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ABSTRACT 

Research carried out in this thesis was driven by the need to identify risk factors that 

predict local recurrence in patients with vulval cancer (VSCC), and the need for more 

effective treatments for women with usual type vulvar intraepithelial neoplasia (uVIN). 

To identify the risk factors that predispose women to local recurrences, a multivariate 

analysis was performed on a well-characterized cohort of women treated for primary 

VSCC. This analysis revealed that the only independent predictor of local recurrence 

was the presence of Lichen Sclerosis (LS); here, cancers arising on a background of LS 

were almost five times more likely to recur compared to those without LS. uVIN is a 

recognised putative precursor lesion of HPV-positive VSCC. Topical application of 

Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has been shown to be an 

effective treatment for genital warts; a condition caused by low-risk HPV strains. To 

date, the mechanism(s) by which EGCG exerts its effects on HPV-associated 

proliferative disorders are unknown. Using HPV18-immortalised keratinocytes as a 

model, I have shown that EGCG inhibits cell proliferation and promotes apoptosis, an 

effect that was accompanied by down-regulation of the E6 and E7 proteins and the 

induction of p53, p21 and pRb. These results were recapitulated in a newly isolated 

HPV18-positive uVIN keratinocyte clone: VIN clone 11. Biochemical analysis revealed 

that EGCG did not stimulate E6 degradation by enhancing poly-ubiquitination and 

proteasome-mediated degradation, suggesting that EGCG-mediated E6 proteolysis 

occurred through other mechanisms. However, EGCG was found to stimulate mono-

ubiquitination of E6, although the relevance of this modification is unknown. 
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1.1 Vulval Squamous Cell Carcinoma (VSCC) 

1.1.1 Epidemiology 

Vulval cancer is uncommon, comprising only 6% of all gynaecological malignancies 

reported in the UK. It is predominantly a disease of the elderly with three-quarters of 

cases affecting those aged over 60 years [1]. The age-standardised incidence of 

squamous cell carcinoma of the vulva (VSCC) is 2.5 per 100,000 women per year in 

England and 2.4 per 100,000 in the United States (US) [1, 2]. In England, 966 women 

were first diagnosed with VSCC in 2011, and there were 364 deaths from the disease in 

that year. Cancer surveillance systems in England, Denmark and the US point to a 

significant increase in the incidence of VSCC in women under the age of 65 [1-3]. 

Consistent with these trends, the Thames Cancer Registry UK has reported an increase 

in the incidence of vulvar cancer in cohorts born after 1940 [4].  The West Midlands 

Cancer Registry UK which covers a population of 5.6 million has a reported rate for 

cases registered between 2001 and 2005, a 5 year relative survival of 80.5% in women < 

65 at diagnosis and a rate of 61.6% in older women; the corresponding figures from the 

SEER programme for cases diagnosed in the US in 2004 were 81.6% and 70.6% [2]. In 

neither dataset is there evidence of an increase in relative survival over time in these 

age-groups. 

Squamous cell carcinoma (VSCC) make up 90% of all cases of vulval cancers, with the 

remaining 10% comprised of basal cell carcinoma, adenocarcinoma, malignant 

melanoma, Paget’s disease of the vulva and Bartholin’s gland tumours [1]. The scope 

of this thesis focuses primarily on reducing the risk of local recurrence in those women 

with VSCC and its precursor lesions.  
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1.1.2 Aetiology 

VSCC is believed to arise through HPV-dependent and independent routes (see Figure 

1.1). The current disease paradigm holds that following persistent high-risk HPV 

infection women develop usual or classical type vulvar intraepithelial neoplasia 

(uVIN), which subsequently progress into basaloid or warty type squamous cell 

carcinoma (SCC) [5, 6]. It is estimated that 40% of all VSCC cases arise through the 

viral-dependent route and, interestingly, the prevalence of HR-HPV positive tumour is 

20% higher in the US [7-12]. Most cases of the tumour tested positive for HPV16 and, 

to a lesser extent, HPV 18 and HPV 33 [13]. HPV-associated tumours typically affect 

younger women, aged <65 years, and the incidence in this age group is found to be 

increasing in the UK and elsewhere [1]. This increase is a reflection of the rising 

incidence of its precursor lesion, uVIN, in young women, which in turn is due to the 

rise in the prevalence of HR-HPV infection [13]. 

The virus independent route is associated with the development of keratinising 

tumours in a background of differentiated intraepithelial neoplasia (dVIN) or Lichen 

Sclerosus (LS) [5, 6]. It is thought that the main trigger of carcinogenesis in this 

instance is chronic inflammation, which results in repeated injuries and scarring to the 

epithelium. The attempt of the epithelium to renew and repair itself continuously 

predisposes it to DNA damage and mutation, which eventually leads to oncogenic 

transformation [14]. Nevertheless, it remains unclear if LS gives rise to dVIN as there is 

no real connection between the two conditions. Women within this age group are 

usually older (> 65 years) and critically they are also more likely to have other medical 

comorbidities, which may pose certain challenges in managing their cancer. 
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Figure 1.1: VSCC can be derived from the HPV-dependent (red) 

and –independent (blue) routes. Persistent HR-HPV infection gives 

rise to uVIN which subsequently developed into basoloid or warty 

VSCC, if left untreated.  Keratinising VSCC is usually found arising 

in the background of LS and dVIN. It remains unclear if dVIN is a 

precursor lesion for LS and if LS can give rise directly to VSCC as 

there is no stepwise histological model of carcinogenesis in the 

setting of chronic LS (blue dotted lines). 
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1.1.3 Clinical Symptoms 

Women with VSCC usually present with pain, irritation, pruritus, bleeding, a lump, 

ulcer or discharge. It is well recognised that most women delay in presenting 

themselves to their medical practitioner, especially the elderly cohort because of 

embarrassment [15, 16]. However, it is unclear if this affects their treatment outcome, 

as most VSCC are slow growing.  

1.1.4 Staging 

Vulval cancer is staged surgicopathologically according to the International Federation 

of Gynaecology and Obstetrics (FIGO) staging system since 1994. The FIGO staging 

has been revised and updated over the years according to treatment outcome, and it 

was last revised in 2009 [17]. The current FIGO staging is presented in Table 1.1. 
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Table 1.1: FIGO staging for vulval cancer (2009) 

FIGO staging for vulval cancer (2009) 

Stage I Tumour confined to the vulva 

Stage Ia Lesions ≤ 2 cm in size, confined to the vulva or perineum and with stromal 

invasion ≤ 1mm. No nodal metastasis 

Stage Ib Lesions > 2 cm in size or with stromal invasion > 1 mm confined to the vulva or 

perineum. No nodal metastasis 

Stage II Tumour of any size with extension to adjacent perineal structures 

(lower 1/3 urethra; lower 1/3 vagina; anus) with negative nodes 

Stage III Tumour of any size with or without extension to adjacent perineal 

structures (lower 1/3 urethra; lower 1/3 vagina; anus) with positive 

inguinofemoral nodes 

Stage IIIa i. With 1 lymph node metastasis (≥ 5 mm), or 

ii. 1–2 lymph node metastasis(es) (< 5 mm) 

Stage IIIb i. With 2 or more lymph node metastases (≥ 5 mm), or 

ii.  3 or more lymph node metastases (< 5 mm) 

Stage IIIc With positive nodes with extracapsular spread 

Stage IV Tumour invades other regional (upper 2/3 urethra; 2/3 vagina) or distant 

structures 

Stage IVa Tumour invades any of the following 

i. Upper urethral and/or vaginal mucosa; bladder mucosa; rectal 

mucosa or fixed to pelvic bone, or 

ii. Fixed or ulcerated inguinofemoral lymph nodes. 

Stage IVb Any distant metastasis including pelvic lymph nodes 
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1.1.5 Management of VSCC 

The Royal College of Obstetricians & Gynaecologists and the British Gynaecological 

Cancer Society jointly published a guideline detailing the diagnosis and management 

of vulval cancer [18].  Owning to the rarity of the disease, it is recommended that 

women with VSCC be referred to and managed in local gynaecological cancer centres 

to improve treatment outcomes. Surgical excision (radical vulvectomy) is the mainstay 

of treatment for VSCC and the extent of surgery depends on a number of factors that 

include: the size of the tumour; its location and proximity to vital organs; fitness to 

tolerate major surgery; FIGO stage; and wishes of the patient. Over the years, surgical 

management has become more conservative so as to preserve sexual function and 

body image [19]; this is particularly important as the incidence of the disease is 

increasing in younger patients. The main aim of surgery is to achieve adequate surgical 

resection and to preserve the function of vital organs such as the bowel and genito-

urinary tract unless these organs are also affected by cancer, in which case they are 

removed. The current guideline recommends that fresh surgical specimens should 

consist of at least 15mm of disease-free tissue, lateral and deep margins, so that after 

fixation a ≥8mm histological cancer-free margins can be achieved to avoid local 

recurrence [18]. This practice is based on a retrospective study that showed that 

women with histological margins of <8mm were at significantly increased risks of 

developing local recurrence when compared to those with histological margin of ≥

8mm [20]. However, it remains unclear if inadequate surgical excision is the main 

driver for local recurrence as recent evidence showed that other factors also play an 

important role in determining the timing and pattern of local recurrence (see Chapter 1 

discussion).  
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More than two-thirds of VSCC arise on a background of atypical skin in the form of 

VIN, LS or both [21]. While VIN is a putative precursor lesion for VSCC, it is still 

debaTable whether LS is also a pre-malignant lesion. In women, LS is often 

widespread and affects both the vulva and anal skin in a figure of eight pattern. While 

there is some evidence to suggest that residual LS left behind after excision of the 

primary tumour may increase the risk of local recurrence [22, 23], it is unnecessary to 

remove all the affected skin so as to compromise the function of the vital organs as the 

absolute risk of recurrence in these women is not well defined. As for VIN, the current 

guideline recommends that the lesion should be destroyed with diathermy or excised, 

but not to the extent of a radical vulvectomy because the absolute risk of local 

recurrence are again not well defined, and VIN often recurs in 1 in 3 women within 3 

years of surgical excision [24, 25].  

The first point of distant metastasis for vulval cancer is always the lymphatic chain 

within the groin before it spreads to the pelvis and other parts of the body. Tumours 

measuring less than 2cm in diameter and confined to the vulva, with stroma invasion 

of ≤1.0mm (FIGO stage Ia) have a negligible risk of spreading to the groin nodes [26]. 

This group of patients do not normally require further intervention to their groin once 

their primary tumour is successfully excised. For those with tumours either larger than 

2cm, stromal invasion of >1.0mm or both, require radical treatment to their groin to 

exclude or remove metastatic disease because undetected groin node disease or nodal 

recurrence have poor survival outcome [18, 19]  Traditionally, lymphadenectomy is the 

default surgery for managing nodal disease where all lymph nodes in the groin are 

removed. This can be achieved en bloc or through a separate incision to the primary 
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tumour (triple incision). Groin lymphadenectomy carries significant long-term 

morbidity as women often end up with severe lymphedema that often compromise 

their mobility.  The introduction of groin sentinel lymph node biopsy (SLNB), which 

utilises the combination of radioactive lymphoscintigraphy and methylene blue dye 

studies to detect the sentinel node, has recently revolutionised the treatment of groin 

node disease. Instead of performing a complete lymphadenectomy, women with 

tumour ≤4cm undergo SLNB to remove a small group of lymph nodes (sentinel node) 

in the groin(s) for histological diagnosis. If the sentinel node(s) is free of disease, then 

no further treatment is required. Otherwise, the patient will have a full 

lymphadenectomy if metastasis is detected in the sentinel node. Published data from a 

multicentre trial practicing SNLB showed that the technique has a great sensitivity and 

specificity in diagnosing groin node metastasis, and long-term morbidity associated 

with the procedure is significantly lower than that of a complete lymphadenectomy [27, 

28]. The rate of groin node recurrence was also found to be less or comparable to that 

of a full lymphadenectomy.  

The use of radiotherapy is limited to neo-adjuvant or adjuvant setting, to shrink the 

size of the primary tumour before surgery or to treat potential residual disease locally 

and in the groin, respectively.  Primary radiotherapy, with or without chemotherapy, 

is increasingly used for those with advanced disease (FIGO stage III and IV) who are 

not fit enough for surgery; for advanced recurrent disease (distance or local); or for 

palliation. The benefit of chemotherapy is still under evaluation, and it is used, either 

alone or in combination with radiotherapy, in neo-adjuvant or adjuvant setting to 
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complement surgery; in those patients who are not fit enough to tolerate surgery; for 

palliation; or for advanced recurrence disease [18].  

1.1.6 Prognosis 

Approximately one-third of women with VSCC exhibit local recurrences [18]. A 

number of retrospective cohort studies have identified potential risk factors that 

predispose women to local recurrence. These include:  inadequate excision margins; 

groin node involvement; the presence of LS and VIN (usual and differentiated type) 

adjacent to the primary tumour; older age group; tumour size; tumour multifocality; 

histology grade; lymphovascular invasion (LVSI); and type of surgery performed [15, 

20, 22, 23, 29-36]. However, it remains unclear which of the risk factors best predict 

local recurrence, as each study identified different predictors, and none were in 

agreement with each other. This is a reflection of different methods used by each study 

to collect and analyse its results. Increasingly, two different patterns of local recurrence 

have been recognised in VSCC. Tumours that arise on a site previously occupied by 

the primary tumour are usually termed a local relapse (LR), and are thought to be a 

true local recurrence that usually recurs within 3 years after local excision. Tumours 

that occur at least 2cm or more away from the primary tumour have been termed 

second field tumours (SFT) or second primary tumour (SPT) [22, 30, 31, 36, 37], and 

these are thought to be new tumours that could be genetically related (SFT) or 

unrelated (SPT) to the primary tumour (see Figure 1.2). Although incompletely 

resolved, it is thought that both SFT and SPT are likely to arise in a histological normal 

but molecularly altered epithelium, termed a “field of cancerization” [38]. The theory 

of field cancerization was first proposed by Slaughter et al. in 1953 who studied the 
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histology of dysplastic epithelial tissue adjacent to the primary tumour in an attempt 

to explain the reason for the development of multiple primary tumours and tumour 

recurrence in the oral cavity and upper respiratory tract [39].  Since the development of 

molecular biology, the concept of field cancerization has now been redefined in 

molecular terms. Molecular alterations, such as genetic mutation or epigenetic 

modulation of genes, predispose an epithelium to undergo oncogenic transformation - 

this epithelium may even appear macroscopically normal. The accumulation of genetic 

alterations over a protracted period of time eventually leads to cancer development. In 

the context of VSCC, one study, which used the pattern of X chromosome inactivation 

as a marker of clonality, revealed that high-grade uVIN lesions contiguous with VSCC 

were of the same clonal origin, raising the possibility that these VSCCs were derived 

from molecularly altered clones within the VIN lesions [40]. 

The 5-year survival of women without lymph node metastasis was found to be in 

excess of 80%, but it falls to well below 50% if inguinal nodes are involved. The 

prognosis of those with iliac or pelvic node involvement is extremely poor with less 

than 15% surviving in 5 years [18]. Old age, advanced stage disease and groin 

involvement were repeatedly found to be independent predictors for poor survival. 

While local recurrence does not normally influence survival, relapse in the groin or 

pelvic node is almost always fatal as nodal relapse is often refractory to treatment [41]. 
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1.2 Vulvar Intraepithelial Neoplasia (VIN) 

According to the International Society for the Study of Vulvovaginal Disease (ISSVD), 

high-grade vulval intraepithelial neoplasia (VIN), the putative precursor lesion of 

VSCC, can be divided into usual and differential types, uVIN and dVIN, respectively. 

While the former is associated with persistent high-risk HPV infection, the aetiology 

for the latter is less well defined, but it is often found on a background of persistent LS.  

Differentiated vulvar intraepithelial neoplasia (dVIN) is believed to be a direct 

precursor of VSCC and ~80% is found adjacent to of VSCC. Studies have shown that 

when VSCC is found in association with differentiated VIN, it is more likely to recur 

and to have a shorter disease-specific survival [21, 42]. Most dVIN are associated with 

TP53 mutations or deletions, and the detection of common mutations in dVIN and its 

adjacent VSCC points to a genetic relationship between these two entities [43]. 

Figure 1.2: The potential sites in which VSCC can recur locally in the 

vulva following excision of primary tumour. 
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However, dVIN is rarely diagnosed in the absence of VSCC. As to why this should be 

the case is not clear. One possibility is that dVIN progresses rapidly to an invasive 

disease after a very short pre-invasive phase. However, two groups have recently 

suggested that dVIN is often under-diagnosed [42, 44]. Both studies found on 

histological review a failure to recognise dVIN in a substantial proportion of women 

who were subsequently found to have VSCC; these cases had been originally classified 

as LS or as “benign changes”. If solitary dVIN is diagnosed, then the preferred choice 

of treatment is either surgical excision or diathermy destruction of the lesion.   

Usual type vulvar intraepithelial neoplasia (uVIN) is associated with persistent 

infection with high-risk HPV subtypes; predominantly, HPV16 [13]. In most cases, the 

virus is  maintained in episomal form [45]. uVIN primarily affects young women, with 

a peak age incidence of 30-49 years, and the incidence has increased by more than 3-

fold in recent years [46, 47]. Although the malignant potential of uVIN is significantly 

lower than that of cervical intraepithelial neoplasia (CIN) [24], it often causes 

debilitating symptoms such as pruritus, pain and sexual dysfunction. Moreover, at 

least 50% of women were found to have multiple uVIN lesions (multifocal disease); 1 

in 3 women were also found to have synchronous or asynchronous multicentric 

intraepithelial neoplasia of the cervix, vagina and anus [48]. 

Currently, surgical excision remains the mainstay of treatment for women with uVIN, 

but it does not offer a cure. More than a third of these women will have recurrences, 

and surgery may itself result in additional physical and psychosexual problems [25]. 

Although the risk of malignant transformation in these women is small, clinicians 

cannot predict those likely to progress and, therefore, place all on extended 
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surveillance. These arrangements do little to allay patient anxiety while placing an ever 

increasing burden on NHS resources. Novel alternatives to surgery have been 

investigated, for example, photodynamic therapy and laser ablation, but both have 

yielded variable results. Topical treatment with Imiquimod, an immune modulator has 

been shown to be effective in the management of uVIN but is associated with 

substantial side effects that frequently result in its premature discontinuation [49, 50]. 

The results of a recently published Phase II clinical trial (RT3VIN) comparing 

Imiquimod and Topical Cidofovir (an anti-viral drug) revealed that just under half of 

women with uVIN from each treatment arm responded to either treatment [51]. Both 

drugs showed similar side effect profiles and neither treatment was superior over the 

other. Towards this end, we have started a Phase II randomised control trial (EPIVIN) 

evaluating the use of a novel topical therapeutic agent, Veregen©, in the treatment of 

women with uVIN. Veregen© ointment contains Epigallocathecin-3-gallate (EGCG), a 

major bioactive polyphenol of green tea which has been shown to possess multiple 

anti-carcinogenic effects in cell culture and animal models of cancer and, more 

importantly, shown to be safe and effective in treating HPV-associated proliferative 

disorders [52]. The potential biological activities of EGCG on HPV will be discussed in 

section 1.5.  

1.3 Lichen Sclerosus  

Lichen Sclerosus (LS) is a chronic, inflammatory skin condition that affects the genital 

area and around the anus, where it causes persistent itching and soreness. Scarring 

after inflammation may lead to severe damage to the genitalia, such as fusion of the 
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labia, narrowing of the vaginal opening and burying of the clitoris if treatments are not 

started early. LS affect both men and women, but the disease has a predilection for 

post-menopausal women. The true incidence and prevalence of the disease remains 

largely unknown because many patients do not present themselves to the hospital. A 

long-term follow-up MRC contraceptive study involving 17,000 women found that the 

risk of developing LS increases with age and the incidence of those aged 50-59 was 14 

per 100,000 (95% CI 4-32) [53]. The mean age of onset of the disease in women has been 

reported to be between the fifth and sixth decade.    

There is no single causal factor that attributes to the onset of LS despite numerous 

studies being conducted to identify the aetiology of the disease [53].  Women who 

present with LS often have associated autoimmune diseases such as thyroid disease, 

diabetes mellitus, pernicious anemia, vitiligo and cicatricial pemphigoid [53-56]. The 

presence of autoantibodies in the serum coupled with histological findings of chronic 

inflammatory changes point towards an autoimmune aetiology [53]. Genetic factors 

relate to the human leukocyte antigen (HLA) complex, and traumas that result in a 

Koebner phenomenon have all been implicated in the development of LS [53, 57, 58]. 

Unfortunately, there is no curative treatment for women with LS. The treatment 

regimen involves the use of long-term potent steroids (clobetasol propionate 0.05% 

and mometasone furoate 0.05%) and emollients aiming to achieve symptomatic control 

and prevent further anatomical distortion of the genitalia [59]. Surgery has no role in 

managing a patient with LS except for restoring anatomical function.   

The lifetime risk of developing vulval squamous cell carcinoma (SCC) in women with 

LS has been reported to be 4% to 5% [53, 57, 60]. Clinically, we lack an understanding 
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of how to separate indolent LS cases from those in danger of progressing to squamous 

cell carcinoma. Although differentiated vulvar intraepithelial neoplasia (dVIN) is often 

found in women with LS and VSCC, it remains unclear whether dVIN is the putative 

precursor lesion linking LS to VSCC because there is no stepwise histological model of 

carcinogenesis in the setting of chronic LS. It is thought that LS gives rise to the HPV-

independent keratinizing SCC where the cohort of patients is often older [61], as 

opposed to HR-HPV-dependent VSCC which are derived from uVIN in younger 

patients. Recently, several studies have identified LS as an independent risk factor for 

developing local VSCC recurrence despite complete removal of the primary tumour 

[22, 23]. Those tumours that recur on a background of LS were more likely to develop 

after a long latency period, and to occur at a site distant to the primary tumour; a 

pattern of recurrence similar to that observed in HPV-negative head and neck SCC [62]. 

The implications of these findings are that the cancer is more likely to constitute a new 

primary or second field tumour that arises in a "field of cancerization". Currently there 

is neither a robust screening method to detect early recurrence nor chemopreventative 

treatment to prevent recurrence in these patients; consequently, all patients are 

followed-up for an extended period and many end up having multiple biopsies taken 

over time. Thus, there is a need to look for better management strategies for those 

patients with LS and, more importantly, those at risk of developing VSCC, so that they 

can be identified early and offered chemopreventative therapies. Future research on LS 

should aim at identifying molecular signatures that separate those with indolent LS 

from high-risk LS, and developing chemopreventative therapies to prevent the high-

risk cohort from progressing to VSCC. 
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1.4 High-Risk Human Papillomavirus (HR-HPV) 

Human papillomaviruses (HPVs) are small DNA viruses (~8kb in size) that are 

epitheliotrophic in nature, displaying a tropism for squamous epithelium. More than 

120 subtypes have been described, of which a third have been found to infect the 

genital mucosa [63]. Of these genital HPVs, 15 subtypes are associated with cervical 

cancer and, as such, have been classified as high-risk HPVs (HR-HPV). The remaining 

low-risk subtypes (LR-HPV) cause benign papillomatous lesions [64]. As discussed 

previously, HR-HPV DNA has been found in approximately 40% of VSCC cases, and 

in over 90% of uVIN cases, indicating that these viruses are also a causative agent for 

vulval neoplasia. A multi-national collaborative HPV genotyping study on 2000 cases 

of pre-invasive and invasive vulval disease found that, like cervical neoplasia, HPV 16 

was the commonest type (72.5%) in vulval neoplasia followed by HPV 33 (6.5%) and 

HPV 18 (4.6%) [65].  

The unique and unusual life cycle of HPV explains their propensity to induce 

malignant transformation of squamous epithelial cells. Unlike most viruses, which 

produce progeny virus from the same infected cell, lytic replication of HPVs only 

occurs after infected basal keratinocytes have undergone mitosis and their daughter 

progeny have committed to the terminal differentiation program [66]. The life cycle of 

HPV is intimately linked to the differentiation of squamous epithelium (Figure 1.3). 

The virus gains access to basal keratinocytes through micro-abrasions in the 

epithelium. Following infection, HPV genomes are established as extrachromosomal 

elements, termed episomes, which are maintained in basal cells using the host cell’s 

DNA replication machinery. As HPVs do not encode their own DNA polymerases or 
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other enzymes required for viral replication, they are totally reliant on the host cell for 

DNA replication. As the infected daughter keratinocytes migrate upwards and begin 

the terminal differentiation process, the remaining infected keratinocytes are retained 

within the basal layer as slow-cycling and self-renewing cells to maintain a reservoir of 

latently infected cells [67]. The early viral genes (E1, E2, E4, E5, E6, E7) are expressed in 

basal cells, where they function to maintain episomal replication. Low numbers of viral 

episomes, about 200 copies per cell, are maintained in infected stem/progenitor cell 

populations, a process termed latent infection. The early genes are also responsible for 

the initiation of lytic viral replication when the infected daughter cells undergo 

terminal differentiation. Under normal circumstances, keratinocytes that have 

migrated into the suprabasal layers can no longer undergo mitosis as they have exited 

the cell cycle and committed to undergo terminal differentiation. In order to initiate 

viral genome replication, the E5, E6 and E7 proteins “hijack” the cell cycle machinery 

to promote host cell DNA replication, which is maintained after keratinocytes exit the 

basal layer, this also allows the viral genomes to replicate and amplify to high copy 

numbers. These rapidly dividing suprabasal keratinocytes, also known as koilocytes, 

display distinctive histological features of an enlarged, irregular and dense nucleus 

and a perinuclear halo.  In the upper layer of the epithelium, E4, L1 and L2 genes are 

expressed to package the viral DNA into capsids and progeny virions ready to be 

released and re-initiate infection.  
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The E6 and E7 proteins function as viral oncogenes. Both are essential for initiating and 

maintaining cellular transformation by modulating cell cycle checkpoint control and 

preventing apoptosis. E6 and E7 work synergistically to modulate the activity of 

various cell cycle regulators. This creates an environment conducive to HPV genome 

replication. However, in doing so, E6 and E7 also deregulate normal cellular gene 

control, which, over time, leads to genomic instability and carcinogenesis. The E6 and 

Figure 1.3: The life cycle of human papillomavirus. HPVs (red hexagon) gained 

access to the basal keratinocytes through a microwound. The uninfected epithelium 

is shown on left and infected epithelium on the right. On infection, the viral genomes 

ae established in the nucleus of the keratinocytes in low-copy number, typically 200 

copies per cell. The virus utilises the host DNA replication machinery to replicate and 

divide in synchrony with host DNA replication. After cellular division, the infected 

daughter cell migrates into the suprabasal layer and undergoes terminal 

differentiation that triggers the vegetative phase of the HPV life cycle. The expression 

of the oncoproteins E6/E7 deregulates cell cycle control and forces the differentiating 

keratinocytes to return to S phase so that viral genome amplification can take place. 

The expression of the late, L1 and L2, and with E4 genes allows the newly synthesised 

viral genomes to be encapsidated before the virions are released in the upper most 

layer of the epithelium. 

Figure adapted from Moody & Laimins, 2010  
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E7 proteins encoded by high-risk (HR), but not the low-risk (LR), HPVs, are 

transcribed from a linear bicistronic or spliced polycistronic E6/E7 transcript [68]. The 

E6 open reading frame (ORF) is usually spliced out at a highly conserved spiced donor 

site, then spliced back in at E6 ORF splice acceptor site that lies upstream of the E7 

promoter, to produce E6* as illustrated in Figure 1.4 [69]. While certain HR-HPV 

subtypes, such as HPV16, have splicing patterns that allow the expression of up to 4 

species of E6*, others such as HPV18 only produce one transcript capable of expressing 

E6*. The E7 proteins can be translated from either unspliced or spliced variants of the 

E6/E7 mRNAs and recent evidence suggests that, at least in HPV16 and 18, while 

unspliced mRNA encode mostly full-length E6, spliced mRNA encodes both E6* and 

E7 proteins [70]. The E6* proteins have been found to antagonise the functions of full-

length E6 protein and probably play an important role in inhibiting keratinocytes 

proliferation when sufficient viral genomes are amplified so that keratinocytes 

differentiation can continue to facilitate the release of progeny virions [68].   

Like most cellular proteins, E6 and E7 proteins are degraded and recycled through the 

human ubiquitin-proteasome pathways [71]. However, evidence showing that these 

viral oncoproteins are poly-ubiquitinated, a prerequisite for proteasome-mediated 

degradation, is still lacking. For ubiquitination to proceed, at least 4 ubiquitin 

molecules have to become covalently attached to a protein before they are recognised 

by the 26S proteasome and targeted for degradation.  
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The transforming functions of E6 and E7 are linked to their ability to target a myriad of 

cell signalling pathways [66]. The primary target for E7 is the retinoblastoma (Rb) 

family of proteins, p105 (Rb), p107 and p130. In their hypo-phosphorylated state, the 

pRb family proteins bind to the E2F transcription factors and repress the expression of 

S phase genes, which drive DNA replication and cell cycle progression. 

Phosphorylation of Rb by G1 cyclin-dependent kinases (CDK2, 4) liberates E2F leading 

to cell cycle progression in S-phase. The E7 protein targets the Rb-E2F pathways in a 

Figure 1.4: The arrangement of the spliced donor (left) and acceptor 

(right) sites within the E6 open reading frames (ORFs) of the high-risk 

alpha group of HPVs. Note that splicing is unique to HR-HPV E6. Asterisk 

denotes that a G is mutated to A to abolish splicing, in which case full-

length E6 is produced instead.  

Figure adapted from Pim et al., 2009  
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number of different ways; it can directly bind to the hypophosphorylated Rb through 

interaction with the LXCXE motif within its amino-terminus and disrupt the pRb-E2F 

complexes [72]; it has also been found to promote the degradation of the Rb through 

the ubiquitin-proteasome system, thus reducing the overall level of Rb protein. In 

response to Rb inactivation, keratinocytes attempt to counter the effect of E7 by 

increasing expression of the cyclin-dependent kinase inhibitor, p16INK4a, which 

prevents the over phosphorylation of Rb [73]. As E2F activation is not due to 

hyperphosphorylation of Rb, but rather, caused by binding of E7 to Rb, the resultant 

over-expression of p16INK4a has little, if any effect on E2F activity. Thus, overexpression 

of p16INK4a has been implicated as a useful surrogate marker for HR-HPV E7 activities 

[66, 74].  

Uncoupling of the G1-S cell-cycle checkpoint induces the expression of p53, a tumor 

suppressor gene (TSG) that functions to inhibit cell proliferation and induce apoptosis. 

To counteract the effect of E7 on p53 activation, the HR-HPV E6 proteins have evolved 

to target p53 proteins for degradation, thus preventing cell growth inhibition. E6 binds 

to an E3 ubiquitin ligase called E6-associated protein (E6AP), which binds p53 and 

targets it for ubiquitin-proteasome-mediated degradation [66, 73, 74]. The E6 protein 

can also interfere directly with other pro-apoptotic proteins such as BAK, FADD and 

pro-caspase 8 to further inhibit apoptosis [75, 76]. E6 alone appears to play a key role 

in sustaining continuous cell proliferation, as studies have shown that expression of E6, 

in the absence of E7, is sufficient to achieve immortalization of a number of normal 

human keratinocytes [74]. Other molecular targets reported to be modulated by E7 and 

E6 are illustrated in Figures 1.5 and 1.6. 
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Figure 1.5: The high-risk human papillomavirus E7 oncoprotein modulates its host 

cellular process by interacting with multiple host cell proteins.  E7 oncoprotein disrupts 

normal cell cycle control by inhibiting the retinoblastoma (Rb) protein family that results 

in aberrant activation of the E2F transcription factors and drives the cells into S phase.  E7 

can also deregulate cell cycle control by directly interacting with other cell cycle proteins, 

for instance it inhibits the cyclin-dependent kinase inhibitors (p21WAF1 and p27), stimulates 

the cyclins, and activate the cyclin-dependant kinase 2 (CDK2).  Through interaction with 

histones deacetylases (HDACs) and E2F6, E7 is also able to modulate gene expression. The 

interactions of E7 with a number of other cellular proteins lead to malignant 

transformation of the cell, for instance the increase in activity of CDK2 and interaction 

with γ-tubulin lead to aberrant centrosome synthesis and increases genomic instability;  

interactions with ATM-ATR (ataxia telangiectasia-mutated-ATM and RAD3-related DNA 

damage response) causes DNA damage and increases chromosomal instability; and the 

interactions with p600 prevents anoikis and permits anchorage-dependent growth. E7 also 

allows the infected cells to escape from host immune surveillance through interactions 

with the interferon (IFN) signalling proteins. 

  Figure adapted from Moody and Laimins, 2010 
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Figure 1.6: The high-risk human papillomavirus E6 oncoprotein modulates its 

host cellular process by disrupting cellular signalling pathways. E6 inhibits p53 

mediated growth arrest and apoptosis in a number of ways, it forms a trimeric 

complex with p53 and E6AP resulting in the degradation of p53 protein through 

the ubiquitin-proteasome pathways; it also inhibits the transcription of p53-

responsive genes by interacting with the histones acetyltransferases p300, CREB 

binding protein and ADA3 that prevents acetylation of p53. E6 can also induce the 

degradation of the pro-apoptotic proteins BAX and BAK, and interrupt with the 

caspase 8, FADD and TNFR1 signalling pathways to inhibit apoptosis. E6 

interactions with E6AP, SPI, NFX12 and MYC nuclear transcription factors prevent 

telomerase shortening and promote cell immortalisation. It promotes anchorage-

dependent cell growth by interacting with the focal adhesion protein paxillin and 

the extracellular matrix protein fibulin. E6 also binds to and mediate the 

degradation of the PDZ domain proteins resulting in the loss of cell polarity and 

malignant transformation. 

  Figure adapted from Moody and Laimins, 2010  

 



   

25 
 

HPV-induced transformation was first described in cervical neoplasia [75]. In the 

cervix, the squamous columnar junction, a meeting point of the stratified non-

keratinizing squamous epithelium from the ectocervix and the columnar epithelium 

from the endocervix, is susceptible to HPV infection and a site where more than 90% of 

cervical neoplasia arises. Persistent HR-HPV infection is a prerequisite for the 

initiation of dysplastic changes in the cervical epithelium. The progression from 

infected lesion to invasive disease is associated with the integration of the HPV 

genome into the host DNA. Loss or disruption of the E2 gene is accompanied by 

increased expression of the E6 and E7 oncogenes (see Figure 1.7) [77].  In early pre-

invasive cervical dysplasia, cervical intraepithelial neoplasia (CIN) I and II, a relatively 

low level of E6 and E7 expression is detected when the virus is maintained in episomal 

form, but overexpression of these oncoproteins is often found in CIN III (high grade) 

and invasive disease [76]. Unlike cervical neoplasia, the underlying mechanism(s) of 

how HR-HPVs transform vulval squamous epithelium is less clear, as the vulva lacks a 

squamo-columnar junction. Moreover, the risk of malignant transformation of uVIN, 

the putative precursor lesion of viral induced VSCC, is significantly lower when 

compared to CIN. However, viral genome integration into host chromosomes has been 

documented in almost all cases of HPV-induced VSCC, indicating that the underlying 

mechanism of malignant transformation in VSCC, at least that of HPV-induced, is 

likely to be similar to that of cervical cancer [78]. Therefore, it is likely that the 

incidence of HPV-related VSCC in future will fall with the introduction of HPV 

vaccination programme.  
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Figure 1.7:   

Figure 1.7: The stepwise progression of cervical neoplasia following persistent HPV 

infection with high-risk human papillomavirus (HR-HPV). HR-HPV is thought to 

gain access to the basal keratinocytes through micro wounds(s) in the cervical 

epithelium. Following infection, the basal keratinocytes undergo mitosis to produce 

infected daughter cells (purple nuclei) and one of which will migrate to the suprabasal 

epithelium to undergo terminal differentiation. The early HPV genes E1, E2, E4, E5, E6 

and E7, are responsible for episomal maintenance in the basal cell, and trigger 

vegetative reproduction when the keratinocytes enter the suprabasal layer. Together, 

E6 and E7 force the non-replicating suprabasal cell back into S phase which allow 

HPV genomes amplification as the cells continue to replicate. Expression of the late 

genes, L1 and L2, and E4 encapsidate the viral genomes to form virions ready for 

release in the upper epithelium. Low grade intraepithelial neoplasia (CIN I & II) 

support productive viral replication but not the high grade lesion or invasive disease 

as the virus is no longer able to replicate when its genomes are integrated into the host 

chromosomes (red nuclei). The process of integration often leads to the truncation of 

E2 gene, a negative regulator for E6/E7, and allows the overexpression of E6/E7, which 

drives mutagenesis and oncogenesis.  

  Figure adapted from Woodman et al., 2007  
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1.5  HPV and Ubiquitination 

As a small virus, HPV encodes a number of early proteins that have evolved to target 

or co-opt cellular proteins that function to modulate key cellular processes. As the 

HPV-encoded early proteins lack intrinsic enzymatic activity, modulation of cell 

pathways is achieved primarily through protein-protein interactions. In this regard, 

the ubiquitin system constitutes an attractive target for a number of viruses, given that 

post-translational modification of cellular proteins not only control the levels of their 

expression, but also their function and subcellular localization. Although HPV-

encoded early and late proteins are themselves subject to regulation by the ubiquitin 

system, the E6 and E7 proteins are known to target key proteins within the ubiquitin 

system to influence virus survival and reproduction. By targeting cellular pathways 

with broad regulatory functions such as the ubiquitin pathway, the HPV early proteins 

can influence a plethora of biological processes that include cell cycle checkpoint 

control and differentiation.  

The ubiquitin superfamily comprises a number of small proteins that are covalently 

attached to their protein substrates through a series of defined biochemical steps 

(Figure 1.8) [79]. Members of this family include ubiquitin (Ub) and a number of 

ubiquitin-like proteins such as SUMOs, ISG15, NEDD8, and FAT10, amongst others. 

While these covalent modifications can modulate intracellular localization and 

function (i.e. target specificity), poly-ubiquitination of proteins earmarks them for 

proteasome-mediated proteolysis.  
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During the HPV life cycle, the level and temporality of early and late viral protein 

expression is tightly regulated. While this is achieved primarily at the level of 

transcription, post-translational modification plays an important role in the stability 

and half-life of the early proteins. The short half-life of the early proteins (E6 and E7) is 

due, in part, to post-translational modification. Proteasome inhibitor studies have 

shown that the E1, E2, E6 & E7 proteins are all subject to ubiquitin-mediated 

proteasomal degradation. Collectively, these studies show that the ubiquitin system is 

exploited by HPV to regulate levels of early and late proteins at distinct phases of the 

virus life cycle. In addition to ubiquitination, a number of viral proteins are subject to 

Sumoylation, a modification that alters protein function but does not lead to 

proteolysis. Given that cell regulates distinct aspects of the cell cycle and 

differentiation utilizes both ubiquitination and Sumoylation, it is not surprising that 

 
Figure 1.8: Key steps in the ubiquitination pathway. 

E1, E2 and E3 are the activating, conjugating and 

ligase, respectively, that catalyse the transfer of 

ubiquitin molecules to target proteins. 

Figure taken from Wilson, 2014 
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HPV utilizes these post-translational modifications to regulate the expression of viral 

proteins. 

1.5.1  The HPVE6 proteins 

The HPV-encoded E6 proteins are short-lived proteins that are subject to proteasome-

mediated proteolysis [71]. Interestingly, ubiquitination of E6 proteins is E6AP 

independent, indicating that E6AP is not the E3 ligase responsible for E6 

ubiquitination. Although the true E3 ligase(s) for E6 remains unknown, proteomic 

studies have identified a number of possible candidates. These include HERC2, a 

putative HECT-domain type E3 ligase, associated with HPV 16E6 [80] and a HECT-

domain E3 ligase, called EDD, which binds strongly to HPV 18E6 and weakly to type 

16 and 11 E6 proteins [81]. However, their ability to ubiquitinate E6 has not been 

assayed in vitro or in vivo and, as such, they may associated with E6 to modify other 

substrates rather than E6 itself.  

The E6 proteins constitute the best-known example of how a virus can modulate host 

cell gene expression programmes by usurping the ubiquitin-proteasome system. 

Binding of E6 to E6AP modulates its ligase specificity, allowing E6 to target a number 

of proteins for proteasome-mediated degradation (Figure 1.6) [66]. The fact that E6AP 

silencing yields similar effects to the silencing of E6 itself, indicates that the bulk of E6-

associated effects on host cell gene expression rely on the activity of E6AP [82]. The 

ability of the HR-HPV E6 proteins to promote p53 degradation is essential for the 

transforming activity of these proteins [66, 73, 74]. The HR-HPV E6 proteins also target 

cellular PDZ proteins, many of which are involved in regulating cell-cell adhesion and 
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cell polarity [83].  An additional target of E6-E6AP is the pro-apoptotic protein Bak, a 

protein that is targeted by nearly all tested E6 proteins, Bak [66]. 

While proteomic approaches have demonstrated associations of various E6 proteins 

with other E3 ligases, including HERC2, EDD, and the Ccr4-Not complex, the 

significance of these associations is still unclear. There is also evidence that the E6 

proteins can interact directly with various components of the 26S proteasome, with 

two recent reports describing associations between E6 from HPV16, 11 and 18, binding 

to the S2, S4, S6a and b, S7, S8, and S10 subunits in vitro [84]. The question of how these 

interactions affect proteasomal function, and/or degradation of E6 targets has not been 

fully explored, but it suggests that the utilization of the ubiquitin-proteasome system 

by E6 proteins is multi-faceted and complex. 

1.5.2  The HPVE7 Proteins 

The HR-HPV E7 proteins are incredibly labile, displaying half-lives of the order of 15 

minutes. Like E6, proteasome inhibitor studies have revealed that E7 is degraded 

through the ubiquitin-mediated proteasome-dependent proteolysis. SOCS1, UbcH7 

and Cullin 1 and Skp-2 containing E3 ligases have been shown to bind E7 and target it 

for ubiquitin-mediated degradation. However, the authentic E3 ligase complexes that 

ubiquitinate E7 still remains uncertain. 

The primary target of the HR-HPV E7 proteins is pRb, which is degraded through the 

ubiquitin-proteasome pathway in an E7-dependent fashion. Interestingly, this activity 

does not require the authentic E3 ligase for pRB, MDM2 [85]. p130, an additional pRB 

family member that plays an important role in regulating keratinocyte growth, 

differentiation and senescence [86], is also degraded through the proteasome in an E7-
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dependent fashion by both high and low risk alpha HPVs [87]. Again, the specific E3 

ligase components involved are undetermined. 

Like the HR-HPV E6 protein, HPV16E7 has been found to associate directly with 

components of the 26S proteasome, although, unlike E6, E7 has been shown to bind S4 

[88]. However, the functional significance of this observation, like the E6- proteasome 

interactions remain unclear. Nonetheless, this ability to interact with a proteasomal 

component suggests a complex relationship between E7 and the ubiquitin-proteasome 

system. 

In addition to ubiquitination of cellular targets, the HR-HPV E6 protein has been 

shown to influence “global” sumoylation, an effect that is likely to impact on 

keratinocyte differentiation [89, 90]. The E6-E6AP complex has been shown to bind the 

SUMO conjugating enzyme, Ubc9, and target it for ubiquitin-mediated degradation.  

This leads to a global change in the cellular sumoylation profile of keratinocytes [90], 

an effect that might contribute to the aberrant differentiation in the HR-HPV infected 

epithelium. 

1.6 Stratified Squamous epithelium 

Both the low and high-risk HPV’s target the squamous epithelium, a highly specialised 

tissue that has evolved to perform an essential barrier function; preventing water loss; 

resisting mechanical stress; acting as a barrier to pathogens; and orchestrating immune 

responses. Although keratinocytes constitute the major cell type within the epidermis, 

dendritic cells, melanocytes and other immune cells are also present. Keratinocytes 

form an adhesive network of cells organised into multiple cell layers that are highly 
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polarised. Proliferation is limited to mitotically active cells within the basal layer. 

These are anchored to the underlying basal lamina, a highly specialised ECM, through 

hemidesmosomes and integrins, two classes of adhesion receptors that couple to the 

keratin intermediate filament and actin cytoskeleton, respectively. In response to 

intrinsic and extrinsic cues, basal keratinocytes down regulate these adhesion receptors 

and, as a consequence, become less adhesive to the basal lamina. Exit from the basal 

layer initiates the process of terminal differentiation. This step results in the loss of 

mitotic activity and profound metabolic and adhesive changes that culminate in the 

formation of inert cornified squames. Distinct phases of the maturation process have 

been defined, both morphologically and biochemically (Figure 1.9) [91]. Cells entering 

the spinous layer increase in size and assemble robust intercellular connections that 

include tight junctions, desmosomal and cadherin-based junctions whose expression is 

co-ordinated to create increasingly stonger intercellular contacts. Upon reaching the 

granular cell layer, cells flatten, assemble a water impermeable cross-linked envelope 

beneath the plasma membrane, and express numerous keratohyalin granules, which 

contain histidine and cysteine-rich proteins that induce bundling of the high molecular 

weight keratins. Finally, upon reaching the cornified layer, cells release lysosomal 

enzymes to degrade intracellular organelles that culminate in the production of an 

inert lipid and keratin-rich squame. 
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Figure 1.9: Organization of the epidermis. The epidermis is composed of 

morphologically distinct stratified layers that include: the basal, spinous, granular and 

cornified cell layers. The basal cell layer contains cells (stem/progenitor and TA-cells), 

which possess proliferative potential that give rise to differentiated cells. Basal cells are 

anchored to the basement membrane through hemidesmosomes and integrins. Cells 

within the spinous cell layer are committed to the differentiation process, and down-

regulate integrins and hemidesmosomes but increase their expression of adherens 

junctions, tight junctions, desmosomes, and gap junctions. They also synthesize the 

high molecular weight keratins: K1/10. Cells within the granular layer generate a 

highly cross-linked proteinaceous “envelope” beneath the plasma membrane and 

produce large numbers of keratohyalin granules that contain proteins that assemble 

high molecular weight keratin proteins into large insoluble bundles. Cells in the 

cornified layer are metabolically dead squames that form a protective waterproof 

barrier. 

Figure taken from Simpson et al., 2011 
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1.6.1 Signals that regulate keratinocyte growth and differentiation 

Cells residing within the basal cell layer are heterogenous in their physiology. In 

addition to stem/progenitor cells, populations of more committed transit-amplifying 

(TA)-cells exist. This population has a limited proliferative capacity, undergoing 

several rounds of cell division before commitment to the differentiation process. Many 

growth factors and soluble morphogens regulate the proliferation of both 

stem/progenitor and transit-amplifying (TA) populations. These include growth 

factors and morphogens such as Notch, Hedgehog (HH), Wnt, Epidermal growth 

factor (EGF), Keratinocyte growth factor (KGF), and transcription factors such as 

ΔNp63, mitogen-activated protein kinases (MAPKs), nuclear factor kappa-B (NF-κB), 

CAAT/enhancer binding protein (C/EBP), Kruppel-like factor 4 (KLF4). In response to 

intrinsic and extrinsic factors, one of which involves Notch1 activation, TA-cells 

undergo asynchronous cell division, down-regulate their adhesion receptors and 

migrate out of the basal cell layer. Notch1-mediated down-regulation of the 

stem/progenitor cell maintenance protein, ΔNp63, is central to the commitment 

process, as ΔNp63 directly regulates expression of the integrins (e.g. α3β1) and 

hemidesmosomal proteins (e.g. α6β4), which are well-known determinants of 

epithelial integrity and maintain basal cell proliferation (see Figure 1.10) [92, 93].  
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Figure 1.10: Cross-talk between Notch and ΔNp63 in the Stratified squamous 

epithelium. Reciprocal feedback between Notch and ΔNp63 regulates the balance 

between self-renewal and terminal differentiation in stem/progenitor and Transit 

amplifying (TA)-populations. Opposing gradients of Notch and ΔNp63 exist within 

the proliferative and differentiating cell layers, resulting, in part, through their 

reciprocal negative regulation. Down regulation of ΔNp63 by Notch plays a key role 

in the signal for terminal differentiation. 

Figure adapted from Dotto et al., 2009 
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1.7 Epigallocatechin-3-gallate (EGCG)   

EGCG is one of the four most abundant bioactive polyphenols found in green tea 

extracts. The other polyphenols or catechins are Epicatechin, Epigallocatechin and 

Epicatechin-3-gallate (Figure 1.11). The function and structural differences between the 

four catechins are attributed to the number of hydroxyl groups present on the B ring 

and the galloyl moiety [94]. Of all the catechins, EGCG is the most studied flavonoid 

and its bioactivities have been investigated in a number of human diseases, including 

cancer. The presence of the galloyl moiety on the B ring of EGCG molecule allows it to 

interact with both organic and inorganic matter and influences a myriad of bio-

molecular pathways in the cells (Figure 1.12). Studies have shown that many of the 

cancer chemopreventative properties of EGCG are mediated through modulation of a 

number of different molecular pathways particularly those involved in signal 

transduction. To date, EGCG has been shown to modulate the JAK/STAT, MAPK, 

PI3K/AKT, Wnt and Notch signalling pathways; to downregulate telomerase 

expression, and stimulate expression of certain tumour suppressor genes (TSGs) and 

epigenetic modulators [DNA methyl transferase (DNMT) and Polycomb group of 

proteins] [95-100]. EGCG can exert its effects at both the transcriptional and 

translational levels.  
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Figure 1.11: The chemical structure of the four major catechins in green tea.  

Figure 1.11:  

 

Figure 1.11: Among the catechins, EGCG is the most abundant and 

biologically active. The biological properties of EGCG are defined by the 

presence of the galloyl moiety of the B-ring (highlighted green circle), which 

allows it to form covalent bonds with multiple organic and inorganic 

molecules. 

Figure adapted from Steinmann et al, 2013 
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Recently, the NIH database in the US lists 86 clinical trials evaluating the use of EGCG, 

administered in various routes, for the treatment of a variety of diseases. One-third of 

these relate to some aspect of the prevention and treatment of pre-neoplastic and 

invasive diseases. A recent meta-analysis by Tzellos et al. has shown that topical 

application of EGCG to genital warts, a hyperproliferative disorder caused by low risk 

HPV infection, is effective in eradicating the lesions with a relatively low recurrence 

rate [52]. Also, the EGCG ointment is well tolerated by most patients, with minimal 

localised side effects such as skin irritation, which is reversed after treatment cessation. 

 

Figure 1.12: Potential molecular targets of EGCG for cancer prevention and 

treatment. These molecular targets were identified from various in vitro studies 

previously reported. The effective concentrations in IC50, Ki (inhibition constant) 

or Kd (dissociation constant) are shown in µM; the first value is derived from 

cell-free systems and the second is from cell lines experiments.  

Figure adapted from Yang et al., 2011 
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Although the EGCG ointment has been licensed for the treatment of genital warts in 

most parts of Europe and US, except the UK, the underlying mechanism of action 

remains to be elucidated. Furthermore, the notion that EGCG could be used to treat 

genital warts was not based on experimental evidence, as no laboratory studies had 

been performed to evaluate if EGCG targets the HPV life cycle. Nevertheless, a range 

of anti-viral activities has been demonstrated in the laboratory, where EGCG has been 

shown to affect the growth of a diverse family of viruses such as Retroviridae, 

Orthomyxoviridae and Flaviviridae. It has also been shown to target a host of potential 

oncogenic viruses such as EBV, hepatitis B virus (HBV) and HIV by either inhibiting 

mechanisms of viral replication, gene expression or viral assembly [94]. A number of 

studies, using transformed cervical cancer cell lines, have shown that EGCG down-

regulates transcription of the HPV16 and 18 viral oncogenes through an unknown 

mechanism [101].  This down-regulation was accompanied by upregulation of the 

TSGs, p53 and p21WAF1. Whether upregulation of these TSGs is directly stimulated by 

EGCG or a consequence of E6 and E7 repression remains unclear, as EGCG can also 

directly stimulate the expression of p53 and p21WAF1 by modulating the expression of 

key epigenetic modulators such as HDAC, DMNTs and the Polycomb group (PcG) of 

proteins [97-99, 102]. 

 A small number of studies have examined the effects of EGCG on the growth and 

differentiation of normal epidermal keratinocytes and carcinoma-derived cell lines in 

vitro and in vivo. Collectively, these studies show that EGCG promotes differentiation 

by inducing cell-cycle withdrawal and stimulating the expression of a range of 

differentiated–associated genes that include involucrin, transglutaminase type I, 
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keratin 1 (K1), filaggrin, and procaspase 14 [96, 103-105]. Mechanistically, this is 

achieved through effects on the nPKC, Ras, MEKK1, MEK3, p38-ERK1/2 signalling 

pathways, which modulate the ERK-MAPK and SAP/JNK signalling pathways to 

modulate expression of the c-Jun and c-Fos transcription factors, components of AP1 

[105]. As discussed previously (Section 1.4), the HPV life cycle is intimately linked to 

keratinocyte differentiation. Thus, disruption of this process is also likely to influence 

the ability of the virus to undergo lytic replication. 

1.8 Objectives 

VSCC is a unique cancer as it can arise from HPV-dependent and HPV-independent 

routes. It is widely recognised that uVIN is a putative precursor lesion of HR-HPV-

positive VSCC, and typically affects younger women. The incidence of HR-HPV-

positive vulval neoplasia is increasing which is a reflection of the increase in the 

prevalence of HR-HPV infection. Unlike CIN, uVIN often causes debilitating 

symptoms and currently available treatments remained unsatisfactory, given that 

women often suffer from a recurrent disease. It is still unclear how HR-HPV causes 

VSCC as the progression rate of uVIN to cancer remains comparatively low when 

compared to CIN.  

In the elderly population, VSCC is often found arising in the background of a chronic 

inflammatory condition, namely Lichen Sclerosus. Again, how LS gives rise to VSCC 

remained unclear as most women have indolent LS, which never progress to cancer. 

However, we lack the knowledge of how to separate indolent LS cases from those in 

danger of progression to VSCC, so most women with LS ended up being followed up 
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in a hospital for an extended period. Also, it remains unknown whether effective 

treatments can reduce the risk of development of genital squamous cell carcinoma or 

genital intraepithelial neoplasia from LS. Although there is a lack of well-defined 

precursor lesion linking LS to VSCC, dVIN is often widely regarded as the pre-

neoplastic lesion for LS.  

Topical application of Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has 

been shown to be a safe and effective treatment for genital warts. The use of this agent 

is now being explored in women with uVIN by our group in a phase II randomised 

control trial (EPIVIN). However, the mechanism of EGCG in the treatment of these 

associated proliferative disorders has yet to be defined. 

Research carried out in this thesis was driven by the need to identify more effective 

medical treatments for women with uVIN and the need to reduce the risk of recurrent 

disease in those with VSCC. This need arises because surgical excision that continues 

to be the treatment most commonly offered to women with VIN does not guarantee a 

cure; one in three women will require further treatment within three years, and 

surgery can itself result in additional physical and psychosexual problems. One in four 

women with an invasive disease who are often elderly and have serious co-morbidity 

will have a recurrence of their disease within three years of primary surgery. In my 

thesis I have sought to address the following questions: 

1. Using a well-characterized cohort of women with VSCC, identify which iso 

prognostic groups influence the risk of local recurrence, taking into account those 

that do not appear to have been considered in detail in earlier analyses of disease-

free survival.  
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2. Using keratinocytes transfected with episomal form of HPV18, explore the 

biological effects of EGCG on the virus life cycle; their behavior in monolayer and 

three-dimensional organotypic raft culture; and the underlying mechanisms by 

which EGCG modulates expression of the E6 and E7 proteins.  

3. Establish and characterize HR-HPV positive premalignant keratinocyte clones from 

authentic uVIN biopsies and evaluate the effects of EGCG on growth, 

differentiation and apoptosis, as well as the impact on virus behavior.  
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Chapter 2: 

Materials & Methods 
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2.1 Part 1: Data collection and analysis of retrospective cohort study 

2.1.1 Study population 

The study population includes 201 women who were first diagnosed with squamous 

cell carcinoma of the vulva between 2000 and 2008 in the Pan Birmingham 

Gynaecological Cancer Centre.  

2.1.1.1 Identification of study population 

The study population was identified from clinical records held on the Pan Birmingham 

Gynaecological Cancer Centre database. 

2.1.2 Baseline clinicopathological variables 

Information on the following variables was abstracted: age, smoking behaviour, the 

presence of unifocal or multifocal disease, tumour differentiation, the involvement of 

lymphovascular spaces, the presence of perineural invasion, disease stage, groin 

lymph node status and the presence of concomitant Lichen Sclerosus, usual type VIN 

or differentiated VIN.  

2.1.2.1 Definition of baseline clinic-pathological variables 

i. Age.  The patients’ age was that recorded at the time of surgery. 

ii. Smoking behaviour. Smoking history was abstracted from the patients’ 

clinical records. Women were categorized as a smoker if they were still 

smoking at the time of the referral that led to the diagnosis of VSCC. They 

were considered to be an ex-smoker if they had stopped smoking prior to 
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this visit. When the clinical record was silent on smoking behaviour, the 

patients smoking status was considered to be undetermined. 

iii. The presence of unifocal or multifocal disease. The number of disease foci and 

size of the tumour at the time of primary surgery were abstracted from the 

operation record; and for those patients who did not have surgery, from the 

assessment recorded in the out-patient notes.   

iv. Tumour differentiation. The degree of tumour differentiation was that 

recorded in the histopathology report as well, moderate or poor. The degree 

of tumour differentiation was recorded as undetermined for those women 

who did not have histological sampling and for those in whom the 

histopathology report was silent. 

v. Involvement of lymphovascular space. The presence or absence of tumour 

spread to the lymphovascular space was abstracted from the 

histopathology report. Lymphovascular space involvement was recorded as 

present or absent when the pathologist had explicitly commented on this 

feature, and undetermined when the histopathology report was silent. 

vi. The presence of perineural invasion. The presence or absence of perineural 

invasion was abstracted from the histopathology report. Perineural 

invasion was recorded as present or absent when the pathologist had 

explicitly commented on this feature, and undetermined when the 

histopathology report was silent. 

vii. The presence of concomitant Lichen Sclerosus, usual type VIN or differentiated 

VIN. The presence of Lichen Sclerosus (LS), uVIN and dVIN adjacent to 

the tumour was abstracted from the histopathology report. LS, uVIN and 
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dVIN was recorded as present when the pathologist had explicitly 

commented on these features. When the pathologist did not comment on 

these features, it was assumed that they were not present. 

viii. Disease stage. Women were staged according to the FIGO 1995 staging 

criteria and the operation record. For those women who did not have 

surgery, their stage was assigned based on the findings at out-patient 

assessment. When this information was not available, stage of disease 

was considered to be undetermined. 

ix. Groin node status. The presence or absence of tumour in the groin was 

abstracted from the histopathology report. When no explicit comment 

was made on groin node status, this variable was considered to be as 

undetermined.  For those patients who did not have groin node surgery, 

this information was abstracted from the clinical information recorded in 

the out-patient notes.  

2.1.3 Treatment variables 

Treatment variables were defined, and information on the variables extracted as follow: 

2.1.3.1 Surgery 

Details of the surgical procedure were extracted from the operation records. 

Operations were classified according to the summary provided by the operating 

surgeon. In every case, the accuracy of the surgical description was verified by a 

detailed reading of the operation record and by an evaluation of the histology report. 
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In no case, it was necessary to revise the operation summary provided by the surgeon. 

The following procedures were undertaken during the study period: 

i. Simple wide local excision: this refers to the removal of the skin that covers 

part or all of the vulva.  

ii. Radical WLE or hemi-vulvectomy: this refers to the removal of not just the 

skin but also the deep tissue from part of or one side of the vulva.  

iii. Total radical vulvectomy: this refers to the removal of the skin and deep 

tissue of the entire vulva down to the fascia over the bone and muscle.  

iv. Sentinel groin node biopsy referred to the removal of one or a group of 

groin nodes which the cancer is more likely to spread first. 

v. Groin lymphadenectomy referred to the removal of all the lymphatic in the 

groin.  

2.1.3.2 Chemo-radiotherapy 

Women received chemo-radiation in four circumstances:  

i. primary treatment  

ii. neo-adjuvant treatment 

iii. adjuvant treatment 

iv. palliative treatment  

2.1.4 Outcome variables  

Three outcome variables were measured: 

i. time to local recurrence 
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ii. time to nodal recurrence  

iii. disease-specific survival 

2.1.4.1 Time to local recurrence 

Information of local recurrence was extracted from clinic records. Time to recurrence 

was measured from the date of primary treatment to the date of the clinic visit when 

the diagnosis was made based on either histological confirmation of the presence of 

invasive disease or recurrence clinically diagnosed or clinically unambiguous evidence 

of disease progression.  

2.1.4.2 Time to nodal recurrence 

Information on nodal recurrence was extracted from clinical records. Time to nodal 

recurrence was measured from the date of the primary treatment to the date of the 

clinic visit when the diagnosis was made based on either histological/radiological 

confirmation of the presence of nodal disease or clinically unambiguous evidence of 

disease progression. 

2.1.4.3 Survival 

The census date for this study was 31st December 2012. The vital status of all members 

of the cohort at this time was established in the following ways. If the date of death 

had not been recorded in the hospital notes or if they had not been seen in the clinic 

within six months of the census date, the following steps were taken: 

 The hospice was contacted when the hospital notes indicated that such a 

referral had been made. 
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 Sandwell and City hospital notes/electronic database were interrogated for 

recent in-patient or out-patient visit to these hospitals for a reason 

unrelated to vulval neoplasia. 

  Patients were contacted by phone. 

 The patient’s general practitioner was contacted. 

 When the patient was transferred to a new general practitioner, the new 

general practitioner was contacted. 

 Records of the remaining patients with uncertain vital status were 

matched with those held by the West Midlands Cancer Registry. The 

registry routinely received notification of death occurring in residence of 

the West Midlands region who have been registered with cancer.  

2.1.4.4 Anniversary date 

Survival was measured from the date at which primary surgery was performed and in 

those patients not treated surgically, the date of first histological confirmation of 

disease. For those patients without histological confirmation of disease the anniversary 

date was that when the tumour was first clinically diagnosed at the Pan Birmingham 

Gynaecological Cancer Centre.  

2.1.5 Statistical analysis of the cohort 

Statistical analysis was performed with the help of Mr Richard Fox, Senior 

Biostatistician at Institute of Cancer and Genomic Sciences, University of Birmingham. 

Stata Version 12.1 was used for all analyses. The Chi-square test and Wilcoxson two 

sample test were used to examine if the categorical and continuous clinico-pathological 
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variables, respectively, were inter-related to each other. Kaplan-Meier method was 

used to estimate survival rates across clinico-pathological variables for local recurrence 

(including local relapse and second field tumour), groin node recurrence, overall 

survival and disease-specific survival outcome measures.   

For each of the time-to-event measures of interest listed above, associations between 

hazard, or risk of the outcome, and different clinico-pathological variables were 

assessed using univariate Cox proportional hazard models to estimate hazard ratios 

with 95% confidence intervals. Then, using a manual forward variable selection 

method with multivariable Cox models, estimates were adjusted for other significant 

predictors. The number of predictors entered into the models was limited by the 

number of events observed, with roughly 4 events required per degree of freedom. All 

calculated P values were 2-sided and P values less than 0.05 were considered 

statistically significant. 

2.2 Part 2: Laboratory Techniques 

2.2.1 Tissue culture 

2.2.1.1 Cell lines and reagents 

Information about the cell lines and their culture media are listed in Table 2.1. The cell 

lines were grown in tissue culture flasks (Corning) or 100mm tissue culture dishes 

(Falcon) and incubated at 37°C in a humidified atmosphere containing 5% CO2. Cells 

were passaged either weekly or biweekly, depending on their growth rate.  
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2.2.1.2 3T3 J2 cells 

3T3 J2 cells were cultivated to provide a supportive feeder layer to HFK-HPV18 and 

primary keratinocytes. 3T3 J2 cells were routinely maintained in DMEM (Table 2.1) 

and harvested when the cells were 80% confluent.  Cells were then counted and 

suspended in E-media, and irradiated with 50Gy using a Caesium-137 gamma source. 

Irradiated cells were seeded at a density of 2x106/10cm petri dish, topped up with E-

medium and allowed to settle for at least 6 hours or overnight before 1-2x105 

keratinocytes were plated. Live 3T3 J2 cells were maintained to no more than 25 

passage and unused irradiated cells were kept at 4oC for up to 5 days. 

2.2.1.3 Keratinocyte culture 

Keratinocytes (HFK-HPV18 and primary uVIN cultures) were seeded at a density of 

2x105 cells/10cm plate containing 2x106 lethally irradiated 3T3 J2 feeder cells. 

Keratinocytes were cultured in their respective medium, which was refreshed every 2 

to 3 days. Keratinocytes were harvested or passaged when cell density reached 80% 

confluence.   

2.2.1.4 Cryopreservation of cell lines 

Cell lines or primary keratinocytes marked for long-term storage were preserved in 

liquid nitrogen or an -80°C freezer. To prepare cells for cryopreservation, cells were 

harvested at 80% confluence, pelleted and suspended in freezing medium consisting of 

50% growth medium, 40% FBS and 10% v/v DMSO (Sigma-Aldrich, UK). Cells were 

transferred to cryovials, at a density of 1-2 x106 cells/ml, and allowed to cool to below -

80°C in a Cryo Freezing container (Nalgene®MrFrosty). 
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2.2.1.5 Retrieval of frozen cells 

To retrieve frozen cells, the cryovial was rapidly warmed until completely thawed, and 

the contents transferred to a sterile 30ml universal tube (Sterilin, UK). Warmed growth 

medium was added drop-wise, and the cell suspension seeded onto tissue culture 

dishes or tissue culture flasks at the desired density.  
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Table 2.1: Information on the cell lines and their respective culture media used for 

experiments in my thesis 

Cell lines Source Origin Tissue culture media and 

supplements 

A431 Gifted by Dr Elena 

Odintsova from 

School of Cancer 

Sciences, University 

of Birmingham 

Derived from vulval epidermal 

carcinoma of a 85-year old 

women  

Dulbecco’s  Modified Eagle’s 

Medium (DMEM) (Sigma 

Aldrich) supplemented with 

10% v/v fetal bovine serum 

(FBS), 100U/ml penicillin, 

100mg/l streptomycin and 

4mM L-glutamine 

HeLa Gifted by Dr Sally 

Roberts from School 

of Cancer Sciences, 

University of 

Birmingham 

Derived from cervical carcinoma 

of a 31-year old female; contains 

integrated form of HPV 18 

genomes 

DMEM (Sigma Aldrich) 

supplemented with 10% v/v 

fetal bovine serum (FBS), 

100U/ml penicillin, 100mg/l 

streptomycin and 4mM L-

glutamine 

HFK-HPV18 Derived from infant foreskin 

keratinocytes and transfected 

with episomal form of HPV 18 

E-media: DMEM 60% v/v 

(Gibco, UK), Ham’s F12 32% 

v/v (Gibco, UK), PenStrep 

10,000 U/mL 2% v/v (Gibco, 

UK), hydrocortisone 0.1% v/v 

(Sigma), HyClone Defined 

FBS 10% v/v (Fisher 

Scientific), mouse epidermal 

growth factor (EGF) 5ng/ml 

(BD), L-glutamine 2mM 

(Gibco, UK), cholera toxin A 
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0.1% v/v (Sigma Aldrich), 

insulin 0.2% v/v (Sigma 

Aldrich), transferrin 0.2% v/v 

(Sigma Alrich)), tri-iodo–lL-

thyronine T3 4 nM (Sigma 

Aldrich) and adenine 36 μM 

(Sigma Aldrich) 

3T3-J2 Mouse embryonic fibroblast cell 

line 

DMEM, HEPES modified,  

(Sigma-Aldrich, UK) 

supplemented with 10% v/v 

new born calf serum, 4mM L-

glutamine and 100U/ml 

penicillin and 100mg/l 

streptomycin 

HEK 293 Gifted by Dr E Nagy 

School of Cancer 

Sciences, University 

of Birmingham 

Human embryonic kidney cell 

line 

RPMI1640 media (Sigma 

Aldrich) containing 5% v/v 

foetal calf serum (FCS), 

100U/ml penicillin, 100mg/l 

streptomycin  

VIN cl.11 Generated as part of 

this study 

Primary premalignant 

keratinocyte clone isolated from 

a uVIN biopsy 

1:1 RPMI 1640 media and 

Ham’s F12 nutrient mixture 

media containing 5% v/v 

foetal calf serum (FCS), 

0.4µg/ml hydrocortisone, 

10ng/ml EGF, 100U/ml 

penicillin, 100mg/l 

streptomycin 
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2.2.2 Drug treatment of cells in monolayer cultures 

To treat keratinocytes, cells were first seeded at desire density onto a monolayer of 

feeder cells and allowed to adhere and form multiple colonies. Feeder cells were 

selectively removed by using 0.05M EDTA solution (Sigma-Aldrich, UK) and further 

PBS (phosphate buffer saline) washes. Fresh medium was added before the desired 

concentration of drug was added to treat keratinocytes for the desired length of time. 

Drugs used for all the experiments in this thesis were bought and prepared as follow: 

i. EGCG >99% purity was purchased from Tocris, UK Bioscience and was 

dissolved in sterile distilled water.  

ii. (S) MG-132 was purchased from Cayman Chemical and was dissolved in 

DMSO (Sigma-Aldrich, UK).  

iii. Cisplatin was purchased from BD Bioscienes (UK). 

2.2.3 Harvesting of keratinocytes 

Keratinocytes cultured in monolayer in petri dishes were harvested by first incubating 

the cells in trypsin solution (TrypLE Express, Invitrogen, UK) for 10-15mins in 

humidified incubator.  The petri dishes were then gently agitated to detach the 

keratinocytes, the enzymatic activity of trypsin was neutralised by adding cell culture 

medium, cells were collected in sterile centrifugation tubes (Corning) and pelleted by 

centrifugation at 1000rpm for 10mins. Cell pellets were washed with PBS, transferred 

to 1.5ml Eppendorf tubes and pelleted by centrifugation at 4°C at 1000rpm for 10mins. 

Supernatant was aspirated off leaving behind the cell pellets which were stored at -

80°C. For keratinocytes that were cultured on a monolayer of feeder cells, the feeder 
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layer was removed by selective washing with a solution of 0.05M EDTA and further 

PBS washes until all the feeder cells were completely removed.  

2.2.4 Cell proliferation, viability and apoptosis 

2.2.4.1 Cell proliferation and viability assay 

To measure viability and proliferation, 3000 cells/well of HFK-HPV18 or primary 

keratinocytes were seeded onto a monolayer of lethally irradiated 3T3 J2 feeder cells 

(1x104 cells/well) in a 96-well plate in triplicate. A431 cells were used as a positive 

control for the assay, and 3000 cells/well were seeded into the same 96-well plate, 

without any feeder cells, in triplicate. Cells were allowed to establish overnight (A431) 

or 48 hours (keratinocytes) before treating with EGCG (Tocris, UK) at 0, 20, 40, 60, 80 

and 100µM for 72 hours. Medium and EGCG were refreshed every 48 hours. Cell 

proliferation was assessed using 5-bromo-2'-deoxyuridine (BrdU) ELISA assay kit 

(colorimetric immunoassay, Roche) according to the manufacturer’s protocol. In brief, 

cells were incubated with BrdU for 2 hours so that the synthetic thymidine analogue 

can be taken-up and incorporated into the DNA of proliferating cells. The incorporated 

BrdU can then be detected using anti-BrdU antibody and the immune complexes were 

then detected with the subsequent substrate reaction that gave rise to a colour gradient 

depending on the number of cells incorporated BrdU. Colorimetric absorbance 

wavelength was read at 405nm at 0.1s using the Wallac Victor2 plate reader. The 

reading obtained was compared against control (no treatment) and the results were 

expressed as a ratio relative to control.  
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2.2.4.2 Detection of apoptosis (TUNEL assay) 

Keratinocytes were seeded at a density of 5x104 onto monolayer feeder cells (2.5x105) 

grown on sterile 22x22mm cover slips (Leica Biosystems, UK). Cells were left for 48 

hours, and feeder cells were removed by selective washing with a solution of 0.05M 

EDTA and further PBS washes.  Cell medium was refreshed, and cells were treated 

with either 0, 50 or 100 µM EGCG for 72 hours or 25µM Cisplatin for 24 hours as a 

positive control. The presence of DNA fragmentation, a hallmark of apoptosis, was 

detected using DeadEndTM Colorimetric TUNEL (Promega) assay according to 

manufacturer’s protocol. Cells were mounted onto a microscope slide with Vectashield 

containing DAPI (Vector Laboratory) and visualized on a Nikon Eclipse E600 

microscope. Images were captured using a Leica DC200 camera and software. The 

proportion of apoptotic cells (TUNEL positive) was counted against the non-apoptotic 

cells. The experiment was repeated twice more, and final results were expressed as an 

average of three experiments. Unpaired Student t-test was used to determine the level 

of significance for the difference in the proportion of apoptotic cells in drug-treated 

and untreated cells. The difference was considered significant if P<0.005.  

2.2.5 Soft agarose growth assays 

Soft agarose colony formation assays were performed as previously described [106], 

Briefly, actively growing cells were recovered by trypsinisation, and single cells 

reconstituted into complete growth medium supplemented with 0.3% low melting 

point (LMP) agarose (Gibco, UK). This suspension was overlaid onto a pre-set 0.6% 

LMP agarose base, at a density of 5 x103 cells per well in 6-well plates. Colony 
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formation was determined after three weeks and photographs taken on an inverted 

Nikon microscope at x20 magnification. 

2.2.6 Immunohistochemistry (IHC) 

An Immunohistochemical heat-induced epitope retrieval (HIER) technique was used 

to stain Formalin-fixed, paraffin-embedded (FFPE) samples. 5µm raft sections were 

incubated for 5 minutes in Histo-ClearTM (National Diagnostics, UK), to clear the 

paraffin. Following dehydration for 15 minutes in 100% ethanol (IMS), slides were then 

rinsed three times in water, incubated for 10 minutes in 0.3% (v/v) hydrogen peroxide, 

and washed three times in water again. The sections were immersed overnight in 

EDTA buffer (1 mM EDTA-NaOH pH 8, 0.1% v/v Tween) heated to 65oC and 

continually agitated with a stirrer. 

Retrieved raft sections were blocked in 20% v/v heat-inactivated goat serum (HINGS) 

in PBS, for one hr at room temperature. All incubations took place in a humidified 

chamber, to prevent evaporation. Primary antibodies were diluted in blocking buffer, 

applied to raft sections and incubated overnight at 4oC. Excess antibody was removed 

by washing slides in agitated PBS for 10 min, three times. The appropriate secondary 

fluorophore-conjugated antibody (Molecular probes®, Life Technologies), made up in 

the same blocking buffer, was applied to each slide, incubated for an hour at 37°C and 

washed in agitated PBS as before. Finally, sections were incubated in wash buffer 

containing 1μl of 4',6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, UK) to stain 

cell nuclei. Slides were mounted onto coverslips in 80% (v/v) glycerol in PBS 

containing 2% 4-Diazabicyclo-2,2,2-octane (DABCO, Sigma-Aldrich, UK) and 
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visualized on a Nikon Eclipse E600 microscope (Nikon, USA). Images were captured 

using a Leica DC200 camera and software. Slides were stored at -20oC. 

2.2.7 Karyotyping 

Chromosome analysis was performed on an early passage culture of VIN cl.11 at the 

West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Trust.  Ten 

metaphase spreads from actively growing cell cultures were examined by G-band 

chromosome analysis. A detailed examination of the karyotypes was performed by Dr 

Sally Jeffries (Principal Clinical Scientist at the West Midlands Regional Genetics 

Laboratory). 

2.2.8 Molecular Biology techniques: 

2.2.8.1 Quantitative mRNA analysis of E6/E7 transcript using real-time PCR 

HFK-HPV18 keratinocytes were seeded onto monolayer feeder cells (2x106) at a 

density of 2x105 in 10cm petri dishes. Keratinocytes were left to adhere, form colonies 

and grow to 60% confluent before feeder cells were removed by selective washing with 

a solution of 0.05M EDTA and PBS. Keratinocytes were then treated with 0, 50 and 

100µM EGCG for 3 or 6 days, and cells were then harvested with trypsin solution 

(TrypLE Express, Invitrogen, UK) and pelleted. Total RNA was extracted from cells 

using the RNeasy mini kit (Qiagen) and complementary DNA (cDNA) was 

synthesized through reverse transcription using QuantiTect reverse transcription kit 

(Qiagen), both according to manufacturer’s protocols.  Relative quantification of HPV 

18 E6/E7 was obtained using FastStart PCR Master master mix (Roche Diagnostics, UK) 

and primers: forward primer (5’-AGAGGCCAGTGCCATTCGT-3’), reverse primer (5’-
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GTTTCTCTGCGTCGTTGGAGT-3’); and probe (5’-TCCTGTCGCTGGTTGCAGC-3’), 

purchased from Eurofins MWG operon and designed by Lindh et al 2007 [107]. HPV 

18 E6/E7 transcript was amplified by real-time PCR with ABI 7700 Sequence Detection 

System (Applied Biosystems). PCR conditions were: initial enzyme activation step 

(50°C/2 min), denaturation step at (95°C/10 min), followed by 40 cycles of denaturation 

(95°C/15 sec) and annealing/extension step (60°C/1 min). Expression levels were 

normalised to levels of endogenous beta-2 microglobulin gene in samples (Applied 

Biosystems). Data was analysed using the relative 2ΔΔCT method using 7500 SDS 

software (Applied Biosystems).  All experiments were repeated twice more.   

2.2.8.2 Western blotting analysis 

Analysis of protein expression was performed using Western blot. Cell pellets were 

lysed in RIPA buffer supplemented with sodium vanadate and 25x complete protease 

inhibitor (Roche), sonicated at 40Hz for 10s with a microson ultrasonic cell disrupter 

(Misonix). The protein lysates were then centrifuged at 13,000rpm for 15minutes in 4°C, 

and the precipitates were removed and proteins (supernatant) were quantified with 

Bradford assay (Bio-rad). 30µg of protein and protein ladder (Pageruler Plus 

Prestained protein ladder, Thermo scientific) were electrophoresed onto 8-12% Tris-

glycine gels and transferred onto Hydrobond nitrocellulose membranes (VWR). 

Membranes were blocked in TBS-T containing either 5% non-fat dry milk or 5% BSA 

(Sigma-Aldrich, UK) for 1 hour at room temperature. Membranes were then incubated 

with antibodies (see Table 2.2) at 4°C overnight followed by secondary anti-mouse or 

anti-rabbit antibodies. Protein bands were visualized with Fusion FX System (Vilber 

Lourmat) using SuperSignal West Dura Chemiluminescent Substrate (Thermo 
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Scientific). Equal protein loading was verified using anti-β-actin antibody. The density 

of individual protein bands on the nitrocellulose membranes were quantified using the 

ImageJ 1.48v software; the value of each target protein was normalised to the 

respective density of the “housekeeping” protein (-actin or GAPDH).  
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Table 2.2: Information on the list of antibodies and their dilutions used for 

experiments in this thesis. 

Antibody 1° or 2° Manufacturer Catalogue code Species Dilutions 

Anti-HA 1° Abcam Ab9110 Rabbit WB 1:2000 

Anti-His 1° Milipore 05-531 Mouse WB 1:1000 

β-actin 1° Sigma-Aldrich, UK A5316 Mouse WB 1:1000 

BMI-1 1° Santa-Cruz SC-10745 Rabbit WB 1:1000 

IHC 1:100 

DNMT1 1° Abcam Ab16632 Rabbit WB 1:1000 

DNMT3B 1° Active Motive 39207 Mouse WB 1:1000 

Np63 1° Santa-Cruz SC-8431 Mouse IHC 1:200 

 1° Gift from  

Dr Sally Roberts 

n/a Mouse IHC 1:5 

E6 1° Santa-Cruz SC-365089 Mouse WB 1:100 

E7 1° Abcam Ab100953 Mouse WB 1:1000 

EZH2 1° Cell Signalling 3147 Mouse WB 1:1000 

FLAG M2 1° Sigma-Aldrich, UK F3165 Mouse WB 1:500 

GAPDH 1° Santa-Cruz SC-32233 Mouse WB 1:1000 

Involucrin 1° Sigma SY5 Mouse WB 1:200 

IHC 1:100 

K1/K10 1° Sigma-Aldrich, UK 8.60 Mouse IHC 1:100 

Ki67 1° Dako MIB-1 Mouse IHC 1:100 

MCM7 1° Sigma-Aldrich, UK 17931 Mouse WB 1:2000 

IHC 1:200 

Mono- and 

polyubiquitinated 

(HRP conjugate) 

 

1° Enzo BML-PW0150-0025 Mouse WB 1:1000 
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2.2.9 Cell cycle analysis 

To perform cell cycle analysis, cells were first harvested and pelleted according to 

section 2.2.3 (harvesting of cell section) with the exception that the centrifugation 

speed was reduced to 1000rpm. Iced cold 70% ethanol was then added drop-wise into 

cell pellet with a continuous vortex to prevent them from clumping together.  Cells 

were then left to fix in ethanol for at least 6 hours at 4°C and then pelleted by 

centrifugation at 1000rpm for 10mins and then washed twice with PBS. After the 

second wash, the cell pellet was suspended in 500µl of PBS, 5µl of 10µM proteinase K 

(Sigma-Aldrich, UK) and 25µl/ml Propidium Iodide (PI) (Sigma-Aldrich, UK) for at 

least 6 hours at 4°C. Cells were then subjected to flow cytometric analysis using Cyans 

ADP analyser with 488nm laser (Beckman Coulter) and the data collected were 

analysed with FlowJo v.10 software to build cell-cycle profiles.  

 

p16INK4a 1° Abcam Ab7962 Mouse WB 1:200 

IHC 1:50 

p21WAF1 1° Santa-Cruz SC-397 Rabbit WB 1:100 

IHC 1:100 

p53 1° Hybridoma gifted 

by Dr Roger Grand 

n/a Mouse WB 1:100 

IHC 1:100 

pRb 1° Cell Signalling 9309S Mouse WB 1:1000 

IHC !:100 

Anti-mouse 2° Dako P0447 Goat WB 1:1000 

Anti-rabbit 2° Dako P0448 Goat WB 1:1000 
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2.2.10 Immunoprecipitation of HPV18 E6 proteins 

2.2.10.1   Introduction 

Figure 2.1 shows a summary of the steps involves in performing the HPV18 E6 

immunoprecipitation or “pull down”.  The pCA.18E6 plasmid, containing an amino-

terminal FLAG and tandem (2x) HA epitope tagged version of HPV18 E6 (see Figure 

2.2) was used in the ubiquitination experiments [69]. This plasmid was a gift from 

Professor Lawrence Banks (International Centre for Genetic Engineering and 

Biotechnology, Trieste, Italy). 

 2.2.10.2 Bacterial transformation 

An aliquot (10µl) of competent E. coli (DH5α) (New England Biolabs) was mixed with 

2µl of ice-cold ligation product and, after a quick vortex, incubated for 30 minutes on 

ice. To facilitate DNA uptake, bacterial cells were incubated at 420C for 30 seconds in a 

waterbath and chilled immediately for 2 minutes on ice. The bacterial cells were 

rescued with 200µl LB medium and shaken in an incubator set at 370C for 30 min at 

120rpm. Transformed cells were selected on LB agarose plates containing 100µg/ml 

ampicillin. 

2.2.10.3   Production of plasmid DNA 

Individual clones were taken from the petridish and transferred to a 1.5ml Eppendorf 

tube containing 1ml of LB medium and 100 µg/ml ampicillin. The culture was 

incubated in a shaking incubator (approximately 120rpm) for 18-24 hours at 370C. The 

bacteria were pelleted by centrifugation at 13,000 rpm for 10 seconds, and the 
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supernatant discarded. Plasmid purification was performed with the Qiagen Plasmid 

Miniprep Kit® according to the manufacturer’s instructions. Bacterial clones 

containing the desired plasmid constructs (verified by gel electrophoresis and 

sequencing) were grown in 250ml LB broth containing ampicillin and plasmid 

purification was performed with Qiagen Plasmid Maxiprep Kit® according to 

manufacturer’s protocol. Final DNA concentration was measured with NanodropTM 

Spectrophotometer.  

2.2.10.4  Transfection of HEK293 cells 

HEK293 cells were transfected using Lipofectamine® 2000 (Invitrogen, UK). The 

transfection mix was prepared as follows. For each well of a 6 well plate, 10µl of 

Lipofectamine 2000 was added to 150µl of serum- and antibiotic-free OPTIMEM® 

medium (Invitrogen, UK) in a 5ml bijoux, mixed and incubated for 20 minutes at room 

temperature. 1-2µg DNA of plasmid (pCDNA3 or pCA.18E6) was then added to 150µl 

of OPTIMEM® medium in a separate 5ml bijoux, and mixed thoroughly.  The DNA 

was added dropwise to the diluted Lipofectamine, and incubated at RT for a further 30 

minutes. After two washes in PBS, 700µl of OPTIMEM® was added to each well. The 

transfection mix (300µl) was added dropwise onto the adherent cells, swirled gently to 

mix and incubated overnight. The following day, the transfection medium was 

replaced with complete growth medium and cells allowed to grow for 24 hours.  
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2.2.10.5   Treatment of transfected cells with drugs 

Transfected HEK293 cells were left in culture medium overnight prior to treatment 

with either EGCG or MG132 alone, or a combination of the two drugs. An equal 

volume of water was added to control (no drug treatment). 

2.2.10.6   Preparation of cell lysates 

Following drug treatment, HEK293 cells were washed with PBS three times and lysed 

in situ with cold NP40-based lysis buffer (25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% 

Nonidet P-40, and  5mM EDTA) containing 20mM Iodacetamide on ice for 30 minutes. 

Cells were then scraped off with a cell scraper and transferred to 1.5ml Eppendorf tube 

and sonicated at 40Hz for 10s with a microson ultrasonic cell disrupter (Misonix). The 

protein lysates were then centrifuged at 13,000rpm for 15 minutes at 4°C to pellet 

insoluble material, and the supernatant transferred to a new pre-chilled Eppendorf 

tube. The protein concentration was determined by Bradford assay.  

Immunoprecipitation or pull-down was performed immediately after the protein 

determination; unused protein lysates were stored at -80°C.  

2.2.10.7   Immunoprecipitation of FLAG-tagged HPV18 E6 protein 

For immunoprecipitation of FLAG-tagged HPV18 E6 proteins, first, the agarose beads 

conjugated to mouse anti-FLAG M2 antibody (Sigma-Aldrich, UK) were washed three 

times with ice cold lysis buffer. 500µg of protein lysate was then added to 20µl of the 

pre-washed agarose beads, and the tubes rotated at 4oC for 4 hours. The beads were 

then washed three times with ice cold lysis buffer and bound proteins eluted off the 

beads by boiling at 90°C in 20µl of 2x concentrated Laemmli sample buffer (BioRad) 
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for 5 minutes. All the proteins were then resolved by 12% SDS-PAGE prior to Western 

blotting.  

2.2.10.8  Affinity purification of His-tagged ubiquitin protein 

Dynabeads® His-Tag Isolation and Pulldown (Life Technologies) were used to pull 

down His-tagged ubiquitinated proteins. The magnetic beads were pre-washed with 

lysis buffer three times. 500µg of protein lysate was denatured in 0.9 times v/v of urea 

lysis buffer (8M urea, 100mM potassium phosphate, 10mM Tris HCL, 10mM 2-

mercamptoethanol, pH 8.0) and left on a rotary wheel at 4°C for 1hour. 20µl of pre-

washed magnetic beads were then added into the urea-protein lysate mixtures and left 

on a rotary wheel at 4°C for 1 hour. Then, the beads were washed for 5 minutes with 

1ml urea buffer and 20mM Imidazole; 5 minutes with 1ml urea buffer, 20mM 

Imidazole and 0.2% Triton; 5 minutes with 1ml urea buffer and 20mM Imidazole;  5 

minutes with 1ml urea buffer, 20mM Imidazole and 0.1% Triton; 5 minutes with 1ml 

urea buffer and 20mM Imidazole. The beads were eluted by boiling in 2x concentrated 

Laemelli sample buffer at 90°C in 20µl for 5 minutes. All the proteins were then 

resolved by 12% SDS-PAGE prior to Western blotting.  
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Figure 2.1: Flow chart depicting the steps involved in pulling down HPV18 E6 

proteins. 
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Figure 2.2: pCA.18E6. Based on pcDNA3, the pCA.18E6 plasmid contains a 

FLAG and double (2x) HA epitope sequence upstream of the HPV18 E6 coding 

region. 
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2.2.11 Endogenous and exogenous proteasome assay 

The caspase-like, chymotrypsin-like and trypsin-like activities of the endo- and 

exogenous proteasome were examined in the presence or absence of EGCG using the 

fluorogenic substrates (Biomol) Z-LLE-AMC, Suc-LLVY-AMC and Bz-VGR-AMC. The 

substrates were dissolved in DMSO to give a stock concentration of 10mM. To prepare 

endogenous cellular proteasome, keratinocytes treated with and without 100µM 

EGCG for 72 hours or 10µM MG132 for 6 hours were lysed in RIPA buffer and the 

protein concentration determined by Bradford assay. Purified exogenous 20S human 

proteasome was purchased from Biomol and was diluted to a working solution of 

6.25µg/ml.  

To measure the endogenous proteasome activities, fluorogenic substrates were first 

diluted to 200µM in assay buffer (50mM Tris pH7.5, 25mM KCL, 10mM NaCl, 1mM 

MGCl2). Then, 10µg of protein lysates were added to 50µl of the appropriate 

substrates in a microfuge tube and incubated at 37°C for 30 minutes. To measure 

exogenous proteasome activity, 50µl of purified 20S proteasome were first primed 

with 100µM EGCG or 150µM MG132 for 30 minutes at 37°C before mixing with 50µl of 

appropriate substrates and incubate for a further 30 minutes at 37°C.  For a negative 

control, 50µl of substrate solution was added to 50µl of assay buffer and incubated at 

37°C for 30 minutes. 40µl duplicates of each reaction were then transferred to 

individual 96-well fluorescence plate on ice and the reaction was terminated by adding 

200µl per well of stop buffer (100mM sodium chloroacetate in 30mM sodium acetate, 

70mM acetic acid, pH 4.3). The fluorescence emitted was quantified using the Wallac 

Victor2 plate reader on “umbelliferone 360nm/460nm”.  
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2.2.12 Measuring the level of reactive oxidative species (ROS)  

To determine the level of ROS in cells treated with EGCG, cells were seeded at a 

density of 5000 cells/well in triplicates in 96-well plate pre-coated with 10µg/ml 

collagen. The cells were washed with PBS x3 when they were 70% confluent and 

incubated with 5µM cm-H2DCFDA (Life Technologies) for 30 minutes according to 

manufacturer protocol; excess cm-H2DCFDA was washed off with PBS and replaced 

with phenol free serum-free keratinocyte media. Baseline ROS activities was measured 

as fluorescence emitted by breaking down cm-H2DCFDA using the Wallac Victor2 

plate reader on 485/535nm; then, variable concentrations of EGCG or 500µM hydrogen 

peroxide (positive control) was added to the cells, and serial fluorescence readings 

were taken at 5, 15,30, 60, 90, 180, 360 minutes.  

2.2.13 Establishment of usual type vulvar intraepithelial neoplasia (uVIN) primary 

culture 

2.2.13.1   Establish of primary uVIN keratinocyte cultures 

Multiple tissue biopsies were taken from a patient with histological proven uVIN and 

transported to the laboratory in complete growth medium on ice. The tissue biopsies 

were then rinsed ten times with PBS containing 100U/ml penicillin, 100mg/l 

streptomycin and Fungizone (2.50 µg/mL), and minced into 3-5mm cubes. About 10 

small cubes were placed 1-2cm apart from each other onto a 9cm petri dish and 

enough growth medium added just to submerge the tissue cubes (approximately 2-3 

mls). The tissue cubes were then left in humidified tissue culture incubator until 

keratinocytes emerged from the biopsies (7-14 days). Fresh medium was added 
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intermittently to prevent the tissue from drying out. Fibroblasts were selectively 

removed at regular intervals by washing with PBS containing 0.02% EDTA.  

Keratinocytes that grew out from the explants were trypsinized, and 1-2x105 cells 

seeded onto 9cm petri dishes containing 2x106 lethally irradiated 3T3-J2 feeder cells. 

Cells were maintained by weekly or biweekly passaging onto freshly irradiated 3T3-J2 

feeder cells. At every passage, keratinocytes were cryopreserved and stored in liquid 

nitrogen according to section 2.2.1.4.  

2.2.13.2   Single cell cloning  

To undertake single cell cloning, primary keratinocytes were seeded at clonal density 

(1-2x104 cells/9cm dish) onto a monolayer of irradiated 3T3-J2 feeder cells. Feeder cells 

were selectively removed with 0.02% EDTA solution and several PBS washes. 

Keratinocytes were inspected under phase microscopy, and sterile metal ring cylinders 

were strategically place over the primary keratinocyte colonies. 50-100µl of trypsin 

(TrypLE Express, Invitrogen, UK) was added into the cylinder to detach the 

keratinocytes. These were transferred to 6-well plates containing a monolayer of 

lethally irradiated 3T3-J2 feeder cells (2x105/well). The keratinocytes were then further 

cultured on 9cm petri dishes by plating onto a monolayer of lethally irradiated 3T3-J2 

feeder cells and maintained by weekly or biweekly passages. Cells were cryopreserved 

at every passage.  
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2.2.14 HPV genotyping 

2.2.14.1  HPV 16 and 18 genotyping 

HPV 16 and 18 statuses were determined using multiplex real-time PCR assay. 

Sequence-specific primers and Fluorescein-labelled probes designed for GAPDH, 

HPV16 E6 and HPV18 E7 were shown in Table 2.3. Total DNA was extracted from cells 

using DNeasy kit (Qiagen) according to manufacturer’s protocol, and 200ng  genomic 

DNA was amplified using FastStart PCR Master master mix, HPV16 and 18 primers 

(see Table 2.3) with ABI 7700 Sequence Detection System. PCR conditions were: initial 

enzyme activation step (50°C/2 min), a denaturation step at (95°C/10 min), followed by 

50 cycles of denaturation (95°C/15 sec) and annealing/extension step (55°C/1 min). 

SiHa and HeLa DNAs were used as positive control for HPV16 and HPV18, 

respectively.  

2.2.14.2   HPV genotyping with Luminex PCR 

DNA was extracted from formalin fixed paraffin embedded tissue of uVIN with 

DNeasy kit according to manufacturer’s protocol, and the concentration was measured 

with NanodropTM Spectrophotometer. The DNA was then sent to the Scottish HPV 

Reference laboratory for HPV genotyping. 

2.2.14.3  Assessment of HPV E2 integrity  

The integrity of HPV 16/18 E2 genes were assess using sets of sequence-specific 

primers designed overlapping fragments that spanned the full-length E2 genes (see 

Figure 2.3). This technique was previously published by our group [108]. 100ng 
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genomic DNA was amplified using FastStart PCR Master Mastermix and HPV16 and 

18 E2 primer sets (see Table 2.3). Cycling conditions for the PCR reactions were as 

follows: 95°C for 5 min followed by 60 cycles at 95°C for 20s, melting temperatures for 

1 min and 72°C for 2 min, then a final extension of 72°C for 10 min. PCR products were 

analysed with electrophoresis on a 2% agarose gel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure taken from Collins et al. 2009 

Figure 2.3: Location of primers used to amplify overlapping regions of the 

HPV18 E2 gene. Nucleotides are numbered according to the HPV18 whole 

genome sequence. 
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Table 2.3: Primer sequences used in PCR assay to detect HPV16 and HPV18 

genomes and examine the integrity of E2 genes  

 

Target Accession 

number 

Nucleotide 

sequence 

location 

Sequence 5' to 3' Fragment 

length 

(bp) 

Melting 

temperatur

e (Tm) 

GAPDH AY340484 3701 

3858 

3783 

5’-GCTCAAGGGAGATAAAATTC-3’ 

5’-CGACCAAATCTAAGAGACAA-3’ 

FAM-5'-CCT AGG GCT GCT CAC ATA TT-3'-TAMRA 

158 55°C 

HPV16 

E6 

NC_001526 368 

528 

418 

5’-GAACAGCAATACAACAAACC -3’ 

5’-GATCTGCAACAAGACATACA -3’ 

FAM-5'- CTGTCAAAAGCCACTGTGTC-3'-TAMRA 

161 55°C 

HPV18 

E7 

NC_001357 76 

226 

97 

5’-GTTGACCTTCTATGTCACGA -3’ 

5’-CAATTCTGGCTTCACACTTA -3’ 

FAM-5'- CAATTAAGCGACTCAGAGGAA-3'-

TAMRA 

151 55°C 

HPV18 

E2 

Primer 

set 1 

NC_001357 2786 

3192 

5’-TCCAGATTAGATTTGCACGA -3’ 

5’-CAATTGTCTTTGTTGCCATC -3’ 

407 54°C 

HPV18 

E2 

Primer 

set 2 

NC_001357 3086 

3388 

5’-ATACAAAACCGAGGATTGGA -3’ 

5’-ACTTCCCACGTACCTGTGTT -3’ 

303 54°C 

HPV18 

E2 

Primer 

set 3 

NC_001357 3369 

3739 

5’-AACACAGGTACGTGGGAAGT -3’ 

5’-TTTCGCAATCTGTACCGTAA -3’ 

371 54°C 

HPV18 

E2 

Primer 

set 4 

NC_001357 3598 

3994 

5’-GACCTGTCAACCCACTTCT -3’ 

5’-ACATGGCAGCACACATACAT -3’ 

397 54°C 
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2.2.14.4   Determining the changes in relative viral copy number  

Changes in the levels of HPV18 episomes before and after EGCG treatment were 

measured by qPCR. DNA extracted from HFK-HPV18 keratinocytes were amplified 

with HPV18 and human TLR primers (see Table 2.4) and SensiMix SYBR master mix 

(Bioline) with Stratagene MX3000P. The thermo-cycle profiles were shown in Figure 

2.4. Serial dilution was performed on DNA of untreated keratinocytes (control) by a 

factor of 10 up to 1:10 000, and the diluted DNA was amplified, together with the main 

samples, for human TLR and HPV18 to produce a standard curve for each primer in 

which a common threshold for both pairs of primers can then be used to calculate 

changes in viral copy number. The changes in the relative viral copy number in control 

and EGCG treated keratinocytes were determined from the Ct value using the 

following formulae [109]: 

Step 1: Normalisation of control and EGCG treated sample. The difference in the episomal Ct 

value and host allele Ct value was calculated as follow: 

∆Ct(control) = Ct(episomes of control) – Ct(host gene of control) 

∆Ct(EGCG) = Ct(episomes of EGCG) – Ct(host gene of EGCG) 

Step 2: The ∆Ct value of the EGCG treated sample was normalised against ∆Ct of control. 

∆∆Ct = ∆Ct(EGCG) - ∆Ct(control) 

Step 3: determining the ratio of EGCG treated episomes per host allele relative to control 

episomes per host allele; Ratio = 2-∆∆Ct 
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Table 2.4: Primers used determine episomal copy number changes in HPV18 pre- 

and post-EGCG treatment. 

 

Target Accession 

 number 

Nucleotid

e 

sequence 

location 

Sequence 5' to 3' Fragmen

t length  

(bp) 

Melting 

temperatur

e (Tm) 

HPV18 episome  

FW 

AY262282.

1 

2167-2251 TTATAGGCGAGCCCAAAAA

C 

85 59.2°C 

HPV18 episome 

RV 

AY262282.

1 

2167-2251 CCAATCTCCCCCTTCATCTA

T 

85 59.3°C 

Human TLR2 FW Locus 1893-1957 GCCAGCAAATTACCTGTGT

GA 

65 61.08°C 

Human TLR2 RV Locus 1893-1957 GGCGGACATCCTGAACCT 65 61.05°C 

 

 

 

 

 

 

Figure 2.4: qPCR thermal profile for amplifying HPV18 

episomes and human TLR primers. 
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2.2.15 Organotypic raft cultures 

Organotypic raft cultures were prepared according to the protocol described in 

Dawson and Young, 2001 (see Figure 2.5) [110]. Briefly, 2.5-5 x105 keratinocytes (HFK-

HPV18 or VIN cl.11) were seeded onto a collagen lattice (Becton Dickinson, UK) 

containing 3T3-J2 fibroblast feeder cells (105/cells/ml) and grown until confluent. 

Thereafter, the lattice was carefully transferred to a stainless steel grid, and the 

epithelial culture was exposed at the air/liquid interface for an additional two to three 

weeks (see Figure 2.6). Under such conditions, keratinocytes stratify and terminally 

differentiate. For rafts that were treated with EGCG, the appropriate concentration of 

EGCG was added into the medium, and equal volume of water was added to the 

control, EGCG was refreshed every two days along with medium. 5-bromo-2'-

deoxyuridine (BrdU) was added into the medium for 12 hours before the raft was fixed 

with 4% paraformaldehyde in DMEM. The rafts were then sent to Propath Ltd for 

processing, and 4micron thick sections produced for H&E or immunohistochemical 

staining.  
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Figure 2.5: Schematic representation of the steps involved in 

establishing collagen raft cultures.   

 

Adapted from Dawson and Young, 2001 
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Figure 2.6: Typical appearance of a collagen raft culture.   

Adapted from Dawson and Young, 2001 
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Predicting the outcome of women with VSCC: 

analysis of the Birmingham VSCC cohort  
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3.1 Introduction 

It has been known for some time that the outcome for women with squamous cell 

cancer of the vulva (VSCC) is influenced by the type of epithelial alteration found 

adjacent to their tumour. For example, whereas the finding in the resected specimen of 

usual-type VIN (u-VIN), the putative precursor of HPV-positive VSCC, predicts a 

prolonged disease-free survival, the detection of Lichen Sclerosus (LS) or differentiated 

VIN (d-VIN), the putative precursors of virus negative tumours, increases the risk of 

recurrent disease. Notwithstanding the consistency of these associations, there is as yet 

no compelling evidence to suggest that the detection of high-risk HPV types in the 

invasive component of these tumours is an independent predictor of disease-free 

survival. This is all the more surprising because at other sites of cancer arising through 

HPV dependent and independent routes (anus, oropharynx, penis and vagina) virus 

positive tumours have repeatedly been shown to have a longer disease-free survival 

than virus negative tumours. There are some possible reasons as to why evidence for a 

similar association in women with VSCC has proven so elusive. For example, u-VIN 

may co-exist alongside LS or d-VIN in the epithelium adjacent to both HPV positive 

and negative tumours. Just as it would be unwise to infer the HPV status of a tumour 

from the nature of its adjacent epithelial abnormality, the HPV status of the invasive 

component of the tumour may be an imperfect predictor of the epithelial alterations 

present in the surrounding field. Given that vulvar neoplasia arises in a field of 

cancerization, revealing a relationship between HPV status and disease free survival 

may be dependent on those recurrences arising from residual disease left behind at the 

time of surgery and second field tumours. With a view to gaining a better 
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understanding of the pathogenesis of recurrent disease at this site and identifying 

more certain iso prognostic groups, we explore these issues - which do not appear to 

have been considered in detail in earlier analyses of disease-free survival - using a well 

characterised cohort of women with VSCC with known HPV status. 

3.2 Study population 

The study population included 201 consecutive women first diagnosed with squamous 

cell carcinoma of the vulva (VSCC) between 2000 and 2008 and managed in the Pan 

Birmingham Gynaecological Cancer Centre. 

3.3 Distribution of explanatory variables 

3.3.1 Demography, behavioural and clinic-pathological variables (Table 3.1) 

3.3.1.1 Triennia 

The cohort was divided into three triennia (first: 2000-2, second: 2003-5, third: 2006-8) 

to reflect on the re-organisation of the gynaecological cancer service within the West 

Midlands during which this study was undertaken. 53 women were diagnosed in the 

first triennium (2000-2), with primary VSCC, 50 in the second (2003-5) and 98 in the 

third (2006-8). 

3.3.1.2 Age at diagnosis  

The mean and median age at diagnosis of women in this cohort was 68 and 72 years 

respectively (range 30-95). 67 (33.3%) patients were below the age of 65 years and 134 

(66.7%) were ≥65 years.  
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3.3.1.3 Smoking behaviour 

Smoking behaviour was recorded in 164 (82%) of the cohort. Of these, 51 (31.1%) were 

current smokers, 13 (7.9%) were ex-smokers, and 100 (61%) had never smoked. 

3.3.1.4 Disease stage 

The disease was staged according to the 1998 FIGO staging system for vulval neoplasia. 

198 (98.5%) patients had surgico-pathological staging; 2 were clinically staged, and one 

patient was unstaged.  Of the 198 patients who were surgically staged, 60 (30%) had 

stage I disease, 74 (37%) had stage II disease, 45 (23%) had stage III disease and 19 (10%) 

had stage IV disease. Of 60 with stage I disease 29 had stage Ia and 31 had stage Ib 

disease. Of 19 patients who had stage IV disease 14 had stage Iva and 5 had stage IVb 

disease. Of the two patients who were clinically staged, one had stage III, and the other 

had stage IVa disease. Staging information was incomplete in one patient who had 

synchronous advanced cervical cancer.  

3.3.1.5 Tumour size 

Tumour size was recorded for 151 (75.1%) patients in this cohort and unrecorded in 50 

(24.9%).The median size of tumours was 3cms (range 0-20); 27 (17.9%) were less than 

2cms in size, 61 (40.4%) between 2 and 3.9cms, 38 (25.2%) between 4 and 5.9cms and 25 

(16.6%) greater than 6cms. 
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3.3.1.6 Multifocal disease 

The site of disease was recorded in the clinical record in 197 (98%) of women in this 

cohort. Of these, 167 (84.8%) had a unifocal disease and 30 (15.2%) had a multifocal 

disease. 

3.3.1.7 Histological grade 

A grade of histological abnormality for the tumour was available for 172 (86%) patients. 

Of these tumours, 46 (26.7%) were well differentiated, 69 (51.7%) were moderately 

differentiated, and 57 (33.1%) were poorly differentiated. 

3.3.1.8 Lymphovascular space involvement 

The presence or absence of LVSI was explicitly recorded in the histopathology record 

in 173 (86%) of patients. Tumour was reported to have spread to the lymphovascular 

space in 57 (28%) of these patients. 

3.3.1.9 Groin node status 

Groin nodes were reported to be positive in 46 patients (22.9%), negative in 150 (74.6%) 

with disease status undefined in the remaining 5 (2.5%) women. 

3.3.1.10   Characterisation of epithelium adjacent to invasive component 

Of the 199 patients for whom the histopathology report was available 171 (85.9%) were 

reported to have LS or intraepithelial neoplasia (uVIN or dVIN) or more than one of 

these in the surgical specimen. Of these, 75 (43.9%) were reported to have uVIN alone, 

8 (4.8%) had dVIN alone and 26 (15.2%) LS alone, 5 (3%) women had both uVIN and 
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dVIN, 4 (2%) had uVIN, dVIN and LS, 19 (10%) had uVIN and LS, 25 (13%) women 

had dVIN and LS (Figure 3.1). 

 

 

 

 

 

 

 

 

 

   

  

 

 

 

 

 

  

Figure 3.1: The distribution of LS and VIN adjacent to the 

invasive tumour. 
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Table 3.1: Distribution of clinico-pathological variable in Birmingham VSCC cohort 

Variable Number of cases % 

Triennium of diagnosis 
2000-2 53 26.4% 
2002-5 50 24.9% 
2006-8 98 48.8% 

Age 

median 72yrs 
range 30-95yrs 
<65 67 33.3% 
≥65 134 66.7% 

Smoking status 
never smoker 100 31.8% 

smoker/ex-smoker 64 49.8% 
missing 37 18.4% 

Tumour size 

median 3cms 
range 0-20cms 
<2cm 27 17.9% 

2-<4cm 61 40.4% 
4-<6cm 38 25.2% 
≥6cm 25 16.6% 

missing 50 24.9% 

Stage of disease 

1a 29 14.4% 
1b 31 15.4% 
2 74 36.8% 
3 46 22.9% 
4 20 10.0% 

missing 1 0.5% 

Grade of differentiation 

well 46 22.9% 
moderate 69 34.3% 

poor 57 28.4% 
missing 29 14.4% 

Focality 
unifocal 167 83.1% 

multifocal 30 14.9% 
missing 4 2.0% 

Groin node involvement 
negative 150 74.6% 
positive 46 22.9% 
missing 5 2.5% 

Lymphovascular space involvement 
negative 116 57.7% 
positive 57 28.4% 
missing 28 13.9% 

LS/VIN 

No LS/VIN 30 14.9% 
LS alone 26 12.9% 

LS/u-VIN 19 9.5% 
LS/d-VIN 25 12.4% 

LS.u-VIN/d-VIN 4 2.0% 
LS/undefined VIN 5 2.5% 

u-VIN alone 75 37.3% 
d-VIN alone 8 4.0% 

u-VIN/d-VIN 5 2.5% 
undefined VIN 4 2.0% 

Excision status 
sub-optimal/incomplete 65 32.3% 

optimal 117 58.2% 
missing 19 9.5% 
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3.3.2 Treatment variables (Table 3.2) 

3.3.2.1 Type of surgery performed for VSCC 

183 (91%) patients had surgery to excise their primary tumour. Of these, 4 (2.0%) had 

simple wide local excision (WLE), 105 (52.2%) had radical WLE or hemi-vulvectomy 

and 74 (36.8%) had total radical vulvectomy. 16 (8%) patients had a diagnostic biopsy 

and 2 (1%) did not have any form of surgical procedure. 

3.3.2.2 Excision margin status (Table 3.1) 

 Of the 183 patients having surgery, information for excision margins was available for 

182 (99%) of the patients. In 117 (58%) patients the excision margins were considered to 

be optimum, 56 (30%) were considered to be sub-optimal and 9 (5%) were considered 

to be incomplete. 

3.3.2.3 Type of groin surgery performed 

Of the 183 patients who had surgery to excise their VSCC, 138 (75.4%) also had surgery 

to their groin(s) to diagnose or treat nodal metastatic disease. Of these, 29 (21%) had 

sentinel groin node biopsy, and 107 (77.5%) had groin node lymphadenectomy. Groin 

node biopsy was performed on 2 (1.5%) patients. 

3.3.2.4 Radiotherapy and chemotherapy 

46 (21.9%) patients had radiotherapy or chemotherapy, or both; 35 (76.1%) were given 

radiotherapy alone, 1 (2.2%) was given chemotherapy alone and 10 (21.7%) were given 

concurrent radiotherapy and chemotherapy. Of these 46 patients, 3 (6.5%) received 

concurrent radiotherapy and chemotherapy as primary treatment for their tumour, 3 
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(6.5%) received treatment as an adjunct before surgery (neo-adjuvant therapy), 35 

(76.1%) received treatment as an adjunct after surgery (adjuvant therapy) and 3 

received treatment to palliate their disease. Information on one patient who was 

referred for adjuvant treatment was unavailable, and one patient declined adjuvant 

radiotherapy. Of those patients who received radiotherapy, 11 (5.5%) had radiotherapy 

to their vulva (local) only; 7 (3.5%) to their groins only; 5 (2.5%) to their pelvis only; 13 

(6.5%) to their vulva and groins; 3 (1.5%) to their vulva, groins and pelvis; 4 (2%) to 

their groins and pelvis. In 3 patients, the site that radiotherapy was administered was 

not available. In those patients whose excision margins were recorded as sub-optimal, 

21 (37.5%) patients had adjuvant radiotherapy to their vulva. 
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Table 3.2: Distribution of treatment variable in Birmingham VSCC cohort  

Variable 
Number of 

cases 
% 

Type of surgery 

Biopsy or no surgery 18 9 
Simple WLE 4 2 

Radical WLE/hemi-

vulvectomy 
105 52.2 

Total radical vulvectomy 74 36.8 

Groin node surgery 

Sentinel node biopsy 29 21 
Groin node 

lymphadenectomy 
107 77.5 

Others 2 1.5 

None surgical 

interventions 

Radiotherapy 35 76.1 
Chemotherapy 1 2.2 

Radio- & chemotherapy 10 21.7 

Type of non-surgical 

interventions 

Primary 3 6.5 
Neo-adjuvant 3 6.5 

Adjuvant 35 76.1 
Palliative 3 6.5 

Refused/unknown 2 4.3 

Site of radiotherapy 

Local 11 5.5 

Groins 7 3.5 

Pelvis 5 2.5 

Local & Groins 13 6.5 

Local, groins & pelvis 3 1.5 

Groins & pelvis 4 2 

Not determined 3 1.5 
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3.3.3 HPV testing 

HR-HPV testing was performed on 143 (71.1%) patients in this cohort by Miss Harriet 

Protheroe (a UoB Medical student) and Dr Sarah Leonard. DNA was extracted from 

FFPE tissue blocks containing the diagnostic specimen and the presence or absence of 

HPV16 or HPV18 determined using established PCR protocols previously published 

(Colin et al.). Of the 143 cases, 78 (54.5%) women were tested positive for HPV16 or 

HPV18, or both; 72 tested positive for HPV16 alone, 1 for HPV18 alone and 5 for both 

HPV16 and HPV18. 5 cases were not tested for HPV 18 because of an insufficient 

amount of DNA. The physical status of the virus is currently being investigated by 

other members of the group. In the remaining 58 cases, the reasons for not testing for 

HPV were formalin fixed paraffin embedded (FFPE) histology blocks were unavailable 

(n=28); insufficient FFPE material available for DNA extraction (n=5); and FFPE blocks 

were available but not cut (n=25). 

3.4 Assessment of the correlations between baselines variables 

3.4.1 Overview 

The aim of this exercise is to examine the relationship between each of the above 

variables and then determine which of these variables, either alone or in combination, 

are likely to explain the findings of subsequent analysis on treatment outcomes. The 

relationship between each pair of potentially explanatory variables is first explored, 

following which the distribution of missing variables, their associations and possible 

determinants are described. 
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3.4.2 Available information 

3.4.2.1 Age at diagnosis did not vary over study period (Table 3.3) 

The median age of women in this cohort was 72 years (range 30-95). In the first 

triennium (2000-2), 55 women were diagnosed with VSCC, 52 in the second (2003-5) 

and 94 in the third (2006-8). Age at diagnosis did not vary significantly across the 

triennia. 

 

Table 3.3: Table showing the relationship between median age and year of 

diagnosis in 3 triennia.  

Age at diagnosis did not vary over study period 

Variable 

Number 

of cases 
median  range 

  

Year of 

diagnosis 

2000-2 55 69 30-92 Wilcoxon two sample test: p <= 0.5941 

(2000-2) vs (2003-5); p<=0.1626 (2000-2 

vs 2006-8) 

2003-5 52 72 41-94 

2006-8 94 74 33-95 

 

3.4.2.2 Smokers/ex-smokers with VSCC are younger than never smokers (Table 3. 4) 

In this cohort, 64 (31.8%) women were either current smokers or ex-smokers, 100 

(49.8%) had never smoked, and smoking status was unrecorded in the remaining 37 

(18.4%). Among women for whom a smoking history was available, the prevalence of 

smokers/ex-smokers did not vary over time but did vary with age. The median age of 

smokers/ex-smokers was 56 (30-85) and never smokers 74.5 (38-92) (Wilcoxon two-

sample test, p <0.001). Women who were over 80 at diagnosis were less likely to be 

smokers or ex-smokers than those under 60 (19.4% vs. 70.8%, RR = 0.27 95% CI = 0.1-

0.5). 
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Table 3.4: Table showing the relationship between smoking status and age 

(in 4 age groups) or year of diagnosis in 3 triennia.  

Smokers/ex-smokers were younger than never smokers 

  

  

Number 

of cases                   

n = 164 

smoker/ex-

smoker  

n = 64 

never 

smokers  

n = 100 

% smoker/ 

ex-smoker 

  

  

Year of 

diagnosis 

2000-2 51 17 34 33.3% 
Chi-square = 1.71; 

2df: p = 0.4257 
2003-5 46 17 29 37.0% 

2006-8 67 30 37 44.8% 

Age  

<60 48 34 14 70.8% 
Chi-square  = 

29.81; 3df:  

p <0.0001 

60-69 33 10 23 30.3% 

70-79 47 13 34 27.7% 

>80 36 7 29 19.4% 

median 

age 
  56 74.5 Wilcoxon two sample test:  

p <= 3.964e-05 
range   30-85 38-92 

Excludes 37 cases with missing smoking status 

 

 

 

 

 

 

 

 

 

 



   

94 
 

3.4.2.3 Prevalence of multifocal disease does not vary over time or with age at 

diagnosis or smoking history (Table 3.5) 

In this cohort, 167 (83.1%) women had a unifocal disease, 30 (14.9%) had multifocal 

disease and this information was unrecorded in the remaining 4 (2%) patients. The 

prevalence of multifocal disease did not vary significantly over time or with age at 

diagnosis or smoking history. 

 

 

Table 3.5: Table showing the relationship between multifocal disease and age (in 4 

age groups), year of diagnosis in 3 triennia or smoking status.   

 

Prevalence of multifocal diseases did not vary with year of diagnosis, age or smoking 

history 

Variable 

Number 

of cases  

n = 196 

Multifocal         

 n = 30 

Unifocal                 

n = 167 
%multifocal   

Year of 

diagnosis 

2000-2 54 10 44 18.5% 
Chi-square  = 3.88; 

2df; p = 0.144 
2003-5 52 11 41 21.2% 

2006-8 91 9 82 9.9% 

Age  

<60 53 13 40 24.5% 
Chi-square = 7.42; 

3df:                                                                  

p = 0.0.0598 

60-69 34 2 32 5.9% 

70-79 60 6 54 10.0% 

>80 50 9 41 18.0% 

median 

age 

 

66.5 73   
Wilcoxon two 

sample test;  

p <= 0.1761 range   32-94 30-95   

Smoking 

status 

never 

smoker 
96 14 82 14.6% Chi-square = 0.03; 

1df;                                  

p = 0.8559 
smoker/ex-

smoker 
64 10 54 15.6% 

recorded 160 24 136 15.0% Chi-square = 0.03; 

1df;                                  

p = 0.8537 
missing 37 6 31 16.2% 

excludes 4 patients in whom focality is unknown 

 

 



   

95 
 

3.4.2.4 Women with VSCC associated usual type vulval intraepithelial neoplasia 

(uVIN) are younger than those with VSCC associated Lichen Sclerosus (LS) 

(Table 3.6) 

The pathology report described the presence of LS or VIN or both in 171 (85.1%) 

women in this cohort. In brief, 75 women had usual type VIN (uVIN) alone, 26 had LS 

alone, 8 had differentiated VIN (dVIN) and 4 had VIN that was not further defined; 

two or more of these elements were present in the remaining 58 tumours. 

The prevalence of uVIN alone was higher in women diagnosed in the last triennium 

than in the first (46.8% vs. 29.1%, RR = 1.52 95% CI 1.0-2.4) although this association 

was of borderline significance. Women with uVIN alone were younger than those with 

LS alone (median 66 years vs. 74.5 years, Wilcoxon two-sample test, p = 0.0242) and 

younger than those with both LS and dVIN (median 67 years vs. 82 years, Wilcoxon 

two-sample test, p = 0.0010). Women with LS and uVIN were also younger than those 

with LS and dVIN (median 67 years vs. 82 years, Wilcoxon two-sample test, p = 0.0010). 

Women with uVIN alone were not only more likely to be smokers or ex-smokers than 

those with LS alone (51.6% vs.7.8%, RR = 2.38 95% CI 1.1-5.3) but also those with both 

LS and uVIN (51.6% vs.4.7%, RR = 3.1 95% CI 1.1-8.8). These associations are likely to 

be confounded by the association between smokers/ex-smokers and young age. The 

prevalence of LS and VIN did not vary significantly with that of multifocal disease. 
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3.2.4.5 Lymphovascular space involvement (LVSI) is more common in never smokers 

(Table 3.7) 

LVSI was present in 57 (28.4%) tumours, absent in 116 (57.8%) and unrecorded in 28 

(13.9%). The prevalence of LVSI did not vary over time, with age at diagnosis, 

multifocal disease or the presence of LS or VIN. Compared with never smokers, 

smokers and ex-smokers were less likely to have tumours with LVSI (20.5% vs. 46.0%, 

RR = 0.45 95% CI 0.3-0.7). As yet, there is no compelling reason to believe that this 

association is confounded by age. 
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Table 3.7: Table showing the relationship between lymphovascular space 

involvement (LVSI) and age (in 4 age groups), year of diagnosis in 3 triennia, 

smoking status, disease focality or adjacent epithelial abnormalities.   
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3.4.2.6 Tumour size did not vary over time, with age at diagnosis, multifocal disease, 

smoking status or the presence of LS or VIN (Table 3.8) 

Tumour size did not vary over time, with age at diagnosis, multifocal disease, smoking 

status or the presence of LS or VIN. 
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3.4.2.7 Grade of tumour differentiation varies over time and with tumour size  

(Table 3.9) 

Women diagnosed in the last triennium were less likely to have well-differentiated 

tumours than those diagnosed in the first (16.5% vs.34.8%, RR = 0.47 95% CI 0.3-0.9). 

Poorly differentiated tumours were larger (median 4cms) than those which were 

moderately (median 3cms) and well (median 2.5cms) differentiated (Wilcoxon two-

sample test, p = 0.0027 and p<=0.0045, respectively). Tumours larger than 6cms were 

more than twice as likely to be poorly differentiated as those smaller than 2cms (54.2% 

vs. 24.0%, RR = 2.26 95% CI 1.0-5.0), although this association was of borderline 

significance. Tumours with LVSI were more likely to be poorly differentiated than 

those without (42.9% vs. 29.0%, RR = 1.48 95% CI 1.0-2.3), although this association was 

again of borderline significance. Grade of tumour differentiation did not vary with age 

at diagnosis, multifocal disease, smoking status or the presence of LS or VIN. 

 

 

 

 

 

 

 

 

 

 



   

103 
 

 

Table 3.9: Table showing the relationship between grade of tumour 

differentiation and age (in 4 age groups), year of diagnosis in 3 triennia, smoking 

status, tumour size, disease focality, adjacent epithelial abnormalities or LVSI.   
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3.4.2.8 Stage of disease varies over time, with age, grade of tumour differentiation and 

the presence of uVIN and LS (Table 3. 10) 

60 (29.9%) women had stage 1 disease, 74 (36.8%) stage 2 disease, 46 (22.9%) stage 3 

disease, 20 (10%) stage 4 disease and 1 patient was unstaged. Variation in stage 

distribution across the study period was in large part explained by changes in the 

prevalence of stage 1 and 2 disease. For example, the prevalence of stage 2 disease 

increased from the first to the second triennium (25.9% vs. 61.5%, RR = 2.37 95% CI = 

1.4-3.9), but fell again from the second to third triennium (61.5% vs. 29%, RR = 0.48 95% 

CI = 0.3-0.7); this shift was mirrored by changes in the prevalence of stage 1 disease.  

The median age of women with stage 1 to 4 disease was 61.5, 75, 77.5 and 75 

respectively. Compared to women with stage 1 disease, those with more advanced 

disease were older (Wilcoxon two sample test: p <= 0.01, stage 1 vs. 2; p <= 2.588e-05, 

stage1 vs. 3; p <= 0.0010, stage 1 vs. 4). Women over 80 were less likely to have stage 1 

disease than those under 60 (7.7% vs. 53.7%, RR = 0.12 95% CI = 0-3.0).   

Smokers/ex-smokers were more likely to have stage 1 disease (43.8% vs. 27.3%, RR = 

0.12 95% CI = 0-0.3) than never smokers. However, this association is likely to be 

confounded by the younger age of smokers and ex-smokers. Compared to women 

with well-differentiated tumours, those with poorly differentiated tumours were less 

likely to have stage 1 disease (12.5% vs. 32.6%, RR = 0.38 95% CI = 0.2-0.9). 

Compared to women who had uVIN alone with their primary tumour, those with 

associated LS alone were less likely to have stage 1 disease (19.2% vs. 42.7%, RR = 0.45 

95% CI = 0.2-1.0) although this association was of only borderline significance.  Neither 

multifocal disease (Chi-square = 2.06; 3df: p < 0.56) nor LVSI (Chi-square = 4.73; 3df: p < 

0.1928) were associated with disease stage. 
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Table 3.10: Table showing the relationship between disease stage and age (in 4 age 

groups), year of diagnosis in 3 triennia, smoking status, tumour differentiation, 

disease focality, adjacent epithelial abnormalities or LVSI.   
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3.4.2.9 Groin node involvement is associated with older age at diagnosis, larger 

poorly differentiated tumours and associated LS (Table 3.11) 

Groin nodes were reported to be positive in 46 patients (22.9%), negative in 150 (74.6%) 

with disease status undefined in the remaining 5 (2.5%) women. The prevalence of 

groin node disease did not vary over the study period (Chi-square = 2.33; 2df; p = 

0.3121).  
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Women with positive groin nodes were older (median age 77 vs. 69.5, Wilcoxon two 

sample test: p <= 0.0012) and those over 80 had a more than nine-fold greater risk of 

groin node involvement (GNVI) than those under 60  (36.0% vs. 3.8%, RR = 9.36 95% CI 

= 2.3-38.3). Smokers/ex-smokers were less likely to have groin node disease than never 

smokers (14.1% vs. 27.3%, RR = 0.52 95% CI = 0.3-1.0) but this association is of 

borderline significance and is likely to be confounded by the younger age of 

smokers/ex-smokers.  

Women with positive groin nodes had larger tumours (median size 3.5 vs. 3cms, 

Wilcoxon two-sample test: p <= 0.0219) and those with tumours >6cms were more 

likely to have GNVI than those with tumours <2cms in size (41.7% vs. 14.8%, RR = 2.81 

95% CI = 1.0-7.8) although this association was of only borderline significance. Women 

with poorly differentiated tumours were more likely to have GNVI (41.8% vs. 15.6%, 

RR = 2.69 95% CI = 1.3-5.7).  

Compared to women who had uVIN alone in their primary tumour, those with 

associated LS alone had an increased risk of GNVI (38.5% vs. 16.4%, RR = 2.34 95% CI = 

1.2-4.8). Not surprisingly, women with LVSI were more likely to have GNVI (40.0% vs. 

18.6%, RR = 2.15 95% CI = 1.3-3.6). Groin node involvement was not associated with 

multifocal disease (Chi-square = 0.67; 1df; p = 0.4127). 
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Table 3.11: Table showing the relationship between groin node metastasis (GNVI) 

and age (in 4 age groups), year of diagnosis in 3 triennia, smoking status, tumour 

size, tumour differentiation, disease focality, adjacent epithelial abnormalities or 

LVSI.   

 

 



   

109 
 

3.4.2.10  Women with sub-optimally or incompletely excised disease were older with 

late stage disease and had larger poorly differentiated tumours while those 

who had LVSI but not GNVI were less likely to have complete excision (Table 

3.12) 

In this cohort, 117 (58.2%) tumours were optimally excised and 65 (32.4%) sub-

optimally or incompletely excised. No information on excision status was available for 

19 (9.5%) women of whom two did not have surgery and 16 had only a biopsy. 

Compared to women presenting in the first triennium, those presenting in the last 

were more likely to have incompletely or sub-optimally excised tumours although this 

association was of only borderline significance (43.2% vs. 25.5%, RR = 1.7 95% CI = 1.2-

1.7). Women with sub-optimally or incompletely excised tumours were older (median 

age 77 vs. 70, Wilcoxon two-sample test: p <= 0.0061), and those over 80 more than 

twice as likely to have inadequate excised tumours as those under 60 (54.3% vs. 25.5%, 

RR = 2.12 95% CI = 1.2-3.7).   

Smokers and ex-smokers were no more likely to have sub-optimally or incompletely 

excised tumours than never smokers (Chi-square = 0.0; 1df; p = 0.9496). Sub-optimally 

or incompletely excised tumours were larger (median size 4 vs. 2.3cms, Wilcoxon two-

sample test: p <0.0001), and the risk of inadequate excision increased with increasing 

tumour size being more than four times greater for tumours larger than 6cms 

compared with those smaller than 2cms (78.9% vs. 18.5%, RR = 4.26 95% CI = 1.9-9.7).  

Not surprisingly, the risk of a sub-optimally or incompletely excised tumour also 

increased progressively with stage of disease and was more than five times higher in 

those with stage 4 compared to those with stage 1 disease (66.7% vs. 12.7%, RR = 5.23 

95% CI = 2.4-11.7). Poorly differentiated tumours were more than twice as likely to be 
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inadequately excised as well differentiated tumours (60% vs.23.3%, RR = 2.58 95% CI = 

1.4-4.6).  

Women with tumours reported to have LS alone were more likely to have 

inadequately excised tumours than those with uVIN alone (50.0% vs. 27.9 %, RR = 1.79 

95% CI = 1.0-3.1) although this association was of borderline significance. Although the 

risk of inadequate excision increased in tumours with groin node involvement (59.0% 

vs. 28.3%, RR = 2.1 95%CI = 1.4-3.0), it was not significantly increased in the presence of 

LVSI (44.2% vs. 35.6%, RR = 1.24 95%CI = 0.8-1.9). 

However, when this analysis was repeated but this time removing those cases with 

GNVI, LVSI in the absence of groin disease was associated with an increased risk of 

inadequate excision (51.5% vs. 22.7%, RR = 2.34 95%CI = 1.4-3.9). 
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Table 3.12:  Table showing the relationship between adequacy of 

tumour excision margins (complete margins vs. sub-optimal or 

incomplete excision margins) and age (in 4 age groups), year of 

diagnosis in 3 triennia, smoking status, tumour size, disease stage, 

tumour differentiation, disease focality, adjacent epithelial 

abnormalities, LVSI and GNVI.   
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3.4.2.11  Summary of the relationship of baseline clinic-pathological variables  

Women with sub-optimally or incompletely excised disease were older and more 

likely to have late stage disease and larger, poorly differentiated tumours.  Those who 

have GNVI were more likely to have LVSI. Age at diagnosis was not associated in this 

cohort with tumour size, grade of differentiation or LVSI.  However, increasing 

tumour size was associated with worsening tumour differentiation that in turn was 

associated with late stage disease and GNVI. Although women with VSCC associated 

LS were older than those with VSCC associated uVIN and more likely to have GNVI, 

their modest excess risk of sub-optimal or incomplete excision was of borderline 

significance. 

3.4.3 Correlations of HPV positive and negative tumours with baseline variables 

(Table 3.13) 

This was determined for 143 (71.1%) women with 78 (54.6%) cases tested positive for 

HPV 16 or HPV 18, or both. Compared to never smokers and ex-smokers, current 

smokers were more likely to test positive for HPV16 or HPV18, or both (79.4% vs. 

44.0%, RR = 1.8. 95% CI = 1.3 – 2.5). Stage 1 tumours were more likely to test positive 

for HPV16 or HPV18 (72.4% vs. 27.6%, RR = 2.22, 95% CI = 1.05 – 4.67) than those 

staged 2 or more. LVSI was more likely to be found in HPV-positive than in HPV-

negative tumours (66.0% vs. 34.0%, RR = 1.52, 95% CI = 1.1 – 2.1).  Compared to women 

in whom LS alone was detected when VSCC was diagnosed, those with u-VIN alone 

were more likely to test positive for high-risk HPV types (70.8% vs. 17.6%, RR = 4.01, 

95% CI = 1.4 – 11.4). Those with VIN or no LS were more likely to test positive for HPV 

types when compared to LS with or without VIN (69.4% vs. 37.3%, RR =1.86, CI = 1.3 – 



   

113 
 

2.7). Excision margins were more likely to be reported as incomplete in those who 

tested positive for HPV types when compared to those who had complete excision 

(77.8% vs. 50%, RR = 1.55, CI = 1.0-1.25) although this last observation was of only 

borderline significance.   

Triennium of diagnosis, age at diagnosis, the size of the tumour, groin node 

involvement, tumour differentiation or multifocal disease did not vary significantly 

with HPV status of the tumour. 
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Table 3.13: Table showing the relationship between HPV positive/negative 

tumour and age (in 4 age groups), year of diagnosis in 3 triennia, smoking 

status, tumour size, disease stage, tumour differentiation, disease focality, 

adjacent epithelial abnormalities, LVSI and GNVI.   
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3.4.4 Missing information (Table 3.14) 

Before performing a multivariate analysis, those variables for which information is 

missing in ~10% of cases are considered in more detail. This analysis focuses on how 

missing information varies over time and with age at diagnosis, stage of disease and 

the sample provided for histological examination. 
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3.4.4.1 Smoking history not recorded 

A smoking history was not available for 37 women (18.4%). How often a smoking 

history went unrecorded varied over time and with age. It was nearly four times more 

likely to be unrecorded in the last triennium of the study period than in the first (28.7% 

vs. 7.3%, RR = 3.95 95% CI = 1.5-10.7), and three times more likely to be unrecorded in 

women over 80 than those under 60 (30.8% vs. 10.0%, RR = 3.1 95% CI = 1.3-7.3). A 

woman who was over 80 and diagnosed in the last triennium was  nine times more 

likely to have her smoking history unrecorded than a woman under 60 diagnosed in 

the first triennium, (51.9% vs. 5.6%, RR = 9.3 95% CI = 1.3-64.9). 

3.4.4.2 Tumour size not recorded 

No tumour size was available for 50 (24.9%) women in this cohort. How often tumour 

size went unrecorded varied over time, with age and with the stage of the disease. 

Tumours diagnosed in the second and third triennium were less likely to have tumour 

size unrecorded than those diagnosed in the first (15.4% vs. 41.8%, RR = 0.37 95% CI = 

0.2-0.7; 20.2% vs. 41.8%, RR = 0.48 95% CI = 0.3-0.8). Women with missing information 

on tumour size were younger (median 57 vs. 75 years, Wilcoxon two sample test: p <= 

7.09e-05). Most (n = 30) had stage 1 disease, and those with stage 1a and stage 1b 

disease were nearly five and three times more likely to have tumour size unrecorded 

than those with stage 2 disease, (65.5% vs. 13.5%, RR = 4.85 95% CI = 2.6-9.1; 35.5% vs. 

13.5%, RR = 2.98 95% CI = 1.4-6.3). 
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3.4.4.3 Tumour differentiation not recorded 

Grade of tumour differentiation was not available for 29 (14.4%) women in this cohort. 

How often grade of differentiation went unrecorded varied with age and stage of 

disease and the sample provided. Women with missing information on grade of 

differentiation were younger (median 63 vs. 74 years, Wilcoxon two sample test: p <= 

0.0009).  Most (n = 24) had stage 1 disease; those with stage 1a and stage 1b disease 

were fifteen and four times more likely to have grade of differentiation unrecorded 

than women with stage 2 disease (62.1% vs. 4.1%, RR = 15.3 95% CI = 4.9-48.1; 19.4% vs. 

4.1%, RR = 4.77 95% CI = 1.3-17.9). 

In addition to the two women who did not have surgery, 19 of the women with 

missing information on tumour differentiation had a wide local excision and 4 had a 

biopsy alone. Compared to women who had a radical vulvectomy, those who had a 

biopsy or a wide local excision (simple or radical) were seven and eight times more 

likely to have grade of differentiation unrecorded (26.7% vs. 3.6%, RR = 7.0 95% CI = 

1.4-34.8; 30% vs. 3.6%, RR = 8.4 95% CI = 2.0-34.6. 

3.4.4.4 Lymphovascular space involvement (LVSI) not recorded 

No information on LVSI was available for 28 (13.9%) of women in this cohort. How 

often LVSI went unrecorded varied significantly with the stage of disease and the 

surgical sample provided. Most (n = 16) of these women had stage 1 disease; those 

with stage 1a and stage 1b disease were three times more  likely to have  their grade of 

differentiation unrecorded than those with stage 2 disease (27.6% vs. 8.1%, RR = 3.4 95% 

CI = 1.3-9; 25.8% vs. 8.1%, RR = 3.18 95% CI = 1.2-8.4). 
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Compared to women who had a radical vulvectomy, those who had a biopsy alone 

were more than four times as likely to have grade of differentiation unrecorded (25.0% 

vs. 5.4%, RR = 4.67 95% CI = 1.2-18.7). Figure 3.2 shows how often tumour size, grade 

of differentiation and LVSI went unrecorded in the same surgical samples. 

 

 

 

 

 

 

 

 

 

 

 

3.4.4.5 LS or VIN not recorded 

There was no comment on LS or VIN in the pathology report of 30 (14.9%) women in 

this cohort. How often LS or VIN went unrecorded varied with the stage of disease 

and the sample provided. 

Half of these women (n = 15) had stage 3 or 4 disease; those with stage 4 disease were 

nearly four times as likely not to have LS or uVIN as women with stage 2 disease (55% 

vs. 14.9%, RR = 3.7 95% CI = 1.9-7.3). Women who had a biopsy alone  were more than 

Figure 3.2: The frequency with which tumour size, grade of 

differentiation and LVSI were not recorded in the same surgical 

sample (NK = not known; DIFF = tumour differentiation). 
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five  times as likely not to have a comment on LS or VIN in their pathology report than 

those who had a radical vulvectomy (56.3% vs. 10.7%, RR = 5.25 95% CI = 2.2-12.5). 

3.4.4.6 Excision status not determined 

Excision status was unknown for 19 (9.5%) women in this cohort. Women with stage 4 

disease were nearly 30 times more likely to have inadequately excised tumours than 

those with stage 2 disease (40.0% vs. 1.4%, RR = 21.4 95% CI = 2.8-163.7). However, the 

main determinant of undetermined excision status was the sample provided for 

histological analysis. Excision status was unknown in all 16 women who had had a 

biopsy alone, two who had no surgery and one who had a radical vulvectomy. 

3.4.4.7 Summary 

Enthusiasm for taking a smoking history appears to be less in recent years. Whereas 

missing information on tumour size, tumour differentiation and LVSI is more common 

in those with early stage disease, no mention of LS or VIN on the pathology and the 

absence of a comment on excision status is more common in women with late stage 

disease and in those who provided a biopsy alone for histological examination. 

3.5 Analysis of local disease recurrence (Time to local recurrence) 

3.5.1 Overview 

44 (21.9%) women in this series were found to have local disease recurrence following 

surgery that was unlikely to be explained by treatment failure. For this analysis, local 

recurrence was further classified into local relapse and second field tumour (see Figure 

1.2 in introduction). Tumour that recurred within 2cm of the primary tumour was 



   

123 
 

termed local relapse (LR) while those tumour that recurred more than 2cm away from 

the primary tumour was termed second field tumour (SFT). Of the 44 patients who had 

local recurrence, 29 had local relapse alone, 26 had second field tumour alone and 11 

had both local relapse and second field tumour (Table 3.15).  Figure 3.3 shows the 

Kaplan-Meir (KM) plots of time to local recurrence, time to local relapse and time to 

second field tumour. The proportion of patients who developed local recurrence, LR 

and SFT in 5 years were 25.8% (95% CI 19.4-33.9%; 13.4%, 95% CI 8.7-20.5%) and 16.5% 

(95% CI 11.3-23.8%), respectively. There is no significant difference in the time taken to 

develop local relapse and second field tumour but patients were at the greatest risks of 

developing LR and SFT within the first five years after their treatment. 

Figures 3.4 represents underlying risk (rate) over time for LR and SFT outcomes for 

those with women LS associated VSCC which were estimated by survival modelling 

procedures: patient characteristics, or covariates, in a statistical survival model, modify 

this hazard proportionally. For example groin node involvement, a known prognostic 

factor, would proportionally increase the magnitude of this function throughout the 

time period. Although not formally compared, visual inspection indicates that patients 

are at an increasing risk of recurrent disease in the years following surgery and that 

this risk dissipates after 4-5 years, and 2 years for LR and SFT respectively. These 

observations indicate that SFT are likely to occur earlier than local relapses. 

Univariate and multivariate analyses were performed to identify possible prognostic 

markers that were likely to influence disease recurrence. 
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Table 3.15: Distribution of treatment outcomes in women diagnosed with 

primary VSCC in Birmingham between 2000 to 2008.  

Distribution of treatment outcomes in Birmingham VSCC cohort 

Outcomes 
Number of 

cases 
% 

Local recurrence  
Yes 44 21.9 
No 157 78.1 

Local relapse 
Yes 29 14.4 
No 172 85.6 

Second field tumour 
Yes 26 12.9 
No 175 87.1 

Groin node recurrence 
Yes 16 8.0 
No 185 92.0 

Disease related mortality 
Yes 41 20.4 
No 160 79.6 
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5-year recurrence: 0.258 (95% CI: 0.194-0.339) 

5-year local relapse: 0.134 (95% CI: 0.087-0.205) 

5-year SFT: 0.165 (95% CI: 0.113-0.238) 

Figure 3.3: KM-plots for time to local relapse (LR) 

or 2nd field tumour (SFT), time to LR and time to 

SFT.  
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Figure 3.4: Plots of baseline hazard ration to time 

of surgery for local recurrence, LR and SFT.  
 



   

127 
 

3.5.2 Univariate analysis 

3.5.2.1 Univariate analysis of local recurrence (local relapse and/or second field 

tumour (Table 3.16) 

Univariate analyses revealed seven variables which modulated the risk of women with 

VSCC developing a local recurrence, either a local relapse or a second field tumour or 

both: the presence of Lichen Sclerosus with or without associated VIN in the 

pathological specimen; age; smoking status; groin node metastasis; LVSI; advanced 

disease stage; and HPV test positivity.  

Compared to women who were younger than 65 years at diagnosis those who were 65 

and older had an increased risk of a local recurrence (HR: 3.13, 95% CI: 1.49-6.55, p= 

0.003) as did women found to have LS+/-VIN (HR: 3.61, 95% CI: 1.91-6.82, p<0.001) in 

the surgical specimen. Compared to never smokers, current smokers had a reduced 

risk of developing a local recurrence (HR: 0.32, 95% CI: 0.14-0.73, p= 0.007) as did 

patients with tumours in which lymphovascular spaces (HR: 0.36, 95% CI: 0.14-0.93, p= 

0.035) were reported to be involved. Women with advanced stage disease were twice 

more likely to develop local recurrence when compared to those with early stage 

disease (HR: 2.76, 95% CI 1.14-4.10, p=0.007). Patients who were tested negative for 

HR-HPV were more likely to have disease recurrence when compared to those who 

tested positive (HR: 2.26, 95% CI: 1.07-4.76, p= 0.032). Those with groin node metastasis 

at baseline were also more likely to develop local recurrence when compared to those 

without groin node metastasis (HR: 3.39, 95% CI: 1.76-6.53, p<0.001). 

As previously shown some of these variables were found to be correlated with each 

other.  For instance, women with LS+/-VIN were older than those without LS+/-VIN 
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(Wilcoxon two-sample test, p <= 0.0014) as were women with groin node involvement 

compared to those without (Wilcoxon two-sample test, p <= 0.0012). Current smokers 

were younger than never smokers (Wilcoxon two-sample test, p <= 3.964e-05).  The 

inverse relationship between smoking and age which is almost certainly a cohort effect 

could explain in large part why compared to never smokers, current smokers were less 

likely to have LS+/-VIN (19.6% vs. 46%, RR = 0.43 95% CI = 0.2-0.8) and GNVI (14.1% vs. 

27.3%, RR = 0.52 95% CI = 0.3-1.3) although this is borderline significant. 
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Table 3.16: Summary of univariable HR (95%CI) for potential 

predictors of time to local relapse or second field tumour.  
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3.5.2.2 Univariate analysis of local relapse 

Univariate analysis revealed 3 variables which modulate the risks of women with 

VSCC developing a local relapse: the presence of Lichen Sclerosus with or without 

associated VIN in the pathological specimen; age; and groin node metastasis (Table 

3.17). 

Women aged 65 years and older were more likely to develop local relapse when 

compared to those that were younger than 65 (HR: 3.01, 95% CI: 1.22-7.40, p= 0.017) as 

did women found to have groin node metastasis (HR: 3.55, 95% CI: 1.60-7.87, p=0.002) 

or those found to have LS+/-VIN in the surgical specimen (HR: 2.85, 95% CI: 1.32-6.13, 

p=0.007). 
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Table 3.17: Summary of univariable HR (95%CI) for 

potential predictors of time to local relapse (LR) 
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3.5.2.3 Univariate analysis of second field tumour 

Univariate analysis revealed 3 variables which modulate the risk of women with VSCC 

developing a second field tumour: the presence of LS with or without associated VIN 

in the pathological specimen; age; and smoking status (Table 3.18).  

Compared to women who were younger than 65 years at diagnosis those who are 65 

and older had an increased risk of developing a second field tumour (HR: 3.32, 95% CI: 

1.23-8.92, p= 0.017). Those patients who were found to have LS+/-VIN in the surgical 

specimen were also more likely to develop a second field tumour (HR: 5.43, 95% CI: 

2.18-13.52, p<0.001). Compared to never smokers, current smokers had a reduced risk 

of developing a second field tumour (HR: 0.18, 95% CI: 0.06-0.62, p= 0.006). 
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Table 3.18: Summary of univariable HR (95%CI) for potential 

predictors of time to second field tumour (SFT).  
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.  

3.5.3 Multivariate analysis 

3.5.3.1 Multivariate analysis of local recurrence (local relapse and/or second field 

tumour)  

Multivariate analyses revealed that the three independent predictors that best describe 

risk of women with VSCC developing a local recurrence, either a local relapse or a 

second field tumour or both: age; groin node metastasis; and LS+/-VIN (see Table 3.19). 

Compared to women who were younger than 65 years at diagnosis those who are 65 

and older were twice more likely to develop a local recurrence (HR 2.202, 95% CI: 

1.026-4.727, p = 0.043). Patients with groin node metastasis and LS +/- VIN found in the 

surgical specimen were 2.6 times (HR: 2.568, 95% CI: 1.327-4.967, p= 0.005) and 2.8 

times (HR: 2.792, 95% CI: 1.464-5.322, p= 0.002), respectively, were at greater risk of 

developing a local recurrence. It is noted that when adjusting for other prognostic 

characteristics the hazard ratio associated with LS+/-VIN is reduced compared to those 

observed in the univariate analysis, HR: 2.568 vs. 3.61 (see Table 3.16).  

 

 

 

 

Table 3.19: Summary of multivariable HR (95%CI) for potential 

predictors of time to local recurrence 
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3.5.3.2 Multivariate analysis of local relapse 

Multivariate analyses revealed two independent predictors that modulated the risk of 

women with VSCC developing a local relapse: groin node metastasis and LS+/-VIN 

(see Table 3.20). 

Women with groin node disease were three times more likely to develop a local 

relapse when compared with those without nodal disease (HR: 2.909, 95% CI: 1.295-

6.533, p= 0.010). Patients who were found to have LS +/- VIN in the surgical specimen 

were twice more likely to develop local relapse when compared to those without LS 

(HR: 2.380, 95% CI: 1.088-5.204, p= 0.30). It is noted that when adjusting for other 

prognostic characteristics the hazard ratio associated with LS +/- VIN is reduced 

compared to those observed in the univariate analysis, HR: 2.38 vs. 2.85 (see Table 

3.17). 

 

 

 

 

 

 

 

 

Table 3.20: Summary of multivariable HR (95%CI) for potential 

predictors of time to local relapse (LR).  
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3.5.3.4 Multivariate analysis of second field tumour 

Multivariate analyses revealed two independent predictors that modulated the risk of 

women with VSCC developing a second field tumour: LS+/-VIN and smoking status 

(see Table 3.21). 

Women with LS +/- VIN found in the histological specimen were 5 times more likely to 

develop a second field tumour when compared to those without LS (HR 4.932, 95% CI: 

1.957-12.431, p= 0.001). Compared to never smokers, current smokers were four times 

less likely to develop a second field tumour (HR: 4.178, 95% CI: 1.241-14.074, p= 0.021). 

After adjusting for smoking, the risk associated with LS is slightly reduced when 

compared to the results of the univariate analysis, HR: 4.932 vs. 5.43 (see Table 3.18). 

 

 

 

 

 

 

Table 3.21: Summary of multivariable HR (95%CI) for potential 

predictors of time to second field tumour (SFT) 
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3.6 Analysis of groin node recurrence 

3.6.1 Overview, univariate and multivariate analysis 

Groin node recurrence was found in 16 (8%) patients in this series and half of them 

previously had treatment for groin metastasis along with their primary tumour (Table 

3.15). Univariate analysis (see Table 3.22) revealed four prognostic factors that 

modulate the risk of groin node recurrence: those women older than 65 years (HR: 4.96, 

95% CI 1.04-23.70, p=0.044); poorly differentiated histology grade (HR: 5.73, 95% CI: 

1.24-26.53, p= 0.026); advance disease stage (HR: 4.89, 95% CI 1.72-13.98, p=0.003); and 

previous groin node metastasis (HR: 5.83, 95% CI: 2.10-16.26, p<0.001). However, 

multivariate analysis revealed that only those women with previous groin node 

disease were at risk of developing groin node recurrence (HR: 5.849, 95% CI: 2.104-

16.259, p= 0.001). 
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Table 3.22: A summary of the univariate analysis for potential 

predictors of time to nodal recurrence. 
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3.7 Analysis of disease-specific survival 

3.7.1 Overview 

All the patients who were still alive in this series were being followed up for at least 

five years and the median follow-up duration for the cohort was 4.6 years (IQR: 1.8-7.1 

years). 110 (54.7%) patients within this cohort were still alive when the information on 

follow-up was last updated on 31st December 2012. There were 91 (45.3%) deaths and 

41 (45.1%) of those were attributed to VSCC. The remaining 50 (54.9%) patients died of 

causes other than VSCC related. Figure 3.5 shows the Kaplan-Meier (KM) plot for 

VSCC specific mortality where 10% of death from VSCC occurs within the first year 

after treatment.  The proportion of patients who were still alive in 5 years was 81.4%, 

95% CI: 74.8-86.3%. A univariate and multivariate analysis were constructed to identify 

possible prognostic markers that influence VSCC specific mortality. 
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3.7.2 Univariate analysis of disease specific survival 

Univariate analysis revealed 8 prognostic factors which modulate the risk of women 

dying from VSCC: age; type of non-surgical interventions; disease stage; tumour size; 

groin node metastasis; surgical excision margins; histology grade; and type of surgery 

performed (Table 3.23).  

Compared to women who were younger than 65 years at diagnosis those who are 65 

and older were at greater risk of dying from VSCC (HR: 5.26, 95% CI: 2.03-13.63, 

p=0.01). Women with tumour size 4cm or greater (HR: 3.21, 95% CI: 1.04-9.89, p= 0.043), 

advanced staged disease (HR: 8.45, 95% CI: 4.23-16.87, p<0.001), poorly differentiated 

histology grade or groin node metastasis (HR: 8.54, 95% CI: 4.41-16.52, p<0.001) were 

also at higher risks of drying from VSCC. Compared to patients who underwent 

 

5-year survival: 0.814, 95% CI: 0.748-0.863 

Figure 3.5: Kaplan-Meier (KM) plot for disease (VSCC) 

specific mortality. 
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simple wide local excision, those who did not have surgery (HR: 7.07, 95% CI: 2.88-

17.34, p<0.001) or had total radical vulvectomy (HR: 2.52, 95% CI: 1.23-5.15, p= 0.012) 

were also at greater risks of dying from VSCC as did women found to have sub-

optimally (HR: 2.41, 95% CI: 1.15-5.07, p= 0.020) or incompletely excised surgical 

specimen (HR: 3.92, 95% CI: 1.31-11.75, p= 0.015). Patients who received palliative 

radiotherapy and/or chemotherapy were also at risks of dying from VSCC. (HR: 6.84, 

95% CI: 1.80-26.07, p= 0.005). 
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 Table 3.23: A summary of the univariate analysis for 

potential predictors of VSCC specific mortality 
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3.7.3 Multivariate analysis of disease specific survival 

Multivariate analyses revealed the three prognostic factors that best describe the risk of 

women dying from VSCC: age; disease stage; and groin node metastasis (Table 3.24). 

Women aged 65 years and older were more likely to die from VSCC compared to those 

who were younger than 65 (HR: 3.951, 95% CI: 1.313-11.889, p=0.015) as did those with 

groin node metastasis (HR: 4.791, 95% CI: 2.238-10.256, p<0.001) and advanced staged 

disease (HR: 2.466, 95% CI: 1.056-5.758, p=0.037). 

 

 

 

 

 

 

 

 

 

 

 

Table 3.24: Summary of multivariable HR (95%CI) for 

potential predictors of time to disease specific mortality 
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3.8 Discussion 

As the prevailing orthodoxy holds that adverse outcomes following primary surgery 

for VSCC are more likely when the tumour has been inadequately excised, this belief is 

increasingly being challenged with new clinical evidence. Tumour free pathological 

margins of 8mm or more, measured after formalin fixation, is considered to be the gold 

standard practice to minimise local disease recurrence. This recommendation is based 

on a study conducted by Heap et al. on a small retrospective cohort consisting of 135 

patients [20]. The study found that none of the patients with pathological margins of 

≥8mm had recurrent disease, and local recurrence was only found in those with 

pathological margins of <8mm. To achieve a tumour free pathological margin of 

≥8mm, a surgical excision margin of at least 2cm around the primary tumour is 

required to account for 25% shrinkage when the surgical specimen is fixed in formalin 

[18]. Removing a large section of the normal vulval skin would inadvertently lead to 

physical and psychosexual comorbidities, especially if the tumour is located near to 

major functional organs such as the clitoris, urethra and anus.   

Despite current surgical practice advocating the removal of at least 1.5cm of normal 

vulval skin, and most cohort studies showing a relatively high proportion of patients 

achieving histological margins in excess of >8mm, the 5-year local recurrence rate for 

VSCC has not improved over the last years and remained steady at around 30% in any 

given study population [20, 22, 23, 29-37, 111, 112]. Whereas some studies report that 

surgical excision margins independently predict the risk of local recurrence, others 

report no difference.  Interestingly, other clinicopathological variables, such as groin 

node metastasis, disease stage, histologic grade, depth of tumour invasion, the 
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presence of usual type VIN, differentiated VIN or LS adjacent to the primary tumour, 

tumour size, tumour multifocality and LVSI have all been reported to independently 

predict local recurrence [22, 23, 29-37, 109, 110]. It is worth pointing out that Heap et al. 

drew their inferences solely from p-values, not from a multivariate analysis, and their 

findings are likely to be confounded by other clinicopathological variables given that 

most patients with excision margins of <8mm in their cohort had advanced staged 

disease. When we examined the relationships between each of the clinicopathological 

variables in our own cohort, we found that women who had sub-optimal excision 

margins (<8mm) were older and more likely to have late stage disease as well as larger, 

poorly differentiated tumours. Although somewhat speculative, it is possible that 

tumour recurrence in these women was more likely to arise from surgical spillage of 

tumour cells due to the technical difficulty in performing the surgery and not 

inadequate excision margins. Moreover, it is also possible that the biology and thus, 

the behaviour, of advanced staged tumours are different from that of early stage 

disease, and women with the former are at higher risk of local recurrence.  

Although a number of more recent studies have used multivariable analysis to identify 

clinicopathological variables that are most likely to predict local recurrence, none of 

them came out with a satisfying conclusion as each of these studies found different 

predictive variables. There are some reasons why these studies failed to find common 

prognostic factors that accurately predict local disease recurrence. Firstly, the selection 

of prognostic variables collected from each cohort study were different from each other 

with many not including associated epithelial disorders found adjacent to the primary 

tumour, e.g. VIN and LS [20, 29, 31, 37]. In those studies that include associated 

epithelial disorders, many did not make the distinction between differentiated, 
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undifferentiated VIN and LS [30, 34, 35, 111]. Secondly, the definition of local 

recurrence used in each study differs and some are vague, an important consideration 

when measuring disease recurrence. For instance, some investigators neither 

distinguish vulval recurrences from more distant disease nor separately identify 

recurrences and reoccurrences [20, 23, 29, 30, 34, 35]. The term “reoccurrences” is 

poorly defined and often used inconsistently with one investigator defining it as “ the 

development of VSCC lesions in the vulva or groin lymph nodes after 5 years of 

follow-up” and another defining it as “vulval tumour occurring at a site remote from 

the initial primary tumour” [22, 31, 32, 37]. Thirdly, many studies have a relatively 

short follow-up duration and losses to follow-up are rarely defined. It was found that a 

second field tumour (tumour that recurs >2cm away from the primary tumour), took 

longer than 2 years to recur when compared to local relapse (a tumour that recurs 

within 2cm of the primary tumour [22, 31, 37]. Thus, any studies with a relatively short 

follow-up period are likely to overlook tumours that recur away from the primary. 

Lastly, it is often not clear how the multivariate analysis model was built in many 

studies as certain prognostic variables were deliberately excluded from the analysis 

[30, 31, 78]. Thus, the lack of standardised definition and methodology used in these 

cohort studies has failed to identify the common prognostic variable(s) for local 

recurrence. Although some authors proposed the use of a standardised prospective 

and multicentre collaborative cohort study to improve the accuracy of the study, this is 

unlikely to happen for two reasons. Firstly, such a study will not be completed in a 

reasonable time frame because of the rarity of the disease; secondly, the elderly 

population which it affects are more likely to die of causes other than vulval cancer, 

before they develop local recurrence. 
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To improve on the analysis of previous studies mentioned above, we repeated the 

retrospective cohort studies on our own cohort of patients who have been extensively 

followed-up for at least five years. None of these patients were "lost” in follow-up and 

all clinicopathological variables previously described to modulate the risk of local 

recurrence, were abstracted from the patients’ case notes. Also, we performed HPV 

testing on 71% of our cohort. The relationships between each of these variables were 

examined, and a multivariable analysis model was built based on all the variables to 

identify the prognostic markers for local recurrence, groin node metastasis and 

disease-specific survival. We also dichotomised local recurrence into local relapse (LR), 

tumour which recurs within 2cm of the primary tumour, and second field tumour 

(SFT), tumour which recurs more than 2cm away from the primary tumour. The 

results of our multivariate analysis showed that age; groin node metastasis and the 

presence of LS are independent predictors for any local recurrence: LR alone, SFT or 

both. The independent predictors for LR are groin node metastasis and LS while LS is 

the only independent predictor for SFT. Women with LS are five times more likely to 

develop an SFT when compared to those without LS. Women with a local recurrence 

were also at risk of developing subsequent recurrences, with 50% of those with local 

recurrences going on to develop further episodes of LR, SFT or both (Figure 3.6). 
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Consistent with a number of previous studies, women with groin node metastasis 

were at risk of developing LR. This is probably due to the retrograde migration of 

microscopic tumour emboli in the groin lymphatics to the site of the primary tumour 

[34]. Although it was not always clear how some studies defined distance to local 

recurrence, some authors have acknowledged that recurrences that occur more than 2 

years after initial treatment were more likely to be away from the primary tumour [31, 

37, 111], and arise in vulva with underlying LS [22]. Here, we have used the term 

distant recurrence as SFT and our analysis have shown that these tumours were more 

likely to arise in those with underlying LS, but contrary to other studies, we found that 

Figure 3.6: Kaplan-Meier (KM) plot showing the 

likelihood patients with local VSCC recurrence (either 

local relapse, second field tumour or both) went on to 

develop further episodes of local VSCC recurrence. 

Note that 50% of patients with local recurrence went on 

and had a further recurrence within 2.34 years.  
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SFT occurs sooner than LR in those with VSCC arising in the background of LS. 

Currently, we do not yet have an explanation for the discrepancy observed in the 

timing of LR and SFT occurring between ours and others studies. Interestingly, head 

and neck squamous carcinoma (HNSCC) also exhibit similar patterns of recurrence, 

with HPV-negative HNSCC displaying a tendency to recur away from the primary 

tumour [62]. This has led to the suggestion that those tumours that recur some distance 

away from the primary tumour are likely to constitute a new primary tumour that 

arises in a "field of cancerization" [62].  

The concept of field cancerization was first proposed by Slaughter et al. in 1953 who 

studied the histology of dysplastic epithelial tissue adjacent to the primary tumour in 

an attempt to explain the reason for the development of multiple primary tumours and 

tumour recurrence in the oral cavity and upper respiratory tract [39].  Since the 

development of molecular biology, the concept of field cancerization has now been 

redefined in molecular terms. Field cancerization predicts that local recurrences which 

develop following surgery could arise in one of two ways: either because of a failure to 

completely excise the tumour at primary surgery or the intra-operative spillage of 

tumour cells; or secondly, through the development of second field tumours in un-

resected epithelium which is already molecularly altered but not yet malignantly 

transformed - this epithelium may even appear microscopically normal [62] (Figure 

3.7).  
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Figure 3.7: The relationship between field cancerisation and types of local 

recurrence is shown. Field of cancerisation is defined based on recent molecular 

understanding as the presence of one or more epithelial areas consisting of 

keratinocytes that have acquired cancer associated genetic or epigenetic 

alterations. A precursor field (shown here in light blue) is monoclonal in origin 

and lacks the ability to invade and metastasise. A field is pre-neoplastic in nature 

and it may have histological features of dysplasia (for instance uVIN and dVIN in 

the vulva), but not necessarily. We hypothesise that most VSCC probably arise 

from within this field after complete resection of the initial tumour. Local 

recurrence is likely to arise from intra-operative spillage of cancer cells or 

retrograde migration of these cells within the lymphatic; a molecularly altered” 

field probably results in a “second field tumour” which can occur at a site 

previously occupied by or distant to the primary tumour. However, additional 

molecular alterations are required to transform this field into new carcinoma. 

Based on current evidence, the field and primary tumour share common genetic 

alterations and are considered to have a common clonal origin.  We believe that LS 

is a precursor lesion of field cancerisation in those women with VSCC and LS 

found adjacent to their tumour. Additional molecular alterations acquired as a 

result of chronic inflammation in this already abnormal field (LS) leads to the 

development of new VSCC (second field tumour). Moreover, it is also possible that 

new tumour may arise from an independent field and give rise to a second 

primary tumour, which is genetically distinct from the primary tumour.  

 

Figure taken from Leemans et al. 2011 
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The notion that LS generates a field of cancerization much like that observed in HPV-

negative HNSCC is a tenable but as yet unproven concept. However, such an idea is 

not without foundation. It is now well-established that chronic inflammation, coupled 

with sustained episodes of wound-healing and epithelial scarring, can predispose 

epithelial tissues to oncogenic transformation, allowing molecularly altered clones to 

expand and generate a pre-cancerous “field” [62]. LS is an autoimmune condition with 

an unknown aetiology. While precancerous fields in oral mucosa are likely generated 

through the pro-carcinogenic effects of cigarette smoke, alcohol and other ingested 

compounds (e.g. volatile nitrosamines) [62], the external and intrinsic factors involved 

in the aetiology of LS are less well defined (of course, this presumes that LS does 

generate a field). A number of studies have shown that LS lesions overexpress p53 

protein and, in a significant proportion of cases, harbour mutated TP53 genes [14, 113, 

114]. The induction of p53 is most likely associated with a DNA damage response, 

induced through the production of reactive oxygen species (ROS) or by ischaemic 

stress, both of which are induced during chronic inflammation. Chronic or sustained 

bouts of inflammation are also associated with abnormal cytokine and growth factor 

production (e.g TGF, IL1/, TGFwhich causes significant alterations to the 

underlying stroma, leading to tissue scarring and sclerosus; and the latter is a 

characteristic feature of LS.  

In HPV-positive VSCC, the HPV-encoded E6 and E7 oncoproteins, play key roles in 

early disease pathogenesis, by targeting the key cellular targets p53, and pRb [115].  

Subsequent mutation of these HR-HPV-driven clones or, HPV infection of molecularly 

altered clones, may lead to cellular transformation and the generation of premalignant 

lesions typified by high grade VIN. However, it is not clear at this stage whether virus 
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infection per se results in the expansion of clones which proliferate to generate a pre-

cancerous field. One study, using molecular analyses involving X chromosome 

inactivation, revealed that high-grade VIN lesions contiguous with VSCC were of 

clonal origin, raising the possibility that these VSCCs were derived from molecularly 

altered clones from the VIN lesions [40]. 

Unlike HPV-positive VSCC, comparatively little is known about the molecular defects 

and genetic alterations that contribute to the development of HPV-negative VSCC and, 

just as importantly, the molecular changes that occur in the precursor lesion, dVIN and 

LS. Although comprehensive molecular profiling has yet to be performed, a number of 

studies have identified both overexpression of p53 protein and/or mutation of the TP53 

gene in a high proportion of HPV-negative VSCC [116, 117]. Given that the same 

mutations are also frequently found in dVIN precursor lesions, mutant p53 may act as 

an essential “driver” mutation during the early stages of the disease [118]. Further 

support for the concept that LS generates a precancerous “field” comes from a recent 

study by Rolfe et al., who have shown that the p53 mutations identified in LS lesions 

were found to be identical to those found in the LS-associated VSCC [113]. This finding 

lends further weight to the concept that LS lesions contain molecularly altered clones 

that have the potential to undergo malignant transformation. In addition to p53, 

mutations in PTEN, amplification of the EGFR and HER2 genes and epigenetic 

silencing of p16INK4a, RASSF2A, MGMT and TSP1 have been documented in a high 

proportion of HPV-negative LS-associated VSCCs, compared to VSCCs that were not 

[119-121]. The same study revealed that the extent of promoter methylation increased 

upon disease progression from LS to and LS-associated with VSCC, suggesting that 
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epigenetic inactivation of genes is a common event in vulvar SCC and, more 

importantly, is present in adjacent lesions, implying a possible precursor role for these 

molecular alterations in LS-associated VSCC [121].  

Based on the available data for HNSCC and the current concept of field cancerization, 

it is possible that LS generates a field of pre-neoplastic basal keratinocytes, as a 

consequence of mutations in key “driver” genes (e.g. TP53). These mutation(s) confer a 

growth or survival advantage over neighbouring keratinocytes, allowing them to 

expand laterally within the basal layer and to displace or replace their neighbouring 

keratinocytes. Over time, this generates a field of molecularly abnormal epithelium 

that is susceptible to additional mutation (see Figure 3.7). Further exposure of these 

abnormal keratinocytes to carcinogens, in this instance, pro-inflammatory cytokines or 

some as yet unidentified carcinogen, causes more genetic alterations (multistep field 

cancerization) which eventually give rise to SCC either on the site of previous tumour 

(LR), site distance to previous tumour (SFT) or both; as observed in our cohort study 

where women with LS were more likely to have LR, SFT or both.  

Our analysis, along with others, have showed that local VSCC recurrence is likely to 

arise in a field of cancerization, and future work should focus on identifying potential 

molecular biomarkers that predict the risk of local recurrence. The contiguous nature 

and ease of accessibility of the vulva made this organ an ideal model to study how the 

field of cancerization develops. Also, VSCC almost always arises in a field with 

adjacent abnormal epithelium. By identifying the molecular defect(s), field therapy can 

then be developed and applied topically onto the potential defective field to treat or 

prevent the field from expanding. 
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Although LS is an independent predictor for LR and SFT, it is neither a predictor for 

groin node recurrence nor disease-specific mortality. Groin node recurrence only 

occurs in those who were previously diagnosed with groin node metastasis. The main 

prognostic factors that independently predict mortality are age (older than 65 years), 

advanced disease stage and groin node metastasis. While there is compelling evidence 

to suggest that in cancers of the vagina, anus, penis and oropharynx, patients with 

HPV-positive tumours display better disease-specific survival, the relationship 

between virus positivity and outcome is less clear in women with VSCC. Whereas 

some studies report a substantial survival advantage for HPV-positive patients, others 

report no difference [12, 122-124]. In our own cohort study, we found that HPV 

positivity did not confer any survival advantage. It is now apparent that testing 

tumours for oncogenic HR-HPV infection has remained problematic for two main 

reasons: firstly, the different molecular techniques used have different levels of 

sensitivity and specificity in detecting HPV DNA; secondly, the small HPV DNA 

fragments are likely to have been degraded and lost following the process of fixing the 

tumour in formalin and embedding it in paraffin [125].  These limitations will 

invariably influence the reliability of the reported prevalence rates and prognostic 

data. 

3.9 Overall Summary 

Field cancerization is a well-known and well-documented process of malignant 

transformation. Numerous studies attest to the importance of this phenomenon in the 

development of tumours at anatomical sites such as the oral cavity, oesophagus, colon, 
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stomach and the vulva [38]. The advent of more advanced molecular biology 

technology such as DNASeq and RNASeq, will aid the identification of genetic 

markers and cell signalling pathways whose aberrant expression or dysregulation may 

not only provide useful diagnostic biomarkers but viable targets for therapy. An 

obvious shortcoming in almost all the studies of field cancerization is the lack of 

extensive genome-wide scans that will enable early and important genetic changes in 

tumour evolution to be uncovered. To date, most studies have relied heavily on 

established “tumour-specific” markers. Whilst useful, these highly selected tumour 

markers might constitute later acquisitions in the disease process that are not present 

in preneoplastic or dysplastic epithelium, or whose expression may be key to the very 

earliest stages of disease. It is clear from this, and other studies, that analyses aimed at 

identifying relevant genetic changes in histologically normal epithelium adjacent to 

dysplastic and cancerous lesions is required. The information obtained from such 

studies will be essential for early detection, risk assessment and development of 

chemoprevention of VSCC.  
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4.1 Introduction 

EGCG is currently used as a topical ointment to treat and prevent the recurrence of 

genital warts [52], a proliferative disorder induced by low-risk HPV subtypes - notably 

HPV6 and HPV11. Recently, a clinical case study reported that topical EGCG treatment 

was used successfully to treat an immunodeficient patient suffering from usual-type 

vulvar intraepithelial neoplasia (uVIN), a pre-neoplastic lesion of the vulval skin 

induced by high-risk HPV subtypes [126]. While it is encouraging to learn that EGCG 

could be used to cure uVIN, we are still awaiting the outcome of our Phase II 

randomised control trial that attempts to evaluate the effectiveness and safety of 

topical EGCG (EPIVIN) for the treatment of uVIN. 

Although the clinical evidence, thus far, suggests that topical EGCG is effective in 

treating proliferative disorders induced by both low and high risk HPV subtypes, the 

underlying mechanism of action of EGCG remains to be elucidated. A number of 

studies have shown that EGCG inhibits the growth and malignant potential of HPV-

transformed cervical cancer cell lines through a mechanism involving repression of the 

HPV-encoded viral oncogenes, E6 and E7, and induction of the tumour suppressor 

genes, Rb and p53 [101, 127, 128]. However, given that EGCG has been shown to 

influence a myriad of cell signalling pathways [95], the precise mechanism by which 

EGCG influences the growth of HPV18-infected keratinocytes and expression of the E6 

and E7 proteins remains unclear.  

The objective of this chapter was to examine the effects of EGCG treatment on the 

growth and differentiation of HPV18-immortalised keratinocytes. In addition to this, I 

set out to establish whether EGCG influenced the HPV life-cycle, and expression of the 

E6 and E7 proteins. I also considered whether this study could identify potential 
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biomarkers (i.e. molecular targets of EGCG) that could be used to predict patient 

response to treatment, and, therefore, stratify patients into responders and non-

responders. This could be performed on tissue biopsies collected from patients 

participating in our EPIVIN trial and our planned Phase III clinical trial. 

4.2 HFK-HPV18 – the cell model of choice 

The cell model chosen to investigate the mechanism of action of EGCG was HFK-

HPV18, an HPV18-immortalised human foreskin keratinocyte line carrying episomal 

forms of the virus. This cell line was chosen for the following reasons: 

1. Firstly, at the time this study was undertaken, uVIN-derived keratinocyte cell 

lines were not available for study, and, although not proven, it was felt that 

HFK-HPV18 was more likely to behave like uVIN than the highly transformed 

HeLa and SiHa cell lines. In common with uVIN lesions, HFK-HPV18 

maintains viral genomes in an episomal form and exhibits features of pre-

invasive intraepithelial neoplasia such as hyperproliferation and parakeratosis, 

yet lacks the malignant and invasive potential of the highly transformed HeLa 

and SiHa cell lines.  

2. HFK-HPV18 is ideal for studying the HPV18 life cycle because the majority of 

cells maintain the virus in an episomal, non-integrated form. In organotypic 

raft culture, HFK-HPV18 keratinocytes stratify into a full thickness epithelium, 

where the virus undergoes vegetative replication through a process that is 

linked to keratinocyte differentiation. This feature allows us to study the effects 

of EGCG treatment on the viral life cycle in both monolayer and organotypic 
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raft culture. In this regard, HPV18-HFK has been used successfully to 

investigate factors that influence the HPV18 life cycle. 

3. The E6 and E7 oncogenes are subject to normal transcriptional control in HFK-

HPV18 (i.e. their expression is not deregulated through integration), allowing 

an investigation into whether EGCG influences their transcription in the 

context of a normal infection programme. 

4. HFK-HPV18 expresses functional tumour suppressor genes (TSGs) such as p53, 

p21WAF1 and pRb that are targets for E6 and E7 oncogenes. The effects of EGCG 

treatment on their expression can be studied following treatment. 

4.3 The effect of EGCG treatment on the proliferation of HFK-HPV18 

EGCG has previously been shown to inhibit the proliferation of the vulval cancer-

derived cell line, A431 [129], and the cervical cancer cell lines, SiHa and HeLa [130], 

but its effect on HPV-immortalised keratinocytes has not been investigated. To address 

this question I set out to examine the effect of EGCG on the proliferation of HFK-

HPV18 keratinocytes in monolayer culture. 

4.3.1  EGCG inhibits the proliferation of HFK-HPV18 

To examine the effects of EGCG on the proliferation of HFK-HPV18 keratinocytes, cells 

were recovered into single cell suspensions and seeded in triplicate into 96-well plates 

pre-coated with fibronectin. Cells were allowed to attach and grow for 48hours prior to 

treatment with increasing concentrations of EGCG. 72hours later, control and EGCG-

treated cells were pulsed with 10µM BrdU and cell proliferation measured using the 
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BrdU ELISA kit. A431 cells were included as positive control given their 

responsiveness to EGCG [131].  

As shown in Figure 4.1, cell proliferation was progressively inhibited in both A431 and 

HFK-HPV18 cells subjected to increasing concentrations of EGCG. The IC50 dose, a 

concentration of drug at which 50% of cell proliferation is inhibited, was 60µM and 

100µM for A431 and HFK-HPV18, respectively. Maximum cell inhibition was achieved 

at 80µM for A431 and 150µM for HFK-HPV18.  These findings show that while the 

HPV18-immortalised HFK and malignant vulvar cancer-derived cell lines are 

responsive to EGCG, for some reason, the A431 cell is more sensitive to EGCG than 

HFK-HPV18. 

 

 

 

 

Figure 4.1: EGCG inhibits the proliferation of HFK-HPV18 keratinocytes 

and the VSCC-derived A431 cell line. Cells were treated with increasing 

concentrations of EGCG and proliferation was measured 72 hours later 

using the BrdU ELISA assay kit (Roche). The fold change in proliferation in 

EGCG treated cells was measured against untreated cells (control). Cell 

proliferation decreased as the concentration of EGCG increased. The IC50 

for HFK-HPV18 and A431 were ~100µM and ~60µM, respectively. Data 

shown is an average of 3 independent experiments. 
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4.3.2 EGCG alters the morphology of HFK-HPV18 keratinocytes 

Having established that EGCG inhibits the proliferation of HFK-HPV18, I next 

examined the effects of EGCG treatment on cell morphology. HFK-HPV18 cells were 

seeded into petri dishes pre-coated with fibronectin and allowed to establish small 

colonies for at least 48 hours prior to treatment with 50µM and 100µM EGCG. The 

morphology of control and EGCG treated cells was then examined 72 hours later by 

phase contrast microscopy. Representative images, Figure 4.2, show that the colony 

size of EGCG-treated cells was noticeably smaller than untreated cells, confirming that 

these doses of EGCG inhibited cell proliferation. Furthermore, EGCG-treated cells 

developed cytoplasmic vacuoles and assumed a spindle-like appearance. These 

changes were most apparent at cell treated with 100µM EGCG. 
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Figure 4.2: Changes in the morphology of HFK-HPV18 following 

three days treatment with 25µM, 50µM and 100µM. Single cell 

suspensions of HFK-HPV18 were seeded onto fibronectin-coated 

petri dishes and allowed to grow for three days before various 

concentrations of EGCG were added for an additional three days. 

Changes in cell morphology were evident as the concentration of 

EGCG was increased. The cells assumed spindle-liked appearance 

(red arrows) with intracellular vacuole (yellow arrows) at 100µM. 

Images were taken using a Nikon Eclipse E600 microscope at x200 

magnification.  

 



   

163 
 

4.3.3 EGCG treatment does not impose a specific cell-cycle checkpoint blockade in 

HFK-HPV18 but does increase the proportion of cells in the sub-G1 peak 

The possibility that EGCG inhibited cell proliferation by imposing a cell-cycle check-

point was investigated further using Propidium Iodide (PI) staining coupled with flow 

cytometry. HFK-HPV18 cells were treated with 100µM EGCG for 24, 48 and 72 hours 

or 100ng/ml Nocodazole for 12 hours, an agent that results in cell cycle arrest at the 

G2/M checkpoint. Control and EGCG treated cells were trypsinised into single cell 

suspensions, permeabilised in 70% ethanol and stained with 25µg/ml PI. Cells were 

then subjected to flow cytometric analysis, and the data collected analysed with FlowJo 

v.10 software to build cell-cycle profiles. 

Representative cell-cycle profiles are shown in Figure 4.3. Compared to untreated cells, 

cell-cycle analysis of Nocodazole-treated cells revealed an increase in the number of 

cells in G2/M and a corresponding decrease in the size of the G1 and S phase 

populations. Interestingly, however, EGCG treatment did not induce a specific cell-

cycle check-point blockade but did result in an accumulation of cells in the sub-G1 

population. Cells found in the sub-G1 phase have depleted DNA content as a result of 

a loss of DNA fragments from permeabilised cells. DNA fragmentation is a 

characteristic hallmark of apoptosis and the accumulation of HFK-HPV18 in sub-G1 

suggested that EGCG-treated cells had undergone apoptosis. The number of cells 

underwent apoptosis increased progressively when treatment duration was extended 

to 48 and 72 hours.  
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 Figure 4.3: Representative cell cycle analyses of HFK-HPV18 cells 

cultured in the presence or absence of EGCG. Cells were treated 

with 150µM EGCG for 24, 48 and 72 hrs and, after harvesting, fixed 

and stained with propidium iodide for flow cytometric analysis. 

Nocodazole treatment was used as positive control for the assay. 

Data was analysed with FlowJo v.10. Data shown is an average of 3 

independent experiments. **P<0.05, unpaired student t-test 

indicates that the difference in the proportion of cells is significant 

when compared to control. The proportion of Sub-G1 cells was 

significantly increased following treatment with EGCG for 48hrs.  
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4.3.4 EGCG induces apoptosis in HFK-HPV18  

The accumulation of cells in the sub-G1 phase of the cell cycle, coupled with the 

profound morphological change in response to EGCG treatment, suggested that EGCG 

treated cells were undergoing apoptosis. To confirm this, a TUNEL assay was 

performed to detect the presence of DNA fragmentation, a classical feature of 

apoptotic cells. The TUNEL assay catalytically incorporates fluorescein-12-dUTP at 3’-

OH ends of the DNA using the enzyme Terminal Deoxynucleotidyl Transferase (TdT) 

and forms a polymeric tail. The nucleus of apoptotic cells, which is labelled with 

fluorescein-12-dUTP, can then be visualised with a fluorescence microscope. 

HFK-HPV18 cells were seeded onto sterile cover slips pre-coated with fibronectin and, 

after 24 hours, treated with 100µM EGCG for an additional 72hours. As a positive 

control, cells were treated for 24 hours with 25µM Cisplatin a DNA-damaging agent 

commonly used to induce apoptosis. Cell nuclei were then fixed and stained with 

TUNEL according to the manufacturer’s instructions. Cell nuclei were identified using 

the DAPI DNA stain. The number of TUNEL positive nuclei was counted, and results 

expressed as the number of TUNEL positive nuclei expressed as a percentage of total 

stained cell nuclei. A Two-tailed unpaired Student t-test was used to determine the 

level of significance between the proportion of TUNEL positive cell in drug-treated 

and untreated cells. 

Figure 4.4 shows a summary of the results obtained from the TUNEL assays 

performed on control, Cisplatin or EGCG treated HFK-HPV18 cells. The baseline level 

of apotosis in HFK-HPV18 was approximately 1%. 24 hour treatment with Cisplatin 

increased the number of apoptotic cells to greater than 50%, while treatment with 
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EGCG for 72 hours led to apoptosis in approximately 40% of cells. In comparison, the 

DNA-damaging agent cisplatin is a more potent apoptotic inducing agent as lower 

drug concentrations, and shorter treatment duration are sufficient to induce apoptosis 

in more than 50% of the cell population. 
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 Figure 4.4: TUNEL assay showing EGCG treatment induces 

apoptosis in HFK-HPV18. (A). HFK-HPV18 cells were cultured 

in monolayer and treated with 100µM EGCG for 72 hours or 

25µM Cisplatin for 24 hours as a positive control to induce 

apoptosis. TUNEL assay was used to label apoptotic cell (green) 

and cell nuclei were counter stained with DAPI (blue). 

Magnification x200. (B) TUNEL positive cells were expressed as a 

percentage of total cell nuclei. Unpaired Student t-test was used 

to determine the level of significance for the difference in the 

proportion of apoptotic cells in drug-treated and untreated cells. 

Experiments were repeated three times in triplicate.  

 

A. 

B. 
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4.4 The effect of EGCG on episome replication in HFK-HPV18 keratinocytes 

Unlike HPV18 immortalised HFK cell lines, primary HFK cell strains have a limited 

lifespan in vitro, proliferate slowly and undergo differentiation after a number of 

passages. The introduction of HR-HPV genomes significantly extends the lifespan and 

proliferative potential of keratinocytes, leading ultimately to cell immortalisation. 

EGCG treatment inhibits the proliferation of HR-HPV infected keratinocytes, forcing 

them to undergo apoptosis. One obvious possibility as to how EGCG re-programmes 

these cells to “commit suicide” is to inhibit replication of the viral genome such that 

genome loss results in senescence or differentiation. I sought, therefore, to investigate 

whether EGCG influences HPV replication using an established qPCR-based technique 

that measures viral load (genome copy number) before and after EGCG treatment. 

HFK-HPV18 keratinocytes were cultured in the presence of lethally irradiated 3T3-J2 

feeder cells for at 48 hours or until multiple small keratinocyte colonies had formed 

(48-72 hours). The feeder cells were selectively removed and cells treated with 100µM 

of EGCG for 24, 48 and 72 hours. Cellular DNA was extracted using a commercially 

available kit from Qiagen. qPCR was performed to determine the relative change in 

viral load before and after EGCG treatment on triplicate samples using primers that 

amplify the E2 region of HPV18 genome. The experiments were repeated three times. 

As shown in Figure 4.5, no significant change in viral copy number was observed 

between treated and untreated cells 24 hours after EGCG treatment. However, there 

was 0.2 and 0.5 fold increase in viral copy number relative to untreated cells after 48 

and 72 hours of EGCG treatment, respectively. The increase in viral copy number is 
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statistically significant, a finding which indicates that viral genome replication is 

slightly increased in HFK-HPV18 following EGCG treatment.  

 

 

 

 

 

  

 

Figure 4.5: HPV 18 viral copy number increases with EGCG 

treatment after 48 and 72hrs. HFK-HPV18 cells were treated 

with 100µM EGCG for 24, 48 and 72hrs and DNA were 

harvested. qPCR was performed to quantify the relative fold 

change in viral copy number. **P<0.05, unpaired student t-test 

indicates that the difference in the level of viral load is 

significant when compared to control. Averaged results from 

three experiments. 
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4.5 The effect of EGCG on expression of the HPV18 E6 and E7 oncogenes 

As EGCG treatment appeared to have only a marginal effect on HPV genome 

replication in HFK-HPV18, it appeared unlikely that the reduction in cell proliferation 

occurred as a result of the loss of HPV18 genomes. I next explored the possibility that 

the effects of EGCG on cell growth were mediated through its effects on the HPV-

encoded oncoproteins: E6 and E7.  This seemed pertinent given that EGCG has been 

shown to down-regulate expression of these oncogenes in cervical cancer cell lines. 

To investigate the effect of EGCG on the expression of HPV18 E6 and E7 mRNA and 

protein, HFK-HPV18 cells were cultured with lethally irradiated 3T3 J2 feeder cells 

until 60-70% confluent. The feeder cells were removed with EDTA washing, and 

keratinocytes treated with 50µM or 100µM EGCG for 3 and 6 days. Cells were 

harvested and divided into two pellets: one for mRNA and the other for protein. 

4.5.1 EGCG down-regulates expression of the E6 and E7 proteins  

Cells were lysed in RIPA buffer and equal amounts of protein resolved by SDS-PAGE. 

Western blotting was performed using antisera specific for HPV18 E6 or E7. The 

membranes were re-probed with an antibody to β-actin to ensure equal protein 

loading. The density of the bands detected on the Western blots was quantified using 

the ImageJ software. The density values of the E6 and E7 bands were then normalised 

to the corresponding β-actin density values.  The fold change in protein expression 

was compared to untreated cells (control). Two-tailed Student unpaired t-test was used 

to determine the level of significance in the difference in the oncoprotein expression 

before and after EGCG treatment. 
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Figure 4.6 shows the dose-dependent reduction in the levels of E6 and E7 protein in 

HFK-HPV18 72 hours following treatment either 50µM and 100µM EGCG. An 

expanded version of the original western blots is shown in Supplemental Figure 1. 

Having established that E6 and E7 down-regulation was more pronounced at 72 hours 

post-EGCG treatment, further experiments were performed to examine the treatment 

time required to observe the down regulation of E6 and E7 expression. As the 

reduction in levels of E6 and E7 protein was most pronounced using 100µM EGCG, 

further experiments were performed using this concentration. The effect of EGCG on 

the levels of E6 and E7 proteins was examined at 24, 48 and 72 hours post-EGCG 

treatment by Western blotting. Figure 4.7 and 4.8 show representative examples of 

Western blots for the E6 and E7 proteins, respectively. The levels of E6 protein were 

significantly reduced by more than 50 percent following 24-hour treatment with EGCG, 

and continued to decrease further at 48 and 72 hours post-treatment. Similarly, E7 

protein started to decrease after 24 hours treatment with EGCG and continued to do so 

at 48 and 72 hours treatment. However, unlike E6, the level of E7 protein was only 

reduced by half after 48 hours treatment. 
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Figure 4.6: EGCG treatment downregulates expression of the 

E6 and E7 proteins in HFK-HPV18 and upregulates the 

expression of p53 and its downstream target gene p21
WAF1

. 

HFK-HPV18 cells were either left untreated or treated with 

50µM or 100µM EGCG for three days. Cell were harvested 

and lysed in RIPA buffer. 30µg of total protein lysate were 

resolved by SDS-PAGE and the levels of HPV18 E6, E7, p53, 

p21WAF1 and β-actin determined by Western blotting analysis. 

Experiments were repeated twice.  
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Figure 4.7: EGCG downregulates expression of the HPV18 E6 

protein.  (A). HFK-HPV18 cells were treated with 100µM EGCG 

for 24, 48 and 72hrs. Cells were lysed with RIPA buffer and 

30µg of total protein lysate resolved by SDS-PAGE. E6 

expression was determined by Western blotting analysis. (B) 

Densitometry analysis of the Western blots. E6 densitometry 

value was normalised against β-actin.  Fold change in E6 

expression was compared against untreated cells (control). 

**P<0.05, unpaired student t-test indicates that the difference in 

E6 expression is significant when compared to control. 

Averaged results from three experiments. 
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Figure 4.8: EGCG downregulates expression of the HPV18 E7 

protein.  HFK-HPV18 cells were treated with 100µM EGCG for 24, 

48 and 72hrs. Cells were lysed in RIPA buffer and 30µg of total 

protein lysate resolved by SDS-PAGE. E7 expression was 

determined by Western blotting analysis. (A). Western blot showing 

down-regulation of E7 protein following EGCG treatment. (B) 

Densitometry analysis of the Western blots. E7 densitometry value 

was normalised against β-actin.  Fold change in E7 expression was 

compared against untreated cells (control). **P<0.05, Student 

unpaired t-test indicates that the difference in E7 expression is 

significant when compared to control. *P = 0.09 indicates borderline 

not significance. Averaged results from three experiments. 
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4.5.2  EGCG does not influence the expression of E6 and E7 mRNA 

To explore the possibility that the reduction in HPV18 E6 and E7 protein occurred as a 

result of decreased expression of E6 and E7 mRNA, the levels of E6 and E7 mRNA 

were quantified by q-PCR. The levels of E6 and E7 mRNA were normalised to the 

levels of endogenous beta-2 microglobulin gene within the sample. Data was analysed 

using the relative 2ΔΔCT method using 7500 SDS software (Applied Biosystems).  All 

experiments were repeated twice. 

qPCR analysis, Figure 4.9, revealed that levels of E6/E7 mRNA transcripts were not 

reduced following three days of EGCG treatment. In fact, a small increase in E6/E7 

mRNA of approximately 0.5 fold was observed in HFK-HPV18 cells treated with 50µM 

EGCG compared to untreated cells. No change was observed in cells treated with 

100µM EGCG.  Furthermore, extending the EGCG treatment for a further three days 

did not alter the levels of E6/E7 substantially. There was a small but significant rise in 

the level of E6/E7 transcripts by 0.3 fold at 100µM EGCG on day 6. The findings here 

suggest that the down regulation of E6 and E7 expression following EGCG treatment 

does not occur through effects on transcription of E6/E7 mRNA.  
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Figure 4.9: EGCG treatment leads to a slight increase or no change in 

expression of the HPV18 E6/E7 transcripts. HFK-HPV18 cells were 

treated with 50µM or 100µM EGCG for 3 and six days and RNA were 

harvested from which cDNA were synthesized by reverse transcription. 

qPCR was performed to quantify relative fold change in E6/E7 transcripts 

level pre- and post-EGCG treatment. Expression levels were normalised 

to levels of endogenous beta-2 microglobulin gene in samples. Data was 

analysed using the relative 2ΔΔCT method using 7500 SDS software. All 

experiments were repeated three times. **P<0.05, unpaired student t-test 

indicates that the difference in the level of mRNA expression is significant 

when compared to control. 
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4.5.3 E6 and E7 down regulation are accompanied by a decrease in MCM7 and 

p16INK4a 

MCM7 and p16INK4a are both used as surrogate markers of transcriptionally active HR-

HPV infection as their expression is increased in following HR-HPV infection [115, 

132-135]. Having previously established that EGCG down regulates the E6 and E7 

proteins in HFK-HPV18 keratinocytes, it seemed pertinent to examine the impact of E6 

and E7 loss on expression of these markers. Equal amounts of protein lysate from 

untreated and EGCG-treated HFK-HPV18 cells were resolved by SDS-PAGE and 

Western blotting performed using antsera specific for MCM7 and p16INK4a; β-actin was 

included to ensure equal protein loading. As expected, the down regulation of E6 and 

E7, which followed EGCG treatment, was accompanied by a reduction in MCM7 and 

p16INK4a expression (Figure 4.10A-C). Although the expression of p16INK4a was reduced 

24 hours after treatment with EGCG (Figure 4.10A,C), the expression of MCM7 was 

only reduced 72 hours after treatment (Figure 4.10A,B).  
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 Figure 4.10: EGCG downregulates expression of MCM7 and p16
INK4a

. (A) HFK-

HPV18 cells were treated with 100µM EGCG for 24, 48 and 72hrs. Cells were 

lysed in RIPA buffer and 30µg of total protein lysate resolved by SDS-PAGE. 

Expression of MCM7 and p16
INK4a

 were determined by Western blotting analysis. 

(B&C). Densiometric analysis of the Western blots. MCM7 and p16
INK4a

 

densitometry values were normalised against β-actin.  The fold change in 

expression of MCM7 and p16INK4a in EGCG treated cells were compared against 

untreated cells (control). Unpaired Student t-test was used to determine the 

difference in gene expression was significant when compared to control. 

Averaged results from three experiments. 
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4.5.4 E6 and E7 down-regulation are accompanied by an up-regulation in p53 and 

p21WAF1 

Given that E6 and E7 target the tumour suppressor genes, p53 and pRb, I set out to 

determine whether E6 and E7 down-regulation was associated with their up-

regulation in response to EGCG treatment. Protein lysates used in the experiments 

above were resolved by SDS-PAGE and Western blotting performed using monoclonal 

antibodies (mAbs) specific for p53, its downstream target, p21WAF1, and pRb. The blots 

were reprobed with antibodies specific for GAPDH or β-actin to ensure equal protein 

loading. A preliminary investigation, Figure 4.6, revealed that expression of p53 and 

p21WAF1 were increased 72 hours after EGCG treatment. A more detailed investigation 

(Figure 4.11) revealed that p53 upregulation was not significant until 48 hours after 

EGCG treatment but remained elevated at 72 hours. Unlike p53, the expression of 

p21WAF1 was somewhat variable (Figure 4.12). Whilst a modest induction in p21WAF1 

levels was observed 24 hours after EGCG treatment, they dipped at 48 hours and then 

increased 72 hours after treatment. Unfortunately, the Western blot for pRb were 

inconclusive as the antibody used failed to identify differences between the basal 

phosphorylated and hyperphosphorylated forms of pRb in response to EGCG 

treatment. 
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Figure 4.11: Expression of the p53 protein is upregulated following 

EGCG treatment.  (A) HFK-HPV18 cells were treated with 100µM 

EGCG for 24, 48 and 72hrs. Cells were lysed in RIPA buffer and 30µg 

of total protein lysate resolved by SDS-PAGE. The levels of p53 were 

determined by Western blotting analysis (B) Densitometry analysis of 

the blots. p53 densitometry values were normalised against GAPDH.  

The fold change in p53 expression was compared against untreated 

cells (control). **P<0.05, Student unpaired t-test indicates that the 

difference in p53 expression is significant when compared to control. 

Averaged results from three experiments. 
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Figure 4.12: Expression of the p21

WAF1
 protein is not markedly 

affected by EGCG treatment.  (A) HFK-HPV18 cells were treated 

with 100µM EGCG for 24, 48 and 72hrs. Cells were lysed in RIPA 

buffer and 30µg of total protein lysate resolved by SDS-PAGE. The 

expression of p21
WAF1

 was determined by Western blotting analysis 

(B) Densitometry analysis of the blots. p21 densitometry value was 

normalised against β-actin.  The fold change in p21 expression was 

compared against untreated cells (control). Unpaired Student t-test 

was used to determine the difference in p21
WAF1

 expression was 

significant when compared to control. Averaged results from three 

experiments. 
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4.5.5 EGCG reverses the effects of HR-HPV on expression of DNA 

methyltransferases and Polycomb-group proteins  

Previous studies have identified alterations in key epigenetic regulators following HR-

HPV infection [136]. As E6 and E7 are likely effectors in this response, I set out to 

investigate whether down regulation of the HPV18 E6 and E7 proteins influenced the 

expression of DNA methyltransferases and the Polycomb-group proteins in HFK-

HPV18 keratinocytes. Previously generated protein lysates were resolved by SDS-

PAGE and Western blotting performed using antibodies specific for DNMT1, DNMT2, 

EZH2 and BMI-1; β-actin was included as a loading control. A representative Western 

blot, Figure 4.13, shows that compared to untreated cells, the expression of DNMT1, 

DNMT2 and EZH2 were down regulated, while expression of BMI-1 was up-regulated 

following 72 hour treatment with EGCG. An expanded version of the original western 

blots is shown in Supplemental Figure 2. Again, the changes in the level of expression 

of these epigenetic regulators were most pronounced at 100µM concentration of EGCG.  
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Figure 4.13: EGCG reverses the changes in expression of the DNA 

methyltransferases and polycomb proteins associated with HR-HPV 

infection. HFK-HPV18 cells were treated with 50 and 100µM EGCG for 

72hrs. Cells were lysed with RIPA buffer and 30µg of total protein lysate 

resolved by SDS-PAGE. The expression of HPV18 E6 and E7, DNMT1, 

DNMT3B, EZH2, BMI-1 and β-actin were determined by Western blotting 

analysis. Experiments were repeated twice.  
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4.6 The effects of EGCG on the growth and differentiation of HFK-HPV18 

keratinocytes in organotypic raft culture 

The growth of keratinocytes in organotypic raft culture induces cells to stratify and 

differentiate into a fully organised epithelium that resembles histomorphological 

normal epidermis. This system enables investigators to study the impact of 

pharmacological drugs on keratinocyte differentiation in the context of a three-

dimensional tissue and, in the context of HPV infection, the consequences of drug 

action on the HPV18 life cycle. To establish organotypic raft cultures, HFK-HPV18 

keratinocytes were seeded onto a collagen gel containing 3T3-J2 feeder cells. Once 

confluent, the gels were raised to the air-liquid interface to allow the keratinocytes to 

stratify and differentiate. After two weeks, raft cultures were fixed in formal saline and 

processed for histology. Figure 4.14 shows a haematoxylin and eosin (H&E) stained 

section of representative HFK-HPV18 raft cultures grown at the air-liquid interface for 

two weeks. As with normal epidermal keratinocytes, HFK-HPV18 keratinocytes 

formed a fully differentiated cornified epithelium, with characteristic basal, spinous 

and granular layers reminiscent of a normal epidermis.  
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4.6.1 EGCG inhibits the proliferation of HFK-HPV18 organotypic raft culture 

As the effects of EGCG on the growth of HPV-infected keratinocytes in organotypic 

raft culture had not been performed previously, three different experiments were set 

up to examine the effects of EGCG treatment on the morphology of HFK-HPV18 

keratinocytes in raft culture. In the first experiment, 100µM EGCG was added to the 

culture medium as soon as the collagen plug was lifted to the air-liquid interface, and 

the raft culture refed with EGCG every 2 days for a total of 13 days. In the second and 

third experiments, the raft cultures were allowed to stratify for 7 and ten days at the 

air-liquid interface, respectively, before 100µM EGCG was added into the culture 

medium. In experiment 2, raft cultures were treated with EGCG for seven days while 

those in experiment 3 were treated for ten days. Corresponding control raft cultures 

 
Figure 4.14 Organotypic raft culture of HFK-HPV18 showing the overall 

morphology of the stratified epithelium. Haematoxylin and Eosin (H&E) 

stained section showing a typical raft structure formed by HFK-HPV18.  
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were also set up for all the three experiments where an equal volume of sterile water 

was added in place of EGCG to the culture medium. 

Figure 4.15 shows representative H&E stained sections of raft cultures obtained from 

the three experiments described above. The duration in which all the three raft cultures 

were allowed to stratify was 13, 14 and 20 days before they were fixed and processed 

for histology. Note that the latter raft culture has a thinner epithelium and a thickened 

cornified layer compared to raft cultures harvested at the 13 and 14-day time points. 

All three raft cultures treated with 100µM EGCG formed significantly thinner epithelia 

compared to control untreated rafts. However, EGCG did not prevent the rafts from 

stratifying, as the keratinocytes were still able to differentiate and form stratum 

corneum albeit a less well-defined stratum spinosum and granulosum.   
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 Figure 4.15: EGCG inhibits the proliferation of HFK-HPV18 in 

organotypic raft culture. Panels A-F show representative haematoxylin 

and eosin (H&E) stained sections of HFK-HPV18 keratinocytes grown in 

the absence or presence of 100µM EGCG in raft culture. HFK-HPV18 

cells were seeded onto collagen plugs impregnated with 3T3 cells and 

then lifted onto metal grids to stratify at the air-liquid interface. 100µM 

EGCG or an equal volume of water was added into growth media of the 

raft cultures for the indicated times. In panel B, the raft culture was 

treated with EGCG for 13 days when the collagen plug was laid onto the 

metal grid. In panels C & D, rafts were allowed to stratify for 7 days 

before EGCG was added to the growth media for a further 7 days (panel 

D). In panels E and F, rafts were allowed to stratify for 10 days before 

treatment with EGCG for a further 10 days (panel F).  
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4.6.2 EGCG treatment inhibits the incorporation of BrdU label and reduces the 

expression of the proliferation marker, Ki67, in HFK-HPV18 rafts 

Having observed that EGCG treatment reduces the thickness of the epithelium in raft 

culture, I set out to determine whether this stemmed from the effects of EGCG on cell 

proliferation. Prior to fixation and processing, raft cultures were treated with 25µg/ml 

BrdU for 12 hours to label cells replicating their DNA. Immunofluorescence staining 

was performed with a monoclonal antibody to BrdU and a monoclonal antibody 

specific for the cell proliferation marker, Ki67; DAPI was used as counter stain cell 

nuclei. As shown in Figure 4.16A, a significant number of cells were labelled 

throughout the full thickness of the epithelium in control, untreated raft cultures. In 

marked contrast, fewer cell nuclei were labelled in raft cultures treated with EGCG. 

Essentially similar findings were observed when rafts were stained for Ki67, with 

fewer labelled cells being observed in sections obtained from EGCG treated raft 

cultures. The number of cell nuclei labelled with BrdU, or expressing Ki67, was 

counted manually in control and EGCG treated rafts and these expressed as a 

proportion of the total DAPI stained cell nuclei. Results were presented as the 

proportion of cells stained positive for targeted proliferative markers. Two-tailed 

unpaired Student t-test was used to determine the difference in the proliferative 

marker expression of in EGCG treated rafts is significant when compared to control.  

Figure 4.16B shows the results of IF staining for BrdU and Ki67, shown as a percentage 

of total DAPI stained nuclei. BrdU and Ki67 expression were significantly reduced in 

response to EGCG treatment compared to control rafts, indicating that DNA 

replication and cell proliferation were inhibited by EGCG.  
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Figure 4.16 BrdU incorporation and expression of the proliferation 

marker Ki67 are reduced, while MCM7 remains unchanged, in 

organotypic raft cultures of HFK-HPV18 treated with EGCG. 

Organotypic raft cultures were allowed to stratify for ten days prior to 

the addition of 100µM EGCG, which was added to the growth media 

for a further ten days. 25µg/ml BrdU was added to growth media for 

12 hours prior to processing to label cells replicating DNA. (A) 

Immunofluorescence (IF) staining of FFPE sections of HFK-HPV18 for 

anti-BrdU, Ki67 or MCM7 (Green) and counterstained with DAPI 

(Blue) to detect cell nuclei. Magnification x200. (B) Summary of the 

results obtained for cells incorporating BrdU label or staining positive 

for the proliferation antigens Ki67 and MCM7 in control and EGCG 

treated organotypic raft cultures. The total number of cell nuclei (DAPI 

stained) and those nuclei expressing BrdU, Ki67 or MCM7 were 

counted manually. Results were presented as the proportion of cells 

stained positive for targeted proliferative markers. **P<0.05, two-tailed 

Student unpaired t-test indicates that the difference in BrdU or Ki67 

expression is significant when compared to control.  No Rx = No 

treatment.  
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4.6.3 EGCG treatment of HFK-HPV18 in organotypic raft cultures does not affect 

the expression of MCM7 or p16INK4a, two established targets of the HR-HPVs 

As stated in section 4.4.3, infection of epithelial tissues with HR-HPV is accompanied 

by increased expression of the minichromosome maintenance (MCM) proteins, 

MCM6/MCM7 and p16INK4a. Indeed, p16INK4a, in conjunction with HPV genotyping, is 

often used as a surrogate marker of a transcriptionally active HR-HPV infection. The 

expression of MCM7 and p16INK4a was next examined on control and EGCG-treated raft 

sections using antibodies specific for MCM7 and p16INK4a; raft sections were counter-

stained with DAPI to visualise cell nuclei. Figure 4.17 confirmed high levels of MCM7 

and high levels of “block” staining for p16INK4a in untreated raft cultures. Interestingly, 

very similar levels were observed in EGCG-treated raft sections, indicating that 

chronic EGCG treatment at this particular dose did not abrogate, completely, the 

biological actions of the E6 and E7 proteins. Results obtained from the p16INK4a IF 

staining were consistent with findings from immunohistochemical (IHC) staining 

performed at the Histopathology Department at City Hospital, Birmingham 

(Supplementary Figure 1). Thus, both IF and IHC staining showed diffuse cytosolic 

and nuclear p16INK4a staining in untreated and EGCG-treated raft sections of HFK-

HPV18. 
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Figure 4.17: Expression of p16
INK4a

 and MCM7 are not affected by EGCG 

treatment in organotypic raft cultures of HFK-HPV18. FFPE sections of HFK-

HPV18 raft cultures were stained for (A-D) p16
INK4a

 or (E-H) MCM7 (Green) and 

counter stained with DAPI (Blue) to label cell nuclei. Panels A-D show raft sections 

with diffuse cytosolic and nuclear p16
INK4a

 staining in untreated and EGCG-treated 

raft cultures. Panels E-H show nuclear staining of MCM7. Magnification x200. 

 

 A. No treatment - DAPI 

  

   

 B. No treatment - p16INK4a  

 D. 100µM EGCG – p16INK4a   C. 100µM EGCG - DAPI 

F. No treatment – MCM7 E.  No treatment  - DAPI 

G. 100µM EGCG -  DAPI H. 100µM EGCG  - MCM7 
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4.6.4  EGCG treatment increases the expression of tumour suppressor genes (TSGs) 

p53, p21WAF1 and pRb in HFK-HPV18 raft cultures 

Given the lack of an effect of EGCG on the expression of p16INK4a and MCM7, I sought 

to examine raft cultures for expression of p53, p21WAF1 and pRb, given that these are 

established targets of E6 and E7. Raft sections were stained with monoclonal 

antibodies specific for p53, p21WAF1 or pRb (Green) and counter stained with DAPI 

(Blue) to identify cell nuclei. Compared to untreated raft cultures, EGCG-treated rafts 

displayed overall increases in the expression of p53, p21 WAF1 and pRb (Figure 4.18A & 

B). Quantification of these results revealed that EGCG-treated rafts displayed a 35% 

increase in p53; a 23% increase in p21WAF1; and a 23% increase in pRb expression 

(Figure 4.18C). The increase in p53 and p21WAF1 expression from baseline following 

EGCG treatment seen here in the raft cultures are consistent with results obtained by 

Western blotting analysis in section 2.4.3 also showing an increase in the expression of 

these TSGs following EGCG treatment of HFK-HPV18 in monolayer culture. 

 

 

 

 

 

 

 



   

194 
 

 

A. 



   

195 
 

 

  

 

 

 

 

Figure 4.18: Expression of tumour suppressor genes (TSGs), p53, p21
WAF1

, pRb, and 

the Polycomb group protein BMI1 are increased in response to EGCG treatment. 

(A). Immunofluorescence (IF) staining of FFPE sections of HFK-HPV18 for p53, 

p21
WAF1

 and pRb (Green) and counterstained with DAPI (Blue) to detect cell nuclei. 

(B). Immunofluorescence (IF) staining of FFPE sections of HFK-HPV18 for BMI1 

(Green) and counterstained with DAPI (Blue) to detect cell nuclei. Magnification 

x200. (C) Summary of the results obtained for positive nuclear staining of the TSGs 

in control and EGCG treated raft cultures. Total number of cell nuclei (DAPI 

stained) and those nuclei expressing p53, p21
WAF1

 and pRb were counted manually. 

Results were presented as proportion of cells stained positive for targeted 

proliferative markers. **P<0.05, two-tailed student unpaired t-test indicates that the 

difference in p53, p21
WAF1

 and pRb expression is significant when compared to 

control.  
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4.6.5 EGCG treatment does not affect expression of keratinocyte differentiation 

markers in HFK-HPV18 raft cultures 

Evidence in the literature supports the notion that EGCG promotes the differentiation 

of normal epidermal keratinocytes [103]. Although EGCG treated HFK-HPV18 rafts 

were considerably thinner than control rafts, I nonetheless wanted to determine 

whether EGCG treatment influenced keratinocyte differentiation. Control and EGCG 

treated raft sections were subjected to staining with mAbs specific for a number of 

differentiation-associated proteins. These included involucrin and the high molecular–

weight keratins, K1/10, whose expression is confined to differentiating keratinocytes, 

and -catenin and Np63, whose expression is confined to basal and immediate 

suprabasal cells, and basal cells, respectively (Green). Rafts were counter stained with 

DAPI (Blue) to identify cell nuclei. Figure 4.19A revealed that both involucrin and 

K1/10 were expressed in the suprabasal differentiating layers of HFK-HPV18 rafts, 

with sparing of the undifferentiated basal cell layers. Expression of -catenin was 

localised to cell membranes of basal and suprabasal cell layers, whereas expression of 

Np63 was restricted to the basal cell layer (4.19B). Objectively there was no change in 

the expression of these differentiation markers in EGCG treated and untreated rafts 

indicating that the differentiation of HFK-HPV18 in raft culture was not affected by 

EGCG treatment.   
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A. No treatment  - DAPI B. No treatment - Involucrin 

D. 100µM EGCG  - Involucrin 

G. 100µM EGCG - DAPI H. 100µM EGCG -  Keratin 1/10 

F. No treatment – Keratin 1/10 E. No treatment - DAPI 

C. 100µM EGCG -  DAPI 

A. 
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Figure 4.19: Expression of the keratinocyte differentiation markers: 

involucrin, Keratin 1/10, -catenin and Np63 are not affected by EGCG 

treatment in organotypic raft cultures of HFK-HPV18. FFPE sections from 

control and EGCG treated HFK-HPV18 were stained with mAbs specific for (A-

D) involucrin, (E-H) Keratin 1/10, (I-L) -catenin, or (M-P) Np63  (Green) and 

counterstained with DAPI (Blue) to label cell nuclei. Magnification x200. 

 

 

I. No treatment  - DAPI J. No treatment – -catenin 

L. 100µM EGCG  - -catenin K. 100µM EGCG -  DAPI 

P. 100µM EGCG  - Np63 O. 100µM EGCG -  DAPI 

M. No treatment - DAPI N. No treatment – Np63 

B. 
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4.6.6 EGCG treatment does not influence expression of the late protein, E4, in HFK-

HPV18 raft cultures  

One possible mechanism by which EGCG could inhibit the growth of uVIN lesions is 

to stimulate lytic replication of the virus. To examine the impact of EGCG on lytic 

replication, immunofluorescence staining was performed for E4, a viral-encoded late 

protein whose expression is induced during the lytic phase of the virus life cycle.  

Previous studies have confirmed suprabasal expression of E4 protein in HFK-HPV 18 

keratinocytes induced to differentiate in the organotypic raft culture system. Raft 

sections were stained with an antiserum specific for HPV18 E4 (kindly provided by Dr 

Sally Roberts) and counter-stained with DAPI to visualise cell nuclei. Despite 

numerous attempts, Figure 4.20, I was unable to confirm expression of the E4 protein 

in the suprabasal differentiating cell layers of raft structures generated by HFK-HPV18 

keratinocytes. A similar lack of staining was observed in EGCG-treated rafts, 

precluding an assessment of the effects of EGCG treatment on lytic replication. 
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Figure 4.20: Lack of detectable E4 protein expression in control and 

EGCG-treated HFK-HPV18 raft cultures.  

(A-F) FFPE sections were stained with an antiserum specific for HPV18 E4 

(Green) and counterstained with DAPI (Blue) to label cell nuclei. (A, B) 

Positive staining for HPV18 E4 in suprabasal keratinocyte layers of rafts 

generated from HFK-HPV18 keratinocytes carrying the E6 mutant E6-GWL. 

(D, E) Lack of staining of HPV18 E4 in suprabasal keratinocyte layers in 

rafts generated from HFK-HPV18 keratinocytes. Magnification x200. 

 

 

 

 

 

C. No treatment  - DAPI D. No treatment – HPV18E4 

F. 100µM EGCG  - HPV18 E4 E. 100µM EGCG -  DAPI 

A. HFK-HPV18 E6GWL - DAPI B. HFK-HPV18 E6GWL - E4 
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4.7 EGCG modulates the ubiquitin-proteasome system 

Thus far, I have shown that EGCG influences the cellular levels of the HPV18 E6 and 

E7 proteins through a mechanism that does not appear to involve effects on 

transcription. These findings suggest that EGCG must influence the stability of E6 and 

E7 through effects on protein translation or protein turnover (i.e. post-translational 

events). Previous studies have shown that the E6 and E7 proteins are degraded 

through the ubiquitin-proteasome system, as MG132, a broad-spectrum proteasome 

inhibitor, inhibits the turnover of these proteins. Given that EGCG has previously been 

shown to modulate the turnover of proteins through the ubiquitin-proteasome system, 

it seemed reasonable to assume that EGCG might also promote the turnover of E6 and 

E7 proteins by enhancing their ubiquitination or by modulating proteasome activity.  

4.7.1 The proteasome inhibitor MG132 attenuates EGCG-mediated down regulation 

of E6 and E7 in HFK-HPV18  

To establish whether EGCG enhances E6 and E7 degradation through the ubiquitin-

proteasome pathway, MG132, a commonly used proteasome inhibitor, was used to 

block proteasome activity in untreated and EGCG treated HFK-HPV18 keratinocytes. 

Cells were treated with 100µM EGCG for 72 hours to induce maximum E6 and E7 

down-regulation before the addition of 10µM MG132 for the final 6 hours; HFK-

HPV18 keratinocytes were also treated with MG132 alone. Cells were lysed in RIPA 

buffer and equal amounts of protein lysate resolved by SDS-PAGE. Western blotting 

was then performed using antisera specific for E6 and E7; β-actin was included to 

ensure equal protein loading. 
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Figure 4.21 shows that MG132 treatment leads to an accumulation of E6 and E7 protein, 

indicating that both proteins are degraded through the ubiquitin-proteasome pathway. 

As expected, the levels of E6 and E7 protein were both down-regulated following 72 

hours treatment with of EGCG; however, MG132 treatment led to the accumulation of 

E6 and E7 protein albeit to lower levels than those observed in untreated cells. This 

finding suggests that EGCG stimulates E6 and E7 protein turnover through the 

ubiquitin-proteasome pathway.   

 

 

 

  

 Figure 4.21: MG132 reverses EGCG-mediated down-regulation of the E6 and E7 

proteins in HFK-HPV18. HFK-HPV18 cells were treated with either 10µM 

MG132 for 6hrs, 100µM EGCG for 72hrs or 100µM EGCG for 72hrs followed by 

10µM MG132 for 6hrs.  Cells were lysed with RIPA buffer and 30µg of total 

protein lysate resolved by SDS-PAGE. The levels of HPV18 E6, E7 and β-actin, 

were determined by Western blotting analysis. Experiments were repeated three 

times. 
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4.7.2  EGCG reduces the half-life of the HPV18 E6 protein 

To further strengthen the hypothesis that EGCG stimulates the turnover and 

degradation of the E6 and E7 proteins, the half-life of E6 was measured in the absence 

and presence of EGCG. HFK-HPV18 keratinocytes were cultured in 6cm petri dishes 

on 3T3-J2 fibroblasts until 70% confluent. The feeder cells were then removed and the 

remaining HFK-HPV18 keratinocytes treated with 100µg/ml cycloheximide (CHX), in 

the presence or absence of 100µM EGCG for 1hr, 2hrs, 4hrs and 6hrs. At the allotted 

time points, cells were lysed in RIPA buffer and sonicated. Equal amounts of total 

protein lysate were resolved by SDS-PAGE prior to Western blotting with an antibody 

to E6; blots were reprobed with an antibody to β-actin to ensure equal protein loading. 

A representative experiment, Figure 4.22, shows that the rate of E6 degradation was 

increased significantly within the first hour of EGCG treatment. The half-life of E6 was 

approximately 3 hours but this was significantly reduced to just under an hour 

following EGCG treatment. Interestingly, the rate of protein degradation increased 

only in the first 1.5 hours after EGCG treatment and, thereafter, appeared to stabilise, 

with the rate of protein degradation similar to that of the control.  If HFK-HPV18 cells 

were pre-treated with 100µM EGCG for 2 hours before CHX was added to block 

protein synthesis, note that although the pool of E6 was significantly lower following 

EGCG treatment, but the rate of protein degradation was identical to that of control, 

indicating that EGCG treatment increases the rate of E6 degradation only during the 

first 1.5 hours of treatment. 
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 Figure 4.22: EGCG promotes degradation of the HPV18 E6 protein. 

HFK-HPV18 cells were treated with and without 100µM EGCG in the 

presence of 100µg/ml Cycloheximide (CHX) to inhibit protein 

synthesis. Cells were harvested at 0, 1, 2, 4 and 6hrs post CHX 

treatment and lysed in RIPA buffer. 30µg of total protein lysate were 

resolved by SDS-PAGE and the expression of HPV18 E6 and β-actin 

determined by Western blotting analysis. Experiments were repeated 

twice. (A) Western blot showing down-regulation of E6 expression 

following EGCG treatment. (B) Densitometric analysis of the Western 

blots. E6 densitometry values were normalised against β-actin.  The 

fold change in E6 expression was compared against untreated cells 

(control). **P<0.05, unpaired student t-test indicates that the 

difference in band intensity (protein concentration) was significant 

when compared to control. Averaged results from three experiments. 
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4.7.3 EGCG treatment does not increase the pool of poly-ubiquitinated E6 and E6-

associated proteins 

Proteins that are destined for degradation undergo post-translational modification. In 

most instances, ubiquitination, a process that involves the covalent attachment of 

ubiquitin molecules to lysine residues on the target protein, is a prerequisite for 

proteasome targeting and proteolysis. At least four ubiquitin monomers are required 

before the protein can be recognised by the proteasome [137]. One mechanism by 

which EGCG may increase the rate of E6 degradation is to enhance its ubiquitination. 

To investigate this possibility, a transient expression system was employed in which 

the E6 protein was overexpressed and evidence of E6 ubiquitination examined by 

immunoprecipitating the HPV18 E6 protein and Western blotting with a monoclonal 

antibody that recognises both mono and poly-ubiquitin. 

Briefly, a plasmid, pCA.18E6, encoding an epitope tagged form of HPV18 E6 [69], was 

transiently transfected into HEK293 cells. Following EGCG treatment, the epitope-

tagged HPV18E6 protein was purified using anti-FLAG conjugated agarose beads. 

After a series of washes to remove non-specific protein binding, eluted proteins were 

resolved by SDS-PAGE and subjected to Western blotting with an antibody to HPV18-

E6, or a monoclonal antibody that recognises both mono and poly-ubiquitin. 

As a starting point, the pCA.18E6 plasmid was transiently transfected into HEK293 

cells. 48 hours later, cells were lysed in an NP40-based lysis buffer containing 20mM 

Iodacetamide, and equal amounts of protein lysate resolved by SDS-PAGE. To confirm 

that the tagged HPV18 E6 protein was expressed, and that the epitope tags were intact, 

Western blotting was performed using antibodies specific for HPV18 E6, or to the 
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FLAG or HA epitopes. Total cell lysates from HEK293 cells transfected with the 

pcDNA3 plasmid were included as a negative control, while protein lysates from HFK-

HPV18 were included as a positive control for HPV18 E6. As shown in Figure 4.23, 

Western blotting confirmed the expression of the HPV18 E6 protein in HEK293 cells 

transfected with pCA.18E6, at levels that were higher than those observed in HFK-

HPV18 keratinocytes. Importantly, Western blotting with antibodies specific for the 

HA and FLAG epitopes confirmed the presence of the tagged HPV18 E6 protein, as no 

signals were observed in HFK-HPV18 cells which carry a non-tagged E6 protein. No 

signals were detected in HEK293 cells transfected with pcDNA3, confirming the 

specificity of the antibodies used for detection. Compared to HFK-HPV18, the E6 band 

detected in HEK293 was at a slightly higher molecular weight, consistent with the fact 

that the E6 protein derived from the plasmid carries an extra 3kDa in weight from the 

FLAG (~1kDa) and double HA (2x 1kDa) tagged epitopes.  
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Figure 4.23: Validation of the pCA.18E6 plasmid. HEK293 cells 

were transfected with either control (pCDNA3) or HPV18 E6 

(pCA.18E6) plasmids. 48 hours post-transfection, cells were 

lysed in an NP40-based lysis buffer containing 20mM 

Iodoacetamide. 50µg of total protein lysates were resolved by 

SDS-PAGE prior to Western blotting with antibodies specific for 

the HA or FLAG epitopes, or HPV18 E6, to confirm expression 

of the protein epitopes and E6 in HEK293 cells following 

transfection. The HFK-HPV18 cell was used as positive control 

for HPV18 E6 expression. 
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Having confirmed that HEK293 cells transfected with pCA.18E6 expressed the tagged 

E6 protein, HEK293 cells were next transfected with pCA.18E6 or pcDNA3 and, 48 

hours later, treated with 40µM MG132 or 100µM EGCG for 2 hours. Cells were then 

lysed in an NP40-based lysis buffer containing 20mM Iodoacetamide to inhibit the 

activity of deubiquitinating enzymes (DUBs). Equal amounts of total cell lysate (500µg) 

were incubated with anti-FLAG agarose beads to immunoprecipitate the tagged 

HPV18 E6 protein. After 3 washes, proteins retained by the beads were dissolved in 

Laemmli buffer and resolved by SDS-PAGE. Western blotting was then performed 

using an HRP-conjugated monoclonal antibody that detects mono and poly-

ubiquitinated proteins. The results of a representative immunoprecipitation (IP) 

experiment (Figure 4.24 - upper panel) revealed a general increase in the pool of mono 

and poly-ubiquitinated proteins in E6 immunoprecipitates from MG132-treated cells. 

Interestingly however, no such effects were observed for HPV18 E6 

immunoprecipitated from EGCG-treated cells, with essentially similar levels of mono 

and poly-ubiquitinated proteins being found in HPV18 E6 immunoprecipitates from 

EGCG-treated and untreated samples. The increased amounts of mono and poly-

ubiquitinated proteins found in E6 immunoprecipitates from MG132-treated cells 

appeared to be of moderate to high molecular weight, and in excess of 55kDa. 

Although speculative, this finding suggested that the majority of these high molecular 

weight mono and poly-ubiquitinated proteins were likely to be HPV18 E6-associated 

proteins, and that the amounts of ubiquitinated HPV18 E6 protein present in the eluted 

samples were beyond the limit of detection. Reprobing of the blots with a high-affinity 

monoclonal antibody specific for the HA epitope (Figure 4.24 - bottom panel), 

confirmed the presence of the epitope-tagged HPV18 E6 protein in the IP eluates from 
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the three sets of lysates. Moreover, significantly higher amounts of E6 protein were 

found in the anti-FLAG IP’s prepared from MG132-treated cells, further supporting the 

notion that E6 is degraded through the proteasome. Unlike the situation with MG132, 

EGCG treatment did not result in an increase in the levels of epitope-tagged HPV18 E6, 

with broadly similar levels being observed compared to untreated cells. 

 

 

 

 

 
Figure 4.24: Mono- and poly-ubiquitinated proteins are only detected in 

HPV18 E6 immunoprecipitates from MG132-treated cells. HEK293 cells were 

transfected with plasmids expressing HPV18 E6 (pCA.18E6) or control plasmid 

(pCDNA3) and treated with 100µM EGCG or 40µM MG132 for 2 hours prior 

to lysis in an NP40-based buffer containing 20mM Iodoacetamide. 500µg of 

protein lysates were incubated with Anti-FLAG®M2 agarose beads. FLAG-

tagged proteins were immunoprecipitated and resolved by SDS-PAGE 

followed by Western blotting with a mAb recognising mono- and poly-

ubiquitin or the HA epitope to identify the epitope tagged HPV18 E6 protein. 

Experiment was repeated twice. 
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Western blotting of total cell lysates with a monoclonal antibody specific for the HA 

epitope (Figure 4.25), confirmed expression of epitope-tagged HPV18E6 in lysates 

generated from pCA.18 E6 transfected cells but not in lysates generated from control, 

pcDNA3 transfected cells. Again, MG132 treatment led to an accumulation in the total 

amounts of E6 protein, whereas EGCG had no such effect. 

 

 

 

 

 

 

 

 

 
Figure 4.25: Input lysates for FLAG immuninoprecipitation. 

HEK293 cells were transfected with pCA18E6 or the control 

plasmid, pCDNA3, and treated with 100µM EGCG or 40µM 

MG132 for 2hours. Transfected HEK293 cells were then lysed in 

NP40 containing 20mM Iodoacetamide and sonicated. 50µg (10% 

input) of protein lysates were resolved by SDS-PAGE followed by 

Western blotting for anti-HA and anti-β-actin to confirm 

successful transfection of E6-FLAG-2xHA plasmid into HEK293 

cells. 
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Thus far, it appeared difficult to confirm the existence of ubiquitinated forms of the 

HPV18 E6 protein in response to proteasome inhibition or EGCG treatment, even 

though MG132 treatment increased the total amount of ubiquitinated proteins in 

HPV18 E6 immunoprecipitates. To further refine these experiments, and in an attempt 

to improve the sensitivity of detecting ubiquitinated forms of HPV18 E6, the E6 protein 

was co-expressed with a Histidine-tagged form of ubiquitin (His-Ub). HEK293 cells 

were co-transfected with a plasmid encoding a Histidine (His)-tagged ubiquitin, pHis-

Ub, in conjunction with pCA.18E6 or pcDNA3. The conditions of treatment remained 

the same as described in the previous section. Protein lysates were incubated with anti-

FLAG M2 agarose beads to immunoprecipitate the epitope-tagged HPV18E6 protein 

and Western blotting performed with a monoclonal antibody specific for the His-tag, 

to detect the presence of His-tagged ubiquinated proteins in the anti-FLAG 

immunoprecipitates. The results, Figure 4.26, revealed the presence of high molecular 

weight His-tagged ubiquitinated proteins only in E6 immunoprecipitates purified 

from MG132-treated samples. These high molecular weight species were not observed 

in EGCG or control samples. 
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Figure 4.26: MG132 treatment results in the appearance of 

ubiquitinated proteins migrating at ~250kDa in HPV18E6 

immunoprecipitates. HEK293 cells were co-transfected transfected 

with Histidine-tagged ubiquitin (His-Ub) and E6-FLAG-2xHA or 

control (pcDNA3) plasmid and treated with 100µM EGCG or 40µM 

MG132 for 2hours. Transfected HEK293 cells were lysed in NP40 

containing 20mM Iodoacetamide. 500µg of protein lysates were 

incubated with Anti-FLAG®M2 agarose beads. FLAG-tagged proteins 

were immunoprecipitated and resolved by SDS-PAGE followed by 

Western blotting for the His and HA epitope tags to identify His-Ub 

tagged proteins and HPV18 E6, respectively. Experiment was 

repeated twice. 
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Again, this analysis failed to identify the presence of ubiquitnated forms of HPV18 E6 

migrating at 17kDa, or at higher molecular weights, in either MG132 or EGCG-treated 

cell lysates (Upper panel), even though Western blotting with a monoclonal antibody 

to HA confirmed the presence of the epitope-tagged E6 protein in the anti-FLAG 

immunoprecipitates (Lower panel). Western blotting of protein lysates generated from 

pCA.18E6 transfected cells confirmed the presence of the HA-tagged E6 protein, and 

its absence in pcDNA3 transfected cells (Figure 4.27). Again, higher levels of HPV18 E6 

protein were observed in cells treated with MG132. Higher molecular weight proteins 

were also observed migrating at approximately 20kDa that may constitute ubiquinated 

forms of HPV18 E6; again this species was increased in MG132 treated cells but not in 

control or EGCG-treated cells. Thus far, attempts to demonstrate EGCG-mediated 

ubiquitination of the HPV18 E6 protein had proved problematic. I reasoned that the 

inability to detect ubiquitinated lower molecular weight forms (<100kDa) of HPV18 E6 

might stem from the fact that they are rapidly degraded through the proteasome. To 

examine this possibility, the same experimental procedure was performed, but this 

time, MG132 was added to EGCG-treated cells. Given that the most significant drop in 

E6 expression occurred between 1-2 hours after EGCG treatment (Figure 4.15), 

transfected cells were treated with either 40µM MG132 2hrs, 100µM EGCG 2hrs or first 

primed with 40µM MG132 for 2hr then with 100µM EGCG for 2hrs. 
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Anti-FLAG immunoprecipitates were subjected to SDS-PAGE and Western blotting 

performed with an antibody to the His-tag epitope to detect ubiquitinated proteins. 

This analysis (Figure 4.28) revealed the presence of ubiquitinated high molecular 

weight proteins (>200kDa) in anti-FLAG-immunoprecipitates from MG132 treated and 

EGCG and MG132-treated cells, compared to controls, suggesting that E6 and/or E6-

associated proteins are highly ubiquitinated. Interestingly, anti-FLAG 

immunoprecipitates from EGCG and MG132 treated cells did not appear to contain 

 
Figure 4.27: Validation of the input lysates for the anti-FLAG 

immunoprecipitation. HEK293 cells were co-transfected with 

plasmids encoding His-tagged ubiquitin (His-Ub) and either 

pCA.18E6 or pcDNA3 and treated with 100µM EGCG or 40µM 

MG132 for 2hours. Transfected HEK293 cells were then lysed in NP40 

containing 20mM Iodoacetamide and sonicated. 50µg (10% input) of 

protein lysates were resolved by SDS-PAGE followed by Western 

blotting with mAbs to the His or HA epitopes, and anti-β-actin, to 

confirm successful transfection of pCA.18E6 and His-Ub plasmids 

into HEK293 cells. 
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increased amounts of ubiquitinated high molecular weight proteins, or proteins of 

lower molecular weights.  

 

 

 

 

 

 

 

  

Figure 4.28: High molecular weight species of ubiquitinated proteins are 

found in HPV18 E6 immunoprecipitates in cells treated with MG132 or 

both MG132 & EGCG. HEK293 cells were co-transfected with plasmids 

encoding His-tagged ubiquitin (His-Ub) and either the pCA.18E6 or 

pcDNA3 plasmids. Transfected cells were treated with either 40µM MG132 

2hrs, 100µM EGCG 2hrs or first primed with 40µM MG132 for 2hr then 

with 100µM EGCG for 2hrs. Transfected HEK293 cells were then lysed in 

NP40 containing 20mM Iodoacetamide. 500µg of protein lysates were 

incubated with Anti-FLAG®M2 agarose beads. FLAG-tagged proteins 

were immunoprecipitated and resolved by SDS-PAGE followed by 

Western blotting with mAbs specific for the His-tag epitope (upper panel) 

or the HA-tag epitope (lower panel). Experiment was repeated twice. 
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Reprobing of the blot with an antibody specific for the HA-epitope confirmed 

expression of HPV18 E6 protein in pCA.18E6 transfected cells, with a prominent band 

migrating at approximately 17kDa-20kDa (Figure 4.28). Again, larger amounts of E6 

protein were found in anti-FLAG-immunoprecipitates from MG132 treated cells, 

whereas lower amounts were found in immunoprecipitates from EGCG-treated cells. 

While higher molecular weight species migrating at 25kDa, ~40kDa, 55kDa, and above, 

were observed in MG132-treated cells, EGCG treatment in combination with MG132 

did not influence the amounts of His-tagged HPV18 E6 protein or the amount of these 

higher molecular weight species. Western blotting of cell lysates with an antibody to 

HA (Figure 4.29) confirmed the presence of HPV18 E6 protein in pCA.18E6 transfected 

cells, and increased amounts of the E6 protein in MG132-treated cells. Here, E6 

proteins migrating at 17kDa and ~ 20kDa, with lower levels migrating between 30kDa 

and 45kDa were observed in treated cells. Whilst EGCG treatment did not increase the 

amounts of E6 protein, larger amounts were observed in EGCG and MG132-treated 

cells. A slight reduction in E6 protein was observed in cells treated with EGCG.   
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Figure 4.29: Validation of the input lysates for the anti-FLAG protein 

immunoprecipitation experiment.  HEK293 cells were co-transfected 

with a His-tagged ubiquitin plasmid and either pCA.18E6 or pCDNA3. 

Transfected cells were treated with either 40µM MG132 2hrs, 100µM 

EGCG 2hrs or first primed with 40µM MG132 for 2hr then with 100µM 

EGCG for 2hrs. Cells were then lysed in NP40 buffer containing 20mM 

Iodoacetamide and sonicated. 50µg (10% input) of protein lysates were 

resolved by SDS-PAGE followed by Western blotting with mAbs specific 

for the His or HA-epitope tags to confirm successful transfection of E6-

FLAG-2xHA and His-ubiquitin plasmids into HEK293 cells.  
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4.7.4 EGCG increases the pool of mono-ubiquitinated E6 protein 

Thus far, I have shown that unlike MG132, EGCG failed to increase the pool of 

ubiquitinated HPV18E6 protein when over-expressed in HEK293 cells. Given that the 

immunoprecipitation procedure was performed under non-denaturing conditions, it is 

likely that the purified E6 proteins immunoprecipitated with the anti-FLAG beads 

contain complexes of E6 and E6-associated proteins (see Introduction Chapter 1).  Thus, 

rather than assuming that the higher molecular weight ubiquitinated proteins are 

indeed ubiquitinated forms of E6, it is possible that they constitute high molecular 

weight E6-associated proteins that are themselves mono or poly-ubiquitinated. 

To address this question, an additional protocol was employed to examine purified 

HPV18 E6 for evidence of ubiquitination. Protein lysates from HEK293 cells co-

transfected with His-tagged ubiquitin and pCA.18E6 or pcDNA3, and treated with 

MG132 or EGCG, or both, were incubated with Urea lysis buffer for 1 hour to denature 

protein complexes (i.e. to break E6 - E6-associated protein interactions).  The protein 

lysates were then incubated with high-affinity nickel beads to “pull-down” His-tagged 

proteins.  After a series of washes to remove non-specific binding, bound proteins 

were eluted from the Nickel beads and resolved by SDS-PAGE prior to Western 

blotting with an antibody specific for the HA-epitope to detect HPV18 E6. Figure 4.30 

shows the detection of a single species of E6 protein migrating at ~ 25kDa. This mono-

ubiquitinated pool of E6 protein was increased following MG132 treatment, to a lesser 

extent by EGCG treatment, and in response to a combination of EGCG and MG132 

treatment, indicating that both treatments resulted in an increase the amounts of 

mono-ubiquitinated E6 proteins. Western blotting of cell lysates (Figure 4.30) 
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confirmed the presence of HPV18E6 protein in pCA.18E6 transfected cells, revealed a 

significant increase in the amounts of HPV18E6 protein in MG132-treated cells, and a 

slight reduction in E6 protein in cells treated with EGCG.   
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Figure 4.30: EGCG promotes mono-ubiquitination of the HPV18 E6 

protein. HEK293 cells were co-transfected with Histidine-tagged 

ubiquitin (His-Ub) and E6-FLAG-2xHA or control (PCDNA3) plasmid. 

Transfected cells were treated with either 40µM MG132 2hrs, 100µM 

EGCG 2hrs or first primed with 40µM MG132 for 2hr then with 100µM 

EGCG for 2hrs. Cells were lysed in NP40 lysis buffer containing 20mM 

Iodoacetamide and sonicated. 500µg protein lysates were denatured 

with 5M urea lysis buffer. Denatured protein lysates were incubated 

with His-Select® Nickle Magnetic Agarose beads for 2hrs. Histidine-

tagged proteins were immunoprecipitated and resolved by SDS-PAGE 

followed by Western blotting with an mAb specific for the HA epitope 

on HPV18E6. Experiment was repeated twice. 
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Figure 4.31: Validation of the input lysates for the His-tagged Ub 

immunoprecipitation experiment. HEK293 cells were co-transfected 

with plasmids encoding His-tagged ubiquitin (His-Ub) and either 

pCA.18E6 or pcDNA3. Transfected cells were treated with either 

40µM MG132 2hrs, 100µM EGCG 2hrs or first primed with 40µM 

MG132 for 2hr then with 100µM EGCG for 2hrs. Cells were lysed in 

NP40 lysis buffer containing 20mM Iodoacetamide. 50µg (10% input) 

of protein lysates were resolved by SDS-PAGE followed by Western 

blotting with mAbs specific for the His and HA epitopes to confirm 

successful transfection of E6-FLAG-2xHA and His-ubiquitin plasmids 

into HEK293 cells. 
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4.7.5 EGCG selectively inhibit the Chymotrypsin-like activity of the proteasome 

The inner core of the proteasome contains the main catalytic enzymatic activities, 

including Trypsin-like (TL), Chymotrypsin-like (ChTL) and caspase-like (CGPH) 

activity, all of which are involved in protein proteolysis, degrading poly-ubiquitinated 

proteins into smaller peptides [138]. These enzymatic activities can be selectively 

inhibited or accelerated by endogenous and exogenous agents. It is possible that EGCG 

can selectively influence one or more of these three enzymatic activities leading to an 

increase in the processing of the viral oncoproteins. To investigate whether any of 

these enzymatic activities was modulated by EGCG, experiments were conducted to 

measure the rate of degradation of fluorogenic peptide substrates specific for TL, ChTL 

and CGPH activities in endogenous and exogenous proteasomes.  Purified exogenous 

proteasome (20S proteasome) and selected fluorogenic peptide substrates specific for 

the TL, ChTL and CGPH activities were purchased from Enzo-Lifesciences. 

Endogenous proteasomes, in the form of "crude" cytosolic preparations, were 

generated from HFK-HPV18 cells using an NP40-based lysis buffer. HFK-HPV18 cells 

were treated with 10µM MG132 for 6 hours or 100µM EGCG for 72 hours before cell 

lysis in situ. To measure endogenous proteasome activities, the fluorogenic peptide 

substrates were incubated with 10µg of protein lysate for 30 minutes, and the 

fluorescence emitted when the peptides were cleaved were measured at 450nm on a 

fluorescence plate reader. The strength of the fluorescence signal emitted corresponds 

to the amount of the fluorogenic peptide cleaved by the enzymes during the 30-minute 

incubation. The fluorescence readings of EGCG and MG132 treated lysates were then 

compared to that of untreated control lysates. 
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To measure the proteolytic activity of the exogenous proteasome, the 20S proteasome 

were incubated with 150µM MG132 or 100µM EGCG for 30 minutes prior to adding 

the fluorogenic peptide substrates. The fluorescence emitted was measured with a 

fluorescence plate reader as described above.  

Figures 4.32, 4.33 and 4.34 show the three enzymatic activities of the proteasome for 

Trypsin-like, Caspase-like and Chymotrypsin-like activities, respectively. The activities 

were expressed as relative fold change in activity relative to control (no drug 

treatment). When compared to control, little or no change was observed in the 

Trypsin-like and Caspase-like activities of endogenous and purified 20S proteasomes 

following EGCG or MG132 treatment. However, Chymotrypsin-like activities of the 

exogenous and endogenous proteasomes were significantly inhibited following EGCG 

or MG132 treatment.  Collectively, these findings show that EGCG, like MG132, and 

some other proteasome inhibitors, modulates the Chymotrypsin-like activity of the 

proteasome [139, 140]. 
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Figure 4.32: EGCG and MG132 do not alter the Trypsin-like 

activity of endogenous and purified 20S proteasomes. 

Fluorogenic peptide substrates specific to Trypsin-like enzymatic 

activities, were incubated with endogenous proteasomes from 

HFK-HPV18 protein lysate treated with EGCG or MG132, or 20S 

(exogenous proteasomes) treated with MG132 or EGCG. 

Fluorescence emitted from peptide cleavage was measured with 

fluorescence plate reader and the fold change in florescence 

emission was compared against the control (no drug treatment). 

**P<0.05, unpaired student t-test indicates that the difference in 

enzymatic activities was significant when compared to control. 

Average results from three experiments. 
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 Figure 4.33: EGCG and MG132 do not alter the Caspase-like 

activity of endogenous or purified 20S proteasomes. Fluorogenic 

peptide substrates specific to Caspase-liked enzymatic activities 

were incubated with endogenous proteasomes from HFK-HPV18 

protein lysate treated with EGCG or MG132, or 20S (exogenous 

proteasomes) treated with MG132 or EGCG. Fluorescence emitted 

from peptide cleavage was measured with fluorescence plate 

reader and the fold change in florescence emission compared 

against a control (no drug treatment). **P<0.05, unpaired student 

t-test indicates that the difference in enzymatic activities was 

significant when compared to control Average results from three 

experiments. 
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Figure 4.34: EGCG and MG132 inhibit the Chymotrypsin-like 

activity of endogenous and purified 20S proteasomes. Fluorogenic 

peptide substrates specific to Caspase-liked enzymatic activities 

were incubated with endogenous proteasomes from HFK-HPV18 

protein lysate treated with EGCG or MG132, or 20S (exogenous 

proteasomes) treated with MG132 or EGCG. Fluorescence emitted 

from peptide cleavage was measured using a fluorescence plate 

reader, and the fold change in florescence emission compared 

against a control (no drug treatment). **P<0.05, unpaired student t-

test indicates that the difference in enzymatic activities was 

significant when compared to control. Average results from three 

experiments. 
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4.8 A role for reactive oxygen species (ROS) in EGCG-mediated degradation of 

HPV18 E6 

A recent study has shown that Docosahexaenoic acid (DHA), an omega-3 fatty acid, 

promotes ubiquitin/proteasome-mediated proteolysis of the HPV16 and HPV18 E6 and 

E7 oncoproteins through a mechanism involving ROS [141]. EGCG has previously 

been shown to induce ROS overproduction, leading to oxidative stress-induced cell 

damage and apoptosis [142, 143]. Based on this evidence it is plausible that the down-

regulation of the HPV oncoproteins E6 and E7 in response to EGCG is mediated 

through the overproduction of mitochondrial ROS. I set out to investigate whether 

EGCG stimulates the production of ROS, and whether this was responsible for E6 

proteolysis through the ubiquitin-proteasome pathway.  

To detect the levels of intracellular ROS in HFK-HPV18 cells following EGCG 

treatment, cells were plated in triplicate, into 96-well plates pre-treated with collagen. 

Cells were allowed to attach and grow for 48 hours prior to treatment. Cells were then 

incubated with the general oxidative stress Indicator (CM-H2DCFDA) for 1 hour prior 

to treatment with increasing concentrations of EGCG (0, 25, 50, 100, 150 and 200µM 

EGCG). To induce endogenous ROS, cells were treated with 500µM hydrogen 

peroxide (H2O2). The effects of 500µM H2O2 in combination with 200µM EGCG were 

also examined to look for possible synergistic effects on ROS production. The 

fluorescence signal emitted from the breakdown of the fluorogenic ROS indicator CM-

H2DCFDA was measured on a fluorescence plate reader. Figure 4.35 shows the results 

of a representative experiment (one of three). As predicted, treatment with H2O2, 

promoted cleavage of the fluorogenic CM-H2DCFDA substrate, giving rise to a strong 
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fluorescence signal that increased over time (5 - 360 mins). This confirmed that H2O2 

treatment stimulated the levels of ROS within these cells. The level of ROS in H2O2 

treated cells was significantly higher than that of control and continued to rise steadily 

over the 6 hours period. In contrast, EGCG treated cells had significantly lower levels 

of ROS compared to control. Furthermore, EGCG suppressed ROS induction in H2O2 

treated cells to levels that were significant below that of control, indicating that EGCG 

is an anti-oxidant and not a pro-oxidant in this context.  
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To examine the impact of ROS on the expression of the E6 protein, HFK-HPV18 cells 

were plated into petri dishes and, when 70-80% confluent, treated with 100µM EGCG; 

500µM hydrogen peroxide (H2O2); 5mM N-acetylcysteine (NAC); primed with 5mM 

NAC for 1hr then 100µM EGCG; 5mM NAC then 500µM H2O2 for 6 hours or 48 hours. 

NAC is a powerful anti-oxidant that scavenges intra-cellular superoxide and free 

radicals [144]. Cells were then lysed with RIPA buffer in situ and protein lysates were 

resolved by SDS-PAGE. Western blotting was performed to assess the level of E6 

 

Figure 4.35: EGCG treatment reduces the level of reactive oxygen species 

(ROS) in HFK-HPV18 keratinocytes. HFK-HPV18 cells were incubated 

with the General Oxidative Stress Indicator (CM-H2DCFDA) for 1 hour 

prior to treatment with increasing concentrations of EGCG (0 to 200µM), 

500µM hydrogen peroxide (H2O2) and 200µM EGCG plus 500µM H2O2. 

Fluorescence signals emitted following the cleavage of the fluorogenic CM-

H2DCFDA molecule were measured with fluorescence plate readers at 

increasing time points for up to 360 minutes. The difference in fluorescence 

signals detected between EGCG treated cells and controls were statistically 

significant when tested with two-tailed unpaired Student t-test (P<0.05). 

This is a representative result of 3 experiments. 
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protein expression following EGCG, H2O2 and NAC treatment using antisera specific 

for HPV18 E6; blots were reprobed with an antibody to β-actin to confirm equal 

protein loading. Figure 4.36 shows that the level of E6 protein expression following 

treatment with EGCG alone, H2O2 alone, NAC alone, EGCG plus NAC and H2O2 plus 

NAC for 6 and 48 hours.  At 6 hours, the level of E6 protein was slightly reduced 

following EGCG treatment but not following H2O2 or NAC treatment. It appears that 

the down regulation of E6 induced by EGCG was reversed by NAC. When treatment 

duration was extended to 48 hours E6 expression was found to be reduced following 

EGCG, H2O2 and NAC treatment, and NAC did not reverse the down regulation of E6 

induced by EGCG as seen following 6 hours treatment.  

 

 

 

 

 

 



   

231 
 

 

 

 

 

 

 

 

 

 

 

 Figure 4.36: Expression of the HPV18 E6 protein is only marginally 

affected by ROS. HFK-HPV18 cells were treated with 100µM EGCG; 

500µM hydrogen peroxide (H2O2); 5mM N-acetylcysteine (NAC); primed 

with 5mM NAC for 1hr then 100µM EGCG; 5mM NAC then 500µM H2O2 

for 6hrs or 48hrs.  Cells were lysed with RIPA buffer and sonicated. 30µg 

of total protein lysate were resolved by SDS-PAGE prior to Western 

blotting with an antibody to HPV18 E6 or β-actin. This is a representative 

result of two experiments. 

 



   

232 
 

4.9 Discussion 

Although an increasing body of evidence shows that green tea polyphenols, 

particularly EGCG, inhibit the growth and induce apoptosis in HR-HPV-positive 

cervical cancer cell lines, the underlying mechanism of action(s) remains to be 

elucidated.  Of the studies that have evaluated the effects of EGCG treatment on the 

growth and behaviour of human cervical cancer cell lines [100, 101, 128, 145, 146], only 

two examined the impact of EGCG on expression of the HPV-encoded E6 and E7 

oncogenes. Despite the lack of insight into its mechanism of action, EGCG has been 

made into an ointment (Veregen), and used successfully to treat genital warts [52]. 

However, while appearing effective, it is still unclear whether EGCG targets the virus, 

or whether it inhibits epithelial cell proliferation. As such, it remains to be discovered 

whether EGCG functions as an anti-viral in this disease.  

Here, I have used a well-characterised human foreskin keratinocyte cell line, HFK-

HPV18, to study potential anti-viral effects of EGCG in both monolayer and three-

dimensional organotypic raft culture. Like other studies, we found that EGCG inhibits 

the growth of HPV18 infected keratinocytes and, at doses greater than 50µM, induces 

cell death by apoptosis. However, unlike the DNA-damaging agent Cisplatin [147], the 

effects of EGCG on growth and apoptosis took longer to develop at the doses used. 

Although studies using cervical cancer cell lines have shown that EGCG induces a 

G2/M cell-cycle arrest and increases the proportion of cells undergoing apoptosis (sub-

G1 population) [101, 145], such effects were not observed in HFK-HPV18. However, a 

progressive increase in the proportion of cells in the sub-G1 population was observed 

when the duration of EGCG treatment was extended to 72 hours. Our findings are in 
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broad agreement with those of others who have shown that EGCG treatment of 

normal epidermal keratinocytes and the SCC cell line, SCC13, increases the size of the 

sub-G1 population without altering cell cycle per se [96, 97]. This indicates that EGCG-

induced growth inhibition and apoptosis in keratinocytes and HFK-HPV18 is probably 

achieved through a mechanism(s) that is independent of any effects on the cell-cycle. 

The effects of EGCG on cell proliferation was not limited to cells grown in monolayer 

culture, as growth inhibition was also observed in HFK-HPV18 cultured in a three-

dimensional organotypic raft culture. Compared to untreated cells, EGCG treated cells 

produced thinner epithelial structures in raft culture, with a loss of the more mature 

suprabasal epithelial cell layers. These findings are in broad agreement with those of 

Yokoyama and colleagues who showed that EGCG treatment of HPV18 transformed 

ecto- and endo-cervical cell lines grown in raft culture, were significantly thinner than 

those of controls [100].  Furthermore, using BrdU labelling and Ki67 staining, I went on 

to show that cell proliferation was significantly reduced in EGCG treated rafts, 

indicating that EGCG imposes a major effect on cell proliferation. In normal 

epithelium, cell proliferation is confined to basal epithelial cells, while cells in the 

suprabasal layers are committed to terminal differentiation and no longer undergo 

mitosis.  In HR-HPV infected epithelium, keratinocytes retain their ability to undergo 

mitosis even though they have migrated out of the basal layer (parakeratosis). This, in 

part, explains how HR-HPV infected keratinocytes give rise to a thicker, dysplastic 

epithelium when compared to their uninfected isogenic counterparts when grown in 

organotypic raft culture [148]. Treatment with EGCG inhibits the proliferative 

potential of HPV18 infected keratinocytes in the basal and suprabasal layers resulting 
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in rafts with a very thin epithelium as fewer basal cells are capable of undergoing 

differentiation. At this stage, it is unclear whether EGCG merely reverses the 

proliferative potential of HPV18 infected keratinocytes, by inhibiting the growth 

promoting functions of E6 and E7, forcing them to behave like normal uninfected cells. 

Despite numerous attempts, we were unable to culture NVK or the isogenic 

counterpart of HFK-HPV18 successfully in raft culture. Future studies are planned to 

examine the effects of EGCG on the normal uninfected keratinocytes. 

Although treatment of HFK-HPV18 with EGCG resulted in overall thinner raft 

structures displaying less distinct suprabasal cell layers, it did not appear to affect their 

ability to undergo terminal differentiation. Expression of the high molecular weight 

keratins: K1/10 and the cross-linked envelope protein, involucrin, were maintained in 

the parabasal cells and a distinctive cornified layer was also observed on the rafts. 

K1/10 and involucrin are differentiation proteins synthesized in the stratum spinosum 

as keratinocytes undergo growth arrest in preparation for terminal differentiation. On 

closer inspection, the architecture of the suprabasal layers in EGCG treated rafts 

appeared distorted with less distinctive stratum spinosum and stratum granulosum 

when compared to control rafts. Whether EGCG influences more subtle aspects of the 

differentiation process in HFK-HPV18 requires further investigation.  

The productive or lytic phase of the virus life cycle of human papillomavirus is 

intimately linked to keratinocyte differentiation. The HPV-encoded early and late 

genes are selectively expressed as the keratinocytes mature and migrate upwards out 

of the basal layer towards the stratum corneum. The HPV E4 gene is normally 

expressed late in the viral life cycle, where it is required for viral assembly and release. 
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The E4 protein, an insoluble amyloid protein, is abundantly expressed in the upper 

epithelial layers of productively infected HPV lesions/tissues.  Indeed, its presence is 

often used as a biomarker to indicate viral replication or active, productive forms of 

viral infection [149]. HFK-HPV18 has been used extensively as a model to study the 

HPV life cycle in vitro [150]. These studies have shown that HFK-HPV18, which carries 

episomal forms of the virus, can be induced to express the E4 protein in organotypic 

raft culture [151]. Despite numerous attempts, I was unable able to detect expression of 

the E4 protein in HFK-HPV18 raft cultures. As a similar lack of staining was observed 

on EGCG-treated rafts, this precluded an assessment of the effects of EGCG on HR-

HPV lytic replication. At this stage, it is unclear why we were unable to detect E4 

expression, given that the raft structures displayed evidence of histomorphological 

differentiation. Although unlikely, I reasoned that the HPV18 genome might have 

become integrated in HFK-HPV18. Under these conditions, the virus is no longer 

capable of lytic replication. However, the PCR-based E2 disruption assay confirmed 

that the E2 region of the HPV18 genome was intact prior to culturing on rafts, 

indicating that the virus was still maintained in episomal form [108]. It is currently not 

clear why expression of the E4 protein was not observed in HFK-HPV18 rafts but is not 

due to incomplete terminal differentiation of cells in the raft culture system. 

When measuring the relative change in viral copy number in HFK-HPV18 cultured in 

monolayer, little or no change in relative viral copy number was observed when EGCG 

treated keratinocytes were compared to untreated cells using a sensitive qPCR-based 

assay.  This led us to speculate that viral genome maintenance is probably not affected 

by EGCG, at least in response to short-term treatment. In the context of organotypic 
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raft culture treated, it is possible that the virus is still able to maintain episomal 

replication in the basal epithelium but fails to undergo genome amplification and lytic 

replication as the epithelium is no longer in a highly proliferative or "hyperplastic 

state" that may be required for lytic viral replication.  Using my newly derived primary 

keratinocyte cell line which harbours episomal forms of HPV18 (VIN cl.11), I have 

shown that EGCG treatment impairs viral replication in organotypic raft culture, as 

shown by the lack of suprabasal E4 protein expression in EGCG treated rafts (see 

Chapter 5).  This observation further strengthens our hypothesis that EGCG probably 

affects the lytic vegetative phase of the viral life cycle by modulating the behaviour of 

the keratinocytes. We speculate that chronic EGCG treatment probably inhibits the 

growth potential of the HPV18-immortalised keratinocytes so that they are unable to 

expand the pool of undifferentiated keratinocytes that are destined for terminal 

differentiation. This may explain why treatment with the Veregen ointment requires a 

protracted treatment regime, where the ointment is applied three times daily for 16 

weeks to achieve complete resolution of genital warts [52]. Further experiments are 

planned to evaluate the effect of chronic EGCG exposure (at least 30 days treatment) 

on HFK-HPV18 raft cultures.   

Having evaluated the phenotypic consequences of EGCG treatment on HPV18 infected 

keratinocytes in both monolayer and organotypic raft culture, I next examined 

potential molecular targets of EGCG. Two studies have shown that EGCG down-

regulates expression of the key viral oncogenes E6 and E7 in cervical cancer cell lines, 

probably through mechanisms that involve transcriptional repression; however, the 

true molecular target(s) remain to be elucidated.  
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E6 and E7 are the key HPV-encoded oncogenes that disrupt cellular signalling 

pathways to create a cellular environment that favours viral lytic replication. The E7 

oncoprotein binds to and destabilises members of the Retinoblastoma (Rb) family of 

proteins leading to the liberation of E2F transcription factors and activation of S-phase-

specific genes. This forces basal and suprabasal cells to re-enter the cell cycle so that 

cell proliferation continues and consequently gives rise to a hyperproliferative 

epithelium. This is a feature observed in HFK-HPV18 raft cultures [152-154].  The 

increase in E2F activity, which promotes aberrant cell proliferation, normally triggers 

an increase in expression of the tumour suppressor gene p53, which functions to put a 

brake on cell proliferation and induce apoptosis in E7 expressing keratinocytes. To 

counteract this, the high-risk E6 proteins counter p53 upregulation by promoting its 

degradation through the ubiquitin-proteasome mediated pathway, thus reducing the 

total pool of p53 protein. E6 can also bind directly to p53 and inhibits its downstream 

transcriptional activity [66].  

Findings presented in this chapter show that EGCG down-regulates expression of E6 

and E7 oncoproteins in HFK-HPV18 and this, as predicted, was followed by increased 

expression of their putative targets: TP53 and pRB, respectively. Whether the 

upregulation of TSGs, in particularly p53, is a direct consequence of E6 and E7 

degradation or occurs independently as an "off-target” effect of EGCG, remains to be 

confirmed, as EGCG has been shown to directly stimulate expression of TSGs (e.g. p53, 

p21WAF1, pRb) in a range of cancer cell lines. It has been suggested that EGCG increases 

the half-life of p53 by selectively phosphorylating serine residues on the protein, the 

net effect of which is to inhibit MDM2-mediated ubiquitin-proteasome degradation. 
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This results in protein stabilisation and activation of its downstream targets, p21WAF1 

and BAX, which induce cell growth inhibition and apoptosis [155-158]. Consistent with 

other studies, I also found that the accumulation of p53 protein stimulates the 

upregulation of its downstream target gene, p21WAF1. However, in monolayer culture 

the relative induction in p21WAF1 expression was modest and not statistically significant. 

However, this contrasted to its expression in raft cultures, where a clear induction in 

p21WAF1 protein was observed in response to EGCG treatment. The reason for the lack 

of difference in expression of p21WAF1 in control and EGCG treated cells, especially on 

day 3, is probably masked due to an upregulation in p21WAF1 expression as untreated 

cells attain confluence and cell growth becomes inhibited [159]. 

With respect to pRb, EGCG treatment was found to reduce the overall levels of Rb but 

it was unclear whether it selectively increased the pool of “hypophosphorylated” form 

of RB; the form responsible for binding and inactivating the E2F transcription factors 

[160-162]. Although the overall levels of Rb were increased in EGCG treated raft 

cultures, I failed to distinguish which of the two species (hypo- or hyper-

phosphorylated forms), were selectively induced in response to EGCG treatment. 

Despite numerous attempts, I failed to demonstrate changes in the levels of hypo and 

hyper-phosphorylated forms of Rb as the antibody failed to work in immunoblotting 

experiments.  

To further assess changes in additional molecular targets following down-regulation of 

the E6 and E7 proteins, the expression of MCM7 and p16INK4a, and epigenetic regulators 

whose expression becomes dysregulated following HR-HPV infection, were also 

examined. p16INK4a is overexpressed in keratinocytes expressing the HR-HPV E7 
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proteins as a result of the abrogation of the negative feedback of pRb [163]. As 

expected, the expression of p16INK4a was down regulated as pRb expression was 

restored. Restoration of pRb expression is likely to inhibit the E2F1 activity binding 

leading to the down-regulation of its target gene, MCM7. MCM7 is used as a surrogate 

marker to indicate the presence of transcriptionally active HR-HPV oncogenes in HR-

HPV-associated disorders, as expressed in these hyperproliferative cells in suprabasal 

layer [164-166].  Interesting, the expression of MCM7 in EGCG treated rafts was 

restored to the basal cells thus further confirming the abrogation of E6/E7 influence 

following EGCG treatment.  

A series of epigenetic alterations have been reported following transfection of high-risk 

E6 and E7 oncogenes into primary human epidermal keratinocytes. These included 

upregulation of the methyltransferase, Enhancer of Zeste Homolog 2 (EZH2); the DNA 

methyltransferases, DNMT1 and DNMT3B; the histone demethylases, KDM6A and 

KDM6B, and down-regulation of the Polycomb group protein, BMI1 [136, 167-169]. 

Although it remains unclear how E6 and E7 modulate expression of these epigenetic 

modulators, some studies have found that this is linked indirectly to down-regulation 

of TP53 and pRb. For instance, the increase in the expression of EZH2 and DNMTs 

have been found to be mediated through the loss of p53 (induced by E6) [168, 170], and 

the expression of DNMT1 is thought to be regulated through the pRb/E2F pathway 

(induced by E7) [171]. EGCG has also been previously shown to be able to modulate 

the expression and the enzyme activities of polycomb group proteins and DNMTs 

through a mechanism that is yet to be defined. I found, for the first time, that EGCG 

treatment of keratinocytes with episomally maintained HPV18 reverses the expression 
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of the epigenetic modulators induced by HPV18 E6 and E7 described previously.  The 

expression of EZH2, DNMT1 and DNMT3B were downregulated while the expression 

of BMI1 was upregulated in EGCG treated keratinocytes when compared to controls. 

We believe that the changes in the expression of these epigenetic modulators are due 

to either the down-regulation of E6/E7, the re-expressions of the TSGs or both. 

Interestingly, BMI1 expression, previously reported to be down-regulated following 

EGCG treatment in various cancer cell lines, was found to be upregulated in HFK-

HP18, and this probably suggests that the changes in the expressions in these 

epigenetic modulators are likely to be a consequence of the down-regulation of E6/E7 

proteins. To determine if the changes in the expression of the epigenetic modulators 

are a consequence of the down-regulation of E6/E7 expression or a direct modulation 

by EGCG, I have planned future experiments using isogenic untransfected HFK to 

investigate whether similar epigenetic alterations also follow after EGCG treatment. 

The down-regulation of E6 and E7 proteins following EGCG treatment appears to play 

a pivotal role in modulating the expression of key molecular targets (as discussed 

above) that subsequently modifies the behaviour of the keratinocytes.  Therefore, I 

sought to understand the underlying mechanism of action EGCG in modulating the 

expression of E6 and E7 in HFK-HPV18. Contrary to previous studies [101], I found, 

using the HFK-HPV18 model system, that EGCG does not affect the transcription of E6 

and E7 genes but does stimulate the turnover of the E6 and E7 viral oncoproteins 

through the ubiquitin-proteasome or other proteolytic pathways.  To examine 

potential differences in the levels of E6/E7 mRNA pre- and post-EGCG treatment, I 

used primer and probe sets designed and validated by Lindh et al., which measure 
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levels of the bicistronic HPV18 E6/E7 transcript [107]. Unlike the low-risk HPV 

subtypes, the high-risk HPV strains transcribe E6 and E7 as either bicistronic or 

polycistronic mRNAs [69]. I found that EGCG treatment did not affect expression of 

the bicistronic E6/E7 transcript in HFK-HPV18. Using qPCR primer/probe sets specific 

for E6 and E7, Qiao et al. found that EGCG treatment down regulated expression of 

both E6 and E7 containing mRNAs in the HeLa cell line [101]. The authors then went 

on to demonstrate that the reduction in E6 mRNA correlated with a reduction in the E6 

protein. Unlike Qiao, we did not use separate qPCR primers to measure the levels of 

E6 and E7 mRNAs, but rather, opted to measure levels of the bicistronic E6/E7 

transcript instead, given that E6 and E7 are transcribed from a full-length bicistronic 

mRNA or a spliced variant which generates the truncated E6* and E7 proteins. In 

HPV18, only one mRNA species is capable of expressing E6* while up to four mRNA 

species are known to express E6* in HPV16 [68, 69]. The E6 and E6* proteins are 

translated from the full length and spliced variant of E6* mRNAs, respectively, and 

both the spliced and non-spliced variant of E6 can encode E7 proteins (see 

Introduction). Analysis of the early transcripts encoded by HPV16 and HPV18 positive 

cervical cell lines, including HeLa, revealed that expression of E6*mRNA significantly 

outnumbered that of E6 mRNA. Therefore, we believe that by simply comparing 

differences in expression of E6 in control and EGCG treated HFK-HPV18 keratinocytes 

would not give an accurate account of changes in mRNA levels of the full-length E6 

transcripts. Moreover, I was unable to validate the HPV18 E6 primer sets used by Qiao 

et al. in their study and, given that the bicistronic primer set chosen in our study is 

downstream of the spice region, these primers would not differentiate between full-

length and spliced forms of the bicistronic transcript. 
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Ideally, it would have been interesting to measure differences in expression of E6, E6* 

and E7 in HFK-HPV18 pre- and post-EGCG treatment, but this proved to be 

technically quite challenging within the timeframe of the Ph.D. study. To date, most, if 

not all studies designed to examine the effects of E6* expression has been achieved by 

overexpressing plasmids in established cell lines. Attempts to measure endogenous 

E6* expression in primary human keratinocytes transfected with HR-HPV have proved 

difficult. The low levels of endogenous E6 and E6* proteins made them technically 

difficult to detect using standard immunoblotting assays. This, coupled with the fact 

that commercially available E6 antibodies do not differentiate between full-length E6 

and E6* because of subtle differences in the two peptides that make them difficult to 

resolve. When ectopically expressed, E6 and E6* are often tagged with molecular tags 

such as HA or FLAG, which allows the two proteins to be distinguished by detecting 

their respective epitope tag. Although speculative, an interesting avenue to pursue 

would be to examine the effects of EGCG on the levels of endogenous E6 and E6*. E6* 

expression could be important, as E6* proteins have been found to antagonise the 

function of full-length E6 by preventing p53 from undergoing E6-mediated 

proteasomal degradation (see Introduction). Furthermore, overexpression of HPV18 

E6* in the Caski cell line resulted in overexpression of p53 and cell growth inhibition 

[172]. It remains unclear whether EGCG can selectively modulate the expression of 

full-length E6 and E6*, by influencing transcription and splicing. Future work is 

planned to measure the differences in the levels of HPV18 E6, and E6* proteins 

expressed ectopically in keratinocytes pre- and post-EGCG treatment. 
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Having found no difference in the expression of the bicistronic E6/E7 mRNA 

transcripts in control and EGCG-treated HFK-HPV18 keratinocytes, we next 

investigated the effects of EGCG on the expression of the E6 and E7 proteins, given 

that EGCG has previously been shown to modulate the turnover of cellular proteins 

[173].  It has been suggested that turnover of the E6 and E7 proteins is mediated 

through the ubiquitin-proteasome pathway, given that inhibition of the 26S 

proteasome with MG132, increases the steady-state level of these oncoproteins [71]. 

Furthermore, I have shown that EGCG mediated E6 and E7 protein degradation is 

reduced by the addition of MG132, suggesting that EGCG promotes degradation of the 

E6 and E7 proteins through the ubiquitin-proteasome pathways. Jing et al. 

demonstrated that the omega-3 fatty acid, Docosahexaenoic acid (DHA), also promotes 

degradation of the HR-HPV-encoded E6 and E7 proteins through the ubiquitin-

proteasome system by modulating the over production of mitochondrion reactive 

oxygen species (ROS) [141]. Findings from our pilot study suggested that contrary to 

expectation, EGCG possessed anti-oxidant properties, as it reduced the levels of ROS 

induced by hydrogen peroxide (H2O2) treatment in HFK-HPV18 keratinocytes, thus 

protecting them from oxidative stress damage. Furthermore, doses of H2O2 that induce 

substantial ROS failed to downregulate expression of the E6 protein, while the ROS 

scavenger, n-acetyl-cysteine (NAC), failed to inhibit EGCG-mediated E6 proteolysis. 

At face value, these findings suggest that EGCG does not stimulate E6 proteolysis 

through the ROS pathway.     

Proteins earmarked for proteasomal degradation undergo post-translational 

modification prior to ubiquitination and proteasome-mediated proteolysis. For this 
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reason, I set out to determine whether EGCG enhances E6 and E7 degradation by 

increasing the pool of poly-ubiquitinated E6 and E7 protein. While it is well 

established that E6 targets p53 for proteasome-mediated degradation through its 

association with E6AP, few attempts have been made to demonstrate that the E6 

protein is itself subject to ubiquitination and proteasome–mediated proteolysis. In one 

study, Kehmeier and colleagues  showed that E6 proteins encoded by the HR-HPV 

subtypes achieved lower steady-state levels of expression in cells due to increased 

protein turnover [174]. Interestingly, this phenomenon did not appear to be dependent 

on their ability to bind p53 or the E3-ligase, E6AP.  Building on this observation, 

Stewart and colleagues demonstrated that both low and high-risk HPV E6 proteins 

were ubiquitinated and targeted for degradation by the 26S proteasome [71]. Using an 

immunoprecipitation-based assay, they went on to identify multiple poly-

ubiquitinated species of E6 in cells where the LR-HPV and HR-HPV E6 proteins were 

co-expressed with an epitope-tagged form of ubiquitin. While this study identified 

multiple species of poly-ubiquitinated forms of E6 migrating between 31kDa to 

200kDa from a low-risk isolate (HPV11), a single high molecular weight species 

(migrating at approximately 200kDa), was observed for HPV18. Again, using a panel 

of mutant E6 proteins, they found that the domains of E6 required for p53 or hDlg 

degradation, or E6AP binding, were not involved in proteasome-mediated 

degradation of HPV-18 E6.  

Consistent with these findings, we also found that the molecular weight of poly-

ubiquitinated proteins found in HPV18 E6 immunoprecipitates was approximately 

200kDa. Given that the E6 protein is approximately 17kDa, these high molecular 
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weight species would have a mass ten times greater than that of the non-ubiquitinated 

HPV18 E6 protein. Ubiquitin is a small molecule with an estimated molecular weight 

of 8.5kDa. Given that the E6 protein has a molecular weight of 17kDa, at least 20 

ubiquitin molecules are required to generate a larger modified protein of 

approximately 200kDa. Although we cannot rule out the possibility that such modified 

forms of E6 exist, it is unclear why smaller molecular weight species were not 

identified in the E6 immunoprecipitates, as were found for the HPV11 E6 protein 

described in Stewart et al. Moreover, it is unclear whether the high molecular weight 

protein identified in the HPV18 E6 immunoprecipitation experiments described by 

Stewart et al. were indeed poly-ubiquitinated forms of the HPV18 E6 protein [71]. In 

their experiments, the E6 proteins were tagged with the FLAG epitope to facilitate 

purification and detection. While probing of the E6 immunoprecipitates identified high 

molecular weight proteins bound to ubiquitin, they were unable to identify 

convincingly, exogenous expressed FLAG-tagged E6 protein in the E6 

immunoprecipitates.   

The lack of multiple poly-ubiquitinated species of HPV18 E6 described in the study by 

Stewart and colleagues, coupled with findings from my study, led us to speculate 

whether the HPV18 E6 protein was indeed poly-ubiquitinated and whether this was 

influenced by EGCG. We reasoned that the high molecular weight poly-ubiquitinated 

proteins found in the E6 immunoprecipitates were probably E6-associated proteins 

whose association with E6 was maintained under non-denaturing conditions. E6 is 

known to associate with a wide range of proteins, forming complexes with E6AP and 

PDZ-containing proteins such as hDlg. Although we found little or no difference in the 
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level of expression of these poly-ubiquitinated protein complexes in the absence or 

presence of EGCG, attempts were made to determine whether the E6 protein was itself 

ubiquitinated. This was achieved by dissociating E6 from its binding partners after 

solubilisation in urea lysis buffer. The results from these experiments revealed that the 

E6 protein does not undergo extensive poly-ubiquitination, but rather, undergoes 

mono-ubiquitination. Interestingly, the level of mono-ubiquitination increased 

following MG132, EGCG or a combination of the two treatments. Given that these 

findings reveal the existence of a mono-ubiquitinated form of the HPV18 E6 protein 

species for the first time, it is not yet known what the function or relevance of this 

protein modification is, in relation to E6 protein biology. Mono-ubiquitination of 

proteins has previously been documented [175]. This modification has been shown to 

affect protein trafficking and the activity of transcription factors. Future studies will 

elucidate the functional relevance of this modification as it pertains to E6 function. 

However, based on current evidence and those published by Stewart et al., I do not 

have enough evidence to support the notion that E6 protein undergoes extensive poly-

ubiquitination and proteasome-mediated degradation, as it does not appear that 

EGCG-induced turnover of HPV18 E6 is achieved through enhanced ubiquitination of 

the E6 protein. Findings presented here, along with others, show that EGCG selectively 

inhibits the Chymotrypsin-like activity of the proteasome, an observation that is at 

odds with the notion that EGCG stimulates HPV18 E6 protein degradation through the 

ubiquitin-proteasome pathway. 

Despite our inability to confirm, unequivocally, that the HPV18 E6 protein was 

ubiquitinated, and that EGCG treatment augmented this effect, the central hypothesis 
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that EGCG promotes the degradation of the viral oncoproteins still holds, given that 

the half-life of E6 was reduced in response to EGCG treatment. Interestingly, the rate 

of protein degradation was only increased during the first 1.5 hours following EGCG 

treatment and, after that, proceeded at a rate similar to those of untreated controls. 

Although the mechanism(s) involved are unclear, it is possible that EGCG influences 

the degradation of a distinct "pool" of E6 protein. As previously discussed, HPV18 E6 

proteins exist in two forms, full-length E6 and a spliced variant E6*, and they can be 

found distributed in the cell nucleus and cytosol [176]. It remained to be determined 

whether EGCG targets either the nucleus, cytosolic or both pools of E6 proteins, and I 

am planning further experiment to measure the level of this different pool of E6 and 

E6* proteins using nuclear fractionation methods to separately extract the two pools of 

E6 protein. Also, I am also planning to investigate other proteolysis systems that may 

be involved, and influenced by EGCG, in the degradation of E6 and E7 proteins. 

In summary, our study reveals that EGCG inhibits the growth and induces apoptosis 

in HR-HPV18 infected keratinocytes both in monolayer and three-dimensional raft 

culture. Superficially, this appears to be achieved through down-regulation of the E6 

and E7 oncoproteins and a concomitant increase in expression of the TSGs - p53, 

p21WAF1 and pRb. However, it remains unclear how expression of the E6 and E7 

proteins is modulated by EGCG and whether the re-expression of the TSGs occurs as a 

consequence of E6 and E7 down-regulation or is due to a direct effect of EGCG on TSG 

expression. Although it has long been assumed that the E6 and E7 oncoproteins are 

degraded through the ubiquitin-proteasome pathway, the results of my studies fail to 

support this notion, as evidence for E6 protein poly-ubiquitination, a prerequisite for 
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proteasome targeting, proved inconclusive. Thus, I believe that the E6 and E7 proteins 

are probably degraded through an as yet unidentified pathway that may involve the 

activity of caspases, or other proteases. However, I have identified a potentially new 

species of E6 protein that undergoes mono-ubiquitination in response to EGCG 

treatment, and whose expression is preserved in the presence of the proteasome 

inhibitor, MG132, implicating a role for the proteasome in their degradation. The 

existence and function of this novel pool of mono-ubiquitinated E6 protein requires 

further investigation, as recent studies have shown that mono rather than poly-

ubiquitination regulates different aspects of protein function [175].   

Also, I have also demonstrated, using the three-dimensional organotypic raft culture 

system that EGCG modulates keratinocyte differentiation, an effect that appears to 

impact on lytic HPV replication. Whether complete vegetative viral replication is 

affected requires further investigation, although it is unlikely that this will proceed in 

the absence of E4.  Future experiments are aimed at understanding the underlying 

mechanisms by which EGCG modulates expression of HR-HPV oncogenes as it will 

not only allow us to re-purpose the use of this relatively cheap and safe compound as 

primary or adjuvant therapy for other HR-HPV induced neoplasia, it will also allow us 

to identify new molecular targets that new compounds can be derived. 
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5.1 Introduction 

Whilst the HPV18 infected keratinocyte cell line, HFK-HPV18, served as a useful 

model to examine the effects of EGCG treatment on cell growth, differentiation and the 

virus life cycle, we reasoned that it would be relevant to examine these effects in a 

more appropriate keratinocyte cell line. To this end, attempts were made to isolate an 

HR-HPV positive pre-malignant keratinocyte cell line from an authentic uVIN biopsy. 

Findings outlined in this chapter document my attempts to characterise a single 

HPV18 positive premalignant clone from a resected uVIN biopsy and to study the 

effects of EGCG treatment on these cells. 

Thus far, only two uVIN-derived keratinocyte cell lines have been established. One of 

these, KG, was found to harbour both episomal and integrated forms of HPV16, with 

the majority carrying episomal, non-integrated forms of the virus [177]. This cell line, 

although not extensively characterised, displayed an extended lifespan in vitro and 

generated a hyperplastic, well stratified epithelium in organotypic raft culture. 

Another uVIN-derived cell line, CU-VI-8, was found to contain integrated forms of 

HPV 16. Single cell cloning gave rise to 3 further clones upon serial propagation, all of 

which contained integrated forms of HPV16 [178]. The growth characteristics of these 

clones have not been characterised in detail. Unfortunately, none of these cell lines 

were available for study. 

As part of this study, a panel of 11 clones were isolated from pooled primary 

keratinocyte cultures of a surgically resected uVIN specimen, and these further 

characterised after serial propagation in vitro. HPV typing of these clones by the 
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Scottish HPV Reference Laboratory, revealed the presence of multiple HPV strains. Of 

the 11 clones examined, one, VIN cl.11, tested positive for HPV18, and for this reason, 

was selected for further analysis. The first part of this chapter focuses on the derivation 

and characterization of VIN cl.11, while the second explores the effects of EGCG 

treatment on the behaviour of this clone in vitro.  

5.2 Clinicopathological characteristic of the donor 

5.2.1 Clinical history of donor 

Tissue biopsies were obtained from a healthy 46-year old woman, patient S.M, who 

had undergone an anterior skinning vulvectomy for recurring uVIN at the Pan 

Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham.  The patient 

was first diagnosed with a synchronous multicentric intraepithelial neoplasia of the 

cervix, vagina and vulva 8 years ago. The patient had received a hysterectomy and 

partial vaginectomy for recurrent cervical and vaginal intraepithelial neoplasia, and 

multiple episodes of surgical excision to manage her recurrent uVIN. The tissue was 

obtained with written consent and the use of the biopsy material for research purposes 

had been approved by the Birmingham, East, North and Solihull Research Ethics 

Committee (Reference number 11/WM/0070). 

5.2.2 Pathological description of the surgical specimen 

The tissue specimen was fixed in formalin, cut into smaller sections and embedded in 

12 separate paraffin blocks. Haematoxylin and Eosin (H&E)-stained sections were 

prepared by the Histopathology department at City hospital, Birmingham, for 

diagnostic purposes. This was a large surgical specimen of the anterior vulva, 
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measuring 64mm(W) x 44mm(L) x 12mm(D) in size, which contained normal vulval 

epithelium, vulvar condylomata, and epithelium with various degrees of dysplasia 

ranging from low to high grade. The dysplastic changes observed in the epithelium 

were most likely associated with infection by low- and/or high-risk human 

papillomavirus, as defined by the general changes in epithelial morphology. Figure 5.1 

shows epithelium with changes associated with benign vulvar condyloma commonly 

associated with infection by low-risk HPV subtypes.  The epithelium displayed 

exophytic papillomatous hyperplasia but lacked dermal hyperkeratosis, suggesting 

that this lesion was a resolving genital wart infection.  

In Figure 5.1C and 5.1D, both epithelium displayed pre-malignant changes consistent 

with uVIN; an intraepithelial neoplasia caused by high-risk HPV subtypes. The 

keratinocytes in these sections showed hyperchromatic nuclei with high nuclear to 

cytoplasmic ratios and increased mitotic activity. These atypical keratinocytes were 

confined to the lower third of the epithelium in Figure 5.1C, a feature of low-grade 

intraepithelial neoplasia, while in Figure 5.1D these abnormal cells were found 

involving the full thickness of the epithelium, a feature of high grade intraepithelial 

neoplasia.  
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 Figure 5.1: Representative sections of vulval squamous epithelium 

within the uVIN biopsies taken from patient Ms S.M. 

Haematoxylin and Eosin (H&E) stained sections of specimens 

obtained from an anterior vulvectomy for high grade HG-uVIN. The 

specimens consisted of a heterogeneous epithelium with normal to 

varying degree of dysplasia. (A) Well stratified normal vulval 

squamous epithelium; (B) Regressing vulvar wart showing features 

of exophytic papillomatous epidermal hyperplasia; (C) Low grade 

dysplasia (VIN 2) with immature keratinocytes confined to the 

lower third of the epithelium; (D) High grade dysplasia (VIN 3) with 

uniform and immature keratinocytes with large nuclei spanning the 

full thickness of the epithelium (parakeratosis). Images were taken 

using a Nikon Eclipse E600 microscope at x20 magnification.  
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5.2.3 HPV status of donor tissue 

A distinctive feature of the resected uVIN lesions was the presence of koilocytes in a 

background of immature and incompletely keratinized surface epithelium; so-called 

parakeratosis, a feature characteristic of productive HPV infected epithelium (Figure 

5.2A). A koilocyte is an abnormal squamous epithelial cell that displays morphological 

changes associated with HPV infection and is characterized by the presence of an 

enlarged, irregular and dense nucleus and a perinuclear halo (Figure 5.2A). Secondly, 

immunohistochemical (IHC) staining for p16INK4a, a surrogate marker of high risk HPV 

infection, confirmed strong nuclear and cytoplasmic "block" staining in large areas of 

the uVIN lesions (Figure 5.2B). p16INK4a IHC was performed by the Pathology 

laboratory at City hospital, Sandwell and West Birmingham NHS Trust. 

 

 

 

 

 
Figure 5.2: Sections of vulval squamous epithelium from biopsies taken 

from patient Ms S.M display evidence of HR-HPV infection: the 

presence of koilocytes, and contiguous block staining for p16
INK4a

 (A) 

H&E section showing the presence of koilocytes (arrows), a hallmark of 

active HR HPV infection, in the background of high grade VIN; 500x 

magnification. (B) p16
INK4a

 immunostaining of FFPE section showing 

diffuse nuclear and cytosolic “block” staining (brown); 200x 

magnification. The image was taken using a Nikon Eclipse E600 

microscope. 
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To identify the HPV subtypes present within the uVIN lesions, DNA from 7 of the 12 

formalin fixed paraffin embedded (FFPE) blocks was extracted and sent to the Scottish 

HPV Reference Laboratory for HPV genotyping using a sensitive Luminex-based 

multiplex PCR assay [179].  This assay detects the presence 27 mucosal HPV strains 

that include: 14 high-risk types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68), 6 

possible high-risk types (26, 53, 67, 70, 73 and 82), and 7 low risk types (6, 11, 30, 42, 43, 

44 and 69). 

Six different HPV strains were detected in the biopsy specimens, of which one was a 

LR subtype (HPV42), one was a possible HR type (HPV 70), and four were HR 

subtypes (HPV 35, 51, 56 and 59). HPV42 and 70 are commonly found in genital 

condylomata accuminata while HPV 35 and 51 are found in high grade VIN. HPV 51, 

56 and 59 are found in low grade VIN [180-183]. The heterogeneity of vulval dysplasia 

seen here in this patient is probably explained by infection with these different strains 

of HPV.  

5.3 The establishment of primary keratinocytes from explanted uVIN biopsies 

Tissue biopsies were taken from the surgical specimens and transported to the 

laboratory in iced-cold growth medium. After repeated washes in a PBS/antibiotic 

solution, tissue biopsies were minced into small 3-4mm fragments, seeded onto 9cm 

petri dishes and covered with 2mls of complete growth medium. Once the fragments 

had adhered to the petri dish (usually 24 hours), a further 8mls of growth medium was 

added to the dish. Dishes were cultured at 37oC in a CO2 incubator. 
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5.3.1 The morphology of primary keratinocyte outgrowths from explanted VIN 

biopsies 

Primary keratinocyte outgrowths were observed from tissue explants between 6-14 

days after culture. Cells originating from the explanted biopsies displayed a 

cobblestone appearance typical of squamous epithelial cells (Figure 5.3A). Keratinocyte 

outgrowths were recovered by trypsinisation and 2x105 cells seeded into petri dishes 

containing irradiated 3T3-J2 fibroblasts. These primary cells formed small colonies 

with a characteristic polygonal and cobble stone appearance (Figure 5.3B). 10 days 

after seeding, keratinocyte colonies displaying different morphologies were observed 

with some cells maintaining their small polygonal appearance while others appeared 

elongated with pronounced protrusions (Figure 5.3C). The heterogeneity in cell 

morphology observed here suggests that these cell populations are derived from 

different epithelial origin given that the tissue specimens were heterogeneous in nature, 

containing normal tissue and tissue with varying degrees of epithelial dysplasia. Some 

of these keratinocytes underwent terminal differentiation after day 20 in culture and 

these differentiated cells appeared flattened and enlarged as seen in Figure 5.3D.  
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 Figure 5.3: Primary keratinocyte outgrowths and early passage cultures 

from vulval tissue biopsies obtained from patient Ms S.M.  (A) A primary 

keratinocyte outgrowth from a uVIN tissue explant cultured for 7 days. (B)  

Keratinocyte colonies displaying a characteristic polygonal and cobble stone 

appearance. (C) Colonies with heterogeneous morphology were observed 

after 6 days in primary culture. (D) Some of the keratinocytes became 

enlarged and flattened after 10 days in primary culture, a hallmark of 

keratinocyte differentiation. Phase contrast images were taken using a Nikon 

Eclipse E600 microscope at x200 magnification. 
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5.3.2 HPV analysis on primary VIN keratinocyte cultures 

HPV genotyping was performed on primary keratinocytes derived from the uVIN 

outgrowths to detect the presence of the two most prevalent HR-HPV subtypes: 

HPV16 and HPV18. Primary keratinocytes were serially passaged and DNA extracted 

at each passage.  HPV 16 and HPV18 genotyping was then performed by qPCR, using 

probes specific for the E6 gene [108]. While HPV16 and HPV18 genomes were detected 

in primary keratinocyte outgrowths harvested directly from the tissue explants, the 

presence of HPV16 and HPV18 DNA appeared to be lost upon serial propagation; 

firstly HPV18, and then HPV16 (Figure 5.4). While the presence of HPV18 genomes 

was not detected after only one passage, the presence of HPV16 DNA was 

undetectable after 3 passages.  
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 Figure 5.4: HPV genotyping of primary and subcultured 

keratinocytes obtained from explanted uVIN biopsies. 

DNA isolated from primary and subcultured VIN-derived 

keratinocytes was tested for the presence of HPV16 and 

HPV18 DNA by qPCR using oligonucleotides for the E6 

coding sequence. Both HPV16 and HPV18 E6 DNA were 

detected in cells from the primary outgrowths (at p0) but at 

p1 HPV18 DNA was not detectable; at p4, neither HPV16 nor 

HPV18 DNA were detected. SiHa and HeLa served as 

positive controls for HPV16 and HPV18 respectively. 
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5.4 The establishment of single cell clones from the primary VIN keratinocyte 

cultures 

The presence of primary keratinocytes displaying a heterogeneous morphology, 

coupled with the loss of HPV16 and HPV18 DNA upon serial passage suggested that 

primary keratinocyte cultures from the uVIN biopsies comprised a mixture of normal 

uninfected and HPV infected keratinocytes, and that for some unknown reason, 

HPV16 and HPV18 infected keratinocytes were lost upon serial passage.    

To explore the possibility that keratinocytes infected with HR-HPV strains were lost or 

outcompeted by other non-infected keratinocyte populations, single cell cloning was 

performed to purify clones derived from single cells. Single cell cloning was 

undertaken, using a metal ring cylinder strategically place over the primary 

keratinocytes that were homogeneous in appearance. These cells were then isolated 

and cultured independently on lethally irradiated 3T3 J2 feeder cells.    

5.4.1 Characterisation of single cell clones isolated from primary keratinocyte 

outgrowths of the VIN biopsies 

A total of 23 single cell clones were isolated from primary keratinocyte cultures, but of 

these, only 11 clones grew and could be propagated beyond a single passage.  All 11 

clones displayed a homogeneous morphology and were successfully propagated for at 

least 5 passages before freezing and storage in liquid nitrogen. The remaining 12 clones 

that failed to propagate in culture either underwent terminal differentiation or 

senescence/apoptosis soon after colony formation   
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5.4.2 Characterization of HPV status of VIN cell lines using Luminex PCR 

DNA from the 11 primary VIN clones was extracted and sent to the Scottish HPV 

reference laboratory for HPV genotyping. The HPV status of these 11 clones is 

illustrated in Figure 5.5. HPV 35, a high risk subtype, was detected in 8 of the clones 

(Clone 3, 4, 7, 10, 12, 20, 22 and 23), while HPV18 was detected in two of the clones 

(Clone 3 and 11). None of the 27 HPV subtypes were detected in Clone 8. Interestingly, 

Clone 3 appeared to be co-infected with two HR-HPV subtypes, HPV18 and 35. The 

assay failed to detect any HPV DNA in Clone 2 and the experiment was not repeated 

due to time and cost implications.  

VIN clone 11 (cl.11) was subsequently selected for further experimentation for two 

reasons; firstly it harbours the more common HPV 18 strain, and secondly, it offers the 

opportunity to assess whether the consequence of EGCG treatment observed in HFK-

HPV18 is recapitulated in this newly derived VIN keratinocyte cell line. The behaviour 

of VIN cl.11 and the physical status of the virus were profiled before the cells were 

subjected to EGCG treatment.  
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 Figure 5.5: Results of the HPV typing analysis performed on 

uVIN-derived clones using the Luminex multiplex PCR 

platform. DNA obtained from each of the primary VIN-

derived single cell clones were extracted and sent for HPV 

subtype testing by Dr K. Cushieri at the Scottish HPV 

Reference Laboratory, Edinburgh, Scotland. The assay failed 

in Clone 2 and no HPV DNA was detected in Clone 8. For the 

remaining clones, HPV18 alone, HPV35 alone, or both, were 

detected. 

 



   

263 
 

5.5 Characterization of VIN cl. 11 

5.5.1 Karyotypic characterisation of VIN cl.11 

Chromosome analysis was performed on early passage cultures of VIN cl.11 by Dr Sally 

Jeffries at the West Midlands Regional Genetics laboratory, Birmingham Womens NHS 

Trust.  10 metaphase spreads from actively growing cell cultures were examined by G-

band chromosome analysis. Of the 10 cells examined, 2 had abnormal near tetraploid 

karyotypes of 94 chromosomes, shown below as a composite karyotype. Clonal 

abnormalities included apparent loss of one copy each of chromosomes 2, 10, and 21; gain 

of two copies of chromosome 13; gain of three copies of chromosome 20; and unidentified 

material replacing the majority of one chromosome 10p.6 cells had related abnormal near 

tetraploid karyotypes of 90~93 chromosomes shown below as a composite karyotype. 

Clonal abnormalities included those observed in the first clone and apparent loss of one 

copy of chromosome 19. 2 cells had related abnormal near tetraploid karyotypes of 90~93 

chromosomes shown below as a composite. Clonal abnormalities include apparent loss of 

one copy each of chromosomes 2, 10, 19 and 21; gain of one copy of chromosome 13; gain 

of three copies of chromosome 20; and unidentified material replacing the majority of one 

chromosome 10p. The (10p) add observed in these cells is different to the add (10p) 

observed in the clones above.  

94<4n>,XXXX,-2,-10,add(10)(p11),+13,+13,+20,+20,+20,-21[cp2]/ 

90~93<4n>,XXXX,-2,-10,add(10)(p11),+13,+13,-19,+20,+20,+20,-21[cp6]/ 

90~93<4n>,XXXX,-2,-10,add(10)(p11),+13,-19,+20,+20,+20,-21[cp2] 
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In summary, the results showed a female chromosome complement and an abnormal 

karyotype that were near tetraploid, consistent with neoplasia. Representative 

karyotypes are shown in Figure 5.6.   
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Figure 5.6: Representative karotypes from three major clones identified in 

cultured VIN cl.11 cells. Chromosome alignment of G-banded chromosomes 

taken from the three major clones (A) clone 1, (B), clone 2 and (C), clone 3 

found in early passage cultures of VIN cl.11. This analysis confirmed the 

near-tetraploid nature of chromosomes and the absence of a Y chromosome. 
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5.5.2 The morphology of VIN cl.11 in monolayer culture 

A representative phase contrast photomicrograph of VIN cl.11 grown in monolayer 

culture is shown in Figure 5.7.  Cells seeded at clonal density gave rise to small well-

circumscribed colonies that displayed a polygonal morphology typical of epidermal 

keratinocytes cultured using the 3T3 feeder system. Small colonies, acquired a cobble 

stone-like appearance when they merged at confluence.  However, unlike HFK-HPV18, 

VIN cl.11 failed to stratify and produce cells with a characteristic differentiated 

morphology. To confirm the keratinocyte origin of VIN cl. 11, total cell lysates were 

subjected to Western blotting analysis for the established keratinocytes markers, 

involucrin and keratin 14. As shown in Figure 5.8, VIN cl.11, like HFK-HPV18, 

expressed high levels of involucrin and keratin 14, whereas the HPV18 positive HeLa 

cell line, derived from an adenocarcinoma, was negative for both proteins. The murine 

fibroblast cell line 3T3-J2 was negative for these proteins. Collectively, these analyses 

confirmed the keratinocyte origin of VIN cl.11.  
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Figure 5.7: The morphology of VIN cl.11 in monolayer culture. The 

morphology of (A) normal vulvar keratinocytes, (B) VIN cl.11 and (C) HFK-

HPV18 in monolayer cultures. Keratinocytes were seeded at clonal density 

on irradiated 3T3-J2 fibroblasts. After seven days, the feeder cells were 

removed and a phase contrast image taken using a Nikon Eclipse E600 

microscope at x200 magnification. 

 

Normal vulval  

keratinocytes 

VIN cl.11 

HFK-HPV18 

A. 
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C. 
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5.5.3 The morphology of VIN cl.11 in organotypic raft culture 

A characteristic feature of keratinocytes derived from squamous epithelium, is their 

ability to stratify and differentiate into a full thickness squamous epithelium when 

grown in organotypic raft culture. In this system, keratinocytes are seeded onto a 

collagen plug containing 3T3-J2 feeder cells and then raised in an air-liquid interface to 

allow the keratinocytes to stratify and differentiate. This three-dimensional culture 

system also made it possible to study the HPV life cycle as viral replication is 

intimately linked to keratinocyte differentiation [184]. For these reasons, attempts were 

made to examine the ability of VIN cl.11 to differentiate in organotypic raft cultures.  

 

Figure 5.8: Western blotting analysis confirming the expression of 

keratinocyte-specific markers in HFK-HPV18 and VIN Cl.11. Total 

cell lysates were generated from subconfluent cultures of HeLa, Mouse 

3T3 J2 fibroblasts, HFK-HPV18 and VIN Cl.11 cells. Lysates were 

resolved by SDS-PAGE and subjected to western blotting for the 

keratinocyte-specific proteins: involucrin and keratin 14. Both 

involucrin and keratin 14 were present in VIN Cl.11 confirming that 

cells were of keratinocyte origin. 
 



   

270 
 

VIN cl.11 cells were seeded on collagen plug containing 3T3 feeder cells and raised to 

the air-liquid interface. Rafts were cultured for 13 days prior to fixation and sectioning. 

Figure 5.9 shows representative H&E stained sections of organotypic raft cultures 

generated from VIN cl.11 and HFK-HPV18; the latter were included for comparative 

purposes. VIN cl.11 and HFK-HPV18 were able to stratify into full thickness squamous 

epithelium with distinctive basal, spinous, granular, and cornified layers. This finding 

established that VIN cl.11 retained the ability to stratify and differentiate when 

cultured at the air-liquid interface. However, when compared to HFK-HPV18 the 

keratinocytes in VIN cl.11 appeared less organised with areas of immature and large 

nucleated cells extending to the granular layer, a feature suggestive of dysplastic 

changes that resembles uVIN.  
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Figure  Figure 5.9: Typical morphology of VIN cl. 11 and HFK-

HPV18 organotypic raft cultures. H&E stained sections from 

organotypic raft cultures grown at the air-liquid interface for 

14 days. Both (A) VIN cl. 11 and (B) HFK-HPV18 rafts 

displayed evidence of parakeratosis but VIN cl.11 appeared 

less organised with area of immature and large nucleated cells 

extending to the granular layer, a feature suggestive of 

dysplastic changes that resembles uVIN. The image was taken 

using a Nikon Eclipse E600 microscope at x200 magnification. 
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5.5.4 The physical status of the HPV18 genome in VIN Clone 11 

Genotyping with Luminex multiplex PCR at the Scottish HPV Reference Laboratory 

revealed the presence of HPV18 in VIN cl. 1l. This result was further validated by 

qPCR using HPV18 E6 primers performed in house. These analyses confirmed that 

VIN cl.11 was infected with HPV18. Immunostaining of organotypic raft cultures 

generated from VIN cl.11 revealed strong nuclear and cytosolic staining for p16INK4a in 

the basal and immediate suprabasal cell layers the epithelium (Figure 5.10). This so-

called p16INK4a “block” staining indicates the presence of functionally active HPV18 E6 

and E7 proteins.  

Given that HPV18 can exist as either episomal or integrated forms, the physical status 

of the HPV18 genome in VIN cl.11 was further examined using an E2 disruption PCR 

assay [108]. Briefly, previously published primer pairs spanning 4 regions of the 

HPV18 E2 coding region were used to amplify DNA isolated from VIN clone 11. As a 

reference, DNA isolated from HPV18-HFK, which contains episomal forms of HPV18, 

and HeLa, a cell line which carries 10-50 integrated copies of the HPV18 genome were 

included as positive controls. As shown in Figure 5.11, all four-primer sets amplified 

products from HPV18-HFK, indicating the presence of an intact E2 gene. In contrast, 

the same set of primer failed to amplify E2 sequences in HeLa, findings consistent with 

the fact that E2 gene is disrupted following viral genome integration. Examination of 

the E2 gene in VIN Clone 11 revealed the presence of episomal forms of HPV18, given 

that all four-primer successfully amplified E2 sequences (Figure 5.11).  

In summary, evidence presented thus far shows that VIN cl.11 harbors episomal forms 

of HPV18, and the expression of the E4 protein in organotypic raft culture suggests 
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that the virus is capable of lytic replication under conditions that favour keratinocyte 

differentiation.  

 

  

 

 

 

 

 

 

 

 Figure 5.10: Representative immunostaining for p16
INK4a

 in organotypic 

raft cultures generated from VIN cl.11. (A) Immunostaining for p16INK4a 

on a single uVIN biopsy taken from patient Ms S.M. (B) FFPE sections of 

organotypic raft cultures generated form VIN cl. 11 were stained for 

p16
INK4a

 by standard IHC. Epithelial cells within the raft culture showed 

diffused nuclear and cytosolic immunostaining for p16
INK4a

. The image 

was taken using a Nikon Eclipse E600 microscope at x200 magnification. 
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Figure 5.11: PCR-based HPV18 E2 disruption assay performed to detect 

the presence of integrated HPV18 genomes. DNA was extracted from 

HFK-HPV18, HeLa and VIN cl. 11, and amplified using defined HPV18 E2 

primer sets 1 to 4 to detect the presence of an intact E2 gene. Left column: 

amplification of an intact E2 gene in HPV18 genome–containing human 

foreskin keratinocytes (HPV18–HFK), and from HeLa cells, which contain 

integrated, disrupted E2 genes. These were used as positive and negative 

controls respectively. Right column: results from VIN cl. 11: the E2 gene was 

not disrupted. β-globin globe was used as internal control. This is 

representative result of 3 experiments. 
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5.5.5 Expression of the HPV18-encoded  E6 and E7 proteins  in VIN cl. 11 

Having confirmed that VIN cl. 11 contained episomal forms of HPV18, the expression 

of the two key viral oncoproteins, E6 and E7, was next examined by Western blotting. 

Figure 5.12 shows the expression of E6 and E7 proteins in VIN cl. 11. Although E6 

expression was readily detected at levels comparable to those observed in HFK-HPV18, 

the expression of E7 was only observed after over-exposure of the membrane. A short 

exposure time failed to show E7 expression (Figure 5.12), findings which suggest that 

VIN cl.11 expresses low levels of the E7 protein [149].  
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Figure 5.12: Western blot, confirming the expression of HPV18-

encoded E6 and E7 proteins in VIN cl.11. Subconfluent cultures of 

HeLa, HFK-HPV18, its isogenic non-HPV18 infected counterpart,  

and VIN cl.11 were lysed in urea lysis buffer prior to resolving by 

SDS-PAGE and immunoblotting for anti-HPV18 E6 and E7. β-actin 

was used as internal control. The E7 protein was only detected in 

VIN cl.11 after prolonged exposure (twice the exposure time was 

taken to detect E7 protein in HeLa and HFK-HPV18). This is a 

representative result of 3 experiments. 
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5.6 The effects of EGCG treatment on VIN cl.11 in monolayer culture 

 Having confirmed that VIN cl.11 contained episomal forms of HPV18 and expressed 

the E6 and E7 proteins, I next sought to examine the effects of EGCG on the growth 

and differentiation of VIN cl.11 in both monolayer and organotypic raft culture, 

focussing on cell proliferation, apoptosis and terminal differentiation. To substantiate 

the effects observed on E6 protein expression in HFK-HPV18, the effects of EGCG on 

the turnover and stability of E6 in VIN cl.11 was also examined. 

5.6.1 EGCG inhibits the proliferation of VIN cl.11 in monolayer culture 

Actively growing VIN cl.11 cells were recovered by trypsinisation and single cell 

suspensions seeded into 96 well plates pre-coated with fibronectin (in triplicate). 24 

hours later, cells were treated with increasing concentrations of EGCG. 72hours after 

treatment, cells were pulsed for 3 hrs with 10µM BrdU and cell proliferation measured 

using the BrdU ELISA assay kit (Roche) according to manufacturer’s instructions. The 

experiment was repeated on three separate occasions.  

As shown in Figure 5.13, a progressive reduction in cell proliferation was observed in 

VIN cl.11 cells treated with increasing concentrations of EGCG. Surprisingly however, 

a 0.2 fold increase in cell proliferation was observed at 20µM but this was not 

statistically significant (two tailed student t-test; P=0.27). The decrease in proliferation 

was only observed when VIN c.11 was treated with concentrations of 60µM and above. 

The concentration at which 50% of the cell proliferation was inhibited in VIN cl.11 

(IC50 value) was at ~150µM (two-tailed student t-test; P= 0.02). The IC50 was higher 

than that of HFK-HPV18 which was at ~100µM.  
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Figure 5.13: EGCG inhibits the proliferation of VIN cl.11 and HFK-

HPV18 keratinocytes. Cells were treated with increasing 

concentrations of EGCG for three days prior to BrdU labelling. Cell 

proliferation was measured using the BrdU ELISA assay kit (Roche). 

Fold change in proliferation in EGCG treated cells were measured 

against untreated cells (control).  Cell proliferation decreased as the 

concentration of EGCG increased. The IC50 for VIN cl.11 and HFK-

HPV18 were ~100µM and ~150µM, respectively. Data shown is an 

average of 3 independent experiments. 
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5.6.2 EGCG treatment changes the morphology of VIN cl.11 

To examine the effects of EGCG on cell morphology, VIN cl.11 cells were cultured in 

petri dishes pre-coated with fibronectin. The following day, cells were treated with 50, 

100 or 150µM EGCG for an additional 72 hours, and the morphology of control and 

EGCG treated cells examined by phase microscopy. Figure 5.14 shows the changes in 

cell morphology of VIN cl.11 cells following EGCG treatment. Compared to untreated 

cells, cells treated with EGCG developed cytoplasmic vacuoles and assumed a spindle-

like appearance. These changes were most apparent at a concentration of 150µM 

EGCG.  In addition, EGCG treated cultures failed to proliferate, containing smaller 

colonies and fewer cells compared to untreated cells. The morphological changes 

induced by EGCG treatment on VIN cl.11 observed here are consistent with those 

observed in HFK-HPV18 following EGCG treatment and are suggestive of the cells 

undergoing apoptosis.   
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Figure 5.14: Changes in the morphology of VIN Cl.11 following three days of 

treatment with 25µM, 50µM and 100µM EGCG.  

VIN cl.11 cells were plated onto fibronectin-coated petri dishes and allowed to 

establish colonies for three days prior to treatment with different concentrations of 

EGCG. Changes in cell morphology were evident after 72 hours with increasing 

concentration of EGCG. The cells assumed spindle-liked appearance (red arrow) 

with intracellular vacuole (yellow arrows) at 100µM. Images were taken using a 

Nikon Eclipse E600 microscope at x200 magnification.  

 

No treatment 50µM EGCG 

100µM EGCG 150µM EGCG 
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5.6.3 EGCG treatment does not influence a specific cell-cycle checkpoint, but does 

increase the proportion of cells undergoing apoptosis 

Having observed that EGCG reduces cell proliferation and induces a profound change 

in the morphology of VIN cl.11 cells in monolayer culture, we set out to determine 

whether EGCG influenced cell proliferation by inducing cycle arrest at a specific check 

point. VIN cl.11 cells were treated with 150µM EGCG for 24, 48 and 72 hours. Cells 

were also treated with 100ng/ml Nocodazole for 12 hours, an agent used to disrupt 

cellular microtubules, which results in cell cycle arrest at the G2/M checkpoint. Control 

and EGCG treated cells were recovered as single cell suspensions, permeabilised in 70% 

ethanol, stained with 25µg/ml propidium iodide (PI) to stain DNA. Cells were then 

subjected to flow cytometric analysis and the data collected analysed with FlowJo v.10 

software to build cell-cycle profiles. Figure 5.15 shows the results from a representative 

analysis of VIN cl.11 following EGCG treatment.  Treatment of VIN cl.11 cells with 

Nocodazole for 12 hours increased the number of cells displaying a G2/M phase DNA 

content, and a corresponding decrease in the number of cells in the G1 and S phases of 

the cell cycle. There was a significant rise in sub-G1 cell population in cells treated with 

EGCG compared to untreated cells. Extending the treatment duration from 24 to 72 

hours also increased the proportion of cells in Sub-G1 phase. Cells found in the sub-G1 

phase have depleted DNA content as a result of loss of DNA fragments from 

permeabilized cells. DNA fragmentation is a characteristic hallmark of apoptosis and 

the accumulation of VIN cl.11 in sub-G1 showed that these cells have underwent 

apoptosis following EGCG treatment. However, there was no change in the overall cell 

cycle profile in VIN cl.11 after EGCG treatment.  
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Figure 5.15: Cell cycle analysis of VIN Cl.11 in the presence or absence 

of EGCG treatment. Cells were treated with 150µM EGCG for 24, 48 and 

72 hrs, and harvested, fixed and stained with propidium iodide for flow 

cytometry analysis. Nocodazole treatment was used as positive control for 

the assay. Data were analysed with FlowJo v.10. Data shown is an average 

of 3 independent experiments. Statistical significance was determined by 

two-tailed unpaired Student t-test.  
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5.6.4 EGCG treatment induces apoptosis in VIN cl.11 

To complement findings from the cell cycle analysis, a TUNEL (TdT-mediated dUTP 

Nick-End Labeling) assay was performed to examine the extent of apoptosis induced 

by EGCG treatment. VIN cl.11 cells were seeded onto fibronectin-coated cover slips 

and, 24 hours later, treated with 100µM EGCG for 72 hours. As a positive control, cells 

were treated for 24 hours with 50µM Cisplatin to induce apoptosis. Cell nuclei were 

then labelled with TUNEL (visualised in green) and counterstained with DAPI (blue) 

to identify cell nuclei. Cell nuclei and TUNEL positive nuclei were counted and results 

were expressed as proportion of TUNEL positive nuclei as a percentage of total cell 

nuclei. Two tailed unpaired student t-test was used to determine the level of 

significance between the proportion of TUNEL positive cell in drug treated and 

untreated cells.  

Figure 5.16 shows the proportion of TUNEL positive or apoptotic cells in Cisplatin, 

EGCG and untreated VIN cl.11 cells. The proportion of baseline apoptotic cells was 

just under 1% in untreated cells. Treatment of cells with Cisplatin for 24 hours induced 

apoptosis in almost half of the cell population. Approximately 51% of TUNEL positive 

cells were observed following EGCG treatment indicating that half of these cells were 

undergoing apoptosis after 72 hours of treatment. In comparison, the DNA damaging 

agent, Cisplatin, which is a more potent cytotoxic agent as a significantly less amount 

of drug and shorter treatment duration is sufficient to achieve the same level of 

apoptosis in EGCG treatment.   
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Figure 5.16: TUNEL assay demonstrating that EGCG treatment induces 

apoptosis in VIN cl.11. (A). VIN cl.11 cells were treated with 100µM EGCG for 

72 hours or 50µM Cisplatin for 24 hours; the latter used as a positive control to 

induce apoptosis. The TUNEL assay was used to label apoptotic cell (green) and 

cell nuclei counter stained with DAPI (blue). Magnification x200. (B). TUNEL 

positive cells were counted and expressed as a percentage of total DAPI-stained 

cell nuclei. Unpaired Student t-test was used to determine the level of 

significance for the difference in the proportion of apoptotic cells in drug-treated 

and untreated cells. The experiments were repeated at twice in triplicate.  

C. VIN cl.11  50µM  Cisplatin - DAPI D. VIN cl.11 50µM Cisplatin 

A. VIN cl.11  untreated - DAPI B. VIN cl.11 untreated 

E. VIN cl.11  100µM  EGCG - DAPI E. VIN cl.11  100µM  EGCG  
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5.7 The effect of EGCG treatment on VIN cl.11 in organotypic raft culture 

Having established that concentrations of EGCG greater than 60µM reduced cell 

growth and induced apoptosis in VIN cl.11 cells in monolayer culture, the effect of 

EGCG on cell growth and differentiation in a three dimensional organotypic raft 

culture system was subsequently investigated. VIN cl.11 cells were cultured on a 

collagen plug impregnated with 3T3-J2 feeder cells and transferred to a metal grid and 

allowed to differentiate for 10 days at the air-liquid interface before 150µM EGCG was 

added to the growth media for a further 10 days. Prior to fixation in formaldehyde, 

25µg/ml of BrdU was added to growth media for 12 hours to label cells undergoing 

DNA replication.  

5.7.1 EGCG reduces the proliferation of VIN cl.11 in organotypic raft culture 

To assess the effect of EGCG on the morphology of VIN cl.11 in a three-dimensional 

culture system, FFPE sections of treated and untreated EGCG treated raft cultures 

were stained with H&E, and a FITC-conjugated anti-BrdU mAb. Sections were counter 

stained with DAPI to visualise cell nuclei. 

H&E sections of untreated and EGCG-treated-EGCG rafts showed that the thickness of 

rafts treated with EGCG were significantly thinner than those of untreated rafts 

(Figure 5.17). Immunofluorescence staining for BrdU revealed that the number of 

proliferating cells was significantly reduced in EGCG-treated rafts compared to control 

rafts (Figure 5.18), indicating that fewer cells were undergoing DNA synthesis. To 

further confirm that cell proliferation was suppressed by EGCG, immunofluorescence 

staining was performed for Ki-67, a protein expressed in proliferating cells [185]. This 
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analysis revealed a significant reduction in nuclear staining in EGCG-treated rafts 

compared to untreated control rafts (Figure 5.18). These findings are consistent with 

those obtained from HFK-HPV18 raft cultures (Chapter 4 section 4.6.1), where EGCG 

was also shown to reduce cell proliferation.  

 

 

 

 

 

 

Figure 5.17: H&E staining showing the overall morphology of control 

and EGCG-treated VIN cl.11 keratinocytes grown in organotypic raft 

culture. Organotypic raft cultures were allowed to stratify for 10 days 

prior to the addition of 100µM EGCG, which was then added to the 

growth media for a further 10 days. Representative haematoxylin and 

eosin (H&E) stained sections of (A) control and (B) EGCG treated raft 

cultures. Note that the thickness of the epithelium was significantly 

reduced in response to EGCG treatment. Magnification x200. 
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Figure 5.18: The incorporation of BrdU label and expression of the cell 

proliferation marker, Ki67, are reduced in VIN cl.11 raft cultures treated 

with EGCG. FFPE sections of control and EGCG-treated rafts were stained 

for (A-D) cells incorporating the BrdU label or (E-H) Ki67 (Green) and 

counterstained with DAPI (Blue) to label cell nuclei. The number of cell 

nuclei staining positive for BrdU label or Ki67 expression was significantly 

reduced in response to EGCG treatment. Magnification x200. 

 

 

 

E. No treatment - DAPI F. No treatment – Ki67 

H. 100µM EGCG -  Ki67 G. 100µM EGCG - DAPI 

 A. No treatment DAPI  B. No treatment BrdU 

 D. 100µM EGCG BrdU C. 100µM EGCG DAPI 
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5.7.2 EGCG has little effect on expression of p16INK4A and MCM7 in VIN cl.11 raft 

cultures 

Having established that EGCG treatment inhibited cell proliferation in VIN cl.11 raft 

cultures, I set out to examine the effects of EGCG on expression of two established HR-

HPV targets: p16INK4A and MCM7. As mentioned previously, p16INK4A and the MCM7 

proteins are used as surrogate markers for HR-HPV infection as their expression is 

elevated in response to HR-HPV infection. Given that EGCG has been shown here to 

down regulate expression of the E7 protein in HFK-HPV18, I next examined whether 

this down-regulation impacted on the expression of p16INK4A. IHC staining was 

performed on VIN cl.11 raft sections and p16INK4A expression compared between 

untreated and EGCG treated rafts. Contrary to expectations, little or no change was 

observed in the levels of p16INK4A expression in control and EGCG treated raft cultures, 

with strong basal and suprabasal expression observed in both control and untreated 

raft culture (Figure 5.19).   

Expression of the DNA replication licensing factor, MCM7, is normally confined to 

cells within the basal layer of normal epidermis but expressed in basal and suprabasal 

cell layers in HR-HPV infected pre-neoplastic lesions such as cervical intraepithelial 

neoplasia (CIN); especially high-grade CIN3 [186]. Overexpression of MCM7 is 

induced by HPV-E7, as raft cultures generated from HPV E7 transfected keratinocytes, 

expressed MCM7 throughout the whole epithelium, spanning from the basal cell layer 

to the uppermost spinous cell layers [187]. Immunostaining of control and EGCG 

treated VIN cl.11 raft sections identified expression of MCM7 in the nuclei of VIN cl.11 

spanning the entire thickness of the raft culture. However, following EGCG treatment 
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there was a modest change in the expression and distribution of MCM7 in VIN cl.11, 

although the pattern of staining became more polarised to the basal cell layer (Figure 

5.19).  The number of cell nuclei labelled with BrdU, or expressing Ki67 or MCM7 was 

counted manually in control and EGCG treated rafts (n = 5 fields) and these expressed 

as a proportion of the total number of DAPI stained cell nuclei. Results were presented 

as the proportion of cells stained positive for targeted proliferative markers. Two-

tailed unpaired Student t-test was used to determine the difference in the proliferative 

marker expression of in EGCG treated rafts is significant when compared to control. 

Figure 5.20 shows the results of IF staining for BrdU, Ki67 and MCM7, shown as a 

percentage of total DAPI stained nuclei. BrdU and Ki67 expression were significantly 

reduced in response to EGCG treatment compared to control rafts, indicating that 

DNA replication and cell proliferation were inhibited by EGCG.  
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Figure 5.19: The expression and distribution of p16INK4a and MCM7 are not 

affected by EGCG treatment in raft cultures of VIN cl11.  

(A, B) Immunohistochemical (IHC) staining for p16
INK4a

 (Brown) on FFPE 

sections of VIN cl. 11 rafts cultured in the presence or absence of EGCG. (C-F) 

FFPE sections generated from VIN cl11 were stained for MCM7 (Green) and 

counterstained with DAPI (Blue) to label cell nuclei. MCM7 was expressed in 

the nuclei of basal and suprabasal keratinocytes, but the level of expression 

was unchanged following EGCG treatment. Magnification x200. 
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 Figure 5.20: EGCG treatment inhibits the proliferation of VIN cl11 cells 

in organotypic raft culture. Summary of the results obtained from cells 

incorporating BrdU label or staining positive for the proliferation antigens 

Ki67 and MCM7 in control and EGCG treated organotypic raft cultures. 

The total number of cell nuclei (DAPI stained) and those nuclei expressing 

BrdU, Ki67 or MCM7 were counted manually. Results were presented as 

the proportion of cells stained positive for targeted proliferative markers. 

**P<0.05, two-tailed Student unpaired t-test indicates that the difference in 

BrdU, Ki67 or MCM7 expression is significant when compared to control.  
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5.7.3 EGCG does not influence expression of keratinocyte differentiation markers 

Previous studies have shown that EGCG promotes the differentiation of normal 

epidermal keratinocytes in monolayer culture, simulating expression of the 

keratinocyte differentiation markers, involucrin and transglutaminase [96]. To 

determine whether EGCG promotes the differentiation of VIN cl.11 cells, sections of 

EGCG treated and untreated raft cultures were stained with antibodies specific for two 

keratinocyte differentiation markers: involucrin and the high molecular keratins, K1/10. 

Representative IF staining of rafts sections with antibodies to involucrin and K1/10 

(green), counterstained with the nuclear DAPI stain, (blue) are shown in Figure 5.21. 

While little difference in the level of involucrin was observed between control and 

EGCG treated rafts, higher levels of Keratin 1/10 were observed in EGCG treated rafts.  

Although preliminary, these findings suggest that EGCG may promote the 

differentiation of VIN cl.11 keratinocytes in organotypic  raft culture.  
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Figure 5.21: Expression of the differentiation markers, involucrin and Keratin 

1/10 are not altered in VIN cl. 11 raft cultures treated with EGCG. FFPE sections 

of control and EGCG treated VIN cl.11 rafts were stained for (A-D) involucrin or 

(E-F) Keratin 1/10 (Green) and counterstained with DAPI (Blue) to label cell 

nuclei. Both involucrin and K1/10 were expressed in the cytoplasm of suprabasal 

differentiating keratinocytes, and their level of expression was unchanged 

following EGCG treatment. Magnification x200. 

 

A. No treatment  - DAPI B. No treatment - Involucrin 

C. 100µM EGCG -  DAPI D. 100µM EGCG  - Involucrin 

F. No treatment – Keratin 1/10 

G. No treatment - DAPI 

E. 100µM EGCG - DAPI 

H. 100µM EGCG -  Keratin 1/10 
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5.7.4 EGCG inhibits the expression of E4 in VIN cl.11 raft cultures 

As previously discussed, the expression of E4 is indicative of productive viral infection. 

E4 is expressed prior to the late structural proteins L1 and L2, and distributed within 

the suprabasal layers of HPV-transfected raft cultures [188]. To examine the effects of 

EGCG on productive infection, IF staining was performed on FFPE sections of control 

and EGCG treated VIN cl.11 rafts for the E4 protein. As shown in Figure 5.22, E4 was 

expressed at high levels in the suprabasal layers of non-EGCG treated raft sections, 

whilst little, if any E4 was observed in EGCG treated rafts. This probably indicates that 

process of viral production is interrupted by EGCG at the later stage of the HPV life 

cycle.  
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Figure 5.22: The HPV18 E4 protein is not expressed in VIN.cl11 raft cultures 

treated with EGCG. Panels A and B show staining for the E4 protein (green) in 

raft cultures generated from HFK-HPV18-E6GWL keratinocytes, which express 

the E4 protein and serve as a positive control. Cell nuclei were counter stained 

with DAPI (blue). Expression of the E4 protein was detected in differentiating 

suprabasal cells (yellow arrows). (C-F) show E4 protein staining (green) in VIN 

cl. 11 rafts grown in the presence or absence of EGCG; cell nuclei were 

counterstained with DAPI (blue). E4 expression was observed in the uppermost 

suprabasal layers (yellow arrows) of untreated, but not EGCG-treated rafts. 

Magnification x200. 
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5.8 The effect of EGCG treatment on expression of the HPV18-encoded E6 and 

E7 proteins and tumour suppressor gene (TSG) expression in VIN cl.11 

In Chapter 2, I demonstrated that EGCG treatment was associated with down 

regulation of the HPV18-encoded E6 and E7 oncoproteins, in HFK-HPV18. This down 

regulation was accompanied by an up-regulation of their target TSGs, p53 and p21WAF1. 

Thus far, I have demonstrated that VIN cl.11, harbours episomal forms of HPV18 and 

strongly expresses the HPV18-encoded E6 protein. When treated with EGCG, the 

proliferation of VIN cl.11 was inhibited in both monolayer and organotypic raft culture, 

with a proportion of cells undergoing apoptosis. Having shown that the morphological 

changes observed in monolayer and organotypic raft culture following EGCG 

treatment resembled that observed in HFK-HPV18, I went on to investigate whether 

EGCG also affected the expression of the viral oncoproteins and cellular TSGs. 

To examine the expression of the HPV18-encoded E6 and E7 oncoproteins and their 

target TSGs, VIN cl.11 cells were treated with 100µM EGCG for 24, 48 and 72 hours. 

Control and EGCG treated cells were lysed in situ in RIPA buffer at the appropriate 

time and cell lysates resolved by SDS-PAGE. Western blotting was performed using 

antisera specific for E6, p53 and p21WAF1; antibodies specific for GAPDH or β-actin 

were included as loading controls. In parallel, FFPE sections of organotypic rafts were 

stained with the same antisera to assess level of TSG expression in control and EGCG 

treated raft cultures.   
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5.8.1 EGCG treatment down regulates expression of the HPV18 E6 protein in VIN 

cl.11 

Expression of the HPV18-encoded E6 protein was down regulated following EGCG 

treatment (Figure 5.22). Densitometric analysis was performed on the E6 and β-actin 

bands using ImageJ software. The densitometry values for E6 were then normalised 

against the corresponding values for β-actin, and the fold change in E6 expression was 

compared against that of untreated cells (control). Two tailed unpaired student t-test 

was used to determine the level of significance in the difference between E6 expression 

before and after EGCG treatment. A representative experiment, shown in Figure 5.23, 

demonstrates that E6 is down regulated in response to EGCG treatment. A small 

reduction in E6 expression was observed 24 hours after treatment, but the difference 

was not significant, P=0.51. However, in keeping with earlier findings, the level of E6 

protein was reduced by more than 50% after 48 and 72hours (P= 0.01 and 0.02, 

respectively). It was not possible to examine the level of protein expression for E7 in 

VIN cl.11 because the endogenous protein level of E7 was below the limit of detection.    
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Figure 5.23: Western blot showing down-regulation of the HPV18 

E6 oncoprotein in VIN cl. 11 following EGCG treatment. VIN cl.11 

cells were treated with 150µM EGCG for 24, 48 and 72hrs prior to 

lysis in RIPA buffer. Total cell lysates were resolved by SDS-PAGE 

and immunoblotted for anti-HPV18 E6. (A) Western blot showing 

down regulation of HPV18 E6. (B) Densitometry analysis of the blots. 

E6 densitometry values were normalized against β-actin. The fold 

change in E6 expression was compared against untreated cells. 

Statistical significance was determined by two-tailed unpaired 

Student t-test. Data shown is an average of 3 independent 

experiments. 
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5.8.2 EGCG up regulates expression of p53 but not p21WAF1 in VIN cl.11 

The down regulation of E6 expression was followed by the up regulation of its target 

TSG, p53 (Figure 5.24), and this was accompanied by an increase in expression of 

p21WAF1, a downstream target of p53 (Figure 5.25). Densitometric analysis showed a 

gradual increase in p53 expression when EGCG treatment duration was extended from 

24 to 72 hours. The rise in p53 protein level was only significant at 72 hours treatment 

when compared to no treatment (two tail unpaired student t-test, P=0.055).  Although 

the levels of p21WAF1 were found to increase 24 and 72 hours after EGCG treatment, the 

difference was not statistically significant (P=0.49, P=0.19, respectively, by two tailed 

unpaired student t-test).  
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Figure 5.24: Western blot showing up-regulation of p53 expression 

in VIN cl. 11 following EGCG treatment. VIN cl.11 cells were treated 

with 150µM EGCG for 24, 48 and 72hrs prior to lysis in RIPA buffer. 

Total cell lysates were resolved by SDS-PAGE and immunoblotting 

performed for p53. (A) Western blot showing up-regulation of the p53 

protein in EGCG treated VIN cl.11 cells. (B) Densitometric analysis of 

the blots. The densitometry values of p53 were normalized against 

GAPDH. The fold change in p53 expression was compared against 

untreated cells (control). *P=0. 055, unpaired student t-test indicates 

that the difference in p53 expression is significant when compared to 

controls. Data shown is an average of 3 independent experiments. 
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 Figure 5.25: Western blot showing up-regulation of p21WAF1 

expression in VIN cl. 11 following EGCG treatment. Cells were 

treated with 150µM EGCG for 24, 48 and 72hrs prior to lysis in RIPA 

buffer. Total cell lysates were resolved by SDS-PAGE prior to 

immunoblotting for p21
WAF1

. (A) Western blot showing up-

regulation of p21
WAF1

 protein at 24 and 72 hours post EGCG 

treatment. (B) Densitometry analysis of the blots. p21
WAF1

 

densitometry value was normalized against GAPDH. The fold 

change in p21 expression was compared against untreated cells 

(control). The difference in p21 protein level before and after EGCG 

treatment was not statistically significant (two tailed unpaired 

student t-test). No Rx = no treatment. Data shown is an average of 3 

independent experiments. 
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5.8.3 EGCG treatment stimulates expression of p53, p21WAF1 and pRb in VIN cl.11 

raft cultures 

The effects of EGCG treatment on the expression of p53, p21WAF1 and pRb in VIN cl.11 

cells was examined by immunofluorescence staining of control and EGCG treated raft 

cultures using antibodies outlined in Chapter 2. Representative analyses (Figure 5.26) 

revealed that long-term exposure of VIN cl.11 rafts to EGCG led to an increase in the 

levels of nuclear p53, p21WAF1 and pRb. Although IF staining failed to differentiate 

between the under and hyperphosphorylated forms of pRb, EGCG treatment was 

associated with a general increase in the levels of nuclear pRb staining. Quantification 

of these results revealed that EGCG-treated rafts displayed a 40% increase in p53; a 48% 

increase in p21WAF1; and a 72% increase in pRb expression (Figure 5.27).  
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Figure 5.26: Expression of the p53, p21
WAF1

 and pRb are altered in response to 

EGCG treatment of VIN cl. 11 raft cultures. FFPE sections of VIN cl.11 raft 

cultures grown in the presence or absence of EGCG were stained for p53 (A-

D), p21
WAF1

 (E-H) or pRb (I-L) (green) and cell nuclei counter stained with 

DAPI (blue). Panel A-D showing an increase in the nuclear staining of p53 

following EGCG treatment. Panel E-H, showing a modest upregulation of 

nuclear p21
WAF1

 staining following EGCG treatment. Panel I-L, showing an 

increase in pRb expression following EGCG treatment. Magnification x200. 

 



   

305 
 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.27: EGCG treatment upregulates expression of the key 

tumour suppressor genes, p53, p21
WAF1

 and pRb, targeted by the 

HPV oncoproteins, E6 and E7, indicating the functions of these 

TSGs were restored in VIN cl.11. Summary of the results of IF 

staining for p53, p21WAF1 and Rb expression in organotypic raft 

cultures of VIN cl.11 cultured in the presence or absence of EGCG. 

The total number of cell nuclei (DAPI stained) and those nuclei 

stained positive for p53, p21WAF1 or pRb were counted manually. 

Results were presented as proportion of cells stained positive for 

TSGs. **P<0.05, two-tailed student unpaired t-test indicates that the 

difference in the TSG expression is significant when compared to 

control.  Summarized from three independent experimental repeats. 

No Rx = No treatment 
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5.8.4 EGCG treatment alters the distribution of Np63 in VIN cl.11 raft cultures 

Np63, a homologue of p53, is a transcription factor required for maintaining and 

modulating stem cell populations in a number of epithelial tissues [189]. While 

expression of Np63 is normally confined to the basal cell layer of normal squamous 

epithelium, its expression extends to suprabasal cell layers in dysplastic or pre-

neoplastic epithelium, such as CIN 3. In vulvar epithelium, expression of Np63 is also 

confined to the basal cell layer, but aberrantly expressed in suprabasal cell layers of 

differentiated VIN (dVIN), a HPV negative intraepithelial neoplasia of the vulva [43]. 

Interestingly, the role of Np63 in uVIN, a HPV induced intraepithelial neoplasia of 

the vulva, has not been explored. Here I went on to examine the level and distribution 

of Np63 in HFK-HPV18 and VIN cl.11 cells grown in organotypic raft culture. The 

effect of EGCG treatment on Np63 expression was also studied.  

FFPE sections of VIN cl.11 and HFK-HPV18 organotypic raft cultures were subjected 

to immunofluorescence staining for Np63 using a rabbit antiserum; cell nuclei were 

counter stained with DAPI (Figure 5.28).  Immunofluoresence staining revealed that 

Np63 was confined to the nuclei of basal cells in raft cultures generated from HFK-

HPV18 (see Figure 4.36), but expressed throughout most cell layers in VIN cl.11 rafts.  

EGCG treatment did not alter the level of expression and distribution of Np63 in 

HFK-HPV18 (see Figure 4.36). However, while the levels of Np63 expression were 

not altered, the distribution of Np63 positive keratinocytes was confined to the basal 

layer following EGCG treatment.  

These findings suggest that VIN cl.11 is likely to be more transformed than HFK-

HPV18, given that Np63 is not confined to the basal cell layer as it is in these HPV-
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immortalised keratinocytes.  Although speculative, it is unlikely that HPV18 directly 

influences Np63 expression given that expression is confined to the basal layer in raft 

cultures generated from these cells. It is possible that HPV18 transformation of VIN 

cl.11 is followed by additional genetic changes that stimulate Np63 expression in 

these pre-malignant keratinocytes. Whether Np63 is required to maintain 

keratinocytes in a hyperproliferative state is unclear. However, the fact that EGCG 

inhibits the proliferation of VIN cl.11 cells and restores Np63 expression to the basal 

cell layer suggests that Np63 may play a role in maintaining cells in an 

undifferentiated state. 
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A. VIN cl.11  untreated  - DAPI B. VIN cl.11  untreated – Np63 

C. VIN cl.11 100µM EGCG -  DAPI D. VIN cl.11 100µM EGCG  - Np63 

F. VIN cl.11  untreated – catenin 

H. VIN cl.11 100µM  EGCG  - catenin 

E. VIN cl.11  untreated  - DAPI 

             

Figure 5.28: Unlike β-catenin, expression of the basal cell marker, Np63, is 

altered in response to EGCG treatment in VIN cl. 11 raft cultures. FFPE sections of 

VIN cl. 11 raft cultures (panel A-H) cultured in the presence or absence of EGCG 

were stained for Np63 or -catenin (green) and cell nuclei counter stained with 

DAPI (blue). In VIN cl. 11, Np63 is expressed throughout the full thickness of the 

raft culture. In response to EGCG treatment, Np63 expression is confined to the 

basal cell layer. Panel E-H shows that EGCG treatment did not alter the distribution 

or level of expression of catenin in EGCG treated VIN cl.11 rafts. Magnification 

x200. 

 

G. VIN cl.11  100µM  EGCG  - DAPI 
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5.9 Discussion 

As part of a pilot study designed to isolate an authentic uVIN-derived keratinocyte 

clone, primary epidermal keratinocytes were successfully grown from a resected 

biopsy obtained from a 46-year-old woman with histologically proven uVIN. These 

primary keratinocyte cultures were heterogeneous in appearance, suggesting that they 

were derived from a mixture of normal and HPV-infected keratinocytes. This 

heterogeneity most likely reflected the nature of the tissue specimens, which, after 

close inspection, were found to contain normal epithelium and tissue with varying 

degrees of epithelial dysplasia. Subsequent testing of the biopsies by Luminex PCR 

revealed the presence of six different HPV strains (HPV42, 70, 35, 51, 56 and 59), but 

the lack of HPV16 and HPV18. While the PCR methodology proved useful in 

identifying the strains of HPV, ISH may have to be performed to confirm the presence 

and relative abundance of each HPV strain within the resected uVIN  lesions.            

At face value, the results obtained were somewhat surprising given that analysis of 

primary keratinocyte cultures for HPV strains revealed the presence of HPV16 and 

HPV18 DNA using strain-specific E6 primers. However, subsequent testing of 

passaged primary keratinocytes indicated a loss of both HPV16 and 18 strains upon 

serial propagation. Given that primary cultures contained detectable amounts of 

HPV16 and HPV18 DNA, it is currently unknown why these were not found in the 

original uVIN biopsies using the more sensitive Luminex-based assay.  The presence of 

HPV16 and HPV18-infected keratinocytes at p0 suggested that keratinocytes infected 

with these strains must have been present in the primary lesions; moreover, it is 

unclear at present why HPV16 and HPV18-infected keratinocytes were lost so quickly 
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upon serial propagation. It is possible that viral episomes were lost as a consequence of 

in vitro cultivation; either through genomic instability or differentiation/senescence 

[190, 191]. However, it is more likely that the number of HPV16 and HPV18 infected 

keratinocytes in the uVIN biopsy were so low, that they constituted a minority of 

keratinocytes infected with other HR-HPV strains and/or normal uninfected primary 

keratinocytes.  

In an attempt to isolate clones that retained HPV16 or HPV18, single cell cloning was 

performed from primary p0 keratinocyte cultures. Of 23 independent clones, 11 were 

successfully grown and expanded for further investigation. Analysis of these 11 

isogenic clones for HPV strains using the Luminex multiplex PCR platform revealed 

that seven were infected with HPV35, one with HPV18, one with both HPV18 and 

HPV35. One tested negative for all HR-HPV strains.  None of the clones were found to 

contain HPV16 DNA.  

While HPV16 and HPV18 infected keratinocytes were lost upon serial propagation, 

keratinocytes infected with the HPV35 strain were maintained, given that all but two 

of the clones examined tested positive for this virus. At first glance, this seemed 

surprising, as it was assumed that clones infected with HPV16 or HPV18 would 

possess a proliferative advantage over normal uninfected keratinocytes, or clones 

infected with low-risk HPV strains. However, HPV35 is classified as an HR-HPV strain 

and, as such, possesses the ability to stimulate keratinocyte growth. To our knowledge, 

this is the first demonstration of spontaneously isolated keratinocyte clones infected 

with HPV35, or co-infected with multiple HR-HPV strains. It is unclear whether clones 

infected with HPV35 are immortalised and how their behaviour compares to HPV16 or 
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HPV18 infected clones isolated from the same biopsies. Future studies are planned to 

compare the behaviour and growth characteristics of HPV18 and HPV35 infected 

clones. However, due to time constraints, we elected to focus on characterising VIN 

cl.11, as this was the only clone found to contain HPV18.  

Like normal vulvar keratinocytes (NVK) and HFK-HPV18, VIN cl.11 formed colonies 

at clonal density on irradiated 3T3-J2 fibroblasts, eventually merging to form 

monolayers of homogenous, undifferentiated keratinocytes. However, unlike NVK or 

HFK-HPV18, VIN cl.11 failed to stratify and produce larger, more differentiated 

keratinocytes.  In this respect, VIN cl.11 is similar to the KG cell line, the first HR-HPV 

infected uVIN keratinocyte line isolated by Grassmann and colleagues [177]. The 

keratinocyte origin of VIN cl.11 was confirmed, as cultured cells were found to express 

the keratinocyte-specific markers: keratin 14 (K14) and the cross-linked envelope 

protein, involucrin. Moreover, when grown in organotypic raft culture, VIN cl.11 

underwent stratification and expressed Keratin 1 and 10 (K1/10), two high molecular 

weight keratins associated with terminal differentiation. Although it is not clear at this 

stage whether VIN cl.11 is immortalised, this clone has been successfully cultivated for 

over 20 passages, which is well beyond the normal lifespan of age-matched NVK in 

vitro; primary cultures of NVK have a proliferative capacity of <6 passages. Although 

VIN cl.11 has an extended lifespan in vitro and may possess pre-malignant properties, 

it failed to form colonies in anchorage-independent growth assays (Supplementary 

Figure 2), indicating that it is not fully transformed.  Despite this, VIN cl.11 produced 

epithelial structures that exhibited abnormal, possibly pre-neoplastic features, with 

immature keratinocytes displaying a high nucleus-to-cytoplasmic ratio extending to 
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the upper layers of the raft structure and a poorly defined cornified layer. Expression 

of Np63, a marker of basal keratinocytes was more extensive than that observed in 

HFK-HPV18, revealing the presence of an expanded immature basal cell layer, a 

feature commonly observed in intraepithelial neoplasia of the cervix (CIN), vulva 

(VIN), and VSCC, but not normal vulvar epithelium [43, 192]. This was confirmed, as 

BrdU labelling and Ki67 staining of VIN cl.11 rafts, revealed extensive staining of 

labelled nuclei throughout the lower two-thirds of the raft structure, indicating the 

presence of mitotically active immature basal cells.  

Unlike previously isolated VIN cell lines, which carry episomal or integrated copies of 

HPV16 [177, 178], VIN cl.11 is unique in that it harbours the HPV18 strain. PCR 

analysis revealed that the E2 region, a site commonly disrupted during viral 

integration, was intact, suggesting that VIN cl.11 contains episomal forms of the virus. 

Furthermore, when cultured in organotypic raft culture, expression of the E4 protein 

was observed in the suprabasal layers of VIN cl.11 raft structures, confirming the 

presence of a productive HPV18 infection. The fact that E4 can only be expressed from 

intact viral episomes supports findings from the E2 disruption assay, confirming that 

VIN cl.11 carries episomal forms of HPV18. However, further studies are required to 

establish, unequivocally, the presence of viral episomes and possible integrants in this 

clone. The establishment and serial propagation of VIN cl.11 on irradiated 3T3 feeder 

cells appears to favour viral episome maintenance (Dr Sally Roberts – personal 

communication). Future studies will examine the impact of cell culture conditions on 

viral episome maintenance and viral integration. The growth and differentiation of 

clones carrying episomal and integrated forms of the virus may yield potentially 
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interesting insights into the behaviour of these pre-malignant clones, and how viral 

integration alters the growth and transformed properties of cells. 

Having confirmed that VIN cl.11 harboured intact, episomal forms of HPV18 we next 

examined this clone for expression of the two viral oncoproteins, E6 and E7. While 

Western blotting confirmed that both E6 and E7 proteins were expressed in VIN cl.11, 

the level of E7 was significantly lower than that observed in HFK-HPV18; indeed, 

prolonged exposure of membranes was required to visualise the E7 protein. At this 

stage, it is unclear why levels of the E7 protein were significantly lower than that of E6 

in VIN cl.11. Although speculative, one possible explanation for this is that the virus in 

VIN cl.11 selectively expresses a splice variant of the E6/E7 transcript that favours 

translation of the E6 protein rather than the E7 protein, resulting in a 

disproportionately higher amount of E6 protein. The E6 and E7 proteins are translated 

from a single bicistronic or polycistronic mRNA [69]. Although the E6 gene can 

undergo alternative splicing to generate truncated forms of the E6 protein; the so-

called E6* protein, these alternatively spliced transcripts still contain the E7 ORF. It is 

possible that certain spliced variants of the E6/E7 transcripts may favour translation of 

one protein over the other, thus resulting in a different amount of E6 and E7 proteins 

being synthesised [70, 193, 194]. Further studies are required to examine the variant of 

E6/E7 transcripts expressed in VIN cl.11 to confirm the above hypothesis.  

In the previous chapter, I showed that EGCG inhibited the growth of HFK-HPV18 

keratinocytes, an effect that was accompanied by the induction of apoptosis. 

Furthermore, EGCG induced proteolysis and degradation of the E6 and E7 proteins, 

and increased expression of key TSGs (p53, p21WAF1, pRb) in both monolayer and 
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organotypic raft culture. I next explored the phenotypic and molecular consequence of 

EGCG treatment on the newly derived uVIN cell line. Like HFK-HPV18, EGCG 

treatment inhibited the growth and induced apoptosis in VIN cl.11 in monolayer 

culture and, like HPV18-HFK downregulated expression of the E6 protein. However, 

the IC50 of EGCG for VIN cl.11 (150µM) was higher than that of HFK-HPV18 (100µM), 

indicating that this VIN cl.11 was less sensitive to the anti-proliferative effects of EGCG. 

When grown in the organotypic raft culture system, cell proliferation was significantly 

impaired, as the incorporation of the BrdU label and expression of the proliferative 

marker Ki67 were significantly reduced in response to EGCG treatment.  Interestingly, 

while cell proliferation was inhibited, very little effects were observed on the 

expression of p16INK4a and MCM7. Although speculative, this suggests that while 

sufficient levels of E6 and E7 required to stimulate p16INK4a, and MCM7 expression 

were maintained in EGCG-treated rafts, additional, possibly "off-target" effects of 

EGCG were activated to inhibit cell proliferation. In this context, it is interesting to 

note that the levels of pRb, p21WAF1 and p53 were all increased in response to EGCG 

treatment. Whether this occurred as a result of E6 and/or E7 degradation or an “off-

target” effect of EGCG on TSG expression remains to be fully resolved. The lack of 

suiTable reagents to examine the levels of E6 and E7 in raft cultures prohibited an 

examination of their levels in response to EGCG treatment. 

Although there was only a subtle change in the levels of p16INK4a and MCM7 in EGCG-

treated raft cultures, expression of the HPV-encoded E4 protein was completely 

suppressed, indicating that the virus was unable to undergo complete vegetative 

propagation. As the HPV life cycle is closely linked to keratinocyte differentiation, we 
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believe that EGCG may disrupt certain aspects of the keratinocyte maturation process, 

thereby interfering with the lytic life-cycle. Although expression of the differentiation-

specific markers involucrin and K1/10 were present in EGCG treated rafts, the distinct 

lack of a stratum granulosum and stratum corneum, suggests that EGCG interferes 

with keratinocyte maturation, impeding the formation of epithelial layers in which E4, 

L1 and L2 are expressed [115]. This effect appeared to be specific for the lytic phase, as 

episomal replication did not appear to be affected by EGCG treatment in HFK-HPV18 

cultured in monolayer culture. These findings may suggest that the virus can maintain 

its replication at a low level in basal keratinocytes, but is unable to complete its life-

cycle as keratinocyte maturation is impaired following EGCG treatment. Obviously, 

this has implications for the use of EGCG as a topical treatment for uVIN, as an 

incomplete eradication of the virus may occur, allowing for reactivation. Future 

experiments are planned to examine the effects of long-term EGCG treatment on 

HPV18 persistence in organotypic raft culture and whether EGCG influences 

expression of E1 and E2, two proteins required for efficient episomal replication. 

Studies have shown that EGCG exerts differential effects on transformed and non-

transformed keratinocytes; it induces apoptosis in squamous cancer cell lines but 

promotes differentiation in normal keratinocytes. EGCG stimulates expression of 

differentiation markers such as involucrin and keratin 1 [96, 103, 105] via engagement 

of the p38 Stress-activated protein kinase (SAPK) pathway and stimulation of AP1 and 

CREB transcription factors. However, while such effects have been studied in HPV-

positive transformed cell lines (e.g. Hela, CaSki), the effects of EGCG on pre-malignant 

cancer cell lines (uVIN) or HPV-immortalised keratinocytes (HFK-HPV18) has not 
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been evaluated. In raft culture, little or no change in involucrin and K1/10 expression 

were observed in response to EGCG treatment, indicating that EGCG is unlikely to 

promote differentiation in VIN cl.11 or HFK-HPV18. It is also worth pointing out that 

all the studies described previously which showed that EGCG promotes differentiation 

in normal epidermal keratinocytes were performed on monolayer culture. While 

attempts to culture NVK in organotypic raft culture were unsuccessful, it would 

nonetheless be interesting to examine the effects of EGCG treatment on the growth and 

differentiation of normal vulvar keratinocytes in monolayer and organotypic raft 

culture.  

Although the mechanism(s) by which EGCG influences keratinocyte maturation 

remain elusive, possible explanations come from the study of cell signalling pathways 

affected by EGCG. Although the signalling pathways influenced by EGCG are 

numerous, ones that are relevant in this context include the interleukin (IL)-1 and 

IL1 signalling pathways. IL1 and IL1 are pro-inflammatory cytokines that 

contribute to epidermal hyperplasia through the induction of growth factors and 

cytokines that stimulate keratinocyte growth and inflammation [195, 196]. EGCG 

attenuates IL1 and IL1signalling through a variety of mechanisms, including the 

induction of the IL-1 receptor antagonist (IL1ra) and the attenuation of NF-B and AP-

1 activity [197-199]. A number of studies have shown that EGCG, alone, or in 

combination with IL1ra, attenuate the transformed properties of a malignant 

osteosarcoma cell line [200], while others have shown that EGCG inhibits IL-1-

mediated induction of IL8 through a mechanism involving I-kappa-B kinase (IKK) 

activation [196]. While data for uVIN is lacking, comprehensive gene expression 
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profiling has identified over-expression of IL1 and IL1 as a common feature in 

VSCC [201], suggesting that these cytokines are important in disease pathogenesis. A 

profiTable line of enquiry might be the examination of IL1 and IL1 expression in 

uVIN biopsies and the newly derived VIN cl.11 cell line, given that EGCG attenuates 

IL1 and IL1signalling. In this respect, IL1 and IL1signalling may constitute an 

important target of EGCG action. 

In addition to IL1 and IL1, the effects of EGCG on Notch signalling might constitute 

an additional interesting line of enquiry. In normal epidermal keratinocytes, Notch 

signalling promotes cell-cycle withdrawal, stratification and terminal differentiation 

through a number of overlapping mechanisms [92]. Notch1 down-regulates Np63, 

through a mechanism involving transcriptional silencing of interferon regulatory 

factor (IRF) 3 and IRF7 [202]. This is accompanied by an induction in expression of 

p21WAF1, p27Kip, NF-B, PPAR1, which function to promote cell-cycle withdrawal and 

regulate various aspects of keratinocyte maturation [203]. This contrasts with fully 

transformed keratinocytes, where Notch signalling becomes "uncoupled' or down-

regulated. In this context, the absence of Notch1 signalling favours cell proliferation 

[204]. Indeed, studies have shown that Notch1 gene dysregulation occurs in cervical 

neoplasia, where expression of Notch1 signalling is reduced as CIN progresses from 

low to high-grade disease [205-207]. 

A number of studies have shown that EGCG down-regulates Notch signalling in 

immortalised keratinocyte cell lines [208-210]. Given that Notch is required for correct 

spatiotemporal regulation of keratinocyte differentiation, EGCG inhibition may 

interfere with the normal maturation process, resulting in the loss of granular and 
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cornified cell layers in the pre-malignant and immortalised keratinocyte cell lines (VIN 

cl.11, HPV18-HFK). As vegetative replication of HPV18 is intricately linked to 

differentiation, EGCG-induced changes in the differentiation programme may 

influence late gene expression. Such a hypothesis may explain the lack of detectable E4 

expression in EGCG-treated rafts. Future studies are planned to examine the effects of 

EGCG treatment on Notch1 expression/activity, and how this influences keratinocyte 

differentiation and HPV lytic replication. 

As previously mentioned, Np63 is expressed in immature keratinocyte populations 

confined to the basal layer of normal human epithelium and, as such, Np63 is 

frequently used as a marker to identify this population in squamous epithelia and 

carcinomas. In raft culture, the number of cell layers expressing Np63 was more 

extensive in VIN cl.11 compared to HFK-HPV18, where a single layer of Np63 

positive cells was observed. This, coupled with the observation that the number of cells 

incorporating the BrdU-label, or expressing Ki67 was more extensive in VIN cl.11 

compared to HFK-HPV18, indicates that VIN cl.11 is more “transformed” than HFK-

HPV18. Following EGCG treatment, we found that the expression of Np63 in VIN 

cl.11 raft culture became more polarised, becoming restricted to a single cell layer at 

the basolateral surface of the raft structures. Interestingly, the change in distribution 

was not associated with a loss in the number of Np63 positive cells. Rather, the 

upward migration of these cells was impeded as the number of Np63-positive cells 

was increased within the basal cell layer. The fact that the level of Np63 expression 

was not altered suggests that EGCG does not influence its expression (i.e. through the 

induction of Notch1 activity), but rather, influences some aspect of cell behaviour that 

influences their migration and possibly maturation.  
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Although the exact mechanism(s) by which EGCG reverses the pre-neoplastic features 

of VIN cl.11 remain to be elucidated, we hypothesize that it is achieved through a 

number of mechanisms. The loss of E4 expression following EGCG treatment indicates 

that the epithelium is unable to sustain viral lytic replication, possibility due to effects 

on keratinocyte maturation. Whether lytic replication per se, influences the malignant 

potential of the virus is unknown, although the ability to suppress lytic viral 

replication may actually promote viral integration and potentiate cell transformation.  

EGCG was also found to promote rapid degradation of the key viral proteins E6 and 

E7 that are responsible for driving carcinogenesis, an effect that may prevent HPV-

infected keratinocytes (VIN cl.11) from developing dysplastic features in organotypic 

raft culture. The increase in expression of tumour suppressor genes, p53, p21WAF1 and 

pRb is also likely to play a major role in preventing carcinogenesis. As discussed 

previously, these TSGs are normally suppressed following HR-HPV infection. 

Whether their re-expression is attributed to the down-regulation of the viral E6 and E7 

proteins or induced directly in response to EGCG treatment remains to be elucidated.  

The re-expression of these TSGs may interfere or antagonize the increased proliferative 

potential of HR-HPV transformed keratinocytes leading to cell death by apoptosis. 

This may explain why EGCG treated rafts are considerably thinner and lack immature 

cells in the suprabasal layer when compared to untreated rafts, as cell proliferation is 

reduced due to TSG re-activation. Collectively, these findings suggest that EGCG 

influences the growth and pre-neoplastic properties of this uVIN-derived keratinocyte 

clone through mechanisms that influence the behaviour of the virus in addition to 

keratinocyte growth and maturation.  
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To summarise the findings presented in this chapter, a novel pre-malignant 

keratinocyte clone was isolated from an authentic uVIN biopsy and shown to harbour 

episomal forms of HPV18. When grown in organotypic raft culture, this clone stratified, 

generating an epithelium with pre-malignant features that superficially resembled 

uVIN. Moreover, under appropriate conditions, this clone was shown to sustain a 

productive lytic infection. For the first time, I have shown that treatment with EGCG 

reverses these pre-malignant features in organotypic raft culture, by impairing viral 

replication, down regulating expression of the E6 protein and re-activating expression 

of many TSGs. This cell line will not only offer us the opportunity to study and 

understand the process of carcinogenesis induced by HPV18 in vulvar keratinocytes, 

but it may also be used as a model to screen new therapeutic targets for uVIN or other 

HR-HPV induced proliferative disorders. 
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General Discussion and Future Work 

In Chapter 3, I set out to identify the iso prognostic factors which determine local 

cancer recurrence using a well characterized retrospective cohort of patients with 

primary VSCC, and have identified Lichen Sclerosus (LS) as the only independent risk 

factor after a multivariate analysis was performed using 12 prognostic variables (age, 

smoking status, disease stage, tumour size, disease focality, LS +/- VIN, LVSI, histology 

grade, HPV positivity, groin node status, excision margins, and chemo-radiotherapy) 

which have previously been shown to modulate the risks of local recurrence (see 

chapter 3 discussion). Paradoxically, women with uVIN, the putative precursor lesion 

for VSCC, were not at increased risk of developing local recurrences. Although 

speculative, there are a number of reasons why women with uVIN were less likely to 

develop local recurrences compared to those with LS. Firstly, women with chronic or 

persistent uVIN suffer debilitating symptoms and are more likely to be examined and 

treated in the clinic more frequently than those with LS. Secondly, women presenting 

with uVIN tended to be younger than those presenting with LS and, as such were 

more likely to seek medical help compared to patients with LS, who tended to be 

elderly. Thirdly, given the fact that these women had cancer previously, it is likely that 

clinicians would offer surgical intervention as a means to alleviate their symptoms and 

prevent disease progression. It is possible; therefore, that surgical intervention to 

excise persistent uVIN may have reduced the incidence of local recurrence observed in 

our cohort of patients who present with viral-associated VSCC. As for HPV-negative 

HNSCC, it remains unclear whether HR-HPV can induce a “field change” in vulvar 

epithelium, and whether excision of the dysplastic lesion is sufficient to remove all 
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molecularly altered clones [62].  Although uVIN is a pre-malignant lesion, its rate of 

malignant progression is comparatively low (approximately 5-10%), taking anything 

up to 5-10 years [24]. As a clearly visible lesion, surgical intervention is relatively 

straightforward. Naturally, this intervention interrupts the disease process and the 

possibility of progression to cancer.  To establish if surgical intervention to remove 

uVIN confounded the outcome of local recurrence within our cohort, I have planned 

further analysis to assess the frequency and type of intervention women have received 

when uVIN was diagnosed after their primary cancer was removed.  

Compared to women presenting with uVIN, women with LS were usually 

asymptomatic and from an older age group (see chapter 3 discussion). As such, these 

patients were probably examined less frequently in the clinic compared to those with 

uVIN. Unlike HPV-infected uVIN, there is no recognised premalignant lesion 

associated with LS that progress to cancer. It remains unclear if dVIN, which develops 

in a field of LS, is a precursor lesion of HPV-negative VSCC. dVIN is often found 

associated with VSCC and rarely exists on its own, which makes surveillance and 

treatment of dVIN difficult. My analysis also revealed that women with LS were not 

only twice more likely to have a local relapse (tumour recurring on a site previously 

occupied by the primary tumour), but were also 5 times more likely to develop 

recurrence away from the primary tumour (second field tumour). This observation 

raises two questions; firstly, did LS give rise to second field tumour (SFT) or indeed the 

primary tumour; and secondly, was SFT derived from the same clonal origin as its 

primary tumour. Studies on head and neck SCC (HNSCC) have found that patients 

with viral negative tumour were also more likely to recur in a molecularly altered 
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epithelium (field of cancerization) away from the site of primary tumour [62]. As 

mentioned previously, studies have showed that non-viral induced VSCC often bore 

similar genetic and epigenetic alterations to its adjacent LS, thus raising the possibility 

that chronic LS may generate a cancer field (see chapter 3 discussion). To confirm this, 

I have planned, using the DNAseq, RNAseq and pyrosequencing technology, to 

measure the frequency with which genetic and epigenetic alterations occur in tumour 

and its adjacent epithelium affected by LS on our well-characterized cohort of patients 

where paraffin embedded blocks have already been retrieved.  If the primary tumour, 

recurrence tumour and adjacent LS all share similar molecular alterations, then these 

tumours were most likely to have derived from the same clonal origin and arose in a 

molecularly altered field generated by chronic LS. The molecular alterations identified 

can also be used as potential biomarkers to stratify patients into indolent LS and those 

at risk of malignant transformation.  As LS cannot be treated with surgery, future work 

should focus on developing an effective chemopreventative treatment to minimise the 

risks of local recurrence in this group of patients.  

The primary aim of chapter 4 was to investigate the effects of EGCG on the growth and 

differentiation of HPV18 transfected keratinocytes and establish whether this was due 

to effects on virus behaviour. Thus far, it is not clear whether EGCG functions solely as 

an anti-viral agent, as I was unable to demonstrate that EGCG clears cells of viral 

episomes.  My findings revealed that episomal replication, as measured by viral copy 

number, was not affected by EGCG treatment in monolayer culture, albeit over a 

relatively short duration. However, the fact that HFK-HPV18 cells were undergoing 

growth inhibition and apoptosis at this stage suggests that episomal loss per se is not 
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important. This observation has interesting connotations in the clinical setting.  If 

chronic exposure to EGCG ointment (Veregen®) does not eradicate viral episomes, 

there is a possibility that the virus may remain latent in subpopulations of long-lived 

basal keratinocytes such as stem/progenitor cells, and that these become reactivated 

once treatment is discontinued. Future studies are planned to examine the effects of 

EGCG on episomal maintenance in HFK-HPV18 and VIN cl.11 keratinocytes grown in 

raft culture for more protracted periods of time. Similarly, both treated and non-

treated samples for the EPIVIN clinical trial, which evaluate the use of Veregen® in the 

treatment of uVIN, will be examined for the presence of HPV DNA using sensitive in-

situ hybridisation. If EGCG treatment does induce complete or partial remission of 

uVIN lesions, the presence of HPV DNA in histologically normal epithelium from 

treated biopsies will prove informative.  

Although EGCG did not appear to influence viral episome maintenance, I did find that 

it interfered with lytic replication of HPV18 in organotypic raft culture. While this 

could not be substantiated in HFK-HPV18, I found that treatment of VIN cl.11 with 

EGCG resulted in a loss of E4 protein expression in the differentiating cell layers. As 

lytic replication of HPV is intimately linked to keratinocyte differentiation [115], I 

speculate that EGCG may impair this process by modulating some subtle aspect of 

keratinocyte differentiation that is not evident by immunofluorescence staining for 

established epidermal differentiation markers. Another intriguing possibility is that 

efficient expression of E4, and other late structural proteins, requires E6 and E7, or that 

the hyperproliferative epithelium generated as a consequence of their action is 

necessary to create a suiTable cellular environment in which they can be expressed [66].  
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Another striking effect of EGCG treatment in HFK-HPV18 cells was down regulation 

of the E6 and E7 proteins, the key HR-HPV-encoded oncogenes that drive keratinocyte 

proliferation. It is still unclear at present whether this ability is central to the effects of 

EGCG on HFK-HPV18 and VIN cl.11 growth and differentiation. To establish whether 

it is a cause or a consequence, the E6 and E7 proteins will be targeted using custom 

made siRNAs and the effects of silencing on growth, apoptosis and expression of TSGs 

examined. Using tetracycline-regulaTable retroviruses containing E6 and E7-specific 

shRNAs, clones of HFK-HPV18 and VIN cl.11 will be generated, and the effects of E6 

and E7 silencing on growth, differentiation and TSG expression in organotypic raft 

cultured examined. 

Although my study along with others has shown that the ability of EGCG to down 

regulate E6 and E7 expression is inhibited by the addition of the proteasome inhibitor 

[71, 141], MG132, it remains unclear if their turnover is actually mediated through the 

ubiquitin-proteasome pathway given that my studies, and those of others, have failed 

to confirm that the E6 and E7 proteins are polyubiquitinated.  However, my study has 

identified a monoubiquitinated E6 species, whose expression is maintained in the 

presence of EGCG and MG132 treatment. Currently, the significance and function of 

this modified form of E6 is unknown, although this type of modification may regulate 

E6 function, potential interactions with other proteins (E6AP, hDlG Scribble - amongst 

others), and intracellular trafficking.  

Given that E6, and possibly E7, do not appear to be poly-ubiquitinated in response to 

EGCG treatment, I plan to investigate whether other proteolytic pathways are 

involved in their degradation. As EGCG has been found to target a myriad of cell 
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signalling pathways, I will firstly focus on the role of Calpains and Caspases, given 

that EGCG has been shown to induce Calpain and Caspase activity (Caspase-3, 9) to 

induce apoptosis. Another interesting area of study would be to examine the 

expression and activity of protein tyrosine kinase and phosphatases that are involved 

in the post-translational modification of E6 and E7 [211]. One such pathway is Protein 

Kinase A (PKA), which phosphorylates and modulates E6 function.  Whether EGCG 

stimulates PKA activity and whether PKA-mediated phosphorylation of E6 is a 

prerequisite to ubiquitination remains unknown. 

Again, I am not able to distinguish if the upregulation of the TSGs, p53 and Rb, is a 

consequence of E6 and E7 protein downregulation or directly induced in response to 

EGCG treatment. To distinguish between the two mechanisms, I plan to treat the 

isogenic non-HPV18 transfected keratinocytes with EGCG and examine the expression 

of p53 and Rb; if their expression is increased in non-HPV transfected keratinocytes, 

then it is likely that EGCG directly stimulates their expression rather than their re-

expression occurring as a consequence of E6 and E7 degradation.  

In Chapter 5, I have achieved my primary objective of establishing a novel pre-

malignant clone from an authentic uVIN biopsy, which harbours episomal forms of 

HPV 18 (VIN cl.11). When grown in organotypic raft culture, this clone stratified, 

generating an epithelium with pre-malignant features that resembled uVIN, which is 

also capable of sustaining a productive lytic infection. Molecular profiling of VIN cl.11 

showed overexpression of p16INK4a and aberrant expression of Np63 in suprabasal 

cells in organotypic raft cultures, both features consistent with those found in high 

grade pre-neoplastic lesions of the cervix and vulva, indicating that cellular dysplasia 
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is driven by HPV18 [43, 192]. Furthermore, chromosomal analysis of VIN cl.11 showed 

tetraploid karyotype with abnormal chromosome rearrangements, another feature 

confirming the pre-neoplastic nature of this clone. Further work is currently underway, 

with the help from our regional genetics department, to complete the molecular 

profiling of VIN cl.11. DNA fingerprinting will be performed to establish 

unequivocally, the provenance of the cell line. Given the chromosome abnormalities I 

have observed from the karyotyping studies, I plan to perform DNA sequencing 

(DNASeq) to identify mutations within the host genome that may be of relevance to 

disease pathogenesis, and to establish whether any HPV18 genomes have become 

integrated into the host chromosome. At this stage, it is still unclear whether VIN cl.11 

harbours both integrated and episomal forms of HPV 18.  

Further work is also planned to study the HPV 18 virus in VIN cl.11 in greater detail. 

This will involve: measuring the absolute viral copy number in cells by Southern 

blotting; determining the levels of expression of the bicistronic E6/E7 transcripts and 

its splice variants, to establish if it contributes to the disparity seen in the level of 

expression of E6 and E7 proteins (see Figure 3.12); and to profile for the expression of 

the early (E1, E2 and E4) and late viral (L1 and L2) genes.  

When VIN cl.11 was established, an additional ten isogeneic clones were isolated by 

single cell cloning, and these have been frozen away at passage 2 or 3 (see Chapter 3, 

Figure 3.5). One of the clones, VIN cl.8, was tested negative for any HR-HPV strain and, 

as such, might serve as an isogenic normal control to examine differences in gene 

expression profiles between a HR-HPV negative and positive clone (VIN cl.11). Thus, 

my next priority is to characterize VIN cl.8 and compare its phenotype and molecular 
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profiles with VIN cl.11. If it is proven to be a normal isogenic keratinocytes to VIN 

cl.11 then it could be used in future as a negative control to study the pathogenesis of 

VIN and for drug screening.  

In summary, I have shown, from my retrospective cohort study, that women with LS 

are at significantly increased risk of developing local recurrence; this result sets 

precedence for those women with VSCC arising in background of LS to be followed-up 

more closely in clinic after their primary tumour was resected; unless a more robust 

surveillance programme or chemoprevention treatment becomes available in the 

future. Although I have not been able to establish if EGCG affects the physical status of 

HPV, I have demonstrated that viral lytic replication is impaired following EGCG 

treatment as demonstrated by the inability of HPV18-infected keratinocytes to express 

E4 in organotypic raft culture. I have also shown that EGCG induced apoptosis of HR-

HPV keratinocytes by inhibiting the expression of the E6 and E7 oncoproteins and 

inducing the expression of TSGs, p53 and Rb. EGCG treatment also restores the altered 

cell polarity observed in the HR-HPV transformed pre-malignant cell line, VIN cl.11, 

as demonstrated by the restoration of Np63 to the basal cell layer following EGCG 

treatment. VIN cl.11 is a novel VIN cell line that harbours episomal forms of HPV 18 

and can stratify in organotypic raft cultures generating a hyperplastic poorly 

differentiating epithelium. Phenotypically, the VIN cl.11 raft culture shows a 

hyperplastic and dysplastic feature that resembles uVIN. Furthermore, the culture of 

VIN cl.11 in the raft system supports lytic HPV 18 replication, making it a useful model 

to study the pathogenesis of uVIN and also for in vitro drug screening.  
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Supplementary Figure 1: Expanded image of Western blots taken from 

Figures 4.6 & 4.13. HFK-HPV18 cells were either left untreated or treated with 

50µM or 100µM EGCG for three days. Where appropriate, HFK-HPV18 cells 

were treated for 24 hours with 25µM cisplatin to stimulate expression of p53. 

Cells were harvested by lysing in RIPA buffer. 30µg of total protein lysate 

were resolved by SDS-PAGE. The levels of HPV18 E6, HPV18 E7, p53, and 

p21WAF1 were determined by Western blotting using antibodies specific for 

the protein of interest. Membranes were stripped and reprobed with a mAb to 

β-actin to confirm equal protein loading.  (A) Western blots for HPV18-

encoded E7 protein (left) and HPV18-encoded E6 protein (right). The same 

membranes were reprobed with a mAb to β-actin to confirm equal loading. 

Lysates from isogenic normal keratinocytes (HFK) were included as a negative 

control. (B) Western blot for p53. The same membrane was reprobed with an 

mAb to β-actin to ensure equal protein loading. Lysates from isogenic normal 

keratinocytes (HFK) were included as a negative control. (C) Western blot for 

p21. The same membrane was reprobed with a mAb to β-actin to ensure equal 

protein loading. 
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Supplementary Figure 2: Expanded image of Western blots taken from Figure 

4.13. HFK-HPV18 cells were either left untreated or treated with 50µM or 100µM 

EGCG for three days. Where appropriate, HFK-HPV18 cells were treated for 24 

hours with 25µM cisplatin. In some experiments, the isogenic normal uninfected 

counterpart of HFK-HPV18, (HFK), was included for comparison. Cells were 

harvested by lysing in RIPA buffer. 30µg of total protein lysate were resolved by 

SDS-PAGE. The levels of DNMT1, DNMT3B, EZH2 and BMI-1 were determined 

by Western blotting using antibodies specific for the protein of interest. 

Membranes were stripped and reprobed with a mAb to β-actin to confirm equal 

protein loading.  (A) Western blots for DNMT3B (upper) and DNMT1 (lower). The 

DNMT1 membrane was stripped and reprobed with a mAb to β-actin to confirm 

equal loading. Lysates from isogenic normal keratinocytes (HFK) were included as 

a negative control. (B) Western blots for EZH2 and BMI-1. The same membrane 

was reprobed with an mAb to β-actin to ensure equal protein loading. Lysates 

from isogenic normal keratinocytes (HFK) were included as a negative control. 
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Supplementary Figure 3: Immunofluorescence and 

immunohistochemical staining for p16INK4a on organotypic raft 

cultures generated from untreated and EGCG-treated HFK-HPV18 

keratinocytes. Immunofluorescence (A-D) and immunostaining (E-F) of 

p16INK4a were performed on HFK-HPV18 rafts sections. DAPI was used 

to counter stain cell nuclei in IF staining. Both the staining techniques 

consistently showed that the expression of p16 was not affected by EGCG 

treatment when compared to control. 
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Supplementary Figure 4: VIN cl. 11 fails to form colonies in soft-

agarose colony formation assays. A431, HFK-HPV18 and VIN cl.11 cells 

were assayed for their ability to proliferate in an anchorage-independent 

manner by seeding cells into growth medium containing 0.5% soft 

agarose. Colony formation monitored after 3 weeks. Unlike the fully 

malignant A431 cell line, HFK-HPV18 and VIN cl.11 cells failed to form 

colonies. 
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