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INTRODUCTION 
   Predicting the occurrence of the critical period for soybean’s yield determination is important 
for farmers to decide on variety and sowing date with the objective to expose this period 
(during which yield is mainly determined) to the best environmental conditions. Simulation 
models like APSIM (Keating et al., 2003) and DSSAT (Jones et al., 2003) are extremely useful 
to predict yield under different environments. However, in these models the parameterization 
of genetic coefficients for simulating phenology and yield is a complex and time-consuming 
process limiting the number of genotypes available for simulation. Moreover, the modeled 
genotypes may not be representative of the broad range of genetic material grown by farmers. 
We created a simple, dynamic model based on photoperiod and temperature to predict 
flowering initiation (R1), start of grain filling (R5) and physiological maturity (R7, Fehr and 
Caviness (1977)) in a wide number of commercial soybean varieties ranging from maturity 
group (MG) II to VI used by farmers in Argentina, Uruguay, and Paraguay. Our aim is to build a 
model that is simple enough to be calibrated, yet able to predict these stages with reasonable 
accuracy. The “CRONOSOJA” model outputs will be freely available in the near future on an 
interactive website (http://soja.cronos.agro.uba.ar). 
 
MATERIALS AND METHODS 
Soybean varieties, field experiments and measurements 
   We selected 34 soybean commercial varieties from major seed companies of Argentina, 
Uruguay and Paraguay, covering MG II to VI (Table 2). By previous expert consultation, we 
ensured that these varieties were representative of the regional soybean seed market and 
widely used by farmers. To explore a broad range of temperature and photoperiod conditions, 
we sowed those varieties from October to February, with a gap of around one month between 
successive sowing dates, during three seasons in the locations listed in Table 1. We 
determined the phenological stage of each plot every 2-3 days using the scale of Fehr and 
Caviness (1977). 

Table 1: Number of different sowing dates tested in each experimental site during three 
growing seasons. Bold numbers denote datasets that were used for validating the model, while 
those in italics show datasets that were not included yet (but they will be included soon), 
neither for calibration nor for validation of the model. The rest of the datasets were used for the 
initial calibration of the model. 

    Season 
Country Site Latitude (°S) Longitude (°W) 2016/17 2017/18 2018/19 
Argentina CABA 34.6 58.5 1 1 0 
Argentina Chascomús 35.6 58.0 3 0 0 
Argentina Manfredi 31.8 63.7 0 4 3 
Argentina Pergamino 33.9 60.6 4 3 3 
Argentina Reconquista 29.2 59.9 3 3 3 
Argentina Salta 24.9 65.5 0 0 3 
Paraguay Capitán Miranda 27.2 55.8 0 0 1 
Uruguay La Estanzuela 34.3 57.7 0 2 4 
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Model development 
   For model fitting, we transformed soybean developmental stages into a continuous 
numerical scale: emergence (EM) = 0, R1 = 1, R5 = 2 and R7 = 3. In its current state, the 
model only simulates the latter three stages but R3 (beginning of pod development) and R6 
(full seed size) will be included soon as temperature-corrected calendar-day deviations from 
R1 and R5, respectively. The equation describing the developmental stage (𝑅𝑅) at a specified 
time (𝑡𝑡, in days after EM) is 
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where 𝐷𝐷EM−R1, 𝐷𝐷R1−R5, and 𝐷𝐷R5−R7 are the photothermal days for phases EM-R1, R1-R5, and 
R5-R7; and 𝑓𝑓(𝑇𝑇𝑡𝑡) and 𝑓𝑓(𝑃𝑃𝑡𝑡) are functions that describe the temperature and photoperiod 
multipliers, which can adopt values between 0 and 1. Therefore, 𝑓𝑓(𝑇𝑇𝑡𝑡) and 𝑓𝑓(𝑃𝑃𝑡𝑡) penalize the 
maximum developmental rates 1/𝐷𝐷EM−R1, 1/𝐷𝐷R1−R5 and 1/𝐷𝐷R5−R7. 
   The temperature multiplier, 𝑓𝑓(𝑇𝑇𝑡𝑡), is defined as 

𝑓𝑓(𝑇𝑇𝑡𝑡) = �
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where 𝑇𝑇𝑡𝑡 is the mean air temperature of day 𝑡𝑡; 𝑇𝑇min (also known as 𝑇𝑇base), 𝑇𝑇opt and 𝑇𝑇max are the 
cardinal temperatures; and 𝛼𝛼 is a shape parameter, which in turn is defined as 

𝛼𝛼 =
log(2)
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   And the photoperiod multiplier, 𝑓𝑓(𝑃𝑃𝑡𝑡), is defined as 

𝑓𝑓(𝑃𝑃𝑡𝑡) = �
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where𝑃𝑃𝑡𝑡 is the photoperiod of day 𝑡𝑡; 𝑃𝑃sen is the photoperiod sensitivity; and 𝑃𝑃opt is the optimum 
photoperiod. 
   Given the colinearity among the parameters of the model, not all parameters could be 
simultaneously calibrated from the data. For this reason, some parameters were fixed while 
others were calibrated. After sensitivity analysis, we calibrated those parameters to which the 
model was most sensitive and fixed the less-sensitive parameters in accordance to values 
reported in the literature. For instance, the cardinal temperatures 𝑇𝑇min and 𝑇𝑇max were set to 0 
and 45°C, respectively, whereas 𝑇𝑇opt was set to 32, 28 and 25 °C for phases EM-R1, R1-R5 
and R5-R7 (Setiyono et al., 2007). The photoperiod sensitivity 𝑃𝑃sen was set to 0.25 h-1 after 
averaging all photoperiod sensitivities for MGs between III and VI described in Archontoulis et 
al. (2014). The calibrated parameters were the photothermal days from emergence to R1 
(𝐷𝐷EM−R1), from R1 to R5 (𝐷𝐷R1−R5) and from R5 to R7 (𝐷𝐷R5−R7), and the optimum photoperiod 
(𝑃𝑃opt), below which the rate of development is maximum. 
   The model was fitted by means of Markov chain Monte Carlo (MCMC) algorithm 
implemented by the function modMCMC from the package FME (Soetaert and Petzoldt, 2010) 
in R (R Core Team, 2019). The MCMC iterated across combinations of parameters 𝐷𝐷EM−R1, 
𝐷𝐷R1−R5, 𝐷𝐷R5−R7 and 𝑃𝑃opt while trying to minimize the root mean squared error (RMSE) between 
modeled and observed days from emergence to R1, R5 and R7 stages. The model was run 
simultaneously across all locations and sowing dates where a particular soybean variety was 
tested. The number of iterations was set to 10000 and the burn-in period was set to 5000 
iterations with 3 chains. Convergence was tested by comparing chains with the 𝑅𝑅� diagnostic, 
which was allowed not to be greater than 1.1 (Gelman et al., 2013). 
 
 



RESULTS 
   The calibrated parameters were within ranges reported previously (Archontoulis et al., 2014; 
Setiyono et al., 2007) (Table 2). As expected, 𝑃𝑃opt was inversely related to MG, with values 
around 13.3 h for MG II and III, and 12.4 h for MG VI (Table 2). The overall RMSE averaged 
across all varieties for the calibration dataset was 4, 6 and 8 days for R1, R5 and R7, 
respectively; with some varieties showing a better fit than others (Table 2). In turn, the 
averaged RMSE of the model used to predict R1, R5 and R7 in the validation data set was 5, 6 
and 10 days, respectively. The RMSE values were similar or even lower than other widely 
used models, such as CERES and APSIM (Fig. 1). 

Table 2: Calibrated parameters 𝑃𝑃opt, 𝐷𝐷EM−R1, 𝐷𝐷R1−R5 and 𝐷𝐷R5−R7, and root mean square errors 
(RMSE) for stages R1, R5 and R7 for all evaluated varieties. 

Company Variety 𝑷𝑷𝐨𝐨𝐨𝐨𝐨𝐨 𝑫𝑫𝐄𝐄𝐄𝐄−𝐑𝐑𝐑𝐑 𝑫𝑫𝐑𝐑𝐑𝐑−𝐑𝐑𝐑𝐑 𝑫𝑫𝐑𝐑𝐑𝐑−𝐑𝐑𝐑𝐑 RMSE (days) 
  (h/day) (days) (days) (days) R1 R5 R7 
Don Mario DM 2200 13.3 26.3 17.1 38.8 4.2 7.4 11.5 
Don Mario DM 3312 13.3 26.7 18.8 40.7 3.8 6.6 12.3 
Nidera NS 2632 13.3 24.6 19.3 38.3 4.2 5.3 11.2 
Nidera NS 3220 13.2 26.1 22.2 28.1 3.0 4.3 4.2 
Bayer FN 4.35 13.1 27.5 24.0 31.0 2.2 4.7 7.0 
Bayer CZ 4505 13.0 30.9 22.1 35.9 5.2 6.5 10.6 
Asgrow AW 4326 12.9 26.1 24.7 29.0 1.8 5.1 6.2 
Bayer CZ 4.97 12.9 27.8 24.7 33.7 2.6 5.9 11.0 
Bayer FN 3.85 12.9 26.3 20.8 28.6 3.4 3.9 4.9 
Nidera NS 5258 12.9 30.7 21.4 35.6 3.4 5.9 7.7 
Santa Rosa RA 349 12.9 24.8 18.3 39.8 3.8 6.3 11.0 
Don Mario DM 3815 12.8 24.6 18.7 34.3 4.2 5.1 8.9 
Don Mario DM 40R16 12.8 25.0 20.8 37.2 4.4 6.7 9.5 
Don Mario DM 4612 12.8 24.5 21.6 36.8 5.1 5.8 9.3 
INIA Genesis 5501 12.8 36.4 19.5 38.1 5.5 9.0 8.0 
INIA Genesis 5602 12.8 37.0 18.3 40.0 4.1 7.6 9.5 
Nidera NS 3809 12.8 25.6 16.6 38.2 4.5 3.9 11.7 
Nidera NS 4955 12.8 26.0 21.1 39.3 3.8 6.6 7.4 
INIA Genesis 5601 12.7 36.4 18.9 37.1 5.4 6.9 5.8 
Santa Rosa RA 550 12.7 24.1 23.5 36.8 4.4 8.4 8.7 
Bayer CZ 5905 12.6 35.9 18.4 36.7 5.8 6.2 8.1 
Don Mario DM 6.2i 12.6 35.0 15.4 38.1 4.2 7.8 8.0 
Asgrow AW 5714 12.5 35.3 17.4 35.1 6.8 7.8 7.6 
Don Mario DM 50i17 12.5 25.9 16.4 39.2 3.3 8.9 6.6 
Don Mario DM 53i53 12.5 28.2 20.6 38.3 4.4 5.0 10.2 
INIA Genesis 6201 12.5 33.8 18.2 39.1 2.6 2.0 2.9 
INTA INTA Parana 5500 12.5 35.0 19.2 34.2 6.6 5.3 8.8 
Asgrow AW 5815 12.4 31.0 16.3 37.8 5.4 10.1 6.4 
Asgrow AW M6410 12.4 36.4 13.7 41.9 7.0 9.9 9.3 
Bayer CZ 6505 12.4 35.7 18.6 38.2 5.0 10.9 10.3 
INTA INTA Parana 6200 12.4 34.7 17.0 38.1 4.2 6.0 9.9 
Nidera NS 6248 12.4 33.6 16.8 40.7 6.2 7.4 9.0 
Santa Rosa RA 549 12.4 33.1 17.7 38.3 5.2 7.1 7.7 
Santa Rosa RA 655 12.1 29.4 21.9 40.5 4.3 8.5 10.2 



 
Figure 1: Observed vs. predicted days from emergence (DAE) to R1, R5 and R7 stages for all 
varieties listed in Table 2 in the validation dataset. The dashed line represents 1:1. The root 
mean squared error, averaged across all varieties, for R1, R5 and R7 stage was 5, 6 and 10 
days, respectively. 
 
CONCLUSIONS 
   The model performed well when tested to predict an independent validation data set (Fig. 1). 
Its ability to accurately predict the occurrence of pivotal stages of soybean development along 
an ample latitudinal range highlights the importance of formalizing models based on 
ecophysiological knowledge rather than empirical relationships. The model will be made freely 
available on a website (http://soja.cronos.agro.uba.ar) in the near future, providing an 
interactive tool for farmers to select the best combination of sowing date and variety for a given 
location. 
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