ clones 

observed in this study and that observed by other groups may also be simply due to cell 

type-specific properties that would influence migration, such as differences in cell 

surface ECM receptors.  

To confirm the migratory phenotype exhibited by high expressing CYGB+ clone could be 

reversed, CYGB siRNA was transfected in order to knockdown expression of the globin. 

Whilst CYGB knockdown did cause a reversion in phenotype in high CYGB+ clones, there 

were problems with the negative control siRNA and further knockdown experiments are 

required to fully confirm the data. Nevertheless, the fact we observe the same migratory 

response in two independent CYGB+ cell clones relative to three independent NCE 
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controls strengthens the likelihood of the conclusion that medium to high CYGB over-

expression causes an enhanced migratory response.  

Antioxidants have been mostly associated with cell motility inhibition, such as the case 

of catalase over-expressing breast cancer cells (Glorieux et al., 2011). However, higher 

levels of CYGB could reduce total cellular ROS allowing modulation of redox-controlled 

RhoA GTPase signalling and this might be cell or context specific. Certainly, CYGB over-

expression in fibroblasts has been linked to increased actin stress fibre formation and 

focal adhesion complex assembly (Nakatani et al., 2004) and these are known 

consequences of Rho GTPase activity (Arthur and Burridge, 2001; Parri and Chiarugi, 

2010). 

5.3.2 The Effect of CYGB on Proliferation 
The influence of CYGB over-expression on proliferation was determined on a daily basis 

with the crystal violet assay, which found CYGB over-expression was mildly associated 

with a reduced cell number compared to the NCE control; aside from day two where the 

growth of the two highest over-expressing CYGB+ clones exceeded the NCE controls. The 

CYGB+ clones showed reduced proliferation one day, 3 days and 4 days (excluding 

LST54) after seeding. This is in agreement with other research groups who found CYGB 

to significantly influence the proliferation capacity of cells. Liquid colony formation 

assays showed breast cancer NCI-HCC1569 cells stably over-expressing CYGB had 

impaired growth relative to the control that lacked CYGB (Shivapurkar et al., 2008) and 

this effect was also seen in osteosarcoma U2OS cells (John et al., 2014) and melanoma 

G361 cells (Fujita et al., 2014). However quite whether CYGB promotes or inhibits 

proliferation is still under debate and the data we obtained in this study was not 



179 
 

conclusive, as a consistent trend between CYGB+ and NCE controls was not observed 

across the time course. CYGB knockdown could significantly reduce proliferation in 

fibroblast cells (Halligan et al., 2009), whilst CYGB over-expression in pulmonary H358 

adenocarcinoma cells (Oleksiewicz et al., 2013) and ovarian SKOV-3 cells (Chen et al., 

2014) was reported to increase cell growth. Therefore, it is likely that cancer cell 

proliferation in association with CYGB expression involves a more complex regulation 

mechanism that is cell type dependent.  

5.3.3 CYGB Expression and Cisplatin Resistance 
CYGB+ clones demonstrated enhanced survival following treatment with cisplatin for  

48 h compared to NCE controls, and this correlated with reduced oxidative stress and 

intrinsic apoptosis pathway activation (see section 6.3.1). This confirms many previous 

reports showing CYGB to protect the cells against cell death induced by oxidants (see 

section 1.5.3.2), but this is the first to demonstrate an anti-apoptotic function for CYGB 

against cisplatin-induced cell death. Cisplatin exerts its cytotoxicity by triggering cellular 

responses to DNA damage and oxidative stress (see section 1.6.3.3.1), which are both 

processes protected by CYGB (see section 1.6.3.2.1 and 1.5.3), so it is unsurprising to 

observe greater survival after cisplatin treatment in CYGB+ clones. Tian et al (2013) 

demonstrated lower caspase 3 activity (the downstream executer caspase activated by 

caspase 9) in hypoxic brain tissue isolated from CYGB over-expressing rodents 

compared with controls. Other groups have similarly reported lower caspase-mediated 

cell death following oxidant stress when CYGB is over-expressed (Fujita et al., 2014; 

Jourd'heuil et al., 2012; Singh et al., 2014). We also find caspase 9 activity is reduced 

within CYGB+ clones in chapter 6 (see section 6.3.1), which is supportive of the observed 

cisplatin resistance in this chapter. 
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5.3.4   CYGB Expression Alters Cell Cycle Response to Cisplatin 
The slightly greater S:G1 ratio of CYGB+ clones we found before cisplatin treatment is 

consistent with reports of CYGB over-expression impairing proliferation in untreated 

cells (see section 1.6.3.2.1). Our study also found asynchronised medium and high over-

expression CYGB+ clones underwent initial cisplatin-induced S-phase arrest at 24 h of 

7.5 µM treatment and from 48 h showed an increase in the ratio of G1:S-phase cells 

relative to NCE controls that largely remained in S-phase arrest (with a low G1:S-phase 

ratio). Furthermore we found the increase in G1:S ratio depended on the level of CYGB 

over-expression, with a greater G1:S-phase ratio being observed with increasing CYGB 

over-expression. In agreement with our data, Chen et al (2014) found CYGB over-

expressing ovarian SKOV-3 cells showed greater accumulation of cells in G1-phase 

compared to S-phase and also that CYGB knockdown reversed this ratio, which the 

authors' attributed to CYGB arresting cells at G1. Their study contrasts with the findings 

of Latina et al (2015) who found no change in cycle distribution with CYGB knockdown. 

However, cisplatin-resistant NSCLC cells are known to increase the distribution of cells 

into G1 (Barr et al., 2013), and U2OS human osteosarcoma cells over-expressing CYGB 

and treated with doxorubicin (John et al., 2014) also demonstrate this. The increased 

G1:S ratio we found associated with CYGB over-expression is therefore consistent with 

other groups' findings and also with our other observations that CYGB+ clones have 

resistance to cytotoxicity (see sections 5.2.3) and higher cell numbers in G1-phase after 

cisplatin exposure.  

The higher G1:S-phase ratio seen with increasing CYGB over-expression at 48 h and 72 h 

following cisplatin treatment, suggests these cells are either more able to promote cell 

cycle progression or that they are more arrested in G1 than NCE controls. Cyclin D1 
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levels in CYGB+ clones were higher than NCE controls at this concentration and thus 

supports the cell cycle changes observed, suggesting the increased G1-phase distribution 

in cisplatin-treated CYGB+ clones is likely to be related to increased cell cycle 

progression. To our knowledge, there is little pre-existing evidence for CYGB's effect on 

the cell cycle in response to genotoxins, so here we discuss the possible mechanisms by 

which CYGB may be eliciting its effect on the cell cycle we see in this study.  

Cisplatin DNA damage is detected by ATR kinase that activates CHK1 to stimulate p53-

p21 signalling downstream and triggers the G2 checkpoint of the cell cycle (He et al., 

2011) (see section 1.6.3.3.1, Figure 41). The fact we observed altered expression of p53-

regulated transcripts after cisplatin in CYGB+ clones (see section 4.2.4) and found this 

was associated with higher expression of CHK1, p21 and p53 in at least two of the three 

CYGB+ clones here, suggests the CHK1-p53-p21 signalling route may be slightly more 

active in CYGB+ clones and, by consequence, DNA damage repair signalling at the G2 

checkpoint (Figure 42). This is consistent with previous reports that CYGB is protective 

against oxidative DNA damage (see section 1.5.3.2 and 1.6.3.2.1) as greater activity of 

repair machinery would presumably increase a cells' ability to overcome damage. This 

theory is consistent with the down-regulation of cell cycle and DNA repair response 

transcript GADD45A that we observed in CYGB+ clones  in section 4.2.4. The increase in 

expressed p21 in CYGB+ clones is in agreement with the observations of John et al 

(2014) in CYGB over-expressing U2OS osteosarcoma cells treated with etoposide and 

also with those of Thuy et al (2011). Cisplatin was found to cause S-phase accumulation 

within all clones at 7.5 µM cisplatin, showing treatment may have acted to semi-

synchronise the cells, which subsequently allowed for the cycle differences between 

CYGB+ and NCE clones to become visible. Cisplatin negatively affected cycle progression 
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by activating the G2 checkpoint, which is shown by higher numbers of S-phase cells at 

24 h and G2 cells at 48 h in all clones relative to their untreated controls. The increasing 

G1:S ratio in CYGB+ clones from 48 h implies these clones are able to overcome the 

cisplatin-induced G2 checkpoint arrest and re-enter G1, where they continue cycling. 

Meanwhile, NCE controls continue to block progression at G2, with far fewer cells re-

entering at G1. If we had examined distributions at an intermediate time of 60 h, it 

would be anticipated a lower number of CYGB+ clones in G2 would be seen. The 

increased transit through G1 in CYGB+ clones is supported by higher levels of cyclin D1 

expression, which is one of the E2F-regulated genes required for S-phase entry (Figure 

41). Cyclin D1 has also been reported to have potential for ROS regulation, since its 

transcription promoter contains regulatory sites for redox-regulated proteins including 

NFκB (Menon and Goswami, 2007). 

The CYGB expression-dependent increase in G1:S-phase ratio implies these cells can 

evade cisplatin-induced cytotoxicity more effectively than NCE controls, which is in 

agreement with the reduction in cisplatin-induced cell death (see section 5.2.3) and 

oxidative stress (see section 6.3.3) in CYGB+ clones. This trend may be due to an 

increased ability to enter G1, decreased ability to leave S-phase or increased ability to 

overcome the G2 checkpoint block for re-entry to the cycle. More detailed studies are 

needed to investigate this. CYGB over-expression may act to 'prime' the cells to respond 

more quickly and effectively to cisplatin stress enabling cells to pass the G2 checkpoint, 

divide in M phase and re-enter the cell cycle at G1. This 'priming' may be mediated 

either by the direct control of cell cycle signalling or modulation of redox homeostasis 

that influences cell cycle progression.  
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Figure 41 – Cell Cycle Regulation and Checkpoints 
The cell cycle is separated into four major phases - growth phase 1 (G1), synthesis phase (S), 
growth phase 2 (G2) and mitosis (M). Levels of oxidants are highest in G1 (shown by the pink 
arrow), whilst the rest of the cycle has a more reducing environment. The S-phase is the 
point wherein DNA is replicated ready for packaging into the two daughter cells created by 
M phase. The first gap phase (G1) contains a crucial "restriction point" that enables the cell 
to respond to environmental cues to orchestrate signalling for the advancement or cessation 
of the cell cycle. The progression from G1 into S-phase begins with cyclin D1 association with 
CDK4 or CDK6, which triggers the hyper-phosphorylation of retinoblastoma protein (RB) to 
liberate the transcription factor E2F for it to activate S-phase gene transcription of genes 
such as cyclin D1 and components of the DNA replication machinery (Menon et al., 2007). 
p21 (a transcriptional target of p53) is a key cycle regulator that hyper-phosphorylates and 
inactivates retinoblastoma protein, and inhibits CDK/cyclin activity (Dutto et al.,2015). CDC25 
is a redox sensitive protein that can control the activities of CDK2 cyclin complexes. There are 
three major checkpoints that need to be overcome by cells for them to progress successfully 
through the cell cycle - G1/S, intra-S and G2/M. The G1/S checkpoint prevents replication 
happening in the presence of damaged DNA. The intra-S checkpoint triggers repair of 
replication and DNA damage errors before allowing cycle progression. The G2/M checkpoint 
prevents entry of cells to M phase if they have unrepaired damage from the two earlier 
checkpoints or damage from G2. Figure adapted from Chiu et al., (2012). 
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Figure 42 – The G2 Checkpoint in response to cisplatin. 
To ensure integrity of the genome from one generation of cells to another, there are 
checkpoints between each pair of phases in the cell cycle. Cisplatin causes DNA adduct 
formation. During the DNA damage response at G2/M phase, cell cycle progression is halted 
whilst repair is attempted and, if successful, the cycle is re-started. The G2/M checkpoint 
prevents entry of cells to M phase if they have unrepaired damage from the two earlier 
checkpoints or damage from G2. ATR kinase is activated upon the detection of DNA damage 
and promotes the phophorylation and activation of CHK1, which in turn activates CDC25 that 
negatively regulates the cyclinB/CDK1 complex that manages the progression of G2 to M 
phase. CHK1 also activates p53 signalling that activates transcription of factors like GADD45α 
and p21 that inhibit the cell cycle and stimulate DNA damage repair pathways for less 
problematic damage, whilst more irreparable damage promotes the activation of apoptotic 
signalling. Adapted from Bucher and Britten (2008) and Kastan et al. (2004). 
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There have been previous reports suggesting CYGB can stabilise and activate p53 (John 

et al., 2014) and also that the globin is a transcriptional target of another member of the 

p53 family, ∆Np63 (Latina et al., 2015). The link between CYGB over-expression and 

higher p53 levels is also implied by our in-cell ELISA data in this chapter. Although we 

did not observe a reproducible difference between all CYGB+ clones and NCE controls, 

we observed that medium and high over-expressing clones showed lower p53 

expression before treatment, whilst low and medium expressing clones showed higher 

p53 induction following 7.5 µM cisplatin. We are assured p53 is highly likely to be 

wildtype in these cells since direct sequencing of the most commonly mutated exons did 

not show any evidence of polymorphisms (see section 3.2.8). Together with the 

observed p53-related transcript regulation in section 4.2.4, the data of this chapter 

implies p53 could be important in mediating the CYGB+ clone response to cisplatin. 

Aside from increasing p53 signalling at the G2 checkpoint, CYGB may also be increasing 

cell cycling through its ability to decrease cellular ROS. There is increasing evidence 

linking cell cycle control to redox state, with ROS being higher in G1-phase than 

elsewhere in the cycle and oxidative stress reported to inhibit cycle progression and 

trigger apoptosis (Burhans and Heintz, 2009; Chiu and Dawes, 2012; Menon and 

Goswami, 2007). It was shown in murine embryonic fibroblasts (Menon et al., 2003), 

CH72-T4 carcinoma cells (Ibanez et al., 2011) and murine aorta endothelial cells 

(Onumah et al., 2009) that stalling in G1-phase can be triggered by the presence of 

antioxidants, demonstrating the importance of endogenous ROS for G1 entry. There are 

also factors within the G2 checkpoint that are redox-controlled and CYGB may be able to 

modulate these through its antioxidant ability (for more detail, see section 7.1). 
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CYGB over-expression has been reported to protect against lipid peroxidation (see 

section 1.5.3.2 and 1.6.2) and G2-phase is the stage where membrane lipids are 

synthesised along with ATP ready for mitosis (Moreira et al., 2015). So it is feasible that 

CYGB over-expression might even protect against extensive damage to membranes and 

mitochondria metabolism during this phase caused by cisplatin treatment that would 

normally lead to cell death, and instead favour survival and repair signalling rather than 

signalling for death and apoptosis. Therefore, the ability of CYGB+ clones to re-enter the 

cell cycle more readily than NCE clones suggests promotion of the G2 checkpoint for 

DNA repair and then of re-entry into the cell cycle.  

At 15 µM cisplatin, the effect of CYGB over-expression seems more complex. The 

protective effect of CYGB over-expression at this concentration appears to be lost, with a 

lower G1:S ratio being evident in medium and high over-expressing CYGB+ clones, 

indicating the cells are unable to escape from cisplatin-induced cycle arrest, unlike the 

NCE controls that appear to gradually reach similar cycle distributions by 72 h post-

treatment to those shown before cisplatin treatment. This is the opposite of the trend 

observed at 7.5 µM cisplatin and may be related to the more extensive damage caused 

by doubling the cisplatin concentration. This would imply that whatever the protective 

survival mechanism is that CYGB employed against 7.5 µM cisplatin stress becomes 

detrimental at the higher concentration and seems to facilitate persistence of the 

cisplatin-induced cycle arrest rather than overcome it, but as we show in section 6.2.1, 

this does not result in caspase 9-mediated apoptosis. Further and more detailed cell 

cycle studies are certainly necessary to determine why CYGB over-expression can lead 

to two distinct cell cycle regulations depending on the cisplatin concentration.  
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6.1  Introduction 
The previous chapter showed CYGB over-expression was associated with changes to 

migration and proliferation, and also with increased survival and altered cell cycle 

distributions following cisplatin treatment. Furthermore, we revealed cisplatin 

tolerance in CYGB+ clones may involve CYGB-based modulation of the p53 signalling 

network because of increased induction of factors of the CHK1-p53-p21 signalling 

cascade (chapter 5) and regulation of p53-controlled stress response transcripts 

(chapter 4). This chapter focuses upon investigating the underlying mechanisms of these 

changes. 

Recently, studies have started to look beyond a simple anti-oxidant ROS scavenging role 

for CYGB, and have instead commenced investigation into whether CYGB can re-locate 

intracellularly to organelles or interact with other proteins to mediate its effects. For 

instance, CYGB over-expression in U2OS osteosarcoma cells was found to reduce the 

ubiquitin-mediated degradation of p53 (John et al., 2014) and also alter both cell cycle 

distributions and associated regulatory proteins without treatment (Chen et al., 2014) 

or after genotoxins (John et al., 2014) (see section 5.3.4). Moreover, CYGB has been 

reported to react with lipid peroxides and this was proposed to be the basis of a 

potential intracellular second messenger system (Reeder et al., 2011). There has also 

been a report to suggest that low oxygen stress may re-locate CYGB towards the 

mitochondria (Ye et al., 2006). 

There have also been studies that show CYGB participates in apoptosis as brain tissue 

from rodents over-expressing CYGB and injured by hypoxia-ischemia have reduced 

caspase 3 activity (Tian et al., 2013), and this was similarly reported in murine 
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myoblasts with CYGB knockdown in association with reduced Bcl-2 and increased pro-

apoptotic Trp73 transcripts (p73, a p53-related protein) (Singh et al., 2014). Similarly, 

He et al (2011) demonstrated in HSC-T6 rodent fibroblasts with thioacetamide (TAA)- 

induced fibrosis that if CYGB was added to cells extracellularly, there was a decrease in 

Bcl-2 expression, which is a suppressor of Bax-mediated mitochondrial permeability 

transition pore (mPTP) opening for the release of apoptosome assembly factors 

(Siddiqui et al., 2015). This is of note because phosphorylated Bcl-2 has also been 

reported to reduce complex 4-generated mitochondrial ROS, and also bind Rac1 GTPase, 

p53 and other proteins (Chong et al., 2014).  

To begin exploration of the mechanisms by which CYGB over-expression elicits the 

phenotypes found in chapter five, we examined ROS and reduced glutathione levels, 

mitochondrial reductase activity, and caspase 9 activation. We found that with cisplatin 

treatment, CYGB-expressing cells showed diminished caspase 9 and mitochondrial 

reductase activity, a reduction in both total cellular and mitochondrial ROS and higher 

reduced glutathione (GSH) levels when compared with NCE controls. These are in 

agreement with the cisplatin resistance of CYGB+ clones demonstrated in chapter 5. 
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6.2 Results 

6.2.1 Caspase 9 Activity 
To further investigate the mechanism by which CYGB over-expression could improve 

survival after cisplatin treatment, activation of caspase 9 was determined. A positive 

control (200 µM etoposide, 48 h) was included to demonstrate the functionality of the 

assay (caspase 9 induction reached 687.25 ± 120.8 RLU µg-1ml-1).  

Caspase 9 is an initiator caspase of the intrinsic apoptotic pathway and is a key mediator 

of cisplatin-induced cell death in ovarian and head and neck cancer cell lines (Kuwahara 

et al., 2000; Singh et al., 2013). As expected, caspase 9 activity increased following 48 h 

cisplatin treatment (Figure 43). Mean caspase 9 activity within high (LST421) and 

medium (LST54) over-expressing CYGB+ clones was consistently lower after cisplatin 

treatment. 

Whilst caspase 9 induction reached 640.25 RLU µg-1ml-1 (± 57.01) in NCE clones 

following 48 h treatment with 7.5 µM cisplatin, caspase 9 activity in LST421 and LST54 

clones was only induced to 575.90 RLU µg-1ml-1 (± 79.63) and 544.51 RLU µg-1ml-1 (± 

95.57), respectively. At 15 µM cisplatin, there was a the trend towards reduced caspase 

9 activation in CYGB+ clones relative to NCE clones, where there was a CYGB expression-

dependent reduction in caspase activity (Figure 43). The smallest induction of caspase 9 

at 15 µM cisplatin was observed in LST421 clones (605.99 RLU µg-1ml-1 ± 74.59), with 

the largest response observed in LST32 clones (754.656 RLU µg-1ml-1 ± 44.04).  These 

results suggest CYGB+ clones exhibit a trend toward lower caspase 9 activity following 

cisplatin treatment in this cell model. The difference in caspase 9 activity in LST421 at     

0 µM (p = 0.045) and  15 µM (p = 0.005), was significant, as assessed by t-test (paired). 
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Figure 43 – Effect of CYGB on cisplatin-induced caspase 9 activation. 
Cells were treated with 0 µM, 7.5 µM or 15 µM cisplatin for 48 h, after which the 
luminescent caspase 9 activity assay was carried out. Luminescent measurements were 
taken after 45 min and corrected for protein content through the Bradford assay. Data are 
the mean of 4 biological replicates (in technical duplicate) ± standard error. A positive control 
for caspase activation was included using the LST421 clone treated with 200 µM etoposide 
for 48 h. * p < 0.05 , ** p = 0.01 (t-test (paired)). 
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6.2.2 Mitochondrial Reductase Activity 
Mitochondrial reductase activity was assessed using the MTT assay. Cells were cultured 

in the presence or absence of 7.5 µM cisplatin for 48 h before the MTT assay was carried 

out as described in section 2.9.2. MTT absorbance values were corrected for cell density 

as described in section 2.9.1. CYGB+ clones showed reduced mitochondrial activity 

compared to NCE controls both before and after cisplatin treatment, although the 

greatest difference occurred prior to treatment (Figure 44). Untreated CYGB+ clones 

LST421, LST54 and LST32 clones exhibited a trend of decreased MTT reduction (0.78 

a.u. ± 0.06, 0.63 a.u. ± 0.03 and 0.63 a.u. ± 0.06, respectively) when compared with NCE 

controls (0.90 a.u. ± 0.10). However, there were no statistically significant differences 

between any of the untreated CYGB+ and NCE clones (one-way ANOVA, post-hoc Tukey, 

p = 0.216). Following cisplatin treatment, CYGB+ clones LST421, LST54 and LST32 

clones exhibited a less pronounced decrease in MTT reduction (0.62 a.u. ± 0.08, 0.59 a.u. 

± 0.04 and 0.51 a.u. ± 0.04, respectively) relative to NCE controls (0.67 a.u. ± 0.07). There 

were no statistically significant differences between any of the cisplatin treated CYGB+ 

clones and NCE control (one-way ANOVA, post-hoc Tukey, p=0.690). 
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Figure 44 – Effect of CYGB expression on mitochondrial reductive capacity. 
Cells were cultured in the presence of absence of 7.5 µM cisplatin for 48 h prior to MTT 
assay, followed by the crystal violet assay to enable normalisation to cell number. Blank- 
corrected MTT absorbance was normalised to the blank-corrected crystal violet absorbance 
to correct the MTT measurement for cell number. Results for three NCE clones were 
averaged. Data points are the average of three biological replicates. Mean blank-corrected 
absorbance values were calculated for each clone ± standard error. There were no 
statistically significant differences compared to NCE control, one-way ANOVA with post-hoc 
Tukey, p > 0.05. 
 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

LST421 LST54 LST32 NCE LST421 LST54 LST32 NCE 

N
o

rm
al

is
e

d
 A

b
so

rb
an

ce
 (

5
7

0
 n

m
) 

CYGB+ CYGB+ 

0 µM 7.5 µM 

Cisplatin (µM) 

 

 

 

 

 

 

 



194 
 

6.2.3 Total and Mitochondrial Levels of ROS 
The mode of action for cisplatin involves oxidative stress and this is dependent on 

mitochondria-generated ROS (Santos et al., 2007). Indeed, cisplatin-resistant cancer 

cells are less susceptible to oxidative stressors and research is underway to identify 

antioxidants specific to the mitochondria (such as MitoQ) that might help minimise the 

detrimental oxidant-induced side effects in vivo, such as impaired renal function 

(Mukhopadhyay et al., 2012). Knowing that CYGB is an antioxidant and we herein found 

its over-expression is associated with modulation of cisplatin-induced gene expression 

changes (see section 4.2.4) and cell survival following increasing cisplatin treatment 

(see section 5.2.3), we investigated whether cisplatin resistance in CYGB+ clones could 

correspond to reduced levels of either total or mitochondrial ROS. 

As expected, treatment of all clones with cisplatin (48 h) resulted in an increase in total 

cellular ROS (Figure 45). Interestingly, prior to treatment, CYGB+ clones exhibited lower 

levels of ROS compared to NCE clones; especially within medium (LST54, 26.5 RFU ± 

5.15) and high (LST421, 27.3 RFU ± 2.21) expressing CYGB+ clones (not significant, 

Kruskal-wallis test, p = 0.833). CYGB+ clones also had reduced total ROS after treatment 

with 7.5 µM cisplatin, but this was not significant (one-way ANOVA, p = 0.412, Figure 

45). At this concentration, high CYGB over-expressing clone LST421 showed the 

strongest suppression of ROS (25.0 RFU ± 7.44), whilst LST54 (medium CYGB over-

expression) gave milder suppression (47.2 RFU ± 12.75) when compared with NCE 

controls (57.4 RFU ± 15.97). At 15 µM cisplatin, high CYGB over-expressing clone 

LST421 shared the strongest suppression of ROS (28.70 RFU ± 2.24, (non-significant, 

Kruskal-wallis test, p = 0.332)), whilst LST54 (medium CYGB over-expression) gave 

milder suppression (64.75 RFU ± 21.75) when compared with NCE controls (68.70 RFU 
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± 5.63). Clones were also treated with 100 µM hydrogen peroxide for 2 h as a positive 

control and in line with previous reports that CYGB is a peroxidase, high and medium 

over-expressing CYGB+ clones had lower total ROS levels (Li et al., 2007; Nishi et al., 

2011), but neither were statistically significant changes (t-test (unequal variances), p = 

0.451, and p = 0.646, respectively). 

Quantification of mitochondrial superoxide revealed a substantial increase following 

both cisplatin concentrations in all clones, whilst a smaller increase was observed 

following 100 µM hydrogen peroxide (Figure 45). At all cisplatin concentrations, there 

was a trend towards reduced mitochondrial superoxide in CYGB+ clones, that was 

dependent on CYGB expression; with superoxide being increasingly diminished with 

increasing CYGB over-expression. At 7.5 µM cisplatin, LST421 and LST54 clones 

demonstrated the largest (but non-significant) reduction in superoxide levels (8887 RFU 

(± 1760.5) and 10488 RFU (± 2384.1), respectively) from the NCE control (12781 RFU ± 

3592.1) (not significant, one-way ANOVA, p = 0.832). This trend was also observed 

following 15 µM cisplatin treatment (LST421, 9965.7 RFU ± 961.5 and LST54, 13734 

RFU ± 373.9) compared to NCE controls (16424 RFU ± 2020.5), and this was statistically 

significant between LST421 and NCE (one-way ANOVA, post-hoc Tukey, p = 0.038). 

Differences in superoxide between clones treated with 200 µM hydrogen peroxide were 

also apparent, with all CYGB+ clones showing approximately half the level of superoxide 

of the NCE controls (Figure 45). 
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(a) 

 

(b) 

 

Figure 45 – Effect of CYGB expression on ROS. 
(a) Cells were seeded into 6 well plates and treated with cisplatin for 48 h (7.5 µM and 15 
µM), before cells were incubated for with DCFH2DA dye and assessed for fluorescence by 
flow cytometry, as described in section 2.11.1. Cells were also incubated with 200 µM 
hydrogen peroxide (H2O2) for 2 hs to induce cellular oxidative stress as a positive control. 
Results were corrected for a no dye control for each cell clone. Data are the average of 
biological triplicates ± standard error. (b) For the Mitosox Red assay, cells were seeded and 
treated as before but after treatment, cells were incubated for 45 min with MitoSox Red dye 
and assessed for fluorescence with a plate reader, as described in section 2.11.2. LST421 cells 
were also incubated with 150 µM antimycin A for 1 h as a positive control to induce 
mitochondrial oxidative stress (via inhibition of complex 3 of the electron transport chain, 
leading to uncoupling of electron transfer and superoxide production). Results were 
corrected for a no dye control for each cell clone. Data are the average of biological 
triplicates ± standard error. Compared to NCE control (one-way ANOVA with post-hoc Tukey, 
* p < 0.05). 
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6.2.4  Glutathione Levels 
Concentrations of GSH can be utilised as a biomarker of oxidative stress. Additionally, 

nucleophillic GSH is an inhibitor of cisplatin cytotoxicity by inhibiting its activation 

reactions with water, and elevated cellular GSH has been linked to cisplatin resistance 

both clinically and in vitro (Godwin et al., 1992; Kasherman et al., 2009; Siddik, 2003b). 

It would therefore be beneficial to establish whether modulation of GSH levels is 

involved in the mechanism of CYGB protection against cisplatin-induced cell death 

(Figure 35, Figure 43) and oxidative stress (Figure 45). 

As expected, all clones showed decreasing GSH levels following cisplatin treatment, 

although no statistically significant differences were found between CYGB+ and NCE 

controls (Kruskal-Wallis test, p = 0.585, Figure 46). High over-expressing CYGB+ clones 

exhibited higher GSH levels than NCE controls before and after 15 µM cisplatin 

treatment, although this was not statistically significant (Kruskal-Wallis test, p = 0.343). 

Untreated LST421 and LST54 CYGB+ clones had GSH concentrations of 17.13 nmoles 

per µg protein (± 3.48) and 11.75 nmoles per µg protein (± 4.73), whilst NCE clones had 

a GSH concentration of 8.50 nmoles per µg protein (± 2.06). Following treatment with 15 

µM cisplatin, the trend for elevated intracellular GSH concentrations within CYGB+ 

samples persisted, with LST421 having 14.82 nmoles GSH per µg protein (± 4.32) and 

LST54 having 6.98 nmoles per µg protein (± 2.38), relative to NCE controls where GSH 

levels reduced by approximately half that of their respective untreated control (4.79 

nmoles µg protein ± 0.95).  
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Figure 46 – Effect of CYGB expression on cellular levels of GSH. 
Cells were seeded into 6 well plates and treated with cisplatin for 48 h, before total reduced 
glutathione was quantified as described in section 2.11.3.  A glutathione calibration curve 
was utilised to calculate the total quantity of reduced glutathione within the samples, 
expressed in nmoles. This was subsequently normalised to the total protein content of the 
sample (µgml-1), as assessed by the Bradford assay. Data are the average of biological 
quadruplicates ± standard error. A positive control of 48 h 100 µM hydrogen peroxide  was 
included and 623.80 GSH nmole µg protein (± 7.78) was observed in NCE clones (data not 
shown). There were no statistically significant differences between group means (Kruskal-
Wallis, p > 0.05). 
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6.3 Discussion 
The previous chapter revealed CYGB+ clones exhibited greater cell survival following 

treatment with cisplatin at 7.5 µM and 15 µM, as well as altered cell cycle profiles and 

enhanced expression of p53, CHK1 and p21. To begin investigating the mechanistic basis 

of these effects, we assessed total and mitochondria ROS, total reduced glutathione 

concentrations, mitochondria reductase activity and caspase 9 activation in CYGB+ 

clones. In this chapter, we found all CYGB+ clones reduced mitochondrial reductase 

activity before and after cisplatin treatment compared to NCE controls. CYGB over-

expression also associated with reduced caspase 9 activation, which is in agreement 

with the increased resistance to cisplatin-induced cell death found in chapter 5. Total 

and mitochondrial ROS levels were observed lower in CYGB-expressing cells before and 

after cisplatin treatment. This ROS reduction was mirrored by enhanced concentrations 

of reduced cellular GSH in CYGB+ clones compared to NCE controls. These findings are 

discussed in more detail in the following sections. 

6.3.1   Caspase 9 Activity 
The mechanism by which CYGB mediates survival is still not fully understood, but the 

finding that caspase 9-mediated cell death is impaired, supports the involvement of 

CYGB upstream of the intrinsic apoptotic cascade. Caspase 9 is the initiator caspase of 

the intrinsic apoptotic pathway, activated by the release of cytochrome c from the 

mitochondrial cardiolipin tether for assembly of the apoptosome that subsequently 

promotes caspase 3 activity for apoptosis to ensue. Reduced caspase 9 activity has been 

linked to cisplatin resistance in head and neck cancer cells (Kuwahara et al., 2003). CYGB 

has been shown to bind to cardiolipin (Reeder et al., 2011), so it is feasible that CYGB 

may reduce caspase 9 activity through binding to and protecting cardiolipin from 
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oxidation, or even through redox-control of mPTP that normally facilitates cytochrome c 

influx into the cytosol. These hypotheses are discussed in greater detail in section 7.1.  

6.3.2   Mitochondrial Reductase Activity 
We investigated the ability of CYGB+ cells to reduce MTT into its formazan precipitate 

with or without 48 h 7.5 µM cisplatin treatment. MTT reduction was noticeably impaired 

in CYGB-expressing cells compared to NCE clones, and this trend was also seen following 

7.5 µM cisplatin, although the difference was less pronounced.  

There are almost no studies investigating a metabolic role for CYGB, but Oleksiewicz et 

al (2013) reported NSCLC cells over-expressing CYGB reduced MTT more greatly than 

controls and this trend could be inverted with CYGB knockdown. This is different to our 

observation, suggesting this effect may be cell type-specific. The reduction of 

mitochondrial reductase activity we observe in CYGB+ clones is supported by depletion 

of mitochondrial superoxide, which together suggest that CYGB might impair 

mitochondria function. We found that although there were no tangible differences in 

ATP production in untreated cells with CYGB over-expression, oxygen consumption 

rates were slightly raised in a CYGB dose-dependent manner; albeit insignificantly to 

NCE controls (see section 3.2.7). This is in contrast to the study by Stagner et al (2009), 

but consistent with the study in CYGB over-expressing fibroblasts (Halligan et al., 2009).  

MTT reduction depends on the availability of reduced cofactors like succinate, GSH or 

NAD(P)H (Kim et al., 2009) and mitochondrial succinate dehydrogenase and NAD(P)H 

are important in mediating the reaction (Berridge and Tan, 1993). CYGB detoxifies 

cellular ROS (see section 1.5.3.2), which would facilitate higher GSH concentrations 

prior to and following cisplatin stress (as seen in this chapter), which may theoretically 
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permit increased MTT reduction by maintaining a supply of reduced NAD(P) for the 

reaction. However, this is at odds with the observation that collectively CYGB+ clones 

show attenuated MTT turnover that persists under cisplatin treatment. Superoxide has 

been reported to promote MTT conversion into its formazan precipitate by providing 

electrons to the tetrazolium salt to mediate its reduction (Wang et al., 2011), so the 

observation of diminished reductive capacity in CYGB+ clones may simply be the 

indirect result of depleted superoxide, mediated by CYGB. It remains to be established 

whether CYGB can be actively involved in regulating metabolism. However, the changes 

we see in mitochondrial MTT turnover and superoxide generation independently of 

cisplatin treatment suggest CYGB can affect mitochondrial activity. 

6.3.2   Oxidative Stress 
As expected, cisplatin treatment led to increased oxidative stress across all clones. Both 

before and after cisplatin treatment, medium and high expressing CYGB+ showed lower 

total cellular ROS and superoxide compared with NCE controls and this was also true in 

the positive control treatment, hydrogen peroxide. This was supported by enhanced 

concentrations of GSH in medium and high expression CYGB+ clones, which is in 

agreement with CYGB over-expressing H2O2-treated lung cancer cells (Oleksiewicz et al., 

2013). Together, these data corroborate with numerous studies showing that CYGB acts 

as an antioxidant to reduce oxidative stress. Although we could not produce statistically 

significant data for the Mitosox Red study aside from at 15 µM between the highest 

expressing CYGB+ clone and NCE controls, there is a clear trend of lower mean 

superoxide levels in CYGB+ clones independent of cisplatin treatment and this is a new 

discovery.  
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Superoxide dismutase activity has been suggested for CYGB (see section 1.5.2). In our 

experiments, we measured superoxide levels within a cellular system so it avoided the 

confounding factor of limited cofactor availability in the in vitro Trandafir et al (2007) 

study. There is potential for the probe to become oxidised in the cytoplasm on its way to 

the mitochondria (Mukhopadhyay et al., 2007). Nevertheless, the lower signal we 

obtained for this probe in CYGB+ clones is suggestive that CYGB may preferentially 

decrease free radical species from the mitochondria. Although CYGB has been found to 

be cytoplasmic by ourselves (see section 3.2.6) and others (see section 1.4), there are 

reports suggesting CYGB relocates to the mitochondria following hypoxic stress in 

C2C12 myoblast cells (Ye et al., 2006). If this is proved under cisplatin treatment, then it 

is feasible that following exposure to the pro-oxidant, CYGB localises to the 

mitochondria to rapidly quench excess superoxide leakage resulting from uncoupled 

electron transfer between complexes and thus protect the cell from cisplatin-induced 

oxidative damage. The same may also be true following hydrogen peroxide treatment, as 

we observed similar trends (see section 6.2.3). Using fluorescence microscopy to 

examine whether CYGB in our over-expressing clones localises to the mitochondria after 

cisplatin treatment would be beneficial in exploring this hypothesis. 

Cisplatin has been reported to preferentially form adducts with mitochondrial DNA 

(Cullen et al., 2007; Olivero et al., 1997), in part because mitochondria DNA is close to 

the ROS-generating electron transport chain and lacks protective nucleic acid-associated 

histone proteins and nucleotide excision repair machinery (Cullen et al., 2007; Indran et 

al., 2011). Over-expression of manganese SOD (but not catalase) is able to reduce renal 

injury induced by cisplatin (Davis et al., 2001), and RNAi mediated knockdown of SOD1 
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impairs cisplatin resistance of ovarian cancer cells (Kim et al., 2010), which together 

implicates superoxide as a mediator of cisplatin toxicity.  

Cisplatin has a greater tendency to form adducts mitochondrial proteins and particularly 

with voltage-dependent anion channels (VDAC) (Yang et al., 2006). VDACs are in the 

outer mitochondrial membrane to enable exchange of solutes between the cytoplasmic 

compartment and mitochondria (McCommis and Baines, 2012) and are regulated by 

many stimuli including lipids, ROS and calcium ions (Martel et al., 2014). Use of 

mitochondrial VDAC-inhibitors could stop the superoxide-triggered release of 

cytochrome c (Madesh and Hajnoczky, 2001) and reduce efflux of mitochondria complex 

1-produced superoxide through VDAC (Lustgarten et al., 2012). The fact CYGB+ clones 

showed increased cell survival after cisplatin treatment (see section 5.2.3) and this 

corresponded to a decrease in both mitochondrial superoxide (see section 6.2.3) and 

caspase 9 activity (see section 6.2.1), suggests a hypothesis where during cisplatin 

treatment, CYGB scavenges superoxide locally at the mitochondria; theoretically 

involving control of VDAC, and depletes active caspase 9. Interestingly, when Singh et al 

(2014) found CYGB knockdown in C2C12 murine myoblasts could increase cytoplasmic 

cytochrome c concentrations, their mitochondrial protein marker VDAC was 

significantly increased. Assuming equal protein loading, this may important for our 

hypothesis. Indeed, VDAC1 knockdown in NSCLC cells reduces cisplatin-induced 

apoptosis without superoxide depletion (Tajeddine et al., 2008). 

Whilst high and medium levels of CYGB over-expression reduced cellular ROS and 

mitochondrial superoxide and this coincided with an increase in GSH concentration, the 

protective effect was lost in the lowest CYGB over-expressing clones. This implies high, 
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but not near-physiological levels of CYGB can protect against cisplatin-induced oxidative 

stress, and as we discussed in section 5.3.1, CYGB expression may require a threshold 

concentration to be reached to enable effective protection. Additionally, the fact we 

observed medium and high over-expression CYGB+ clones show better ROS scavenging 

and survival (see section 5.2.3) under cisplatin stress is particularly interesting, given 

the up-regulation of CYGB in subpopulations of oral cancers and other tumours (see 

section 1.6.3.2) and the resistance to chemotherapy reported for a subpopulation of cells 

within head and neck cancer that have lower ROS levels (Chang et al., 2014a), which 

future investigation might reveal to be one of the same. 
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7.1 Summary 
It had previously been reported that CYGB has a complex dual ability to act as both an 

oncogene or tumour suppressor that is likely to be context and cell type dependent 

(Oleksiewicz et al., 2013). Few mechanistic details exist to date for how CYGB actively 

elicits these changes, but it seems that its anti-oxidant and anti-apoptotic abilities are 

critical components of its activity, as shown within pathologies of cancer, fibrosis and 

oxygen stress (see sections 1.6 and 1.5.3.2). Although CYGB is silenced in many cancers, 

subsets of some tumour types such as head and neck cancer, display enhanced 

expression (see section 1.6.3.2.2), but CYGB expression per se was not a biomarker for 

predicting tumour occurrence. Solid tumours like OSC are successfully initially treated 

with a combination of radiation therapy and chemotherapeutic agents like cisplatin, but 

success rates of these are hampered by the emergence of drug and radiation resistance 

within the treated tumour (see section 1.6.3.3.1). Therefore, investigations into cisplatin 

resistance mechanisms are important. 

As CYGB has been previously shown to be cytoprotective against oxidative stress and its 

expression appears conditionally modulated in head and neck cancer, the primary 

objective of this thesis was to investigate the mechanism of CYGB action in response to 

stress within a head and neck cancer context. Acquired cisplatin resistance has been 

found to be a barrier to successful treatment of head and neck cancer, and its 

mechanism of cytotoxicity in part involves oxidative stress damage, so cisplatin was 

chosen as a relevant stressor for the experiments within this thesis. As the model for 

head and neck cancer, we chose to use PE/CA-PJ41 oral squamous cell carcinoma cells 

that had negligible endogenous CYGB expression. The results of chapter 3 show the 
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generation of the stable CYGB over-expression oral cancer in vitro model (CYGB+) and 

its validation. We then used this new model to study how CYGB expression influenced 

the cancer cell phenotype in response to cisplatin, with the aim of developing a greater 

understanding of CYGB function. To our knowledge, this is the first study to investigate 

how CYGB over-expression can influence cisplatin-induced cytotoxicity in oral cancer 

cells. Furthermore, we confirmed previous reports that CYGB could diminish total 

cellular ROS as previously reported by other groups (see section 1.5.3.2), but the work of 

chapter 6 has revealed for the first time that CYGB over-expression was linked to 

depletion of mitochondrial superoxide in particular, and this was further associated 

with higher cellular levels of GSH.  

The data presented in chapter 4 showed CYGB over-expression was associated with 

significant changes to transcriptional targets related to the stress response, motility, and 

cell cycle regulation. These transcripts add to the possible downstream effectors of 

CYGB function already identified (Table 4 and Figure 30) and show these changes to the 

transcriptome by CYGB over-expression may facilitate its affects on phenotype. Further 

investigation also showed for the first time that CYGB over-expression enhances the 

response of p53-regulated target genes following cisplatin treatment. The 

transcriptional changes associated with CYGB over-expression identified by the 

microarray study could also support the phenotypic findings of chapters 5 and 6. 

Subsequently, we explored whether CYGB over-expression could cause an altered 

response to cisplatin at the phenotype level, and the results for this are presented in 

chapter 5. We showed CYGB over-expression was associated with resistance to cisplatin-

induced cell death, involving reduced caspase 9 activation. We also observed CYGB over-
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expression was associated with decreased superoxide and total cellular ROS, and higher 

GSH concentrations following cisplatin treatment. This indicated the resistance to 

cisplatin-induced cell death was in part facilitated by reducing oxidative stress. Our 

finding that caspase 9 activity is reduced in CYGB-expressing cells is consistent with the 

lower caspase 3 activity found by Tian et al (2013) in hypoxic brain sections of CYGB 

over-expressing mice and with the reduced apoptosis observed in by others in the 

context of CYGB over-expression (Jourd'heuil et al., 2012; Singh et al., 2014). Recent 

developments in the field of another hexaco-ordinate globin, neuroglobin has shown it 

mediates protection from apoptosis by direct inhibition of cytochrome c (Fago et al., 

2008; Raychaudhuri et al., 2010), buffering the intrinsic apoptosis cascade by reducing 

the heme iron in cytochrome c into its ferrous, anti-apoptotic state (Brown and 

Borutaite, 2008). Although not proven here, a similar function of CYGB cannot be 

excluded. 

It was recently reported that CYGB over-expressing U2OS osteosarcoma cells increased 

expression of p53 and p21 following etoposide-induced DNA damage, and evidence was 

also provided to suggest this was linked to diminished p53 ubiquitination (John et al., 

2014). This does not, however, exclude other mechanisms by which CYGB may promote 

p53 activity. We found CYGB-expressing cells increased CHK1 induction following 

cisplatin treatment (see section 5.2.5) and this factor responds to DNA damage by 

phosphorylating p53 to promote its stabilisation (Ou et al., 2005), so this observation 

might be important in interpreting the results of John et al (2014). Additionally, CYGB 

expression was down-regulated 18-fold by ∆Np63 knockdown (a p53-related protein 

with similar transcriptional targets), and knocking down CYGB expression resulted in 
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depletion of p63, but only because of an increase in ROS (Latina et al., 2015). Together, 

these data support the theory that CYGB modulates p53 family function. Similarly to the 

John et al (2014) study, we showed augmentation of p53 and p21 in CYGB-expressing 

cells in response to cisplatin treatment and further demonstrated this was associated 

with an enhanced transcriptional response of p53-regulated genes.  

Cellular p53 is increased in response to stress and can elicit a multitude of downstream 

effects that primarily involve the mitochondria to regulate the survival-death balance at 

the transcriptional level (Wang et al., 2014) (Figure 47). Cytochrome c is normally 

tethered to the inner mitochondrion membrane by the lipid cardiolipin that when 

oxidised causes cleaved Bid to localise to the mitochondria to provoke the release of 

cytochrome c for caspase 9 activation (Ott et al., 2007; Shidoji et al., 1999). CYGB also 

has shown potential to interact with cardiolipin (Reeder et al., 2011), and thus suggests 

a possible mechanism of apoptosis regulation. However, this would require the cytosolic 

CYGB protein be associated with inner mitochondria membrane-bound cardiolipin and 

currently there is limited evidence in support of mitochondrial localisation of the CYGB 

protein (see section 1.4). Reeder et al (2011) also reported CYGB increases peroxidation 

of lecithin liposomes, which at first appears to suggest a pro-apoptotic role; especially if 

cardiolipin was oxidised upon being bound by the globin. Theoretically, this conflict 

could be resolved if the binding of CYGB acts covers the oxidisable sites of cardiolipin, 

for instance, or detoxifies ROS before they can reach cardiolipin. 

Aside from transcriptional control of apoptosis, there is evidence that  p53 re-locates to 

the mitochondria following DNA damage or hypoxia stress, where it interacts directly 

with apoptotic proteins to enable mPTP for cytochrome c release, and this process does 



210 
 

not occur if p53 initiates cell cycle arrest (Marchenko et al., 2000). We observed similar 

phenotypes with CYGB over-expression in chapters 5 and 6, where cisplatin-treated 

CYGB+ clones were associated with decreased caspase 9-mediated cell death, altered 

cell cycle distributions, increased p21, and increased response of p53-controlled 

transcription, which all suggest a p53 is involved in CYGB-associated cisplatin 

resistance. Similar to the Marchenko et al (2000) study with p53, hypoxia stress has 

been reported to re-distribute CYGB to the mitochondria in murine cardiac C2C12 

myoblasts (Ye et al., 2006). Hence, it is tempting to propose CYGB may intervene in the 

control of the p53-mitochondria interaction and disrupt apoptosis induction.  

Alternatively CYGB may act independently of p53, suppressing intrinsic apoptotic 

signalling through its ROS scavenging capacity. Superoxide generated by the 

mitochondrial ETC can activate mPTP (Madesh and Hajnoczky, 2001). CYGB over-

expression in the current study has been linked to substantially reduced superoxide 

levels before and after cisplatin stress (see section 6.2.3). Therefore, it may be CYGB 

reduces caspase 9 activity through redox-controlling mitochondrial mPTP opening. We 

also found the ability to metabolise MTT was reduced with CYGB over-expression before 

and after cisplatin treatment, with the implication that this may lower superoxide 

production by the mitochondria at complexes 1 and 3 (see section 1.5.3.1). Therefore, 

the reduction in superoxide levels we observe in CYGB+ clones in conjunction with 

impaired mitochondrial reductase activity may be linked, but further investigation is 

necessary to determine if this is the case. 

We did not find conclusive evidence that CYGB over-expression altered cellular 

proliferation. We found cell densities were slightly reduced in medium and high over-
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expressing CYGB+ clones compared to NCE controls on two days of the study, which is 

consistent with the findings of others (Chen et al., 2014; Fujita et al., 2014; Halligan et al., 

2009; John et al., 2014; Oleksiewicz et al., 2013; Shivapurkar et al., 2008). However, we 

did not observe a consistent difference between CYGB+ and NCE controls during the 

study. The crystal violet assay used correlated well with cell number (see appendix 9), 

but studies carried out elsewhere in the literature utilised different methods including 

haemocytometer cell counts or MTT assays. Turnover of MTT (in section 6.2.2) was 

lower in CYGB+ clones compared to NCE controls, so using this method to assess 

proliferation might underestimate cell numbers. More sensitive techniques could be 

used in future proliferation analysis in CYGB-expressing cells, such as 5-bromo-2'-

deoxyuridine (BrdU) staining that involves substituting thymidine bases during DNA 

replication with BrdU that can be detected with a specific anti-BrdU antibody to quantify 

proliferating cells. 

However, we did find the cell cycle response to cisplatin treatment was altered with 

CYGB expression, with a higher distribution of cells in G1-phase than S-phase following 

48 h of 7.5 µM cisplatin, supported by slightly higher cyclin D1 induction compared to 

NCE controls. Accumulation of CYGB-expressing cells in G1-phase was previously 

reported in ovarian cancer cells without treatment (Chen et al., 2014) and also in 

osteosarcoma cells responding to doxorubicin (John et al., 2014), but ours is the first 

study to show CYGB-expressing oral cancer cells increase the proportion of G1-phase 

cells in response to cisplatin. This suggests CYGB-expressing cells can evade cisplatin-

induced arrest more effectively, which is in line with our findings in chapters 5 and 6 

that CYGB over-expression reduced cell death and oxidative stress induced by cisplatin. 
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Without more detailed studies focussed on CYGB-associated changes to the cisplatin-

altered cell cycle distribution, we can only speculate how CYGB is involved. Certainly, the 

higher G1:S-phase ratio after cisplatin treatment implies a greater ability to enter G1-

phase, an impaired ability to leave S-phase or an enhanced ability to overcome the G2 

checkpoint initiated by cisplatin. p53 has a critical role in controlling cell cycle 

checkpoints (see sections 1.6.3.3.2 and 5.3.4). The duration of the G2 checkpoint is 

modulated by p53, partly through p21 and GADD45α that each inhibit the function of the 

cyclinB-CDK2 complex (Giono and Manfredi, 2006; Taylor and Stark, 2001). We found 

GADD45A and other p53 target transcripts were substantially regulated in CYGB+ cells 

following cisplatin treatment (see section 4.2.4) which is in support of increased p53-

dependent G2 checkpoint response in CYGB+ clones. We found GADD45A was down-

regulated in CYGB-expressing cells treated with cisplatin, which suggests the negative 

regulation of cyclinB-CDK2 is impaired. We also found CYGB over-expressing cells were 

wildtype for p53 (see section 3.2.8) and p53 induction was higher than NCE controls in 

CYGB+ clones following cisplatin treatment, again in support of the hypothesis that 

CYGB affects wildtype p53 signalling in response to cisplatin. Alternatively, the altered 

cell cycle response to cisplatin with CYGB over-expression may be related to its ability to 

scavenge ROS rather than its ability to promote p53 signalling. At the G2 checkpoint, 

CHK1 target, CDC25c, contains redox sensitive cysteine residues that are reversibly 

oxidised by H2O2, to inactivate the phosphatase and delay G2 to M transition (Savitsky 

and Finkel, 2002). 

Theoretically, as an antioxidant able to deplete ROS, CYGB may reduce the oxidation of 

CDC25c that would maintain its pro-cycling capacity and hence result in more cells 

distributing into G1 after cisplatin treatment. Re-entry into the cell cycle from a  
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Figure 47 – Possible points of CYGB intervention within the intrinsic apoptosis 
signalling pathway. 
In the classical mechanism of p53-induced intrinsic cell death, p53 enhances the transcript 
expression ratio of pro-apoptotic factors (like PUMA and APAF1) to anti-apoptotic factors 
(like Bcl-2 and Bcl-xL) that act to release cytochrome c and other factors from the 
mitochondria to stimulate the intrinsic apoptotic cascade downstream that includes 
sequential activation of caspase 9 and executioner caspase 3 to mediate degradation of the 
cell (Andersen and Kornbluth, 2013). There is also evidence to show p53 re-localises to the 
mitochondria to physically interact with apoptosis-related proteins (Marchenko et al., 2000). 
Points where CYGB may intervene in apoptosis activation are shown (text in bold indicates 
supportive evidence from the existing literature or from this thesis). These hypothesised 
interactions are discussed in greater detail in the text of section 6.1 and in companion Figure 
48. 
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quiescent sub G1-phase (G0) is dependent upon transcription factors rather than CDK 

regulators, and a number of these including c-Jun and NFκB can be oxidised or 

conjugated to glutathione to control their activity (Chiu and Dawes, 2012). CYGB was 

found to protect against GSH depletion and enhanced ROS scavenging (see sections 6.2.3 

and 6.2.4), so this may possibly protect the transcription factors responsible for G1-

phase entry from becoming inactivated.  

As the cisplatin response normally involves activation of the CHK1-p53-p21 signalling 

pathway because of DNA damage (see section 1.6.3.3.1), in chapter 5 we investigated the 

expression of these and found CYGB-expressing cells showed greater induction of all 

three proteins after cisplatin treatment. This implies the CHK1 signalling pathway 

leading to DNA repair is more active when CYGB is over-expressed. This agrees with 

previous reports from our laboratory that CYGB over-expression reduces the incidence 

of DNA damage in response to pro-oxidant treatments (Hodges et al., 2008; McRonald et 

al., 2012) and also with other groups showing CYGB loss in choline deficiency stressed 

C57BL/6 mice is correlated with higher levels of double strand DNA break markers, 

53BP-1 and γH2AX (Thuy et al., 2011) that are important in promoting the activation of 

the G2/M checkpoint (Fernandez-Capetillo et al., 2002).  

It was also shown that medium and high over-expression of CYGB was associated with 

increased migratory behaviour, but the opposite was true at lower levels of CYGB over-

expression, suggesting the possibility of a 'threshold rheostat' effect on migration. The 

fact we observed greater motility following high CYGB over-expression is contrary to 

previous reports that show CYGB expression is related to reduced migration (see section 
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1.6.3.2.1), but intriguingly is consistent with reports in CALU1 lung cancer cells treated 

with oxidative and hypoxic stress (Oleksiewicz et al., 2013).  

However, we can speculate that as CYGB demonstrates antioxidant functions, this may 

enable modulation of redox-sensitive RhoA GTPase activation. ROS are found at high 

levels at the leading edge of a motile cell sheet and oxidise low molecular weight protein 

tyrosine phosphatases (LMW-PTP) through Rac1-dependent ROS (Van Slambrouck et 

al., 2009). This relieves the inhibition of p190Rho-GAP (Nimnual et al., 2003) so it can 

prevent RhoA GTPase from altering actin fibres and focal adhesions to promote 

migration at the leading edge, but p190Rho-GAP still remains active in the reducing 

environment at the rear of the cell (Chiarugi et al., 2003; Hurd et al., 2012). Therefore it 

could be hypothesised that high CYGB expression would significantly deplete Rac1-ROS, 

disabling LMW-PTP to direct RhoA GTPase-mediated changes to the cytoskeleton at the 

rear of the cell, and thus promote migration. Although classically considered to act at the 

rear of a motile cell, there is recent evidence of RhoA GTPase activation at both leading 

and trailing edges of HeLa cells (Kurokawa and Matsuda, 2005), indicating a regulatory 

mechanism is in place to permit necessary cytoskeletal rearrangements for migration. 

Interestingly, Cdc42 RhoGTPase over-expression was found to increase CYGB 

(Kabuyama et al., 2006) and this RhoGTPase is important for cell polarity (Etienne-

Manneville, 2004) and considered to co-ordinate with Rac1 and RhoA to enable 

membrane protrusion (Kurokawa and Matsuda, 2005), so this may be one avenue of 

further investigation in establishing the link between CYGB, ROS and motility.  

Collectively, the data presented in this thesis suggest a hypothesis where CYGB over-

expression can, in response to cisplatin treatment, promote activation of the p53 
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signalling pathway for an enhanced DNA damage response (as evidenced by p53, CHK1, 

and p21 levels (see section 5.2.5) and regulation of p53-regulated transcripts (see 

section 4.2.4)) that does not culminate in apoptotic cell death (see section 6.2.1). 

Additionally, these data suggest CYGB over-expression permits improved cell cycle 

advancement in the presence of cisplatin (see section 5.3.4) that may be controlled 

through reduced mitochondrial activity (see section 6.2.2) that, in turn, may decrease 

cellular superoxide availability for the redox-regulation of factors for cell cycle and 

transcriptional change (see sections 1.6.3.2.2 and 6.2.3). This hypothesis is summarised 

in Figure 48. The most pronounced effect for each phenotypic change studied was 

always observed in medium and high over-expressing CYGB+ clones, whilst the lowest 

over-expressing clone; LST32, tended to consistently be similar in response to NCE 

controls, or give an opposite response to other CYGB+ clones. We showed LST32 

exhibited the closest CYGB expression to NE-1 cells that we used as a control for normal 

cell expression level (see section 2.4), so it may be argued that the responses we 

observed in this clone are more physiologically relevant changes.  
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Figure 48 – Possible Mechanisms of Cisplatin Survival by CYGB Over-expression. 
Shown here is a summary of how CYGB may be mediating the survival of cells in response to cisplatin 
treatment, through suppression of oxidative stress and caspase-mediated apoptosis, circumvention of 
cell cycle arrest and changes to the transcriptome. Further detail of these hypothesised pathways is 
given in the preceding results chapter discussions and summarised within the text of section 7.1.  
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7.2 Future Work 
A major new observation from this thesis was that CYGB-expressing oral squamous 

carcinoma cells exhibited a higher induction of p53 and p53-related transcriptional 

changes following cisplatin stress. It would be beneficial to conduct a whole genome 

cDNA microarray upon cisplatin-treated CYGB+ clones to determine whether other p53-

regulated transcripts are as significantly regulated to more fully characterise the 

transcriptional response to the combination of CYGB over-expression and cisplatin 

treatment. We also found CYGB over-expression protected cells from cisplatin-induced 

apoptosis and oxidative stress. To find out whether this protection also involves 

diminished DNA damage, comet assays could be conducted. There is already evidence 

from our laboratory (Hodges et al., 2008; McRonald et al., 2012) and others (Le Thi 

Thanh Thuy et al., 2015) that suggest this is likely. Furthermore, we found the cisplatin 

response in CYGB+ clones was associated with higher levels of CHK1 protein, which 

suggested the DNA damage response pathway was more active in CYGB+ clones. Thus it 

would be logical to see if the activities of proteins within this pathway were increased 

with CYGB over-expression. This would also help define where in the CHK1-p53 

signalling route (if at all) CYGB might be eliciting its effects, and whether a direct 

interaction with p53 activity is a possibility. Another important study for this would be 

to use immunoprecipitation and mass spectrometry to identify novel protein partners of 

CYGB. Intriguingly, we found in section 5.2.1 that CYGB was linked to altered migratory 

behaviour that was dependent on the extent of CYGB over-expression. Unfortunately, 

technical issues confounded efforts to reverse the observed phenotypes, so it is 

necessary to repeat the CYGB knockdown experiments to see if this can be achieved. This 

would strengthen the hypothesis that CYGB is able to affect migration in the cell model, 
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but also that its level of over-expression determines whether the response is positive or 

negative.  

Recent work in our laboratory revealed HSC-T6 cells cultured on collagen 1 lowered 

CYGB protein expression when FAK was inactivated, and also found the expression of 

ITGA2 (known to bind collagen 1 in the α2β1 complex) was increased in these cells. The 

microarray study presented in chapter 4 showed there was a marked down-regulation 

of ITGA2 with CYGB over-expression. Notably, in section 4.2.3, we showed the lowest 

over-expressing CYGB+ clone (LST32) up-regulated ITGA2 expression compared to NCE 

controls, whereas medium and high expressing CYGB+ clones showed down-regulated 

expression. This differential response to high and low CYGB over-expression was 

curiously mirrored with the different migratory responses (see section 5.2.1). It would 

be very interesting to look firstly at whether ITGA2 protein expression is different with 

increasing CYGB over-expression and further if there is different (and perhaps even 

titrated) inactivation of FAK signalling, including an assessment of whether ROS from 

the downstream mediator of FAK, Rac1GTPase, is reduced. This is especially important 

when considering directional cell migration involves higher ROS levels at the leading 

edge of cells. These proposed studies would deepen understanding of CYGB's 

mechanism of action in the migratory response. 

Other important experiments to consider would be to further investigate the reductions 

of superoxide and mitochondria MTT turnover associated with CYGB over-expression. 

This implied that CYGB might be involved in suppressing mitochondrial activity. More 

detailed subcellular localisation studies would be useful to see if the predominately 

cytoplasmic CYGB we observed in CYGB+ clones (see section 3.2.6) can relocate to the 
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mitochondria following cisplatin treatment. This hypothesis is currently the subject of 

investigation within our laboratory. Other methods to assess markers of mitochondrial 

activity would also be beneficial, including cellular ATP concentrations, oxygen 

consumption rates, and superoxide production by particular complexes within the ETC. 

The observation that CYGB-expressing cells alters the cell cycle distribution response to 

cisplatin is also worthy of further investigation, because it leaves the open question of 

whether CYGB can directly or indirectly elicit these changes. Follow-up experiments 

could look at CYGB expression at different stages of the cell cycle to see if it can be 

related to the ROS fluctuations that characterise different stages of the cell cycle. 

Additionally, redox-controlled cell cycle factors like CDC25 may also be good targets to 

explore in relation to CYGB's anti-oxidant properties to see if this is part of its effect on 

the cell cycle response to cisplatin. Combined with our other results that CYGB-

expressing cell have increased resistance to cisplatin-mediated cell death, it would be 

nice to confirm these observations in vivo, where the CYGB+ clones generated in this 

thesis are xenografted into mouse models and treated with cisplatin. The in vitro results 

presented in this thesis are currently being included within a grant application for this 

objective.  
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7.3 Final Conclusion 
We have successfully generated a new in vitro model that stably over-expresses human 

CYGB in oral squamous cell carcinoma cells as a model to investigate CYGB function. The 

data presented in this thesis supports previous evidence showing CYGB over-expression 

can afford protection against oxidative stress, and also shows for the first time that 

CYGB over-expression is associated with oral cancer cell protection against cisplatin 

cytotoxicity. We also revealed this protection may involve CYGB-dependent modulation 

of the p53 signalling network, because of increased induction of factors of the CHK1-

p53-p21 signalling cascade and greater regulation of p53-controlled transcripts in 

CYGB+ clones. The implications of this thesis' findings are that over-expression of CYGB 

might be partly the reason for cisplatin resistance exhibited by some head and neck 

tumours, since it is known that although most tumours silence CYGB expression, subsets 

of solid tumours have been reported to exhibit CYGB expression.  

In terms of meeting this thesis' overall objective to increase understanding of CYGB 

function, the results presented herein have provided additional new evidence for how 

CYGB may elicit its cytoprotective capabilities. They suggest over-expression of CYGB 

may enable cells to respond more rapidly and effectively to oxidative stressors, and  

further suggest that this may be achieved by reducing mitochondria function, depleting 

mitochondrial superoxide and potentially triggering a switch from p53-induced 

apoptosis to p53-induced DNA repair signalling. These new findings could have a 

considerable impact on understanding CYGB function and also demonstrate that CYGB 

may prove useful clinically in the future for the treatment of cisplatin-resistant tumours. 
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To conclude, we hypothesise that some cancer cells may re-activate CYGB expression to 

hijack and exploit its cytoprotective tumour suppressor properties to increase tolerance 

to the harsh environmental conditions of tumorigenesis, and those caused by clinical 

management. This may account for the apparent "bimodal" activity of CYGB in 

displaying both tumour suppressor and oncogene -like properties that have been 

reported in the existing literature, as well as why CYGB shows a context and cell type 

specificity in its behaviour. However, there is a need for the molecular mechanism of 

CYGB to be more fully understood before it could be considered as a clinical target, but 

the findings of this study have shown this use to be a strong possibility.  
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Appendix 1 – Secondary Antibody Staining Controls. 
Fixed cell cultures were immunostained using a FITC-conjugated secondary antibody (1:200) only 
(no primary antibody) and counterstained with the nuclear stain, Hoechst (1:8000).   Secondary-
only stained cultures were devoid of green fluorescence, suggesting the specificity of the 
antibody for the primary target. Representative confocal images are shown. Scale bar 50 µm. 
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Appendix 1 (continued).  
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Appendix 2 – SYBR Green Dissociation Curves. 
After each RTqPCR reaction, melt curve analysis was carried out to confirm the specificity of the SYBR green probe to the target being quantified. The 
presence of a single peak within sample curves is at the melting temperature of the amplicon and also shows the presence of primer dimer peaks shifted to 
the left of the sample peak within the no template (NTC) controls. All NTC samples gave a Ct value of 36 or more, whilst samples amplified at a maximum Ct 
of 30. 

  

NTC

Sample

NTC

Sample

NTC

Sample

Non-specific 
amplification 

here (Ct values 
above 36) NTC

Sample

 



227 
 

 

  

 

  

 

 

Appendix 2 (continued). 
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Appendix 2 (continued). 
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Appendix 3 – Transgenic clones used for experiments were confirmed to be 
Mycoplasma  sp. negative prior to cryopreservation. 
All clones were tested for the presence of the Mycoplasma through PCR. PCR products were 
separated by 2 % agarose gel electrophoresis and compared to a positive control containing 
the 270 bp amplicon region of the 16S rRNA gene that characterises Mycoplasma species. All 
clones were screened and none showed any contamination, so several cryostocks were 
made for each clone. 
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Appendix 4 – Sequencing CYGB cDNA Insert within the pCMV6-AC plasmid. 
The human CYGB cDNA sequence incorporated into the pCMV6-AC vector was verified by 
direct sequencing to ensure that the sequence being introduced was indeed wildtype. BLAST 
sequence alignment between the amplicon synthesised with the forward VP1.5 primer and 
the reference CYGB mRNA (NM_134268.4) is shown. There was an observed 97 % identity 
between the sequences. 
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(a)       (b) 

   
(c)      (d) 

   
 
Appendix 5 – Microarray Sample RNA Electropherograms. 
LST421 and LST223 RNA isolates were extracted and checked for integrity with the Agilent 
2100 Bioanalyser before being cyanine-dye labelled ready for hybridisation. The results here 
show the RNA extract concentrations, RNA integrity number (RIN) and 28S/18S ratios for 
each sample, along with their electropherograms that show the ribosomal RNA peaks (a – 
Ladder, b – LST421 rep 1, c – LST421 rep 2, d – LST421 rep 3, e – LST223 rep 1, f – LST223 rep 
2 and g – LST223 rep 3). The baselines in each sample electropherogram have no observable 
smaller peaks that would have suggested degraded RNA. All samples gave RINs above 8 and 
were therefore of high quality for hybridisation to the microarray chip. 
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Appendix 5 (continued). 
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Hybridisation Buffer 1 2 3 

  ①❷ ③❹ ⑤❻ 
Cy 3 labelled sample (µl) 9.2 6.13 4.81 
Cy 5 labelled sample (µl) 3.23 4.57 4.23 
10X blocking agent (µl) 5 5 5 
water (µl) 6.57 8.3 9.96 
25X fragmentation buffer 
(µl) 

1 1 1 

total 25 25 25 
 

Appendix 6 – Microarray Hybridisation Recipe. 
cRNA samples (500 ng) were added to a buffer mix as shown prior to hybridisation to the 

microarray. Samples were as follows: 1 – LST421 rep 1, 3 – LST421 rep 2, 5 – LST421 rep 3, 2 

– LST223 rep 1, 4 – LST223 rep 2 and 6 – LST223 rep 3. 
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Appendix 7 – Average fold changes of transcripts up-regulated in CYGB+ clones. 
Transcriptional targets that were considered as being significantly up-regulated if they increased by 2 fold or more in CYGB+ (LST421) clones in comparison to 

the NCE (LST223) background expression of these targets are shown. All fold changes were determined from expression across a biological triplicate set of 

samples analysed on the Agilent SurePrint G3 Human Gene Expression 8x 60K v1 Microarray.  

Symbol Gene Name Accession ID Fold change P value

HTRA1 HtrA serine peptidase 1 NM_002775 6.753 4.05E-10

MOXD1 monooxygenase, DBH-like 1 NM_015529 4.806 9.39E-08

MMP1 matrix metallopeptidase 1 (interstitial collagenase) NM_002421 4.695 1.44E-07

XLOC_008374 4.219 0.000194

CRCT1 cysteine-rich C-terminal 1 NM_019060 4.207 1.48E-06

FSTL3 follistatin-like 3 (secreted glycoprotein) NM_005860 3.921 7.62E-06

ELL2 elongation factor, RNA polymerase II, 2 NM_012081 3.876 1.65E-07

SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 NM_001085 3.73 6.01E-06

FAM89A family with sequence similarity 89, member A NM_198552 3.64 9.22E-07

SPP1 secreted phosphoprotein 1 NM_001040058 3.624 5.95E-06

FAM25A family with sequence similarity 25, member A NM_001146157 3.561 1.48E-06

BAIAP2L2 BAI1-associated protein 2-like 2 NM_025045 3.558 1.78E-06

CYP4F11 cytochrome P450, family 4, subfamily F, polypeptide 11 NM_021187 3.461 3.44E-05

CYP4F12 cytochrome P450, family 4, subfamily F, polypeptide 12 NM_023944 3.356 1.38E-06

XLOC_007249 3.317 2.82E-05

IL6 interleukin 6 (interferon, beta 2) NM_000600 3.185 5.55E-06

LOC728769 hypothetical LOC728769 XR_108586 3.167 4.87E-05

S1PR3 sphingosine-1-phosphate receptor 3 NM_005226 3.149 7.30E-06

XLOC_001856 3.052 7.38E-07

PRICKLE1 prickle homolog 1 (Drosophila) NM_153026 3.05 2.02E-07

REEP5 receptor accessory protein 5 NM_005669 3.025 8.73E-06

SPRR1B small proline-rich protein 1B NM_003125 3.006 4.35E-05

HES5 hairy and enhancer of split 5 (Drosophila) NM_001010926 3.005 9.39E-08

RDM1 RAD52 motif 1 NM_001034836 3.001 8.93E-06

SQSTM1 sequestosome 1 NM_003900 2.993 8.22E-06

GPRIN1 G protein regulated inducer of neurite outgrowth 1 NM_052899 2.959 4.17E-05

ADRBK2 adrenergic, beta, receptor kinase 2 NM_005160 2.944 6.69E-06

AKR1C3 aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid dehydrogenase, type II) NM_003739 2.933 4.45E-06

RPL28 ribosomal protein L28 NM_001136134 2.922 4.38E-07
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Appendix 7 (continued). 
 

Symbol Gene Name Accession ID Fold change P value

PLEKHO1 pleckstrin homology domain containing, family O member 1 NM_016274 2.919 2.49E-05

TRIM37 tripartite motif containing 37 NM_001005207 2.894 2.30E-05

FOLR3 folate receptor 3 (gamma) NM_000804 2.884 0.000468

TRIML2 tripartite motif family-like 2 NM_173553 2.878 0.000381

SCLY selenocysteine lyase NM_016510 2.869 5.32E-06

CAST calpastatin NM_001042440 2.844 7.80E-07

NDST2 N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 2 BC018681 2.832 0.000541

METRNL meteorin, glial cell differentiation regulator-like NM_001004431 2.81 2.51E-07

PRDX5 peroxiredoxin 5 NM_012094 2.78 1.20E-05

N4BP2L2 NEDD4 binding protein 2-like 2 NM_033111 2.713 5.98E-05

APBB3 amyloid beta (A4) precursor protein-binding, family B, member 3 NM_006051 2.711 1.43E-06

ADSSL1 adenylosuccinate synthase like 1 NM_199165 2.7 2.38E-05

SNHG9 small nucleolar RNA host gene 9 (non-protein coding) NR_003142 2.687 4.49E-09

XLOC_001775 2.675 2.54E-06

TCOF1 Treacher Collins-Franceschetti syndrome 1 NM_001008657 2.646 1.18E-06

HMOX1 heme oxygenase (decycling) 1 NM_002133 2.597 1.36E-05

CDC23 cell division cycle 23 homolog (S. cerevisiae) BC010944 2.593 2.94E-05

UIMC1 ubiquitin interaction motif containing 1 NM_016290 2.584 9.81E-06

PITX1 paired-like homeodomain 1 NM_002653 2.584 0.000981

XRCC4 X-ray repair complementing defective repair in Chinese hamster cells 4 NM_022550 2.58 8.01E-05

LIF leukemia inhibitory factor (cholinergic differentiation factor) NM_002309 2.563 0.000254

BEX2 brain expressed X-linked 2 NM_001168399 2.558 3.96E-05

SEL1L3 sel-1 suppressor of lin-12-like 3 (C. elegans) NM_015187 2.556 1.55E-05

ZMYND15 zinc finger, MYND-type containing 15 NM_032265 2.525 8.38E-06

FAM172A family with sequence similarity 172, member A NM_032042 2.504 0.001

DPM3 dolichyl-phosphate mannosyltransferase polypeptide 3 NM_018973 2.504 8.70E-07

CXCL2 chemokine (C-X-C motif) ligand 2 NM_002089 2.503 0.000692

C9orf16 chromosome 9 open reading frame 16 NM_024112 2.502 0.00126

CHAC1 ChaC, cation transport regulator homolog 1 (E. coli) NM_024111 2.494 6.83E-07
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Appendix 7 (continued). 
 

Symbol Gene Name Accession ID Fold change P value

LHFPL2 lipoma HMGIC fusion partner-like 2 NM_005779 2.488 0.000655

LCN2 lipocalin 2 NM_005564 2.485 0.00264

SYTL3 synaptotagmin-like 3 NM_001009991 2.482 0.000119

CCDC80 coiled-coil domain containing 80 NM_199511 2.475 9.20E-06

C2orf89 chromosome 2 open reading frame 89 NM_001080824 2.47 1.62E-07

CSF2 colony stimulating factor 2 (granulocyte-macrophage) NM_000758 2.462 0.0204

ANKHD1-EIF4EBP3 ANKHD1-EIF4EBP3 readthrough NM_020690 2.445 0.000205

CYB5R4 cytochrome b5 reductase 4 NM_016230 2.445 0.000192

AOX1 aldehyde oxidase 1 NM_001159 2.444 9.53E-06

GALNT14 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 14 (GalNAc-T14) NM_024572 2.44 9.22E-06

JMY junction mediating and regulatory protein, p53 cofactor NM_152405 2.418 0.000382

LOC285178 hypothetical protein LOC285178 AK091571 2.416 1.48E-05

GAS6 growth arrest-specific 6 NM_000820 2.413 0.000301

C11orf70 chromosome 11 open reading frame 70 NM_032930 2.402 1.69E-05

MLXIP MLX interacting protein NM_014938 2.387 7.71E-05

CYP27B1 cytochrome P450, family 27, subfamily B, polypeptide 1 NM_000785 2.385 0.00243

TXNRD1 thioredoxin reductase 1 NM_003330 2.385 0.000163

GDF15 growth differentiation factor 15 NM_004864 2.384 0.00049

ATG12 ATG12 autophagy related 12 homolog (S. cerevisiae) NM_004707 2.38 0.000267

FLJ35776 hypothetical LOC649446 NR_024101 2.375 0.000792

HIGD2A HIG1 hypoxia inducible domain family, member 2A NM_138820 2.374 0.000638

FER fer (fps/fes related) tyrosine kinase NM_005246 2.372 8.96E-05

PXDNL peroxidasin homolog (Drosophila)-like NM_144651 2.37 6.75E-05

C9orf130 chromosome 9 open reading frame 130 NR_023389 2.37 0.000112

GRB14 growth factor receptor-bound protein 14 NM_004490 2.365 0.000653

COX7C cytochrome c oxidase subunit VIIc NM_001867 2.359 0.000244

ABCC3 ATP-binding cassette, sub-family C (CFTR/MRP), member 3 NM_001144070 2.356 6.54E-07

AOX1 aldehyde oxidase 1 NM_001159 2.351 0.00041

CCDC99 coiled-coil domain containing 99 NM_017785 2.351 0.00112
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Symbol Gene Name Accession ID Fold change P value

FLNC filamin C, gamma NM_001458 2.351 0.000151

KRT80 keratin 80 NM_182507 2.344 0.00048

NADK NAD kinase NM_023018 2.343 1.75E-05

YAF2 YY1 associated factor 2 NM_001190979 2.337 5.54E-07

PTPRM protein tyrosine phosphatase, receptor type, M NM_002845 2.332 3.33E-06

GDA guanine deaminase NM_004293 2.331 0.00184

NCRNA00219 non-protein coding RNA 219 NR_015370 2.33 4.08E-05

C11orf70 chromosome 11 open reading frame 70 NM_001195005 2.326 1.98E-06

SLMO1 slowmo homolog 1 (Drosophila) NM_006553 2.323 6.75E-06

C1orf133 chromosome 1 open reading frame 133 NR_024337 2.322 0.000197

DHFR dihydrofolate reductase NM_000791 2.315 0.000258

LMO4 LIM domain only 4 NM_006769 2.315 0.000356

RAB31 RAB31, member RAS oncogene family NM_006868 2.311 0.000909

IMPA2 inositol(myo)-1(or 4)-monophosphatase 2 NM_014214 2.31 0.000231

DOM3Z dom-3 homolog Z (C. elegans) NM_005510 2.307 0.000892

HPS1 Hermansky-Pudlak syndrome 1 NM_000195 2.304 1.43E-06

GADD45G growth arrest and DNA-damage-inducible, gamma NM_006705 2.304 0.00254

ZMAT2 zinc finger, matrin-type 2 NM_144723 2.294 0.000721

TMEM222 transmembrane protein 222 NM_032125 2.294 8.10E-06

PHGDH phosphoglycerate dehydrogenase NM_006623 2.288 4.23E-06

SLC35E2 solute carrier family 35, member E2 NM_182838 2.284 1.04E-05

NQO1 NAD(P)H dehydrogenase, quinone 1 NM_000903 2.283 8.53E-07

S100A9 S100 calcium binding protein A9 NM_002965 2.268 0.00481

MYO10 myosin X NM_012334 2.268 6.31E-05

ANGPTL4 angiopoietin-like 4 NM_139314 2.262 0.00784

MSH3 mutS homolog 3 (E. coli) NM_002439 2.256 0.000918

SNX24 sorting nexin 24 NM_014035 2.256 0.00109

CARD11 caspase recruitment domain family, member 11 NM_032415 2.242 2.44E-05

AP4M1 adaptor-related protein complex 4, mu 1 subunit NM_004722 2.241 2.27E-05

 



238 
 

 
Appendix 7 (continued). 
 

Symbol Gene Name Accession ID Fold change P value

TCOF1 Treacher Collins-Franceschetti syndrome 1 NM_001008657 2.241 0.00334

LOC730183 hypothetical LOC730183 XR_109284 2.24 0.00162

CYB5RL cytochrome b5 reductase-like BC071735 2.236 7.57E-05

PPP1R14C protein phosphatase 1, regulatory (inhibitor) subunit 14C NM_030949 2.228 1.18E-05

GAMT guanidinoacetate N-methyltransferase NM_138924 2.222 8.34E-05

CES1 carboxylesterase 1 NM_001025195 2.219 0.00257

UPP1 uridine phosphorylase 1 NM_181597 2.217 0.000124

LRSAM1 leucine rich repeat and sterile alpha motif containing 1 NM_138361 2.215 0.0012

FEM1C fem-1 homolog c (C. elegans) NM_020177 2.211 8.09E-06

TMCC1 transmembrane and coiled-coil domain family 1 NM_001017395 2.208 0.00141

C17orf37 chromosome 17 open reading frame 37 NM_032339 2.201 2.47E-06

TGFB1 transforming growth factor, beta 1 NM_000660 2.201 0.00349

EML1 echinoderm microtubule associated protein like 1 NM_001008707 2.199 3.36E-05

AGXT2L2 alanine-glyoxylate aminotransferase 2-like 2 NM_153373 2.199 4.06E-05

TAGLN3 transgelin 3 NM_013259 2.198 0.00177

CFB complement factor B NM_001710 2.194 0.00963

CLEC11A C-type lectin domain family 11, member A NM_002975 2.19 1.47E-05

C19orf28 chromosome 19 open reading frame 28 NM_001042680 2.188 1.49E-05

SPRR2C small proline-rich protein 2C (pseudogene) NR_003062 2.187 0.00256

SYNPO synaptopodin 2.187 0.00379

TRMU tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase NM_018006 2.187 0.000124

MAML1 mastermind-like 1 (Drosophila) NM_014757 2.184 0.00192

KLK5 kallikrein-related peptidase 5 NM_012427 2.181 0.0133

SGSM3 small G protein signaling modulator 3 NM_015705 2.181 0.000606

C9orf9 chromosome 9 open reading frame 9 NM_018956 2.179 6.56E-05

KIAA0114 KIAA0114 NR_024031 2.179 1.07E-08

NEURL1B neuralized homolog 1B (Drosophila) NM_001142651 2.179 0.000544

SMAD7 SMAD family member 7 NM_005904 2.177 0.000301

GDF11 growth differentiation factor 11 NM_005811 2.174 1.18E-06
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Symbol Gene Name Accession ID Fold change P value

PIGL phosphatidylinositol glycan anchor biosynthesis, class L NM_004278 2.173 0.00147

RIOK2 RIO kinase 2 (yeast) NM_018343 2.168 0.0054

CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) NM_058197 2.168 0.000617

MFSD3 major facilitator superfamily domain containing 3 NM_138431 2.165 0.000137

TMEM161B transmembrane protein 161B NM_153354 2.155 0.00415

NSA2 NSA2 ribosome biogenesis homolog (S. cerevisiae) NM_014886 2.154 0.000138

REEP2 receptor accessory protein 2 NM_016606 2.152 3.68E-05

PITX1 paired-like homeodomain 1 NM_002653 2.15 0.00189

SPOCK1 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1 NM_004598 2.143 0.000199

HOMER3 homer homolog 3 (Drosophila) NM_001145724 2.141 1.14E-05

NADK NAD kinase NM_023018 2.14 1.20E-05

FAM83A family with sequence similarity 83, member A NM_032899 2.139 0.00152

FAM169A family with sequence similarity 169, member A NM_015566 2.138 0.00019

SCAF1 SR-related CTD-associated factor 1 NM_021228 2.13 0.0135

WWC1 WW and C2 domain containing 1 NM_015238 2.128 0.00032

SLC36A1 solute carrier family 36 (proton/amino acid symporter), member 1 NM_078483 2.125 0.000594

ACRC acidic repeat containing NM_052957 2.122 0.00061

ARSI arylsulfatase family, member I NM_001012301 2.119 8.70E-07

TAF8 TAF8 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 43kDa BC033728 2.118 0.000301

AP3B1 adaptor-related protein complex 3, beta 1 subunit NM_003664 2.116 3.69E-07

GNAZ guanine nucleotide binding protein (G protein), alpha z polypeptide NM_002073 2.115 0.00217

CCDC99 coiled-coil domain containing 99 NM_017785 2.115 0.00103

CHD1 chromodomain helicase DNA binding protein 1 NM_001270 2.114 0.00452

BCR breakpoint cluster region NM_004327 2.114 8.68E-05

SLC35E2B solute carrier family 35, member E2B NM_001110781 2.114 0.000589

BCR breakpoint cluster region NM_004327 2.11 5.61E-07

CLU clusterin NM_203339 2.108 3.63E-06

ZNF580 zinc finger protein 580 NM_016202 2.105 0.00439

CDC42EP1 CDC42 effector protein (Rho GTPase binding) 1 NM_152243 2.104 4.56E-07
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Symbol Gene Name Accession ID Fold change P value

RAB11FIP4 RAB11 family interacting protein 4 (class II) NM_032932 2.102 0.000747

RAMP1 receptor (G protein-coupled) activity modifying protein 1 NM_005855 2.1 8.70E-07

C5orf45 chromosome 5 open reading frame 45 NM_016175 2.097 1.44E-07

SPIRE1 spire homolog 1 (Drosophila) NM_001128626 2.096 4.03E-05

XLOC_001775 2.092 2.62E-05

TUBA3C tubulin, alpha 3c NM_006001 2.087 0.0012

GRK6 G protein-coupled receptor kinase 6 NM_001004105 2.086 0.00751

STK10 serine/threonine kinase 10 NM_005990 2.084 3.92E-06

ASNS asparagine synthetase (glutamine-hydrolyzing) NM_001673 2.083 0.000487

CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) NM_001511 2.08 0.00565

ISCA1 iron-sulfur cluster assembly 1 homolog (S. cerevisiae) NM_030940 2.078 0.000196

ZNF76 zinc finger protein 76 NM_003427 2.076 0.000286

MAP4K4 mitogen-activated protein kinase kinase kinase kinase 4 NM_145686 2.072 0.00435

LNPEP leucyl/cystinyl aminopeptidase AF178574 2.069 0.000173

CHPF2 chondroitin polymerizing factor 2 NM_019015 2.068 0.00422

SLC3A2 solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2 NM_001012662 2.068 0.00072

TMEM99 transmembrane protein 99 NM_001195386 2.067 0.00173

RARG retinoic acid receptor, gamma NM_000966 2.064 0.00335

IP6K1 inositol hexakisphosphate kinase 1 NM_001242829 2.064 0.00607

RASIP1 Ras interacting protein 1 NM_017805 2.061 0.00166

EGR1 early growth response 1 NM_001964 2.06 5.39E-05

LNPEP leucyl/cystinyl aminopeptidase NM_005575 2.059 0.000357

MLST8 MTOR associated protein, LST8 homolog (S. cerevisiae) NM_022372 2.057 9.86E-05

HYI hydroxypyruvate isomerase (putative) NM_031207 2.055 0.000426

TBC1D1 TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 NM_015173 2.055 0.0101

FAM110C family with sequence similarity 110, member C NM_001077710 2.054 2.09E-05

DDIT3 DNA-damage-inducible transcript 3 NM_004083 2.051 0.000511

MGC16121 hypothetical protein MGC16121 NR_024607 2.051 0.000947

CDC42SE2 CDC42 small effector 2 NM_020240 2.047 0.0013
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Symbol Gene Name Accession ID Fold change P value

ZFPM1 zinc finger protein, multitype 1 NM_153813 2.047 0.00276

ANKRD57 ankyrin repeat domain 57 NM_023016 2.046 0.00359

THOC3 THO complex 3 NM_032361 2.044 5.94E-06

NAV3 neuron navigator 3 NM_014903 2.043 0.00242

ZNF513 zinc finger protein 513 NM_144631 2.043 0.000288

AGGF1 angiogenic factor with G patch and FHA domains 1 NM_018046 2.043 0.00303

CAB39L calcium binding protein 39-like NM_030925 2.039 8.16E-05

CCDC92 coiled-coil domain containing 92 NM_025140 2.036 2.94E-05

SPRY4 sprouty homolog 4 (Drosophila) NM_030964 2.036 0.000847

FAM120AOS family with sequence similarity 120A opposite strand CR618537 2.036 1.49E-05

MAF1 MAF1 homolog (S. cerevisiae) NM_032272 2.035 0.000234

C3orf78 chromosome 3 open reading frame 78 NM_001124767 2.03 0.00107

SPIRE1 spire homolog 1 (Drosophila) NM_001128626 2.028 0.00411

IDS iduronate 2-sulfatase NM_006123 2.026 0.00297

WDR41 WD repeat domain 41 NM_018268 2.026 0.00127

TLCD1 TLC domain containing 1 NM_138463 2.025 5.90E-06

CDK11B cyclin-dependent kinase 11B NM_033489 2.024 0.00421

BSG basigin (Ok blood group) NM_001728 2.023 0.00478

FLJ43663 hypothetical LOC378805 NR_015431 2.022 0.00405

FOXP4 forkhead box P4 NM_001012426 2.022 0.0106

RALBP1 ralA binding protein 1 NM_006788 2.02 8.10E-06

UPP1 uridine phosphorylase 1 BC047030 2.018 1.09E-06

SEC31B SEC31 homolog B (S. cerevisiae) NM_015490 2.013 0.00209

JUNB jun B proto-oncogene NM_002229 2.012 0.000677

IQSEC2 IQ motif and Sec7 domain 2 NR_024449 2.012 0.00321

DHRS11 dehydrogenase/reductase (SDR family) member 11 NM_024308 2.002 0.000943

C1orf213 chromosome 1 open reading frame 213 NR_033690 2.002 0.00565

CTNNA1 catenin (cadherin-associated protein), alpha 1, 102kDa NM_001903 1.998 0.00576

SLC25A46 solute carrier family 25, member 46 NM_138773 1.997 7.07E-07
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Symbol Gene Name Accession ID Fold change P value

POC5 POC5 centriolar protein homolog (Chlamydomonas) NM_152408 1.991 0.000519

HSPA6 heat shock 70kDa protein 6 (HSP70B') NM_002155 1.989 0.00702

B3GAT3 beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I) NM_012200 1.985 0.000161

LOC375190 hypothetical protein LOC375190 NM_001145710 1.984 0.0231

IFI27L1 interferon, alpha-inducible protein 27-like 1 NM_206949 1.983 5.50E-06

ASF1B ASF1 anti-silencing function 1 homolog B (S. cerevisiae) NM_018154 1.981 0.00191

SLC35F3 solute carrier family 35, member F3 NM_173508 1.981 0.000417

CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) NM_001511 1.981 0.0262

RUFY1 RUN and FYVE domain containing 1 NM_025158 1.981 8.53E-07

AKAP12 A kinase (PRKA) anchor protein 12 NM_005100 1.981 0.0085

CC2D1B coiled-coil and C2 domain containing 1B NM_032449 1.981 0.0037

NDUFV2 NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa NM_021074 1.98 1.49E-05

PPP4R1 protein phosphatase 4, regulatory subunit 1 NM_001042388 1.978 0.00047

VWCE von Willebrand factor C and EGF domains NM_152718 1.978 0.00272

DBN1 drebrin 1 NM_080881 1.976 0.000133

GLS glutaminase NM_014905 1.974 0.000318

RNF207 ring finger protein 207 NM_207396 1.972 0.02

SMAP1 small ArfGAP 1 NM_001044305 1.971 0.00535

LMO4 LIM domain only 4 NM_006769 1.969 0.00112

GRK6 G protein-coupled receptor kinase 6 NM_002082 1.966 3.93E-05

NDUFB1 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1, 7kDa NM_004545 1.962 4.59E-05

ADAM12 ADAM metallopeptidase domain 12 NM_003474 1.962 0.00176

SLC35E2 solute carrier family 35, member E2 NM_182838 1.958 0.000278

DUS1L dihydrouridine synthase 1-like (S. cerevisiae) NM_022156 1.958 0.000129

TP53I3 tumor protein p53 inducible protein 3 NM_004881 1.953 0.00013

HYI hydroxypyruvate isomerase (putative) NM_001190880 1.951 8.94E-06

TUBA4A tubulin, alpha 4a NM_006000 1.951 0.00181

HSPB8 heat shock 22kDa protein 8 NM_014365 1.949 0.00036

RUFY1 RUN and FYVE domain containing 1 NM_025158 1.947 3.81E-06
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C1R complement component 1, r subcomponent NM_001733 1.947 4.41E-05

RNASEH2C ribonuclease H2, subunit C NM_032193 1.945 0.00141

C9orf102 chromosome 9 open reading frame 102 AK095025 1.942 0.000136

MYL5 myosin, light chain 5, regulatory NM_002477 1.938 9.25E-05

PMS2L2 postmeiotic segregation increased 2-like 2 pseudogene BC010535 1.936 0.000184

LOC286161 hypothetical protein LOC286161 AK091672 1.936 0.000288

TTC15 tetratricopeptide repeat domain 15 NM_016030 1.934 0.000152

AFP alpha-fetoprotein NM_001134 1.933 0.000987

GADD45A growth arrest and DNA-damage-inducible, alpha NM_001924 1.932 9.86E-05

KIAA0141 KIAA0141 NM_014773 1.929 7.41E-05

MAT2B methionine adenosyltransferase II, beta NM_182796 1.929 0.000586

PDLIM7 PDZ and LIM domain 7 (enigma) NM_005451 1.927 0.0141

ABHD11 abhydrolase domain containing 11 NM_001145364 1.926 2.97E-06

KRT16P2 keratin 16 pseudogene 2 NR_029392 1.926 0.000296

NEURL neuralized homolog (Drosophila) NM_004210 1.926 0.00719

FGFRL1 fibroblast growth factor receptor-like 1 NM_001004356 1.922 0.00332

MPPE1 metallophosphoesterase 1 NM_023075 1.922 0.00549

ABHD14B abhydrolase domain containing 14B NM_032750 1.919 0.0211

TTC1 tetratricopeptide repeat domain 1 NM_003314 1.915 0.00051

RAB26 RAB26, member RAS oncogene family NM_014353 1.914 0.0119

PDLIM7 PDZ and LIM domain 7 (enigma) NM_005451 1.912 0.0373

LFNG LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase NM_001040168 1.912 0.0119

CNFN cornifelin NM_032488 1.912 0.00115

ZBTB7B zinc finger and BTB domain containing 7B NM_015872 1.911 0.00042

ZBED1 zinc finger, BED-type containing 1 NM_001171135 1.911 0.000577

HSD17B1 hydroxysteroid (17-beta) dehydrogenase 1 NM_000413 1.909 1.12E-06

LOC100128737 hypothetical LOC100128737 XR_108797 1.909 2.60E-06

LOC100131607 hypothetical LOC100131607 XR_108637 1.907 0.00791

PYROXD1 pyridine nucleotide-disulphide oxidoreductase domain 1 NM_024854 1.907 0.000361

MPPE1 metallophosphoesterase 1 NM_023075 1.906 0.00227

XLOC_008115 1.903 0.00259

TNKS1BP1 tankyrase 1 binding protein 1, 182kDa NM_033396 1.902 0.0131

SOCS2 suppressor of cytokine signaling 2 NM_003877 1.901 0.00274
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Appendix 8 – Average fold changes of transcripts down-regulated in CYGB+ clones. 
Transcriptional targets that were considered as being significantly down-regulated if they decreased by 2 fold or more (i.e. 0.5 fold down-regulated or more) 

in CYGB+ (LST421) clones in comparison to the NCE (LST223) background expression of these targets are shown. All fold changes were determined from 

expression across a biological triplicate set of samples analysed on the Agilent SurePrint G3 Human Gene Expression 8x 60K v1 Microarray.  

 

Symbol Gene Name Accession ID Fold change P value

PRKCE protein kinase C, epsilon NM_005400 0.549 0.00054

KHNYN KH and NYN domain containing NM_015299 0.549 0.000148

GPR180 G protein-coupled receptor 180 NM_180989 0.549 0.00181

SPEF2 sperm flagellar 2 NM_144722 0.549 0.00262

XLOC_014209 0.548 0.00359

NEK9 NIMA (never in mitosis gene a)- related kinase 9 NM_033116 0.548 0.000232

MEX3D mex-3 homolog D (C. elegans) NM_001174118 0.548 0.00693

LSM14B LSM14B, SCD6 homolog B (S. cerevisiae) NM_144703 0.547 0.000517

SLC39A8 solute carrier family 39 (zinc transporter), member 8 NM_022154 0.547 0.000102

TRAF6 TNF receptor-associated factor 6 NM_145803 0.547 4.43E-05

FRMD6 FERM domain containing 6 NM_001042481 0.547 0.000937

ATP11C ATPase, class VI, type 11C NM_173694 0.547 0.000951

LOC729080 glycine cleavage system H pseudogene NR_033244 0.547 0.00184

SON SON DNA binding protein NM_032195 0.546 7.96E-06

AVP arginine vasopressin NM_000490 0.545 0.00387

SH2D2A SH2 domain containing 2A NM_003975 0.545 0.00161

TMEM30B transmembrane protein 30B NM_001017970 0.545 0.00298

TNFRSF14 tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry mediator) NM_003820 0.544 0.00449

CPVL carboxypeptidase, vitellogenic-like NM_019029 0.544 0.00449

SLC37A1 solute carrier family 37 (glycerol-3-phosphate transporter), member 1 NM_018964 0.544 3.63E-06

HTR7P1 5-hydroxytryptamine (serotonin) receptor 7 pseudogene 1 NR_002774 0.544 0.00367

C14orf118 chromosome 14 open reading frame 118 NM_017972 0.544 2.73E-05

MYL9 myosin, light chain 9, regulatory NM_181526 0.543 0.00134

CMTM8 CKLF-like MARVEL transmembrane domain containing 8 NM_178868 0.543 9.49E-06

GBP1 guanylate binding protein 1, interferon-inducible NM_002053 0.542 0.00293

ZNF329 zinc finger protein 329 AK090893 0.542 0.00648

STAT2 signal transducer and activator of transcription 2, 113kDa NM_005419 0.541 0.00148

JKAMP JNK1/MAPK8-associated membrane protein NM_016475 0.54 6.23E-05

USP16 ubiquitin specific peptidase 16 NM_001032410 0.54 0.0183

SRD5A1 steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1) NM_001047 0.54 0.00284
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Symbol Gene Name Accession ID Fold change P value

CSRP2BP CSRP2 binding protein NM_020536 0.54 0.00623

PROCR protein C receptor, endothelial NM_006404 0.54 0.00228

USP48 ubiquitin specific peptidase 48 NM_001032730 0.54 0.00572

ZNF217 zinc finger protein 217 NM_006526 0.539 0.00896

FZD4 frizzled family receptor 4 NM_012193 0.538 0.00927

CNTRL centriolin NM_007018 0.538 0.00404

HIPK2 homeodomain interacting protein kinase 2 NM_022740 0.538 0.00105

MAR-4 membrane-associated ring finger (C3HC4) 4 NM_020814 0.537 0.0058

C20orf12 chromosome 20 open reading frame 12 NM_001099407 0.537 0.00173

PEX3 peroxisomal biogenesis factor 3 NM_003630 0.537 0.00425

ZSCAN2 zinc finger and SCAN domain containing 2 NM_181877 0.537 0.02

TBC1D19 TBC1 domain family, member 19 NM_018317 0.536 0.0021

ESRP1 epithelial splicing regulatory protein 1 NM_017697 0.536 8.10E-06

CHFR checkpoint with forkhead and ring finger domains NM_018223 0.536 0.0029

E2F8 E2F transcription factor 8 NM_024680 0.536 0.023

RAB2B RAB2B, member RAS oncogene family NM_032846 0.536 0.00856

SYTL4 synaptotagmin-like 4 NM_080737 0.536 0.000677

PIGU phosphatidylinositol glycan anchor biosynthesis, class U NM_080476 0.536 2.38E-05

VAPB VAMP (vesicle-associated membrane protein)-associated protein B and C NM_004738 0.535 0.000233

EPSTI1 epithelial stromal interaction 1 (breast) NM_033255 0.534 0.000539

CALML4 calmodulin-like 4 NM_033429 0.534 0.000575

SLC35A3 solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) transporter), member A3 NM_012243 0.534 0.0198

ANGEL1 angel homolog 1 (Drosophila) NM_015305 0.534 0.0252

SEMA6C sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6C NM_001178061 0.534 0.00504

CPNE1 copine I NM_003915 0.534 1.91E-05

C1orf93 chromosome 1 open reading frame 93 NM_001195736 0.534 3.59E-05

CWF19L2 CWF19-like 2, cell cycle control (S. pombe) NM_152434 0.533 0.00124

ZNF512B zinc finger protein 512B NM_020713 0.533 0.00089

ZNF138 zinc finger protein 138 NM_006524 0.533 0.0173
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Symbol Gene Name Accession ID Fold change P value

CHD8 chromodomain helicase DNA binding protein 8 NM_020920 0.533 1.46E-06

PRNP prion protein NM_000311 0.531 0.00031

TSPAN4 tetraspanin 4 NM_001025237 0.531 0.000118

CD109 CD109 molecule NM_133493 0.531 0.000139

LRRC56 leucine rich repeat containing 56 NM_198075 0.531 0.000291

CBR3 carbonyl reductase 3 NM_001236 0.531 0.000894

FAR1 fatty acyl CoA reductase 1 NM_032228 0.531 0.00263

FAM92A3 family with sequence similarity 92, member A3 NR_003612 0.531 0.000453

EMP1 epithelial membrane protein 1 NM_001423 0.53 0.000952

SPOCD1 SPOC domain containing 1 NM_144569 0.529 0.000603

SLCO4A1 solute carrier organic anion transporter family, member 4A1 NM_016354 0.529 0.000433

MCTP2 multiple C2 domains, transmembrane 2 NM_018349 0.529 0.00124

LOC100131096 hypothetical LOC100131096 NR_040071 0.529 0.000269

PRSS23 protease, serine, 23 NM_007173 0.529 0.00428

FMNL3 formin-like 3 NM_175736 0.529 0.000591

KLF2 Kruppel-like factor 2 (lung) NM_016270 0.528 0.000235

ESCO2 establishment of cohesion 1 homolog 2 (S. cerevisiae) NM_001017420 0.528 0.00445

MAP1B microtubule-associated protein 1B NM_005909 0.528 0.00153

PLEKHF2 pleckstrin homology domain containing, family F (with FYVE domain) member 2 NM_024613 0.527 0.00061

ACSS2 acyl-CoA synthetase short-chain family member 2 NM_018677 0.527 0.000373

MIS18BP1 MIS18 binding protein 1 NM_018353 0.527 4.91E-05

NKX3-1 NK3 homeobox 1 NM_006167 0.527 0.000129

MRPL39 mitochondrial ribosomal protein L39 NM_017446 0.526 6.57E-05

DSTNP2 destrin (actin depolymerizing factor) pseudogene 2 NR_033796 0.526 0.00201

THUMPD1 THUMP domain containing 1 NM_017736 0.525 0.000522

IFNAR2 interferon (alpha, beta and omega) receptor 2 NM_000874 0.525 8.93E-05

APCDD1L adenomatosis polyposis coli down-regulated 1-like NM_153360 0.524 0.00119

CSTB cystatin B (stefin B) NM_000100 0.523 3.92E-06

SNN stannin NM_003498 0.523 0.000291
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AGAP3 ArfGAP with GTPase domain, ankyrin repeat and PH domain 3 NM_001042535 0.523 0.00172

FLJ90757 hypothetical LOC440465 NR_026857 0.523 0.000295

BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like NM_004331 0.523 1.56E-05

AMPD3 adenosine monophosphate deaminase 3 NM_001025390 0.522 0.00356

DCAF11 DDB1 and CUL4 associated factor 11 NM_025230 0.521 0.00408

LACTB2 lactamase, beta 2 NM_016027 0.52 0.000334

LGALS8 lectin, galactoside-binding, soluble, 8 NM_006499 0.52 0.00321

BRWD1 bromodomain and WD repeat domain containing 1 NM_001007246 0.52 0.000407

TMEM41B transmembrane protein 41B NR_028491 0.52 0.00712

IFNGR2 interferon gamma receptor 2 (interferon gamma transducer 1) NM_005534 0.519 0.000117

PHLDA1 pleckstrin homology-like domain, family A, member 1 NM_007350 0.519 0.00773

LOC439949 hypothetical LOC439949 NR_036502 0.519 7.83E-05

FAM179B family with sequence similarity 179, member B NM_015091 0.518 0.00505

LOC647979 hypothetical LOC647979 NR_027451 0.518 0.000205

HOMEZ homeobox and leucine zipper encoding NM_020834 0.517 0.00294

DCBLD2 discoidin, CUB and LCCL domain containing 2 NM_080927 0.516 0.00109

DEPDC7 DEP domain containing 7 NM_139160 0.515 0.0172

CEP250 centrosomal protein 250kDa NM_007186 0.515 4.08E-05

SRSF1 serine/arginine-rich splicing factor 1 NM_001078166 0.515 0.000247

HMGB3P1 high mobility group box 3 pseudogene 1 NR_002165 0.514 0.000247

NAV1 neuron navigator 1 NM_020443 0.514 4.23E-06

HNRNPA3 heterogeneous nuclear ribonucleoprotein A3 NM_194247 0.514 0.00277

DENND2A DENN/MADD domain containing 2A NM_015689 0.513 0.000139

TFAM transcription factor A, mitochondrial NM_003201 0.513 0.00946

GANC glucosidase, alpha; neutral C NM_198141 0.513 1.70E-07

HOXA9 homeobox A9 NM_152739 0.513 0.0264

DSN1 DSN1, MIND kinetochore complex component, homolog (S. cerevisiae) NM_024918 0.512 0.00275

STEAP2 six transmembrane epithelial antigen of the prostate 2 NM_152999 0.512 0.000533

BCAR3 breast cancer anti-estrogen resistance 3 NM_003567 0.512 2.63E-05
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C14orf128 chromosome 14 open reading frame 128 NR_027263 0.512 2.28E-05

UGT1A6 UDP glucuronosyltransferase 1 family, polypeptide A6 NM_001072 0.511 0.0021

CASD1 CAS1 domain containing 1 NM_022900 0.511 0.000119

EIF4G2 eukaryotic translation initiation factor 4 gamma, 2 NM_001172705 0.511 1.45E-05

TCF7L1 transcription factor 7-like 1 (T-cell specific, HMG-box) NM_031283 0.51 1.77E-05

FER1L4 fer-1-like 4 (C. elegans) pseudogene NR_024377 0.51 0.00968

ZNF626 zinc finger protein 626 NM_145297 0.509 0.00994

CD82 CD82 molecule NM_002231 0.508 4.87E-05

CDH3 cadherin 3, type 1, P-cadherin (placental) NM_001793 0.508 9.34E-05

BCAS4 breast carcinoma amplified sequence 4 NM_001010974 0.508 7.58E-06

CAV3 caveolin 3 NM_001234 0.508 0.00819

PDK1 pyruvate dehydrogenase kinase, isozyme 1 NM_002610 0.508 0.00109

C1orf229 chromosome 1 open reading frame 229 NM_207401 0.507 0.00653

MLH3 mutL homolog 3 (E. coli) NM_001040108 0.507 0.00061

IRS1 insulin receptor substrate 1 NM_005544 0.506 0.00302

B7H6 B7 homolog 6 NM_001202439 0.506 0.0101

RRBP1 ribosome binding protein 1 homolog 180kDa (dog) NM_001042576 0.505 0.0346

SNX5 sorting nexin 5 NM_014426 0.505 0.00305

C14orf126 chromosome 14 open reading frame 126 NM_080664 0.505 0.00011

HIF1A hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) NM_181054 0.505 0.000796

TGM2 transglutaminase 2 (C polypeptide, protein-glutamine-gamma-glutamyltransferase) NM_198951 0.505 0.00013

GABPA GA binding protein transcription factor, alpha subunit 60kDa NM_002040 0.505 0.000833

GART phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetaseNM_000819 0.504 4.59E-05

PRMT5 protein arginine methyltransferase 5 NM_001039619 0.504 0.00242

ARVCF armadillo repeat gene deleted in velocardiofacial syndrome NM_001670 0.504 0.00295

RRBP1 ribosome binding protein 1 homolog 180kDa (dog) BC009700 0.504 1.13E-05

PRIC285 peroxisomal proliferator-activated receptor A interacting complex 285 NM_001037335 0.504 5.37E-06

LOC647979 hypothetical LOC647979 NR_027451 0.503 0.0068

PHYH phytanoyl-CoA 2-hydroxylase NM_001037537 0.502 0.000249
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SNX16 sorting nexin 16 NM_022133 0.502 0.0174

LOC647070 hypothetical LOC647070 AK001442 0.501 0.0269

SON SON DNA binding protein NM_032195 0.5 2.46E-05

PORCN porcupine homolog (Drosophila) NM_203473 0.499 7.18E-05

GPR153 G protein-coupled receptor 153 NM_207370 0.499 0.00192

FLRT3 fibronectin leucine rich transmembrane protein 3 NM_198391 0.499 0.00294

VWA1 von Willebrand factor A domain containing 1 NM_022834 0.498 0.000306

CAP2 CAP, adenylate cyclase-associated protein, 2 (yeast) NM_006366 0.498 1.95E-06

ITGB6 integrin, beta 6 NM_000888 0.497 0.000581

TGDS TDP-glucose 4,6-dehydratase NM_014305 0.497 0.00238

PHF14 PHD finger protein 14 NM_014660 0.496 0.00024

APEX1 APEX nuclease (multifunctional DNA repair enzyme) 1 NM_080649 0.496 0.00208

ZCCHC3 zinc finger, CCHC domain containing 3 NM_033089 0.496 5.94E-07

MYLK2 myosin light chain kinase 2 NM_033118 0.495 0.00031

BDKRB1 bradykinin receptor B1 NM_000710 0.494 0.00597

C20orf177 chromosome 20 open reading frame 177 NM_001190826 0.494 0.00134

PM20D2 peptidase M20 domain containing 2 NM_001010853 0.494 0.00147

RAVER1 ribonucleoprotein, PTB-binding 1 NM_133452 0.493 0.0139

SBF2 SET binding factor 2 NM_030962 0.491 0.00042

ZSWIM3 zinc finger, SWIM-type containing 3 NM_080752 0.49 0.0368

ASPH aspartate beta-hydroxylase NM_004318 0.49 9.28E-06

SGK494 uncharacterized serine/threonine-protein kinase SgK494 NM_001174103 0.49 0.00419

SUPT16H suppressor of Ty 16 homolog (S. cerevisiae) NM_007192 0.489 0.000387

HAS3 hyaluronan synthase 3 NM_005329 0.489 0.00258

C14orf45 chromosome 14 open reading frame 45 NM_025057 0.489 0.0195

GZF1 GDNF-inducible zinc finger protein 1 NM_022482 0.489 0.000375

LDHA lactate dehydrogenase A NM_005566 0.489 0.00778

PTGER4 prostaglandin E receptor 4 (subtype EP4) NM_000958 0.488 0.000901

CRYZL1 crystallin, zeta (quinone reductase)-like 1 NM_145858 0.488 0.000238
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FAM83D family with sequence similarity 83, member D NM_030919 0.488 2.40E-05

NGDN neuroguidin, EIF4E binding protein NM_001042635 0.488 2.90E-06

AP4S1 adaptor-related protein complex 4, sigma 1 subunit NM_007077 0.488 0.0032

MIG7 mig-7 DQ080207 0.488 0.000123

ALOX12 arachidonate 12-lipoxygenase NM_000697 0.487 0.00227

DCAF5 DDB1 and CUL4 associated factor 5 NM_003861 0.487 0.00887

FANCC Fanconi anemia, complementation group C AK222871 0.487 2.24E-05

WRB tryptophan rich basic protein NM_004627 0.486 0.000434

PXMP4 peroxisomal membrane protein 4, 24kDa NM_007238 0.486 2.38E-05

SLC7A2 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 NM_001008539 0.486 0.00085

TXNDC16 thioredoxin domain containing 16 NM_020784 0.484 0.00443

ZBTB1 zinc finger and BTB domain containing 1 NM_014950 0.484 0.000656

GPR68 G protein-coupled receptor 68 NM_003485 0.484 4.60E-05

KIF16B kinesin family member 16B NM_001199866 0.484 2.22E-06

METTL3 methyltransferase like 3 NM_019852 0.483 1.48E-06

PFDN4 prefoldin subunit 4 NM_002623 0.481 0.00173

MCM8 minichromosome maintenance complex component 8 NM_182802 0.481 7.88E-06

IL12RB2 interleukin 12 receptor, beta 2 NM_001559 0.481 0.00318

DPY19L4 dpy-19-like 4 (C. elegans) NM_181787 0.481 0.000629

ITGA6 integrin, alpha 6 NM_000210 0.48 0.000508

SLC37A2 solute carrier family 37 (glycerol-3-phosphate transporter), member 2 NM_198277 0.48 4.17E-07

RBMS2 RNA binding motif, single stranded interacting protein 2 NM_002898 0.479 0.000606

ALG10B asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog B (yeast) NM_001013620 0.478 0.000559

ITSN1 intersectin 1 (SH3 domain protein) NM_001001132 0.478 0.000385

RUNX1 runt-related transcription factor 1 NM_001001890 0.477 5.07E-06

SYTL1 synaptotagmin-like 1 NM_032872 0.477 2.59E-06

C16orf48 chromosome 16 open reading frame 48 NM_032140 0.476 7.50E-07

IL1RAP interleukin 1 receptor accessory protein NM_134470 0.476 0.00781

DUOX1 dual oxidase 1 NM_017434 0.476 0.000199
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API5 apoptosis inhibitor 5 NM_006595 0.476 5.92E-05

ADPRH ADP-ribosylarginine hydrolase NM_001125 0.476 0.000116

LOC100128184 hypothetical protein LOC100128184 AK128032 0.476 1.46E-06

SLC13A3 solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3 NM_001193339 0.476 0.000129

HES2 hairy and enhancer of split 2 (Drosophila) BC012091 0.475 7.82E-05

ARL6IP6 ADP-ribosylation-like factor 6 interacting protein 6 NM_152522 0.474 0.00754

STRN3 striatin, calmodulin binding protein 3 NM_014574 0.474 0.000195

NDRG2 NDRG family member 2 NM_201535 0.474 4.82E-06

LOC145694 hypothetical LOC145694 XR_109210 0.474 0.00726

NEK11 NIMA (never in mitosis gene a)- related kinase 11 NM_145910 0.473 2.26E-05

PLAGL2 pleiomorphic adenoma gene-like 2 NM_002657 0.473 2.44E-05

G2E3 G2/M-phase specific E3 ubiquitin protein ligase NM_017769 0.473 0.000116

FAM198B family with sequence similarity 198, member B NM_016613 0.472 0.00288

GINS1 GINS complex subunit 1 (Psf1 homolog) NM_021067 0.472 0.000402

CBFA2T2 core-binding factor, runt domain, alpha subunit 2; translocated to, 2 NM_005093 0.471 0.00788

LOC100133224 hypothetical protein LOC100133224 XM_001716151 0.471 0.0495

RRP1B ribosomal RNA processing 1 homolog B (S. cerevisiae) NM_015056 0.471 7.76E-05

MOSC1 MOCO sulphurase C-terminal domain containing 1 NM_022746 0.471 0.000952

RPRD1B regulation of nuclear pre-mRNA domain containing 1B NM_021215 0.469 1.65E-05

MAP3K5 mitogen-activated protein kinase kinase kinase 5 NM_005923 0.469 0.000833

LOC100508670 putative high mobility group protein B3-like protein-like XM_003119674 0.468 6.31E-05

PBX4 pre-B-cell leukemia homeobox 4 NM_025245 0.467 0.000814

ARHGAP18 Rho GTPase activating protein 18 NM_033515 0.467 0.000699

AURKAPS1 aurora kinase A pseudogene 1 NR_001587 0.467 0.00234

CPNE1 copine I NM_003915 0.467 1.87E-05

CBR1 carbonyl reductase 1 NM_001757 0.466 0.000305

TRAPPC10 trafficking protein particle complex 10 NM_003274 0.464 0.00243

HSPA13 heat shock protein 70kDa family, member 13 NM_006948 0.464 0.00035

LOC441869 hypothetical protein LOC441869 NM_001145210 0.463 1.66E-05
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KLRAQ1 KLRAQ motif containing 1 NM_152994 0.463 0.000516

CLCN5 chloride channel 5 NM_001127899 0.463 0.00577

RIN2 Ras and Rab interactor 2 NM_018993 0.462 0.00118

ITGA2 integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) NM_002203 0.461 0.00483

PARD6B par-6 partitioning defective 6 homolog beta (C. elegans) NM_032521 0.461 0.000235

LGR4 leucine-rich repeat containing G protein-coupled receptor 4 NM_018490 0.46 0.00125

DUOXA1 dual oxidase maturation factor 1 NM_144565 0.459 0.019

OSBPL5 oxysterol binding protein-like 5 NM_020896 0.458 6.74E-08

HNRNPCL1 heterogeneous nuclear ribonucleoprotein C-like 1 NM_001013631 0.458 0.00185

WDR89 WD repeat domain 89 NM_001008726 0.458 0.00053

FNBP1 formin binding protein 1 AK023681 0.458 0.000805

ZDHHC13 zinc finger, DHHC-type containing 13 NM_019028 0.457 0.000245

ITSN1 intersectin 1 (SH3 domain protein) NM_001001132 0.457 0.000192

EREG epiregulin NM_001432 0.457 0.00184

S100A4 S100 calcium binding protein A4 NM_002961 0.457 0.00043

GPR88 G protein-coupled receptor 88 NM_022049 0.457 0.00436

PPARG peroxisome proliferator-activated receptor gamma NM_138711 0.456 3.38E-07

PIGP phosphatidylinositol glycan anchor biosynthesis, class P NM_153681 0.455 0.00553

SNTA1 syntrophin, alpha 1 (dystrophin-associated protein A1, 59kDa, acidic component) NM_003098 0.455 0.00304

MORC2-AS1 MORC2 antisense RNA 1 (non-protein coding) NR_026920 0.455 2.10E-06

DHRS4L2 dehydrogenase/reductase (SDR family) member 4 like 2 NM_001193636 0.455 0.000468

POLE2 polymerase (DNA directed), epsilon 2 (p59 subunit) NM_002692 0.454 0.000617

WEE1 WEE1 homolog (S. pombe) NM_003390 0.453 1.75E-05

BACH1 BTB and CNC homology 1, basic leucine zipper transcription factor 1 NM_206866 0.451 0.000669

SON SON DNA binding protein NM_032195 0.451 4.87E-05

DZIP1 DAZ interacting protein 1 NM_198968 0.45 6.44E-05

RAD51AP1 RAD51 associated protein 1 NM_006479 0.449 0.000228

FGF7 fibroblast growth factor 7 NM_002009 0.449 0.000229

SSH2 slingshot homolog 2 (Drosophila) BC011636 0.449 4.43E-05
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AK4 adenylate kinase 4 NM_001005353 0.448 0.000352

TIMP4 TIMP metallopeptidase inhibitor 4 NM_003256 0.448 0.000768

LOC100509022 splicing factor U2AF 35 kDa subunit-like XM_003119609 0.447 4.06E-05

ZNF395 zinc finger protein 395 NM_018660 0.446 1.10E-08

C11orf74 chromosome 11 open reading frame 74 NM_138787 0.444 3.92E-06

B3GNT3 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 3 NM_014256 0.443 5.30E-05

DHRS4 dehydrogenase/reductase (SDR family) member 4 NM_021004 0.443 0.000145

TIMP3 TIMP metallopeptidase inhibitor 3 NM_000362 0.442 1.87E-05

HKR1 HKR1, GLI-Kruppel zinc finger family member NM_181786 0.441 2.38E-05

CDS2 CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 2 NM_003818 0.441 0.000305

ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 NM_006988 0.439 0.000496

SYT16 synaptotagmin XVI NM_031914 0.439 0.000407

USP16 ubiquitin specific peptidase 16 NM_001001992 0.439 3.05E-05

GRHL1 grainyhead-like 1 (Drosophila) NM_198182 0.438 0.000655

HCG11 HLA complex group 11 NR_026790 0.438 0.000901

FLJ42627 hypothetical LOC645644 AK126677 0.438 7.37E-05

ZNF219 zinc finger protein 219 NM_016423 0.437 1.87E-05

CLCN4 chloride channel 4 NM_001830 0.437 4.16E-05

MORC3 MORC family CW-type zinc finger 3 NM_015358 0.436 2.68E-05

PAPLN papilin, proteoglycan-like sulfated glycoprotein NM_173462 0.436 2.44E-05

KCNJ15 potassium inwardly-rectifying channel, subfamily J, member 15 NM_170736 0.436 0.000306

C14orf128 chromosome 14 open reading frame 128 NR_027263 0.435 0.000238

DHRS4 dehydrogenase/reductase (SDR family) member 4 NM_021004 0.434 3.13E-07

DSCAM Down syndrome cell adhesion molecule NM_001389 0.434 3.15E-05

TMEM67 transmembrane protein 67 NM_153704 0.433 0.000619

GNB4 guanine nucleotide binding protein (G protein), beta polypeptide 4 NM_021629 0.433 2.30E-05

SLC35A3 solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) transporter), member A3 NM_012243 0.432 3.63E-06

PROM2 prominin 2 NM_001165978 0.432 1.45E-05

N6AMT1 N-6 adenine-specific DNA methyltransferase 1 (putative) NM_013240 0.43 9.13E-06
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HSPA2 heat shock 70kDa protein 2 NM_021979 0.429 9.44E-05

DIP2A DIP2 disco-interacting protein 2 homolog A (Drosophila) NM_206890 0.428 0.000156

FANCF Fanconi anemia, complementation group F NM_022725 0.427 3.59E-05

LHX6 LIM homeobox 6 NM_014368 0.426 1.04E-05

CCNYL1 cyclin Y-like 1 NM_152523 0.426 0.000489

ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 NM_006988 0.426 0.00299

LOC152225 hypothetical LOC152225 NR_026934 0.426 0.00147

ACCS 1-aminocyclopropane-1-carboxylate synthase homolog (Arabidopsis)(non-functional) NM_032592 0.425 4.43E-05

SOX7 SRY (sex determining region Y)-box 7 NM_031439 0.425 8.10E-06

TRERF1 transcriptional regulating factor 1 NM_033502 0.425 6.14E-05

FMN1 formin 1 NM_001103184 0.424 0.0122

ANKRD1 ankyrin repeat domain 1 (cardiac muscle) NM_014391 0.421 0.00173

NRP1 neuropilin 1 NM_001024629 0.421 6.78E-08

PDXK pyridoxal (pyridoxine, vitamin B6) kinase NM_003681 0.421 2.63E-07

DYRK1A dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A NM_130438 0.421 8.34E-05

PECR peroxisomal trans-2-enoyl-CoA reductase NM_018441 0.419 0.00145

DYRK1A dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A NM_130436 0.418 9.09E-06

NUCB2 nucleobindin 2 NM_005013 0.417 0.000192

TRPM4 transient receptor potential cation channel, subfamily M, member 4 NM_017636 0.417 3.18E-05

AGPAT9 1-acylglycerol-3-phosphate O-acyltransferase 9 NM_032717 0.417 0.00047

ITCH itchy E3 ubiquitin protein ligase homolog (mouse) NM_031483 0.417 0.000342

CD40 CD40 molecule, TNF receptor superfamily member 5 NM_001250 0.416 6.30E-06

CEP250 centrosomal protein 250kDa NM_007186 0.415 0.000886

WFDC2 WAP four-disulfide core domain 2 NM_006103 0.414 0.000465

CD163L1 CD163 molecule-like 1 NM_174941 0.413 1.18E-06

TOP1P2 topoisomerase (DNA) I pseudogene 2 NR_001283 0.413 2.16E-05

ARHGAP27 Rho GTPase activating protein 27 NM_174919 0.413 4.75E-05

SLC19A1 solute carrier family 19 (folate transporter), member 1 NM_194255 0.413 5.32E-06

AP1G2 adaptor-related protein complex 1, gamma 2 subunit NM_003917 0.412 3.34E-06
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PTK6 PTK6 protein tyrosine kinase 6 NM_005975 0.412 4.13E-05

GPX2 glutathione peroxidase 2 (gastrointestinal) NM_002083 0.411 8.79E-06

C20orf194 chromosome 20 open reading frame 194 NM_001009984 0.411 0.00316

ACOT4 acyl-CoA thioesterase 4 NM_152331 0.41 2.42E-05

SEMA3A sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3A NM_006080 0.41 7.82E-05

CA13 carbonic anhydrase XIII NM_198584 0.409 0.00119

C7orf58 chromosome 7 open reading frame 58 NM_024913 0.409 2.14E-06

NDRG2 NDRG family member 2 NM_201535 0.409 1.18E-08

CD40 CD40 molecule, TNF receptor superfamily member 5 NM_001250 0.406 1.62E-07

C7orf58 chromosome 7 open reading frame 58 NM_024913 0.406 3.34E-06

PKIB protein kinase (cAMP-dependent, catalytic) inhibitor beta NM_181795 0.404 0.00265

PRPF40B PRP40 pre-mRNA processing factor 40 homolog B (S. cerevisiae) NM_001031698 0.404 0.005

TMEM50B transmembrane protein 50B NM_006134 0.404 1.48E-06

DKK3 dickkopf homolog 3 (Xenopus laevis) NM_015881 0.404 0.000306

MAMDC4 MAM domain containing 4 NM_206920 0.403 8.96E-05

TTC5 tetratricopeptide repeat domain 5 NM_138376 0.403 0.000116

LRIG3 leucine-rich repeats and immunoglobulin-like domains 3 NM_153377 0.402 4.54E-05

C21orf59 chromosome 21 open reading frame 59 NM_021254 0.402 0.000125

EPS8L2 EPS8-like 2 NM_022772 0.401 7.07E-07

ITSN1 intersectin 1 (SH3 domain protein) NM_001001132 0.401 2.10E-06

LOC440525 proline rich 13 pseudogene BI224516 0.401 0.00025

ZNF573 zinc finger protein 573 NM_152360 0.398 0.000207

AP4S1 adaptor-related protein complex 4, sigma 1 subunit NM_001128126 0.398 0.000507

SLC7A8 solute carrier family 7 (amino acid transporter light chain, L system), member 8 NM_182728 0.397 0.000205

FAM165B family with sequence similarity 165, member B BC045820 0.397 1.82E-05

MMP14 matrix metallopeptidase 14 (membrane-inserted) NM_004995 0.397 3.26E-08

LOC389831 hypothetical LOC389831 NM_001242480 0.396 1.50E-05

WFDC2 WAP four-disulfide core domain 2 NM_006103 0.395 0.00167

ANKRD5 ankyrin repeat domain 5 NM_022096 0.393 2.03E-05
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RPL27A ribosomal protein L27a NM_000990 0.392 0.019

SLC20A1 solute carrier family 20 (phosphate transporter), member 1 NM_005415 0.391 6.52E-05

DSCR3 Down syndrome critical region gene 3 NM_006052 0.389 2.10E-06

DONSON downstream neighbor of SON NM_017613 0.388 9.10E-06

NFE2L3 nuclear factor (erythroid-derived 2)-like 3 NM_004289 0.388 2.38E-05

LOC645195 hypothetical LOC645195 AK123450 0.388 0.000183

TSPAN1 tetraspanin 1 NM_005727 0.387 7.58E-08

DCBLD2 discoidin, CUB and LCCL domain containing 2 NM_080927 0.387 9.24E-06

FOXL1 forkhead box L1 NM_005250 0.387 0.000152

LOC389831 hypothetical LOC389831 NM_001242480 0.385 5.33E-05

BTG3 BTG family, member 3 NM_006806 0.384 0.00478

MGC4294 hypothetical MGC4294 XR_109628 0.383 1.03E-05

LMCD1 LIM and cysteine-rich domains 1 NM_014583 0.383 3.63E-06

NEK11 NIMA (never in mitosis gene a)- related kinase 11 NM_024800 0.382 8.10E-06

C20orf54 chromosome 20 open reading frame 54 NM_033409 0.381 0.00369

CBFA2T2 core-binding factor, runt domain, alpha subunit 2; translocated to, 2 JF432662 0.379 3.59E-05

MAMSTR MEF2 activating motif and SAP domain containing transcriptional regulator NM_182574 0.378 1.24E-06

SNORD17 small nucleolar RNA, C/D box 17 NR_003045 0.375 7.07E-07

HMGA2 high mobility group AT-hook 2 NM_003483 0.372 0.00035

FOXB1 forkhead box B1 NM_012182 0.368 0.000814

NPAS2 neuronal PAS domain protein 2 NM_002518 0.368 0.00567

LOC644189 acyl-CoA thioesterase 4 pseudogene NR_033748 0.367 0.000453

ITGB8 integrin, beta 8 NM_002214 0.365 7.76E-05

SNX21 sorting nexin family member 21 NM_001042633 0.364 7.07E-07

DHRS4L1 dehydrogenase/reductase (SDR family) member 4 like 1 NM_001082488 0.363 0.000339

FZD7 frizzled family receptor 7 NM_003507 0.36 6.23E-05

LTN1 listerin E3 ubiquitin protein ligase 1 NM_015565 0.36 0.000117

SLC5A3 solute carrier family 5 (sodium/myo-inositol cotransporter), member 3 NM_006933 0.359 0.000155

JPH2 junctophilin 2 NM_020433 0.358 0.000105
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Appendix 8 (continued). 
 

Symbol Gene Name Accession ID Fold change P value

PPARG peroxisome proliferator-activated receptor gamma NM_138711 0.358 9.28E-06

LRRCC1 leucine rich repeat and coiled-coil domain containing 1 NM_033402 0.356 4.03E-05

GCFC1 GC-rich sequence DNA-binding factor 1 NM_013329 0.353 0.000244

SLC22A18AS solute carrier family 22 (organic cation transporter), member 18 antisense NM_007105 0.352 0.00013

LCTL lactase-like NM_207338 0.352 3.92E-05

CAPRIN1 cell cycle associated protein 1 NM_203364 0.349 7.80E-07

MAP3K5 mitogen-activated protein kinase kinase kinase 5 NM_005923 0.348 6.38E-06

CFH complement factor H NM_001014975 0.346 1.77E-07

DCAF5 DDB1 and CUL4 associated factor 5 BC022967 0.346 0.000228

CRYZL1 crystallin, zeta (quinone reductase)-like 1 NM_145858 0.341 0.000389

OXTR oxytocin receptor NM_000916 0.341 1.75E-06

UNCX UNC homeobox NM_001080461 0.34 0.000114

JAG1 jagged 1 NM_000214 0.338 2.94E-05

XLOC_005764 0.337 0.00497

CXADR coxsackie virus and adenovirus receptor NM_001338 0.333 1.55E-05

KCNJ15 potassium inwardly-rectifying channel, subfamily J, member 15 NM_170736 0.331 7.21E-05

C21orf91 chromosome 21 open reading frame 91 NM_017447 0.323 1.78E-07

SLC4A11 solute carrier family 4, sodium borate transporter, member 11 NM_032034 0.317 9.36E-05

HMGB3P24 high mobility group box 3 pseudogene 24 XM_929965 0.313 4.75E-05

ARHGEF40 Rho guanine nucleotide exchange factor (GEF) 40 NM_018071 0.31 1.35E-05

ASB9 ankyrin repeat and SOCS box containing 9 NM_001031739 0.305 0.00107

TEP1 telomerase-associated protein 1 NM_007110 0.304 8.09E-07

HIF1A hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) NM_181054 0.304 9.22E-06

PLCB2 phospholipase C, beta 2 NM_004573 0.296 1.44E-07

LOC642852 hypothetical LOC642852 NR_026943 0.293 1.12E-06

FLJ37786 hypothetical LOC642691 XR_108343 0.265 0.00014

CFH complement factor H NM_000186 0.264 7.59E-07

MRPL52 mitochondrial ribosomal protein L52 NM_181304 0.26 1.05E-07

MAMDC2 MAM domain containing 2 NM_153267 0.253 8.22E-06

DUOXA1 dual oxidase maturation factor 1 EU927394 0.251 2.30E-05

TNS4 tensin 4 NM_032865 0.218 7.14E-08

LOC645431 hypothetical LOC645431 NR_024334 0.212 8.10E-06

OSGEP O-sialoglycoprotein endopeptidase NM_017807 0.208 1.04E-06

DIAPH2 diaphanous homolog 2 (Drosophila) NM_007309 0.177 0.0001
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Appendix 9 – Crystal Violet Calibration Curve. 
Cells were seeded into 96 well plates at increasing cell densities in quadruplet from 2500 cell 
per well to 35000 cell per well. After 3 hours, the cells had adhered to the surface of the 
plastic and were then subject to the crystal violet assay. Absorbances were corrected to the 
10 % acetic acid solvent blank and then plotted against the cell number. There was a clear 
and tight relationship observed between absorbance at 590 nm and cell number, suggesting 
that the assay would be able to yield an accurate inference of cell number from crystal violet 
stained cell cultures, using non-linear regression and the equation y= 9398.9x2 + 8353.8x + 
1073.9, where y is cell number and x is absorbance at 590 nm. 

y = 9398.9x2 + 8353.8x + 1073.9 
R² = 0.9983 
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