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Abstract 

Synthesis of Waveguide Antenna Arrays Using the Coupling Matrix Approach  

Rashad Hassan Mahmud. 

The University of Birmingham, December 2015 

With the rapid development in communication systems in recent years, improvements in components 

of the systems such as antennas and bandpass filters are continuously required to provide improved 

performance. High gain, wide bandwidth, and small size are the properties of antennas which are 

demanded in many modern applications, and achieving these simultaneously is a challenge. This thesis 

presents a new design approach to address this challenge.  

The coupling matrix is an approach used to represent and design the circuits made of coupled-

resonators such as filters and multiplexers. The approach has been utilised in this thesis to integrate a 

single waveguide resonator-based aperture antenna with an n
th
 order filter circuit. The integrated 

component named an antenna-filter is capable of providing a controllable bandwidth and additionally 

introduces the filtering functionality. Design and fabrication for a single waveguide resonator-based 

aperture antenna integrated with a 3
rd

 order bandpass filter has been presented in this thesis to verify 

the approach. 

The design approach is further developed in order to integrate bandpass filters with an N×N 

waveguide resonator-based aperture antenna array. This is to increase the gain of the array as well as 

provide the filtering. The integrated component here is called antenna array-filter. In addition to the 

controllable bandwidth, the integrated component can now provide an increased gain. Five novel 

antenna array-filter components have been fabricated in this thesis for the purpose of validation.   

This thesis also looks at a 300 GHz communication system which is being proposed at The University 

of Birmingham with the objective to build a 10 metre indoor communication link with the data rate 

capacity of 10 Gbit/s. The system is to be constructed out of filtering rectangular waveguide resonators 

together with active elements. In this thesis attention is paid to the antenna required by the system. A 

300 GHz planar (8×8) slotted waveguide antenna array has been designed and fabricated. 
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Chapter 1 

Introduction 

 

This chapter is intended to highlight the main objectives of this thesis which can be 

summarised into: (i) the development of the coupling matrix approach to integrate antennas 

with bandpass filters, and (ii) the design of 300 GHz waveguide antennas based on the 

micromachining technique. 

 

1.1 Research motivation and objectives 

The Heinrich Rudolf Hertz’s experiment in 1887 to investigate the electromagnetic radiation 

is known as the first practical antenna experiment [1, 2].It was later developed in 1901 by 

Marconi to build a radio communication link between England and Newfoundland [2, 3]. 

Since then, there have been many wireless systems developed such as the Global Position 

System (GPS), Satellite communication, tracking radar, television and radio broadcasts 

etc.[4].All types of information like pictures, speech, music and texts are transmitted from one 

place to another these days through the use of wireless communication systems without any 

physical connections, no matter where these places are. This thesis focuses on a terahertz 

communication system and its components, particularly the antenna and the front end 

bandpass filter. 

A terahertz wireless communication system, which is proposed and investigated in the 
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Emerging Device Technology (EDT) research group at the University of Birmingham, is 

shown in Figure 1.1. The purpose of the system is to build a communication link and to be 

able to transfer data within the range of a 10 metres distance with the data rate around 10Gbps 

at a centre frequency of 300 GHz. To achieve this, the system needs to have a high gain 

antenna with a wide bandwidth. This thesis concentrates predominantly on the design of an 

antenna, which can meet such specifications.  
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power         
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Figure 1.1: A simplified terahertz communication link budget diagram. All the components of the system 

are to be fabricated using micromachined layers. 

 

 

 
 

It can be noticed from the specification of the terahertz system that the antenna is required to 

provide high gain and wide bandwidth. It is obvious that the increase of the antenna gain can 

be accomplished by an increase in the number of radiating elements and the antenna size[2]. 

However, the required bandwidth for the antenna with such a high gain value is a challenge. 

Enhancing the antenna bandwidth has been the subject of research for many decades [5-10]. 

In this thesis, a new approach has been presented to design antennas that can provide high 

gain and wide bandwidth. 
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The new design approach presented in this thesis is based on coupling matrix theory which 

can represent and synthesis the antenna in the form of the coupling matrix formulation. The 

parameters of the matrix, such as external quality factors (Qei), radiation quality factor (Qrj) 

and coupling coefficients (Mij) are capable of controlling the bandwidth of the antenna. The 

antennas produced from using this approach, which will also have a filtering functionality, is 

named antenna-filter component (single radiating element). The design approach has been 

developed further to expand the antenna-filter component to the antenna array-filter 

component (multiple radiating elements) so as to accomplish the high gain value 

simultaneously with the wide bandwidth. 

With the use of the new design approach, five important features can be achieved for the 

components and the communication system. These are: (i) controlling the bandwidth of the 

antenna, (ii)controlling the gain of the antenna, (iii) reducing the size of the communication 

system because the bandpass filter component is no longer required to be placed after the 

antenna in the system due to the filtering functionality of the antenna, (iv) enhancing the 

performance of the communication system by overcoming the degradation caused by the 

mismatch between the bandpass filter and the antenna, and (v)scalability of the antenna 

circuits to terahertz frequencies (300 GHz and above). We will be able to recognise some of 

the features mentioned above in Chapters 4 and 5. 
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1.2 Thesis Organisation 

This thesis is organised into seven Chapters, and high gain and wide bandwidth antennas 

dominate its main theme. 

In the first section of Chapter1, attention was given to the components of the proposed 

terahertz wireless communication system, particularly those which are placed at the very 

front-end of the systems such as the antenna and the bandpass filter. Not only the 

specification of the antenna was discussed, but also a new design approach was discussed so 

as to achieve it. Advantages of the new approach were given at the end of the section. In 

section 1.2, an overview of the whole thesis is given. 

Chapter 2 explains the basic concept of radiation occurrence in antennas. High gain and wide 

bandwidth antennas are overviewed, and their limitations are addressed according to Chu-

Harrington and Fano criteria. Also, details regarding the concept of operating slots in the 

walls of waveguide are mentioned. Two designs of slot arrays based on rectangular 

waveguides (WR-03) are presented. 

In Chapter 3, the fundamentals of filter theories are described. The theories help us to 

understand the main theme of the integration of an antenna with a bandpass filter. The 

coupling matrix theory, which is used to represent the coupled-resonators circuits, is 

discussed, describing the parameters of the matrix (Qei, Qrj and Mij) and extracting them from 

their physical structure using rectangular waveguides. The extraction of the radiation Qrj based 

on the cavity resonator is discussed, and ways to control the Qrj value are addressed.  

Chapters 4 and 5 present six designs of antennas all based on waveguide cavity resonators. 
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The design of the antennas is explained step by step, and comparisons between their initial 

and optimised responses are shown. Measurements for the antennas are performed for the 

purposes of validation.  

Chapter 6 gives a brief overview of terahertz communication systems. Applications of 

terahertz frequency band are summarised, specifying the advantages and disadvantages of the 

frequency band in a communication system. The block diagram of the terahertz 

communication system, which is proposed to be built out of the micromachined technology, is 

shown. Then, design of a planar antenna which could be integrated with the system is 

presented. Additionally, another antenna is proposed for beam scanning applications at 

terahertz frequency band.  

Chapter 7 presents the conclusions of this research work. Suggestions for further 

investigations on integration of antennas with bandpass filters are given. For this purpose, 

some suggested topologies are and required techniques are pointed out.   
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Chapter 2 

Basic concept of antennas 

 

This chapter presents the basic concept of radiation from antennas. High Gain and Wide 

Bandwidth antennas are reviewed, and their limitations are addressed. Some design 

techniques presented in the literature for the calculation of an antenna gain and bandwidth 

(radiation  ) are discussed. Then, the properties of rectangular waveguides when used as 

transmission lines are characterised. Later, attention is paid to slotted waveguide antennas due 

to the fact that they are considered one of the most appropriate candidates for the proposed 

terahertz communication system. The fundamental concept of operating slots in the walls of 

rectangular waveguides is discussed, and the synthesis method steps presented in literature to 

design slots are given in this chapter. In the light of these steps, two designs for waveguide 

slot antennas are simulated at 300 GHz, and their performance is characterised. 

 

2.1 Introduction  

Antennas may be defined as one-port electrical devices used in wireless communication 

systems to deliver guided energy from the source to free space or vice versa. The delivery of 

the guided energy can be accomplished in the form of radiation. It is therefore worth 

explaining how the radiation occurs. To simplify this, a single electric charge is used in [1] as 

an example, and is shown in Figure 2.1. It is assumed that the electric charge with a constant 

velocity moves along the z-axis and reaches point A. At that point, the static electric lines 
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spread out from the charge radially. The circle created by the radius rA is referred to the radial 

electric field lines when the electric charge is at point A. When the charge is accelerated, it 

starts moving towards a point denoted by B. Again at this point, the static field surrounding 

the electric charge is also radially spread away from the charge. The circle created by the 

radius rB represents the electric field lines when the electric charge is at point B. The distance 

between the circles rA and rB is denoted by r . In the area located between the two circles, the 

electric field lines interact with each other and then a radiation would occur inside. If the 

electric charge is continuously accelerated backwards and forwards (oscillation), a continuous 

radiation can yield. More details about radiation occurrence in antennas can be found in [1-3]. 

B z

r

A

Br Ar

rE

tE

z

 

Figure 2.1: An electric charge moves towards point A and then, it is accelerated towards point B (re-

drawn from [1]). 

 

As discussed above, a power generator (source) is required in order to keep electric charges 

accelerating. Figure 2.2 shows a communication link where a generator on the left side has 

connected to the two-wire transmission line in order to guide energy as an electromagnetic 

(EM) wave. At the termination, the two-wire line is flared out and support the EM wave to 

start radiating [2]. The flared out section is called a transition or an antenna.  

An antenna can be represented in the form of a circuit as shown in Figure 2.3. The antenna is 
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connected to the source. The source has impedance (Zs= Rs+ jXs), where Rs is the source 

resistance and Xs is the source reactance. The antenna has also its own impedance (Za= Rr+ Rl 

+ jXa). Here, Rr is the radiation resistance of the antenna, Rl is the loss resistance of the 

antenna, and Xa is the reactance of the antenna. When they are matched (Zs = Za), maximum 

power generated from the source can be launched into space. 

 

Generator 
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Tapered 
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Transition region 
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Figure 2.2: A communication link including a transmitting antenna and a receiving antenna. The 

transmitting antenna radiates. The radiated waves are in the form of spherical waves. As they propagate 

over a large distance, the waves change and become approximately plane waves. This diagram is 

reproduced from [2]. 

 

Xa
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XsRs

Source Antenna

V
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Figure 2.3: Equivalent circuit representation of a transmitter antenna [3].  

 

Antennas can be categorised according to their radiation performance parameters such as high 

gain antennas and wide bandwidth antennas. They can also be classified based on their 

physical structure such as: wire antennas, aperture antennas, microstrip antennas, reflector 

antennas and lens antennas. Different physical structures of antennas can provide different 
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radiation performance. Because the proposed terahertz communication system seeks for a 

high gain and wide bandwidth antenna, and is made with a planar structure in order that it can 

be built out of the micromachined layers, the following sections will focus on those antennas 

which can meet these specifications. 

 

2.2 High gain antennas 

High gain antennas, which are sometimes known as directional antennas, are antennas which 

are able to direct most of the transmitted power towards the receivers when operating as 

transmitter antennas. These antennas are mainly used for long-range and space mission 

applications. 

Enlarging the antenna physical aperture, which means enlarging the area of an antenna used to 

transmit the guided waves from the source through space and/or to capture the propagated 

waves from space at reception, can be considered as an approach to increasing the antenna 

gain [3]. Horn and parabolic dish antennas are two examples of aperture antennas. Figure 

2.4shows a parabolic dish antenna with diameter of 70 metres [4]. Its main use is for space 

missions. The curvature shape and the external feeding technique are considered the main 

drawbacks of parabolic dish antennas especially for the application of interest here due to 

occupying lager space.  

An antenna array, which usually consists of a set of identical radiating elements, is another 

approach mainly used to (i) provide an overall gain of the array which is higher than the gain 

of the single radiating element [3], and (ii) to steer the main beam direction towards the 

receiver [5, 6]. The radiating elements of an antenna array can be dipoles, slots, patches, loops, 

reflectors, etc. The distribution of the radiating elements configures the shape of the radiation 
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characteristics of the antenna arrays.  

A linear array, which means all the radiating elements are positioned along a linear axis, is 

able to produce Endfire and broadside arrays. The produced radiation pattern of an Endfire 

array is parallel to the axis containing the antenna. The axial mode helical antenna, which is 

an example of a high gain Endfire array, is of interest in space applications due to also having 

circular polarisation and wide bandwidth as well as being simple [2]. Figure 2.5 shows an 

array of four axial-mode helical antennas. This is used as the antenna for satellite tracking 

acquisition in France [7]. The main disadvantage of helical antennas at millimetre wave 

frequencies is the three dimensional structures which are difficult to fabricate and costly. 

A planar array antenna is another configuration where all the radiating elements are spread 

over a planar surface and the radiation pattern is usually perpendicular (broadside) to the axis 

of the antenna. Fabry-Perot leaky wave antennas and slotted waveguide antennas are two 

examples of such arrays. Figure 2.6 shows a planar array slotted waveguide antenna employed 

in the radar system of the airplane Boeing 737 [8]. Recently, significant attention has been 

paid to slotted waveguide antenna arrays at millimetre wave frequencies due to (i) their planar 

structure, (ii) high gain, and (iii) inherent low losses in the waveguides [9-11]. The narrow 

bandwidth is the main concern with slotted waveguide antennas, and extensive investigations 

have been conducted in order to enhance the bandwidth of this antenna [12, 13]. More details 

about the theory of slotted waveguide antenna arrays will be given in Section 2.5.  

Although the gain of an antenna can be increased with one of the approaches discussed above, 

no indication has been presented about the maximum achievable antenna gain so far. The 

following section gives brief details about the limitation of the maximum achievable antenna 

gain. 
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Figure 2.4: A parabolic 70 m dish antenna is used in the Goldstone Observatory station, Mojave Desert, 

California, USA [4]. 

 

 

Figure 2.5: An array of four axial-mode helical antennas, France [7]. 

 

 

Figure 2.6: A planar array slotted waveguide antenna is used in the radar system in the NASA Boeing 

plane 737 [8]. 

Slotted Waveguide 
Array 
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2.2.1 Antenna gain limitation  

This section discusses the limitation of an antenna gain and its relationship to the antenna size. 

The discussion, which will be carried out here, is mainly based on Chu and Harington’s work 

from1948 and 1960 [14, 15], respectively.  

In 1947 Wheeler [16] defined an electrically small antenna as the antenna where its maximum 

dimension (  ) is smaller than (     ), where         is the wave number related to the 

electromagnetic field,   is the free space wavelength, and    is the smallest radius of the 

sphere containing the antenna, as shown in Figure 2.7 (a). Chu in his theory found that the 

gain of an antenna, whose maximum dimension is    , is equal to or less than       [14]. 

According to Chu’s theory, the gain can still be increased if the radiation   of an antenna 

becomes larger [14].     

Later Harington [15] developed Chu’s theory, and presented a theoretical analysis regarding 

the influence of antenna size on antenna gain. He then realised that there is no limit to 

increasing the gain of an antenna if the size is increased. For the far-field zone, he derived an 

equation for the maximum achievable antenna gain in terms of antenna size as given below 

[15]:    

where,    is the radius of the sphere containing the antenna, and    is the wave number. The 

variation of the maximum achievable gain versus the antenna size using equation 2.1 is 

plotted in Figure 2.7 (b). One can see that the increase in antenna size leads to the increase in 

maximum antenna gain.    

            
                          (2.1-a) 
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(a)                                                                                      (b) 

Figure 2.7: (a) An antenna placed in a spherical coordinate system, (b) The variation of the maximum 

antenna gain versus different antenna sizes. 

 

The analysis given above is more appropriate to investigate the gain of the small 3-D antennas. 

There is another relation that links the gain of a lossless antenna to its effective aperture as 

given bellow [3]; 

 

where,    is the free space wavelength, and      is the effective aperture of the antenna. It can 

be noticed that the gain is directly proportional to the effective aperture, and this equation is 

more preferable to investigate the gain of those antennas that have planar structures.   

In practice, all types of antennas, if they have the same size, can actually provide different 

gain values. Some types of antennas can provide higher gain than others. This depends on the 

physical structure of antennas. Some physical structures can excite a higher number of 

spherical modes than others. Exciting a higher number of spherical modes leads to an increase 

in the antenna gain [17]. 
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2.3 Wide bandwidth antennas 

Wide bandwidth antennas are antennas which are able to operate over a wide range of 

frequencies. Most of the energy, which is guided by the wide bandwidth transmitter antennas, 

radiates to space and less is stored around the antenna and reflecting back to the input port 

(source). The antenna radiation quality factor (  ) is a parameter which defines the 

relationship between the time average stored energy and the energy radiated by the antenna. It 

can mathematically be expressed as follows [18]: 

 

  

 
 

 
    

    
       

    

    
               

  

 

(2.2) 

Here    and    are the electric and magnetic time average stored (non-propagating) energy, 

and      is the power radiated by the antenna.  

Horn and Vivaldi antennas are the antennas which usually provide wide bandwidth. As can be 

seen in Figure 2.8 (a) the horn antenna has a uniform waveguide section. The flared section is 

introduced in order to match the impedance of the waveguide to the impedance of free space 

[2]. Also, the length of the flaring can control the bandwidth of the antenna. Although horn 

antennas have wide bandwidth and high gain as well, they are less preferred for millimetre 

and terahertz communication applications because the flared out section is difficult to 

fabricate. 

Vivaldi antennas are also another type of wide bandwidth antennas. They can radiate over a 

wide range of frequency because of the gradual taper of the slot aperture as shown in Figure 

2.8 (b). The narrow part of the slot aperture supports radiation at higher frequencies, while the 

wider slot aperture supports the radiation at low frequencies [19]. This provides a smooth 



 

16 

 

transition between the antenna and free space. Due to the increase in losses in the microstrip 

at high frequencies and the complexity of the tapering shape of the aperture, this kind antenna 

is not of interest for terahertz communication systems. 

There are many investigations conducted into the fundamental limitations of antenna 

radiation and bandwidth in the literature. In the following section, some of these limitations 

will be discussed.      
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(a)                                                                                             (b) 

Figure 2.8: (a) A Pyramidal horn antenna with its 3-D radiation pattern [20], (b) A Vivaldi antenna [21]. 

 

 

2.3.1 Antenna bandwidth limitation  

Bandwidth is one of the important parameters of an antenna. It is associated with the antenna 

radiation quality factor Q. As explained in Section 2.1, an antenna can be represented in the 

form of a circuit (Figure 2.3).When the antenna resonates at a particular frequency   , the 

fractional bandwidth of the antenna  , (when assuming no conduction and dielectric losses 

existed), maybe computed as the inverse of the radiation Q, as follows [3, 18]: 

 
  

 

 
 (2.3) 
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here   is the fractional bandwidth of the antenna, and can be expressed as follows: 

 
  

     
  

 (2.4) 

where    and    are the edge frequencies of the band of interest, as shown in Figure 2.9. The 

centre frequency    is the frequency where the antenna resonates. Looking at Equation 2.3 

from a different point of view, the bandwidth can be obtained if the radiation   of the antenna 

is known.  

 

Figure 2.9: The Reflection     parameter of an antenna. 

 

The first investigation into the radiation characteristics of an electrically small antenna was 

conducted in 1947 by Wheeler [16]. He worked on the radiation power factor of inductors and 

capacitors when used as radiators. Following this, Chu in 1948 derived an equation (Equation 

2.5) to calculate the minimum radiation quality factor in terms of an antenna size for an 

Omni-directional antenna placed in the sphere of radius    (Figure 2.7 (a)) [14]. He had 

assumed that the minimum radiation Q would occur if all the energy stored is located outside 

the sphere, and all of it is propagated. The theory was established for those antennas which 

are linearly polarised. Harington later expanded the theory to include circularly polarised 

antennas[15]. In 1964 and 1969, Collin [22] and Fante [23] presented a new approach, which 
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was based on the specific energy named ‘evanescent energy’ stored around an antenna, to 

calculate the exact radiation Q. Later in 1996, McLean [24] realised that obtaining the 

minimum using Chu’s criterion is not accurate due to a failure to consider the energy stored 

outside the sphere which includes all the propagated and non-propagated waves. He derived a 

new equation (Equation 2.6) to calculate the minimum Q including non-propagating waves for 

a linearly polarised antenna. 

 
  

         
 

                  
 

(2.5) 

 
  

 

       
 

 

    
 

(2.6) 

 

Figure 2.10: The variation of the radiation Q of a linearly polarised electrically small antenna versus the 

antenna size according to Chu and McLean’s criteria [24]. 

 

 

The variation of antenna radiation Q versus its size is shown in Figure 2.10 using both Chu 

and McLean equations. It can be seen that when the antenna size increases the radiation Q of 

the antenna decreases significantly. It can also be noticed that McLean’s approach is in good 

agreement with Chu’s approach when the antenna size is smaller than one (     ). 

However, when the size increases the difference between these two approaches becomes 

obvious. Actually, it is worth noting that both Chu and McLean’s approaches are dependent 
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on antenna sizes only for the calculation of the antenna radiation Q without taking the effect 

of matching circuits into account in the antenna system. Fano in 1950 presented a new 

criterion to deal with an impedance matching network used with a small antenna (load) (see 

Figure 2.11), and addressed the impact of the matching network on the performance of the 

antenna particularly antenna bandwidth [25, 26]. 
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Figure 2.11: Four possible RC and RL circuits of a small antenna with a matching network: (a) RC is in 

series, (b) RL is in series, (c) RC is in parallel, and (d) RL is in parallel (This diagram is reproduced 

from[27]). 

 

Fano discoved that there is a fundamental limit for the maximum achievable reflection 

bandwith of an antenna when usinga matching networkin the antenna system. This maximum 

achievable bandwidth is expressed mathemically as follows [17, 25, 26]: 

 
   

 

 

 

             
 

(2.7) 

Using the 3-dB bandwidth criteria (i.e.             ), Equation 2.7 reduces to: 

 
  

    

 
 

(2.8) 

In comparison to Equation 2.3, the bandwidth of an antenna is enhanced according to 

Equation 2.8 by a factor of about 9.06. This enhancement occurs due to the employment of 

the matching network in the antenna system (increasing the bandwidth of the antenna system).   
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2.4 Waveguides 

A waveguide is a transmission line used to guide electromagnetic energy from one point to 

another. Circular and rectangular are the common shapes of waveguides. Most attention here 

is paid to the rectangular waveguide, as shown in Figure 2.12, due to its simplicity in 

fabrication and wide use in the field of antenna design. The properties of rectangular 

waveguides are fully explained and presented in [28, 29], and, therefore, only the properties 

related to the waveguide antenna designs are discussed here. 

y
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Figure 2.12: A rectangular waveguide geometry.  

Unlike a transmission line supporting only the transverse electromagnetic (TEM) modes, 

rectangular waveguides can support both transverse electric (TE) and magnetic (TM) modes 

[29]. Each of the TE- and TM modes has a cut-off frequency. Below the mode cut-off 

frequency the propagation of electromagnetic waves inside the waveguide is not possible. 

However, if the waveguide is operated above the cut-off frequency then propagation takes 

place. The cut-off frequency of the modes in the rectangular waveguide can be calculated 

using the following relation [28]: 

 

    
 

 

     
  

  

 
 
 

  
  

 
 
 

 

(2.9) 
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Here   and   are the permittivity and permeability of the material inserted into the waveguide 

respectively,   and   are the integer positive numbersand together they generate the TEmn 

and TMmn modes. Also,   and   are the waveguide dimensions as shown in Figure 2.12. The 

waveguide guided wavelength (      is always longer than the free space wavelength (   , 

and can be computed for the TE10 mode using the following equation [28]:  

 
     

  

    
  

  
 
 
 

(2.10) 

The dominant mode in a waveguide is defined as the mode which has the lowest cut-off 

frequency [29]. The first dominant mode of rectangular waveguides is the transverse electric 

TE10 mode, and the TE20 mode is referred to the second dominant mode. The frequency range 

between two neighbouring dominant modes can be considered as the useful bandwidth of a 

waveguide as highlighted in Figure 2.13. The    dimension of a waveguide is usually chosen 

to be equal to     to keep the useful bandwidth of waveguides wide enough [30]. 
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Figure 2.13: Configuration of cut-off frequencies of different propagated mode a=25 mm, b=10 mm air 

filled. The cut-off frequency is calculated using Equation 2.9 (This figure is re-produced from [29]). 
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The transverse electric field components (  ,  ), for a rectangular waveguide, of both TEmn 

and TMmn  modes can be given as [28]: 

                                        (2.11) 

Here,         represents the transverse variation of the mode in both x and y directions, and  

   and    are the amplitudes of the waves propagating forward and backward. The 

propagation constant    , for both TEmn and TMmn modes, is[28]:   

          
  

 
 
 

  
  

 
 
 

 (2.12) 

Here,   is the wave number, and   and   are the positive integer numbers. 

 

It is possible to obtain the surface current density (Js) on the walls of a waveguide if the 

magnetic field is known [29]. Figure 2.14 shows a sketch of the current lines distributed on 

the walls of the rectangular waveguide for the TE10 mode. It is worth mentioning that the 

current lines do not cross the centre line at the broad wall of the waveguide. This offers an 

important practical feature in that waveguide can be cut at the centre of the broad wall without 

causing any losses [30]. It is also important to see from Figure 2.14 that the distribution of the 

current lines on the surface of the walls of the waveguide is not homogenous. When 

considering a waveguide slot antenna, in which the slots are usually cut out from the walls of 

the waveguide, slots interrupt the current lines. The more interruption of the current lines by 

the slots, the more excitation of the slots can result. Thus, it is important to determine where 

to place the slots in order to obtain maximum radiation. This will be discussed in detail in the 

next Section.     
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b

a

Centre line  

Figure 2.14: The distribution of the magnetic field and current lines on the walls of a rectangular 

waveguide operated at TE10 mode (Taken from [31]).  

 

 

The losses in the rectangular waveguide have not been addressed so far. There are two 

different kinds of losses existing in rectangular waveguides. The first one is the dielectric loss 

which is caused when a material is inserted into the waveguide. Since all the waveguides used 

for the antenna designs in this thesis are air filled, dielectric loss is not considered. Conductor 

loss is another type of loss in the waveguide which is produced from the material used to 

make the waveguide walls. This can be calculated as follow for the TE10 mode [28, 29]: 

 
   

  
      

                

 

(2.13) 

Here            is the surface resistivity of the waveguide walls,   is the conductivity, 

       is the wave number,   is the propagation constant, and        is the intrinsic 

impedance. 
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2.5 Waveguide antennas 

As mentioned earlier, the main use of waveguides is to transfer energy from one point (source) 

to another (load). On the other hand, they can also be used to radiate energy into space if one 

of the ends of the waveguide is open to space, or if slots are cut in the walls of the waveguides. 

There are many configurations introduced to the geometry of waveguide antennas, such as 

waveguide slot and horn antennas, in order to (i) maintain the matching impedance between 

free space and the waveguide and (ii) to enhance the radiation characteristics of the 

waveguide antenna. The following Section focuses on slotted waveguide antennas. 

 

2.5.1 Slotted waveguide antennas 

A slot antenna is considered as one of the oldest types of antenna which dates back to 1946 

when Booker investigated the relationship between the radiation characteristics of a half-wave 

slot cut in a thin flat sheet and a half-wave dipole antenna [32]. He realised that a slot acts as 

the complement to a dipole antenna, except that electric and magnetic fields are exchanged. 

As illustrated in Figure 2.15, the electric field is transverse to the longest dimension of the slot. 

However, it is parallel to the length of the dipole antenna.   

H-field

E-field

Slot
Dipole

(a)

Dipole Antenna

(b)

Slot Antenna

E-field

H-field

 

Figure 2.15: Illustration of the electric and magnetic fields of both dipole and slot antenna configurations. 
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Later in 1947, a pioneering investigation into slots fed by a waveguide was conducted by 

Watson [33]. The main purpose of Watson’s investigation was to describe how a half-

wavelength slot couples to a waveguide. He gave some design principles for this purpose. 

One year later Stevenson presented his theory of slots in the rectangular waveguide. The 

theory was based on field equations and some assumptions in order to simplify the calculation 

of the reflection and transmission coefficients. These assumptions, which have become the 

basics for the design of many types of modern waveguide slot antennas, are given below [34]: 

 Perfect conducting of the walls of the waveguide and ignoring the effect of the 

thickness of the walls on the radiation characteristics 

 Considering narrow slots to have a relationship to their length as given below 

 
     

           

          
    

 

(2.14) 

 Ignoring the effect of the fields which are behind the surface including the slots 

 Assuming (    wave (the EM propagation mode)) as the only transmitting wave 

from the waveguide, and that the slot length has about half-free space wavelength of 

the resonant frequency  

 

As mentioned in the Section 2.4, radiations through the slots occur if they interrupt the 

surface current lines distributed on the walls of the waveguide. Interrupting the current lines 

produces a voltage across the slots where the peak value of the voltage locates at the centre of 

the slot, as it can be depicted in Figure 2.16. It is therefore important to determine where 

precisely to place the slots. Figure 2.17 shows a rectangular waveguide, where the TE10 mode 

is the only mode propagating in it with several slots cut into the walls of the waveguide. Due 
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to an absence of interruption in the surface current lines (see Figure 2.14 to observe the 

distribution of surface electric lines), radiation through slot (h) does not occur. The direction 

of slot (g) is the same as the direction of the current lines in the side-wall of the waveguide, 

which means no interruption of the current lines takes place, and radiation does not occur 

either. Further details about the remaining slots in Figure 2.17 and their behaviours can be 

found in [5].    

 

Figure 2.16: Broad and narrow walls slotted waveguide antennas with their aperture electric field 

distributions and predicted radiation patterns. 
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Figure 2.17: Some slots cut in the walls of the waveguide (Taken from [5]). 
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The slots in the broad-wall of waveguides have received significant attention from antenna 

designers. Stegen in 1952 was able to design longitudinal slots in the broad wall of a 

waveguide [35]. Oliner in 1957 presented a set of equivalent circuits in order to represent the 

slots in the broad-wall of waveguides (see Figure 2.18) [36]. He assumed that the slots could 

be represented as the shunt elements in the circuit. Using this assumption, he was able to 

calculate the conductance and resonant frequency of the slot antennas. Elliot and Kurtz [37] in 

1978 revised one of the assumptions of Stevenson by assuming the slot length to be 2% less 

than a half wavelength. Again, in 1983, Elliot came back to the research and derived two 

equations to design linear and planar array waveguide antennas by taking the effect of mutual 

coupling between the slots into consideration [38]. From 1983 to 1990, Elliot’s equations 

were improved and generalised by other researchers [39-42]. 

In the following sections, two designs of slots in the broad and side walls of rectangular 

waveguides, which operate at 300 GHz frequency, are presented. The design steps to obtain 

the electrical and physical parameters of the antennas are also clarified.    

λg/2

x

λg/4

Waveguide 

Short circuit

Input

(a)

g1 g2 g3 gN

(b)  

Figure 2.18: Longitudinal waveguide slot antenna with its equivalent circuit [36]. 
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2.5.2 Design of linear array broad-wall slotted waveguide antennas 

In this section, the design of a standing wave slotted waveguide linear array antenna is 

presented. The design steps detailed here will be used to the design of 8×8 slotted waveguide 

antenna in Chapter Six (Section 6.5). The antenna here is simulated at 300 GHz, and is 

completely compatible with multilayer micromachined techniques. As shown in Figure 2.19, 

the design consists of three layers of which the first layer includes 8 radiating slots. It should 

be noted that the depth of the slots (b1) here, is associated with the thickness of the 

micromachined layers. This has an impact on the release of the energy radiated through the 

slots. The second layer forms the narrow walls of the waveguide, and the third layer is to 

enclose the whole design. To obtain the initial dimensions of the antenna, the following steps 

during the design of the antenna are undertaken:  

1- The number of slots controls the gain and the beam width of the antenna. Here, 8-slots are 

chosen arbitrarily for the investigation. 

2- Because the slots are designed to resonate at the centre frequency of 300 GHz and this is a 

stranding wave array, the spacing between the slots is chosen to be half-guided wavelength (d 

= 0.613 mm).   

3- The slots are displaced from the centreline of the broad-wall in order to interrupt the 

surface current lines. The displacement can be calculated using the normalised conductance 

equation as given below [34]: 

 
       

  

  
 
 

 
      

   
   

      
  

 
  

 

(2.15) 

where   and   are more specific waveguide dimensions,    and   are the free space and 

guided wavelengths, and   is the displacement. To obtain the value of   , it needs to be 
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assumed that all the slots in the array are matched with the input impedance. Under these 

circumstances, the normalised conductance can be defined in terms of the number of slots   

as follows [5]: 

 
   

 

 
 

(2.16) 

After substituting the values of  ,  ,   ,  , and   into Equation 2.15, then the displacement   

value can be found which is equal to 0.1590 mm.  

4- According to Elliot [37], the length of the slots    having square corners is 0.464   and 

their widths    are 0.05   when the effect of the ground plane is not taken into account.  

5- Because this is a standing wave array, the distance     between the centre of the last slot to 

the waveguide termination is considered as a short circuit     ). This leads the reflected 

waves back and contributes with the incident waves to radiation through the slot in phase. The 

physical design parameters of the antenna are summarised in table 2.1. 
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Figure 2.19: Layout of 8-slots cut in the broad-wall of the waveguide based on the micromachined layers 

(a=0.864 mm, b=0.432 mm, b1=0.300 mm, other dimensions are given in Table 2.1). The outstanding 

structure in the central area represents the hollow waveguide WR-03 and slots, while the surrounding 

conductors are set to be transparent. 
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The initial performance of the designed antenna has been obtained using the computer 

simulation technology CST simulator [43]. The initial reflection coefficient     response of 

the antenna shown in Figure 2.20 (a) is not well matched at the designed frequency 300 GHz. 

This could be caused due to not considering the effect of (i) the waveguide wall thickness (b1), 

(ii) the mutual coupling between the slots, and (iii) the ground plane. To improve the     

response, tuning for the initial physical dimensions of the antenna is performed using the CST 

optimiser [43]. The goal for the optimiser is defined as follows:           , from 295-305 

GHz. After optimising, an improvement in the response of the     is obtained (see Figure 2.20 

(a)). The optimised dimensions are compared with the initial dimensions in Table 2.1. 

The variations of directivity, realised gain, and the total efficiency of the antenna versus 

frequencies are shown in Figure 2.20 (b). The     response of the antenna is well matched 

after the optimisation over the frequency range 295-305 GHz, and as a result of that the 

directivity and the realised gain values are very comparable to each other around that 

frequency range. Moreover, the total efficiency, after including the losses caused due to the 

mismatch and the silver material used in modelling the antenna in CST, is more than 90%. 

Figure 2.21 shows the radiation pattern of the antenna in both the E- and H-planes at three 

different frequencies including the centre frequency. It can be seen clearly in Figure 2.21 (b) 

as the frequency increases, the side lobe level increases and the radiation pattern degrades. 

Electrical specifications of the antenna are summarised in Table 2.2.   

Table 2.1 

Physical design parameters of 8 slots antenna array cut in the broad-wall of a WR-90 waveguide 

 
Parameters Calculated (mm) Optimised (mm) 

Slot length    0.464 0.486 

Slot width    0.05 0.161 

Enter slot distance   0.613 0.631 

Slot offset   0.1590 0.130 

Last slot centre to end    0.306 0.335 
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 Table2.2 

Summary of the electrical performance of the antenna 

 

Parameters 

Centre 

Frequency 

(GHz) 

Gain 

(dBi) 

Bandwidth 

(%) 

(   =-10 dB) 

3dB 

Beamwidth 

(deg.) 

Side lobe 

level 

(dB) 

E-plane  

300 

 

14.1 5 

113.0 -14.1 

H-plane  9.9 -10.1 

 

 

 

 
(a)                                                                                         (b) 

Figure 2.20: (a) The initial reflection coefficient response     (red line) in comparison to the optimised 

(green line), (b) Variation of the antenna directivity, realised gain, and total efficiency versus frequency. 

 

 

 
      

      (a)                                                                                        (b) 

Figure 2.21: Simulated radiation pattern of the antenna in the E- and H-planes at three different 

frequencies including the centre frequency.  
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2.5.3 Design of linear array narrow-wall slotted waveguide antenna 

This section demonstrates the design of narrow-wall slotted waveguide antennas at 300 GHz. 

A waveguide antenna with 8- radiating slots in the narrow-wall was already designed in [44] 

using four equal thickness layers. It is re-designed here to be built with five layers. The 

configuration of the design is shown in Figure 2.22. The top layer contains 8-radiating slots, 

and they are positioned at the centre of the narrow-wall of the waveguide. The next three 

layers form the rectangular waveguide. 
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Figure 2.22: Layout of 8-slots cut in the narrow-wall of the waveguide based on the micromachined layers 

(a=0.864 mm, b=0.432 mm, b1=0.288 mm). The outstanding structure in the central area represents the 

hollow waveguide WR-03 and slots, while the surrounding conductors are set to be transparent.  

 

 

An embedded four-layered H-plane bend was designed in [45]. Here, the bend has been 

modified in order to be constructed out of five layers and to be consistent with the number of 

the layers of the antenna. The effect of the bend on the performance of the antenna is 

negligible due to good     matching of the bend around the centre frequency as can be seen in 

Figure 2.23. 
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In the previous section, the slots are located on the broad-wall and spaced approximately at a 

half guide wavelength (    ). However, in the design of slots in the narrow-wall, slot spacing 

is to be equal to one guide wavelength (  ) apart in order to keep exciting all the slots in 

phase (refer to Figure 2.14 to see the directions of the surface current lines and identify the 

phase changes at the narrow-walls of the waveguide). The initial dimensions of the slots here 

have been obtained following the design steps (1, 4, and 5) which were mentioned in the 

previous Section. Table 2.3 summaries some physical dimensions of the antenna. 

 

 

Table 2.3 

Physical design parameters of 8 slot antenna array cut in the narrow-wall of a WR-90 waveguide 

 
Parameters Calculated (mm) Optimised (mm) 

Slot length    0.464 0.552 

Slot width    0.05 0.149 

Enter slot distance   1.226 1.226 

Last slot centre to end    0.306 0.328 
 

 
 

 

 
Table 2.4 

Summary of the electrical performance of the antenna 

 

Parameters 

Centre 

Frequency 

(GHz) 

Gain 

(dBi) 

Bandwidth 

(%) 

(   = -10 dB) 

3dB 

Beamwidth 

(deg.) 

Side lobe 

level 

(dB) 

E-plane  

300 15.2 

 

2 

138.9 -14.6 

H-plane 5.1 -7.4 

 

 
 

The initial response of the reflection coefficient    of the antenna is shown in Figure 2.24 (a). 

Again, it is not well-matched over the bandwidth of interest and thus an optimisation is 

performed for initial physical dimensions of the antenna using CST simulator [43]. The goal 

for the optimiser is defined as:         dB, from 295-305 GHz. The optimised dimensions 

of the antenna are summarised in Table 2.3. The directivity and realised gain responses versus 
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operating frequency band are plotted in Figure 2.24 (b) and it can be seen that their values are 

close to each other over the bandwidth of interest. More than 90 % total efficiency of the 

antenna from 297-303 GHz is predicted. The simulated radiation patterns of the antenna in 

both the H- and E-planes are presented in Figure 2.25 for three different frequencies including 

the centre frequency. The simulated antenna gain is 15.2 dBi at 300 GHz with two grating 

lobes appeared in the H-plane. Their appearance is due to the large spacing (    ) between the 

radiating slots. Further electrical specifications of the antenna can be found in Table 2.4. 

Input
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(a)                                                                                      (b) 
 

Figure 2.23: (a) The design of the WR-03 waveguide H-bend. The dimensions are; a=0.864 mm, b=0.432 

mm, b1=0.288 mm, m1=0.1 mm,m2=0.083 mm, w1=0.187 mm, w2=0.139 mm, (b) the simulated response of 

the bend. 

 

 

                                          (a)                                                                                           (b) 

Figure 2.24: (a) Initial reflection coefficient response     (red line) compared to the optimised (green line), 

(b) Variation of the antenna directivity, realised gain, and total efficiency versus frequency. 

220 240 260 280 300 320
-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

S
 p

a
ra

m
et

er
s 

re
sp

o
n

se
 (

d
B

)

 

 

S
11

S
21

220 240 260 280 300 320
0

5

10

15

20

Frequency (GHz)

D
ir

e
c

ti
v

it
y

 &
 R

e
a

li
s

e
d

 G
a

in
 (

d
B

i)

 

 

220 240 260 280 300 320
0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

n
c
y
 (

%
)

Realised Gain 

Directivity

Total Efficiency

220 240 260 280 300 320
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

R
et

u
rn

 l
o

ss
 S

1
1
 (

d
B

)

 

 

S
11

 Initial

S
11

 Optimised



 

35 

 

 

                                          (a)                                                                                           (b) 

Figure 2.25: Simulated radiation pattern of the antenna in both the E- and H-planes at three different 

frequencies including the centre frequency.  

 

 

 

2.6 Conclusions 

This chapter has described the basic concept of radiation occurrence in antennas. High gain 

and Wide Bandwidth antennas were discussed, and some examples were given. The limits of 

antenna gain and bandwidth were addressed. The relationship between an antenna gain and its 

size was explained, realising that an increase in the size leads to increase the antenna gain. 

The antenna bandwidth and its variation versus the radiation   were discussed. The Fano 

criterion was also presented in order to explain its impact on the enhancement of the 

bandwidth of the antenna system. An appropriate antenna candidate for the proposed terahertz 

communication system, which is the slotted waveguide antenna, was identified. Useful details 

regarding the design of the slotted waveguide antennas were presented. The steps to design 

slotted waveguide antenna were simplified, and implemented into two designs at 300 GHz. 

The simulated results obtained here were close to the theoretical expectation.  
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Chapter 3 

Filter theories and antenna-filter integration 

 

This Chapter presents the fundamental filter theories that are required for the integration of 

antennas with filters. The coupling matrix approach, which is usually utilised to design 

coupled-resonator filters, is described. Investigation of the parameters of the coupling matrix, 

such as external quality factor    , and coupling coefficient        , are conducted using 

rectangular waveguide cavity resonators. The design steps for a 3
rd

 order rectangular 

waveguide filter based on coupled-resonators is then discussed. Later, a method to extract the 

radiation quality factor    of a resonator-radiator based on the rectangular waveguide 

structure is discussed, and the possible ways to control    are given. A review regarding the 

integration of antennas with filters is also presented. Following that, the coupling matrix 

approach has been developed in a way that can be used to integrate a resonator-radiator with 

a coupled-resonator filter, forming the whole integrated antenna-filter component. The matrix 

is developed further to integrate multiple resonator-radiators with power splitters based on 

coupled-resonators. 

 

3.1 Overview of filter theories 

Radio frequency (RF) and microwave filters are devices employed in many communications 

and radar systems to transmit signals over some required bands of frequencies and attenuate 

them at unwanted bands of frequencies [1]. The following network may be used to represent a 
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two-port filter circuit [2]:    

Two-port network

Z01

Z02
Es

V1 V2

I1 I2

a1 a2

b1 b2

 

Figure 3.1: Two-port network representation of a filter circuit. Es is the voltage of the source, Z01and Z02 

are the impedances of the source and the load, and I1, I2 and V1, V2 are the current and the voltage 

parameters of the source and the load, respectively( this diagram is re-produced from [2]). 

 

The parameters a1, b1 and a2, b2 shown in Figure 3.1 are used to indicate the incident and 

reflected waves of the filter network, and have relations with the voltage and the current of the 

ports as [2]:  

  
   

 

 
 

  

    

         
 

n = 1 and 2 (3.1)   

   
 

 
 

  

    

         

The reflection (   ,    ) and transmission (   ,    ) coefficients, which are also known as 

scattering parameters, are important parameters of a filter circuit, and can be defined in terms 

of the incident and reflected waves as follows [2]: 

 
    

  
  

          
  
  

      

(3.2) 

 
    

  
  

          
  
  

      

where     stands for the reflection coefficient of the signal reflected from Port 1 (source), and 

    is the signal reflected from Port 1 to Port 2 (load). If the two-port filter circuit is 



 

41 
 

reciprocal, then     =    , and if it is symmetric, then   =    . The conservation law of 

energy (   
     

   ) can be applied if the filter circuit is lossless. 

In general, the scattering parameters (   ) are complex, and consist of real and imaginary 

parts, that is,            
    . The return loss (    at Port  , and the insertion loss (  ) 

between Ports   and   are related to the amplitude of the scattering parameters, and they can 

be computed in decibel units using the equations given below [3]: 

                      dB   n = 1 and 2 

(3.3) 
                      dB   m, n = 1 and 2 (m   n) 

For a lossless network, the    and    are connected to each other via the following relations 

[2]: 

  
               

  
          dB    

(3.4) 
  

               
  

          dB    

It is interesting to note that for a two-port filter circuit, there is a delay in the received signal 

at Port 2 that is usually characterised by the group delay (  ) parameter as follows [3]:   

      
    

  
      sec (3.5) 

where     is the phase of the transmission coefficient     in radians, and   is the angular 

frequency.  

The transfer function of any RF/microwave filter, is a mathematical representation of the     

parameter, and is considered as one of the most important functions used to define the 

response of any given filter. For a two-port lossless filter, the square of the amplitude of the 

transfer function may be defined as follows [2]:  
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 (3.6) 

Here   is the ripple constant,       is the characteristic function, and   is the radian 

frequency variable. For a lossless filter circuit (   
     

   ), the square of the amplitude 

of the input function         can be computed using Equation 3.6, and is given by [3]:   

  
         

             
    

 

          
 (3.7) 

There are certain types of transfer functions that are used for the design of filters. With the use 

of different transfer functions, different responses for filters can be obtained. The examples 

are: the Butterworth, Chebyshev, Elliptic, Gaussian, and All-pass responses. Each of these 

responses is desired for a specific application. The Chebyshev response is chosen in this 

thesis to design a filter system that can be integrated with an antenna (antenna-filter).   

In general, the Chebyshev response has equal ripple in the passband, and is also maximally 

flat in the stopband, as shown in Figure 3.2 [2]. The transfer function of a filter based on the 

Chebyshev response is given as below [3]: 

  
         

  
 

          
 (3.8) 

Here,   is the passband ripple constant, and it can be computed from the passband ripple     

(in dB), as [3]:   

  

     
   
     

(3.9) 

Also,    is the Chebyshev polynomial of the first kind of order n, and it can be expressed 

mathematically as follows [2]: 
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(3.10) 

Bandpass filters can typically be built using one or more coupled resonators. The electrical 

parameters of resonators, such as quality factors and coupling coefficients, are able to control 

the response of filters such as the selectivity and fractional bandwidth. Figure 3.3 shows an 

ideal response of a 3
rd

 order Chebyshev filter. The order number is usually equal to the 

number of resonators used to build the filter circuit. The passband ripple     is chosen to be 

0.0436 dB (see Figure 3.3 (b)). Substituting this value into Equation 3.4, the return loss level 

   in dBover the passband can be calculated and is equal to -20 dB (see Figure 3.3 (a)).The 

fractional bandwidth of the filter is normalised in the range       . 

In the following sections, some details of the general coupling matrix, which is an approach 

widely used to design filters based on coupled-resonator circuits, is discussed with given 

examples.    

 

Figure 3.2: Chebyshev response of a lowpass prototype filters.  
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(a)                                                                                         (b) 

Figure 3.3: An ideal response of a 3
rd

 order low pass filter based on the Chebyshev response with a 0.0436 

dB passband ripple, (a) the magnitude of the S-parameters, (b) The enlarged scale of S21 to show the 

passband level. 

 

 

3.2 General coupling matrix theory  

The concept of the coupling matrix was introduced in the early 1970s by William and Atia for 

the design of narrow-bandwidth bandpass waveguide cavity filters [4, 5]. It is used to 

represent the filters made with coupled resonators in the form of a matrix. The main 

advantages of this concept are: (i) each unit in the matrix can be used to refer to a specific 

physical dimension of the resonators used in the design of the filter circuit, and (ii) some 

mathematical operations can be performed for the topology of the filters with the use of the 

coupling matrix concept. These operations are not easy to realise with the other design 

concepts [3, 6].  

An equivalent circuit of a filter, made out of n-coupled resonator, is shown in Figure 3.4 (a). 

The resonators are coupled to each other by the mutual inductances between the resonators 

(magnetically coupled). Here, C, R, and L refer to the capacitance, resistance, and reactance of 

the circuit. The symbol i shows the loop current path, and es is the voltage of the source. 
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Figure 3.4: Two equivalent circuits of a filter made out of n-coupled resonators. The resonators are 

coupled, (a) magnetically by the mutual inductances, (b) electrically by the mutual capacitances [2]. 

 

According to the Kirchhoff’s voltage law, the vector sum of the voltage drops present in a 

single circuit is equal to zero. After applying this law for the given equivalent circuit, a set of 

loop equations can be derived. These equations can be represented in the form of a matrix as 

shown below [2]: 

 

 
 
 
 
 
 
 
         

 

    
             

           
 

    
       

    

                     
 

     
 
 
 
 
 
 
 

 

  
  
 
  

   

  
 
 
 

  (3.11) 

Or 

              (3.12) 

Here,    ,    , and     are the     impedance, current and voltage matrices of the equivalent 

circuit respectively. In order to simplify the calculation, some assumptions need to be 

introduced. For instance, all the resonators need to be assumed to resonate at the same centre 

frequency          (synchronously tuned filter). This leads us to assume that,      
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       , and             . In addition to this, the bandwidth of the filter is 

assumed to be narrow (     ). After applying these assumptions, the normalised 

impedancematrix of the filter can be simplified to the following [2]:   

      

 
 
 
 
 
 
 

   
             

            

    

           
 

   
  

 
 
 
 
 
 

 (3.13) 

where     is the scaled external quality factor,     is the coupling coefficient between the 

resonators of the filter, and   is the complex frequency variable. They can be computed using 

the following relations [2]:     

      
   

  
      for i =1, n 

    
   

 
 

 

   
 

   
 

   
  

 

  
 

  

 
  

(3.14) 

where           is the fractional bandwidth of the filter. 

 

According to [2], if the resonators of the filter are asynchronously tuned (the resonators 

resonate at different frequencies            ), the self-couplings (   ,     ) need to be 

considered in the calculation. The normalised impedance matrix, after taking the self-coupling 

into account, becomes [2]:  
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(3.15) 

The only difference between the normalised impedance matrixin3.15 and 3.13 is that the 

matrix 3.15 has extra entries     in the leading diagonal. This is due to accounting for the 

asynchronous tuning of the filter.  

As mentioned in Section 3.1, a filter can be considered as a two-port network. In this case, the 

scattering parameters of the filter can be given in terms of the normalised impedance matrix 

as [2]:   

  

     
 

       
       

   

      
 

   
       

   

(3.16) 

So far, in the analysis, it is considered that all the resonators of the filter are coupled only via 

the mutual inductance (magnetically coupled, see Figure 3.4 (a)). A similar analysis can be 

conducted for the calculation of the scattering parameters of the filter if the resonators are 

coupled via mutual capacitances (Figure 3.4 (b)).  The analysis is fully discussed in [2], and 

only the scattering parameters of the filter are given here, which are [2, 3]:  

  

     
 

       
       

   

        
 

   
        

   

(3.17) 

where      denotes the    admittance matrix of the filter. In case of asynchronous tuning, it 

can be expressed as follows [3]: 
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 (3.18) 

It is interesting to note that both the normalised admittance and impedance matrices are 

identical. This helps us to have a general form for the scattering parameters of an n-coupled 

resonators filter, no matter whether the resonators are electrically or magnetically coupled, or 

a combination of both. The general form of the scattering parameters of an n-coupled 

resonator filter is [2]: 

  

     
 

       
      

   

        
 

   
       

   

(3.19) 

Here     is the sum of three matrices as given below [2]: 

     

 
 
 
 
 
 
 

   
   

    
    

   
 

    
 
 
 
 
 

   

    
    
    
    

    

          

          

    
          

  (3.20) 

Or  

                   (3.21) 

where,     is an     matrix with all zero entries except           and           .     

is an     identity matrix, and     is the general coupling matrix. The entry elements of the 

coupling matrix can be used to represent the physical coupling dimensions between the 

resonators of the filter. For instance     refers to a coupling coefficient value between 

Resonators 1 and 2. More details are given below.  
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The matrices given in Equation 3.20 is generalised for a filter built from n-coupled resonators 

(n = 1, 2 ...). In the following, the matrices have been specialised for a 3
rd

 order filter (see 

Equation 3.22), and interpreted to a physical layout of the filter (see Figure 3.5).  

      

 

   
  

   

  
 

   

    
   
   
   

    

         

         

         

  (3.22) 

Source 

(S)
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Figure 3.5: Layout of a 3
rd

 order filter based on the waveguide cavity resonators. 

 

Each element in the matrices in Equation 3.22 can be used to determine the physical 

dimensions of the filter as pointed out in Figure 3.5 (see the arrows). The scaled coupling 

coefficient and external quality factor, for a filter based on the Chebyshev response, can be 

calculated using the equations given below [2]: 

  
       

 

       

 
    to     (3.23) 

                          (3.24) 

Here,   is the element value of a two-port filter, which can be calculated by using the 

following relations [2]: 
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(3.25) 

 

In the following sections, details regarding cavity resonator, particularly, rectangular 

waveguide resonators are given. The design of a 3
rd 

order filter based on the Chebyshev 

response is then presented. 

 

3.3 Cavity resonators  

Cavity resonators can be considered as devices used to confine the electric and the magnetic 

fields of electromagnetic waves. Figure 3.5 shows two sets of equivalent circuits of a cavity 

resonator. It is possible to classify cavity resonators into two types according to their electrical 

performance, which are lossless and lossy cavity resonators. The lossless cavity resonator is 

ideal without having any form of losses (i.e. R = 0, see Figures 3.6 (a) and (b)). The losses in 

the lossy resonators are usually due to leaking of the electromagnetic waves (radiation), the 

conductivity of the material used to construct the resonator, and the dielectric losses of the 

material inserted into the resonator. The resistance R and reactance G elements are used to 

represent these losses in the circuit of the lossy cavity resonator (see Figure 3.6 (c) and (d)). 
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(b)

L

C
LC

L

C

R

GLC

(a)

(c) (d)  

Figure 3.6: Four possible equivalent circuits for a cavity resonator. A lossless cavity when the elements are: 

(a) in series, and (b) in parallel. A lossy cavity when the elements are: (c) in series, and (d) in parallel 

(taken from [7]). 

 

There are different types of cavity resonators existed such as microstrip cavity resonators, 

waveguide cavity resonators, and dielectric cavity resonators. In this thesis, only rectangular 

waveguide cavity resonators will be described and utilised in the design of antennas. 

 

 

3.3.1 Rectangular waveguide cavity resonators 

A rectangular waveguide cavity resonator is a section of a rectangular waveguide where both 

ends are short circuited (Figure 3.7). It is usually fed by a small probe or an aperture. Because 

both the ends are short circuited, standing wave with various TE and TM modes are expected 

to exist inside the cavity. There are two important parameters for cavity resonators, which are 

the resonant frequency and the quality factors. These are discussed below. 
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Figure 3.7: Rectangular waveguide cavity with the configuration of the electromagnetic field for the 

propagated TE101 mode. 

 

In Chapter 2, Equation 2.11 is given to express the transverse electric fields for both TEmn and 

TMmn modes in a rectangular waveguide. From that equation a relationship between the 

length of a rectangular cavity resonator   and the guided wavelength    can be obtained,when 

applying the boundary conditions       at     and    , that is [1]:  

                                                   When   1, 2, 3…. (3.26) 

Equation 3.26 implies that the waveguide cavity length   has to be equal to an integer 

multiple of a half-guided wavelength at the resonant frequency. The resonant frequency      

of the modes in a rectangular waveguide cavity can be calculated by [1]: 

      
 

       
  

  

 
 
 

  
  

 
 
 

  
  

 
 
 

 (3.27) 

where,   is the speed of light,    and    are the relative permittivity and relative permeability 

of the material filling the cavity, and the integer numbers m, n, and l are used to represent the 

mode of the electric and magnetic fields of a half wave inside the cavity in the x, y, and z 

directions. The TE101 mode in a rectangular waveguide cavity, as shown in Figure 3.7, is 

considered as the dominant mode due to having the lowest resonant frequency. 
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The unloaded quality factor   , which is a measure of the average losses and energy storage 

in a cavity, is another important parameter of cavity resonator. It can be calculated by [7]:  

  
 

  
 

 

  
 

 

  
 

 

  
 (3.28) 

where,   ,    and    are the losses due to the dielectric material filling the cavity, the 

radiation, and the conductivity of the conductor material built the cavity, respectively. Here, 

   is not considered to be obtained from one of the ports of the resonator.    for a lossless 

dielectric of the rectangular waveguide can be found by [1]:  

     
      

     

  

                       
 (3.29) 

The loaded quality factor    of a cavity resonator is equal to the combination of the    and   , 

and is given as [7]:  

  
 

  
 

 

  
 

 

  
 (3.30) 

In the next section, the design of a filter based on the rectangular waveguide cavity resonators, 

as an exercise, is presented. 

 

3.4 Design of a 3
rd

 order coupled-resonators waveguide filter  

This section demonstrates the synthesis of a 3
rd

 order filter based on the rectangular 

waveguide WR-90 (8-12 GHz) cavity resonators. It consists of three rectangular coupled-

resonators in series that are synchronously tuned. The electrical specification of the filter, 

which is chosen arbitrarily for this exercise, is given in Table 3.1. Based on the specification, 
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the external quality factor    (input/output couplings), and coupling coefficient        

between the resonators can be calculated using the following relations [2]: 

     
   
   

 
    
   

 

 

And 
    

   
   

 
      

   
 

(3.31) 

 
                  

   

       

 
for i = 1,2,.. n-1 (3.32) 

Here,   represents the element values of the Chebyshev lowpass prototype filters, and can be 

calculated using Equation 3.25, giving:        1.0,        0.8516,    1.1032. 

Inserting these values into Equations 3.31 and 3.32, the required     and        for the 3
rd

 

order filter can be obtained, which are:          8.516, and         0.1032. 

 

Table 3.1 

 Electrical specification of the 3
rd

 order rectangular waveguide WR-90 cavity filter 

Electrical specification Values 

Order of the filter (n) 3 

Passband ripple (LAr), or Return loss level 0.0436 dB, 20 dB 

Centre frequency (f0) 10 GHz 

Fractional bandwidth (FBW) 0.1, or 10 % 

 

After the substitution of the values of     and     into Equation 3.20, the coupling matrix for 

the 3
rd

 order filter can be given by: 

     
       
   
       

   
 

   
 
 

  
 

  

 
  

   
   
   

    
       

           
       

  

 

(3.33) 

 

After inserting the matrix given in Equation 3.33 into Equation 3.19, the scattering parameters 

(    and   ) of the 3
rd

 order filter can be obtained, and they are plotted in Figure 3.8. 
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Figure 3.8: An ideal response of a 3
rd

 order Chebyshev filter. 

 

The physical layout of the 3
rd

 order filter with its equivalent topology is shown in Figure 3.9. 

As can be seen in Figure 3.9 (a), irises are proposed for the realisation of the coupling 

between the resonators and the ports. The iris types can be inductive or capacitive, or a 

combination of both. Here, symmetric capacitive irises are chosen due to the fact that: (i) they 

allow us to cut the waveguide at the centre of the broad wall which reduces the losses [3], and 

(ii) they are more suitable for wide bandwidth filter application than others [3]. In the next 

sub-sections, the design techniques used to extract the coupling values from the physical 

structure between the resonators and the ports are demonstrated. 
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                                                          (a)                                                                             (b) 

Figure 3.9: (a) Physical structure of the 3
rd

 order waveguide filter based on the waveguide coupled-

resonators, (b) its equivalent topology. 

8 8.5 9 9.5 10 10.5 11 11.5 12
-60

-50

-40

-30

-20

-10

0

Frequency (GHz)

S
 p

a
ra

m
et

er
 (

d
B

)

 

 

S11

S21

1

2
3

a/2

b

M11

M22 M33

M12

M23

Qe1

Qe2

Input port 

(Source )

Output port 

(Load)

Resonator

Iris



 

56 
 

3.4.1 Extraction of the external quality factor (  )  

This section explains a technique that is used for the extraction of the   . The structure shown 

in Figure 3.10 is modelled in CST [8]. It consists of a single rectangular waveguide cavity 

resonator which is coupled to an input and an output ports via capacitive irises. 

Input 

port 

Output 

port 

b

a

l0

l1

l0

t

t

d0

h0

Capacitive iris

(weak coupling)

Capacitive iris 

(controlling Qe)

Cavity 

resonator

 

                                                   (a)                                                                      (b) 

Figure 3.10: Structure modelled in CST for the extraction of the   , (a) inside view of the structure, (b) 

the real structure. Dimensions, a = 22.86 mm, b = 10.16 mm, l0 = 10.16 mm, h0 = 0.04 mm, t = 2 mm.  

 

The     parameter, which is realised from the structure shown in Figure 3.10, is plotted in 

Figure 3.11 (a). It is used here for the calculation of    using the relationship between the 

resonant frequency    of the cavity and 3-dB bandwidth       as follows [3]: 

     
  

     
 (3.34) 

The  ,   , and   values varywhen the cavity length l1 and the iris width d0 are altered. These 

variations are shown in Figure 3.11 (b). It can be seen that    reduces when d0 increases. To 

obtain any desired    value, the l1 needs to be tuned in order to keep the    at the desired 

centre frequency, in this exercise 10 GHz. 
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For the 3
rd

 order filter, the required    = 8.516 can be obtained when the dimensions are: d0 = 

4.52 mm and l1 = 24.70 mm. The technique presented in this sub-section will be utilised in 

Chapters 4 and 5 for the extraction of    of the antennas that will be integrated with the filters.   

 

(a)                                                                                     (b) 

Figure 3.11: (a) the     response of the structure modelled in CST and is shown in Figure 3.10, (b) 

variation of the    versus the cavity dimensions. 

 

 

3.4.2 Extraction of the internal coupling (Coupling coefficient     ,     ) 

After determining the external quality factor    of the 3
rd

 order filter, the internal coupling 

(coupling coefficient    ) calculation between the two coupled-resonators are the next step. 

The     between two coupled-resonators can usually be defined as the ratio between the 

coupled energy to stored energy in the resonators, and can be expressed by [2]: 

  
    

             

         
 
           

 
  

 
               

          
 
            

 
  

 
(3.35) 

Here,    and      represents the electric and magnetic field vectors,   and   are the permittivity 

and permeability of the medium where the coupling takes place, and   is the volume of the 
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medium. According to Equation 3.35, the     types can be either electric (first term on the 

right hand side), magnetic (second term on the right hand side), or a combination of these. In 

this thesis, capacitive irises which maintain electric coupling are utilised for most of the 

designs. There are some techniques presented in [2] to obtain the    value. The technique 

given below is preferred in this work due to its simplicity in implementation. 

Two rectangular waveguide resonators modelled in CST and shown in Figure 3.12 are 

arranged to find    . The resonators are coupled with each other via a capacitive iris with 

dimensions dk12, and are weakly coupled to the ports. The      is [2]: 

  
     

 

 
 
   
   

 
   
   

   
  

    
 

  
    

  

 

  
   

     
 

   
     

  

 

 
(3.36) 

Here, the positive and negative ( ) signs in Equation 3.36 refer the types of the coupling 

(capacitive or inductive),     and     are the resonant frequencies of the resonators when they 

are uncoupled, and    and    are the two split resonant frequencies which can be easily 

realised in the frequency response (   ) of the two-coupled resonators as shown in Figure 

3.13 (a). If the two-coupled resonators are tuned synchronously (   =    ), the    can be 

obtained as follows: 

  
    

  
    

 

  
    

  

 

(3.37) 

The coupling coefficient of the two-coupled resonators can now be calculated by inserting the 

values of    and     obtained in Figure 3.13 (a) into Equation 3.37. 
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                                                 (a)                                                                           (b) 

Figure 3.12: Structure modelled in CST for the extraction of the internal coupling (coupling coefficient 

M12) between two electrically coupled resonators, (a) inside view of the structure, (b) the real structure. 

Dimensions, a = 22.86 mm, b = 10.16 mm, l0 = 10.16 mm, h0 = 0.04 mm, t = 2 mm. Both of l1 and dk12 are 

variables to control the M12 (Round corner 1.6 mm). 

 

The variation of     versus the iris width dk12 is shown in Figure 3.13 (b). One can see that 

the     value increases with the increase of dk12.  The length of the resonators l1 is adjusted 

here in order to keep the centre frequency at 10 GHz, and it was seen that an increase in the 

l1value is required when dk12 is increased. The value of the     =     for the 3
rd

 order filter is 

0.1032, and it can be obtained when dk12 = 2.265 as visualised by dotted lines in the Figure 

3.13 (b). The technique discussed in this sub-section will be used in Chapters 4 and 5, to 

extract the coupling values between the resonators that are integrated with the antennas. 

 

(a)                                                                                   (b) 

Figure 3.13: (a) the     response of the two-coupled structure modelled in CST, and is shown in Figure 

3.12, (b) variation of the     versus the cavity dimensions. 
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3.4.3 Integration and optimisation  

After extracting the corresponding aperture dimensions for the    and     values in the 

previous sub-sections, the integration of coupled-resonators is now possible here. The 

physical structure of the 3
rd

 order filter is shown in Figure 3.14, and its initial physical 

dimensions are summarised in Table 3.2.  
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                                            (a)                                                                             (b) 

Figure 3.14: Structure modelled in CST for the final design of the 3
rd

 order coupled-resonators filter, (a) 

inside view of the filter structure, (b) the real filter structure. 

 

 

Table 3.2 

Physical dimensions of the 3
rd

 order coupled-resonators waveguide filter shown in Figure 3.14 operated at 

frequency range (8-12 GHz). 

Parameters  Initial values (mm) Optimised values (mm) 

Cavity resonator length (l1=l3) 24.70 25.13 

Cavity resonator length (l2) 23.73 24.12 

Iris width (d0) 4.52 5.20 

Coupling Iris width (d12= d23) 2.265 2.70 
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The initial frequency response of the filter using the values given above is plotted in Figure 

3.15 (a), and it is in close agreement with the desired response. Adjustment for the physical 

dimensions is performed using the CST simulator [8] in order to meet the exact desired 

response. Because the initial response is very close to the desired response, less than 100 

iterations are required to meet the desired response. In addition, the structure here is 

symmetric and relatively simple, it is therefore each iteration does not take long (around 1-2 

minutes) when using a personal computer with the following specifications: (Processor: 

Intel(R) Core(TM) i5-3570 CPU @3.40 GHz, Installed memory (RAM): 8.00 GB). After the 

adjustment, the optimised response is in excellent agreement with the desired response 

(Figure 3.15 (b)). There are still some differences noticed in the     response around the start 

band frequency. This occurs due to the capacitive irises resonate at the TE10 mode cut-off 

frequency [3], and reduces the attenuation of the     at that start frequency(Figure 3.15 (b)).       

 
(a)                                                                                     (b) 

Figure 3.15: Initial response compared with the optimisation, (b) optimised response compared with the 

ideal response obtained from the coupling matrix. 
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3.5 Antenna-filter integration overview 

This section discusses the main topic of this thesis, which is the integration of antennas with 

Bandpass filters (BPF). The main purposes of the integration are mostly to enhance the 

performance of communication systems, and reduce the size of the circuits. 

In general, the main role of an antenna in a communication system is to receive and transmit 

EM waves, while the purposes of the front-end BPF are to attenuate the signals which are out 

of the required band whilst minimising attenuation within the required band. The front-end 

BPF is usually placed after the antenna. Conventionally, a matching circuit is employed in 

order to cascade them efficiently, and this is depicted in Figure 3.16. It should be pointed out 

that the input impedance of a conventional antenna is usually frequency dependent, whilst, for 

a BPF, it is designed for a certain value over the frequency band of interest. If their input 

impedances are not matched, degradation in the frequency response of the antenna and the 

system takes place.  

1 2 n-1 n

Input port Input port 

P1P1

Radiation 

output

Radiation 

outputBandpass filterBandpass filter
Matching 

Circuit

Matching 

Circuit
AntennaAntenna

Resonator

 

Figure 3.16: Topology shows the conventional way for the integration of an antenna with a bandpass filter 

using a matching circuit. 

 

With the integration of an antenna with a BPF some important enhancements can be achieved 

such as; improved frequency response of the antenna, remove the need for a separate 

matching circuit between the antenna and the BPF (see Figure 3.17), and also reduce the total 

system size. 
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Figure 3.17: New approach of the integration of an antenna with a filter based on the coupled resonators 

circuit.  

 

The integration of antennas with BPFs has been investigated extensively in the last few 

decades, and the filter synthesis principles are widely utilised in most of the investigations as 

a design tool.  

Due to their flexibility in design and lightness in weight, microstrip patch antennas have been 

utilised to integrate with filters. In [9], a design technique is presented to integrate a 

microstrip patch antenna with three coplanar waveguide resonator filters. Then later in [10, 

11], the synthesis procedure of bandpass filters is used to design a single and a 2×2 filtering 

microstrip patch antenna array. One of the drawbacks of the microstrip patch antennas is the 

losses from the feeding network which are significant particularly at millimetre wave 

frequencies. In addition, they are considered as the inherent narrow bandwidth antennas. Thus, 

some attempts to enhance the bandwidth of the integrated microstrip antennas were reported 

in [12, 13]. 

In [14, 15], slot antennas were integrated with 3-D waveguide cavity filters. The main 

purposes of the use of the 3-D cavity were to realise high   value of the filter, reduce the 

circuit area, and construct a more compact antenna-filter component. For further reduction in 

the size of the component, the authors in [16, 17] integrated the slot antennas with cavities 

vertically. Another technique to obtain high   of the integrated filter with slot antennas was 

reported in [18, 19]. Later, different types of antennas were contributed with the integration of 
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filters such as the dipole-slot antenna [7, 20, 21], monopole antennas [22], and some various 

shapes of printed antennas like the Г-shape antenna [23, 24], and the inverted-L shape antenna 

[25].  

A new design technique for reconfigurable open-ended evanescent waveguide antennas was 

presented in [26]. In this technique, an iris was employed to accomplish tuning together with 

matching. In [27, 28], the BPF concept was applied to the antenna given in [26] to integrate 

with waveguide cavity resonators, and to enhance the bandwidth of the evanescent-mode 

waveguide aperture antenna. Following that, another technique to enhance the bandwidth of 

an open-ended waveguide aperture antenna integrated with the 3
rd

 order substrate integrated 

waveguide filter was presented in [29]. This technique was based on reducing the external 

  value of the filter by using the excitation of the surface waves. 

One of the main challenges of the concept of the integration of antennas with filters is its 

implementation for high gain antenna array due to the complex feeding network required to 

feed multi-radiating elements. It is discussed in [11] that using a complex feeding network 

causes some unexpected resonances and degrade the passband gain response of the antenna 

array. To overcome this, filtering feeding networks is considered as one of the better solutions. 

In this way, besides feeding the multi-radiating elements, the feeding networks have 

additional functions which are the selection of the required frequency band, and remove the 

need for external BPFs. 

It was mentioned in Section 3.2 that the main use of the coupling matrix approach is to design 

filters that are made of coupled-resonators. This thesis uses this approach, as a new technique, 

to integrate antennas with coupled-resonators filters. The last resonator of the coupled-
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resonators filter circuit opens to space and to radiate. The coupling between the last resonator 

and the space is analysed in detail in the following sections.  

 

 

 

3.6 Radiation quality factor calculation of a cavity resonator-based aperture antenna  

This section focuses on the calculation of the quality factors of a single cavity resonator-

radiator when it is coupled only to a single external port, using the magnitude of the 

reflection coefficient    . The calculation of   for a two-port cavity resonator can simply be 

performed by using the magnitude of the transmission coefficient    , and is well explained in 

sections 3.4.1 and 3.4.2. However, in some design situations the     parameter is not available, 

such as for antenna designs. Therefore an alternative technique is necessary. 

A waveguide cavity resonator-radiator, which is shown in Figure 3.18, is designed here using 

the CST simulator. It’s loaded quality factor    can be calculated by [7]: 

  
 

  
 

 

  
 

 

  
 (3.38) 

Here,    and    are the external and unloaded quality factors. The   value, based on the 

magnitude of     of the cavity, can be computed by [30]: 

  
   

 

      
 
         

              

            
 

   

 
(3.39) 

where,           
    

  ,    is the resonant frequency, and  is some frequency around the 

resonant frequency (see Figure 3.19 (a)). The coupling coefficient β between the external 

circuit and the resonator-radiator can be given by [30]: 
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 (3.40) 

or 

    
  
  

 
  

  
 (3.41) 

 

In the structure shown in Figure 3.18, a capacitive iris is used to couple the resonator-

radiator to the input port. For the calculation of the   , it is assumed that the resonator-

radiator is weakly coupled to the port. This leads us to an approximation that the value of    

approaches to infinity. This means the β value vanishes (    ). After applying this 

approximation into Equation 3.38, we can now assume that      . In addition to this, the 

resonator-radiator is designed here to be air filled (    ), and the material used to model 

it in CST is PEC (    ). In this case, according to Equation 3.28, the radiation quality 

factor    is equal to unloaded quality factors   ,      . This time the    is obtained from 

the radiating port. Equation 3.39 can now be used to calculate the radiation     factor of the 

resonator-radiator. To obtain the values of   and    parameters in Equations 3.39, more 

details can be found in [30]. 
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Figure 3.18: Layout of a single resonator-radiator fed weakly from one side and opened to space at 

another side via an aperture. The structure is resonated at centre frequency 10 GHz with the dimensions; 

a = 22.86 mm, b = 10.16 mm, dr = 1 mm, l0 = 10.16 mm, and t = 2mm. (a) the outstanding structure in the 

central area represents the hollow waveguide WR-90 and an aperture, while the surrounding conductors 

are set to be transparent). (b) The real structure. 
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The physical dimensions (la, and lr) of the resonator-radiator, which are labelled in Figure 

3.18, are utilised to control the   .The variation of    versus la  is plotted in Figure 3.19 (b), 

and it can be seen that the    value dramatically increases when la is reduced. The length lr is 

tuned to keep    at centre frequency 10 GHz.    

 

                                        (a)                                                                                  (b) 

Figure 3.19: (a) Frequency response     of the waveguide cavity resonator-radiator shown in Figure 3.18, 

(b) Extraction of the radiation quality factor    of the resonator-radiator shown in Figure 3.18 based on 

the magnitude of    for different la values with simultaneous change of lr to keep the resonant frequency 

at (10 GHz); tr = 10mm, a = 22.86 mm, b = 10.16 mm, l0 = 10.16 mm, dr = 1mm. 

 

 

 

3.7 Coupling matrix representation for antenna-filter integration  

This section presents the topologies and their corresponding coupling matrices for an 

antenna-filter and antenna array-filter components. The designs of filters are usually based 

on the coupled-resonators circuit as discussed in Section 3.2. In general, the topology for a 

two-port filter circuit based on the n coupled-resonators is represented in the form as shown in 

Figure 3.20 (a). Its corresponding coupling matrix can also be derived, as explained in Section 

3.2, and is given here in Equation 3.42.   
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Figure 3.20: (a) Topology of an n-coupled resonator filter, (b) topology of antenna-filter component made 

out of n-coupled resonator. 

 
    

 
 
 
 
 
 
 

   
   

    
    

   
 

    
 
 
 
 
 

   

    
    
    
    

    

          

          

    
          

  
(3.42) 

Once the second port (output port) of the filter is removed, the last resonator of the filter starts 

radiating into space (see Figure 3.20 (b)).This resonator has been called resonator-radiator in 

this work. The resonator-radiator has a radiation quality factor    which can be calculated 

following the technique given in the previous section. 

When the resonant frequency of the resonator-radiator is kept the same as the filter, and its 

radiation    is made to be equal to the external    of the bandpass filter, the resonator-

radiator can act as the last resonator of the filter and as an antenna (radiator) simultaneously. 

This component is named an antenna-filter due to carrying both functions of the components. 

The coupling matrix for the antenna-filter component remains the same as the two-port 

coupled-resonators filter, except that the external output    is replaced by the radiation    , 

and is shown in Equation 3.43.  

 
    

 
 
 
 
 
 
 

   
   

    
    

   
 

    
 
 
 
 
 

   

    
    
    
    

    

          

          

    
          

  
(3.43) 
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The reflection coefficient     remains the same as the one used for the two-port coupled 

resonator filters, and is given below [2]: 

 
        

 

   
       

   
(3.44) 

It is worth mentioning here that the response of the realised gain obtained from the antenna-

filter component could agree with the transmission response of its equivalent filter based on 

coupled-resonators circuit, except that some gain is added within the passband. This can 

clearly be recognised in Chapters 4 and 5.    

It is possible to design a multiple-output power splitter component based on the coupled-

resonators using the coupling matrix approach as explained in [31, 32]. A topology is given in 

Figure 3.21 (a) for this purpose. Its corresponding coupling matrix can also be derived, and is 

given in Equation 3.45. 
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                                                   (a)                                                                        (b) 

Figure 3.21: (a) Topology of a multiple-output circuit based on n-coupled resonator filter, (b) topology of 

an antenna array-filter component made out of n-coupled resonator. 
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Similarly, when the output ports of the power splitter are opened to space, they start radiating, 

and then the topology converts to the one shown in Figure 3.21 (b). Again, if the last 

resonators of each output of the power splitter has a    equal to the    of the power splitter 

(   =   ), they keep their main function in addition to the radiation. The component produced 

through this technique is named an antenna array-filter. The coupling matrix for the antenna 

array-filter can now be modified into the following.   

    

 
 
 
 
 
 
 
 
 

   
   

    

  
 

       
 

   
 

    
 
 
 
 
 
 
 

   

    
    
    
    

    

              

    
                          

              

  

 

 

 

 

(3.46) 

  

 

 

 

 

 

3.8 Conclusions 

In this Chapter, an overview through the basic theory of filters and the coupling matrix 

approach were provided. This was followed by the synthesis technique used to design two-

port coupled-resonators filters. Based on this synthesis technique, design of a 3
rd

 order 

rectangular waveguide filter has been presented, and its performance has been characterised. 

The simulated frequency response of the designed filter was very close to the calculated 

response. The calculation of the    using the magnitude of     for a resonator-radiator was 

discussed. A quick review through some investigations conducted on the integration of 

antennas with filters was also performed. A new synthesis approach for the integration of 

antennas with filters was developed in this Chapter. The new approach will be used in 

Chapters 4 and 5 to design the antenna-filter and antenna array-filter components.      
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Chapter 4 

Waveguide aperture antenna array design 

 

This chapter presents the topology, design, and measurement of four antenna-filter and 

antenna array-filter components based on the new design technique given in Chapter 3. The 

components are the 3
rd

 order antenna-filter, 2
nd

 order antenna array-filter, 3
rd

 order 2×2 

antenna array-filter, and the 7
th

 order 4×4 antenna array-filter. These are formed from four 

novel topologies chosen in such a way as to reduce the circuit sizes as much as possible and to 

facilitate the fabrication process. Rectangular waveguide cavity resonators have been utilised 

to realise physical structures of the topologies due to the high power handling capability of 

waveguides and the demand of the proposed terahertz communication system for such 

waveguide structures. The components have the bandwidth of 10% of its operating centre 

frequency. Although they are designed at the X-band frequencies, they are readily scalable to 

terahertz frequencies. 

 

4.1 3
rd

 order antenna-filter component 

The main focus of this section is on the design and fabrication of the 3
rd

 order antenna-filter 

component. 

4.1.1 Design and simulation  

The topology of the 3
rd

 order antenna-filter component is shown in Figure 4.1 (a). Three 

resonators are utilised to construct the component, and they are coupled to each other in series 

via capacitive irises using the technique presented in Chapter 3. The specification of the 
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component is chosen to: (i) operate at X- band frequencies with centre frequency 10 GHz, and 

(ii) have a FBW of 10% with the return loss level of -20 dB. From this specification, the 

external quality factor    , radiation quality factor    , and coupling coefficient     of the 

component, which can be calculated from the Equations 3.34 and 3.37 given in Chapter 3, 

are             ,               . The desired frequency response can also be 

obtained by using the coupling matrix equations (3.19, 3.20, 3.23, and 3.24), and is plotted in 

Figure 4.2 (b).  
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Figure 4.1: (a) Proposed topology for the 3
rd

 order antenna-filter component. Resonator 3 (grey) acts as a 

radiator as well as the last resonator. (b) Physical configuration. Dimensions in mm are: a = 22.86, b = 

10.16, t = 2, lo = 15, dy = 8.62, dz = 88.32, other dimensions can be found in Table 4.1, radius of the round 

corners = 1.6. 

                                                                      

 (b) 

Figure 4.2: (a) Equivalent coupling matrix for the 3
rd

 order antenna-filter component, (b) Ideal response of 

the reflection coefficient     of the 3
rd

 order antenna-filter component. 
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The Computer Simulation Technology (CST) simulator [1] has been used to extract the initial 

dimensions corresponding to the coupling parameters of the component shown in Figure 4.1 

(b) using the technique discussed in Chapter 3. Resonator 1 which is coupled to the input port 

via a capacitive iris is designed separately in order to find the equivalent aperture dimension 

(d0) for the external  . Moreover, resonators 1 and 2 are coupled to each other via a 

capacitive iris, and the technique given in Section 3.4.2 in Chapter 3 was used to find the 

aperture width dk12. A similar technique was also used to obtain the dimension of the dk23. To 

find the la dimension of the component, the technique presented in Section 3.6 of Chapter 3 is 

used for this purpose.  

Table 4.1 summaries the initial dimensions of the component. The initial frequency response 

    of the component is obtained using the time domain solver in the CST simulator, and is 

shown in Figure 4.3 (a). It is fairly close to the desired response. To meet the exact desired     

response, Adjustments for the component dimensions have been undertaken using the 

optimiser tool in the CST simulator [1]. The goals for the optimisation have been defined as 

follows:         (from 8.0-9.49 GHz),         (from 9.50-10.50 GHz),         

(from 10.51-12.0 GHz). There are seven physical parameters which need to be optimised (see 

Table 4.1). For each physical parameter, a range (  1.0 mm) is chosen to be tuned. After 

nearly 100 iterations, a very good response for the     parameter of the component was 

obtained, and it is compared with the desired response in Figure 4.3 (b).  

The simulated total efficiency (including the losses caused due to the mismatch) of the 

component is shown in Figure 4.3 (c), and it is more than 95% over the passband. It should be 

pointed out that the total efficiency variation manner is similar to the transmission coefficient 

of a bandpass filter. This is due to the filtering functionality of the component, achieving well-
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matching of the return loss (-20 dB) over the passband. 

 

Table 4.1 

Physical dimensions of the 3
rd

 order antenna-filter component shown in Figure 4.1 (b). 

Parameters  Initial values (mm) Optimised values (mm) 

Iris width (d0) 4.52 6.0 

Coupling Iris width (d12) 2.26 3.18 

Coupling Iris width (d23) 2.20 2.31 

Cavity resonator length (l1) 24.70 26.00 

Cavity resonator length (l2) 23.73 24.47 

Resonator-radiator  length (lr) 19.10 19.85 

Radiating aperture length (la) 18.0 19.0 

 

 

(a)                                                                                        (c) 

 
 

(b) 
 

Figure 4.3: (a) The initial simulated response of     parameter of the 3
rd

 order antenna-filter component, 

(b) The optimised response compared with the calculated, (c) Simulated total efficiency versus frequency.  
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4.1.2 Fabrication and measurement 

The 3
rd

 order antenna-filter component has been fabricated using the Computer Numerical 

Control (CNC) milling machine in the School of Physics at the University of Birmingham. 

The tolerance of the machine is about  0.02 mm. The material used to fabricate the 

component is Aluminium Alloy 6082 (RS components). The component has been cut into the 

centre of the broad wall of the waveguide (zero current line zones), and split into two pieces 

to facilitate the fabrication process as can be seen in Figure 4.4 (a). Metal screws are used to 

assemble the pieces, and they are inserted from the bottom in order to minimise their effects 

on the radiation performance.   
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(a)                                         (b) 

 

Figure 4.4: (a) Photograph of the fabricated 3
rd

 order antenna-filter component, (b) The component under 

test. 

 

 

The measured return loss     of the component compared with the simulated is presented in 

Figure 4.5 (a), and a very good agreement over the entire operating frequency band is 

achieved. The measured response of     is shifted to slightly higher frequencies, which could 

be due to the fabrication tolerance. Moreover, the realised gain is measured using the well-

known comparison method. A broad band horn antenna was used as the reference antenna, 
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and the fabricated antenna was placed in the far-field region. The measured gain versus 

frequencies is compared with simulated in Figure 4.5 (b), and a good agreement is also 

depicted, having almost constant gain (7.49-7.67 dBi) over the passband. The 3-dB gain 

bandwidth is 17.61 %.  

 

 

(a)                                                                                      (b) 

Figure 4.5: (a) Measured return loss compared with simulated, (b) Measured realised gain of the 

compared with simulated. 

 

 

 

The measurement for the radiation pattern for both E- and H-planes is performed at three 

different frequencies within the passband frequency range, and they are compared with the 

simulations in Figure 4.6. There is a good agreement between the simulation and 

measurement depicted. The side lobe levels of the presented radiation patterns are below -11 

dB. During the measurement, the waveguide port (adapter) connected to the component (see 

Figure 4.4 (b)) was covered by a piece of absorber to minimise reflection and discrepancy 

between the simulation and measurement. It should be pointed out that the asymmetry of the 

radiation pattern in the H-plane, which can clearly be identified in both the simulation and 

measurement, is due to the asymmetric physical structure of the component.          
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Figure 4.6: Measured radiation pattern of the 3
rd

 order antenna-filter component for both the E- and H-

planes at three frequencies including the centre frequency. 
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4.2 2
nd

 order antenna array-filter component 

In the previous section, the design and radiation characteristics of the 3
rd

 order antenna-filter 

component were discussed and analysed. It has only a single resonator-radiator (single 

radiating element). As a result of that, it has provided a low value of gain and directivity. The 

design of an antenna with a very directive radiation characteristic (high gain) is necessary in 

this work. Hence, an antenna array is considered here to be one of the appropriate ways to 

increase the gain. In the following sub-sections, the design of a simple array (two-element 

array) named the 2
nd

 order antenna array-filter component is presented, and its radiation 

characteristic is analysed.  

 

 

4.2.1 Design and simulation 

The design of the 2
nd

 order antenna array-filter component is presented in this sub-section. It 

consists of three resonators arranged in a way to form a simple antenna array as illustrated in 

Figure 4.7 (a). Two of them act as resonator-radiators, and they are spaced by 0.5  . The 

concept of power splitter based on coupled-resonators, which is presented in Chapter 3, is 

utilised in the design and to obtain the equivalent coupling matrix. The component is designed 

to have 10% FBW at a centre frequency of 10 GHz, and -20 dB return loss level within the 

passband. To obtain the normalised non-zero entries of the coupling matrix, a gradient-based 

optimisation technique is used [2], and gives:     =     = 1.175. The scaled external and 

radiation quality factors are    =     =     = 0.6648.  

The simulated return loss and realised gain of the component are obtained using the CST 

simulator, and plotted in Figure 4.8 (a). They are very comparable with the desired response 
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obtained from the coupling matrix. The simulated total efficiency of the component is shown 

in Figure 4.8 (b), and it is more than 90 % over the bandwidth of interest. Again, its manner is 

similar to the filtering functionality of the realised gain.   
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                                         (a) 

Figure 4.7: (a) Physical configuration, and (b) Equivalent topology and scaled coupling matrix of the 2
nd

 

order antenna array-filter component. Dimensions in mm are: a = 22.86, b = 10.16, t = 2, tr = 10, d0 = 6.62, dr 

= 9.30, l0 = 15, l1 = 24.51, lr = 18, la = 17.22, radius of the round corners =1.6. 

 

 

 

                                           (a)                                                                                        (b)  

Figure 4.8: (a) Simulated return loss and realised gain of the 2
nd

 order antenna array-filter component 

compared with obtained results from the coupling matrix, (b) Simulated total efficiency of the component 

versus frequencies. 
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4.2.2 Fabrication and Measurement  

The component has been fabricated and its radiation performance has been measured in an 

anechoic chamber. It is made of two pieces using the CNC milling machine (Figure 4.9 (a)). 

The measured realised gain and return loss are shown in Figure 4.9 (b), and compared with 

their simulation. A close agreement between the simulated and measured performances is 

identified. The component has the     response below -20 dB from 9.5 GHz to 10.5 GHz, and 

the 3-dB gain-bandwidth is 27 %. The realised gain fluctuates over the passband from 9.5 to 

10 dBi. It should be mentioned here that the filtering functionality of the component is poor 

due to the fact that there are only two resonators contributing in each of the radiating path. 

Enhancement in the filtering functionality can be achieved by employing more resonators in 

each radiating path.        

The radiation pattern for both the E- and H-planes at three different frequencies including the 

centre frequency is plotted in Figure 4.10. A very good agreement between the simulation and 

measurement is obtained. Because the radiating apertures are close to each other (0.5 λ0 E-

plane), a very low side lobe level, which is below –20 dB, is achieved in all the given 

frequencies. The asymmetry of the radiation pattern in the H-plane goes back to the 

asymmetric physical structure of the component on that plane.      

Input 

Port
1

2

3

Apertures

Alignment 

Pin

Screw 

holes

                                      

                                    (a)                                                                                                             (b) 

Figure 4.9: (a) Photograph, and (b) Measured response of the 2
nd

 order antenna array-filter component.  
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Figure 4.10: Measured radiation pattern of the 2
nd

 order antenna array-filter component for both the E- 

and H-planes at three frequencies including the centre frequency. 
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4.3 3
rd

 order 2×2 antenna array-filter component 

After demonstrating the designs of the 3
rd

 order antenna-filter and the 2
nd

 order antenna 

array-filter components in the previous sections and improving the peak gain from 7.6 to 10 

dBi, this section presents a component with more radiating elements which can improve the 

gain further. It is called the 3
rd

 order 2×2 antenna array-filter. 

To design the 2×2 antenna array-filter component, there are some points which need be taken 

into account in advance. For instance, the spacing between the radiating outputs is necessary 

to be close to (    ) in order to minimise the side lobe level of the radiation pattern. In 

addition to this, the radiation outputs need to be arranged in a way that can keep them in phase 

so as to produce a constructive radiation pattern and maximise the directivity. After taking 

these points into account, two novel configurations for the design of the 3
rd

 order 2×2 antenna 

array-filter component have come to our attention. In the following subsections, attention has 

been paid only to the first configuration (Figure 4.11), and working on the second 

configuration is handled to Chapter 5 (Figures 5.1 and 5.2).     

 

 

4.3.1 Design and simulation 

Figure 4.11 shows the topology, coupling matrix, and physical configuration of the 3
rd

 order 

2×2 antenna array-filter component. It consists of seven resonators that split the input power 

into four outputs equally using the design concept of the filtering power splitter based on the 

coupled-resonators as demonstrated in Chapter 3. The equivalent coupling matrix is obtained 

using the gradient-based optimisation technique [2], and is given in Figure 4.11 (b). The 

physical structure of the component is shown in Figure 4.11 (c). It is symmetric in both the E- 
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and H-planes. This offers significant advantages in terms of design flexibility and 

computation time required by the CST simulator [1].  

The spacing between the outputs in both the E- and H-planes is designed to be 24.32 mm 

(0.81 λ0) at the centre frequency 10 GHz. It can be shortened further by reducing the b 

dimension of the resonators to suppress the side lobe level. This is addressed for the second 

configuration of the design of the 3
rd

 order 2×2 antenna array-filter component in Chapter 5 

(section 5.1). Here, the standard b value (b = 10.16 mm) is used for the component because 

the main goal is to validate the design concept.  

The component has 10 % FBW and a return loss of -20 dB over the passband (9.5-10.5 GHz). 

The simulated return loss and realised gain are obtained using the CST simulator, and their 

variation versus frequency is compared with the calculated scattering parameters in Figure 

4.12 (a). The simulated     response is in excellent agreement with the calculated response. 

Moreover, the manner of the realised gain is also in very good agreement with the    , except 

that there is a transmission zero in the simulated realised gain which can clearly be noticed 

near the start band frequency. The way used to couple resonator 2 with resonators 4, 5 and 

resonator 3 with 6, 7 are responsible for the creation of such a kind of transmission zero. 

Investigations conducted into this kind of coupling indicate that the transmission zero occurs 

by creating a double path for the signal inside the resonators 2 and 3 [3-5]. It is believed that 

the coupling matrix approach is also able to demonstrate this kind of transmission zero [6]. 

This will be investigated further in the future. The variation of the simulated total efficiency 

of the component versus frequencies is plotted in Figure 4.12 (b), and one can clearly see that 

the component is very efficient within the passband.     
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Figure 4.11: (a) Topology, (b) scaled coupling matrix, and (c) physical realisation of the 3
rd

 order 2×2 

antenna array-filter component. The dimensions in mm are: a = 22.86, b = 10.16, l0 = 8, l1 = 19.76, l2 = 23.90, 

lr = 20.10, la = 17.65, t = 2, tr = 10, d0 = 17.70, dk12 = 1.14, dr = 3.55, x = 79.56, y = 58.48, z = 42.86, radius of 

the round corners = 1.6. 

 

                                            (a)                                                                                      (b) 

Figure 4.12: (a) Simulated response of the 3
rd

 order 2×2 antenna array-filter component compared with the 

calculated response, (b) Simulated total efficiency.  

8 8.5 9 9.5 10 10.5 11 11.5 12
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

S
1

1
 p

a
ra

m
et

er
 (

d
B

)

 

 

8 8.5 9 9.5 10 10.5 11 11.5 12
-30

-25

-20

-15

-10

-5

0

5

10

15

20

Frequency (GHz)

R
ea

li
se

d
 G

a
in

 (
d

B
i)

S
11

 (Coupling Matrix)

S
21

 (Coupling Matrix)

S
11

 (Simulated) 

Realised Gain (Simulated)

8 8.5 9 9.5 10 10.5 11 11.5 12
0

10

20

30

40

50

60

70

80

90

100

Frequency (GHz)

T
o

ta
l 

ef
fi

ei
cn

y
 (

%
)

 

 

Total efficiency

  

 
 
 
 
 
 
 

               
                   
                   

           
           
           
            

 
 
 
 
 
 

 

                          

 

 

 

 

(a) 



 

87 
 

4.3.2 Fabrication and measurement  

This section discusses the fabrication and measurement performed for the 3
rd

 order 2×2 

antenna array-filter component. The photograph of the fabricated component is shown in 

Figure 4.13 (a). It is built from two pieces of aluminium which are assembled using metal 

screws.  

The measured realised gain and return loss is shown in Figure 4.13 (b), and they are in good 

agreement with each other. The realised gain fluctuates from 13.79 to 14.23 dBi over the 

passband, and the 3-dB gain bandwidth is 17.7%. 

The measured E- and H-planes radiation patterns are compared with their simulated and 

shown in Figure 4.14 at three different frequencies within the passband frequency range. A 

very good agreement between them is depicted. The patterns in the H-plane have lower side 

lobe levels (below -13.5 dB) when they are compared to the E-plane patterns (-7 dB).  
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                              (a)                                                                                               (b) 

Figure 4.13: (a) Photograph, and (b) Simulated and calculated responses of the 3
rd

 order 2 × 2 antenna 

array-filter component.  
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Figure 4.14: The simulated and measured radiation pattern of the 3
rd

 order 2×2 antenna array-filter 

component for both the E- and H-panes at three different frequencies. 
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4.4 7
rd

 order 4×4 antenna array-filter component 

In the previous section, design and fabrication of the 3
rd

 order 2×2 antenna array-filter 

component have been analysed and discussed, and the peak gain obtained from the 

component was 14.23 dBi. In order to achieve higher gain, design of a larger-size array is still 

necessary.  

There has been an increasing interest in using slotted waveguide antenna arrays in many high 

gain antenna applications due to ease in achieving high gains by making more slots in the 

walls of the waveguides. In addition to that, because the slotted waveguide arrays are mostly 

air-filled, they do not suffer from dielectric losses. Conventionally, series-fed networks were 

employed to design planar array slotted waveguide antenna [7-13]. Such feeding networks 

offer some unique features for the design such as using only a single waveguide-layer to form 

the whole antenna array, and hence simplifying the fabrication process. However, its main 

disadvantage is the reduction of the bandwidth of the arrays due to the “long-line” effect [14-

16]. The effect becomes more obvious when the size of the array becomes larger. Therefore, 

to overcome this issue, a new technique to design a large array slotted waveguide antenna was 

proposed in [17, 18]. The technique was based on the double-layer waveguide structure. The 

lower layer was allocated to build the feeding network for the array, and the top layer was to 

form the arrays. Based on that technique, some interesting designs of slotted waveguide 

antenna arrays, notably 4×4, 8×8,  and 16×16 arrays, are presented in [19], [16], [15, 20], 

respectively.   

In this section, we use the coupling matrix approach to design a novel planar array waveguide 

aperture antenna. It is named the 7
th

 order 4×4 antenna array-filter component. It consists of 

two waveguide-layers, proposing to construct from three pieces. The lower waveguide-layer 
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is to build the feeding network using coupled-resonators, whilst the top layer is to form the 

4×4 array. On the other hand, another configuration for design of the 4×4 antenna array-filter 

component based on the coupled resonators, which is possible to be built of two pieces and 

using only a single waveguide-layer, has come to our attention. This will be presented in 

Chapter 5. 

 It is interesting to compare the electrical and physical specifications of the two 4×4 antenna 

array-filter components which are just mentioned above, and the 4×4 antenna array presented 

in [19]. This will also be handled to Chapter 5. In the following sub-sections, design, 

simulation and fabrication of the 7
th

 order 4×4 antenna array-filter component will be 

discussed.  

 

4.4.1 Design and simulation 

Figure 4.15 shows the topology proposed for the 7
th

 order 4×4 antenna array-filter 

component. It consists of thirty nine resonators that are coupled to each other via irises. It can 

be noticed from the topology that there are seven resonators that contribute to each radiating 

path, and with employing four power splitters to split the input power into sixteen outputs 

equally. Each resonator in the topology is coupled into no more than three resonators in order 

to simplify the physical implementation. The electrical specification is chosen to have 10% 

FBW and a return loss     of -20 dB over the passband (9.5-10.5 GHz) within the centre 

frequency 10 GHz.  

 The equivalent coupling matrix for the topology has been obtained by using the gradient-

based optimisation technique [2]. All the optimised normalised non-zero entries of the 

coupling matrix are: m1,2 = m1,3 = 0.588, m2,4 = m2,5 = m3,6 = m3,7 = 0.424, m4,8 = m5,9 = m6,10 = 
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m7,11 = 0.564, m8,12= m9,13 = m10,14 = m11,15 = 0.564, m12,16 = m12,17 = m13,18= m13,19 = m14,20= 

m14,21 = m15,22 = m15,23 = 0.420, m16,24 = m16,25  =  m17,26 = m17,27  =  m18,28= m18,29 = m19,30 = 

m19,31 = m20,32 = m20,33 = m21,34 = m21,35 = m22,36 = m22,37 = m23,38 = m23,39 = 0.588. The scaled 

external and radiation quality factors are                               .    
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Figure4.15: Proposed topology for the 7
th

 order 4×4 antenna array-filter component. 

 

The topology of the component has been incorporated into a physical structure using 

rectangular waveguide cavity resonators whilst operating at the dominant mode TE101 as 

shown in Figure 4.16. Although it is planned to build the component from three pieces (see 

Figure 4.16 (a)), it is shown in Figure 4.16 (b) with four pieces in order to label all the 

physical dimensions. It can be realised that all the resonators are coupled to each other by 

placing capacitive irises between them, except between resonators 8-12, 9-13, 10-14, and 11-

15.  Here, inductive irises were utilised in order to maintain vertical coupling and form the 

planar array configuration. All the dimensions of the component are given in the caption of 

the Figure 4.16.  
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Figure 4.16: Layout view of the 7
th

 order 4×4 antenna array-filter component modelled in the CST. The 

physical dimensions in mm are: d0 = 4.9779, dk12 = 1.7156, dk23 = 0.9132, dk34 = 1.6859, dk45 = 11.5715, dk56 = 

0.6909, dk67 = 5.7733, l1 = 25.3234, l2 = 22.4451, l3 = 21.7848, l4 = 19.7931, l5 = 20.4377, l6 = 21.5814, l7 = 

22.0414, la = 17.2726, x1 = 6.5500, x2 = 15.7800, t = 2.0, tr = 10, dx = 24.32, dy = 34.31, lx = 113.5, ly = 150.4, 

radius of the round corners =1.6.   
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The simulated frequency response of the component is obtained using the CST simulator [1], 

and compared in Figure 4.17 with the desired response obtained from the coupling matrix. 

Because the electrical size of the component is large, the time required to obtain the simulated 

frequency response is long, and this is impractical. To remedy this, the symmetry plane, 

which is a feature in the CST simulator [1], is used to reduce the time required for the 

computation by the factor of two. The simulated return loss is obtained, which is below -15 

dB over the passband, and is in good agreement with the calculated. The realised gain is 

extremely stable over the passband, and has strong attenuation at out of the passband. The 

simulated total efficiency is shown in Figure 4.18 when using aluminium alloy to model the 

component, and it is apparent that this component is extremely efficient.    

 

 

 

Figure 4.17: Simulated frequency responses compared with the calculated of the 7
th

 order 4×4 antenna 

array-filter component.  
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Figure 4.18: Simulated total efficiency of the 7
th

 order 4×4 antenna array-filter component.  

 

 

 
 
 

4.4.2 Fabrication and measurement  

The 7
th

 order 4×4 antenna array-filter component is fabricated from aluminium alloy using 

the CNC milling machine, and is shown in Figure 4.19. In order to facilitate the fabrication 

process, the component is made out of three pieces, splitting along the E-plane of the 

waveguide cavities. This minimises the effect of the additional loss occurring due to the 

imperfect joints in the pieces. Metal screws are used to assemble the pieces, and are inserted 

from the bottom in order to reduce the effect of the head of the screws on the radiation 

performance.  
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Figure 4.19: Photograph of the fabricated 7
th

 order 4 × 4 antenna array-filter component.  

In Figures 4.20 and 4.21, the  measured frequency responses are compared with the simulated. 

It can be seen in Figure 4.20 (b) that the fractional impedance bandwith, both in smilation and 

measurement, is more than10% when     = -15 dB. The realised gain only fluctuates between 

20.24 and 20. 43 dBi over the entire passband, and the 3-dB gain bandwith is 11%.   

The radiation pattern for both the E- and H-planes are measured, and they are compared with 

the simulation in Figure 4.21. The measured patterns are in good agreement with the 

simulation. The side lobe level is lower than -12 dB at all the three given frequency points in 

the E-plane. However, in the H-plane, because the spacing between the radiating apertures is 

large (1.14 λ0), two grating lobes can be identified. Reducing the spacing between the 

radiating outputs in the H-plane for the given component is not possible due to the electrically 

large dimensions of the waveguide resonators. However,it is possible to suppress the side obe 

levels when contructing the component based on unequal power splitter. This is a new task, 

and it will be handled for future work [6]. Adding one more layer is also possible to supress 

the grating and side lobe levels. However, this is not considered in this work.   
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Figure 4.20: (a) The 7
th

 order 4 × 4 antenna array-filter component under test, (b) Measured frequency 

responses compared with the simulated.  
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Figure 4.21: Measured radiation pattern of the 7
th

 order 4 × 4 antenna array-filter component compared 

with the simulated at three different frequencies for both the E- and H-planes.  
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4.5 Conclusions 

In this chapter, the topology, design and fabrication of four antenna-filter and antenna array-

filter components have been presented and discussed. All the presented components, which 

were based on the design technique given in Chapter 3, were constructed using rectangular 

waveguide cavity resonators. The CNC milling machine was used to fabricate the 

components. Aluminium Alloy was used to build the components due to the fact that it was 

suitable for the milling and relatively cheap. The topologies were also selected keeping the 

physicality of realised components in mind. The measurements for the return loss, realised 

gain, and the radiation pattern of the components were conducted. The measured results were 

in very good agreement with the simulations, and validated the new design technique.   
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Chapter 5 

Single waveguide-layer planar array antenna design 

 

In this Chapter, the topology, design, and fabrication for two antenna array-filter components 

are presented, and measurements to validate their performance are conducted. The first 

component is a 3
rd

 order 2×2 antenna array-filter. It is arranged to form a planar unit array 

using a single waveguide-layer and feeding from a side of the plane containing the component. 

The electrical and physical specifications of this component are compared with (i) the 

component given in Chapter 4 (Section 4.3) and (ii) a 2×2 waveguide-fed cavity backed unit 

array presented in the literature. The second component, the 4
th

 order 4×4 antenna array-filter, 

is also introduced. It has a configuration which allows us to use only a single waveguide-layer 

to construct the whole component. For the purposes of comparison, specifications of this 

component are compared with (i) the component given in Chapter 4 (Section 4.4), and (ii) the 

4×4 slot array given in the literature. 

 

5.1 3
rd

 order 2×2 antenna array-filter component 

This section demonstrates the design and fabrication of the 3
rd

 order 2×2 antenna array-filter 

component.   

 

5.1.1 Design and simulation  

Figure 5.1 shows the topology and normalised coupling matrix of the 3
rd

 order 2×2 antenna 
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array-filter component. As can be noticed from the topology, only two resonators are utilised 

to build the feeding network, whilst the four remaining resonators act as the resonator-

radiators. The gradient-based optimisation technique [1] is used to obtain the equivalent 

coupling matrix (see Figure 5.1 (b)). The specifications of the component are to have 10% 

FBW at the centre frequency 10 GHz and with the return loss over the band of interest -20 dB. 

The 3-D layout of the component is illustrated in Figure 5.2.  The b1 dimension for resonators 

1 and 2 are chosen to be 7 mm so as to reduce the spacing between the radiating outputs in the 

yz-plane and minimise the side lobe levels. It should be pointed out that the input port is 

located in the plane containing the component. This allows constructing the component using 

only a single-waveguide layer. In addition to this, a Star-Junction is also employed to reduce 

the total number of resonators required to build the component.  

Although the coupling value between the resonators 2 and 3 (M23) is the same as between the 

resonators 2 and 5 (M25) in the matrix (see Figure 5.1 (b)), their equivalent aperture widths 

(dk23 and dk25) are not the same (see Figure 5.2). This is due to the fact that the positions where 

the couplings take place between resonators 2-3 and resonators 2-5 are not symmetrical. The 

simulation results are obtained using the CST simulator [2], and they are compared in Figure 

5.3 with the desired responses. It can be noticed that the attenuation of the realised gain 

around the start band is poorer than expected. This is mainly because of the unexpected 

radiation of the component at frequency 8.6 GHz. It is believed that occurrence of the 

radiation could be due to the propagation of an additional mode in resonator 2. Also, 

capacitive irises usually provide poorer attenuation at the start band frequency [3]. The 

simulated total efficiency is shown in Figure 5.3 (b), and it is more than 95% over the 

passband. 
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Figure 5.1: (a) Topology, and (b) equivalent coupling matrix of the 3
rd

 order 2×2 antenna array-filter 

component. 
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Figure 5.2: Physical structure of the 3
rd

 order 2×2 antenna array-filter component. The dimensions in mm 

are: a = 22.86, b = 10.16, b1 = 7.0, l0 = 11, l1 = 26.55, l2 = 26.47, l3 = 20.21, la = 18.60, t = 2, tr =10, d0 =4.80, dk12 

= 1.45, dk23 = 3.12, dk25 = 2.95, x1 = 8.138, x = 82.12, y = 43.32, z = 42.86, lx = 23.04, ly = 21.16, radius of round 

corners = 1.6. 

  
                                            (a)                                                                                   (b) 

Figure 5.3: (a) Frequency responses of the 3
rd

 order 2×2 antenna array-filter component compared with 

the desired responses calculated from the coupling matrix (b) simulated total efficiency. 
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5.1.2 Fabrication and measurement   

The component is fabricated from aluminium alloy 6082 using the CNC milling machine. It is 

split along the E-plane into two pieces in order to facilitate the fabrication process (See Figure 

5.4). Alignment pins are used to avoid the misalignment between the two pieces and metal 

screws are used to assemble them. 

 The measured return loss is compared with the simulated return loss in Figure 5.5 (a), and 

they are in good agreement. The measured     has a better matching level over the passband 

when compared with the simulated. However, its bandwidth is slightly narrower than. These 

differences could be due to errors in manufacture. The simulated and measured realised gain 

is plotted in Figure 5.5 (b). The 3-dB gain bandwidth of the component is about 15.7% at the 

centre frequency 10 GHz, having a peak gain (12.94 dBi) at frequency 9.55 GHz.  

The simulated and measured radiation patterns for both the E- and H-planes for three 

frequency points within the passband are shown in Figure 5.6.n they are in very close 

agreement with each other. The side lobe levels in the E-plane patterns are -10 dB, whilst they 

are -16.5 dB in the H-plane. It can be noticed that the main beam of the radiation pattern in 

the H-plane at frequency 9.5 GHz is shifted 3
o
 to the right hand side. It is found that, after 

employing four E- and H-field probes at the centre of each radiating output of the component 

in CST, a small phase variation in the H-plane at 9.5 GHz has been identified.  
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Figure 5.4: Photograph of the fabricated 3
rd

 order 2×2 antenna array-filter component. 

 

 

 

 

                                            (a)                                                                                      (b)             

Figure 5.5: Measured frequency responses of the 3
rd

 order 2×2 antenna array-filter component compared 

with the simulated. 
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Figure 5.6: The simulated and measured radiation pattern of the 3
rd

 order 2×2 antenna array-filter 

component for both the E- and H-planes at three different frequencies. 
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5.2 Comparison   

A comparison of some important parameters of the 2×2 antenna array-filter components 

presented in the previous section and Chapter 5 (Section 5.1), against the 2×2 waveguide-fed 

cavity backed unit array given in [4] is demonstrated in this section. The category of the 

comparison is based on the electrical and physical specifications of the mentioned 

components. Due to the inconsistency of the physical structures of the components, an 

absolute comparison for their physical specifications is not straightforward. Therefore, only 

several physical features, which are common among the components, are summarised in 

Table 5.1.       

The electrical specifications shown in Table 5.1 are based on the simulated performances. The 

design of the 2×2 waveguide-fed cavity backed unit array has been demonstrated in many 

publications [4-7]. However, the specifications given in [4] for the 2×2 waveguide-fed cavity 

backed unit array is shown in Table 5.1 for the purpose of the comparison due to the fact that 

they are mentioned in detail.  

The 2×2 antenna array-filter component with 7 resonators given in chapter 4 has a better 

performance in terms of antenna bandwidth and filtering functionality in comparison to the 

other two given components. Also, the gains of the three components are comparable to each 

other. In terms of the component size, the 2×2 antenna array-filter component with 6 

occupies less space than the others. On the other hand, the 2×2 antenna array-filter 

component with 7 resonators and the 2×2 waveguide-fed cavity backed unit array utilised two 

waveguide layers. This increases the volume of the components. However, the 2×2 antenna 

array-filter component with 6 resonators utilised only one-single waveguide layer which 

leads to reduce the total volume of the component.    
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Table 5.1: Comparison between some physical and electrical specifications of the components at their designed centre frequency. 
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5.3 4
rd

 order 4×4 antenna array-filter component 

The design of the 7
th

 order 4×4 antenna array-filter component was demonstrated in Chapter 

4. It was formed out of two waveguide-layers and using thirty nine coupled-resonators. In this 

section, a design of 4×4 antenna array named the 4
th

 order 4×4 antenna array-filter 

component is introduced. It is arranged in a way that can be formed out of only a single 

waveguide-layer and twenty-five coupled-resonators. Its topology, design, and fabrication are 

given in the following sub-sections.  

 

5.3.1 Design and simulation 

Figure 5.7 shows the topology of the 4
th

 order 4×4 antenna array-filter component. It consists 

of twenty-five resonators coupled to each other using capacitive irises. Four Star-Junctions are 

implemented in the topology in order to offer size reduction. Looking at the topology from the 

input port side (left hand side) to the output side (right hand side), four resonators contribute 

to build each of the radiating path. Two four-way power splitters are utilised in the topology 

so as to split the input signal into sixteen outputs equally, and keep all the outputs in phase 

(see Figure 5.8). The gradient-based optimisation technique [1] is used to generate an 

equivalent coupling matrix for the topology. The non-zero entries of the coupling matrix, and 

scaled external and radiation quality factors are m1,2 = m1,3 = m1,4 = m1,5 = 0.456, m2,6 = m3,7 = 

m4,8 = m5,9 = 0.700, m6,10 = m6,11 = m6,12 = m6,13 = m7,14 = m7,15 = m7,16= m7,17 = m8,18 = m8,19 

= m8,20 = m8,21 = m9,22 = m9,23 = m9,24 = m9,25 = 0.456,                        = 

0.931.     

The topology is used to convert into an actual physical structure that is shown in Figure 5.8. It 

is proposed to construct this with two pieces using aluminium alloy. It should be mentioned 
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that the structure is electrically large, and, as a result, the computational time required by the 

CST simulator [2] to extract the simulated electrical parameters is long (  5 minutes) when 

using a personal computer PC with a specification of ( Processor: Intel(R) Core(TM) i5-3570 

CPU @3.40 GHz, Installed memory (RAM): 8.00 GB). However, because the structure is 

symmetrical in both the E- and H-planes, the symmetrical boundary plane featured in the CST 

simulator can be used to reduce the total time required by a factor of four. The simulated 

frequency response is plotted in Figure 5.9. There is a very good agreement shown between 

the simulation and the desired response obtained from the coupling matrix. The simulated 

total efficiency of the component is plotted in Figure 5.10, and it is more than 95 % over the 

frequency band of interest. The dimensions obtained for the structure to generate the 

simulated result are given in the caption for Figure 5.8.      
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 Figure 5.7: Proposed topology for the 4
th

 order 4×4 antenna array-filter component. 
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Figure 5.8: (a) Physical configuration of the 4
th

 order 4×4 antenna array-filter component modelled in the 

CST. The physical dimensions in mm are: d0 = 15.68, dk12 = 1.48, dk23 = 0.82, dk341 = 1.52, dk342 = 1.64, l1 = 

15.70, l2 = 21.20, l3 = 25.62, l4 = 20.38, la = 17.00, x1 = 5.46, x2 = 6.21, t = 2.0, t0 = 1, tr = 10, dx = 21.46, dy1 = 

32.22, dy2 = 41.98, lx = 90, ly = 140, lz = 42.86, radius of the round corners = 1.6. (b) The E-field distribution 

inside the component at 10 GHz with the aid of CST [2]. 
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Figure 5.9: Frequency responses of the 4
rd

 order 4×4 antenna array-filter component compared with the 

desired responses calculated from the coupling matrix. 

 

 

 

 

 

 

Figure 5.10: Simulated total efficiency response of the 4
rd

 order 4×4 antenna array-filter component. 
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5.3.2 Fabrication and measurement 

Figure 5.11 (a) shows the photograph of the fabricated 4
th

 order 4×4 antenna array-filter 

component. It is made out of two pieces of aluminium alloy using the CNC milling machine.  

The measured return loss and realised gain are shown in Figure 5.11 (b). They are in very 

good agreement with their simulations. The FBW is about 10 % when     is about -15 dB. 

Moreover, the realised gain is extremely stable over the frequency band of interest (9.5-10.5 

GHz), having only 0.9 dB fluctuation. The peak gain of the component is 20.32 at frequency 

10.45 GHz. The 3-dB gain bandwidth is 12 %. There is a very good attenuation of the realised 

gain observed at the stop band, whilst it is slightly poorer at the start band.       

The E- and H-plane radiation patterns of the component are simulated and measured at three 

frequency points within the frequency band of interest, and they are shown in Figure 5.12. 

They are in good agreement with each other. It can be clearly seen that the side lobe levels at 

all the given frequencies points are below -13 dB in the E-plane. However, because the 

spacing between the radiating apertures in the H-plane is large due to the inherent electrically 

large dimensions of rectangular waveguide resonators, the side lobe levels decrease to -7.5 dB.   
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Figure 5.11: (a) Photograph, and (b) Measured frequency response of the fabricated 4
th

 order 4 × 4 

antenna array-filter component compared with the simulated response.  
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Figure 5.12: The simulated and measured radiation pattern of the 7

rd
 order 4×4 antenna array-filter 

component for both the E- and H-panes at three different frequencies. 
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5.4 Comparison  

Table 5.2 shows a summary of some electrical and physical parameters of the 4×4 antenna 

array-filter components given in this chapter (Section 5.2), Chapter 4 (Section 4.4), and the 

4×4 corporate waveguide-fed slot array planar array given in [7]. The topologies, physical 

configurations, and the number of layer are considered as the most important physical 

parameters of the components, and they are summarised in the table. On the other hand, the 

electrical parameters shown in the table are considered as common parameters among them. 

The gain of the 4×4 corporate waveguide-fed slot array planar array is 20.20 dBi, whilst it 

increases up to 21.20 dBi when using the outer cavity layer [7]. It is therefore both of the 

values are mentioned in the table. In addition, because the side lobe level value was not 

exactly mentioned in the paper [7], thus, it was extracted from the radiation pattern figures 

and is presented in the table for the purpose of the comparison.     

Both 7
th

 and 4
th

 order 4×4 antenna array-filter components have a very good filtering 

functionality, particularly the 7
th

 order component. However, the 4×4 corporate waveguide-

fed slot array component has no filtering feature. All the three compared components in Table 

5.2 have gain and bandwidth values which are comparable to each other. In terms of side lobe 

levels, the 4×4 corporate waveguide-fed slot array component has a side lobe level which is 

better than the other components based on the waveguide resonators. Regarding to the 

physical size and volume, the 4
th

 order 4×4 antenna array-filter component covers less space 

than the others. In addition to this, there is only one waveguide-layer and two pieces of 

aluminium are used to construct it. While, for the other two components two waveguide-

layers with more than two pieces are utilised.  
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Components 
7

rd
 order 4×4 antenna array-filter 

(Chapter 4, Section 4.4) 

4
rd

 order 4×4 antenna array-filter 

(Chapter 5, Section 5.3) 

4×4 corporate waveguide-fed slot array 
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7
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(Chapter 4, Section 4.4) 

4
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(Chapter 5, Section 5.3) 
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5.5 Conclusion 

In this chapter, design and fabrication for two new components were given. The unique 

feature of the given components was that they were built by using only a single waveguide-

layer. Their performances have been measured, and a very good agreement has been noticed 

with their equivalent simulation results. Comparisons between the electrical and physical 

parameters of the given components in this chapter, two components given in Chapter 5, and 

two other designs presented in the literature were also shown here. The advantages and 

disadvantages of the components have been discussed based on their physical and electrical 

specifications. It was realised that the 4
th

 order 4×4 antenna array-filter component has 

advantages over the other components in terms of size and volume. Moreover, 7
th

 order 4×4 

antenna array-filter component has the better filtering functionality than others.  
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Chapter 6 

Terahertz communication systems and antennas 

 

In this chapter, terahertz applications are reviewed. The benefits and challenges of a 

communication system that operates in the terahertz frequency band are also discussed. The 

atmospheric attenuation at terahertz frequencies is a significant challenge. The impact of the 

attenuation on a terahertz communication system and the role of an antenna to overcome its 

effects are discussed. Later, a terahertz communication system, proposed to operate at 300 

GHz, with a design based on waveguide structure, is briefly discussed. Due to the small size, 

a conventional milling machine is no longer an appropriate choice to fabricate terahertz 

waveguide components, so attention has been paid to a promising alternative fabrication 

technique called micromachining SU-8. Based on the SU-8 fabrication technique, two designs 

of waveguide antenna arrays are presented.  

 

6.1 Terahertz frequency band and its applications 

The terahertz frequency band is a portion of the electromagnetic spectrum which lies between 

the microwave and infrared regions (see Figure 6.1). It starts from 0.1 THz and goes up to 10 

THz [1]. This range of frequency is extremely wide, and covers a large region of the spectrum. 

In the last two decades, significant attention has been paid to this frequency region due to an 

interest from a variety of applications such as space science, medical science, agriculture, 

defence, and security [1-3]. These wide range of applications goes back to the unique features 

of the electromagnetic waves in the frequency band [4]. For instance, terahertz 
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electromagnetic waves can penetrate materials with various levels of attenuation which helps 

with security imaging [5]. Moreover, resolution of images increases when using terahertz 

frequencies due to the fact that it is in inverse relation to the wavelength [6]. Figure 6.2 shows 

a photo taken using terahertz waves of a closed cardboard box; all the items placed in the box 

are identified. This is extremely useful to check the packages and belongings of passengers in 

airports. Like image resolution, the scattering is also in inverse relation to the wavelength, 

thus, it is low within the frequency band [4]. Furthermore, a small ionisation effect can be 

identified in biological tissues when using terahertz frequency instead of X-rays due to less 

energy being carried by the photons by a factor of six [6-8]. Thus, it is believed that people 

and animals being diagnosed using terahertz imagining devices are less under the threat from 

electromagnetic radiation. Advantages of terahertz frequencies are also found in the field of 

communication systems, and they are discussed in the next section. 
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Figure 6.1: Terahertz frequency region illustration at the electromagnetic spectrum [1]. 
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Figure 6.2: Terahertz photo taken for a closed cardboard box [6].  
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6.2 Terahertz in wireless communication systems  

According to the Japanese government, the annual growth of mobile telephone traffic will 

reach 71% between 2007 and 2017 [9]. A higher growth prediction is also obtained for the 

United States market [9]. On the other hand, with the increase in the demand from wireless 

users to deliver varieties of information rather than just simple text messages and voices, an 

increase in the high data rate capacity for a communication system is necessary. Increasing 

bandwidth of a communication system is considered a key solution to meeting these demands 

[1]. Increasing the bandwidth of the system components could fulfil the demands to some 

extent. However, the bandwidth of the system will still be limited if it is designed at low 

operating frequency band. In addition to this, the conventional components usually provide a 

bandwidth of about 10 % of its carrier frequency [1], which may not be sufficient for some 

applications. These limitations encourage scientists to direct their attention towards the 

terahertz frequency band. A communication system when operated at terahertz frequencies 

offers two unique features which are (i) the availability of a lager bandwidth, and (ii) a 

reduction in the total circuit size.  

In the literature, there are several systems demonstrated at millimetre and terahertz 

frequencies. Two communication systems with operating frequencies of 60 and 90 GHz are 

presented in [10-12]. In [13], a wireless communication system is proposed to work at 220 

GHz, and to have the data rate capability of about 20 Gbit/s over a distance of 100 metres. 

Another wireless communication link operates at 300 GHz with an experimental verification 

for the transmitting data steam capability of 12.5 Gbit/s over a distance of 0.5 metre [14]. The 

technical feasibility of a communication transceiver system with a carrier operating frequency 

of 307.2 GHz, with a bandwidth of 30 GHz and a capability of transmitting/receiving signals 

at the speed of 12.5 Gbit/s, is also described in [15]. 
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It can be noticed from the specifications of the systems mentioned above that using a terahertz 

communication system to transmit/receive signals over a long-range distance is a challenge 

due to the significant atmospheric path loss effect on the terahertz waves [1, 3]. Figure 6.3 

shows the attenuation of the propagated terahertz waves at the sea level within the frequency 

range of 100 GHz to 1 THz for six atmospheric conditions. It implies that the attenuation 

increases with an increase in the operating frequency. The Friss transmission equation gives 

more information regarding the attenuation and frequency relationship, and is discussed in 

section 6.4. Figure 6.3 also explains that the atmospheric conditions have impacts on the 

attenuation level. For instance, when there is high humidity, the attenuation level exceeds     

dB/km at frequency 400 GHz and above. It is therefore suggested for a communication 

system to operate a below 400 GHz. In the following sections, a terahertz communication 

system, which is proposed to operate at 300 GHz, is briefly demonstrated. Attention is then 

paid to an antenna and its role in reducing the impact of the atmospheric path loss.    

   

 

Figure 6.3: Atmospheric attenuation of the propagated waves for six atmospheric conditions at sea level 

(taken from [3]).  
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6.3 300 GHz wireless communication system  

This section demonstrates a 300 GHz communications system which is being proposed by the 

EDT research group at the University of Birmingham [16]. It is proposed to build an indoor 

10 metres communication link with a data rate capability of 10 Gbit/s. In Chapter 1 a 

simplified terahertz communication link budget was shown, illustrating the transmitter and 

receiver parts. Both transmitter and receiver have common components like antennas, 

bandpass filters, mixers, and amplifiers. Due to the compatibility of waveguide structure, 

layered SU-8 micromachining technology is considered for the fabrication process of the 

system [16]. Figure 6.4 shows the proposed transmitter chain architecture of the system, 

demonstrating the configuration of the components based on five SU-8 layers. 

The calculations of the power budget for the system show a free space path length of 10 metre 

[16]. The path loss for a broadside antenna when operating at 300 GHz is about 100 dB. An 

antenna with a 32 dBi gain and with an input power of -10 dBm can provide a -56 dBm power 

level at the receiver [16]. This would be sufficient to achieve a satisfactory Signal-to-Noise-

Ratio (SNR) to Bet-Error-Rate (BER), (SNR/BER) ratio. In the following sections, attention 

is concentrated on the antenna’s role in the system, identifying which kind of antenna can be 

best suited to the system, and designing an antenna for the system, respectively. 
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(a) Top view                                                      (b) Bottom view 
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(c) Inside view 

Figure 6.4: Proposed transmitter chain architecture of the 300 GHz System showing the layered view of 

the components based on the rectangular waveguide structure [16]. 
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6.4 Terahertz antennas  

Section 6.2 explains that the atmospheric path loss effect is considered as one of the main 

challenges facing a terahertz communication system in transmitting/receiving signals over a 

large distance. It is mentioned in [1], that with the increase of the transmit input power of a 

system, the range can be increased to some extent. However, due to the limitations of the 

power source, the transmitting distance still remains shorter than required in some 

applications. An increase in the antenna gain can be considered as a key solution. To define 

the function of an antenna in a wireless communication system, a look at the Friss 

Transmission Equation is necessary. The equation for a wireless communication system 

placed in free space is [17]:       

  

      
   

 
 

   
 
 

   

 

(6.1) 

Here   ,   ,    
,    

,  , and   are the power received by the receiver antenna,    is the power 

transmitted by the transmitter antenna, gain of the transmitter antenna, gain of the receiver 

antenna, the distance between the transmitter and receiver antennas, and operating free space 

wavelength, respectively. It can be observed from Equation 6.1 that the received power is in 

inverse relation to the square of the distance between the antennas and the operating 

frequency. It is believed that increasing the antenna gain is one good approach to lead to a 

terahertz system that can operate over a relatively long-range.             

There are several kinds of antennas presented in the literature which could be of interest for 

terahertz communication systems. Lens antennas are considered a good candidate due to their 

gain being simply increased by (i) increasing the size of the antenna, and (ii) using the relative 

permittivity of the dielectric material used in constructing the antenna [1]. In [18], a 246 GHz 
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high gain lens antenna is demonstrated. It is fed by placing double slots at the back of the lens. 

Another dielectric lens antenna is reported in [19], investigating the effect of the edge 

illumination on the radiation characteristic performance. A terahertz leaky wave lens antenna, 

which is suitable for non-dispersive links over a wide bandwidth, is also demonstrated in [20]. 

Horn antennas are another type that could fulfil terahertz communication systems 

requirements. In [21], a 1.6 THz waveguide horn antenna was fabricated using the monolithic 

micromachined waveguide technique. The fabrication of the tapering section of horn antennas 

usually requires a very accurate and costly fabrication process. Reflector antennas also seem a 

promising candidate. An optical system is proposed in [22], using a reflector-based antenna 

for the purposes of re-focusing terahertz beam and high resolution applications. 

An antenna with a planar structure is interesting particularly for the proposed terahertz 

communication system shown in Section 6.3 due to its physical advantages and simplicity in 

packaging. Micromachined SU-8 photoresist technology has been developed at the University 

of Birmingham to fabricate terahertz planar-based components like filters [23-25] and 

antennas [26, 27]. A 300 GHz linear array slotted waveguide antenna based on four SU-8 

silver coated layers was fabricated (Figure 6.5), and demonstrated in [26]. The measured 

performance of the antenna validates the accuracy of the fabrication technique at such an 

operating frequency band. Another antenna named the Fabry-Perot cavity antenna,  with a 2D 

planar structure as shown in Figure 6.6, was also constructed using the same fabrication 

process [27]. It is believed that using SU-8 fabrication technology it is possible to fabricate 

further terahertz planar antennas. In the following sections, the designs of two antennas, 

compatible with the SU-8 layers, are presented.   
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                                         (a)                                                                               (b) 

Figure 6.5: 3D view of Slotted waveguide antenna, (b) Antenna under test (taken from [26]). 

 

 

 

 

(a) 

               

(b) 

Figure 6.6: (a) 3D view of the Fabry Perot cavity antenna, (b) The actual antenna (taken from[27]). 
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6.5 Design of 300 GHz planar array 8×8 slotted waveguide antenna 

This section describes the design of an 8×8 planar array narrow-wall slotted waveguide 

antenna operating in the WR-03 band frequencies (220-325 GHz). It is illustrated in Figure 

6.7. The antenna is proposed to be constructed from five SU-8 silver coated layers with equal 

thicknesses (t = 0.288 mm). The top layer contains the slots and the following three layers 

form the radiating and feeding waveguides. The bottom layer is to enclose the whole design 

and maintain the input port position. As can be seen from Figure 6.7, the slots are cut on the 

narrow-wall of radiating waveguides with one-guide wavelength spacing. Such spacing 

produces grating lobes in the radiation pattern of the antenna [17, 26]. In order to suppress the 

grating lobes, the slots on a radiating waveguide are alternated with those on the neighbour 

radiating waveguides by half a guide wavelength (λg/2).  
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Figure 6.7: 3D layout of the narrow-wall 8×8 slotted waveguide antenna. 

 

The radiating waveguides are attached directly to the feeding waveguide (see enlargement 

section in Figure 6.7). This forms a series of T-junction E-planes. In order to couple power to 
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the radiating waveguides, irises are designed at each junction. The lengths of the irises are 

used to control the coupling power and to cancel reflection due to the junctions. It should be 

mentioned that some of the irises are shifted away from the centre of the junctions. This is to 

keep the resonant centre frequency at 300 GHz. The H-plane waveguide bend designed in 

Chapter 2 (Section 2.5.3) is embedded with the antenna here in order to facilitate the 

measurement process. The dimensions of the slots and the inter-element spacing for the 

antenna are obtained following the design steps given in Chapter 2 (Section 2.5.2). Table 6.1 

summarises some of the physical dimensions of the antenna.     

 

Table 6.1 

 Physical dimensions of the planar array 8×8 slotted waveguide antenna. 

No. Parameters Value (mm) 

1 Waveguide Dimensions a × b 0.864 × 0.432 

2 Radiating System Area l1 × l2 9.903 × 4.723 

3 Enter Slot Space d 1.226 

4 Slot dimensions Sl × Sw 0.578× 0.134 

5 Neighbour Slot space d0 0.613 

6 Length and width of irises rl×rw 0.131×0.123 

7 Layer Thickness SU-8 b1 0.288 

8 Last slot centre to end (d1, d2) 0.307, 0.920 

9 First slot centre to feeding waveguide (d01, d02) 1.014, 0.401 

 

6.5.1 Simulation Results  

The simulated results of the proposed antenna are analysed and discussed in this section. The 

variation of the return loss, directivity and the realised gain versus frequency are obtained 

using CST simulator [28], and they are plotted in Figure 6.8. The     is below -30 dB at the 

centre frequency of 300 GHz, with a bandwidth of about 2 GHz when       is -10 dB. 

Moreover, the maximum directivity is depicted at the centre frequency 300 GHz, and is 25.20 
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dBi. The losses due to the material and the mismatch cause a reduction in the antenna realised 

gain of about 0.6 dBi at 300 GHz. The 3-dB gain bandwidth is 1.3% at 300 GHz.   

Figure 6.9 shows the radiation pattern of the proposed antenna at three frequency points 

including the centre frequency for both E- and H-planes. The side lobe levels are below -13 

dB for both of the planes and at all the given frequency points. It is found that with the 

increase in the operating frequency, a small distortion in radiation patterns occurs, particularly 

in the E-plane. Also, a beam inclination of about 2
o
 is observed in the E-plane with the 

increase of the operating frequency to 301 GHz. This could be due to the phase variation of 

the EM waves at that plane. Table 6.2 summarises some of the simulated electrical parameters 

of the antenna. 

 

Table 6.2 

 Electrical parameters of the planar array 8×8 slotted waveguide antenna. 

Parameters 
Frequency 

(GHz) 

Directivity 

(dBi) 

Realised Gain 

(dBi) 

Bandwidth 

(GHz) 

3dB beam 

width 

Side lobe level 

(dB) 

Performance 300 25.19 24.59 2 
E-plane 13.20 E-plane -14.8 

H-plane 5.00 H-plane -13.4 

 

 

Figure 6.8: Variation of of the simulated directivity, realised gain and return loss of  of the proposed 

antenna versus frequency. 
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Figure 6.9: Simulated radiation patterns of the proposed antenna for E- and H-planes at three frequency 

points including the centre frequency. 

 

 

6.5.2 Fabrication  

This section discusses the fabrication process of the antenna using the SU-8 micromachining 

technique. This technique is useful due to its ability to achieve high aspect ratio in the form of 

the waveguide structures as well as high dimension accuracy [26, 29]. In addition to this, the 

fabrication cost is relatively low [30]. Moreover, the thickness of the photoresist can be 

controlled.     

The antenna has been prepared to fabricate using five equal thickness (0.288 mm) SU-8 silver 

coated layers (Figure 6.10). Silver coating for the SU-8 layers is chosen after finding its losses 

similar to solid metals for waveguide structures [23]. All five SU-8 layers were included in 

one mask and were produced in one go during the lithography process. Liquid SU-8 was 

firstly applied on a 4-inch silicon wafer. The initial soft bake was performed at a temperature 

65
o
 C for 20 minutes, and then 95

o
 C for about 4 hours. Subsequently, the SU-8 photoresist 
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was exposed through the mask to 365 nm ultra violet light. After the completion of the 

exposure, the post exposure bake for the SU-8 was begun directly first at 65
o
 C for 2 minutes 

first and later at 95
o
 C for 30 minutes. The SU-8 wafer was left to cool to room temperature. 

In order to make the SU-8 photoresist more robust, more development was performed using 

the EC solvent and then hard-baked at 150
o
 C. All the SU-8 photoresist pieces were released 

from the silicon wafer using a 10% sodium hydroxide solution. Finally, they were silver-

coated with 2 micron-thickness in a vacuum evaporator. During the evaporation, the SU-8 

pieces were rotated at an angle in order to allow the evaporated-sliver to coat the inside of the 

slots and the H-plane bend ridges of the antenna. Additional information regarding the SU-8 

fabrication process is provided in [30-32]. 

Once the SU-8 photoresist layers were constructed and coated, they were assembled in a very 

precise manner using alignment and precision pins (see Figure 6.12). Two brass-plates were 

introduced to the fabricated antenna in order to (i) give high strength, (ii) clamp together, and 

(iii) maintain direct interconnection of the antenna with the waveguide flange. The influence 

of the brass-plates on the radiation characteristics of the antenna has been minimised by 

choosing appropriate l1 and l2 dimensions (Figure 6.10). The simulated antenna performance 

with and without the brass plates is compared in Figure 6.11, and negligible effects of the 

brass plates on the antenna performance have been observed. The photograph of the 

fabricated antenna is shown in Figure 6.12. However, the antenna has delaminated and 

measurements were not possible. The measurements will be performed when the fabrication is 

completed successfully.    
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Figure 6.10: Complete structure of the proposed 8×8 slotted waveguide antenna, including the brass plates 

and the required holes for interconnection with the waveguide flange. 

 

 
Figure 6.11: Effects of the brass plates on the simulated frequency performance of the proposed antenna. 
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Figure 6.12: Photograph of the fabricated 8×8 slotted waveguide antenna. 
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6.6 Micromachined travelling-wave array slotted waveguide antenna 

High gain and wide bandwidth antennas have received much attention for beam scanning 

radar applications at the millimeter wave and terahertz frequency bands. To date, different 

types of antenna arrays have been investigated for this purpose. Microstrip patch antenna 

arrays are attractive high gain antennas. However, they suffer from a series of losses when 

operating at high frequencies [33, 34]. The curvature shape of a parabolic dish antenna and its 

difficulty in packaging with a communication system are issues which make the antenna less 

preferable for the applications [34]. There has been increasing interest in using beam scanning 

waveguide antennas due to their compact size, simplicity in fabrication, and inherent low 

losses [26, 35].  

Since 1950, frequency scanning waveguide slot antenna arrays have been introduced for radar 

applications [36-38]. In a conventional travelling-wave array slotted waveguide antenna, a 

matching load is placed at the termination of waveguides to absorb the power not radiated, 

and a phase shifter to control the main beam direction. However, due to the inefficiency of 

shifters, and the challenge of employing a matching load onto an antenna because of the 

reduced size at terahertz frequencies; their implementation would be very difficult [39, 40]. In 

the next section, an H-bend radiated (HBR) slot has been designed (Figures 6.13 and 6.16) 

instead of a matched load in the designed frequencies (220-325 GHz). Following that, the 

radiation characteristics of the HBR slot are discussed. The HBR slot is then integrated in 

Section 6.6.2 with 7 radiating slots placed on the narrow wall of a rectangular waveguide 

(WR-03) to form a linear array travelling-wave array antenna. The performance of the array in 

terms of antenna gain, bandwidth, and beam scanning are demonstrated. The antenna array 

presented here has been designed to be compatible with the micromachined SU-8 photo-resist 
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layers. The interconnection of the antenna with the standard waveguide flange WR-03 and its 

assembly with the brass plates are demonstrated in sub-Section 6.6.4.  

 

 

6.6.1 Design of HBR slot  

The HBR slot shown in Figure 6.13 has a length of (a) and a width of (b). Three matching 

steps are introduced in the waveguide below the radiating slot to minimise the power reflected 

to the input port. The simulated reflection coefficient of the HBR slot is obtained using CST 

microwave studio [28], and is less than -20 dB within the whole operating frequency band 

(Figure 6.14). The slot has a gain of (6.85dBi) at 300 GHz with only 0.8 dBi variation over 

the whole WR-03 band as can be seen in Figure 6.14. The radiation pattern of the HBR slot is 

presented in Figure 6.15. A small degradation on the right hand side of the H-plane radiation 

patterns can be identified due to the asymmetrical physical structure.   
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Figure 6.13: Diagram of the designed HBR slot with the characterisation of the three matching steps. B = 

0.432 mm, d = 0.96 mm, a = 0.864 mm, D1 = 0.699 mm, D2 = 0.499 mm, D3 = 0.469 mm, M1 = 0.24 mm, 

M2=0.60 mm, M3=0.91 mm.     
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Figure 6.14: Variation of S11, realised gain, and directivity of the HBR slot versus frequency. 

 

  

Figure 6.15: Radiation pattern of the designed HBR slot at three different frequencies for both E- and H-

planes. 

 

 

 

 

 

 

6.6.2 Design of linear array with 8-radiating slots  

The complete travelling-wave slotted waveguide antenna array is shown in Figure 6.16. For a 

travelling-wave array, the spacing between the radiating slots does not have to be λg [41, 42] 

as discussed in chapter 2. Here, all the slots are not excited in phase. As a result of this, a 

progressive phase shift is generated between the radiating slots, and the main beam pattern 
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starts scanning with the change in the operating frequency. For the design presented here, the 

inter-element space is optimised, and chosen to be        λg. This provides a wide 

bandwidth and a wide beam scanning range for the array.  
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Figure 6.16: Layout of an 8-slot travelling array cut in the centre of the narrow wall of the waveguide 

based on the micromachining layers (equal thickness t = 0.288 mm). An H-plane bend is integrated with 

the structure at the input port and an H-plane radiating slot at the input port. The outstanding structure 

in the central represents the hollow waveguide WR-03 and slots, while the surrounding id conductor 

which is set to be transparent). a = 0.864 mm, b = 0.432 mm, d = 0.964 mm, Sw = 0.15 mm, Sl = 0.55 mm. 

 

 

6.6.3 Design performance  

This section demonstrates the simulated performance of the antenna operated at 300 GHz. 

The simulated radiation pattern of the antenna has a main beam in the H-plane which is -13° 

scanned towards the input port, with the existence of one grating lobe at 55° as shown in 

Figure 6.17 (a). The scanning of the main beam has occurred due to the produced progressive 

phase shift between the slots in accordance with the input port phase. The appearance of 

single grating lobe is because of the spacing (       ) which is still larger than half of the 
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free- space wavelength. The side lobe level is -13.3 dB in the E-plane which is better than -6.8 

dB in the H-plane as can be seen in Figure 6.17 (a). A very good return loss matching, which 

is below -15 dB from 240 to 325 GHz, is observed in Figure 6.17 (b). The peak gain of the 

antenna is 14.37 dBi at 287 GHz. As a result of the good matching, the realised gain and 

directivity of the antenna are comparable to each other.    

 

                                       (a)                                                                                        (b) 

Figure 6.17: (a) Simulated radiation pattern of the 8-slots at operating frequency 300 GHz for both E- and 

H-planes, (b) variation of the antenna return loss, directivity, and realised gain over the whole operating 

frequency band.  

 

 

6.6.4 Main beam scanning  

This section discusses the scanning of the main beam and the radiation patterns of the antenna 

with respect to frequency change. The H-plane radiation patterns in Figure 6.18 indicate that 

their main beam scans from -27° to -7° with the frequency from 255 to 325 GHz, which 

means a 20° main beam scanning over 23.3 % fractional bandwidth (1.16°/GHz). The beam 

scanning feature is significant for such a simple antenna structure which makes it a good 

candidate for terahertz wave and radar applications. Further scanning can be achieved when 
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the antenna is operated close to the cut-off frequency. However, in this case, the main beam 

degrades.  

 

Figure 6.18: Normalised H-plane radiation pattern of an 8-slotted waveguide array with the variation of 

operating frequencies from 255 to 325 GHz. The total beam scanning is 20° over a 23.3 GHz fractional 

bandwidth. 

 

 

 

The proposed antenna array structure can be fabricated using micromachining SU-8 silver 

coated layers. The full assembly of the antenna is shown in Figure 6.19. The brass plates are 

used to clamp the five SU8 layers. The effect of the brass plates on the performance of the 

antenna has been minimised by keeping enough space around the array. The influence of the 

brass plates on the frequency response of the antenna is shown in Figure 6.20, and this only 

causes a small discrepancy in the performance of the antenna. 
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Figure 6.19: CST model of the assembled antenna. The holes are for the necessary screws to connect the 

antenna with the WR-03 waveguide flange. 

 

Figure 6.20: Effects of the brass plates on the simulated frequency performance of the proposed antenna. 
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6.7 Conclusion 

In this chapter, terahertz frequency applications were discussed. The advantages and 

challenges, that will be present when designing a communication system to operate at 

terahertz frequencies, were also addressed. Moreover, a 300 GHz communication system, 

which is currently being investigated at the University of Birmingham, was briefly described. 

Later, more attention was paid to those antennas which are suitable for terahertz 

communication systems, more specifically for the proposed 300 GHz communication system. 

Two antennas, named the ‘planar array 8×8 slotted waveguide antenna’ and the linear array 

travelling-wave slotted waveguide antenna have been introduced, and their performances have 

been obtained and analysed in simulation.  
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Chapter 7 

Conclusions and future work 

 

7.1 Conclusions 

The main objective of this PhD work was to investigate antennas that can provide high gain 

and wide bandwidths. There are many communication systems in today’s modern society that 

demand an antenna with such specifications, and the proposed 300 GHz communication 

system presented in Chapter 1 and discussed in Chapter 6 is an example [1]. In Chapter 2, a 

review of the previous work related to high gain and wide bandwidth antennas was given. The 

limitations of antenna gain and bandwidth parameters were discussed together with antenna 

size. Clear visions regarding their limitations have resulted.  

Due to the trade-off between the gain and bandwidth parameters, achieving a wide bandwidth 

for a high gain antenna has always been a challenge. In Chapter 3, a new approach has been 

presented to design high gain and wide bandwidth antennas. The approach was based on the 

coupling matrix theory. The parameters of the matrices such as coupling coefficient (   ) and 

quality factors (   ,    ) have been investigated in chapter 3 using rectangular waveguide 

cavity resonators. We have concluded that the bandwidth of the antennas, made with coupled 

resonators and using the new approach, can be controlled by    ,     and     values of the 

matrices.  

The new approach presented in chapter 3 has been implemented with six novel antenna 

topologies in chapters 4 and 5. The components have been constructed based solely on 
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resonators. They have confirmed the flexibility in accomplishing wide bandwidth and high 

gain. Moreover, the designed antennas have gained filtering functionality, as a result of the 

new approach. This is extremely useful due to the fact that a bandpass filter is no longer 

necessary after the antenna. The measured performances of the fabricated antennas were in 

very good agreement with their simulations, validating the new design approach. 

Finally, a terahertz communication system proposed to operate at 300 GHz [1] was reported 

in Chapter 6. The specification of the system was briefly detailed. Later, the antenna required 

for the system and its specification dominated the main theme of the chapter. A design of 300 

GHz planar array (8×8) slotted waveguide antenna based on SU-8 layered waveguide 

technology has been introduced, and its fabrication discussed. Additionally, a 300 GHz linear 

array travelling-wave slotted waveguide antenna has been proposed which could be of interest 

to terahertz beam scanning applications.       

 

7.2 Future work 

The design approach presented in this thesis can be developed further still by seeking 

different antenna topologies so as to reduce the circuit size and suppress the side lobe levels 

of the radiation patterns further. Moreover, the antenna array-filter components presented in 

Chapters 4 and 5 were based on equal power splitter topologies. Using unequal power splitter 

topologies can be useful to maintain an extreme side lobe level suppression of the radiation 

patterns.  

As discussed in Chapter 3, the new design approach has allowed us to control the antenna 

bandwidth with gain. However, when the component sizes become large electrically (large 



148 
 

arrays), the computational time required by an EM simulator to simulate them is long. 

Obtaining the desired response is not guaranteed due to having many resonators and physical 

dimensions to tune. The step tune technique presented in [2, 3] can be used to overcome this 

issue. Instead of tuning the whole component, the technique allows us to tune the component 

step by step. For each step, no more than three physical parameters of the resonators are 

required to be tuned. Figure 7.1 shows the necessary steps required for the design of the 7
th

 

order 4 4 antenna array-filter component presented in Chapter 4. It consists of seven steps, 

adding one resonator at each successor steps until reaching to the last resonator. This promises 

to obtain the desired responses and reduce the computational time. It should be mentioned 

here that for each step, an equivalent coupling matrix is required. This technique will be 

utilised in the future for the design of 8 8 and 16 16 planar antenna array-filter components 

when appropriate topologies are prepared. 
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Figure 7.1: (a-g), Design steps for the 7
th

 order 4 4 antenna array-filter component, (h) the whole topology.  
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The design of multiband antennas and the use of cross-coupled topologies which introduce 

transmission zeros to the antenna gain response so as to increase the out-of-band rejections 

are the aspects left for future investigations. For these purposes, advantages can be taken from 

the topologies presented in Chapters 4 and 5.    

The antenna integrated with the 300 GHz communication system in Chapter 6 (Section 6.3) 

has narrow bandwidth ( 1 % FBW). Since our ultimate goal is to have an antenna having 10 % 

FBW at 300 GHz, the bandwidth of the integrated antenna will have to be broadened 

eventually for the final prototype of the system. There are two ways that can be used for this 

purpose. These are (i) building the antenna based on coupled-resonators using the coupling 

matrix approach as introduced in Chapter 3, and/or (ii) employing the reflection cancelling 

techniques presented in [4] into the antenna.  
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