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ABSTRACT 

 Heterogeneous nuclear ribonucleoprotein-U like 1 (hnRNP-UL1) is a protein with 

numerous roles within the cell, including RNA processing and responses to DNA damage. 

Within this study two novel aspects of the protein are explored: the role of a putative 

nucleotide-binding domain and the protein’s possible involvement in amyotrophic lateral 

sclerosis (ALS).  

 hnRNP-UL1 is known to have a putative nucleotide-binding domain within its central 

region containing both a Walker A and Walker B motif. This region had not been investigated 

previously and was therefore of great interest in this study. The Walker A motif was shown to 

bind adenosine triphosphate (ATP) and the region appears to possess protein kinase activity. 

A biological substrate and function for these activities were not established, but these 

observations suggest that there are still layers of complexity to hnRNP-UL1’s cellular roles to 

be elucidated. 

 ALS is a late-onset neurodegenerative disease with limited treatment strategies and 

poor patient outcomes. Many of the proteins involved in its pathogenesis have two properties 

in common: they have roles in RNA-processing and possess prion-like domains (PrLDs). The 

properties of hnRNP-UL1 appertain to both of these and therefore it was of great interest 

when ALS patients were discovered with heterozygous hnRNP-UL1 mutations. Results 

showed that cells possessing the ALS patient mutations (R639C and R468C) had no DNA 

damage response (DDR) defects or mislocalisation of the protein, but their ssDNA/RNA-

binding capability was markedly reduced. Whilst no direct causative links to ALS 

pathogenesis were shown with the hnRNP-UL1 patient mutations in this study, growing 

evidence implies good reason for the protein to have involvement in the disease. 
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1.1 The DNA molecule 

 Deoxyribonucleic acid (DNA) lies at the heart of the central dogma of molecular 

biology. Its genetic instructions allow the co-ordination of cellular life in virtually all 

organisms. To comprehend how it is damaged and subsequently repaired within the cell, the 

structure of the macromolecule must firstly be understood. DNA is a polymer of a subunit 

known as a nucleotide, each of which contain a five-carbon sugar residue (deoxyribose), a 

phosphate group and an aromatic nitrogenous base. Alternating sugar and phosphate residues 

form the backbone of the DNA polymer and are linked by phosphodiester bonds between the 

3’ carbon atom of one deoxyribose and the 5’ carbon atom of the next adjacent deoxyribose 

(Figure 1.1). Four different bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] 

can be covalently linked by a β-N-glycosidic bond to the first carbon atom of the deoxyribose 

residue. T and C are aromatic compounds known as pyrimidines, whilst A and G are purines 

with an additional imidazole ring. 

 Watson and Crick first described the double helix structure which DNA commonly 

forms in vivo in 1953 (Watson and Crick, 1953). The complementary base-pairing of A to T 

and G and C (via hydrogen bonds) allows two DNA polymers (strands) to lie anti-parallel to 

one another. The two strands curl within the helix structure around a central axis and form a 

major groove and a minor groove. The larger space within the major groove means the bases 

are more accessible and permits interaction with DNA-binding proteins. 
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Figure 1.1 Schematic of anti-parallel pairing between complementary DNA strands. The 

nitrogenous bases cytosine (C), guanine (G), thymine (T) and adenine (A) are shown. The 

phosphate group, deoxyribose and base of one nucleotide are indicated. 5’ phosphate and 3’ 

hydroxyl groups are also indicated. 

phosphate

sugar
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1.2 The DNA damage response (DDR) 

 The primary objective for every life form is to pass on information through its genetic 

code, which should remain intact and unaltered, to the next generation. Each of the human 

body’s ~10
13

 cells must combat tens of thousands of DNA lesions every day and replicate its 

DNA accurately when division is necessary (Lindahl and Barnes, 2000). The means by which 

cells detect damage to their DNA and initiate repair is collectively known as the cellular DNA 

damage response (DDR). This term encompasses a number of different pathways which, 

generally speaking, are designed to deal with specific forms of damage, which tend to be 

caused by different agents. 

The agents that cause damage to DNA derive from both endogenous and exogenous 

sources. There are many different types, including reactive oxygen species, ionising and 

ultraviolet radiation, replicative stress, infectious pathogens and inflammation that can cause 

various types of DNA lesions (Figure 1.2). For cells to counter the continual attack on their 

DNA they have evolved a complex set of DNA detection and repair systems. Given their 

importance and links with so many diseases (explored in section 1.2.6) it is unsurprising that 

so much research is focussed within this area.  

Cell cycle and the DDR 

 Before describing the details of the various DDR pathways it is important to consider 

the wider cellular processes affected during the response to DNA damage, and in particular, 

cell cycle regulation. Cell cycle regulation is critical to maintain the required proliferation rate 

of any particular cell, and the mammalian cell has evolved a series of checkpoints to ensure 

the integrity of the DNA and accurate replication from mother to daughter cells during 

division.
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Figure 1.2 DNA damage and the methods of repair. Various endogenous (replication stress 

and oxidative damage) and exogenous (chemotherapeutic agents and radiation) can cause 

different types of DNA lesions. These include single-strand breaks (SSBs), double-strand 

breaks (DSBs), base modifications, bulky adducts and crosslinks of the DNA strands. 

Differing and specific DNA repair pathways are employed to correct each type of damage. 

(Adapted from McKinnon, 2009). 
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The most significant DDR-signalling enzymes in mammalian cells are the PI3K 

(phosphatidylinositol 3 kinase) proteins; ATM (ataxia telangiectasia), ATR (ataxia 

telangiectasia and RAD3-related) and DNA-PK (DNA-dependent protein kinase). Once 

activated, they have the potential to phosphorylate hundreds of substrates with a preference 

for serine and threonine residues that are followed by glutamines (S/TQ) (Nam and Cortez, 

2011). Their activation can trigger activities such as cell cycle inhibition, DNA repair or 

apoptosis, depending on the severity of the DNA damage. Two main targets of ATM and 

ATR for phosphorylation are Chk2 and Chk1 in response to DSBs and single-strand breaks 

(SSBs), respectively. These proteins collectively act to reduce activity of cyclin-dependent 

kinases (CDKs), which along with cyclins are the principle drivers of the cell cycle. Chk2 and 

Chk1 mediate this through the inhibition of Cdc25 family members, which drive cell cycle 

progression by removing inhibitory phosphates on CDK/cyclin complexes (e.g. Tyr15 on 

CDK 1 and 2). Chk1 also activates the kinase, Wee1, which is responsible for 

phosphorylating the Tyr15 residue (Reinhardt and Yaffe, 2009).  

 Arresting the progression of the cell cycle at either the G1-S, intra-S, or G2-M cell-

cycle checkpoints is critical in allowing the DDR pathways time to repair lesions before 

replication or mitosis (Figure 1.3) (Jackson and Bartek, 2009). Activation of the G1 

checkpoint prevents progression to S phase before replication begins, to ensure DNA damage 

is repaired. If damage has occurred during replication in S phase or replication is incomplete, 

the intra-S and G2 checkpoints are activated prior to cell division. The final checkpoint in M 

phase (mitosis) is activated in response to misalignment of sister chromatids on the mitotic 

spindle (Cooper, 2006). 
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Figure 1.3 The cell cycle checkpoints. To ensure the genetic material is intact before 

progression through to the next phase of the cell cycle several checkpoints exist. The G1 

checkpoint is activated if DNA damage is identified. If damage has occurred during 

replication in S phase or replication is incomplete, the intra-S and G2 checkpoints are 

activated prior to cell division. The final checkpoint in M phase (mitosis) is activated in 

response to misalignment of sister chromosomes on the mitotic spindle (Cooper, 2006). 
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DNA damage repair 

As well as cell cycle inhibition, ATM/ATR signalling induces repair of DNA damage 

by recruitment of repair factors to sites of damage. These signalling pathways are explored in 

greater detail in the following sections. If DNA repair is successful, the DDR is inactivated 

and the cell cycle begins to proceed once again. However, if the damage is too great to repair, 

death of the cell via apoptosis, mitotic catastrophe or autophagy can be triggered. Evolution 

has considered the death of a single cell in response to significant unrepaired DNA damage as 

a reasonable solution because continued cycles of replication increase the risk of greater 

genetic instability and subsequently carcinogenesis.   

 

1.2.1 Single strand break (SSB) repair 

Single strand DNA breaks (SSBs) are the most common form of DNA damage and are 

estimated to occur in tens of thousands per cell every day (Caldecott, 2008). SSBs arise from 

a number of types of DNA attack, including ultraviolet (UV) radiation, stalled replication 

forks and oxidation by reactive oxygen species (ROS) and subsequent disintegration of the 

deoxyribose sugar in the DNA molecule. The intermediate abasic site created during base 

excision repair (BER, see section 1.2.2) is another source of SSBs, as is the abortive 

intermediates of TOP1 (DNA topoisomerase 1) activity during the relaxation of chromatin 

(Caldecott, 2008). Repair of SSBs follows a basic four step process: SSB detection, DNA end 

processing, DNA gap filling and DNA ligation. Detection is by PARP-1 (poly(ADP-ribose) 

polymerase 1), a key protein in response to nearly all DNA breaks. It is rapidly and transiently 

recruited to break sites, subsequently activated and poly(ADP)-ribosylates itself and a number 

of other proteins (Krishnakumar and Kraus, 2010). Perhaps the most important of its targets is 
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the scaffold protein XRCC1 (X-ray repair cross-complementing protein 1). This acts as an 

attachment, stabilisation and stimulation factor for a host of proteins involved in the SSBR 

process (Krishnakumar and Kraus, 2010). DNA end processing follows and involves the 

conversion of damaged ends back to the conventional 3’-hydroxyl and 5’-phosphate. This 

involves a number of proteins depending on the type of damage, including APE1 (apurinic–

apyrimidinic endonuclease 1), TDP1 (tyrosyl-DNA phosphodiesterase 1), DNA polymerase 

(pol) β, APTX (aprataxin) and PNKP (polynucleotide kinase phosphatase), of which the latter 

three directly interact with XRCC1 (Caldecott, 2008). The majority of SSBs are repaired by 

base excision repair (BER) during which one nucleotide is removed during repair, often 

termed short-patch repair. Nucleotide excision repair (NER) requires the removal of a long-

patch of nucleotides (24-32). Subsequently, gap filling by a DNA polymerase (typically β) 

and end ligation by a DNA ligase (typically LIG3 for short-patch and LIG1 for long-patch) 

occurs (Caldecott, 2008). 

As already mentioned, the PI3K protein ATR, plays an important role in response to 

SSBs. It plays a vital role during S-phase when MCM helicase continues to unwind the DNA 

template after replication forks stall. This exposes long stretches of ssDNA, which is bound 

by replication protein A (RPA). Canonical ATR signalling involves recruitment of ATR to 

ssDNA-RPA sites via its partner ATRIP (ATR-interacting protein). The RAD9-HUS1-RAD1 

(9-1-1) complex is independently recruited to these sites along with TOPBP1 (topoisomerase-

binding protein 1), which activates ATR allowing phosphorylation of downstream targets, 

such as Chk1 (Nam and Cortez, 2011). ATR signalling occurs wherever ssDNA-RPA 

complexes form, including those resulting from resection of one strand during double strand 

break repair by homologous recombination (Nam and Cortez, 2011).   
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It is important to note that if SSBs cannot be dealt with efficiently, for example in the 

blockage of replication in proliferating cells, collapse can occur resulting in the formation of a 

double strand break (DSB) which are more deleterious to the cell (see sections 1.2.4 and 

1.2.5). 

 

1.2.2 Base excision repair (BER) 

Base excision repair (BER) deals with the small alterations to bases, such as 8-

oxoguanine, formamidopyrimidines and 5-hydroxyuracil, caused mainly by endogenous 

mechanisms (Maynard et al., 2009). Oxidative respiration and lipid peroxidation generates 

thousands of reactive oxygen species (ROS) in each cell every day, which can produce 

oxidised DNA products (of which 8-oxoguanine is the most common), also seen in exposure 

to radiation (e.g. gamma rays, and alpha and beta particles) (Pecorino, 2008). The alterations 

do not interfere with replication or transcription but if left unrepaired will cause a point 

mutation.  

DNA glycosylases check for lesions at a rate of millions of base pairs per second. 

Upon finding one, they dissociate the lesion from the DNA-helix by cleavage of the N-

glycosyl bond linking the sugar and the base creating an abasic site. An endonuclease then 

cleaves the DNA strand at the abasic site, DNA polymerase β replaces the nucleotide and a 

ligase ligates the DNA ends back together (Pecorino, 2008). 
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1.2.3 Nucleotide excision repair (NER) 

Ionising radiation can damage DNA directly or indirectly by generating further ROS. 

Ultraviolet (UV) radiation from the sun is an obvious environmental DNA-damaging agent, 

with UVB (290-320 nm) being the most deleterious carcinogenic wavelength causing 

cyclobutane pyrimidine dimers and pyrimidine-pyrimidone photoproducts. Pyrimidine dimers 

result in a distortion in the DNA helix which, during replication, is unreadable such that DNA 

polymerases preferentially incorporate an adenine residue commonly resulting in transition 

mutations (Melis et al., 2005). The repair of such bulky DNA adducts, such as pyrimidine 

dimers, is carried out by the nucleotide excision repair (NER) pathway. NER occurs in two 

forms; global genomic-NER (GG-NER) and transcription-coupled NER (TC-NER), which 

differ in their method of mutation recognition. GG-NER continually scans the genome for 

bulky DNA adducts and requires XPC-RAD23B for their recognition, whilst TC-NER 

employs RNA polymerase to identify damage interfering with on-going transcription with the 

help of the TC-NER specific proteins CSA, CSB, and XAB2 (Schärer, 2013). Both forms 

then employ the core NER reaction for repair of the lesion (Figure 1.4). Both methods result 

in a 24-32 nucleotide section surrounding the lesion being excised and DNA polymerase δ/ε/κ 

filling in the gap using the complementary strand as a template (Shuck et al., 2008). 

 

1.2.4 Non-homologous end joining (NHEJ) 

 DSBs are particularly dangerous DNA lesions that can lead to potentially oncogenic 

genome rearrangements or cell death (Mao et al., 2008). It is interesting to note, however, that 

DSBs are necessary for critical processes in the cell such as meiotic recombination and V(D)J 

recombination in immune system development (Jackson and Bartek, 2009). DSBs may result 
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Figure 1.4 Model for the core NER reaction. (A) Bulky DNA lesions that destabilise 

duplex DNA are induced by a number of damaging agents. (B) In global genome NER, 

strongly distorting lesions are directly recognised by XPC-RAD23B, which binds the non-

damaged strand opposite the lesion. (C) TFIIH interacts with XPC-RAD23B and pries the 

DNA open with its XPB subunit allowing XPD to track along DNA until stalls at the damage 

and verifies the chemical modification (bulkiness) of the lesion. (D) Stalling of XPD at the 

lesion allows for the formation of the pre-incision complex by recruitment of XPA, RPA, and 

XPG. The endonuclease XPG does not make an incision at this point. (E) Recruitment of 

ERCC1-XPF by interaction with XPA to the complex leads to incision 5’ to the lesion. (F) 

Initiation of repair synthesis by Pol δ and Pol κ or Pol ɛ and associated factors, followed by 3’ 

incision by XPG. (G) Completion of repair synthesis and sealing of the nick by DNA ligase 

IIIa/XRCC1 or DNA ligase I completes the process (Schärer, 2013). 
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from a number of factors, including the collapse of stalled replication forks, ionising radiation 

or certain anti-cancer drugs (Chapman et al., 2012).  

DSBs are most commonly repaired by two mechanisms; homologous recombination 

(HR) and non-homologous end joining (NHEJ). The cell’s choice of repair pathway in 

response to a DSB is determined by the stage of cell cycle in which the cell exists at that 

point. HR requires a section of homologous DNA in order to complete error-free repair and 

the sister chromatids on which this relies exist only during replication (i.e. the S and G2 

phases of the cell cycle). When not available the cell employs the simpler mechanism of 

NHEJ; however, this process is error-prone, often resulting in an altered DNA sequence 

(Shrivastav et al., 2008). Ku, a heterodimer consisting of Ku70 and Ku80, has an extremely 

high affinity for DNA ends and initiates NHEJ by binding DNA ends and recruiting DNA-

dependent protein kinase catalytic subunit (DNA-PKcs) forming the active DNA-PK 

holoenzyme (Meek et al, 2004). DNA-PK phosphorylates itself, as well as many other 

proteins involved in the repair pathway, including RPA, WRN, XLF, Artemis, DNA ligase IV 

(LigIV), and XRCC4. DNA-PKcs autophosphorylation causes a structural shift allowing 

DNA-end processing by PNKP, nucleotide addition by DNA pol λ and μ where required and 

finally ligation by the LigIV/XRCC4/XLF complex. This describes the classical-NHEJ 

pathway; however, an alternative exists which is promoted by PARP-1 and involves a PARP-

1/XRCC1/LIGIII complex (Mladenov and Iliakis, 2011). 

  

1.2.5 Homologous recombination (HR) 

 Efficient repair by HR requires a cascade of tightly controlled protein signalling 

pathways. This involves recognition of the DSB, the recruitment of repair factors and 
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execution of accurate repair, before deactivation of the response and disassembly of the 

proteins involved. Within the initial response to a DSB by HR, a distinct focal point around 

the location of the break is created and is often referred to as an Ionising Radiation-Induced 

Foci (IRIF) (Figure 1.5); this will stretch many megabases from the actual site of the break 

(Bekker-Jensen and Mailand, 2010). The MRN (MRE11-RAD50-NBS1) complex is the 

initial sensor and has an intrinsic capacity to bind DNA, before recruiting and stimulating 

ATM. ATM is activated through autophosphorylation at S1981 and also phosphorylates a 

number of other substrates. One of which is the histone H2AX, whose phosphorylation 

mediates interaction with the scaffold protein MDC1. MDC1 acts as a hub for many proteins 

involved in the DDR to attach and form repair foci, including the ubiquitin ligases RNF8, 

RNF168 and BRCA1 (Stewart et al., 2009).  

The interplay of DDR proteins within IRIF is extremely complex and highly 

regulated. The early response ultimately serves to bring about the recruitment of necessary 

factors to begin repair and the generation of a pre-synaptic filament to begin a homology 

search. DNA ends are resected to produce long, 3’-single-stranded DNA (ssDNA) tails. 

DNA end resection serves as a critical regulatory step in the choice of repair pathway 

for DSBs (Symington et al., 2011). During NHEJ, Ku binds DNA ends and prevents any 

resection. Conversely, resection of one strand at a DSB site prevents Ku binding obstructing 

repair by classical NHEJ and guiding the repair to be made via the HR mechanism. HR 

requires the resection of the 5’ strand to reveal a 3’-single stranded length of DNA, which 

then acts to locate a homologous strand of DNA on the sister chromatid (Mao et al., 2008). 

DNA end resection is carried out by a series of enzymes including nucleases and 

helicases. The MRN complex was alluded to earlier for its role as the initial sensor of DNA 
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Figure 1.5 The early responses to DSBs resulting in the highly hierarchical assembly of 

IRIF. The DSB (A) is sensed by the MRN (MRE11-RAD50-NBS1) complex, which recruits 

the ATM kinase (B) resulting in turn in the recruitment of the scaffold protein MDC1 via 

phosphorylation of the histone H2AX. MDC1 recruits many proteins including the ubiquitin 

ligase RNF8, which ubiquitylates histones (C) to further recruit a second wave of repair 

factors such as 53BP1, the BRCA1 A complex and so on (D). The assembly of these repair 

proteins controls various DNA and chromatin transactions, ultimately leading to repair of the 

DSB. P: phosphate, M: MRE11, N: NBS1, R: RAD50, Ub: Ubiquitin, A: Abraxas (ABRA1), 

80: Rap80, EXP1: EXPAND1 (Bekker-Jensen and Mailand, 2010).    
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damage and recruitment of ATM. It also acts as the major regulator of 5’-3’ resection 

and the MRE11 component of the complex exhibits a 3’-5’ dsDNA exonuclease activity and 

an ssDNA endonuclease activity (Mimetou and Symington, 2009; Paull and Gellert, 1998; 

Stracker and Petrini, 2011; Trujillo et al., 1998). CtIP is recruited to DSB sites through its 

interaction with BRCA1 and NBS1 to control the G2/M DNA damage checkpoint and direct 

the choice of repair pathway (Yun and Hiom, 2009). However, it also interacts with MRN to 

help mediate resection through its endonuclease activity and subsequently promoting HR 

(Sartori et al., 2007). The Bloom Syndrome protein (BLM) is also central to resection and 

recombination. It is a member of the RecQ family of DNA helicases and unwinds dsDNA in 

the 3’ to 5’ direction. It exhibits an affinity for recombination intermediates, such as D-loops 

and Holliday junctions, and co-localises with γ-H2AX (Wu et al., 2006; Bugreev et al., 2007).  

The ssDNA is initially coated with RPA, which is subsequently replaced by Rad51. 

This creates a nucleoprotein filament capable of homology searching and mediating strand-

exchange. This forms a D-loop structure and the 3’-end of the invading strand is extended by 

DNA polymerase. It can then dissociate and anneal to the other resected end, the ends joined 

by a DNA ligase and finally, the intermediate HJ structures (Holliday junctions) are resolved 

(Figure 1.6) (Mimetou and Symington, 2009). 

 

1.2.6 Diseases associated with malfunction of the DDR 

An effective DDR is crucial for the prevention of a number of diseases. Many 

syndromes and disorders result from mutations in DDR genes. They result in cancer 

predisposition, premature aging and affect the nervous, immune and reproductive systems 

(Ciccia and Elledge, 2010).      
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Figure 1.6 The DNA formations and processing during DSB repair by HR. A DSB occurs 

and repair foci form (A), followed by end resection (B) and the strand invasion by the 

recruited complementary sister DNA strand. DNA synthesis follows creating D-loop 

structures (C). Ligation of the DNA ends causes the formation of Holliday junctions (HJ) (D). 

Finally, these are junctions are resolved, which can result in the exchange (crossover) of DNA 

between sister chromatids (E) (adapted from Filippo et al., 2008). 
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Xeroderma pigmentosum (XP) was one of the first described DDR defect syndromes. 

Mutations in XPA-G and POLH result in inefficient NER of UV lesions greatly increasing the 

risk of skin cancer and melanoma (Hoeijmakers, 2009). Hereditary nonpolyposis colorectal 

cancer (HNPCC) results from mutations in the mismatch repair (MMR) genes MLH1, MSH2 

and MSH6, resulting in highly repeated short sequences of DNA (MIN) leading to a 

predisposition to colorectal cancer (Spry et al., 2007). Many other disorders caused by 

mutations in DDR genes result in cancer-prone phenotypes, a selection of which are shown in 

Table 1.1, along with some other DDR syndromes causing neuronal, immune, aging and 

fertility diseases. 

DDR disorders, neuronal disorders and premature aging 

Many neuronal cells must function for very long periods without renewal making 

them particularly vulnerable to DNA damage. Their high metabolic rate and oxygen 

consumption by mitochondrial respiration also generates large amounts of oxidative stress. 

Such factors aid development of neurodegenerative disorders such as Parkinson’s disease 

(PD), Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS), which are explored 

in greater detail in section 1.4.4 (Coppedé and Migliore, 2015). Many neuronal congenital 

disorders resulting in early life symptoms are caused by mutations in DDR genes. Ataxia 

telangiectasia (A-T) is a classical and extensively studied DDR disorder which results in 

severe movement and co-ordination problems in early life, as well as, immunodeficiency and 

predisposition to leukaemias and lymphomas (Biton et al., 2008). The disorder gave its name 

to the causative mutated gene, ATM (ataxia telangiectasia mutated). MRE11 (part of the 

MRN complex) is responsible for activating ATM in the DSB response. Mutations in the gene 

encoding MRE11 result in a similar phenotype to A-T (the syndrome is termed ataxia 

telangiectasia-like disorder (A-TLD)) and are reflective of the roles they have within the DDR
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Table 1.1 – Selected human genetic diseases associated with DDR defects. (Adapted from 

Ciccia and Elledge, 2010). 

Syndrome Mutated 

genes 

DDR defect Phenotype 

Cerebro-oculo-facio-
skeletal syndrome 
(COFS) 

CSB, XPD, 
XPG, ERCC1 

TC-NER Brain calcification, hypomyelination, 
microcephaly, neurodegeneration, 
cataracts, hearing loss, optic atrophy, 
osteopororsis, facial dysmorphism, 
joint contractures, photosensitivity, 
growth defects 

Cockayne syndrome 
(CS) 

CSA, CSB XPB, 
XPD, XPG 

TC-NER Microcephaly, neurodegeneration, 
neuronal demyelination, cachexia, 
cataracts, hearing loss, retinopathy, 
photosensitivity, growth defects 

Trichotiodystrophy 
(TTD) 

CPB, XPD, 
TTDA 

TC-NER Hypomyelination, 
neurodegeneration, cachexia, 
cataracts, osteopororsis, brittle hair 
and nails, photosensitivity, scaly skin 

Xeroderma 
pigmentosum (XP) 

XPA-G, POLH NER Microcephaly, neurodegeneration, 
squamous and basal cell carcinoma, 
melanoma photosensitivity, scaly skin 

Fanconi anemia (FA) FANCA-C, 
FANCD1, D2 
FANCE-G, 
FANCI,J,L-N 

ICL repair, 
HR 

Microcephaly, pancytopenia, bone 
marrow failure, AML, myelodysplasia, 
squamous cell carcinoma, abnormal 
skin pigmentation, infertility, limb 
deformities renal dysfunction 

Familial breast 
cancer 

ATM, BRCA1, 
BRCA2, BRIP1, 
CHK2, NBS1, 
PALB2, 
RAD50, 
RAD51C 

HR, damage 
signalling 

Breast cancer, ovarian cancer 

Werner syndrome 
(WS) 

WRN HR, BER, 
telomere 
maintenance 

Atherosclerosis, cataracts, grey hair, 
osteosarcoma, skin cancers, skin and 
skeletal abnormalities, growth 
defects 

Hereditary 
nonpolyposis 
colorectal cancer 
(HNPCC) 

MSH2, MSH6, 
MLH1, PMS2 

MMR Colorectal cancer, carcinomas 
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Ataxia telangiectasia 
(A-T) 

ATM Damage 
signalling, 
DAB repair, 
oxidative 
stress 

Ataxia, cerebellar degeneration, 
oculomotor apraxia, 
immunodeficiency, lymphomas, 
leukemias, breast cancer, dilated 
blood vessels, infertility, metabolic 
defects, growth defects 

Ataxia telangiectasia-
like disorder (A-TLD) 

MRE11 Damage 
signalling, 
DAB repair, 
oxidative 
stress 

Ataxia, cerebellar degeneration, 
oculomotor apraxia, 
immunodeficiency 

Nijmegen breakage 
syndrome (NBS) 

NBS1 Damage 
signalling, 
DAB repair, 
replication 
fork repair 

Microcephaly, immunodeficiency, B 
cell lymphoma, facial dysmorphism, 
growth defects 

Nijmegen break 
syndrome-like 
disorder (NBSLD) 

RAD50 Damage 
signalling, 
DAB repair, 
replication 
fork repair 

Microcephaly, facial dysmorphism, 
growth defects 

Seckel syndrome (SS) ATR, PCTN, 
SCKL2, SCKL3 

Damage 
signalling, 
DAB repair, 
replication 
fork repair 

Microcephaly, mental retardation, 
AML?, facial dysmorphism, growth 
defects 

Primary 
microcephaly 1 

MCPH1 Damage 
signalling, 
DAB repair, 
replication 
fork repair 

Microcephaly, mental retardation, 

Amyotrophic lateral 
sclerosis (ALS) 

SOD1, SETX, 
FUS, 

Oxidative 
stress, SSB 
repair? 

Degeneration of motor neurons, 
muscular atrophy, dementia in some 
cases 

 

 

 

 

 

 

 

 



21 

 

(Stewart et al., 1999). Consistent with the importance of the DDR during brain development 

many patients with DDR syndromes display microcephaly, a reduced head circumference 

caused by lack of neuroprogenitor cell proliferation (O’Driscoll and Jeggo, 2008). A number 

of the genes mutated have roles in the ATR pathway (primarily involved in the response to 

SSBs), including ATR and PCNA (proliferating cell nuclear antigen) (Seckel syndrome - SS), 

MCPH1 (primary microcephaly), RPA1 (Miller-Dieker lissencephaly syndrome) and RCF2 

(Williams-Beuren syndrome) (Kerzendorfer and O’Driscoll, 2009; O’Driscoll and Jeggo, 

2008). Furthermore, mutations in NBS1 and RAD50 cause Nijmegen breakage syndrome 

(NBS) and Nijmegen break syndrome-like disorder (NBSLD), respectively. They result in 

microcephaly and “bird-like” features, but with other symptoms very different from A-T and 

A-TLD patients, despite NBS1 and RAD50 being the other two components of the MRN 

complex (Katyal and McKinnon, 2008; Waltes et al., 2009). This can probably be attributed 

to the complex regulation of ATM and ATR activation by MRN confirming that different 

mutations in DDR genes cause different and distinct phenotypes (Ciccia and Elledge, 2010). 

Accumulation of DNA damage contributes to the aging process and numerous DDR 

syndromes exhibit premature aging. Werner syndrome (WS) causes symptoms astoundingly 

like those of normal aging but with significant acceleration and is caused by mutations in the 

RecQ helicase WRN, which functions in BER, HR and telomere maintenance (Bohr, 2008; 

Chu and Hickson, 2009). Cockayne syndrome (CS), trichotiodystrophy (TTD) and cerebro-

oculo-facio-skeletal syndrome (COFS) patients all display premature aging symptoms that 

result from mutations in genes involved in NER (Table 1.1) (Ciccia and Elledge, 2010). 
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The DDR and cancer 

Cancer is a disease characterised and ultimately defined by genetic instability. The 

majority of cancers display chromosomal instability (CIN), characterised by changes in 

chromosome number or structure, whilst base mutations and microsatellite instability (MIN) 

(variation in the number of repeats of small microsatellite sequences) are also common. Such 

genomic instability leads to the uncontrolled division of the cell (Ciccia and Elledge, 2010). 

Hanahan and Weinberg, 2011, describe genomic instability as an enabling characteristic of 

cancer, whilst eight cellular abilities termed ‘hallmarks’ are required for a malignant tumour 

to develop. These are: resisting cell death, sustaining proliferative signalling, evading growth 

suppressors, activating invasion and metastasis, enabling replicative immortality, inducing 

angiogenesis, deregulating cellular energetics and avoiding immune destruction. However, it 

is important to note that not all cells within a tumour may exhibit these properties as cancer 

cell populations are heterogeneous in nature.  

The clinical rationale for studying the DDR in relation to cancer is twofold. Firstly, 

mutations in DDR genes/proteins incapacitate one or more of the detection and repair 

pathways, such that DNA damage is not rectified. This damage may go on to produce a 

tumour. Secondly, many cancer cells have defects in their damage response pathways making 

them more susceptible to DNA damage than healthy cells. This observation has led to the use 

of DNA-damaging agents, such as irradiation and platinum-based derivatives, as anti-cancer 

therapies, despite inevitable side effects on healthy cells, resulting in hair loss, immune 

suppression, gastrointestinal problems and rather ironically, secondary tumour development 

(Kastan and Bartek, 2004). For example, cisplatin, a platinum-based drug, is used in the 

treatment of ovarian cancer. The drug crosslinks DNA, which is repaired by a combination of 

nucleotide excision repair (NER) and homologous recombination (HR). As many ovarian 
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cancers harbour mutations in BRCA1 or BRCA2 – crucial in HR – this makes the cancer cells 

more vulnerable to this treatment than normal cells (Lord and Ashworth, 2012). The 

development and use of PARP inhibitors in recent years to treat BRCA-1 and -2 deficient 

tumours works by the similar principle of ‘synthetic lethality’. Inhibition of PARP leads to 

stalled replication forks collapsing, resulting in DSBs. These require repair by HR, but the 

tumour cells are deficient in this mechanism of repair triggering cell death (Bryant et al., 

2005). The exploitation of a cancer cell’s DDR deficiencies for treatment is an exciting 

avenue of current research and a paradoxically interesting one considering such defects help 

drive initial tumourigenesis. 

DDR, fertility and the immune system 

Fertility also relies on an effective DDR. This is due to the generation of gametes 

during meiosis requiring exchange of DNA between homologous chromosomes via DSBs and 

subsequent repair by HR. Patients with the DDR syndromes, A-T, BS and FA, exhibit 

aberrant meiosis resulting in infertility (Biton et al., 2008; Bohr, 2008; Matzuk and Lamb, 

2008). Furthermore, the immune system depends on the creation of thousands of 

immunoglobulins and T cell receptors for antigen recognition. This occurs by V(D)J 

recombination facilitated by DSB formation by the nucleases RAG1, RAG2 and Artemis. 

Patients with mutations in any of these three genes display severe combined 

immunodeficiency (SCID) due to insufficient immunoglobulin production (Corneo et al., 

2007; Sobacchi et al., 2006; Gennery, 2006). 
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1.3 Heteronuclear ribonucleoproteins (hnRNPs) 

1.3.1 hnRNPs 

 mRNAs are the product of gene transcription and post-transcriptional processing by an 

extensive network of ribonucleoproteins (RNPs). Primary transcripts from DNA are termed 

pre-mRNAs and require processing to become mature mRNA, involving packaging, 

processing, nuclear export and cellular localisation to production sites in the cytoplasm. Such 

regulation by RNPs is complex and requires these proteins to recognise specific RNA sites. 

As well as protein-RNA interaction, RNPs exhibit protein-DNA and protein-protein 

interactions that connect them to the major regulatory networks of the cell (Haley et al., 

2009).  

 Only 2-3% of all primary transcriptional output is protein-coding. Protein coding 

regions are termed exons and non-protein coding are termed introns. Introns must be spliced 

from pre-mRNA and disposed of by the exosome (Mattick, 2003). However, intronic 

sequences have important roles in the regulation of chromatin architecture, transcription and 

alternative splicing. MicroRNAs (miRNAs) are also non-coding RNA sequences, typically 

21-25 nucleotides in length, that are coded by intergenic regions and are now being shown to 

have major regulatory roles in RNA silencing and post-transcriptional regulation of gene 

expression (Mattick, 2003). Therefore, post-transcriptional regulation of gene expression is 

complex and it appears that both RNA and RNPs co-operate to process pre-mRNA 

effectively.  

Eukaryotic mRNA usually requires guidance to distinct cellular locations. It is RNPs 

which direct this considerable RNA traffic. This requirement for transcript processing, 

signalling and localisation has led to the evolution of a diversity of RNPs with many
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structural conformations, binding specificities and isoforms (Haley et al., 2009). 

Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a large class of RNPs. They 

are characterised by their RNA-binding specificity and their association with one another 

within a large complex. However, this complex is highly dynamic and very readily 

remodelled through the loss or gain of hnRNPs due to the requirement for specific processes. 

There are at least 20 known hnRNPs with additions still being made in recent years due to the 

re-classification of some relatively well-studied proteins (Chaudhury et al., 2010). The most 

abundant of the hnRNPs are designated hnRNPA1 through to hnRNP-U and have molecular 

weights ranging from 34K to 120K. It is these members that are said to form ‘core hnRNPs’ 

(Dreyfuss et al., 1993). There are a number of other hnRNPs, which are not considered to be 

‘core hnRNPs’ as they do not co-immunoprecipitate as readily with core hnRNPs (Krecic and 

Swanson, 1999). 

 Whilst hnRNPs exhibit overlapping structure and function, they do not necessarily 

exhibit extensive amino acid homology to one another (Haley et al., 2009). Each individual 

hnRNP consists of both protein and RNA. The RNA component is critical for the facilitation 

of mRNA-binding through complementary nucleotide interactions. hnRNPs contain one or 

more RNA-binding motifs and at least one auxiliary domain that regulates protein-protein 

interactions and subcellular localisation (Chaudhury et al., 2010). 

Alongside histones, hnRNPs are some of the most abundant cellular proteins. They 

reside largely in the nucleus, but are known to shuttle between the nucleus and cytoplasm in 

transporting mRNA through nuclear pores to ribosomes. Indeed, the majority of their 

functions are still thought to principally involve mRNA metabolism (Chaudhury et al., 2010). 

However, in recent years they have been implicated in a far wider range of cellular activities, 

including the DNA damage response (DDR), which is a major focus of this study (Haley et 
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al., 2009). Extended involvement in a broader range of activities has led to more of hnRNPs’ 

protein-protein interactions being characterised. 

 

1.3.2 hnRNP-UL1 

 Screening of a human expression library to look for proteins that interacted with 

adenovirus 5 early protein E1B-55K allowed identification of hnRNP-UL1 (heterogeneous 

nuclear protein-U like 1), which was originally named adenovirus early region 1B-associated 

proteins 5 (E1B-AP5) (Gabler et al., 1998). However, subsequent revelation of sequence 

similarity to hnRNP-U (SAF-A) resulted in recognition of it together with hnRNP-UL2, as 

new members of the hnRNP family. In addition, a number of groups have isolated hnRNP-

UL1 as a component of large dynamic mRNA-RNP complexes (Hartmuth et al., 2002; 

Rappsilber et al., 2002; Chen et al., 2007) that form during RNA regulation and processing 

(Singh and Valcárel, 2005). Indeed, hnRNP-UL1 and –UL2 were shown to co-

immunoprecipitate with hnRNP-H, -K and –U (Pratt, 2012).  

 hnRNP-UL1 and –UL2 are approximately of 96 K and 85 K in molecular weight, 

respectively, and share 43% homology, with a significant amount shared across their 

conserved domains (Figure 1.7). Both contain an N-terminal SAP (after SAF-A/B, Acinus 

and PIAS) motif, which has DNA-binding capability and is found in many proteins with 

diverse functions, such as transcriptional regulation, DNA repair, RNA processing and 

chromosomal organisation (Aravind et al., 2000; Hong et al., 2013). The SPRY domain is 

present in about 700 eukaryotic proteins, of which 150 are human. Until recently it was 

considered to have no known function; however, studies have now revealed that it has 

importance in protein-protein interactions. Studies of TRIM5α and Pyrin showed that the 
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Figure 1.7 Structure of hnRNP-UL1 and -UL2 and their domains. A schematic 

representation of the hnRNP-U-like proteins and their domains with shared homology. SAP, 

SAF-A/B, Acinus and PIAS motif; SPRY, SPIa/Ryanodine receptor domain; NK, putative 

nucleoside/nucleotide kinase domain; BBS, BRD7-binding site; RGG, arginine and glycine-

rich region, RNA and ssDNA binding; PP, proline-rich region. (Adapted from Polo et al., 

2012). 
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amino acids lining the ligand-binding surface of the SPRY domain are highly variable and 

therefore, it is thought that each SPRY domain recognises its own specific partner protein 

rather than a consensus sequence motif (Woo et al., 2006). This suggests why SPRY domains 

are found within such a large number of proteins with hugely diverse functions in different 

biological processes. The RGG box was originally described in hnRNP-U and is characterised 

by closely spaced clusters of Arg-Gly-Gly (RGG) tripeptide repeats with interspersed 

aromatic (Phe, Tyr) residues (Chaudhury et al., 2010). Its major function is in facilitating 

RNA-binding, but it is also involved in protein-protein interactions, transcriptional activation 

and nuclear localisation (Hong et al., 2013). Methylation of arginine residues within the RGG 

box was first observed in 2001 and the BBS domain was shown to be involved in 

bromodomian-containing protein 7 (BRD7) binding (Kzhyshkowska et al., 2001). Proximal to 

the RGG box in hnRNP-UL1, but not hnRNP-UL2 there is a proline-rich region (PP) which 

has also been implicated in transcriptional regulation and in protein-protein interactions (Polo 

et al., 2012).  

Of greater interest to this study, is a previously undescribed region within both 

hnRNP-U, –UL1 and –UL2, which shows significant homology to human PNKP 

(polynucleotide kinase phosphatase). This region was identified as a putative nucleotide 

kinase domain (labelled NK in Figure 1.7) by Gabler et al. (1998). Details of this region and 

its significance to this study will be considered in section 1.3.5. A C-terminal region of 

hnRNP-UL1 and also hnRNP-U have been confirmed as being “prion-like” meaning they 

have a similar amino acid composition to yeast prion proteins enabling the proteins to take on 

an alternative form and convert native isoforms by self-templating (Li et al., 2013). This 

domain and its consequence are explored in detail in section 1.4.3.    
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Many of hnRNP-UL1 and –UL2’s functions are within mRNA metabolism. Gabler et 

al. (1998) described the adenovirus E1B-55K protein’s interaction with hnRNP-UL1 as 

critical for the viral control of the host cell’s mRNA transport and processing. This alluded to 

the already suspected roles of the U-like proteins in mRNA processing. hnRNP-UL1 was 

found to bind TAP (nuclear RNA export factor 1), a protein involved in RNA export from the 

nucleus further supporting its proposed role in mRNA processing (Bachi et al., 2000). 

hnRNP-UL1 has also been implicated in the regulation of RNA transcription by interaction 

with the transcription factors p53, BRD7 and SMAD2 (small and mothers against 

decaplentapegic-related 2) (Barral et al., 2005; Kzhyshkowska et al., 2001; Luo et al., 2006). 

Through interaction with U7 small nuclear ribonucleoprotein (U7 snRNP) hnRNP-UL1 also 

represses the transcription of histone genes outside of the S phase (Ideue et al., 2012). 

Apart from these RNA regulatory roles, the extent of hnRNP-UL1’s functions 

continue to grow with further study. A genetic variant of hnRNP-UL1, defined by an intronic 

single nucleotide polymorphism (SNP) (ID rs11881940), was identified in two separate 

studies as a genetic risk factor for the closely associated diseases myocardial infarction (MI) 

(Shiffman et al., 2006) and coronary heart disease (CHD) (van der Net et al., 2009). A 

replication study using different sample data confirmed the association between the SNP and 

CHD in a high risk population with familial hypercholesterolemia (van der Net et al., 2008). It 

remains unclear whether the mutation causes the encoding of a dysfunctional hnRNP-UL1 

protein leading to pathogenesis or that the SNP simply marks an inherited region of 

chromosome 19 which is associated with these diseases. 

There are a number of studies which have shown hnRNP-UL1 to have quite 

significant roles within the DNA damage response (DDR). Such roles included direct binding 

to p53 and regulation of its transcriptional targets. hnRNP-UL1 is involved in the mediation 
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of ATR-dependent signalling during adenovirus infection and is responsible for BLM 

recruitment necessary for DNA end resection. Furthermore, it is recruited specifically to 

double-strand DNA break sites (DSBs) through interaction with the MRN complex and 

PARP-1 (Barral et al., 2005; Blackford et al., 2008; Polo et al., 2012; Hong et al., 2013). 

These roles will be explored in more detail in section 1.6.  

 

1.3.3 hnRNPs in the DDR 

 In recent years, more and more evidence has accumulated which implicates hnRNPs in 

coordinating repair pathways both through protein-protein interactions and the regulation of 

mRNA transcripts for proteins involved in DNA repair and stress responses (Haley et al., 

2009). Given the extensive roles of hnRNPs in mRNA processing it is unsurprising that they 

play a pivotal role in repair pathways by controlling the expression levels of DNA repair 

proteins through post-transcriptional control of mRNA stability, splicing and translation 

(Reinhardt et al., 2011). More unexpected is their regulation by direct interaction with 

proteins involved in repair processes of which many examples have now been recognised.  

hnRNP K has been shown to play an important role as a cofactor of the DNA damage 

response protein, p53. siRNA knockdown of hnRNP-K inhibited effective recruitment of p53 

to the p21 promoter region. The subsequent downregulation of p21 expression led to 

ineffective cell cycle inhibition (Moumen et al., 2005). hnRNP K levels are controlled in cells 

by ubiquitin-dependent proteasomal degradation. However, Lee et al. (2012) showed that in 

response to DNA damage, hnRNP-K was SUMOylated, stabilising the protein and increasing 

its affinity for p53. This allows p53 to carry out its DDR and cell-cycle inhibition roles more 

effectively. Additionally, hnRNP-K SUMOylation was found to be ATR-dependent and 
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hnRNP-K is indeed a phosphorylation substrate of ATM and ATR. p53 was also shown to 

bind hnRNP-UL1 (the protein of interest to this study). The regulation of p53 activity is 

thought to be the opposite of that by hnRNP-K. hnRNP-UL1 instead binds to p53 to reduce its 

activity as a transcription factor for other genes (Barral et al., 2005).  

 Roles for other hnRNPs in the DDR are shown by hnRNP-B1’s interaction and 

inhibition of DNA-PK, causing the cell to direct its DSB repair towards the HR mechanism 

(Iwanaga et al., 2005). hnRNP-C1/C2 has been shown to bind Ku and be phosphorylated by 

DNA-PK suggesting a role in NHEJ (Zhang et al., 2004). The significance of this interaction 

and modification within the DDR has yet to be revealed. There is also some evidence to 

suggest a role for hnRNP-A1, -A18, -A2/B1, -C1/C2, -K and -P2 in regulating the choice 

between HR and NHEJ (Haley et al., 2009). 

As stated earlier, hnRNPs are now being recognised as having crucial roles in the 

DNA damage response through their mRNA processing activities. Unsurprisingly, in response 

to DNA damage, cells transiently inhibit gene transcription (Rockx et al., 2000; Vichi et al., 

1997). The reasons for doing so are obvious. Firstly, the genetic material is damaged and 

therefore, protein products may be functionally aberrant if produced. Secondly, transcription 

is very energy intensive (synthesis of an mRNA molecule with n bases requires at least n NTP 

molecules) and the cell must initially use its energy to address the repair of the damage. The 

time required to produce a final protein product from DNA is large in cellular terms and 

manipulation of specific gene expression is very much a secondary response to DNA damage. 

Therefore, for cells to accomplish DNA-damage-induced changes in mRNA expression, when 

transcription activity is globally supressed, is unlikely. It is more efficient to manipulate the 

mRNA already produced via processing activities. Several recent studies have now implicated 

hnRNPs as targets of the DDR for this specific purpose (Reinhardt et al., 2011).  
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 Cimprich and colleagues found that depletion of mRNA-binding and processing 

factors by RNA interference (RNAi) resulted in spontaneous γH2AX formation (Paulsen et 

al., 2009). Gorospe and colleagues found that over 50% of the observed changes in steady 

state mRNA levels in H1299 cells treated with UV were due to mRNA turnover, which is a 

process managed by RNPs (Fan et al., 2002). The mRNA levels of the tumour suppressor 

DDR protein Gadd45α were found to be stabilised in response to UV or MS exposure 

(Jackman et al., 1994). A more direct link to the DDR was found through a mass 

spectrometry-based phospho-proteomic screen for substrates of the DDR kinases ATM, ATR 

and DNA-PK in response to IR. Of 700 proteins identified in the study with a consensus 

ATM and ATR phosphorylation motif, 124 were proteins involved in mRNA transcription or 

processing (Matsuoka et al., 2007). Such phosphorylation would suggest a possible signalling 

mechanism for the control of these RNP activities in response to DNA damage (Reinhardt et 

al., 2011). 

It should also be noted that whilst there is a global repression of gene expression in 

cells following DNA damage many of the hnRNPs’ expression levels are in fact increased. 

The specific upregulation of hnRNP gene expression adds further evidence to their significant 

role in the DNA damage response. For example, γ-irradiation of cells caused hnRNP-A1 

transcript expression to increase 2-fold between 2 and 5 hours post-irradiation (Jen and 

Cheung, 2003). The protein was also found to translocate from the nucleus to cytoplasm in 

response to ultraviolet irradiation, and other forms of cell stress including heat shock, osmotic 

stress and oxidative stress (van Oordt et al., 2000). Furthermore, levels of hnRNP-A2/B1 

protein decrease 4-fold in response to γ-irradiation and hnRNP-A18 levels increase in 

response to UV exposure (Gamble et al., 2000; Yang and Carrier, 2001). It appears that
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different hnRNPs have very diverse roles within the DDR and their importance is now being 

increasingly recognised. 

 

1.3.4 hnRNP-UL1 in the DDR 

 In recent years, there has been much research showing various roles for hnRNP-UL1 

in the DDR. The C-terminal region of p53 was shown to interact with a middle region of 

hnRNP-UL1 incorporating the BBS and RGG regions, suggesting they are important for 

binding. Reporter assays also indicated that hnRNP-UL1 interacted directly with p53 to 

reduce its transcriptional activity and subsequently expression levels of p21 were reduced in 

cells transfected with hnRNP-UL1 after UV irradiation (Barral et al., 2005).  

 Multiple RPA complexes bind the 3’-single stranded DNA tails exposed due to 

resection during HR repair of DSBs. Blackford et al., (2008) showed that hnRNP-UL1 binds 

both RPA70 and RPA32, which are principle components of the RPA complex, as well as the 

protein ATRIP (ATR-interacting protein). Additionally, during adenovirus infection hnRNP-

UL1 is required for ATR-dependent phosphorylation of RPA32 and also contributes to 

phosphorylation of H2AX (Blackford et al., 2008). 

 In 2012, work published in conjunction with our laboratory highlighted further 

interactions of hnRNP-UL1, particularly with DDR proteins involved in DNA resection. The 

roles of the MRN complex, CtIP and BLM within resection are discussed in section 1.2.5. 

Polo et al. (2012) showed the hnRNP-U like proteins to interact with both the MRN complex 

and BLM, whilst further GST-pulldown and co-immunoprecipitation experiments have shown 

interactions with CtIP as well. The C-terminal region of NBS1 exhibited affinity for the BBS-

RGG region of hnRNP-UL1 and this interaction is crucial for the recruitment of hnRNP-UL1 
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to damage sites. Indeed, when RNA was depleted in cells to prevent its interaction with the 

hnRNP-U like proteins, the interdependent recruitment of hnRNP-UL1 and –UL2 to sites of 

DNA damage was observed (Polo et al., 2012). Furthermore, the NBS1 interaction was shown 

to be dependent upon arginine methylation in the RGG domain by PRMT1 (protein arginine 

methyltransferase 1) and this methylation was required for recruitment to laser-

microirradiation sites (Gurunathan et al., 2015). At DSB sites caused by either laser-induced 

or camptothecin (CPT)-induced damage hnRNP-UL1 was shown to promote resection of 5’ 

ends, in an ATR-dependent manner, through the recruitment of BLM (Polo et al., 2012). 

hnRNP-UL1 depletion causes mild radiosensitivity to DSB-inducing IR and CPT, but not 

SSB-inducing UV (Polo et al., 2012). Whilst ATR signalling is traditionally linked to SSB 

responses arising from stalled replication forks, it also has a crucial role in HR repair of DSBs 

due to the exposure of 3’ end tails by resection. hnRNP-UL1’s role in stimulating this 

resection, which is required to initiate RPA binding to the exposed ssDNA and subsequent 

ATR signalling, may explain the sensitivity to DSBs and not SSBs. Altogether, it appears that 

the direct protein-protein interactions of hnRNP-UL1 and –UL2 with members of the DDR 

are critically important in executing responses to particular forms of DNA damage. 

 An alternative proposal of hnRNP-UL1 recruitment to sites of damage is through 

interaction with PARP-1 (Hong et al., 2013). PARP-1 is rapidly recruited to sites of DNA 

damage where single-stranded DNA is exposed, including both SSB sites and DSB sites 

where resection has occurred. DNA-binding increases its catalytic activity of PARP-1 10- to 

500-fold (Rouleau et al., 2010). Its catalytic activity results in the poly ADP-ribosylation of 

many proteins involved in gene transcription, DNA damage repair, and cell death signalling 

(Krishnakumar and Kraus, 2010). However, its main substrate is itself and this auto-

modification is a method of increasing its own activity. Due to a reliance of many  
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cancer cells on PARP for DNA repair, PARP inhibitors have become of great clinical interest. 

Hong et al., (2013) recently showed a close relationship between PARP-1 and hnRNP-UL1. 

Interestingly, a number of RNA-binding proteins are PAR-dependently recruited in the early 

phase response to DNA damage and it appears that the electrostatic interactions between 

positively charged RGG repeats and negatively charged PAR are responsible for the 

recruitment (Altmeyer et al., 2015). hnRNP-UL1’s C-terminal region was shown to directly 

interact with PARP-1 and help facilitate recruitment to DSB, but not SSB sites. hnRNP-UL1 

also undergoes poly ADP-ribosylation and was shown to regulate the expression levels of 

PARP-1 via mRNA processing (Hong et al. 2013). This rapid recruitment of hnRNP-UL1 to 

damage sites provides a possible early role in DDR signalling different from that of its 

promotion of resection, but its precise early-phase role is unclear. 

 The roles of hnRNP-UL1 in the DDR make it a potential target for cancer therapy as 

cancer cells commonly have defects in their response pathways. The discussed requirement of 

hnRNP-UL1 in ATR signalling is interesting as cancer cells are heavily reliant on the ATR 

pathway to progress through S phase under high levels of replicative stress (Nam and Cortez, 

2011). Therefore, inhibition of hnRNP-UL1 could cause cancer cells to be more susceptible to 

treatment with DNA-damaging agents than healthy cells. However, to design drugs specific 

for the hnRNP-U like proteins whilst not affecting other hnRNPs would not be straight 

forward.  
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1.3.5 hnRNP-UL1’s Walker A motif and activity of PNKP 

ATP-binding and the Walker A motif 

 A vast number of proteins of both eukaryotic and prokaryotic organisms bind and 

utilise the mononucleotides adenosine 5’-triphosphate (ATP) or guanosine 5’-phosphate 

(GTP) (Matte and Delbaere, 2010). Given that the transfer of the γ-phosphoryl moiety from 

these molecules can be used in such a wide array of metabolic activities it is unsurprising that 

so many proteins possess the ability to bind mononucleotides. For example, P-loop NTPases 

(nucleoside tripohosphatases) represent 10-18% of all proteins in sequenced genomes 

(Koonin et al., 2000). 

Proteins have evolved different methods of binding the ATP or GTP molecule through 

recognition of the triphosphate, the ribose sugar and/or the adenine base. Evolution has led to 

conserved motifs which are responsible for this binding, and these contain amino acid 

sequences or structures facilitating the interaction. With a focus on ATP-binding, the Walker-

A motif is the best-known and first-identified such motif. The motif GXXXXGKT/S (X = any 

residue) was recognised in 1982 by Walker and colleagues as a common sequence required 

for ATP-binding in F1-ATPase, myosin and a number of kinases (Walker et al., 1982). Upon 

structural analysis the sequence was found to form a loop structure sandwiched between an N-

terminal β strand and a C-terminal alpha-helix and became known as the Walker loop or P-

loop (phosphate-binding loop) (Figure 1.8) (Ramakrishnan et al., 2002). The loop contains a 

pair of conserved glycine residues which allow for main-chain hydrogen-bonding interactions 

with the phosphoryl groups of the nucleotide. A conserved serine or threonine residue is 

found at the C-terminus of the loop co-ordinating interaction with the catalytic Mg
2+

 ion, 

whilst the lysine residue is involved in phosphoryl transfer (Matte and Delbaere, 2010). 
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Figure 1.8 Crystal structure of yeast adenylate kinase (pale green) bound to the ATP-

mimic, bi-substrate inhibitor bis(adenosine)-5’-pentaphosphate (Ap5A), and Mg
2+

 at 

1.96A° resolution. The β-strand-loop-α-helix motif containing the P-loop is coloured grey, 

with the catalytic Lys16 coloured blue, and the three Gly residues of the P-loop coloured 

yellow. Hydrogen-bonding interactions with the Ap5A inhibitor (red = oxygen, blue = 

nitrogen, grey = carbon and green = phosphorous) are indicated as grey dashed lines (Matte 

and Delbaere, 2010).  
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DNA end processing by PNKP 

As described earlier many different agents can cause various types of DNA damage 

and they are repaired by various activities of the DDR machinery. For many types of DNA 

lesion, the effective repair by a number of the pathways requires the DNA ends to be 

processed before ligation can occur. Human PNKP (polynucleotide kinase phosphatase) 

contains both 5’-kinase and 3’-phosphatase activity, allowing the creation of 5’-phosphate/3’-

hydroxyl termini, which are essential for synthesis by polymerases and ligation of the two 

strand ends (Schellenberg and Williams, 2011). PNKP has been shown to have crucial roles in 

SSB repair, DSB repair and BER (Weinfeld et al., 2011). Segal-Raz et al. (2011) 

demonstrated the phosphorylation of PNKP at residues Ser-114 and Ser-126 by ATM in 

response to DSBs to be crucial for upregulating PNKP activity and effective accumulation at 

sites of damage. PNKP has attracted clinical interest due to the discovery that, like many 

DDR proteins, its inhibition can result in the sensitisation of cancer cells to irradiation or 

chemotherapeutics (Zhu et al., 2009; Allinson, 2010). In addition, Shen et al. (2010) showed 

that mutations of PNKP are associated with the severe autosomal recessive disorder MCSZ 

(debilitating and heritable seizure syndrome).  

Towards the C-terminus of PNKP there is a bi-lobed catalytic domain, which contains 

fused kinase and phosphatase subdomains with separate catalytic activities. These subdomains 

have significant contact with one another across a relatively large interface such that the 

domains cannot be separated by proteolysis during crystallographic studies (Bernstein et al., 

2005). The catalytic domain is linked to an N-terminal FHA (forkhead-associated) domain by 

a flexible polypeptide segment (Figure 1.9). The FHA domain permits binding to XRCC1 and 

XRCC4, which are critical scaffolding proteins in the repair of SSBs and DSBs, respectively 

(Loizou et al., 2004; Koch et al., 2004).        
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Figure 1.9 Ribbon diagram of mouse PNKP. The kinase domain is in yellow, the 

phosphatase domain in blue and FHA domain in green. Catalytic side chains (Asp170 and 

Asp396 in the phosphatase and kinase, respectively) are in pink, the ATP-binding P-loop is in 

navy blue, and the sulphate bound at the P-loop is in orange and red spheres (Bernstein et al., 

2005).  
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The detailed interaction of PNKP with its DNA substrate was unclear until recently. 

The crystallographic studies of Coquelle et al. (2011) employed mouse PNKP to look at the 

phosphatase subdomain’s interactions with both ssDNA and dsDNA. In short, single-stranded 

substrates interact with a narrow active site cleft of the phosphatase domain in a sequence-

independent manner. For double-stranded substrates, PNKP is able to destabilise the terminal 

2-3 base pairs at the 3’-phosphate end allowing access to the active site. However, another 

positively charged region of PNKP, distinct from the active site, specifically facilitates 

double-strand substrate interactions (Coquelle et al., 2011). These interactions are limited to 

the phosphatase domain.  

The kinase domain obviously requires the binding of ATP for its activity and is 

defined in human PNKP by its Walker-A and –B motifs. The kinase domain belongs to the 

adenylate kinase family and consists of a 5’-stranded parallel β sheet, which is flanked by 

helices on both sides. Such an arrangement is common in P-loop kinases (Bernstein et al., 

2005). The ATP-binding site and the DNA substrate binding site exist within a long cleft 

(Figure 1.10). The β- and γ-phosphates of ATP are bound by the Walker-A loop, whilst the 

Walker-B motif is involved in positioning the motifs and co-ordinating Mg
2+

 (a co-substrate 

required for activity). Mammalian PNKP shows kinase substrate preference towards a 

recessed 5’-hydroxyl with a 3’ overhang greater than 3 nucleotides (Bernstein et al., 2005). 

This makes biological sense considering the 5’ resection of DNA ends during HR of DSBs. 

An aspartic acid residue (Asp397 in human PNKP) is also responsible for the activation of the 

5’-hydroxyl for attack on the ATP γ-phosphate (Weinfeld et al., 2011). 

Of interest to this study is the fact that upon comparison of the hnRNP-U proteins and 

PNKP some homology can be observed in their respective putative kinase and established 

kinase domains. This is discussed in detail in section 3.2.1.      
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Figure 1.10 The mouse PNKP active site cleft permitting ATP and DNA binding. The 

Walker-A and –B motifs form the ATP-binding site and are shown in green. Sulphate ions 

bound at the active site are shown in orange and red. S1 corresponds to the β-phosphate of 

ATP, while S2 mimics the binding of a DNA backbone phosphate. The side chains of residues 

involved in catalysis or substrate binding are shown in yellow. The red sphere (W1) represents 

the location of the substrate 5’-hydroxyl during binding (Bernstein et al., 2005). 
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1.4 Amyotrophic lateral sclerosis (ALS) 

Amyotrophic lateral sclerosis (ALS) is a hugely debilitating neurodegenerative disease 

affecting 4-6 people per 100,000 (Dion et al, 2009). Age of onset most commonly occurs 

between the ages of 45 and 60. The disease is relentlessly progressive with 50% of patients 

succumbing to death within 30 months and only 20% surviving between 5 and 10 years after 

initial symptom recognition (Talbot, 2009). It affects the lower motor neurons (LMNs) in the 

brainstem and spinal cord and the upper motor neurons (UMNs) in the motor cortex 

(Robberecht and Philips, 2013). As axons die and neuronal connections fail, symptoms and 

signs emerge with, typically, progressive muscular weakness and finally death resulting from 

paralysis and respiratory failure. There is also damage to neurons in the prefrontal and 

temporal cortex of the brain but this varies considerably amongst patients. The degeneration 

of these neurons results in cognitive defects in as many as 20-50% of ALS patients (Ringholz 

et al., 2005). In fact, there is an increasingly strong overlap between ALS and frontotemporal 

dementia (FTD), both clinically and pathogenically. FTD results from degeneration of 

neurons in the front and temporal lobes causing changes in personality, speech and behaviour 

(Lee et al, 2013). The genetic links between the two will be explored in detail later on. 

Despite efforts, extensive investigations and trials, only one drug (riluzole) has been 

shown to have any beneficial effect on survival time for ALS patients, and it is a moderate 3-6 

months (Bensimon et al., 1994). Unravelling of the disease aetiology is providing avenues for 

therapeutic agent design. The discovery of C9ORF72 GGGGCC (G4C2) repeat expansions has 

led to the development of small molecules targeting these repeats and decreasing amounts of 

the disease-causing protein (Su et al., 2014). The often late diagnosis of ALS creates a 

problem for treatment strategies. Cell replacement and stem cell therapies are a large area of 

current research, as are the use of siRNAs in an attempt to decrease the production of disease-
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causing proteins in neuronal cells (Vuvic et al., 2014). However, the biggest strides in clinical 

therapy are being made in tackling physical symptoms to improve quality of life. For 

example, percutaneous gastronomy provides nutrition when oral intake is difficult due to 

dysphagia and respiratory management including assisting coughing to aid ventilation 

(Rosenfeld and Strong, 2015). 

ALS is classified as familial (fALS) in 5-10% of cases, commonly with hereditary 

links and an autosomal dominant pattern of inheritance (Sreedharan, 2008). Patients who have 

no detectable affected relatives are said to have the sporadic form (sALS) of the disease. The 

two forms mirror one another clinically and in recent years have been shown to have many 

molecular and cellular commonalities, including genetic factors (Verma and Tandan, 2013).  

 

1.4.1 ALS aetiology and pathogenesis 

Large strides have been made in the last 5-10 years in the understanding of the 

disease’s pathogenesis as more genetic causes are discovered. Like many other 

neurodegenerative diseases, aggregates of disease-causing mutant proteins are hallmarks of 

ALS (Robberecht and Philips, 2013). These ubiquitylated proteins aggregate in motor neurons 

and glial cells, primarily of the spinal cord and motor cortex causing an imbalance in normal 

protein homeostasis resulting in cellular stress (Laferriere and Polymenidou, 2015). Normal 

cellular functions, such as intracellular transport, cytoskeletal structure and mitochondrial 

function are disrupted to the point that the neurons become dysfunctional (Figure 1.11). The 

axons begin to retract, which initially can be countered by new sprouting and re-innervation 

by the axons of more resistant neurons (Saxena and Caroni, 2011). With time, however, the 

disease progresses as these compensative methods and the more resistant neurons are 
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Figure 1.11 Overview of events in the pathogenesis of amyotrophic lateral sclerosis. 

Proteasomal and autophagic degradation of protein is caused by mutations in superoxide 

dismutase 1 (SOD1), ubiquilin 2 (UBQLN2), optineurin (OPTN), vasolin-containing protein 

(VCP) and potentially TARDBP (encoding TAR-binding protein 43 (TDP43)) and fused in 

sarcoma (FUS) (yellow). Mutations in chromosome 9 open reading frame 72 (C9ORF72), 

TARDBP and FUS cause aberrant RNA processing and structurally abnormal proteins 

(purple). This leads to aggregate formation, endoplasmic reticulum (ER) stress and 

mitochondrial dysfunction (orange). Cytoskeletal structures are misformed and axonal 

function fails leading to denervation and retraction. Non-neuronal cells affect this process 

either through loss of normal function or gain of toxic effect. Stress response capacity and 

susceptibility to excitotoxicity (for example, through the permeability characteristics of the 

glutamate receptor) are factors of vulnerability making neurons sensitive to these processes. 

(Adapted from Robberecht and Philips, 2013). 
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overcome. Following this axonal dysfunction and retraction, animal models have shown that 

the neuron cell bodies become visibly abnormal and die (Saxena and Caroni, 2011; Fischer et 

al., 2004).  

In the following sections proteins that have been found to be mutated in ALS are 

discussed. 

Superoxide dismutase 1 (SOD1) and oxidative stress 

Understanding ALS at the molecular and genetic levels began with the identification 

of mutations in SOD1, which account for 15-20% of fALS cases (Dion et al, 2009). SOD1 is a 

cytosolic free-radical scavenger. More than 150 mutations have been reported to be 

pathogenic (Andersen and Al-Chalabi, 2011), of which nearly all are dominant. The discovery 

of a gene linked to ALS with an antioxidative role was not a surprise as there is a strong link 

between oxidative stress and neurodegenerative diseases (Barber and Shaw, 2010). Oxidative 

stress was shown to affect the release of presynaptic transmitters at neuromuscular junctions 

(Pollari et al., 2014). The amount of ROS in cells increases with age and is thought to be due 

to an increased leakage from the electron transport chain within mitochondria (Genova et al., 

2004). Given that neuronal cells must function for long periods and have an extremely high 

energy demand provided through mitochondria, it is to be expected that they have an 

increased risk of ROS production and subsequently succumb to diseases such as ALS in 

which most cases are diagnosed past age 50. Whilst it remains unclear whether oxidative 

stress is an initial driver of degeneration or a consequence of other pathogenic factors, there is 

clear evidence of elevated oxidative stress in ALS patient neuronal cells. Several post-mortem 

studies have shown an increase in oxidative stress markers compared to controls (Ferrante et 

al., 1997; Beal et al., 1995; Shibata et al., 2001) and the extraction of cerebrospinal fluid from 
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ALS patients confirmed these increases at earlier stages of the disease (Bogdanov et al., 2000; 

Ihara et al., 2005).  

The discovery of ALS patients with SOD1 mutations reinforced the link between 

oxidative stress and ALS. Mutant SOD1 animal models showed elevated levels of ROS with 

mutant SOD1 being one of the most highly oxidised proteins in the cell (Liu et al., 1998; 

Andrus et al., 1998). However, recent evidence suggests that loss of SOD1’s dismutase 

activity is not critical for pathogenesis. Whilst some ALS patient SOD1 mutations do lead to 

decreased activity as a free-radical scavenger (e.g. A4V and G85R) leading to increased ROS 

accumulation, there are also many others that do not (e.g. G37R and G93A) (Borchelt et al., 

1994; Yim et al., 1996). Additionally, SOD1 knockout mice did not develop ALS (Reaume et 

al., 1996), whilst manipulating wild-type levels of SOD1 in mutant SOD1-related ALS cells 

had no effect (Bruijn et al., 1998). Instead many SOD1 mutations cause misfolding and 

despite targeting for degradation through ubiquitylation, the proteins escape this process 

forming polymers and subsequently larger aggregates (Robberecht and Philips, 2013). 

Therefore, it appears that protein aggregation is critical in driving disease pathogenesis in 

SOD1 mutant patients. Interestingly, wild-type SOD1 proteins, that have undergone 

oxidation, have also been found in aggregates of sALS patients lacking SOD1 mutations 

(Brotherton et al., 2012).  

Impaired protein degradation 

The generation of cytoplasmic aggregates can occur due to interference with 

proteasomal and autophagic protein degradation caused by mutations in superoxide dismutase 

1 (SOD1), vasolin-containing protein (VCP), ubiquilin 2 (UBQLN2) and optineurin (OPTN) 

(Figure 1.11) (Robberecht and Philips, 2012).       
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Transactive response element DNA/RNA binding protein of 43 kDa (TDP43) 

 TDP43, an RNA processing protein, is found in neuronal inclusions of 97% of ALS 

patients (Laferriére and Polymenidou, 2015). TARDBP, the encoding gene of TDP43, has 

been shown to have more than 35 dominant mutations causing ALS. Mutations were found to 

be predominantly located in the C-terminal region required for ribonucleoprotein binding and 

splicing (Sreedharan et al., 2008). The protein is part of the heterogeneous ribonucleoprotein 

family, which functions in transcription, RNA splicing and transport (see section 1.3.1). 

Whilst predominantly located in the nucleus, during times of cell stress TDP43 largely resides 

in the cytoplasm and is recruited to stress granules. It functions to hold nonessential mRNA 

within an inactive state whilst the cell prioritises synthesis of proteins which can respond to 

the stressor, such as heat shock proteins (Robberecht and Philips, 2013). When stress 

resolves, TDP43 is released and relocates to the nucleus. A recent study showed TDP43 

mutations to shift this nucleus-cytoplasmic balance in favour of the latter and it is thought that 

its presence within stress granules provides a pro-aggregation environment and consequently 

its inclusion within ALS aggregates (Johnson et al., 2008; Dewey et al., 2012).  

Fused in sarcoma (FUS) 

 FUS is another RNA-processing protein with mutations linked to ALS. Like TDP43, 

FUS is predominantly nuclear, but is shuttled between nucleus and cytoplasm via transportin. 

The majority of ALS-causing mutations are missense and located within the C-terminal 

region, which, like TARDBP, contains a RNA-binding domain, as well as a nuclear 

localisation sequence (NLS). Disruption of nuclear import leads to cytoplasmic accumulation, 

recruitment to stress granules and continued aggregation (Dormann et al., 2010). Like TDP43, 
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FUS mutations are linked with FTD patients providing strong evidence that ALS and FTD are 

phenotypic variants of common pathological processes (Lee et al, 2013).  

Chromosome 9 open reading frame 72 (C9ORF72) 

Aetiological similarities between ALS and FTD subsequently led to genetic linkage 

studies and the identification of a locus on chromosome 9p21 in familial ALS-FTD (Vance et 

al., 2006) and genome-wide association studies in sporadic ALS and FTD (Shatunov et al., 

2010; Lee at al., 2013). Further investigation revealed a GGGGCC (G4C2) repeat expansion 

within intron 1 of C9ORF72 (DeJesus-Hernandez et al., 2011; Renton et al., 2011). It has 

proved to be a major breakthrough within the genetic analysis of ALS and it is now 

recognised as the most common genetic cause of both ALS and FTD. Repeats are found in 

over 40% of fALS, 20% of sALS cases, 25% of familial FTD cases and up to 90% of families 

with concurrent ALS and FTD (Renton et al., 2014; Majounie et al., 2012). Normal 

individuals typically have less than 25 G4C2 repeats (Majounie et al., 2012). Southern blotting 

studies have shown the repeats to number from 700-4400 in ALS and FTD patients (DeJesus-

Hernandez et al., 2011; Gijselinck et al., 2012). C9ORF72 has a proposed role in endosomal 

and autophagy-lysosomal vesicle trafficking, suggesting a role in protein degradation (Farg et 

al., 2014). Interestingly, several patients with C90RF72 mutations have also been found to 

have mutations in a secondary gene, such as TARDBP (Van Blitterswijk et al., 2012).  This 

suggests possible oligogenic aetiology of ALS and could provide a possible explanation for 

the phenotypic variation seen with C9ORF72 mutations, as well as their presence in both ALS 

and FTD patients (Robberecht and Philips, 2013). 
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1.4.2 RNA processing and ALS 

In recent years, an irrefutable link has been made between RNA metabolism 

dysfunction and neurodegenerative diseases, including ALS and FTD (Xu et al., 2013). The 

emergence of this theme in ALS began with the identification of disease-associated mutations 

in the RNA-binding proteins, TDP43 and FUS. Both have extensive roles in RNA-processing, 

including RNA transcription, splicing, transport, translation and microRNA production. G4C2 

hexanucleotide repeat expansions in C9ORF72, the most common known cause of fALS and 

sALS, have been shown to sequester RNA-binding proteins in nuclear foci including the 

direct binding of hnRNP-H to the RNA repeat nucleotides (Lee et al., 2013). Therefore, it 

appears that these major players are beginning to unravel a common link of dysfunction of 

RNA dynamics as a critical pathogenic mechanism in ALS. In addition, mutations in the 

RNA-binding proteins Ewing sarcoma breakpoint region 1 (EWSR1; Couthouis et al., 2012), 

TATA-box binding protein-associated factor 15 (TAF15; Couthouis et al., 2011), ataxin-2 

(Elden et al., 2010), and more recently, hnRNP-A1 and hnRNP-A2/B1 (Kim et al., 2013) 

have all been associated with ALS. The various aspects of aberrant RNA processing leading 

to ALS pathogenesis are currently being elucidated and are discussed briefly below. 

Mutations in TDP43 and FUS lead to mis-localisation away from the nucleus to the 

cytoplasm and may lead to cytotoxicity by a number of mechanisms. Both TDP43 and FUS 

regulate thousands of RNA targets (Polymenidou et al., 2011; Lagier-Tourenne et al., 2012). 

The dysregulation of such important proteins is likely to have severe downstream 

consequences. Whilst studies have shown that the overlap between the RNAs that the two 

proteins regulate is not very extensive, the 86 that they do have in common are enriched in 

very long intron sequences; these are known to have specific roles in neuronal cells 

suggesting an explanation for neuronal cell susceptibility (Lagier-Tourenne et al., 2012). 
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TDP43 and FUS depletion has been shown to result in the down-regulation of neuroglins and 

neurexins, proteins essential for effective neuronal function (Lagier-Tourenne et al., 2012). 

Studies investigating TDP43 and FUS knockdown effects have also shown complex 

alterations in splicing regulation depending on the specific binding location relative to exon-

intron boundaries, causing enhanced or reduced exon splicing in hundreds of different genes 

(Tollervey et al., 2012; Polymenidou et al., 2011; Lagier-Tourenne et al., 2012). 

RNA-processing proteins play important roles in protecting the cell during times of 

cellular stress, which include DNA damage, heat stress, and chemical exposures (Li et al., 

2013). The priority in cells during this time is to conserve energy and divert cellular resources 

toward actions that will enable survival and recovery. Limiting translation of mRNAs to only 

those producing proteins required at that time is one way to conserve resources. This is 

achieved by assembling non-essential mRNAs and their associated RNA-processing proteins 

in to structures such as nuclear paraspeckles and cytoplasmic stress granules (SGs) where 

translation is stalled; later this may be reinitiated once the stress is cleared. Processing bodies 

(P-bodies) are separate sites at which mRNA may be degraded (Kedersha et al., 2005). Many 

RNA-processing proteins, including TDP43 and FUS, play important roles in SGs under 

conditions of cellular stress (Robberecht and Philips, 2013). An extended presence of TDP43 

and FUS at SGs may sequester other RNA-binding proteins (RBPs) as both bind a diverse set 

of RNA-processing proteins, including several hnRNPs; however,  no evidence of hnRNP-

UL1 sequestration has been shown thus far (Freibaum et al., 2010; Chi et al., 2011). Extended 

periods of cellular stress suggest a potential mechanism for sALS initiation in which stress 

granule-mediated sequestration, rather than mutations, leads to dysfunction of RNA-

processing proteins (Xu et al., 2013). Whilst considering these pathological pathways, 

perhaps most striking is that numerous studies have shown that deletion of the RNA-binding 
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domains in TDP43 and FUS prevents their aggregation and reduces cytotoxicity, confirming 

RNA-binding as a crucial factor in their ALS pathogenesis (Voigt et al., 2010; Ihara et al., 

2013; Daigle et al., 2012). 

C9orf72 RNA transcripts with G4C2 repeats form unique G-quadruplex secondary 

structures and DNA-RNA hybrids, which also sequester RBPs (Reddy et al., 2014; Lee et al., 

2013). Subsequent depletion of RNA-processing proteins may cause ALS toxicity through 

RNA misprocessing. Despite the hexanucleotide repeat of C9orf72 being within the first 

intron it is translated into polypeptides by a unique pathway known as repeat-associated non-

AUG dependent (RAN) translation (Barmada, 2015) (Figure 1.12). Defective splicing and 

stalling of the ribosomal machinery results in translation in all reading frames of both the 

sense and anti-sense strands (Mori et al, 2013). This produces dipeptide repeats, such as poly-

(Gly-Ala), poly-(Gly-Pro) and poly-(Gly-Arg), which induce aggregation, disrupt RNA 

processing within nucleoli (Kwon et al., 2014) and alter the function of Unc119, a protein 

required for axon development (May et al., 2014; Knobel et al., 2001). Recently, C9ORF72 

has been proposed to have a role in endosomal and autophagy-lysosomal vesicle trafficking 

(Farg et al., 2014). A role in protein degradation like that of ubiquilin-2 may be another 

mechanism leading to the protein accumulation seen in ALS. 

In addition to RNA expression, RNA splicing and sequestration, aberrant TDP43 and 

FUS function interferes with the biogenesis and processing of noncoding regulatory RNAs, 

such as microRNA (miRNA). Both proteins have been shown to bind directly to a number of 

miRNAs, as well as to interact with the miRNA processing complexes Drosha and Dicer 

(Gregory et al., 2004; Kawahara and Mieda-Sato, 2012). ALS patient cells exhibit abnormal 

miRNA levels and TDP43 depletion has been shown to significantly reduce levels of miR-

132-5p, miR-143-5p/3p and miR-574-3p (Freischmidt et al., 2013). Interestingly, miRNA 
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Figure 1.12 RNA dysfunction in ALS. Abnormal levels or localisation of transactive 

response element DNA/RNA binding protein of 43 kDa (TDP43) and fused in sarcoma (FUS) 

can alter (1) RNA splicing, (2) protein expression and (3) regulation by noncoding RNAs. (4) 

C9orf72 G4C2 repeats can sequester RNA-binding proteins (RBPs) and (5) expression through 

repeat-associated non-AUG dependent (RAN) translation causes further toxicity. (6) TDP43 

and FUS participate in stress granule formation and abnormal dynamics may result in (7) 

RNA/RBP sequestration leading to (8) the formation of classical ALS protein aggregates 

(Barmada, 2015).  
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levels are tissue type-specific and very important to neuronal health. Their depletion has been 

shown to lead to neurodegeneration and provides further evidence for the selective 

vulnerability of motor neurons in ALS (Kawara and Mieda-Sato, 2012; Haramati et al., 2010). 

 

1.4.3 Prion-like domain (PrLD) proteins and ALS 

Prion proteins contain primary sequences which enable folding in to a number of 

different conformations. In addition, the ‘prion form’ can self-replicate by converting the 

native isoform to its own and seeding aggregation. The effects can be extensive as the new 

conformation typically alters protein function and diminishes the population of the native 

isoform. This behaviour is perhaps best known in prions causing transmissible brain wasting 

diseases, such as bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease 

(CJD) (Colby and Prusiner, 2011). However, prion proteins are not all transmissible 

pathogens and are advantageously utilised in yeast (Saccharomyces cerevisiae) to pass 

specific heritable phenotypes from mother to daughter cell (Shorter and Lindquist, 2005). In 

addition, a prion-like behaviour of human proteins underpinning the pathogenesis of 

neurodegenerative diseases has begun to be elucidated in recent years (King et al., 2012). Due 

to the protein misfolding and aggregation seen in Parkinson’s disease (PD), Alzheimer’s 

disease (AD) and tauopathies (neurodegenerative diseases associated with an aggregation of 

tau protein) they have been termed proteinopathies, with α-synuclein in PD, β-amyloid in AD, 

and tau protein in various forms of dementia being the major proteins responsible by 

emulating prion behaviour (Grad et al., 2015). 

ALS is also considered a proteinopathy as protein aggregation defines the disease. The 

focal start and contiguous, progressive spread of affected neurons in ALS is typical of the
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seeded aggregation of prion proteins and has formed the basis of a prion-based theory of 

pathogenesis (Grad et al., 2015). The theory has gained momentum with the discovery of 

more and more proteins involved in ALS that have prion-like domains (PrLDs) and 

propensities. Yeast prion domains were originally thought of as 60 amino acids or more in 

length and enriched in asparagine (N) and glutamine (Q). Tyrosine (Y) and glycine (G) are 

now also recognised as relatively important residues for prion propensity. These amino acids 

generate a sequence of low complexity allowing flexibility in their intrinsic folding (Alberti et 

al., 2009; Toombs et al., 2010). Increasingly sophisticated algorithms have been designed in 

recent years which have allowed the identification of domains with possible prion-like 

behaviour. Among the 246 of 21,873 human genes analysed showing PrLDs there was a ~12-

fold enrichment for RNA-binding proteins containing an RNA-recognition motif (RRM) 

domain (Couthouis et al., 2011). Another study showed of the 210 human RRM-bearing 

proteins, 29 have a PrLD, and 12 of these score in the top 60 prion candidates in the entire 

genome (King et al., 2012). Considering the importance of RNA-binding proteins in ALS this 

is a striking and interesting discovery. Of the RRM-containing proteins with PrLDs, the ALS-

linked FUS, TAF15, EWSR1, and TDP43 were ranked 1
st
, 2

nd
, 3

rd
 and 10

th
 respectively, for 

prion propensity (King et al. 2012; Couthouis et al., 2011). FUS contains an N-terminal 

(amino acids 1-239) and TDP43 a C-terminal (amino acids 274-414) PrLD (Maniecka and 

Polymenidou, 2015). The domains make the proteins aggregation-prone and a prolonged 

presence in the cytoplasm may be enough to stimulate permanent aggregation. Furthermore, 

the majority of ALS-linked missense mutations occur within this domain of TDP43 increasing 

aggregation propensity and neurotoxicity (Johnson et al., 2009; Guo et al., 2011). Whilst the 

majority of ALS-causing FUS mutations were initially discovered in the nuclear localisation 

sequence, a large number have now been identified in the N-terminal PrLD (Da Cruz 
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and Cleveland, 2011). In contrast to TDP43 and FUS, wild-type SOD1 is structurally very 

stable and it is the ALS-linked mutations that confer an aggregation propensity (Chia et al., 

2010; Prudencio et al., 2009).  

There is a growing body of evidence for a crucial role of prion-like behaviour of ALS-

linked proteins. Small amounts of aggregated SOD1 (Chia et al., 2010), TDP43 (Furukawa et 

al., 2011) and FUS (Nomura et al., 2014) were shown to induce mis-folding of their 

corresponding natively folded counterparts in vitro, suggesting template-dependent 

propagation like that of prions. Increased expression of TDP43’s PrLD induced aggregation 

and cytotoxicity (Furukawa et al., 2011), whilst deletion of the domains in TDP43 and FUS 

prevented aggregation, providing strong evidence of their requirement for efficient seeding 

(Furukawa et al., 2011; Sun et al., 2011). TDP43 aggregates isolated from brain tissues of 

ALS patients have been shown to seed protein misfolding and accumulation when introduced 

to cultured cells, and the aggregates persisted within cells when the original pathogenic seed 

was removed showing a prion-like seeding capability (Nonaka et al., 2013). 

In vivo studies have also shown supportive evidence for prion-like behaviour of SOD1 

and TDP43. Co-expression of wild-type human SOD1 (hSOD1
WT

) and hSOD1
A4V

 (the most 

aggressive SOD1 mutant in humans) in transgenic mice resulted in an ALS-like phenotype 

(Deng et al., 2006). Even the simple overexpression of hSOD1
WT 

or hTDP43
WT

 in transgenic 

mice caused aggregation, neurotoxicity and shortened lifespan (Graffmo et al., 2013; Xu et 

al., 2010). Transmissibility between mice by injection of homogenates from terminally sick 

ALS mice has proved very inefficient and appears to reflect the non-transmissible nature of 

human neurodegenerative diseases, despite strong evidence for prion-like behaviour in the 

causative proteins (Maniecka and Polymenidou, 2015).     
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Studies are now beginning to show the functional/clinical relevance of many RNA-

binding proteins possessing PrLDs. These domains allow the proteins to rapidly self-associate 

in to aggregate-like structures including the complexes required to carry out normal RNA 

metabolism, as well as the stress-related paraspeckles (Hennig et al., 2015), SG and P-body 

structures (Li et al., 2013) discussed in section 1.4.2. The rapid self-aggregation, made 

possible by the PrLDs, allows the RNA-binding domains to recruit mRNAs and accumulate 

them in these stress granules until the cellular stress subsides. The reversibility of the prion-

like aggregation subsequently allows the granules to disassociate and translation to resume as 

normal (Li et al., 2013). It appears that the proteins involved in forming these aggregate-like 

structures do so by a process called liquid-to-solid phase transition (Patel et al., 2015). This is 

achieved by extruding water resulting in the formation of a mesh-like structure described as a 

hydro-gel. This is different from the amyloid fibres formed by disease-causing prion proteins 

and is thought of as a functional alternative in eukaryotic cells (Hennig et al., 2015). 

However, these liquid-to-solid phase transitions have been shown to increase in speed in 

models using FUS proteins with ALS-associated mutations compared to WT protein (Patel et 

al., 2015). It appears that mutations in the PrLDs of ALS-associated RNA-processing proteins 

increase the risk of permanent aggregation in cells over time. The protein interactions move 

from being flexible hydrogels to forming solid fibrous structures and this may underlie a large 

part of the disease’s pathogenesis (Lin et al., 2015). 

As mentioned earlier, studies employing the use of mathematical models and 

algorithms had found a striking number of RRM containing proteins to also have PrLDs 

(Couthouis et al., 2011; King et al., 2012). Li et al. (2013), used the algorithm detailed in 

Alberti et al. (2009) to assess prion score in all human RNA-binding proteins, including those 

with RRMs and those with other types of RNA-binding motifs. This included RGG 
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domains, like that of hnRNP-UL1, and subsequently hnRNP-UL1 was found to score 10
th

 for 

all human RNA-binding proteins and 37
th

 for all human proteins (hnRNP-U also scored 15
th

 

amongst RNA-binding proteins).  

PrLD prediction software programmes are also available online. Using PLAAC 

(prion-like amino acid composition), hnRNP-UL1 and –U are both shown to form PrLDs in 

their C-terminal regions. hnRNP-UL1’s PrLD is larger and extends 242 amino acids from 

residue 615 to 856, whilst hnRNP-U’s is 131 amino acids from residue 695 to 825 (Figure 

1.13). A second sequence in hnRNP-U (aa168-188) and one in hnRNP-UL2 (aa642-691) are 

also prion-like in composition, but as they fall short of the widely considered 60 amino acid 

length minimum requirement for proper PrLD formation these are much less likely to affect 

aggregate formation (Figure 1.13). Given the role of hnRNP-UL1 in RNA-processing, its 

predicted PrLD and the discovery of hnRNP-A1 and –A2 mutations in ALS patients, hnRNP-

UL1 is a strong ALS-associated gene candidate. 

 

1.4.4 ALS and the DDR 

 Defective DNA damage responses have been strongly linked to cancer for many years, 

and more recently to aging and neurological disorders. Many of these disorders are 

congenital, such as ataxia telangiectasia (A-T), ataxia with occulomotor apraxia-1 (AOA1) 

and Cockayne syndrome (CS) (Madabhushi et al., 2014). However, growing evidence 

suggests that aberrant DNA damage responses and accumulated DNA damage correlate with 

neurodegeneration in AD, PD and ALS (Coppedé and Migliore, 2009; Banerjee et al., 2009; 

Coppedé and Migliore, 2015). An accumulation of DNA damage in neurons is unsurprising 

given that they are generally post-mitotic, can function for a whole life time and have a high 
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Figure 1.13 PrLD assessment of hnRNP-UL1, -U and –UL2 using PLAAC. Protein 

sequences were inputted in to PLAAC (prion-like amino acid composition; an algorithm-

based prion-prediction web application) and graphical visualisation of data is shown. Each 

amino acid contributes to a hidden Markov model on a sliding scale within the protein to 

predict regions which are background (black line close to 1) or prion domain like (red line 

close to 1). hnRNP-UL1 is predicted to have a 292 aa prion-like region at its C-terminus, 

hnRNP-U has a 130 aa prion-like region at its C-terminus and hnRNP-UL2 a prion-like 

hnRNP-UL1

hnRNP-U

hnRNP-UL2
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region of less than 60 aa’s. Each AA is colour-coded by its enrichment log-likelihood ratio. 

Further scores are generated by different algorithms all used to predict prion-like regions with 

the use of varying criteria; FoldIndex predicts intrinsically unfolded regions (grey curve less 

than zero); -PLAAC (red curve less than zero) and -4*PAPA (green curve less below the 

green dashed line) incorporates hydrophobic residue influence on amyloid formation. See 

Lancaster et al. (2014) for full details. 
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metabolic rate resulting in high levels of reactive oxygen species (ROS). Mitochondrial DNA 

(mtDNA) is particularly susceptible to oxidative damage due to its proximity to the 

mitochondria’s inner membrane, which produces oxidative species during cellular respiration 

(Coppedé and Migliore, 2015). 

 The most common DNA lesion caused by ROS is 8-oxoguanine. Increased levels of 8-

oxoguanine were observed in the neuronal cells of both sALS and fALS patients (Ferrante et 

al., 1997). Levels were also raised in the plasma, cerebrospinal fluid (CSF) and urine of ALS 

patients, with levels in urine correlating to disease severity (Bogdanov et al., 2000). Studies 

using a SOD1
C93A

 transgenic fALS mouse model revealed oxidative nuclear and mtDNA 

damage in spinal motor neurons at very early stages of the disease (Aguirre et al., 2005; 

Warita et al., 2001). A further study showed a progressive increase of DNA damage with 

development of the disease, with SSBs occurring earlier than DSBs (Martin et al., 2007). 

Such evidence suggests that an accumulation of DNA damage, particularly in mitochondrial 

DNA contributes to mitochondrial dysfunction and motor neuron death as the cells have high 

metabolic requirements. 

 FUS has been shown to have a critical role in the DNA damage response itself. FUS is 

rapidly recruited to DSB sites in a PARP-1 dependent manner and depletion significantly 

reduced repair by both HR and NHEJ mechanisms (Mastracola et al., 2013; Rulten et al., 

2013). FUS also forms a complex with HDAC-1 in response to DSBs, a protein critical to 

DNA repair in post-mitotic neurons (Wang et al., 2013). Moreover, ALS patient mutations of 

FUS (R521G, R521C, R224C and R514S) diminished recruitment to DSB sites and caused 

defective damage responses (Rulten et al., 2013; Wang et al., 2013; Qiu et al., 2014). This 

suggests that such mutations would affect efficient repair in neuronal cells of ALS patients 

causing further cellular dysfunction and toxicity.     
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Many parallels exist between FUS and hnRNP-UL1 including the presence of PrLDs, 

RGG motifs and major roles in RNA processing. In fact, both proteins bind U7 snRNP, but 

with different effects on transcriptional regulation. FUS stimulates the upregulation of histone 

gene expression (Raczynska et al., 2015), whereas hnRNP-UL1 downregulates the expression 

outside of S phase (Ideue et al., 2012). Both proteins also have roles in the DDR in the 

response to DSBs and both are rapidly recruited in a PARP-1 dependent manner (Mastracola 

et al., 2013; Hong et al., 2013). Other hnRNPs have also been found to have a role in ALS 

aetiology. hnRNP-A1 and hnRNP-A2B1 mutations were found to cause ALS in one family 

with the mutations occurring in the proteins’ PrLDs stimulating aggregation by fibril 

formation (Kim et al., 2013). hnRNP-A2 and hnRNP-C1/C2 were found to be mis-localised to 

inclusion bodies in the muscle biopsies of ALS and FTD patients compared to controls 

(Cortese et al., 2014). Such sequestration of RNA processing proteins affects RNA 

transcription, expression and splicing as discussed in section 1.4.2, whilst sequestration of 

FUS and theoretically hnRNP-UL1, although this has not been shown, would also lead to 

defective DNA damage repair. In addition, hnRNP-U (the homolog of hnRNP-UL1) deletions 

were identified in patients suffering from a neurological condition characterised by 

intellectual disability (ID), microcephaly, craniofacial anomalies, seizures, limb anomalies, 

and corpus callosum abnormalities (Thierry et al., 2012). Taken together results from all these 

studies generated our interest to study hnRNP-UL1’s role in the DDR from an ‘ALS 

viewpoint’. 
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1.5 Aims 

Based on the identification of the putative kinase domain in hnRNP-UL1 and the discovery of 

ALS patients with hnRNP-UL1 mutations this study will have two principle aims. Firstly, to 

investigate the nucleotide binding and kinase activity of hnRNP-UL1 and, secondly, to 

investigate the DNA damage response in cells harbouring mutations in hnRNP-UL1. In order 

to determine this, a number of objectives will be addressed: 

1. To confirm the ability of hnRNP-UL1 to bind ATP via interaction at its Walker A 

loop motif. 

2. To determine whether hnRNP-UL1 exhibits kinase activity. 

3. To determine whether ALS patient derived lymphoblastoid cell lines harbouring 

hnRNP-UL1 mutations exhibit defective DNA damage responses in response to 

various damaging agents. 

4. To investigate any defects in the normal processes and characteristics of mutant forms 

of hnRNP-UL1 in comparison to wild-type. This includes: 

a) DNA damage responses. 

b) Protein-protein interactions. 

c) DNA interactions. 

This will be achieved by siRNA knockdown of endogenous hnRNP-UL1 and the 

transfection of mutated variants allowing the transient expression of only the variant 

protein forms in cells before treatments/experiments. 
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2.1 CELL BIOLOGY TECHNIQUES 

2.1.1 Cell Lines 

All cell lines used during this study were of human origin. Individual lines are listed in Table 

2.1. 

Table 2.1 - Cell lines used in this study. 

Cell Line Cell Type Source Culture Medium 

HeLa Epithelial Cervical carcinoma DMEM 

HeLa Flp-In Epithelial Cervical carcinoma DMEM 

A549 Epithelial Small cell lung carcinoma DMEM 

293FT Epithelial Embryonic kidney DMEM 

ALS patient cell lines* Lymphoblasts ALS patient blood samples 

provided by Professor Jochen 

Weischaupt (University of 

Ulm, Germany) 

RPMI 

* For further details see section 4.2.1. 

2.1.2 Cell culture media 

Cell lines were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma) or 

Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma), supplemented with 8% 

Foetal Calf Serum (FCS) (Sigma). Antibiotics were not used.  

2.1.3 Maintenance and passage of cell lines 

Cells were cultured in humidified incubators at 37 °C with a supply of 5 % CO2. 

Lymphoblastoid cell lines (LCLs) are non-adherent and grow in suspension. LCLs were 
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passaged by removal of cells to required dilution and addition of fresh media. All other cell 

lines were adherent, grown in monolayers and passaged as follows. Media was removed and 

cells washed with pre-warmed (to 37 °C) phosphate-buffered saline (PBS) (Gibco).

 Trypsin (Gibco) was added and incubated at 37 °C until cells had detached. The 

trypsin was deactivated by the addition of fresh media, and cells pelleted by centrifugation at 

430 g for 5 minutes (mins). Pellets were subsequently resuspended in fresh medium, and re-

plated at the appropriate dilution. 

2.1.4 Cryopreservation of cell lines 

Cells were trypsinised and pelleted as above, followed by re-suspension in medium 

containing 20 % FCS and 10 % DMSO (Sigma). Aliquots of 1ml were cooled to -80 °C at a 

controlled rate of 1°C/min via the utilisation of isopropanol. Samples were transferred to 

liquid nitrogen storage tanks for long term storage at -180 °C. Cells were rapidly thawed in 

medium at 37 °C, pelleted by centrifugation, and re-suspended in fresh medium before 

plating, as required. 

2.1.5 IR and UV irradiation 

Employing a 137 Cs source (irradiator model CIS IBL 437), cells were treated or mock-

treated with ionising γ-rays at a dose-rate of 2.5 Gy/min. Prior to UV irradiation, medium was 

removed and cells washed with PBS. Cells were subsequently irradiated or mock-irradiated 

with UV radiation before replacement of medium. UV radiation (0.7 J/m
2
/sec) with a 

wavelength of 254 nm was delivered in a single pulse using a Blak-Ray XX15S UV Bench 

Lamp (UVP). 
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2.1.6. Drug treatments 

2.1.6.1 Camptothecin 

Camptothecin (CPT) is a cytotoxic quinolone alkaloid, which inhibits DNA topoisomerase I. 

Non-adherent LCLs had CPT added directly to the media at a final concentration of 400 nM. 

The drug was left in the media and a proportion of the medium/cells harvested at the 

appropriate time points (Section 2.3.1). Adherent cells had media removed and fresh media 

containing 1 μM CPT added. Cells were harvested at appropriate time points (Section 2.3.1). 

2.1.6.2 Kinase inhibitors 

During γ-
32

P-ATP kinase assays cells were treated with various kinase inhibitors prior to cell 

harvesting. Stock concentrations were diluted in fresh media to the indicated concentrations in 

Table 2.2, before addition to cells. Inhibitors were also included in the reaction buffer during 

the kinase assays to the indicated concentrations in Table 2.2. 

Table 2.2 – Kinase inhibitors used in kinase assays. 

Name Target Stock 

concentration 

Concentration 

used in media 

Concentration used in 

kinase assays 

VE-821 ATR 10 mM 5 μM 5 μM 

KU55933 ATM 250 mM 25 μM 25 μM 

NU7441 DNA-PK 5 mM 25 μM 25 μM 

Roscovitine CDK I/II 10 mM 20 μM 20 μM 

SP600125 JNK 25 mM 25 μM 25 μM 

Rapamycin Mtor (p70S6K) 100 mM 20 μM 20 μM 
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V0126 ERK/MEK 10 mM 10 μM 10 μM 

GSKIWH GSK α/β 5 mM 5 μM 5 μM 

SB203580 p38 α, β, γ, δ 10 mM 10 μM 10 μM 

Plk1i (BI 

2536) 

PLK1 100 μM 20 μM 20 μM 

Cdk1/2i III CDK1 and CDK2 2.5 mM 20 μM 20 μM 

Chk1i 

(Gö6976) 

Chk1 1.32 mM 20 μM 20 μM 

 

2.1.6.3 Tert-butylhydroquinone 

Tert-butylhydroquinone (TBHQ) is an anti-oxidant, which also stimulates oxidative stress. 

HeLa cells were exposed TBHQ at differing concentrations and cells harvested at appropriate 

time points following treatment.  

2.1.7 RNA interference (RNAi) 

Control small interfering RNAs (siRNAs) and siRNAs targeting hnRNPUL1 are shown in 

Table 2.3. 

Table 2.3 - siRNAs used in this study. 

Target siRNA Sense sequence Company 

Non-silencing MISSION 

siRNA universal 

negative control 

5’ CGU ACG CGG AAU ACU UCG A dT 

dT 3’ 

Sigma  
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hnRNPUL1 Custom 5’ GCA GUG GAA CCA GUA CUA U 

dT dT 3’ 

Sigma 

hnRNPUL2 SMART pool 5’ CAG AUU GCU UCC CGG ACA A 3’ 

5’ CGG GGU AAA UGG UGG CGA A 3’ 

5’ GUA AAG AGA CAG CGG GAU G 3’ 

5’ CGG ACA AAU CGC CGA AAC A 3’ 

Thermo 

Scientific 

 

Transfection of siRNA in to cells was carried out as follows. Cells were plated into 6 cm 

dishes 24 hours prior to transfection ensuring 80 % (±20) confluency the following day. 

Oligofectamine (OF) reagent (Invitrogen) was used to deliver siRNA duplexes into cells. 20 

μl OF was added to 80 μl Opti-MEM, mixed and left for 5 mins at room temperature (RT). 17 

μl of the appropriate siRNA (20 nM) was then added to 333 μl Opti-MEM, mixed and left for 

5 mins at room temperature (RT). The OF mix and siRNA mix were then combined, vortexed 

and left for 20 mins at room temperature (RT). Cells were washed with Opti-MEM, 1 ml of 

Opti-MEM added per 6 cm dish and OF-siRNA liposome complexes added to the appropriate 

dishes. After 4-6 hour incubation at 37 °C the mixture was removed and replaced with fresh 

media. Transfections were repeated 24 hours after initial treatment.  

Occasionally the second siRNA treatment was combined with DNA plasmid transfection. 

When doing so, Lipofectamine (LF) reagent (Invitrogen) was used instead of OF and the 

siRNA was combined with the plasmid DNA and the protocol described in 2.1.8 followed. 

2.1.8 Transfection of plasmid DNA 

DNA plasmids encoding a protein of interest were transfected into cells allowing subsequent 

expression of the protein for the following 72 hour period. Transfection of plasmid DNA in to 
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cells was carried out as follows. Cells were plated into 6 cm dishes 24 hours prior to 

transfection ensuring 80 % (±20) confluency the following day. LF reagent (Invitrogen) was 

used to deliver cDNAs into cells. 5 μl LF was added to 200 μl Opti-MEM, mixed and left for 

5 mins at RT. 1 μg of plasmid DNA was added to200 μl Opti-MEM, mixed and left for 5 

mins at RT. The LF mixture and plasmid DNA mixture were then combined, vortexed and 

left for 20 mins at RT. The LF-plasmid mixture was then added drop-wise to the media 

covering the cells and placed back in the 37 °C incubator. 

 

2.2 MOLECULAR BIOLOGY TECHNIQUES 

2.2.1 Preparation of media and plates 

Luria broth (LB) was prepared with 10 g/l NaCl, 10 g/l bacto-tryptone and 5 g/l yeast extract 

in water, and sterilised by autoclaving at 120 °C and 100 kPa for 30 mins. LB-agar was 

prepared by adding 15 g/l agar to LB, and sterilising the solution by autoclaving as above. 

After cooling, ampicillin was added to a final concentration of 100 µg/ml. Before solidifying, 

aliquots of LB-agar were poured on to plates and left to cool inside a sterile fume hood. LB-

agar plates were stored at 4 °C until used for bacterial transformations. 

2.2.2 Bacterial transformations 

Transformations of plasmids were carried out using competent α-Select Competent Cells 

(Bioline). Up to 100 ng of DNA was added to 10 µl of competent cells and incubated on ice 

for 20 mins, before being heat-shocked at 42 °C for 45 seconds. Cells were placed back on ice 

for 5 mins, before addition of 200 µl of LB and incubation at 37 °C for 1 hour. Cells were 



70 

 

then spread evenly on to LB-agar plates containing ampicillin, and incubated at 37 °C 

overnight.  

2.2.3 Large scale preparation of DNA plasmids 

Plasmids used in this study and the proteins they encode are detailed in Table 2.4. 

Inoculation loops were used to pick colonies, and used to inoculate 5 ml cultures of LB 

containing 100 µg/ml ampicillin. Small cultures were incubated at 37 °C in an orbital shaker 

at 0.9 g overnight. 1 or 2 ml of these cultures were then transferred to large flasks containing 

300 ml LB supplemented with 100 µg/ml ampicillin , and left to grow overnight at 37 °C  in 

an orbital shaker at 0.9 g. The cells were then pelleted by centrifugation at 4000 g for 10 mins 

at 4 °C. Plasmid DNA was extracted from bacterial pellets using HiPure Plasmid Filter 

Maxiprep Kit (Invitrogen), according to the manufacturer’s instructions. Final DNA pellets 

were resuspended in an appropriate volume of sterile nuclease-free water (Promega). DNA 

concentration was measured using a NanoDrop 2000 Spectrophotometer (Thermo Scientific).  

Table 2.4 – Plasmids used in this study. 

Plasmid Vector Product Tag Amino acid 

mutation 

Source 

hnRNPUL1-WT pcDNA3 hnRNP-UL1 HA None R. Grand 

hnRNPUL1-MWA pcDNA3 hnRNP-UL1 HA GKT433ARA MDS* 

hnRNPUL1-639 pcDNA3 hnRNP-UL1 HA R639C MDS* 
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hnRNPUL1-WT-

siRES 

pcDNA5/

FRT/TO 

hnRNP-UL1 HA None MDS* 

hnRNPUL1-MWA-

siRES 

pcDNA5/

FRT/TO 

hnRNP-UL1 HA GKT433ARA MDS* 

hnRNPUL1-639-

siRES 

pcDNA5/

FRT/TO 

hnRNP-UL1 HA R639C MDS* 

hnRNPUL1-468-

siRES 

pcDNA5/

FRT/TO 

hnRNP-UL1 HA R468C MDS* 

Flp-F70L pOG44 Flp recombinase n/a n/a Fisher 

Scientific 

*MDS = Made during study. WT = wild-type, MWA = mutated Walker A, siRES = siRNA 

resistant. 

 

2.2.4 Agarose gel electrophoresis 

Agarose gels were prepared by dissolving agarose in TBE (100 mM Tris-HCl, 100 mM boric 

acid, 2 mM EDTA, pH 8) buffer to a final concentration of 1 %. The agarose was dissolved 

by heating to boiling point, before cooling and subsequent addition of ethidium bromide 

(Fisher Scientific) to a final concentration of 0.5 µg/ml. Before setting, the mixture was 

poured in to gel electrophoresis apparatus casts. DNA samples were diluted with 6X loading 

buffer (0.25 % bromophenol blue, 50 % glycerol in a 10 mM Tris-HCl, 1 mM EDTA, pH 8). 

Electrophoresis was carried out at 40 V in TBE running buffer for an appropriate time period. 

DNA was visualised with a UV transilluminator. 
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2.2.5 Site-directed mutagenesis PCR 

Oligonucleotide primers were designed to mutate hnRNPUL1 either to cause amino acid 

substitutions or to provide resistance to siRNA. Primers used are detailed in Table 2.5 and 

were all purchased from Sigma-Aldrich. 

 

Table 2.5 – Primer sequences used to generate mutated forms of HA-hnRNP-UL1. 

Mutated 

Residues 

Primer Sequence 

GKT433ARA FWD: 5’ GCC TGC CTG CTG CTG CCA GGG CCA CAT GGG CCA 

TCA AAC ATG C 3’ 

REV: 5’ GCA TGT TTG ATG GCC CAT GTG GCC CTG GCA GCA 

GCA GGC AGG C 3’ 

R639C FWD: 5’ CCT GGA GGC AAC TGT GGC GGC TTC 3’ 

REV: 5’ GAA GCC GCC ACA GTT GCC TCC AGG 3’ 

R468C FWD: 5’ GTG ATG GGC CTA TGC CGG CAG CGG AAC 3’ 

REV: 5’ GTT CCG CTG CCG GCA TAG GCC CAT CAC 3’ 

None (siRNA 

resistance 

mutagenesis) 

FWD: 5’ GCA GTA TGC CCA GCA GTG GAA TCA ATA TTA TCA 

GAA CCA GGG CCA GTG G 3’ 

REV: 5’-CCA CTG GCC CTG GTT CTG ATA ATA TTG ATT CCA 

CTG CTG GGC ATA CTG C 3’ 

 

Site-directed mutagenesis was carried out using reagents from Phusion unless otherwise 

stated. Briefly, the reaction mix was assembled as follows: 10 μl of 10X Phusion buffer, 3 μl 
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of 10 mM dNTPs (Promega), 150 ng of plasmid DNA template, 2 μl of 10μM primers 

(forward and reverse), 1.5 μl of Phusion DNA polymerase, and made up to a volume of 50 μl 

with nuclease-free water in PCR tubes. The reaction was performed in a PCR 2720 

ThermoCycler (Applied Biosystems) according to the following phases: 

98 °C => 2 mins 

98 °C => 30 seconds 

                           62 °C => 30 seconds               35 cycles 

72 °C => 10 mins 

72 °C => 10 mins 

4 °C => hold 

5 μl of PCR products were subjected to agarose gel electrophoresis to check efficiency of the 

PCR. Subsequently, the parental un-mutated plasmid DNA was removed by treatment with 1 

μl of Dpn1 (New England BioLabs) at 37 °C for 3-5 hours. DNA was then ready for bacterial 

transformation. 

2.2.6 DNA sequencing 

Between 100-500 ng of plasmid DNA, along with 3.2 picomoles of a suitable sequencing 

primer was diluted in 10 μl of nuclease-free water. Samples were then taken to the DNA 

sequencing services laboratory at the University of Birmingham for processing, before 

analysis using Chromas Lite and EBI Emboss Needle software.    



74 

 

2.2.7 Cloning 

Cloning of hnRNPUL1 DNA constructs between plasmids was achieved via the design of 

primers with overhangs containing restriction enzyme sites. This allowed cutting-out and 

subsequent ligation in to plasmids with the same restriction sites. The cloning primers used 

are detailed in Table 2.6 and were provided by Sigma-Aldrich. 

Table 2.6 – Cloning primers used in this study. 

Direction Encoded 

restriction 

enzyme site 

Primer sequence 

Forward EcoRV 5’ GCT CAG ATA TCA TGG CTT ACC CAT ACG ATG 3’ 

Reverse NotI 5’ CGT ATA GCG GCC GCC TAC TGT GTA CTT GTG C 3’ 

 

PCR reaction mixes were assembled as follows: 10 μl of 10X Phusion buffer, 3 μl of 10 mM 

dNTPs, 100 ng of plasmid DNA template, 2 μl of 10μM primers (forward and reverse), 1 μl 

of Phusion DNA polymerase, and made up to a volume of 50 μl with nuclease-free water in 

PCR tubes. The reaction was performed in a PCR 2720 ThermoCycler according to the 

following phases: 

98 °C => 5 mins 

      98 °C => 30 seconds 

                                   62 °C => 30 seconds               32 cycles 

72 °C => 4 mins 

                             72 °C => 4 mins   
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4 °C => hold 

5 μl of PCR products were subjected to agarose gel electrophoresis to check efficiency of the 

PCR. 3μl of each restriction enzyme (NotI-HF and EcoRV-HF) (New England BioLabs) were 

added to 30 μl of PCR product (or 2 μl of plasmid vector DNA and 28 μl nuclease-free water), 

along with 10X CutSmart Buffer (New England BioLabs) and incubated at 37 °C for 2 hours.  

Subsequently, the parental un-mutated plasmid DNA was removed by treatment with 1 μl of 

Dpn1 at 37 °C for 3-5 hours. 7.5 μl of 6X loading buffer was added to each sample and 

subjected to agarose gel electrophoresis. Bands were excised from the gel and DNA 

extraction performed using QIAquick Gel Extraction Kit Spin Columns (Qiagen) in 

accordance with the manufacturer’s instructions. DNA was eluted in nuclease-free water at 

the final step. 

 

2.3 PROTEIN AND DNA BIOCHEMISTRY TECHNIQUES 

2.3.1 Preparation of total cell lysates 

Adherent cells were harvested by removing media, washing twice in cold PBS, scraping the 

cells and resuspending them in cold PBS. Non-adherent LCLs were harvested by 

centrifugation at 430 g for 5 mins at 4 °C to pellet cells, removal of  the supernatant and 

resuspension of the cell pellet in cold PBS. Cell suspensions in cold PBS were subsequently 

centrifuged at 430 g for 5 mins at 4 °C. Supernatant was removed and cell pellets resuspended 

in denaturing buffer (9 M Urea (Sigma-Aldrich), 150 mM β-mercaptoethanol (Sigma-

Aldrich), 50 mM Tris-HCl, pH 7.5 (Melford Biolaboratories)). Cell lysates were 
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sonicated twice for 15 seconds with a 1 minute gap period on ice and centrifuged at 13000 g 

for 5 mins to clear cell debris. Cell lysates were stored at -80 °C until required. 

2.3.2. Preparation of lysates from cells for co-immunoprecipitation 

Adherent cells had media removed, were washed twice in cold PBS, scraped and resuspended 

in cold PBS. Non-adherent LCLs were centrifuged at 430 g for 4 mins at 4 °C to pellet cells, 

supernatant removed and resuspended in cold PBS. Cell suspensions were centrifuged at 430 

g for 4 mins at 4 °C, and cell pellets resuspended in NETN buffer (0.5 % NP-40 (Sigma-

Aldrich) 150 mM NaCl (Sigma-Aldrich), 50 mM Tris-HCl pH 7.5, 0.5 mM EDTA (Sigma-

Aldrich)). Cells were lysed by sonication or using a Wheaton-Dounce hand homogeniser and 

centrifuged at 1700 g at 4 °C for 5 mins. The  supernatant was collected and subjected to 

further centrifugations at 13250 g for 5 mins, and 113000 g for 30 mins (both at 4 °C).  The 

supernatant was retained and pellets discarded. 

2.3.3 Determination of protein concentration 

Protein concentrations of cell lysates were determined by employment of a standard curve 

produced using known concentrations of bovine serum albumin (BSA, VWR) in 200 μl of 

Bradford 10 μl of cell lysate was diluted in 90 μl of sterile water, and 10 μl of this diluted cell 

lysate was added to 200 μl of Bradford. Three repeat protein concentrations for each sample 

were read by spectrophotometry at a wavelength of 595 nm using a microplate reader (Bio-

Rad model 680). 

2.3.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were separated according to their molecular size by SDS-PAGE on 8 %, 10 % or 12 

% polyacrylamide gels consisting of 30 % w/v acrylamide (37:5:1 BIS-acrylamide,
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Severn Biotech), 0.1 % SDS (Severn Biotech), 0.1 M Tris (Melford Biolaboratories)/ 0.1 M 

Bicine (pH 8.3) (Severn Biotech), 0.25 % ammonium persulphate (APS, Sigma-Aldrich) and 

0.25 % N, N, N’, N’-Tetramethylethylenediamine (TEMED, Severn Biotech). Gels were 

poured in to pre-assembled apparatus from Hoeffer Scientific according to supplier 

instructions, well-combs set in place and the gel left to polymerise. Following polymerisation, 

well-combs were removed, wells washed twice with sterile water and then filled with running 

buffer (0.1 M Tris/ 0.1 M Bicine (pH 8.3) and 0.1 % w/v SDS) ready for sample loading. 

Sample buffer (5 % SDS, 5 M urea, 50 mM Tris-HCl pH 7.4, 0.15 M β-mercaptoethanol, 

0.01% bromophenol blue (BDH Laboratories))  was added to protein samples, heated at 80 °C 

for 5 mins, centrifuged at 700 g for 10 seconds, and loaded in to gel wells alongside pre-

stained molecular weight markers. The apparatus was run between 8-16 hours at a constant 

speed between 10-25 mA depending on the size of the proteins of interest. 

2.3.5 Urea-polyacrylamide gel electrophoresis (Urea-PAGE) 

DNA oligonucleotides were separated according to their molecular size by Urea-PAGE on 12 

% polyacrylamide gels consisting of 45 % w/v urea (Sigma-Aldrich), 30% w/v acrylamide, 

0.25 % APS and 0.25 % TEMED in TBE buffer. The gel pouring, apparatus and running was 

the same as in Section 2.3.4. 

2.3.6 Visualisation of proteins on nitrocellulose membranes 

Proteins transferred on to nitrocellulose membranes were visualised by staining with 

Ponceau-S Stain consisting of 0.1 % Ponceau-S (Sigma-Aldrich) and 3 % trichloroacetic acid 

(TCA) (BDH Laboratories) for 30 seconds. Membranes were then washed 3-6 times with 

deionised water allowing visualisation of stained proteins.    
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2.3.7 Detection of radioactively labelled proteins and DNA by autoradiography 

Gels were washed three times in 30 % v/v methanol (VWR)/ 10 % acetic acid (Fisher 

Scientific) in deionised water, before drying under a vacuum at 80 °C for 2 hours. Gels were 

then exposed to autoradiography film (GE Healthcare) for an appropriate time period. 

2.3.8 
32

Phosphorous radioactive assays 

2.3.8.1 α-
32

P-ATP binding assay 

Ox-ATP was prepared as follows: 5 μl of α-
32

P-ATP (Perkin Elmer) was added to 0.5 mM 

HCl/0.5 mM sodium periodate (Sigma-Aldrich) and incubated at room temperature in the 

dark for 20 mins. 20 μl of 50 % glycerol was added and incubated for a further 20 mins in the 

dark. Then 5 μl of 2 M Tris HCl (pH 7.2), 1 μl of 1 M MgCl2 and 13 μl of sodium 

cyanoborohydride (NaCNBH3) (Sigma-Aldrich) was added. 

Protein lysates were prepared as in Section 2.3.2, but with the employment of an 

altered buffer (1 % NP-40 (Sigma-Aldrich), 500 mM NaCl (Sigma-Aldrich), 5 mM MgCl2 

(Sigma-Aldrich), 50 mM Tris-HCl pH 7.4, 2 mM EDTA (Sigma-Aldrich)). 

Immunoprecipitations were performed by incubation of primary antibody (typically 5-10 μl) 

(Table 2.7) or no antibody as a control at 4 °C overnight on rotation with the lysate. Samples 

were subsequently centrifuged at 113000 g at 4 °C for 5 mins and the pellet discarded. 50 μl 

of Protein G-agarose beads (KPL) suspended in an equal volume of the above buffer were 

added to each sample and rotated at 4 °C for 1 hour. Samples were then centrifuged at 700 g 

for 1 min at 4 °C and the supernatant discarded. Samples were washed four times in 1 ml of 

the above buffer by centrifugation at 700 g for 1 min at 4 °C and discarding the supernatant 

each time. 200 μl of the above buffer were added to each sample along with 15 μl of Ox-ATP 

and incubated at 4 °C on rotation overnight.      
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Samples were washed three times with buffer A (0.5 M KCl (BDH Laboratories), 5 

mM MgCl2, 1 mM EGTA, 5 mM NaCNBH3, 0.5 % NP-40, 0.1 M Tris-HCl, pH 7.6) and 

three times with buffer B (5 mM MgCl2, 1 mM EGTA, 5 mM NaCNBH3, 70 mM Tris-HCl, 

pH 6.8), before adding 50 μl of SDS sample buffer, heating at 80 °C for 5 mins, centrifuging 

at 700 g for 10 seconds, and fractionating by SDS-PAGE. 

2.3.8.2 γ-
32

P-ATP kinase assay 

Protein samples were prepared as in Section 2.3.2 and the immunoprecipitation procedure 

followed as in Section 2.4.2 until the washing of the beads. Three washes were carried out 

with NETN buffer, two with NEN buffer and one with 1X reaction buffer (RB) (25 mM Tris 

HCl pH7.4, 130 mM KCl, 10 mM MgCl2). To each sample 20 μl of a master mix was added, 

containing 1X RB (plus 5 mM dithiothreitol-DTT), 20 μCi γ-
32

P-ATP, 5 μg protein substrate 

(myelin basic protein (MBP) or myosin phosphorylatable light chain (PLC)) or 100 nM DNA 

substrate (Table 2.7). Kinase inhibitors were added to samples as required (see Table 2.2 for 

details). Samples were incubated in a water bath at 30 °C for 30 mins. In the determination of 

oligonucleotide phosphorylation the reaction was stopped  by adding 7 μl of termination 

buffer (95 % v/v formamide, 0.05 % w/v bromophenol blue), heating at 80 °C for 5 mins and 

centrifugation at 700 g for 10 seconds. For the protein determination experiments the 

reactions were stopped by adding SDS sample buffer. Experiments employing protein 

substrates were loaded on to a SDS-PAGE gel and those with DNA substrates on to a urea-

acrylamide gel. 
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Table 2.7 – DNA substrates used for γ-
32

P-ATP kinase assay. 

Substrate Single or 

double 

stranded 

Overhang Sequence 

1 Single None 5’-CCGTTTCGCTCAAGTTAGTATGTCAAAGCAGGC-3’ 

2 Double 5’ 5’-(P)-CCGTTTCGCTCAAGTTAGTATGTCAAAG-3’ 

       3’-GGCAAAGCGAGTTCAATCATACAGTTTCGTCCG-5’ 

3 Double 3’ 5’-(P)- CCGTTTCGCTCAAGTTAGTATGTCAAAGCAGGC-3’ 

      3’-GGCAAAGCGAGTTCAATCATACAGTTTC-5’ 

4 Double None 5’-(P)- CCGTTTCGCTCAAGTTAGTATGTCAAAGCAGGC-3’ 

       3’-GGCAAAGCGAGTTCAATCATACAGTTTCGTCCG-5’ 

 

2.3.9 Preparation of samples for mass spectrometry 

Following the 30 minute incubation at 30 °C of a protein kinase assay in which 50 mM ATP 

was added instead of radioactively-labelled γ-
32

P-ATP (see 2.3.8.2), 0.5 ml of 9 M urea/50 

mM ammonium bicarbonate (ABC) was added to each sample and incubated for 1 hour under 

gentle agitation. Following centrifugation, supernatant was removed, 50 mM DTT added and 

incubated at 56 °C for 30 mins. 100 mM iodoacetamide was added and incubated in the dark 

for 30 mins at RT. Samples were then added to FASP (filter-aided sample preparation) filters 

(Millipore), centrifuged and flow-through discarded. Filters were washed four times with 50 

mM ABC and placed in fresh collection tubes. Mass spectrometry-grade trypsin (1 µg/sample, 

Promega) in 50 mM ABC was added and left at 37 °C overnight. Samples were centrifuged 

and supernatant transferred to low-binding Eppendorfs. The filters were given an additional 

wash with 50 mM ABC and this supernatant added to the previous collection. The resulting 

peptides were dried by vacuum centrifugation and then fractionated using a Bruker amaZon 
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ion trap mass spectrometer and processed and analyzed using the ProteinScape central 

bioinformatic platform (Bruker). 

2.3.10 ssDNA-binding assays 

24 hours after DNA transfections, samples were prepared as in Section 2.3.2, with the 

substitution for NETN buffer by the following buffer: 0.1 % NP-40, 0.1 % β-

mercaptoethanol, 10 % glycerol, 10 mM MgCl2, 200 mM NaCl, 50 mM Tris-HCl, pH 7.4. 

Lysates were then divided and adjusted for appropriate NaCl concentrations for the titration of 

binding experiment. Subsequently, 50 μl cellulose beads with covalently attached calf serum 

derived ssDNA (Sigma-Aldrich) (or cellulose beads as a control) in an equal volume of the 

above buffer were added to each sample and rotated at 4 °C for 2 hours. Samples were then 

centrifuged at 700 g for 1 min at 4 °C and supernatant discarded. Samples were washed three 

times in 1 ml of the above buffer by centrifugation at 700 g for 1 min at 4 °C and discarding 

the supernatant each time. A final wash was made in the 0.1 M NaCl for all samples. 50 μl of 

SDS sample buffer was added to each sample, heated at 80 °C for 5 mins, centrifuged at 700 g 

for 10 seconds and subjected to SDS-PAGE and visualised by western blotting. 

2.3.11 ssRNA-binding assays 

24 hours after DNA transfections, samples were prepared as in Section 2.3.2, with the 

substitution for NETN buffer by the following buffer: 0.1 % NP-40, 0.1 % β-

mercaptoethanol, 10 % glycerol, 10 mM MgCl2, 100 mM NaCl, 50 mM Tris-HCl, pH 7.4. 

Lysates were then divided and adjusted for appropriate NaCl concentrations for the titration of 

binding experiment. Subsequently, samples were rotated with 50 μl of ribonucleotide 

homopolymers (50 molecules of A, U, G or C) bound to streptavidin beads through a biotin 

molecule linked to the ribonucleotide for 2 hours at 4 °C. Samples were then centrifuged 
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at 700 g for 1 min at 4 °C and supernatant discarded. Samples were washed three times in 1 

ml of the above buffer (adjusted for NaCl concentration accordingly) by centrifugation at 700 

g for 1 min at 4 °C and discarding the supernatant each time. A final wash was made in the 

0.1 M NaCl for all samples. 50 μl of SDS sample buffer was added to each sample, heated at 

80 °C for 5 mins, centrifuged at 700 g for 10 seconds and subjected to SDS-PAGE and 

visualised by western blotting. Relative amounts of protein were determined by densitometric 

scanning.  

 

2.4 IMMUNOCHEMISTRY TECHNIQUES 

2.4.1 Antibodies 

All antibodies used in this study and their origins are shown in Table 2.8 and Table 2.9. 

Table 2.8 – Primary antibodies used in this study. 

Antibody Antigen Dilution Use Species Company/Source 

sc-8408 Chk1 1:1000 WB Mouse Santa Cruz 

 GFP     

HA HA 1:2000 WB, IP, IF Mouse In house 

2595S Histone H2AX 1:1000 WB Rabbit Cell Signalling 

ab122906 hnRNP-U 1:1000 WB, IP Rabbit Abcam 

960 hnRNP-UL1 1:2000 WB, IP, IF Rabbit In house 

961 hnRNP-UL1 1:2000 WB Rabbit In house 

hnRNP-

UL2 

hnRNP-UL2 1:1000 WB, IP Rabbit In house 

sc-6217 Lamin B 1:1000 WB Goat Santa Cruz 

1D7 NBS1 1:1000 WB Mouse Genetex 

sc-722 Nrf2 1:1000 WB Rabbit  Santa Cruz 
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DO1 p53 1:100 WB Mouse In house 

sc-8418 p70-S6K 1:1000 WB, IP Mouse Santa Cruz 

 PAR 1:1000 WB Mouse  

9542S PARP-1 1:1000 WB Rabbit Cell Signalling 

2341S Phospho-Chk1 

(Ser-345) 

1:1000 WB Rabbit Cell Signalling 

ab47272 Phospho-NBS1 

(Ser-343) 

1:1000 WB Rabbit Abcam 

A300-245A Phospho-RPA32 

(Ser-S4/S8) 

1:1000 WB, IF Rabbit Bethyl 

A300259A PNK1 1:1000 IP Rabbit Bethyl 

 RPA32 1:1000 WB, IF Mouse  

sc-147 SV40 Large T 

antigen 

1:1000 IP Mouse Santa Cruz 

ab41972 TDP43 1:1000 WB Rabbit Abcam 

144 XRCC1 1:1000 WB Mouse Pierce 

AC-74 β-Actin 1:10000 WB Mouse Sigma  

JBW301 γ-H2AX 

(Ser-139) 

1:1000 IF Mouse Millipore 

 

sc-101696 

γ-H2AX 

(Ser-139) 

1:1000 WB, IF Rabbit  Santa Cruz 

 

Table 2.9 – Secondary antibodies used in this study. 

Antibody Antigen Dilution Use Species Company/Source 

P0447 Mouse IgG 1:2000 WB Goat Dako 

P0399 Rabbit IgG 1:3000 WB Swine Dako 

P0449 Goat IgG 1:2000 WB Rabbit Dako 

A11001 Alexa Fluor 488 Mouse IgG 1:1000 IF Goat Life Technologies 

A11012 Alexa Fluor 594 Rabbit IgG 1:1000 IF Goat Life Technologies 
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2.4.2 Co- Immunoprecipitation 

Samples, as prepared in Section 2.3.2, were incubated with primary antibody (typically 5-10 

μl) (Table 2.7), or no antibody as a control, at 4 °C overnight on rotation. Samples were 

subsequently centrifuged at 113000 g at 4 °C for 5 mins and the pellet discarded. 50 μl of 

Protein G-agarose beads suspended in an equal volume of NETN buffer were added to each 

sample and rotated at 4 °C for 1 hour. Samples were then centrifuged at 700 g for 1 min at 4 

°C and the supernatant discarded. Samples were washed three times in 1 ml of NETN buffer 

and twice in NEN buffer (NETN buffer minus NP-40) by centrifugation at 700 g for 1 min at 

4 °C and discarding the supernatant each time. 50 μl of SDS sample buffer was added to each 

sample, heated at 80 °C for 5 mins, centrifuged at 700 g for 10 seconds and subjected to SDS-

PAGE. 

2.4.3 Western blotting 

After SDS-PAGE, separated proteins were transferred on to nitrocellulose membrane using 

the following method. Gels were laid on to pre-wetted nitrocellulose membranes of 

corresponding size, sandwiched between two pieces of Whatman filter paper and blotting 

sponges, and held securely in plastic cassettes. The transfer cassette was then placed in a 

transfer tank filled with transfer buffer (20 % v/v methanol, 0.19 M glycine and 0.05 M Tris) 

for 6-8 hours at 280 milliAmps (mA). Subsequent visualisation of proteins on the 

nitrocellulose membrane was carried out before blocking in 5 % skimmed dried milk powder 

(Sainsburys) in TBST (Tris-Buffered Saline Tween-80, consisting of 1 % Tween-80 (Sigma-

Adrich), 0.15 M NaCl, 50 mM Tris-HCl, pH 7.4) for 30 mins under gentle agitation. 

Primary antibodies (Table 2.7) were diluted in 5 % skimmed dried milk powder or 3 % BSA 

in TBST and incubated with the nitrocellulose membrane at 4 °C on a rocking table overnight.
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Membranes were then washed 3 times (15 mins each) in TBST. Secondary antibodies (Table 

2.8) conjugated to horse-radish peroxidase (HRP) were diluted in 5 % skimmed dried milk in 

TBST and incubated with the nitrocellulose membrane at RT on a rocking table for 2-4 hours. 

A further 6 washes (5 mins each) in TBST were carried out. Specific antigens on the 

membranes were then visualised by incubation with enhanced chemiluminescence (ECL) 

reagents (Millipore or GE Healthcare) for 1 minute and exposure to autoradiography film for 

an appropriate time period. 

2.4.4 Immunofluorescence Microscopy 

Cells were seeded on to 13 mm diameter micro cover slips (Fisher Scientific) in a 24-well 

plate. After treatment or mock-treatment and at selected time-points, cells were washed in 

PBS, fixed in cold 4 % paraformaldehyde (PFA) (Sigma-Aldrich) in PBS for 10 mins, 

permeabilised with 0.5 % v/v Triton X-100 (Sigma-Aldrich) in PBS, and left in PBS at 4 °C. 

Cells were blocked in cold 10 % FCS in PBS for 30 mins. Primary antibodies (Table 2.7) 

were diluted to the appropriate concentration in cold 10 % FCS in PBS and incubated with 

cells at 4 °C for 1 hour. Cells were washed three times with cold 10 % FCS in PBS, before 

incubation with fluorescent secondary antibodies (Table 2.8) diluted 1:1000 in cold 10 % FCS 

in PBS at 4 °C for 1 hour. Cells were washed twice in PBS before staining with DAPI 

(Sigma-Aldrich) in PBS (1 μg/ml) for 5 mins at 4 °C. A final wash in PBS was carried out 

before mounting on to viewing slides using Immu-Mount Gel (Thermo Scientific). 

Fluorescence images were taken using a Nikon E600 Eclipse microscope 333 equipped with a 

60X and 100X oil lens. Images were acquired and analysed using Volocity Software 334 v4.1 

(Improvision).  
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CHAPTER III 

 

HNRNP-UL1 AS A KINASE 
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3.1 INTRODUCTION 

Previous studies and those conducted in conjunction with our group highlighted a 

putative kinase region harbouring a Walker A motif in hnRNP-UL1 (Gabler et al 1998; Polo 

et al., 2012).  This consensus motif typically confers adenosine triphosphate (ATP)-binding, 

however, this has not been confirmed for hnRNP-UL1 at a practical level. Nucleotide binding 

can be utilised by proteins for various activities, including transfer of the gamma-phosphate to 

substrates (phosphorylation by kinases). The human genome encodes over 500 kinases and 

the phosphorylation of target proteins is a common and important post-translation 

modification of proteins in many cellular processes (Manning et al., 2002). Upon 

investigation, hnRNP-UL1 showed appreciable primary and secondary structure homology to 

the protein polynucleotide kinase phosphatase (PNKP). PNKP is responsible for the 

phosphorylation of the 5’ ends of DNA to allow efficient repair following DNA damage 

(section 1.3.5). 

 This has led to a hypothesis that hnRNP-UL1 binds ATP, possibly for activity as a 

kinase. The aims of the work described in this chapter were to investigate this hypothesis by 

using radioactively labelled forms of ATP allowing determination of ATP-binding capability 

and phosphorylation of DNA and protein substrates in vitro.  
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3.2 RESULTS 

3.2.1 hnRNP-UL1 shares significant homology to human PNKP 

hnRNP-U and the U-like proteins 1 and 2 contain a Walker A motif, and possibly a 

Walker B motif. When comparing homology to other kinases, the kinase region of PNKP 

showed good amino acid sequence homology. This was most obvious within the region of 

close proximity to the Walker-A loop (Figure 3.1). The amino acid homology to PNKP within 

the kinase region was not extensive (21.57% for hnRNP-UL1); however, it was the most 

homologous of any kinase encoded by the human genome included in the Expasy and 

University College London PSIPRED protein sequence analysis software. Despite homology 

of primary structures being limited, there was significant secondary structure homology. The 

use of Expasy software Swiss-Pdb Viewer allowed secondary structure modelling of hnRNP-

UL1’s putative kinase domain based on the known structure of PNKP. The two proteins 

appear to share significant secondary structure similarity; most significantly downstream of 

the Walker A loop (Figure 3.2). This suggested that hnRNP-UL1, and possibly hnRNP-UL2, 

may contain a DNA kinase activity like that of PNKP, or alternatively a protein kinase 

activity.  

In addition to the Walker A loop many nucleotide-binding proteins have a Walker B 

motif. This consists of a conserved aspartic acid or glutamic acid at the C-terminal end of a β-

strand and is often preceded by a stretch of four hydrophobic residues (i.e. hhhhD/E). The 

acidic residue aids interaction with the Mg
2+

 ion and can be essential for catalysis (Matte and 

Delbaere, 2010). A Walker B motif is present in hnRNP-UL1 roughly 70 amino acids C-

terminal of the Walker A loop (Figure 3.2). The Walker B motif is also conserved in hnRNP-

U and –UL2 at a similar position. It is thought that NTPases can be differentiated from 
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Figure 3.1 Sequence comparison of human hnRNP-U, -UL1, -UL2, PNKP and 

drosophila hnRNP-UL1. The amino acid residues constituting the Walker-A loop are red in 

colour, whilst those composing of the beta sheet are highlighted in yellow and those 

composing of the alpha helix are highlighted in pink. 

 

 

 

 

 

 

h-hnRNP-U:     494 KKDCEVVMMIGLPGAGKTTWVTKHAAEN 521

h-hnRNP-UL1:   418 KAECEILMMVGLPAAGKTTWAIKHAASN 445

h-hnRNP-UL2:   449 IEECEVILMVGLPGSGKTQWALKYAKEN 476

h-PNKP:        362 SASPEVVVAVGFPGAGKSTFLKKHLVSA 389

d-hnRNP-UL1    704 RKECEVILLVGLPGAGKTHWAHKHVAEN 731

β α
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Figure 3.2 A secondary structure prediction of human hnRNP-UL1 based on the known 

structure of mouse PNKP.  Analysis by Swiss-Pdb Viewer software (expasy.org) allowed 

secondary structure modelling of hnRNP-UL1 based on the known structure of PNKP. The 

amino acid sequences of the kinase domain and proposed kinase region of PNKP and hnRNP-

UL1, respectively, are shown with corresponding areas of amino acid homology aligned. 

Alpha helices (boxed) and beta sheets (arrows) of PNKP are indicated. Areas of hnRNP-UL1 

which are strongly predicted to form the same secondary structures are highlighted in blue 

directly above the corresponding PNKP sequence. Areas of red indicate regions which are 

less likely to form the same secondary structures. -, indicates where gaps have been 

introduced in the sequence to allow maximum homology.    
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kinases by an additional glutamic acid at the C-terminal end of the motif (Leipe et al., 2003). 

As this is not present in hnRNP-UL1, it also indicates hnRNP-UL1 possesses kinase activity. 

3.2.2 ATP-binding by hnRNP-UL1 

To determine whether the predicted Walker A loop of hnRNP-UL1 facilitated ATP-

binding the protein was incubated with a non-hydrolysable form of ATP which irreversibly 

binds to any interacting species and contains a 
32

P radioactive label for detection via 

autoradiography. SV40 large T antigen was used a positive control as it was readily available 

from 293FT cells and is known to bind ATP (Dean et al., 1987). Repeated experiments 

showed binding of ATP to immunoprecipitated SV40 large T antigen and hnRNP-UL1, but 

not to hnRNP-UL2 (Figure 3.3). 

3.2.3 hnRNP-UL1 shows no activity as a DNA kinase 

In the knowledge that hnRNP-UL1 bound ATP, we next investigated its capability as 

a DNA kinase. Bernstein et al. (2005) showed mammalian PNKP to have a preference for 

DNA substrates of at least 8 nucleotides in length and with a 3’ overhang of 3-5 nucleotides. 

If hnRNP-UL1 was to possess DNA kinase activity, it was unknown whether it would exhibit 

a preference for a particular type of DNA end. Therefore, four oligonucleotides with different 

structures were used as potential substrates (Figure 3.4A). Once again, proteins were obtained 

by immunoprecipitation and then incubated with the substrates in the presence of γ-
32

P-ATP. 

Recombinant PNKP was employed as a positive control.  The recombinant PNKP was able to 

phosphorylate each of the 4 DNA substrates (Figure 3.4B). However, immunoprecipitated 

PNKP and hnRNP-UL1 failed to phosphorylate any of the substrates with repeated assays 

(Figure 3.4B). 
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Figure 3.3 hnRNP-UL1 binds ATP. A549 and 293FT cells were lysed and 

immunoprecipitations performed using the indicated antibodies. Immunoprecipitated proteins 

were incubated with ox-α-
32

P-ATP and subjected to SDS-PAGE. The dried gel was analysed 

by autoradiography. 
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Figure 3.4 hnRNP-UL1 does not exhibit activity as a DNA kinase. A) Schematic of the 

DNA oligonucleotide substrates used to test hnRNP-UL1’s activity as a DNA kinase. 

Sequences are shown in Table 2.6. B) HeLa cells were lysed and immunoprecipitations 

performed for hnRNP-UL1 or PNKP. The immunoprecipitated protein or recombinant PNKP 

protein was incubated with a reaction mixture containing the various DNA substrates and γ-

32
P-ATP. After 1 hour the reaction was stopped, samples heated and run on a urea-

polyacrylamide gel, before drying and analysis by autoradiography. 
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3.2.4 hnRNP-UL1 shows activity as a protein kinase 

As hnRNP-UL1 appeared to lack DNA kinase activity, the possibility of its activity as 

a protein kinase was addressed. Several promiscuously phosphorylatable substrates were 

employed to test this, including MBP (myelin basic protein), PLC (myosin phosphorylatable 

light chain) and a number of histones (Figure 3.5A). Incubation of γ-
32

P-ATP, 

immunoprecipitated hnRNP-UL1 and substrates resulted in each of the substrates being 

phosphorylated (Figure 3.5B). MBP and PLC exhibited the strongest phosphorylation and 

these were used for subsequent experiments. 

Using proteomic mass spectrometry analysis two phosphorylated MBP peptides were 

identified after incubation with immunoprecipitated hnRNP-UL1. These were 

R.DTGILDS
174

IGR.F and K.NIVTPRT
232

PPPSQGK.G (phosphorylated amino acids are 

numbered; the full stops show where the actual peptide begins and ends). The second of these 

has a phosphorylation site similar to that suggested for MAP/ERK kinases (-P-X-S/T-P-) 

(Lewis et al., 1998) but the first does not appear to resemble a phosphorylation site for any of 

the well characterised commonly occurring serine/threonine kinases. 

Levels of substrate phosphorylation increased with duration of reaction time, with a 

near maximum level reached after 30 minutes (Figure 3.5C). This reaction time was employed 

for subsequent experiments. Varying the amount of hnRNP-UL1 antibody used for the 

immunoprecipitation prior to the kinase assay also affected the intensity of phosphorylation 

observed. Phosphorylation also increased with greater volume of antibody used (Figure 3.5D), 

as would be expected due to more hnRNP-UL1 protein being obtained from cell lysates. A 

band was also observed in these experiments at 120 kDa, the position of migration of hnRNP-

UL1 following SDS-PAGE, suggesting possible autophosphorylation of hnRNP-UL1. 
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Figure 3.5 hnRNP-UL1 possesses activity as a protein kinase. A) Coomassie Blue staining 

of the various proteins used as substrates to test hnRNP-UL1’s activity as a protein kinase. B) 

HeLa cells were lysed and immunoprecipitations performed. The immunoprecipitated protein 

was incubated with a reaction mixture containing the various indicated protein substrates and 

γ-
32

P-ATP. After 1 hour the reaction was stopped, samples heated and run on a SDS-PAGE 

gel, before drying and analysis by autoradiography. C) HeLa cells were lysed and 

immunoprecipitations performed. The immunoprecipitated protein was incubated with a 

reaction mixture containing the indicated protein substrates and γ-
32

P-ATP for varying time 

periods. The reaction was stopped, samples heated and run on a SDS-PAGE gel, before 

drying and analysis by autoradiography. D) HeLa cells were lysed and immunoprecipitations 

performed using different amounts of α-hnRNP-UL1 antibody. The immunoprecipitated 

protein was incubated with a reaction mixture containing the indicated protein substrates and 

γ-
32

P-ATP. After 1 hour the reaction was stopped, samples heated and run on a SDS-PAGE 

gel, before drying and analysis by autoradiography.    
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3.2.5 hnRNP-U and –UL2 ATP-binding and kinase activity 

Similar to hnRNP-UL1, both hnRNP-U and –UL2 contain Walker A motifs (Figure 

3.1) and Walker B motifs. Additionally, their flanking regions are highly conserved and show 

some primary and secondary homology to PNKP, however it is less than hnRNP-UL1 (data 

not shown). Despite the presence of the Walker A motifs and highly conserved flanking 

regions the hnRNP-U and –UL2 proteins did not exhibit ATP-binding like hnRNP-UL1 

(Figure 3.6A). Surprisingly, repeat kinase assays after immunoprecipitation of proteins 

showed hnRNP-U and –UL2 able to phosphorylate MBP and PLC (Figure 3.6B). The reason 

for this is unknown. The three proteins are expected to interact with one another and co-

immunoprecipitation (co-IP) of hnRNP-UL1 and –UL2 was confirmed in Polo et al. (2012), 

as well as during this study by mass spectrometry following immunoprecipitation (Figure 

3.7). The co-IP of hnRNP-UL1 may explain the substrate phosphorylation observed; however, 

by this argument it would be expected that ATP-bound protein would also be seen. 

3.2.6 Validation of hnRNP-UL1 kinase activity by the use of kinase inhibitors 

The isolation of hnRNP-UL1 by immunoprecipitation from cell lysates provides the 

possibility that the phosphorylation observed is not, in fact, attributable to hnRNP-UL1. 

Instead, an interacting partner of hnRNP-UL1 could co-immunoprecipitate and its kinase 

activity be the cause for the phosphorylation observed. This is conceivable, given the quite 

extensive list of known interacting partners of hnRNP-UL1, especially ATR indirectly 

through ATRIP (Blackford et al., 2008). Therefore, kinase inhibitors were used to treat cells 

prior to performing immunoprecipitation and during the kinase reaction. Firstly, inhibitors of 

all three PI3Ks, ATR, ATM and DNA-PK, were used. No reduction was seen in 

phosphorylation levels of the two substrates (Figure 3.8), suggesting the protein kinase 
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Figure 3.6 hnRNP-UL2 and hnRNP-U fail to bind ATP, but when immunoprecipitated 

exhibit protein kinase activity. A) HeLa cells were lysed and immunoprecipitations 

performed for the indicated proteins. Proteins were incubated with ox-α-
32

P-ATP and 

subjected to SDS-PAGE. The dried gel was analysed by autoradiography. B) HeLa cells were 

lysed and immunoprecipitations performed. The immunoprecipitated protein was incubated 

with a reaction mixture containing the various indicated protein substrates and γ-
32

P-ATP. 

After 30 minutes the reaction was stopped, samples heated and run on a SDS-PAGE gel, 

before drying and analysis by autoradiography. 
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Figure 3.7 An interaction network for hnRNP-UL1 based on mass spectrometry data 

following co-immunoprecipitation. Hela cells were lysed and an immunoprecipitation 

performed using α-hnRNP-UL1 Ab. Co-immunoprecipitating proteins were identified using 

mass spectrometry and using websource ‘string-db.org’ an interaction network was generated. 

This shows the co-immunoprecipitating proteins identified by the mass spectrometry analysis 

linked by a string network. The connecting lines/strings represent different forms of evidence 

for the interaction of the two connected proteins, which are generated using varying data 

sources (see Szklarczyk et al., 2015 for further information). The string colours represent the 

following forms of evidence; pink = experiments; bright blue = databases; green = textmining 

(large collections of scientific texts are searched for statistically relevant co-occurrences of 

gene names); navy blue = coexpression; violet = homology (Szklarczyk et al., 2015).  
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Figure 3.8 Phosphorylation of the MBP and PLC substrates is not due to the presence of 

PI3Ks. HeLa cells were exposed to the indicated concentrations of inhibitor compounds for 

24 hours before being lysed and immunoprecipitations performed for the indicated proteins. 

The immunoprecipitated protein was incubated with a reaction mixture containing the various 

inhibitors, the indicated protein substrates and γ-
32

P-ATP. After 30 minutes the reaction was 

stopped, samples heated and run on a SDS-PAGE gel, before drying and analysis by 

autoradiography. 
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activity observed is not due to these proteins. Roscovitine, an inhibitor of cyclin-dependent 

kinases (CDKs), was also used in the same manner with no reduction in phosphorylation of 

MBP and PLC (Figure 3.8).  

The serine/threonine-protein kinase p70S6K (ribosomal protein S6 kinase) was found 

to co-immunoprecipitate with hnRNP-UL1 (Figure 3.9A). p70S6K acts downstream of 

mTOR signalling in response to growth factors to promote cell proliferation and cell cycle 

progression. The significance of the association of these two proteins is unknown and was not 

investigated during this study. However, its possible involvement in the phosphorylation 

observed in our kinase assays when immunoprecipitating hnRNP-UL1 needed to be 

eliminated. Immunoprecipitated p70S6K showed little to no kinase activity and a significant 

decrease in comparison to the phosphorylation seen with hnRNP-UL1 (Figure 3.9B and C). In 

addition, the use of rapamycin (an inhibitor of mTOR) to inhibit p70S6K did not decrease the 

level of phosphorylation observed when immunoprecipitating either p70S6K or hnRNP-UL1, 

suggesting any phosphorylation observed was not attributable to p70S6K.  

A panel of other kinase inhibitors was also used to test if kinase activity shown by 

immunoprecipitated hnRNP-UL1 decreased in their presence. SP600125 (a c-Jun N-terminal 

kinase inhibitor) and PLK1i/BI 2536 (Polo-like kinase 1 inhibitor) showed the greatest effect 

in decreasing phosphorylation (Figure 3.9B and C). No interaction between hnRNP-UL1 and 

these two proteins has been shown previously. JNK is involved in responses to stress stimuli 

and stimulates inflammation, whilst PLK1 aids progression through the cell cycle suggesting 

no direct link between hnRNP-UL1 and these two proteins. The decreased phosphorylation 

seen in the presence of these inhibitors may be due to these small molecule inhibitors having 

some binding specificity to the active site of hnRNP-UL1, as well as their intended targets.
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Figure 3.9 hnRNP-UL1 co-immunoprecipitates with p70S6K, although the observed 

phosphorylation is probably not due to p70S6K. A) COS and 293FT cells were lysed and 

immunoprecipitations performed for the hnRNP-UL1 or no antibody control. Samples were 

subjected to SDS-PAGE and western blots performed for p70S6K. B + C) HeLa cells were 

exposed to the indicated concentrations of inhibitor compounds for 24 hours before being 

lysed and immunoprecipitations performed for the indicated proteins. The 

immunoprecipitated protein was incubated with a reaction mixture containing the various 

inhibitors, the indicated protein substrates and γ-
32

P-ATP. After 30 minutes the reaction was 

stopped, samples heated and run on a SDS-PAGE gel, before drying and analysis by 

autoradiography. 
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3.3 DISCUSSION 

Within our group it has been known for many years that hnRNP-UL1 contained a 

putative kinase domain and shared structural homology to PNKP in this region. However, 

until now, no investigation had explored its nucleotide binding capability or kinase activity 

either as a DNA kinase or protein kinase at a practical level. The human genome encodes over 

500 kinases the vast majority of which are protein kinases. PNKP is a DNA kinase and is 

essential to the DDR as 5’ ends must be phosphorylated for ligation to occur after repair. 

Therefore, the novelty of investigating hnRNP-UL1 as a kinase, plus its greater homology to 

PNKP over any other kinase, made the study of potential DNA kinase activity very intriguing. 

However, no phosphorylation of DNA was observed in our experiments. As well as 

immunoprecipitated hnRNP-UL1, immunoprecipitated PNKP also failed to phosphorylate the 

DNA substrates used in our study and this may be due to a number of reasons. The PNKP 

antibody may not be particularly effective at immunoprecipitation and whilst the hnRNP-UL1 

antibody is effective for immunoprecipitating the protein, sufficient levels of the protein may 

not have been obtained to observe phosphorylation. However, the DNA substrates used were 

effectively phosphorylated by recombinant mouse PNK suggesting that the lack of 

phosphorylation by immunoprecipitated human PNKP was not due to any problems with 

substrate specificity. 

Whilst hnRNP-UL1 shared the most significant homology to PNKP in their respective 

kinase regions, hnRNP-UL1 also shared homology to a vast number of other kinases and 

these were all protein kinases. Once again the amino acid homology was limited, but many 

proteins showed a similar secondary structure and it would appear that the beta strands and 

alpha helices composing the kinase domains of many kinases are of a similar composition. 

Given this and the abundance of protein kinases compared to DNA kinases encoded by the 
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human genome, it is less surprising that protein and not DNA kinase activity was seen with 

hnRNP-UL1. 

We repeatedly showed hnRNP-UL2 and hnRNP-U to lack ATP-binding, although 

both showed significant protein kinase activity. This anomaly is difficult to explain. Firstly, 

ATP-binding would be theoretically expected with all three proteins, especially after hnRNP-

UL1 exhibited binding. All comprise a Walker A motif flanked by N-terminal residues 

predicted to form a beta-sheet and C-terminal residues predicted to form an alpha-helix, 

which is the stereotypical structure for a Walker A motif-containing, nucleotide-binding 

protein. In addition, the sequence homology between the three proteins across their entire 

predicted kinase regions is very high (62.8% between hnRNP-UL1 and –U / 50.6% between 

hnRNP-UL1 and –UL2). One possible explanation is the differences between their four 

interchangeable amino acid residues in the consensus motif (GXXXXGKT/S). Investigations 

made using the crystal structures of proteins with Walker A motifs in the Protein Data Bank 

showed that the four interchangeable XXXX residues have an influence on nucleotide-binding 

capability (Ramakrishnan et al., 2002). This is caused by differences in the Ramachandran 

angles of the proteins backbone and they must be of a certain range to permit the loop 

structure which surrounds the nucleotide during binding. The differences of these four 

residues in hnRNP-UL1 (LPAA), -U (LPGA) and –UL2 (LPGS) may be sufficient to alter the 

angles enough so hnRNP-U and –UL2 do not bind ATP. 

Alternatively, the lack of ATP-binding could be due to a low efficiency of 

immunoprecipitation, although the kinase activity observed in γ-
32

P-ATP experiments is 

strong when using the same antibodies. The antibodies show no cross reactivity upon western 

blotting suggesting antigen binding during immunoprecipitation should also be specific for 

each species. However, co-immunoprecipitation due to heterodimerisation is expected and 
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was confirmed between hnRNP-UL1 and –UL2 in Polo et al. (2012). Furthermore, 

recruitment of hnRNP-UL1 and -UL2 to DNA damage sites was interdependent (Polo et al., 

2012). Considering this, hnRNP-UL2 and –U may co-immunoprecipitate hnRNP-UL1 and its 

activity may be responsible for the kinase activity observed. For this to be true lower levels of 

phosphorylation would be expected compared to the direct immunoprecipitation of hnRNP-

UL1, however, it is greater with hnRNP-UL2 immunoprecipitation. There is also the 

possibility that hnRNP-UL1 binds ATP, but instead of direct phosphate transfer to the 

substrate it employs hnRNP-U for the kinase activity. However, this is unlikely given the 

functionality of other kinases being to bind triphosphate nucleotides and facilitate phosphoryl 

transfer themselves. 

The band at 120 kDa visible in many of the protein kinase assays suggested possible 

autophosphorylation of hnRNP-UL1. Many kinases possess the capability to self-

phosphorylate to regulate their activity; for example, ATM phosphorylates itself during DDRs 

to stimulate its own activity. In Figure 3.5 panels C and D, when kinase assays were carried 

out with hnRNP-UL1 in the absence of a substrate, the levels of autophosphorylation appear 

to increase. It is possible that in the absence of other substrates it is inclined to carry out more 

autophosphorylation. The autophosphorylation in vivo may occur to increase its own activity, 

as ATM does on serine 1981 in response to DNA damage. However, the site of this possible 

autophosphorylation and its biological relevance currently remains unclear. 

 The isolation of hnRNP-UL1 by immunoprecipitation from cell lysates and therefore 

the possibility of co-immunoprecipitating species being responsible for the phosphorylation 

seen in kinase assays was a major concern during the study. This could have been bypassed 

by the production of a recombinant form of hnRNP-UL1 but this unfortunately was never 

achieved mainly due to degradation of the protein. hnRNP-UL1 has a large number of 



107 

 

interacting partners both within RNA processing and DDR activities. It interacts directly with 

ATRIP, the binding partner of the ATR kinase, and ATR has been shown to co-

immunoprecipitate with hnRNP-UL1 (Blackford et al., 2008). hnRNP-UL1 does not co- 

immunoprecipitate ATM (Blackford et al., 2008), but it is recruited to areas of DNA damage 

by interaction with NBS1 of the MRN complex, which in turn interacts with ATM. ATM and 

ATR are kinases with a wide variety of protein targets and their presence in reactions would 

most likely phosphorylate the promiscuous substrates MBP and PLC. The continued 

phosphorylation of the substrates in the presence of kinase inhibitors against the three PI3Ks 

(ATR, ATM and DNA-PK) provided greater confidence in hnRNP-UL1’s kinase activity. 

The attribution of kinase activity to the interacting partner, p70S6K, was also found to be 

unlikely, providing further strength to hnRNP-UL1’s proposed protein kinase activity. 

There was a significant decrease in phosphorylation seen in the presence of two kinase 

inhibitors. These were SP600125 and PLK1i (BI 2536), which target c-Jun N-terminal kinase 

(JNK) and polo-like kinase 1 (PLK1), respectively. It is unknown whether either of these 

proteins is capable of co-immunoprecipitating with hnRNP-UL1. No study of their interaction 

has taken place and their involvement in cellular processes suggests no link between these 

two proteins and hnRNP-UL1. This should be tested in future work. Both SP600125 and 

BI2536 are small molecules which act by ATP competition at the binding site of their target 

protein (Bennett et al., 2001; Steegmaier et al., 2007). Like many other kinase inhibitors that 

act in a similar manner, they contain a nitrogen-ring system facilitating interaction with key 

residues of the active site of their target kinase (Bennett et al., 2001).  It is the subtle chemical 

changes amongst these similar compounds that provide selectivity against specific kinases 

and not others. Both SP600125 and BI2536 were tested for activity against a panel of other 

kinases. SP600125 showed a 300-fold selectivity against the related MAPKs ERK1 and p38 
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(Bennett et al., 2001).  BI 2536 showed more than a 1,000-fold selectivity relative to a panel 

of 63 other protein kinases (Steegmaier et al., 2007). However, hnRNP-UL1 was obviously 

not one of the protein kinases tested and it is possible that these small molecule inhibitors 

have some binding specificity to the active site of hnRNP-UL1, as well as their intended 

targets. Indeed, whilst BI 2536 showed good selectivity against many other kinases, it also 

affected the activities of PLK2 and PLK3 demonstrating binding can occur to other kinase 

active sites with similar structures (Steegmaier et al., 2007). 

 In conclusion, from the results shown in this chapter it appears likely that hnRNP-UL1 

possesses some protein kinase activity, but no DNA kinase activity like that of PNKP to 

which it has the most significant primary and secondary structure homology within their 

kinase domains. To facilitate further investigation and to attempt to refute the possibility of a 

co-immunoprecipitating protein being responsible for the phosphorylation observed in kinase 

assays with immunoprecipitated hnRNP-UL1, a Walker A mutant (MWA)-hnRNP-UL1 

construct was made by site-directed mutagenesis. Investigations with this construct are 

presented in chapter V.   
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4.1 INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative 

disease affecting the lower motor neurons (LMNs) in the brainstem and spinal cord, the upper 

motor neurons (UMNs) in the motor cortex and in some patients the prefrontal and temporal 

cortex of the brain (Robberecht and Philips, 2013). The aetiology and pathogenesis of the 

disease is complex with many associated mutated genes. In recent years, a number of genes 

with roles in RNA processing have been associated with ALS. Therefore, it was of great 

interest when Professor Weischaupt of the University of Ulm contacted us with details of four 

ALS patients with heterozygous, germline mutations in hnRNP-UL1. 

As well as hnRNP-UL1’s roles in RNA processing, it has been shown to have several 

roles in the DNA damage response (DDR).  It was shown to interact with RPA70 and RPA32, 

which bind regions of single stranded DNA during repair (Blackford et al., 2008). Polo et al. 

(2012) showed it to be essential for the resection of the 5’ strand during homologous 

recombination of double strand breaks (DSBs) by recruiting the endonuclease BLM. Hong et 

al. (2013) also showed a specific and rapid recruitment to DSBs through an interaction with 

PARP-1 catalysed PAR moieties. Given the known roles of hnRNP-UL1 in the DDR and 

growing evidence of accumulation of DNA damage in neuronal cells of patients with 

neurodegenerative disorders such as Parkinson’s disease, Alzheimer’s disease and ALS, we 

aimed to investigate the DDR in the lymphoblastoid cell lines derived from these patients 

with hnRNP-UL1 mutations (unfortunately fibroblasts from the patients were not available). 
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4.2 RESULTS 

4.2.1 ALS patient mutations 

 ALS patients were discovered with heterozygous hnRNP-UL1 mutations by 

sequencing of the most common ALS mutated genes and the genes for the 150 most common 

RNA binding proteins. This was conducted on 252 German and Swedish families in which at 

least 2 individuals were affected. Lymphoblastoid cell lines (LCLs) were derived from blood 

samples of ALS patients sent from Professor Weischaupt. These included four hnRNP-UL1, 

one TDP43, and three FUS mutants (Table 4.1). The TDP43 and FUS mutants were included 

as they represented common mutations of these genes in ALS patients and their DNA damage 

response had not been investigated previously. Also included in the study were three patients 

with heterozygous microdeletions of the region 1q44, which includes the hnRNP-U gene 

(Table 4.1). These are not ALS patients, but have a neurological disorder manifesting in early 

childhood with intellectual disability (ID), microcephaly, craniofacial anomalies, seizures, 

limb anomalies, and corpus callosum abnormalities. This is detailed further in Thierry et al. 

(2012). The LCLs derived from patient blood samples are detailed in Table 4.1 and were 

investigated in this study for their DDR to both IR and camptothecin (CPT) treatment. 

4.2.2 Protein expression levels are not affected by mutations 

 Mutations in all the cell lines were heterozygous meaning one wild-type allele was 

present. To check that expression levels of each of the proteins under investigation were 

‘normal’, cell lysates were made and protein levels analysed by western blotting. Levels of 

hnRNP-UL1 are similar in the hnRNP-UL1 mutant cell lines to lab donor controls, as are 

TDP43 levels in the TDP43 mutant cells (Figure 4.1). Unfortunately, antibodies were not 
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Table 4.1 Details of the patient derived lymphoblastoid cell lines. 
 

 

LCL cell 

line 

Affected/mutated 

gene 

Mutation (all heterozygous) Patient disease 

P1 HnRNP-U 1q44 microdeletion (entire gene 

not present on one allele) 

Unnamed disorder. 

(Symptoms include 

intellectual disability, 

epileptic seizures, 

craniofacial anomalies 

and brain 

abnormalities.) 

P3 HnRNP-U 1q44 microdeletion (entire gene 

not present on one allele) 

P5 HnRNP-U 1q44 microdeletion (entire gene 

not present on one allele) 

V1200 TDP-43 N352S ALS 

V2029 FUS R521H ALS 

V321 FUS K510R ALS 

V2183 FUS R521H ALS 

V2250* HnRNP-UL1 R639C ALS 

V2219* HnRNP-UL1 R639C ALS 

V2721 HnRNP-UL1 A 2bp insert mutation which 

occurs intronically for all but 

one hnRNPUL1 RNA 

transcript. The exception is a 

transcript where the insertion 

causes a frameshift mutation at 

aa212. 

ALS 

V2716 HnRNP-UL1 R468C ALS 

The table shows the name assigned to each LCL patient cell line, the gene mutated, details of 

each mutation and the patient disease. *Siblings. 
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Figure 4.1 The expression levels of hnRNP-UL1, hnRNP-UL2 and TDP43 are normal in 

all the patient LCLs. Cell lysates were taken and proteins were separated by SDS-PAGE and 

subjected to western blotting with the indicated antibodies. 
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available for hnRNP-U or FUS at this time and therefore patient cell lines with these affected 

proteins were not investigated. Normal cellular protein levels suggest that any defects of the 

cells in their ability to execute DNA damage responses would not be due to 

haploinsufficiency. 

4.2.3 The DNA damage response was unaffected in ALS LCLs 

 Patient LCLs were subjected to both IR and CPT treatment alongside LCLs derived 

from healthy individuals (lab donors). Both treatments induce DSBs and western blotting 

analysis for known markers of DSB DNA damage responses, including γH2AX (S139), 

pRPA (S4/S8) and pChk1 (S345), were used to analyse any discrepancies in responses. In 

response to IR and CPT all patient LCLs showed no repeatable defects in their DDR. Figures 

4.2 and 4.3 show an example of the western blots obtained from V2219 and V2721 hnRNP-

UL1 mutant cell lines in response to each treatment over a 24 hour time period. This was 

completed in triplicate for all the patient LCLs, but no repeatable and significant differences 

were observed between patients and controls. Some differences were observed, for example, 

the increased levels of γH2AX, pNBS1 and pChk1 in response to IR of the V2721 cell line 

compared to control. However, such differences were never repeatable and often variations 

reversed between control and patient cell lines upon repeat experiments. This is likely due to 

the variable nature of LCLs. 

4.2.4 Localisation of hnRNPUL1 is unaffected by the mutations present in the ALS patient 

cells 

 Plasmid constructs encoding the HA-tagged R639C and R468C mutant hnRNP-UL1 

proteins were made by site-directed mutagenesis. This allowed transfection in to HeLa cells 

and analysis of their cellular localisation by immunofluorescence. Localisation of both ALS 
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Figure 4.2 ALS patient cell lines exhibited no significant differences in their DDR to 

ionising radiation (IR) compared to non-patient controls. A and B) ALS and non-patient 

control LCLs were subjected to treatment with IR and lysates taken at 1, 2, 4, 8 and 24 hours 

post-treatment.  Proteins were separated by SDS-PAGE and subjected to western blotting 

with the indicated antibodies.    
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Figure 4.3 ALS patient cell lines exhibited no significant differences in their DDR to 

camptothecin (CPT) treatment compared to non-patient controls. A and B) ALS and non-

patient control LCLs were subjected to treatment with CPT and lysates taken at 1, 2, 4, 8 and 

24 hours post-treatment.  Proteins were separated by SDS-PAGE and subjected to western 

blotting with the indicated antibodies. 
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Figure 4.4 Localisation of hnRNP-UL1 is unaffected by the mutations present in the 

ALS patient cells. HeLa cells were transfected with the indicated hnRNP-UL1 expressing 

plasmid or left untreated. Cells were fixed and permeabilised 24 hours later, followed by 

staining with antibodies against hnRNP-UL1 (960) or HA. DNA was stained blue with DAPI. 

Microscope images were taken at X100 magnification. 
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mutant proteins was similar to WT, with the protein largely residing in the nucleus (Figure 

4.4). When observing the HA-tagged proteins expressed transiently from the transfected 

plasmids the levels of fluorescence varied considerably between some cells and others (Figure 

4.5). This is most probably a result of some cells transfecting more efficiently than others and 

therefore expressing more protein. The presence of cytoplasmic hnRNP-UL1 is visible, but 

the levels of the ALS mutant proteins are similar to that of WT (Figure 4.5). This suggests 

that these mutations do not directly result in a tendency for the protein to be sequestered in the 

cytoplasm as many ALS mutated proteins do (Robberecht and Philips, 2013), at least not after 

a 24 hour period following transfection. 

4.2.5 Mutant hnRNP-UL1 proteins R639C and R468C do not induce oxidative stress 

 There is a strong link between oxidative stress and ALS (Barber and Shaw, 2010; 

Pollari et al., 2014). It was decided to investigate whether levels of oxidative stress increased 

when the two hnRNP-UL1 ALS patient mutants R639C and R468C were transfected in to 

HeLa cells. Nrf2 (nuclear erythroid 2-related factor 2) is a transcription factor, which acts on 

enhancer regions called AREs (cis-acting response elements) present in genes encoding drug 

metabolising enzymes, such as glutathione S transferase (GST) and NAD(P)H:quinone 

oxidoreductase 1 (NQO1). In response to antioxidants and electrophiles, Keap1 (Kelch-like 

ECH-associated protein 1) fails to ubiquitylate Nrf2 stabilising the protein and allowing 

greater upregulation of the above genes, helping the cell to combat the oxidative stress (Ma, 

2013). Therefore, should the hnRNP-UL1 mutants stimulate oxidative stress an upregulation 

of Nrf2 would be expected. In the results shown in Figure 4.6 the effect of depletion of 

hnRNP-UL1 and the addition of the ALS mutant proteins is examined. Treatment with the 

antioxidant, TBHQ (tert-butylhydroquinone), used as a positive control, caused an increase in 

Nrf2 levels, especially at the 1 and 3 hour time points after use of the higher concentration of 
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Figure 4.5 Localisation of hnRNP-UL1 is unaffected by the mutations present in the 

ALS patient cells. HeLa cells were transfected with the indicated hnRNP-UL1 expressing 

plasmid or left untreated. Cells were fixed and permeabilised 24 hours later, followed by 

staining with antibodies against hnRNP-UL1 (960) or HA. DNA was stained blue with DAPI. 

Microscope images were taken at X60 magnification.   
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Figure 4.6 Expression of the ALS patient proteins harbouring the mutations R639C and 

R468C causes no increase in oxidative stress. A) U2OS cells were subjected to treatment 

with various concentrations of TBHQ and lysates taken at indicated time points. Proteins were 

separated by SDS-PAGE and subjected to western blotting with the indicated antibodies. B) 

HeLa cells were transfected with the indicated HA-tagged constructs of hnRNP-UL1. Lysates 

were subsequently taken 24 hours later, proteins separated by SDS-PAGE and subjected to 

western blotting with the indicated antibodies. 
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50 μM (Figure 4.6A) confirming Nrf2’s response to oxidative stress. Expression of the 

hnRNP-UL1 mutants did not affect Nrf2 levels (Figure 4.6B) suggesting the base 

substitutions present in the mutants do not confer a gain or loss of function resulting in 

oxidative stress. Also, depletion of hnRNP-UL1 did not affect Nrf2 levels compared to 

control (Figure 4.6A) suggesting that hnRNP-UL1 has no significant role in regulating redox 

homeostasis in the cell.  

 

4.3 DISCUSSION 

In this chapter, the DDRs of ALS patient-derived LCLs were investigated. The 

importance of the DDR in neuronal development has long been recognised and is shown by 

the neurological disorders caused by mutations in genes encoding DDR proteins, such as 

ataxia telangiectasia (AT) and Seckel syndrome (SS) (for more details see section 1.2.6 and 

Table 1.1). In recent years, the DDR has been recognised for its importance in the proper 

functioning of the mature nervous system and a strong link has been established between 

DNA damage and neurodegenerative diseases, including ALS (Madabushi et al., 2014). 

Neuronal cells accumulate DNA damage over a long period of time and are at increased risk 

of oxidative stress due to their longevity and high oxygen demands. The use of this oxygen 

and production of ATP by the electron transport chain in mitochondria leaves the mtDNA 

particularly susceptible to oxidative damage (Coppedé and Migliore, 2015). Increased levels 

of oxidative damage have been observed in both ALS patient post-mortem studies of neuronal 

tissues and in the cerebrospinal fluid of ALS patients at early stages of the disease (Barber 

and Shaw, 2010). Levels of oxidative damage, as well as SSBs and DSBs, have been shown 

to correlate with disease severity (Bogdanov et al., 2000; Martin et al., 2007). However, the 
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degree to which DNA damage is a cause or consequence of neurodegeneration is still largely 

unclear, although it is likely that there is truth to both hypotheses (Coppedé and Migliore, 

2015). Further evidence for DDR defects possibly having involvement in ALS comes from 

other neurodegenerative diseases caused by mutations in DDR genes, which is particularly 

evident in a subgroup of human autosomal recessive ataxias (Gueven et al., 2007). These 

include AT, ATLD, AOA1 and AOA2. In fact, AOA1 develops due to mutations in a gene 

encoding a DNA/RNA helicase (senataxin-SETX), which is also mutated in some fALS cases 

(Coppedé, 2011). AT and ATLD result from mutations in the genes encoding ATM and 

MRE11, respectively (Ciccia and Elledge, 2010). The progressive neurodegeneration seen in 

these diseases is due to the consequent DDR defects caused by dysfunction of the proteins, 

both of which play prominent roles in responses to DSBs. Therefore, the hnRNP-UL1 gene 

makes a reasonable gene candidate to be mutated in a neurodegenerative disease given its 

roles in DSB repair (Polo et al., 2012). 

With an accumulation of DNA damage in ALS neuronal cells and a continuing 

exposure to damage, DDR defects could exacerbate disease progression by accelerating 

neuronal cell death.  In fact, FUS has been shown to have roles in the DDR both through early 

phase PARP-1-dependent recruitment to DSBs, caused by laser-induced damage (Mastracola 

et al., 2013), and through interaction with HDAC-1 (Wang et al., 2013). Several FUS ALS 

patient mutations were shown to affect HDAC-1 binding causing DDR defects (Wang et al., 

2013) and expression of FUS
R521C 

in an
 
ALS mouse model caused accelerated disease 

progression (Qiu et al., 2014). Given what is known about the roles of hnRNP-UL1 in the 

DDR, its similarities with FUS discussed in section 1.4.4 and the growing evidence of DNA 

damage’s role in ALS, we decided to explore the DDR in LCLs derived from ALS patient 

blood samples.       
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IR and CPT were used, as both agents induce DSBs, and hnRNP-UL1 has been shown 

to have roles in the DDR to DSBs. Polo et al. (2012) showed a reduction in phosphorylation 

of Chk1 and RPA in response to these damaging agents when hnRNP-UL1 was depleted. 

However, no consistent differences were observed in the DDRs of ALS patient cells and 

controls on examination of the levels of phosphorylation of these proteins. This was 

consistent for ALS patients with FUS and TDP43 mutations, as well as the non-ALS patients 

with deletions in the hnRNP-U gene. Two of the FUS mutants harboured base substitutions of 

the arginine residue 521. This is the same residue mutated in previous studies in which DSB 

repair defects were caused by diminished interaction with HDAC-1 both in vitro and in vivo 

(Wang et al., 2013; Qiu et al., 2014).  Therefore, similar defects within the V2029 and V2183 

LCLs harbouring a R521H FUS mutation would be expected, but were not seen (data not 

shown). Upon carrying out repeat experiments any differences between responses in patient 

cells and controls were slight and not reproducible and even reversed from one experiment to 

the next. This variability and lack of DDR defects in patient cells may be explained by the 

variable nature of EBV (Epstein Barr virus) immortalised LCLs.   

LCLs are derived from primary blood B cells by infection with EBV stimulating high 

proliferation rates. This is thought to “immortalise” the cells; however, studies have shown 

that not all LCL strains become truly immortal and some undergo cellular crisis after an 

average of 40 passages due to low telomerase activity, low copy number of the EBV genome 

and decreased EBV expression (Jeon et al., 2003). The early senescence and eventual death of 

a number of the ALS patient LCLs occurred during this study. It is possible that the 

proliferation rates and different intracellular conditions affected the results obtained when 

conducting DDR experiments. This would explain the variation seen with repeated 

experiments as cellular states changed. The presence of EBV in the LCLs also directly affects 
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their DDRs. The EBV nuclear antigen 1 (EBNA-1) stimulates the production of ROS 

inducing chromosomal aberrations, including DSBs and is known to cause H2AX 

phosphorylation. The latent membrane protein 1 (LMP1) also inhibits DNA repair through 

downregulation of ATM (Gruhne et al., 2009a; Gruhne et al., 2009b). Depending on the copy 

number of the virus in different LCL strains and the expression levels of various viral proteins 

this could cause significant variations in any observed DDRs and possibly be responsible for 

the variations observed in our results.  

A failure to detect significant DDR differences between controls and patient cells 

could also be due to the fact that the LCLs are derived from blood lymphocytes and may not 

reflect the intracellular metabolism of diseased ALS motor neuronal cells. The hnRNP-UL1 

mutations were discovered by sequencing conducted on blood samples. Therefore, the 

mutations are known to be germline, heterozygous mutations; however, there may be 

additional somatic mutations present in the diseased neuronal cells that would only be 

identifiable by isolation of those cells and sequencing of their DNA. It was known that the 

cells harbouring hnRNP-UL1 germline mutations did not have any other mutations present in 

any of the known ALS-related genes. However, additional somatic mutations of these genes 

or of the other hnRNP-UL1 allele could also be present specifically in the neuronal cells. 

These could cause differences in the neuronal cells’ DDRs, as well as influence other aspects 

of the disease’s pathogenesis. This is a possibility worth mentioning considering that only 5-

10 % of ALS cases are familial and the rest sporadic (Sreedharan, 2008). The pathogenicity, 

phenotypes and disease progression of sporadic cases are indistinguishable from familial 

cases and some sALS cases are known to harbour the same sporadic genetic aberrations as 

germline fALS cases (Andersen and Al-Chalabi, 2011). However, additional sporadic 

mutations in the neuronal cells of the patients in this study, which would not be present in the 
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B lymphocytes used to create our LCLs is a possibility worth considering. In addition, the 

increased exposure of motor neuronal cells of ALS patients to greater DNA damage stress 

than other cells (particularly oxidative damage), as already discussed, would influence 

responses to additional damaging agents such as IR and CPT. Therefore, ideally experiments 

looking at DDRs would have been conducted in a neuronal-like cell line or an ALS mouse 

model, but these were not possibilities available during our study. However, the creation of 

plasmid constructs encoding HA-tagged R639C and R468C hnRNP-UL1 proteins, which 

were also siRNA-resistant allows depletion of endogenous hnRNP-UL1 and transient 

expression of the mutant proteins in non-LCL cells. Such experiments are detailed in chapter 

V and circumvented the problem of the WT-hnRNP-UL1 being present due to heterogeneity 

in the LCLs. Investigations of the hnRNP-UL1 variants’ capability to bind NBS1, XRCC1 

and PARP-1, which influence its roles in the DDR, are also investigated in chapter V. 

The pathogenic processes in ALS leading to neuronal cell death are complex and a 

combination of mechanisms including DNA damage defects, oxidative stress, mitochondrial 

dysfunction, protein aggregation, cytoskeletal dysfunction, RNA processing defects, 

glutamate excitotoxicity and endoplasmic reticulum stress may all play a part (Barber and 

Shaw, 2010). Therefore, despite no apparent DDR defects within the hnRNP-UL1 ALS 

patients it is still plausible that these mutations contribute to other pathogenic processes 

causing the neurodegeneration observed. Indeed, given that these mutations were found in 

familial cases of the disease and two siblings with the same mutation both developed the 

disease and no other ALS-related gene showed a germline mutation, it would suggest a 

pathogenic consequence to the hnRNP-UL1 mutations. 

Perhaps the most obvious mechanism for hnRNP-UL1 mutations to contribute to ALS 

pathogenesis is through increased aggregation propensity as cytoplasmic inclusions remain as 
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the hallmark of the disease. The transfection of the R639C and R468C variants in HeLa cells 

did not lead to any observable increase in cytoplasmic levels of the protein or any aggregate 

formation (Figure 4.5). However, their expression over a time period of just 24 hours may be 

insufficient to generate large amounts of aggregation. The potential aggregation of hnRNP-

UL1, including the R639C and R468C variants, as a contributing factor to ALS pathogenesis 

is further discussed in section 6.2. 

We considered the possibility of the mutants contributing to oxidative stress levels like 

that of some SOD1 mutations. However, the expression of Nrf2, a protein which increases 

with oxidative stress, failed to show an increase in expression when cells with either the 

R639C or R468C mutations were examined (Figure 4.6). The expression of the mutants in 

HeLa cells in this experiment was for a 24 hour period and it is possible that a prolonged 

presence of these mutant proteins may be required to stimulate oxidative stress. After all, 

familial cases of ALS typically take between 50 and 60 years to manifest symptoms meaning 

a more subtle and gradual increase could take place. 

Given hnRNP-UL1’s role in RNA processing and the firm establishment of RNA 

processing defects in ALS motor neuron cells as discussed in section 1.4.2, a contribution to 

pathogenesis in this manner is very plausible. The RNA-binding of the hnRNP-UL1 variants 

is investigated and further discussion made in chapter V. 

In conclusion, whilst our study showed no possible direct avenues for the patient 

mutations to contribute to ALS pathogenic mechanisms, there are many other possibilities for 

them to do so. Although our study had limitations, particularly in the type of cells in which 

the DDR experiments were conducted, it has gone some way to establishing that the effect of 

the hnRNPUL-1 mutations is on properties of the protein unrelated to its role in the DDR. 
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5.1 INTRODUCTION 

During chapter IV two hnRNP-UL1 mutant plasmid constructs were produced by site-

directed mutagenesis, which encoded base substitutions (R639C and R468C) the same as two 

of the ALS patient cell lines (V2250/V2219 and V2716 respectively). During this chapter, the 

creation of a Walker A mutant (MWA) by the same method was accomplished, which 

substituted key residues in the motif to investigate effects when the ATP-binding of hnRNP-

UL1 was negated. These constructs were also made resistant to a siRNA targeting a single site 

at the C-terminus of hnRNP-UL1. Consequently, this allowed knockdown of endogenous 

hnRNP-UL1 and transfection of the mutant constructs followed by various experiments to 

investigate any affects.  

The aims of the work in this chapter were to investigate any differences in the 

biological properties of the mutants compared to wild-type or defects in their cellular roles. 

This included the binding of ATP, single stranded-DNA and –RNA, DNA damage responses 

to various agents, their cellular localisation and the interaction with NBS1, XRCC1 and 

PARP-1. 
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5.2 RESULTS 

5.2.1 The Walker A mutant does not bind ATP and lacks protein kinase activity 

To verify the ATP-binding and protein kinase activity of hnRNP-UL1, a Walker A 

mutant (MWA) hnRNP-UL1 plasmid DNA construct was made by site-directed mutagenesis. 

The last three amino acids of the Walker A loop were changed as these were considered the 

most important for ATP-interaction and facilitating phosphorylation of substrates by kinases 

with Walker A loops (Deyrup et al., 1998). The glycine, lysine and threonine residues were 

substituted with alanine, arginine and alanine, respectively (GKT433ARA). Transfection of 

the construct in to HeLa cells and subsequent immunoprecipitation of the translated protein by 

its HA-tag allowed α- and γ-
32

P radioactively labelled ATP experiments to be conducted.  

As expected, MWA-hnRNP-UL1 was unable to bind ATP (Figure 5.1). It also showed 

significantly reduced phosphorylation of the protein substrate myelin basic protein (MBP) 

(Figure 5.2), strongly suggesting the activity observed in previous kinase assays was due to 

hnRNP-UL1 itself and not a co-immunoprecipitating protein. Despite what appears to be a 

complete inability to bind ATP by MWA-hnRNP-UL1 there was still some level of 

phosphorylation of MBP. However, this may be attributable to the homodimerising 

capabilities of hnRNP-UL1 such that upon immunoprecipitation of MWA-hnRNP-UL1 by its 

HA-tag, endogenous wild-type (WT) hnRNP-UL1 is co-immunoprecipitated. Co-

immunoprecipitation of WT-hnRNP-UL1 and MWA-hnRNP-UL1 was confirmed by co-

transfection of HA- and GFP-tagged constructs (Figure 5.3). 

5.2.2 The R639C and R468C mutants exhibit normal ATP-binding and kinase activity 

 Using transfected constructs encoding the mutant hnRNP-UL1 variants, further α- and 

γ-
32

P radioactively labelled ATP experiments showed no reduction in ATP-binding or protein
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Figure 5.1 The Walker A mutant (MWA) does not bind ATP. A) HeLa cells were 

transfected with indicated HA-tagged constructs of hnRNP-UL1. Lysates show successful 

protein expression after blotting for the HA-tag. B) Following transfection of indicated 

constructs, cells were lysed and immunoprecipitations performed for the indicated proteins. 

Proteins were incubated with ox-α-
32

P-ATP and subjected to SDS-PAGE. The dried gel was 

analysed by autoradiography. 
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Figure 5.2 The Walker A mutant (MWA) has reduced kinase activity. A) HeLa cells were 

transfected with indicated HA-tagged constructs of hnRNP-UL1. Lysates show successful 

protein expression after blotting for the HA-tag. B) Following transfection of indicated 

constructs, cells were lysed and immunoprecipitations performed for the indicated proteins. 

Proteins were incubated with a reaction mixture containing the substrate MBP and γ-
32

P-ATP. 

After 30 minutes the reaction was stopped, samples heated and run on a SDS-PAGE gel, 

before drying and analysis by autoradiography. 
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Figure 5.3 WT-WT and WT-MWA hnRNP-UL1 proteins homodimerise. A) HeLa cells 

were transfected with indicated HA- and GFP-tagged constructs of hnRNP-UL1. Lysates 

show successful protein expression. B) Following transfection of indicated constructs, cells 

were lysed and immunoprecipitations performed with the indicated antibodies. Proteins were 

separated by SDS-PAGE and subjected to western blotting to analyse the co-

immunoprecipitation of GFP-tagged hnRNP-UL1. 
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kinase activity with the ALS patient R639C and R468C mutants (Figures 5.4 and 5.5). The 

residue 639 lays C-terminal to the proposed kinase domain and within the RGG domain 

making these results unsurprising. The 468 residue does fall within the kinase domain, just 33 

residues C-terminal of the Walker A loop. However, it appears the mutation of this residue is 

unimportant to the protein’s kinase activity.  

5.2.3 Single stranded DNA-binding deficiencies of mutants 

The ssDNA-binding capability of hnRNP-UL1 was observed by Gabler et al. (1998). 

Using a similar technique, it was found that the MWA-hnRNP-UL1 exhibited decreased 

ssDNA-binding, particularly at higher salt-concentrations where protein/DNA interactions are 

dissociated (Figure 5.6). This suggests that the ssDNA-binding capability of hnRNP-UL1 is 

dependent on ATP-binding to some degree, but the biological relevance of this remains 

unclear. It is possible that the three base substitutions of the MWA-hnRNP-UL1 mutant cause 

large conformational changes in the protein’s structure on their own, which are sufficient to 

affect ssDNA-binding. The R639C and R468C mutants also showed decreased binding 

efficiency compared to that of wild-type, although it was only evident at the higher salt 

concentrations (Figure 5.6).  

5.2.4 Single stranded RNA-binding deficiencies of mutants 

 Similar experiments were conducted in which cell lysates were incubated with biotin-

labelled ribonucleotide homopolymers linked to streptavidin agarose to investigate the 

ssRNA-binding of each hnRNP-UL1 variant. As observed with ssDNA-binding, increasing 

salt concentrations dissociate protein/RNA interactions (Figure 5.7B) and all three variants 

reduce binding (Figure 5.7B, C and D). Gabler et al. (1998) showed hnRNP-UL1 to have 

ssRNA-binding preference for poly(G) followed by poly(C) and only very weak binding of 
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Figure 5.4 Binding of ATP by the hnRNP-UL1 mutants. A) HeLa cells were co-

transfected with siRNA targeting endogenous hnRNP-UL1 and siRNA-resistant HA-tagged 

constructs of hnRNP-UL1 where indicated. Lysates show equal protein expression of the 

tagged proteins. B) Following transfection of indicated constructs, cells were lysed and 

immunoprecipitations performed for the indicated proteins. Proteins were incubated with ox-

α-
32

P-ATP and subjected to SDS-PAGE. The dried gel was analysed by autoradiography. 
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Figure 5.5 The R639C and R468C mutants exhibit kinase activity. A) HeLa cells were co-

transfected with siRNA targeting endogenous hnRNP-UL1 and siRNA-resistant HA-tagged 

constructs of hnRNP-UL1 where indicated. Lysates show equal protein expression of the 

tagged proteins. B) Following transfection of indicated constructs, cells were lysed and 

immunoprecipitations performed for the indicated proteins. Proteins were incubated with a 

reaction mixture containing the substrate MBP and γ-
32

P-ATP. After 30 minutes the reaction 

was stopped, samples heated and run on a SDS-PAGE gel, before drying and analysis by 

autoradiography. 

 

 

 

 

Origin

MBP

UL1

Actin

HA

W
T

-U
L

1

M
W

A
-U

L
1

 

UL1

Transfection:

KD:

IP: U
L

1

H
A

−

−

H
A

H
A

− + + + +
− − W

T
-U

L
1

M
W

A
-U

L
1

6
3
9
-U

L
1

6
3
9
-U

L
1

 

4
6
8
-U

L
1

H
A

4
6
8
-U

L
1

 

A

B

Transfection: −



136 

 

 

 

 

 

 

 

 

 
 

Figure 5.6 Reduced ssDNA-binding of hnRNP-UL1 mutants. A) HeLa cells were 

transfected with indicated HA-tagged constructs of hnRNP-UL1. Lysates show equal protein 

expression. B) Following transfection of indicated constructs, cells were lysed and incubated 

with the indicated beads (cellulose only or ssDNA-cellulose beads) for 2 hours at 4 °C in 

buffers with various NaCl concentrations. After beads were washed, SDS sample buffer was 

added, samples heated and run on a SDS-PAGE gel for analysis by western blotting. 
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Figure 5.7 Reduced ssRNA-binding of hnRNP-UL1 mutants. A) HeLa cells were 

transfected with indicated HA-tagged constructs of hnRNP-UL1. Lysates show equal protein 

expression. B) Following transfection of indicated constructs cells were lysed and incubated 

with the indicated beads (agarose-streptavidin only or ssRNA-agarose beads) for 2 hours at 4 

°C in buffers with NaCl concentrations ranging from 0.1 M to 1 M (not all data shown). After 

beads were washed, Laemmli buffer was added, samples heated and run on a SDS-PAGE gel 

for analysis by western blotting. C) A bar graph showing the percentage binding of each 

hnRNP-UL1 mutant protein relative to WT after densitometry readings were made on the 

bands. Three repeat experiments were made and the averages of the readings from each NaCl 

concentration were used. D) A bar graph showing the average percentage binding of each 

hnRNP-UL1 mutant protein relative to WT across the four different ribonucleotides used. 
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poly(U) and poly(A). The very weak binding of poly(A) by either mutant or WT protein was 

confirmed by our results (Figure 5.7B and C). Poly(G) and poly(C) binding was similar to 

that shown in Gabler  et al. (1998), however, poly(U) binding was significantly stronger in 

our experiments (Figure 5.7B and C); the reasons for this are not apparent at present. There 

was significant reduction in binding with all three mutant variants. The R639C substitution 

has a greater affect than R468C, which might be expected as the 639 residue is an arginine of 

a RGG tripeptide in the RGG domain known to be involved in RNA-binding. The MWA 

variant has the largest disruption of interaction relative to WT when densitometry readings 

were averaged for each polyribonucleotide (Figure 5.7D). This is possibly due to an overall 

disruption of protein structure caused by lack of ATP interaction or direct conformational 

changes caused by making three amino acid changes. 

5.2.5 The DNA damage response of the mutants 

 Western blot analysis of DNA damage responses to ionising radiation (IR), 

camptothecin (CPT) and ultraviolet irradiation (UV) were undertaken. The depletion of 

hnRNP-UL1 by the use of siRNA caused DDR defects in response to IR and UV (Figures 5.8 

and 5.10). These were a reduction in RPA phosphorylation at 24 hours in response to IR and a 

reduction in both the phosphorylation of RPA and H2AX in response to UV. These were 

similar to previous results, except for no reduction in Chk1 phosphorylation in response to IR 

or CPT was seen. Polo et al. (2012) also showed moderate reductions in pChk1 and large 

reductions in pRPA in response to CPT, which were not evident in our experiments (Figure 

5.9). The production of siRNA resistant constructs for each of the WT, MWA and R639C 

variants allowed simultaneous knockdown of endogenous hnRNP-UL1 and expression of the 

HA-tagged construct of choice. Each of the hnRNP-UL1 variants restored the deficiencies in 
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Figure 5.8 Wild-type and mutant proteins restore DDR defects seen in response to IR 

after knockdown of endogenous hnRNP-UL1. HeLa cells were co-transfected with siRNA 

targeting endogenous hnRNP-UL1 and siRNA-resistant HA-tagged constructs of hnRNP-UL1 

where indicated. 24 hours later cells were subjected to 5 Gys of ionising radiation (IR) and 

lysates taken at 0, 1, 4, 8 and 24 hours post-treatment. Proteins were separated by SDS-PAGE 

and subjected to western blotting with the indicated antibodies.    
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Figure 5.9 Wild-type and mutant proteins restore DDR defects seen in response to CPT 

after knockdown of endogenous hnRNP-UL1. HeLa cells were co-transfected with siRNA 

targeting endogenous hnRNP-UL1 and siRNA-resistant HA-tagged constructs of hnRNP-UL1 

where indicated. 24 hours later cells were treated with 1 μM camptothecin (CPT) and lysates 

taken at 0, 1, 4, 8 and 24 hours post-treatment. Proteins were separated by SDS-PAGE and 

subjected to western blotting with the indicated antibodies.    
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Figure 5.10 Wild-type and mutant proteins restore DDR defects seen in response to UV 

after knockdown of endogenous hnRNP-UL1. HeLa cells were co-transfected with siRNA 

targeting endogenous hnRNP-UL1 and siRNA-resistant HA-tagged constructs of hnRNP-UL1 

where indicated. 24 hours later cells were subjected to 21 J/m
2
 ultraviolet irradiation (UV) and 

lysates taken at 0, 1, 4, 8 and 24 hours post-treatment. Proteins were separated by SDS-PAGE 

and subjected to western blotting with the indicated antibodies.   
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DDRs seen with knockdown (Figures 5.8, 5.9 and 5.10) showing they have no influence on 

the DDR activities of the protein in response to these damaging agents. 

 In addition to western blots, immunofluorescence analysis was also performed. 

γH2AX foci were formed normally in the presence of each variant or when hnRNP-UL1 was 

depleted in response to IR (Figure 5.11). DSB repair foci indicated by 53BP1 staining were 

also cleared at a normal rate in hnRNP-UL1 depleted cells and in cells expressing hnRNP-

UL1 mutants compared to WT-expressing cells (Figure 5.12). Consistent with the decreased 

phosphorylation of RPA in response to IR seen during western blot analysis (Figure 5.8), 

there was decreased pRPA foci formation with hnRNP-UL1 depletion compared to WT 

(Figure 5.13). Each variant was able to restore this phosphorylation (Figure 5.13), suggesting 

that they did not impair the role of hnRNP-UL1 in resection at DSBs. 

5.2.6 Protein interactions of the mutants with XRCC1, NBS1 and PARP-1 

 During this study hnRNP-UL1 was found to co-immunoprecipitate with XRCC1, 

which plays a crucial role as a scaffold protein in the response to SSBs. None of the MWA, 

R639C or R468C mutations significantly affected this interaction of hnRNP-UL1 (Figure 

5.14). This suggests the residues substituted in these mutants are not crucial for interaction 

with XRCC1 and therefore, a potential role in SSBR for hnRNP-UL1 would not be affected in 

these ALS patients.  

 NBS1 directly binds hnRNP-UL1 and thus recruits it to sites of laser-induced damage 

(Polo et al., 2012). This recruitment is important in facilitating hnRNP-UL1’s promotion of 

ATR-dependent signalling in response to DSBs. The interaction of these two proteins is 

between the C-terminal of NBS1 and the middle/C-terminal region of hnRNP-UL1. 

Specifically, the BBS and RGG domains are required for this interaction in vitro, whilst the 
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Figure 5.11 γH2AX foci form normally in response to IR in hnRNP-UL1 depleted cells 

and in cells expressing the various mutated forms. HeLa cells were simultaneously 

transfected with siRNA against endogenous hnRNP-UL1 and plasmids expressing the 

indicated hnRNP-UL1 constructs, or left untreated. After 24 hours, cells were exposed to 5 

Gys of IR. Cells were fixed and permeabilised 6 hours later, followed by staining with 

antibodies against hnRNP-UL1 (960) or HA and γH2AX (S139). DNA was stained blue with 

DAPI.       
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Figure 5.12 53BP1 foci are cleared at a normal rate in hnRNP-UL1 depleted cells and in 

cells expressing the various mutated forms. HeLa cells were simultaneously transfected 

with siRNA against endogenous hnRNP-UL1 and plasmids expressing the indicated hnRNP-

UL1 constructs, or left untreated. After 24 hours, cells were exposed to 5 Gys of IR. Cells 

were fixed and permeabilised at indicated time points, followed by staining with antibodies 

against 53BP1. DNA was stained blue with DAPI.     
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Figure 5.13 hnRNP-UL1 variants restored pRPA foci following endogenous protein 

depletion. HeLa cells were simultaneously transfected with siRNA against endogenous 

hnRNP-UL1 and plasmids expressing the indicated hnRNP-UL1 constructs, or left untreated. 

After 24 hours, cells were exposed to 5 Gys of IR. Cells were fixed and permeabilised 6 hours 

after treatment with IR, followed by staining with antibodies against pRPA (S4/S8). DNA 

was stained blue with DAPI.     
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Figure 5.14 Interaction with XRCC1 is unaffected with mutant hnRNP-UL1 proteins. A) 

HeLa cells were transfected with indicated HA-tagged constructs of hnRNP-UL1. Lysates 

show successful protein expression. B) Following transfection of indicated constructs, cells 

were lysed and immunoprecipitations performed for the indicated proteins. Proteins were 

separated by SDS-PAGE and subjected to western blotting to analyse the co-

immunoprecipitation of XRCC1. 
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RGG domain was shown to be critical for effective recruitment to damage sites in vivo (Polo 

et al., 2012). No significant reduction of interaction was observed during co-

immunoprecipitation experiments conducted with each of the three hnRNP-UL1 mutants 

(Figure 5.15). The affected residues of the MWA mutant lie outside of the BBS and RGG 

domain and would therefore not be expected to have an impact on the interaction with NBS1. 

However, residue 468 lies within the BBS domain and the 639 residue lies at the centre of the 

RGG domain deemed critical for this interaction. Nonetheless, it appears that neither of these 

base substitutions are sufficient to affect NBS1 interaction. This is consistent with the 

restoration of RPA phosphorylation when WT-hnRNP-UL1 was complemented by the HA-

tagged mutant variants, as any defect in the two proteins’ interaction would cause a reduction 

in resection and exposure of ssDNA which is required for RPA-binding and subsequent 

phosphorylation. 

 The C-terminus (aa508-756) of hnRNP-UL1 mediates an interaction with PARP-1 and 

is recruited within seconds to sites of DNA damage in a PARP-1-dependent manner (Hong et 

al., 2013). The R468C and R639C variants did not affect the interaction despite the 639 

residue falling within the interacting region; however, MWA-hnRNP-UL1 binding was 

reduced (Figure 5.16). This is surprising as the Walker A motif is upstream of the interacting 

region; however, this suggests that these substitutions can cause appreciable structural 

changes. 

 

5.3 DISCUSSION 

In Chapter III it was shown that hnRNP-UL1 binds ATP and these observations 

appeared to show protein kinase activity by phosphorylating the promiscuously 
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Figure 5.15 Binding of NBS1 is unaffected with mutant hnRNP-UL1 proteins. A) HeLa 

cells were transfected with indicated HA-tagged constructs of hnRNP-UL1. Lysates show 

successful protein expression. B) Following transfection of indicated constructs, cells were 

lysed and immunoprecipitations performed for the indicated proteins. Proteins were separated 

by SDS-PAGE and subjected to western blotting to analyse the co-immunoprecipitation of 

NBS1. 
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Figure 5.16 Interaction with PARP-1 is affected with the Walker A mutant but not the 

ALS variants. A) HeLa cells were transfected with indicated HA-tagged constructs of 

hnRNP-UL1. Lysates show successful protein expression. B) Following transfection of 

indicated constructs, cells were lysed and immunoprecipitations performed using an antibody 

against HA or a no antibody control. Proteins were separated by SDS-PAGE and subjected to 

western blotting to analyse the co-immunoprecipitation of PARP-1. 
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phosphorylatable substrates MBP and PLC. Due to the hnRNP-UL1 used in the kinase assays 

being immunoprecipitated from whole cell lysates it was possible that the phosphorylation 

seen was due to an interacting protein co-immunoprecipitating with hnRNP-UL1. A number 

of kinase inhibitors were employed in an attempt to rule out potential interacting proteins. 

However, it was still not conclusive that the phosphorylation seen was due to hnRNP-UL1. 

Therefore, the Walker A loop was mutated in an attempt to show that ATP-binding was 

indeed at the Walker A loop and that the kinase activity seen in the assays was attributable to 

hnRNP-UL1. 

Within the Walker A loop the two glycine residues give an important flexibility to the 

loop and permit hydrogen-bonding with the phosphoryl groups of the nucleotide. The 

threonine binds to the essential Mg
2+

 cofactor ion and the lysine is necessary for phosphoryl 

transfer to the substrate. Within the work presented by Deyrup et al. (1998) several mutations 

were made by site-directed mutagenesis of the Walker A loop in the murine ATP-

sulphurase/adenosine 5’-phosphosulphate kinase enzyme. Substituting the lysine for the 

similarly sized and charged arginine almost completely ablates kinase activity. A change of 

the threonine to alanine significantly reduces kinase activity but not to the same degree as the 

K→R substitution. Meanwhile, changing the most C-terminal glycine (adjacent to K) to 

alanine once again almost completely ablates kinase activity. Given that none of these 

changes completely removed the enzyme’s kinase activity all three of the corresponding 

residues in hnRNP-UL1 were changed resulting in a GKT433ARA substitution. The changes 

prevented ATP-binding and also significantly reduced the phosphorylation of the MBP 

substrate. This strongly suggests that the phosphorylation observed is attributable to hnRNP-

UL1.        
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Some phosphorylation is still evident when using immunoprecipitated HA-MWA-

hnRNP-UL1 for the kinase assays and this would not be expected given that the mutations 

appear to ablate ATP-binding completely. There are a number of potential reasons for the 

small amount of activity seen. It is very possible that the phosphorylation is attributable to 

endogenous wild type-UL1 that was shown to co-immunoprecipitate with MWA-hnRNP-

UL1. As discussed earlier, it is possible that other proteins are being co-immunoprecipitated 

with hnRNP-UL1 and are responsible for this phosphorylation, but the large reduction caused 

by the mutation of the Walker A loop would suggest any phosphorylation by co-

immunoprecipitating proteins is minimal. Although unlikely, it should be considered that a 

conformational change caused by the substitutions may reduce the interaction with a co-

immunoprecipitating protein which is solely responsible for the phosphorylation observed. In 

conclusion, whilst it is not absolutely conclusive that the protein kinase activity observed in 

our kinase assays is that of hnRNP-UL1, the use of the Walker A mutant strongly suggests so. 

The kinase activity of the ALS patient mutants, R639C and R468C, were like that of 

wild-type. The 639 mutation is more than 40 amino acid residues C-terminal of the kinase 

domain and in the middle of the RGG domain. Therefore, this mutation would not be 

expected to influence kinase activity, unless the activity was dependent on RNA- or DNA-

binding. The 468 mutation does lie within the kinase domain just 33 residues C-terminal of 

the Walker A loop and therefore might be expected to influence kinase activity. However, the 

secondary structure prediction based on PNKP using Swiss-Pdb Viewer software shows this 

residue to be in the middle of a section that shows no amino acid homology to PNKP or 

strong secondary structure prediction (Figure 3.2). Therefore, it is unlikely to be a critical 

residue in the secondary structure of hnRNP-UL1’s kinase domain and subsequently does not 

affect kinase activity.        
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Analysis of the ssDNA- and ssRNA-binding capabilities of the mutants showed the 

MWA mutant to exhibit the most severe reduction on comparison to WT. Given that the 

arginine substituted in the R639C variant is in the middle RGG tripeptide of 5 in the RGG 

domain, which is known for permitting RNA interaction, it is a surprise that this mutant does 

not have a more serious effect on binding. The R468C variant reduces ssDNA-binding to a 

similar level, despite it being located N–terminal of the RGG domain and was not shown to 

be important for ATP-binding or kinase activity. The greater effect seen with the MWA 

mutant may occur for a number of reasons. Firstly, the three amino acid substitutions may 

induce gross conformational changes in the protein severely reducing binding capabilities. 

Secondly, ATP-binding could stabilise the ssDNA/ssRNA-binding of hnRNP-UL1. 

 Polo et al. (2012) described hnRNP-UL1 to have an ATR-dependent response to 

DSBs in which it played a crucial role in stimulating resection by the recruitment of BLM. 

DNA damage responses to IR and CPT treatment after knockdown of hnRNP-UL1 had 

caused a reduction in the phosphorylation of Chk1, an ATR substrate (Polo et al., 2012). This 

could not be confirmed in our study, but a reduction in the phosphorylation of RPA, which 

binds to ssDNA in the response to damage, was shown after treatment with IR and UV. A 

subsequent reduced recruitment of the protein to damage foci was also consistent. Therefore, 

our results are consistent with the role of hnRNP-UL1 in stimulating resection following 

DSBs, because without resection, RPA cannot bind to ssDNA and be phosphorylated.  

Treatment with UV following knockdown of hnRNP-UL1 also strongly reduced the 

levels of γH2AX and pRPA. IR and CPT cause DSBs, whilst UV results in SSBs. However, 

all three can involve the binding of RPA to ssDNA and stimulation of ATR signalling. 

Phosphoprylation of RPA and H2AX occurs late in response to UV damage, usually 8-24 

hours after treatment (Figure 5.10). This is because it is only the SSBs that collapse in to 
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DSBs that will cause extensive RPA phosphorylation and subsequent H2AX phosphorylation 

by initiation of ATR signalling. When levels of hnRNP-UL1 are depleted, resection and 

further binding of RPA would be delayed. Subsequent RPA phosphorylation and ATR 

stimulation are diminished, which is required for phosphorylation of H2AX. 

Interestingly, when the mutant constructs were cotransfected with siRNA to 

knockdown endogenous hnRNP-UL1, expression of the mutant proteins restored the normal 

DDR to all three agents. Immunofluorescence experiments following complementation with 

each of the three variants (MWA, R639C and R468C) after depletion of endogenous hnRNP-

UL1 also showed they restored normal DDR responses to IR. This suggests that the kinase 

activity of the protein is not required during its role in response to DNA damage. It also 

shows that the ALS patient mutations do not affect the protein’s functionality in response to 

DNA damage. Whether hnRNP-UL1’s role(s) in the DDR are limited to protein interactions 

as a type of scaffolding protein or that it uses its kinase activity to affect the function of other 

proteins is not known. Mass spectrometry analysis revealed that one of the peptides in MBP 

that was phosphorylated by hnRNP-UL1 had the consensus motif P-X-S/T-P, which 

MAP/ERK kinases are suggested to have specificity for. Out of hnRNP-UL1’s known 

interactors in the DDR, BLM, CtIP, XRCC1, NBS1 and hnRNP-UL1 itself all contain at least 

one of these motifs. This could potentially make them targets for phosphorylation by hnRNP-

UL1 and subsequently affect their DDR roles. Experiments to find substrates for hnRNP-

UL1’s kinase activity were not carried out due to lack of purified protein, but such 

investigation would be very interesting and may uncover further information about the 

protein’s roles in the DDR. However, analysis of its interactions with NBS1, XRCC1 and 

PARP-1 were investigated. Levels of interaction of the hnRNP-UL1 variants with these 
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proteins would suggest whether any DDR defect would occur due to lack of proper interaction 

relative to WT. 

 The middle region of hnRNP-UL1 containing the BBS and RGG domains directly 

interacts with the C-terminal region of NBS1. Furthermore, the RGG domain was shown to be 

critical for in vivo recruitment of hnRNP-UL1 to sites of laser-induced damage by NBS1 

(Polo et al., 2010). Recently, Gurunathan et al. (2015) were able to show that hnRNP-UL1 is 

methylated within its RGG motif by PRMT1 (protein arginine methyltransferase 1) and this 

methylation is required for NBS1 interaction. PRMT1 is the main arginine methyltransferase 

in mammalian cells and has a preference for RGG motifs (Thandapani et al., 2013). Mass 

spectrometry failed to show any methylation of the R639 residue in U20S cells, whilst a short 

GST-tagged region from amino acid 635 to 652 was methylated in vitro (Gurunathan et al., 

2015). However, whether the methylation occurs at R639 or R645 or both is not known. The 

knockdown of PRMT1 significantly reduced the interaction between NBS1 and hnRNP-UL1. 

The substitution of all seven arginines that occur as part of a RG dipeptide or RGG tripeptide 

for lysine also caused large reductions in NBS1-hnRNP-UL1 interactions (Gurunathan et al., 

2015). Our experiments showed no detectable decrease in interaction of the proteins when 

cells expressed the R639C mutant. The 639 arginine residue may or may not be methylated by 

PRMT1, but it appears mutation of this residue alone is not enough to reduce binding of 

NBS1. The R468C and MWA mutants also showed no decrease in NBS1 interaction. This 

coincides with the effective rescue of DNA damage responses with simultaneous knockdown 

of endogenous hnRNP-UL1 and expression of the transfected mutants. With no defect in 

NBS1 binding hnRNP-UL1 would be recruited to sites of DSBs as normal. Therefore, any 

possible DDR dysfunction in ALS patient neuronal cells with R639C or R468C mutations 

would not be due to reduced NBS1 interaction and failure to recruit to damage foci. 
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There were no defects in the binding of XRCC1 or PARP-1 by the two ALS patient 

variants either suggesting any potential role of hnRNP-UL1 in SSB repair would not be 

directly affected by these mutations. There was a reduction in the binding of MWA-hnRNP-

UL1 to PARP-1. This is surprising as it was the C-terminus (aa561-756) of hnRNP-UL1 that 

was reported to interact with PARP-1 (Hong et al., 2013) and this excludes the Walker A 

motif. Once again, there is the possibility that conformational changes in the proteins structure 

caused by the base substitutions in the MWA variant may account for this change in binding. 

Or perhaps the interaction with PARP-1 is dependent upon nucleotide binding. Despite the 

decreased binding of the MWA variant to PARP-1 during co-immunoprecipitation, 

complementation of this variant for depleted endogenous hnRNP-UL1, restored all DDR 

defects to both DSB and SSB inducing agents. This suggests the amount of reduced 

interaction of the two proteins was not sufficient to cause any DDR defects.  

Finally, no information is available yet on the site on hnRNP-UL1 for XRCC1 

interaction. It is possible that hnRNP-UL1’s interaction with XRCC1 may occur through 

PARP-1 as part of a complex. XRCC1 interacts directly with PARP-1 through a BRCT1 

(BRCA1 C terminus) domain (Masson et al., 1998). Meanwhile, negatively charged RGG 

motifs have been proposed to facilitate binding of the positively charged PAR chains 

(Altemeyer et al., 2015); such an interaction may occur between hnRNP-UL1 and the self 

PARylated PARP-1. 
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6.1 NUCLEOTIDE-BINDING OF HNRNP-UL1 

 Many proteins bind to nucleotide triphosphates through a number of recognition 

sequences (Matte and Delbaere, 2010). The most common of these is the Walker A motif, 

which is present along with a conserved Walker B motif in hnRNP-UL1, -UL2 and –U. 

During this study hnRNP-UL1 was shown to exhibit strong binding of ATP through its 

Walker A motif. However, a lack of ATP-binding by hnRNP-UL2 and –U was observed. This 

was a little surprising as the two motifs and their flanking regions are so highly conserved 

across the three proteins. One possible explanation is the differences of their Walker A motifs. 

Investigations made using the crystal structures of proteins with Walker A motifs in the 

Protein Data Bank showed that the four interchangeable XXXX residues in the consensus 

motif (GXXXXGKT/S) have an influence on nucleotide-binding capability (Ramakrishnan et 

al., 2002). Whilst these four amino acid residues in the motif do vary considerably among the 

nucleotide-binding proteins, their Ramachandran angles remain fairly consistent allowing the 

motif to form the critically important loop structure around the nucleotide (Ramakrishnan et 

al., 2002). The Ramachandran angles of the four interchangeable residues in hnRNP-UL1 

(LPAA), -U (LPGA) and –UL2 (LPGS) were not investigated by Ramakrishnan et al. (2002) 

and although the amino acid changes are not extensive it is possible that the differences 

between them prevent hnRNP-U and hnRNP-UL2 binding ATP. Very conservative changes 

are also present in their Walker B motifs as well. The influence of these changes could be 

investigated by using site-directed mutagenesis PCR to substitute the different residues in the 

hnRNP-UL2 and hnRNP-U proteins to match those in hnRNP-UL1 and performing ATP-

binding experiments. 

None of the other 20-plus hnRNP family members possess a Walker A motif 

suggesting that any activity related to nucleotide binding is unique to these three proteins. As
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 other hnRNPs lack the Walker A motif and no binding of nucleotide triphosphates has been 

reported, it suggests that the binding by hnRNP-UL1 would not be related to any of its roles 

in RNA-processing. A potential function of hnRNP-UL1 nucleotide-binding outside of 

possible protein kinase activity is highlighted by another Walker A motif containing protein 

which functions in the DDR, Rad50 (Hopfner et al., 2000). Rad50 is part of the MRN 

complex discussed in 1.2.5. It has an ATPase domain which is split N- and C-terminal of a 

600-900 amino acid long heptad repeat insertion. The interaction of the N-terminal Walker A 

motif and C-terminal Walker B motif to ATP causes a conformational switch allowing the 

binding of DNA (Hopfner et al., 2000). This allows it to regulate the exonuclease activity of 

Mre11 by repositioning DNA ends in to the Mre11 active site (Hopfner et al., 2001). hnRNP-

UL1 is known to stimulate DNA resection during HR by recruitment of BLM (Polo et al., 

2012), as well as to interact with CtIP (Bruton et al., 2007). During the study presented here 

ablation of ATP-binding by mutation of hnRNP-UL1’s Walker A motif was shown to 

significantly decrease the protein’s DNA-binding capabilities. Therefore, it is possible that 

like Rad50, ATP-binding influences hnRNP-UL1’s DNA-binding allowing the protein to 

regulate BLM and CtIP’s DNA end resection activity. However, no DDR defects were 

detected with the MWA variant during this study and pRPA levels were restored to normal 

with complementation of the MWA variant for depleted wild-type hnRNP-UL1 following 

DSB induction by IR. Despite this it would be interesting to undertake experiments 

investigating this theory. A purified source of hnRNP-UL1 protein would allow structural 

studies by x-ray crystallography allowing the observation of conformational changes initiated 

by ATP-binding. Thus far, the production of a purified source of hnRNP-UL1 has not been 

possible due to the protein’s instability, but may be possible with improved methods of 

bacterial or insect cell expression.      
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6.2 KINASE ACTIVITY OF HNRNP-UL1 

 During the investigations conducted in chapter III hnRNP-UL1 was shown to possess 

protein kinase activity, as were hnRNP-U and -UL2. The observed kinase activity for hnRNP-

U and –UL2 was unexpected given the lack of ATP-binding seen. The possible reasons for 

this anomaly were discussed in section 3.3. Also, the interest in studying the potential kinase 

activity of hnRNP-UL1 was generated by its amino acid and secondary structure homology to 

PNKP, a DNA kinase (Schellenberg and Williams, 2011). However, no DNA kinase activity 

was observed with immunoprecipitated hnRNP-UL1. No activity was observed for 

immunoprecipitated PNKP either, but only with recombinant protein, suggesting the 

procedure may have not been sensitive enough or suitable for detection of DNA 

phosphorylation. Therefore, repeated DNA kinase experiments with a purified and highly 

concentrated source of hnRNP-UL1 would be ideal before dismissing any hnRNP-UL1 DNA 

kinase activity. 

 During this study many efforts were made to eliminate the possibility of the protein 

kinase activity observed being that of a bound protein and not integral to hnRNP-UL1. The 

significant decrease in activity seen with the Walker A mutant (MWA) variant was the most 

significant evidence that the activity was integral to hnRNP-UL1. A number of protein kinase 

inhibitors did reduce the activity observed with immunoprecipitated hnRNP-UL1; however, 

none of these had been tested previously for specificity against hnRNP-UL1 (discussed 

further in 3.2.6). The two which caused greatest reduction in activity were SP600125 and BI 

2536, JNK and PLK1 inhibitors, respectively. To eliminate the possibility of JNK and/or 

PLK1 being the bound protein(s) responsible for the protein kinase activity, their interaction 

with hnRNP-UL1 should be investigated by immunoprecipitation in future experiments. 
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The novel interaction with p70S6K1 was also demonstrated during this study. It did 

not appear to be the bound protein responsible for the observed protein kinase activity either 

as direct immunoprecipitation of p70S6K1 resulted in less phosphorylation than was the case 

for hnRNP-UL1. However, the functional significance for the interaction of these two 

proteins is not yet known providing another exciting avenue for potential future work. The 

S6Ks (p70S6K1 and p54S6K2) are serine/threonine kinases which function downstream of 

mTOR in mTOR signalling pathways to stimulate cell growth and proliferation. A number of 

hnRNPs, including hnRNP-U, -F, -E1, and –C1/C2 have previously been shown to interact 

with p54S6K2 by mass spectrometry analysis of nuclear fractions and an interaction with 

hnRNP-F/H was also shown by co-immunoprecipitation. A p54S6K2, hnRNP-F and mTOR 

complex was shown to form in the nucleus and stimulate cell growth and proliferation in 

response to serum stimulation (Goh et al., 2010). Meanwhile, p70S6K1 has been shown to be 

involved in RNA processing following stimulation of mTOR signalling to enhance translation 

efficiency of spliced mRNA over non-spliced (Ma et al., 2008). Within our study, it was the 

70 kDa p70S6K1 that was shown to immunoprecipitate with hnRNP-UL1. This suggests a 

potential functional purpose for the interaction between p70S6K1 and hnRNP-UL1 in mRNA 

splicing and an avenue for further investigation.  

In chapter V the MWA variant was shown to reduce binding of both ssDNA and 

oligoribonucleotides. This may be simply due to the three amino acid substitutions inducing 

gross conformational changes in the protein, severely reducing binding capabilities. To test 

this, an hnRNP-UL1 construct could be produced by site-directed mutagenesis in which only 

one encoded amino acid of the Walker A motif is changed (instead of three). This would have 

less chance of inducing large conformational changes in the protein and ssDNA/RNA 

experiments could be repeated to see if the reduction in binding is the same. Another possible 
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explanation of the reduced binding is that ATP-binding could stabilise the ssDNA/RNA-

binding of hnRNP-UL1. Accordingly, the protein’s ATP-binding may well affect its roles in 

RNA-processing. To investigate which mRNAs hnRNP-UL1 processes RNA and protein 

expression studies could be investigated with and without depletion of the protein. 

Subsequently, the expression of those mRNAs and proteins could be observed in cells 

expressing wild-type and MWA-hnRNP-UL1. A further possibility is that hnRNP-UL1’s 

kinase activity may occur when bound to ssDNA or RNA. Given hnRNP-UL1’s involvement 

in resection during HR, the protein may bind the exposed 3’ tail stimulating its kinase 

activity. hnRNP-UL1 may also have an unknown substrate for phosphorylation during its 

PARP-1-dependent recruitment in the early phase response to DNA damage. hnRNP-UL1 

does possess kinase activity but the functional significance in vivo is currently unknown. 

 hnRNP-UL1’s biological substrate is unknown and if revealed would probably give 

large clues to its functional role and significance. Mass spectrometry revealed two peptides 

phosphorylated in MBP and one of those fitted the consensus motif P-X-S/T-P, which 

MAP/ERK kinases are suggested to have specificity for. BLM, CtIP, XRCC1, NBS1 and 

hnRNP-UL1 itself all contain at least one of these motifs and could potentially be substrates 

for hnRNP-UL1’s kinase activity. However, MBP was employed in the kinase assays due to 

its promiscuous nature as a phosphorylatable substrate and therefore using the motif at which 

it was phosphorylated to try and identify possible substrates for hnRNP-UL1 is mere 

speculation. To identify a substrate the production of a purified source of hnRNP-UL1 would 

be needed, which has thus far been unattainable. If produced, in vivo experiments could be 

conducted with ATP and selected protein substrate candidates, such as those mentioned 

above. However, hnRNP-UL1’s kinase activity may not be a function of its role in the DDR, 

but instead as part of another cellular process. This is feasible due to the protein’s multi-
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functional nature in the cell. An involvement in a completely novel pathway may also be 

possible. 

 

6.3 ALS AND HNRNP-UL1 

 ALS is an adult-onset neurodegenerative disorder with a complex aetiology and 

pathogenesis. Data discussed in chapter IV showed that LCLs derived from ALS patients with 

hnRNP-UL1 heterozygous mutations showed no defects in their responses to various DNA 

damaging agents. Similarly, no defects were shown when the patient variant proteins were 

complemented for WT hnRNP-UL1 and HeLa cells damaged by the same agents. The R639C 

and R468C variants did show defects in ssDNA-binding and ssRNA-binding however, which 

may potentially affect the processing of mRNAs with important roles in neuronal cells 

although there is no current evidence of this. Nucleotide-binding and protein-binding were not 

affected by the R639C and R468C variants and therefore the study failed to find evidence 

directly suggesting that these mutations lead to or contribute to the disease by any mechanism 

involving the ‘DDR functions’ of the protein. However, there are many other potential 

mechanisms that the mutations may affect, not least, the aggregation of the cytoplasmic 

ubiquitylated inclusions within the motor neurons and glial cells which continue to be the 

hallmark of ALS (Robberecht and Philips, 2013). 

The protein composition of the cytoplasmic inclusions differs in the various types of 

ALS; however, 97% of patients have TDP43-positive inclusions (Laferriére and 

Polymenidou, 2015). RGG methylation has been shown to be important for the aggregation of 

TDP43 in forming these inclusions. RGG methylation was shown to stimulate ubiquitylation 

which increases its oligomerisation (Dammer et al., 2012). Following overexpression of 
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TDP43 in HEK-293 cells, mass spectrometry allowed analysis of the other proteins localised 

to these inclusions, many of them were hnRNPs, including hnRNP-U but not hnRNP-UL1 

(Dammer et al., 2012). Many of the hnRNPs and other RNA-processing proteins also had 

peptides with methylated RGGs. hnRNP-UL1 has recently been shown to be methylated 

heavily within its RGG domain (Gurunathan et al., 2015), suggesting a possible similar 

mechanism to TDP43 of being ubiquitylated and having a presence in these inclusions. When 

the lysine residues required for ubiquitylation in the RGG domain of TDP43 were mutated 

this significantly decreased the aggregation of the protein and resultant inclusions (Dammer et 

al., 2012). This provides a possible mechanism by which hnRNP-UL1 is recruited to ALS 

inclusions and also potential avenues for treatment of ALS. hnRNP-UL1 is currently not 

known to be ubiquitylated, although it would be interesting to investigate ALS patient 

neuronal cell lysates for ubiquitylated hnRNP-UL1. If ubiquitylation did occur, the residues 

ubiquitylated could be identified by mass spectrometry and subsequent mutation of the 

residues to investigate alterations in aggregation propensity could be made. 

hnRNP-UL1 may also have the ability to directly contribute to the formation of 

inclusions. The patient mutations investigated in this study may confer an increased 

susceptibility of the protein to aggregation. In recent years, the theory that neurodegenerative 

proteinopathies, such as PD, AD and ALS, have a prion-like mechanism underlying their 

protein aggregation (which remains a core aspect of their pathogenesis) has grown. As 

discussed in section 1.4.3, many of the proteins associated with ALS have prion-like domains 

(PrLDs), including FUS, TDP43, SOD1, TAF15, EWSR1, hnRNP-A2 and hnRNP-A1 (King 

et al., 2012). hnRNP-UL1 also has a PrLD at its C-terminus extending from aa residue 614 to 

856 (Figure 1.13) and was shown to score 10
th

 for all human RNA-binding proteins and 37
th

 

for all human proteins on a scale for prion capacity based on its amino acid sequence and 
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composition (Li et al., 2013). In chapter IV, experiments in which the hnRNP-UL1 ALS 

variants were transiently expressed in HeLa cells showed no increased cytoplasmic 

localisation or aggregation. However, short-term transient expression may not be sufficient to 

induce detectable changes in the proteins localisation. The likelihood of the R639C and 

R468C base substitutions increasing aggregation propensity can be analysed by algorithm 

based software. ZipperDB calculates the potential of each 6-amino-acid stretch in the protein 

to form amyloid-like fibrils, which consist of β-sheets that stack in a cross-like fashion 

(Nelson et al., 2005). The R468C substitution makes little difference to the calculated Rosetta 

energy required to form a fibril (Figure 6.1A). However, the R639C substitution, which does 

reside in the predicted PrLD of hnRNP-UL1 (Figure 1.13) causes a significant change and 

brings the Rosetta energy of the GNCGGF hexapeptide very close to the -23 kcal/mol 

threshold (Figure 6.1B). This suggests that the R639C mutation may contribute to ALS 

pathogenesis by increasing the aggregation propensity of the protein leading to the formation 

of disease-causing aggregates. In addition, whilst no defects in DDRs were observed within 

this study with the mutated variants of hnRNP-UL1, if the variants caused cytoplasmic 

aggregation, depleting the nuclear pool of hnRNP-UL1 protein, effective responses to DNA 

damage in neuronal cells could be affected. 

Sequestration of hnRNP-UL1, rather than self-stimulated aggregation, could also 

contribute to ALS pathogenesis. The mutation of other proteins, for example FUS and 

TDP43, causes mislocalisation to the cytoplasm or increased aggregation propensity resulting 

in the formation of inclusions affecting their own RNA-processing abilities but also other 

RNA-processing proteins trapped within the inclusions (Robberecht and Philips, 2013). The 

recently discovered C9ORF72 hexanucleotide repeat expansions are the single most common 

cause of ALS and give rise to nuclear as well as cytoplasmic aggregates (Donnelly et al., 
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Figure 6.1 The effect of the hnRNP-UL1 patient mutations on potential steric zipper 

formation. ZipperDB (software available at http://services.mbi.ucla.edu/zipperdb/) calculates 

the predicted amyloid fibril-forming potential of each 6-amino-acid stretch. The residue 

sequence is plotted along the x-axis and each histogram bar represents one hexapeptide started 

at the amino acid above. Hexapeptides with a Rosetta energy below the indicated threshold of 

-23kcal/mol are predicted to form fibrils. A) The R648C substitution has little effect on 

predicted fibril formation. B) The R639C substitution has a significant effect on Rosetta 

energy scores bringing the hexapeptide GNCGGF very close to the threshold energy score. 
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2013). These aggregates trap a large number of RNA-processing proteins. hnRNP-UL1 could 

potentially be drawn in to these aggregates affecting the regular function of the protein and 

RNA metabolism in the cell, possibly leading to neurodegeneration (Lee et al., 2013). 

Of the two ALS patient mutations characterised in this study, the R639C variant was 

the more likely to have deficiencies in RNA-binding due to the substitution of the arginine 

residue belonging to an RGG tripeptide in the middle of the RRG domain, which is known to 

be responsible for RNA interaction. This was confirmed during the RNA-binding 

investigations detailed in chapter V. Decreased RNA-binding would obviously influence the 

ability of hnRNP-UL1 to interact with mRNA molecules and correctly process them. hnRNP-

UL1 is most likely involved in the regulation of thousands of mRNAs and any dysregulation 

of this role would likely have downstream effects that are detrimental to the cell. FUS and 

TDP43 were found to share regulation of mRNAs enriched in very long intron sequences, 

which are known to have specific roles in neuronal cells (Lagier-Tourenne et al., 2012). Little 

is known about the mRNAs that hnRNP-UL1 regulates, but a similar pattern would fit with 

the theory that dysregulation would cause neuronal cell susceptibility. Discovery of hnRNP-

UL1-regulated mRNAs would allow the investigation of interaction between them and wild-

type versus ALS-patient mutation proteins. Aberrant binding may give insights to the 

protein’s contribution to ALS pathogenesis, particularly if the mRNAs and their translated 

proteins are neuronal cell specific. 

Interestingly, the formation of many intracellular compartments which are not bound 

by membranes, such as nucleoli (Brangwynne et al., 2011), Cajal bodies (Strzelecka et al., 

2010), germ granules (Brangwynne et al., 2009), stress granules (SGs; Wippich et al., 2013), 

processing bodies (P-bodies; Kerdesha et al., 2005) and DDR sites (Altmeyer et al., 2015), 

form by the same mechanism, a process called ‘liquid demixing’. It is thought that proteins 



168 

 

containing the low-sequence complexity of PrLDs are essential for this process. Liquid 

demixing forms a defined and condensed spherical-shaped liquid-like droplet permitting close 

proximity and rapid internal rearrangement of the components within it (Patel et al., 2015). 

This allows the required complex biochemistry to occur in a confined and more organised 

location in time and space. Due to the vast and complex regulation required around DNA and 

RNA, the PrLDs are particularly abundant and have been conserved across evolution in DNA-

and RNA-binding proteins (King et al., 2013). Thus, the continually expanding trend of RNA-

binding domains and PrLDs within proteins linked to ALS has now been strengthened by a 

functional role for the two domains existing in the same protein.  

SGs and P-bodies are good examples of how RNA-binding proteins with PrLDs (e.g. 

TDP43 and FUS) utilise their self-association properties to form these structures within 

minutes of the cell becoming stressed. The RNA-binding domains of these proteins recruit 

specifically targeted mRNAs, whilst their PrLDs allow the formation of the granular 

structures which protect them from potential damage. The reversibility of the aggregation then 

allows the granules to dissociate when the stress factor has been dealt with, releasing the 

sequestered mRNA and translation machinery to resume normal functions (Li et al., 2013). 

Studies have shown WT FUS forms droplets in vivo and overexpression causes the protein to 

form more viscous gel-like structures as opposed to its usual liquid-like droplet state. In this 

study, deletion of the PrLD in FUS ablated its droplet formation entirely, showing this region 

is responsible for this phenomenon (Patel et al., 2015). In vitro experiments showed that with 

increased time droplets would become fibrous and the fibrils grow in length in “sea-urchin-

like” patterns. Furthermore, ALS patient variants, G156E and R244C of FUS, significantly 

accelerated the conversion of droplets to fibrous structures (Patel et al., 2015). With hnRNP-

UL1 it would firstly need to be shown that hnRNP-UL1 was capable of forming liquid 
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droplets by phase separation. This would require good imaging equipment such as a detection 

of light diffraction through bright-field or phase-contrast microscopy (Altmeyer et al., 2015), 

or alternatively digital light-sheet microscopy (DLSM) allowing 3D imaging of dynamic 

subcellular objects (Patel et al., 2015). Hopefully, hnRNP-UL1 would show formation of 

liquid droplets through overexpression in vivo, which either did not occur in our short-term 

expression experiments or were undetectable by simple immunofluorescence microscopy 

techniques. Subsequently, experiments could be performed in which the PrLD of hnRNP-UL1 

is deleted and liquid droplet formation observed. Then experiments could be conducted with 

the ALS-patient variants to investigate possible faster progression from droplets to fibrous 

structures with time compared to wild-type. 

It appears that PrLDs within proteins confer the ability to form liquid-like 

compartments, which provide an essential and critically important functional environment in 

response to DNA damage (Altmeyer et al., 2015), various other cell stresses (Li et al., 2013) 

and even routine non-stress RNA regulation processes (Weber and Brangwynne, 2012). These 

PrLDs and subsequent intracellular compartments come with a caveat of an increased risk of 

aggregation. Cells possess regulatory mechanisms to control the formation and release of 

these liquid-like compartments, but with age these mechanisms may fail or become 

overwhelmed by mutations increasing the aggregation propensity of involved proteins. This 

could lead to the balance being tipped towards chronic aggregation providing a reasonable 

explanation for the late-onset of ALS. Indeed, a large number of ALS-causing mutations have 

been found in PrLDs and experiments are now showing that the mutations speed up the 

liquid-to-phase transition of the proteins (Patel et al., 2015). Stress-induced pathways of SG 

formation and progressively aberrant liquid-to-solid phase transitions may be central to the 

pathogenesis of the disease. Given the known domains, RNA-processing functions (which 
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are so similar to those of other ALS-linked proteins, e.g. FUS and TDP43), plus the novel 

ALS patients with hnRNP-UL1 mutations here, it is reasonable to suggest that hnRNP-UL1 is 

a very strong candidate for involvement in ALS pathogenesis. Studies with transgenic mice 

expressing hnRNP-UL1 ALS-patient variations would provide the ideal environment for 

investigation of long-term aggregation of the proteins. Furthermore, these mutated forms of 

the protein could be targeted to neuronal tissue to see if ALS-like symptoms could be 

generated. 

 

6.4 THE ROLE OF HNRNP-UL1 IN THE EARLY RESPONSE TO DNA DAMAGE 

Another aspect of cellular biology which requires rapid and controlled 

compartmentalisation is areas around DNA damage sites (DNA damage foci). Poly(ADP-

ribose) (PAR) levels are rapidly and significantly increased at sites of DNA damage. Recent 

studies show that the electrostatic interactions between positively charged RGG repeats and 

negatively charged PAR cause the liquid demixing observed at DNA damage sites, which  is 

further amplified by the aggregation-prone PrLDs (Altmeyer et al., 2015). Recent evidence 

suggests these compartments then function to provide a specific localised area in which the 

controlled recruitment of repair factors and exclusion of other proteins can occur (Altmeyer et 

al., 2015; Sharma et al., 2015). A number of proteins with both RGG repeats and PrLDs have 

been shown to be recruited to these sites, such as the three FET proteins (TAF15, EWS and 

FUS) (Altmeyer et al., 2015). This was shown by mutating varying numbers of the RGG 

repeats in the three FET proteins (TAF15, EWS and FUS) which were shown to be rapidly 

recruited to laser-induced DSB sites in a PAR-dependent manner. Decreasing the number of 

RGG repeats caused a correlative decrease in recruitment; mutation of all eight arginines in 
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FUS completely ablated its recruitment. The isolated PrLDs of the three FET proteins formed 

spherical hydrogel-like structures when expressed in human cells (Altmeyer et al., 2015). 

Whilst hnRNP-UL1’s role in early phase responses to DNA damage remains unclear 

and was not specifically investigated during this study, the recent evidence for proteins 

containing RGG motifs and PrLDs in liquid demixing provides a possible function for the 

protein during this stage of the DDR. hnRNP-UL1 has been shown to be recruited to laser-

induced DSB sites in a PARP-1-dependent manner as part of the very early response to DNA 

damage (Polo et al, 2012; Hong et al., 2013). Additionally, hnRNP-UL1 was shown to 

associate physically with PARP-1 by immunoprecipitation and be PARylated by PARP-1. 

Live cell imaging showed that a GFP-tagged RGG motif alone was sufficient for recruitment, 

however, the PrLD domain minus the RGG motif showed significantly improved recruitment 

and both regions together were responsible for yet stronger recruitment (Hong et al., 2013). 

This would fit with the proposed theory of RGG repeats and PAR causing liquid demixing, 

but the PrLDs allow significant amplification of the accumulation. This evidence suggests 

hnRNP-UL1 may play a very important role in helping to create an initial controlled 

compartment around the damage site which would then facilitate assembly of other repair 

factors. Investigation of hnRNP-UL1’s recruitment to laser-induced DSBs could be made by 

decreasing the number of RGG repeats by mutation of the arginine residues and observing 

whether recruitment decreases as with FUS in Altmeyer et al. (2015). 

During this study, the interaction between hnRNP-UL1 and PARP-1 was investigated 

with the various constructs made (the Walker A mutant/MWA and the ALS-patient mutations 

R639C and R468C). Results in chapter V showed the MWA variant to reduce binding to 

PARP-1. As explained in section 5.3, this could be due to gross conformational changes 

induced by the three amino acid changes of this variant or that the PARP-1 interaction is 
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dependent upon nucleotide binding of hnRNP-UL1. Alternatively, mutation in the Walker A 

motif could lead to specific changes in the PARP binding site. To investigate this, an 

alternative Walker A mutant could be created with just one of the three critical GKT residues 

being mutated and the immunoprecipitation experiments repeated. Furthermore, the hnRNP-

UL1 R639C variant protein was shown to have no reduced binding to PARP-1. This mutation 

of a single arginine residue within one of the protein’s seven RG or RGG repeats was 

evidently not enough to effect the interaction with PARP-1. It would be interesting to conduct 

PARP-1 immunoprecipitation studies with an RGG deletion hnRNP-UL1 protein and also 

with a construct in which all the arginines of the RGG motif were mutated. Similarly, as 

XRCC1 is recruited to damage sites by an association with PARP-1 (Masson et al., 1998), 

carrying out immunoprecipitation studies with the same hnRNP-UL1 variants would also be 

interesting. It is conceivable that hnRNP-UL1, PARP-1 and XRCC1 exist as a complex which 

is dependent on PARylation following DNA damage. 

The link between RGG domains, PrLDs and liquid demixing was further explored in 

Altmeyer et al. (2015). Interestingly, overexpression of the FUS PrLD region alone stimulated 

the self-assembly of heterogeneous liquid droplets containing endogenous wild-type FET 

proteins as well as hnRNP-UL1 (Altmeyer et al., 2015). Fusion of the FUS PrLD (aa1-211) to 

its RGG repeats (aa468-526) led to more significant accumulation at laser-irradiated sites, 

suggesting the PrLD domains can further drive phase separation by recruiting other similarly 

structured proteins. The initial in vivo stimulus of this protein assembly was shown to be 

driven by PARylation as depleting the PAR-degrading enzyme PAR glycohydrolase (PARG) 

caused more pronounced and prolonged liquid droplet formations in response to DNA 

damage as detected by light diffraction through both bright-field and phase-contrast 

microscopy. PARP inhibitors also completely abolished droplet formation. Furthermore, the 
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presence of PAR and purified RGG/PrLD-containing synthetic peptides alone were sufficient 

enough to form aggregates in vitro, showing this ability is intrinsic to these domains under 

stimulation from PAR (Altmeyer et al., 2015). Investigations in to the hnRNP-UL1’s ability 

to cause liquid demixing using detection of light diffraction would be very interesting. 

Expressing a purified source of the protein (or even just the C-terminus RGG/PrLD region) in 

vitro in the presence of PAR and observing liquid droplet formation would give an insight in 

to whether the protein possesses an intrinsic ability to perform this process or whether the 

protein is recruited to these compartments as a contributing factor but of less importance as 

other proteins such as the FET family members. In vivo experiments could also be conducted 

in which hnRNP-UL1 is overexpressed and liquid droplet formation is observed. 

Additionally, similar experiments following depletion of endogenous hnRNP-UL1 and 

expression of various mutated constructs (e.g. RGG motif deletion, PrLD deletion, RGG 

arginine substituted) could be carried out. 

As mentioned above, these liquid droplet compartments serve to control the 

recruitment of certain proteins. A good example of another membrane-less liquid-droplet 

compartment is the nucleolus, which permits access to ribosomal RNA and RNA-binding 

proteins, but not other nuclear components such as DDR factors (Altmeyer et al., 2015). 

Fully-folded globular DDR proteins, such as NBS1, MDC1 and 53BP1, were excluded from 

the PrLD-protein liquid droplets under normal conditions. However, following DNA damage 

stress MDC1 was permitted access to the droplets whilst 53BP1 was excluded (Altmeyer et 

al., 2015). This is very interesting as MDC1 has a proximal role in DDR as an attachment 

factor for other repair proteins (Bekker-Jensen and Mailand, 2010), whereas 53BP1 has a late-

phase role particularly in guiding DSB repair pathway choice towards NHEJ (Panier and 

Boulton, 2014). This suggests that the rapid PAR-seeded liquid droplet formation around 
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break sites functions to selectively permit access to repair factors needed for early-phase 

responses whilst excluding late-phase response proteins. 

Recent evidence suggests hnRNP-UL1 is involved in the inclusion and exclusion of 

DDR proteins as shown by Sharma et al. (2015) during investigation of the roles of long non-

coding RNAs (lncRNAs) in the DDR. A novel lncRNA, named DDSR1 (DNA damage-

sensitive RNA1), was upregulated in response to treatment with various DNA damaging 

agents. Mass spectrometry showed DDSR1 to interact with hnRNP-UL1. Their relationship 

was further strengthened when depletion of DDSR1 was shown to compromise HR by 

decreasing DNA end resection (Sharma et al., 2015), similarly hnRNP-UL1 depletion has the 

same effect (Polo et al., 2012). Furthermore, BRCA1/RAP80 complex accumulation at 

damage sites increased with DDSR1 depletion (Sharma et al., 2015). The BRCA1/RAP80 

complex is known to restrict DNA end resection (Coleman and Greenber, 2011). This leads to 

the proposal that links the early phase role of hnRNP-UL1 to the late phase role of stimulating 

DNA end resection and subsequently repair by HR. hnRNP-UL1 interacts with DDSR1, and 

along with many other PAR stimulated RGG/PrLD-containing proteins, forms liquid droplets 

which function to selectively exclude or include access to specific proteins. Preventing the 

accumulation of DNA resection-inhibitory BRCA1/RAP80 complexes helps the selection of 

repair pathway choice towards HR (Sharma et al., 2015; Lukas and Altmeyer, 2015). hnRNP-

UL1 later recruits factors such as BLM to stimulate the resection required for HR (Polo et al., 

2012). Sharma et al. (2015) used the more sensitive technique of live cell imaging to measure 

a significant increase in the recruitment kinetics of BRCA1 and RAP80 to laser-induced 

DSBs following DDSR1 depletion. Polo et al. (2012) was not able to detect an increase in 

BRCA1 recruitment following whole cell irradiation to induce DSBs following hnRNP-UL1 

depletion. Therefore, it would be of interest to conduct studies with live cell imaging 
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following laser-induced irradiation treatment to see whether the BRCA1/RAP80 recruitment 

increases following hnRNP-UL1 depletion as it does with DDSR1 depletion. This would help 

to confirm the proposed role of hnRNP-UL1 in guiding DSB repair pathway choice towards 

HR by its control of exclusion and inclusion of specific proteins as part of the early phase 

liquid demixing machinery. 

 The FET family proteins, FUS, EWS and TAF15, have all been shown to be mutated 

leading to ALS. Of great interest to furthering the understanding of ALS pathogenesis the 

three proteins were shown to be significantly involved in the PAR-dependent formation of the 

liquid droplet structures around DNA damage breaks. Mass spectrometry analysis identified 

TAF15 and FUS among the top ten proteins to be PARylated following DNA damage 

(Jungmichel et al., 2013). EWS and FUS, like hnRNP-UL1, have been shown to localise 

rapidly and transiently to sites of DNA damage (Mastrocola et al., 2013; Wang et al., 2013). 

GFP-tagged TAF15 truncations of only its RGG domain or its PrLD domain were sufficient 

to be recruited to damage sites (Izhar et al., 2015) providing further evidence for the 

importance of each of the two domains in the recruitment to these sites. Additionally, co-

depletion of the three proteins abolished liquid droplet formation in response to DNA damage, 

whilst the over expression of individual members greatly enhanced the process (Altmeyer et 

al., 2015). The three FET proteins share an important role in initiating rapid liquid droplet 

formation around DNA damage sites. All three are also strongly linked to ALS and ALS 

patient mutations have been shown to cause DDR defects (Qiu et al., 2014). Therefore, the 

potential for defective DNA damage repair to have a significant role in ALS pathogenesis is 

still very plausible. hnRNP-UL1 fits with the trends of these proteins and despite no evidence 

of the ALS hnRNP-UL1 patient mutations showing DDR defects during this study it should 

not be ruled out that they do cause DDR defects. In the study by Qiu et al. (2014), transgenic 
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mice expressing the ALS patient mutation FUS-R521C showed evidence of DNA damage in 

spinal motor neurons and cortical neurons causing severe dendritic and synaptic defects. This 

was caused by defective repair of oxidation damage in the 5’ noncoding exons of the Bdnf 

(brain derived neurotrophic factor) gene. BDNF protein is a neuronal cell growth factor 

helping to promote the survival of existing neurons and growth and differentiation of new 

ones (Hyman et al., 1991). The ineffective repair was compounded by the mutant FUS protein 

binding Bdnf RNA more strongly than wild-type, resulting in splicing defects (Qiu et al., 

2014). The transgenic mouse model expressing an ALS patient mutated protein allowed the 

direct link between DNA damage defects and disease pathogenesis to be made. A similar 

investigation conducted with hnRNP-UL1 would be very interesting. It would eliminate the 

problems seen in this study with heterogeneous mutations in lymphoid cells, the variability of 

LCL responses to DNA damage and would potentially enable the identification of unique 

ALS-related pathogenesis in patients with hnRNP-UL1 mutations. 

 To conclude, it is quite feasible that during times in which the cell is not stressed 

RNA-binding motif containing-PrLDs bind to cognate RNA or DNA targets as part of RNA 

granules. The formation of RNA granules was shown to be regulated by a combination of 

RNA-binding specificity and PrLDs in vitro (Kato et al. 2012; Lin et al., 2015). The PrLDs of 

numerous RNA-binding proteins, and also full-length hnRNP-A1 alone, were shown to phase 

separate in vitro to form liquid droplets. This was stimulated by low salt concentrations or 

RNA (Lin et al., 2015). This shows RNA is capable of stimulating liquid demixing by hnRNP 

proteins, which may occur naturally in vivo to form RNA granules. Therefore, rapid PAR 

formation in response to DNA damage within the nucleus may serve to out-compete these 

RNA interactions, stimulating the transient assembly around break sites (Altmeyer et al., 

2015).         
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