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Abstract 

 

In most patients with rheumatoid arthritis (RA), citrullinated autoantigens are 

targeted by autoantibodies (ACPA). However, the process leading to protein 

citrullination by peptidylarginine deiminases (PADs) in the joint remains unclear. 

In this thesis, I tested the hypothesis that generation of neutrophil extracellular 

traps (NETosis), can contribute to release of enzymatically active PADs and 

citrullinated autoantigens in inflamed joints. 

 

I have shown that in vitro induced NETosis leads to release of citrullinated 

proteins and enzymatically active PADs both attached to NETs and free in the 

supernatant. In the SF from RA patients DNA levels correlated with neutrophil 

concentrations, and DNA levels and PAD activity were found to be increased 

compared with OA patients. Finally, I demonstrated the antigenicity of in vitro 

generated NETs and identified citrullinated histone H3 as a NET-component 

recognised by ACPA and RA sera. 

 

Based on the findings in this thesis release of active PADs into SF by neutrophil 

cell death is a plausible explanation for the generation of citrullinated 

extracellular autoantigens. In ACPA positive RA patients the continuous 

production of these autoantigens combined with pre-existing ACPA may result 

in the formation of immune complexes and perpetuation of the inflammatory 

response. 

 

 



 
“The point is that, whenever we propose a solution to a problem, we ought to try 
as hard as we can to overthrow our solution, rather than defend it. Few of us, 
unfortunately, practice this precept; but other people, fortunately, will supply the 
criticism for us if we fail to supply it ourselves.” – Karl Raimund Popper 
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1.1 Neutrophils 

Neutrophils are the most abundant leukocyte population in human blood and 

are the first cells which arrive at a site of inflammation. Historically they have 

been seen as simple phagocytes of the innate immune system playing only a 

limited role in the immune response. However over the past 10-20 years, 

research has revealed that neutrophils have complex and sophisticated 

mechanisms by which they locate and eliminate pathogens, and subsequently 

orchestrate the inflammatory responses. Importantly, many of these studies and 

concepts are still novel and need further scrutinisation before they are finally 

accepted by the scientific community. Nevertheless, the literature has 

highlighted a much more diverse role of these cells than previously appreciated 

which provides an important basis for further research. 

1.1.1 Neutrophil maturation  

Neutrophils are derived from hematopoietic stem cells within the bone marrow 

(BM) and develop in a process termed "granulopoiesis". On a daily basis, 

around 1011 neutrophils are generated in a normal adult human (1). 

Granulocyte-colony-stimulating factor (G-CSF) levels control the production of 

neutrophils in the BM and maintain neutrophil counts under homeostatic 

conditions or increase neutrophil numbers during infection (2). Aged neutrophils 

die by constitutive apoptosis in circulation and in the absence of activating 

stimuli (3). They can finally be ingested by macrophages to prevent the release 

of their cytotoxic components into the local tissue environment (4).  
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The release and retention of neutrophils from the BM is tightly regulated by the 

expression of two chemokine receptors on neutrophils and their respective 

ligands on stromal cells of the BM. During neutrophil maturation the chemokine 

receptor CXCR4 is gradually down-regulated while CXCR2 increases in 

abundance leading to the egress of neutrophils from the BM (5). Depletion of 

both receptors subsequently results in constitutive release of neutrophils into 

the blood circulation, suggesting a dominant role for CXCR4 (6). Interestingly, 

G-CSF has been demonstrated to stimulate neutrophil release both directly and 

by down-regulating expression of CXCL12, the ligand of CXCR4, in BM stromal 

cells (7,8). 

The BM is also the site where neutrophil granules, the hallmark of granulocytes, 

are formed sequentially during granulopoiesis (8). Primary (or azurophilic) 

granules are the earliest-formed granules. Their main components include 

myeloperoxidase (MPO), antimicrobial peptides, such as defensins, and three 

predominant serine proteinases: cathepsin G, elastase, and proteinase 3, which 

enable their main functional role of killing and digestion of microbes (9). The 

secondary (or specific) granules, which are formed after the primary granules, 

help limit free radical reactions. Their characteristic constituent is the 

glycoprotein lactoferrin, which binds and sequesters iron and copper, lysozyme 

and lipocalin. The smallest tertiary (or gelatinase) granules are formed at a late 

stage of neutrophil maturation and contain only few antimicrobials. Instead, they 

hold a number of metalloproteases such as gelatinase, which are able to 

degrade many extracellular matrix proteins (10). In addition, neutrophils also 

have a fourth set of storage organelles, the so-called secretory vesicles. They 

are formed through endocytosis and their membrane serves as a reservoir for 



4 
 
membrane-bound molecules employed during neutrophil migration (8,11). 

Importantly, the distinction between these types of granules reflects differences 

in granule contents and their mobilisation. Nevertheless, this nomenclature is 

too rigid, since considerable overlap exists in the cargo of these granules, 

depending on the time-point at which they are produced (11–13). 

 

1.1.2 Neutrophil recruitment  

After being released from the BM neutrophils continuously and randomly survey 

blood vessel walls on their way through the circulation in search of endothelial 

inflammatory signals. In order to arrive at the site of the inflamed tissue they first 

need to traverse the blood vessel walls. This process largely takes place in 

post-capillary venules and typically involves the following steps of: tethering, 

rolling, adhesion, crawling and transmigration (8,14). Initial attachment of 

neutrophils is enabled by their constitutive expression of the glycoprotein PSGL-

1 and L-selectin. These molecules interact with their ligands on activated 

endothelial cells, P- and E-selectins, resulting in the tethering of neutrophils to 

the surface of the endothelium as they roll along it. During the process of 

“rolling”, interaction with selectins, chemoattractants and cytokines leads to 

activation and clustering of the β2 integrins LFA-1 and Mac-1 on the surface of 

neutrophils resulting in rolling arrest and firm adhesion (11,15). Neutrophils 

subsequently begin to crawl in a process dependent on integrins and ICAMs 

along the vessel wall until they find a site for transmigration. Once they have 

passed the endothelium, neutrophils follow chemotactic gradients, such as host-

produced cytokines or pathogen-derived chemoattractants, to the site of 
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inflammation and/or infection (11). Interestingly, neutrophil recruitment does not 

always involve the steps described above and varies substantially in different 

organs, such as in the lung and the liver (16).  

Importantly, whereas migration of neutrophils through activated endothelium is 

dependent on β2 integrins, long-distance migration of neutrophils in tissue 

distant from the site of injury was recently revealed not to be (5). Using two-

photon intravital microscopy Lämmermann and colleagues demonstrated that 

neutrophils recruited to a focus of inflammation drive a second wave of 

neutrophil recruitment and clustering in the form of "swarms" (17). "Neutrophil 

swarming" was found to be initiated through release of chemoattractants from 

dead cells in developing neutrophil clusters, with a key role of leukotriene B4 as 

communication signal between neutrophils identified (17). 

 

1.1.3 Neutrophil activation and antimicrobial strategies 

Neutrophil activation has been shown to be a multi-step process. Initially, they 

can be primed by cytokines, such as  TNF-α, GM-CSF, IL-8 and IFN-γ or 

bacterial products (18). This can result in the rapid transport of pre-formed 

receptors to the cell surface via mobilisation of intracellular granules and the 

partial assembly of the NADPH oxidase. Additionally, activation of transcription 

factors can trigger de novo expression of molecules such as cytokines or 

receptors enhancing neutrophil function or prolonging their lifespan (18). The 

second stage of activation occurs after their recruitment to the site of 

inflammation. Here, neutrophils apply several different mechanisms to kill 

pathogens including phagocytosis, degranulation and the generation of 
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neutrophil extracellular traps (NETs). Phagocytosis is an active, receptor-

mediated process by which particles are taken up by the neutrophil and are 

internalised into a vacuole known as a phagosome (2). The interaction between 

neutrophils and microorganisms can either be direct (through pattern-

recognition receptors (PRRs)), or opsonin-mediated (through FcγR-mediated 

phagocytosis of IgG-opsonised particles or through complement receptor-

mediated phagocytosis) (11,19). Following engulfment, phagosome maturation 

initiates fusion of granules to the phagosome so that antimicrobial molecules 

can enter the phagosomal lumen. After fusion, the NADPH oxidase complex 

assembles on the phagosomal membrane and begins ROS production by 

reducing molecular oxygen to superoxide (11). Spontaneous dismutation of 

superoxide or dismutation catalysed by the enzyme superoxide dismutase 

(SOD) yields hydrogen peroxide (H2O2) (20). In addition, myeloperoxidase 

(MPO) can react with H2O2 and lead to the generation of highly reactive 

products including hypohalous acids, the major molecule of which is 

hypochlorous acid (HOCl). These mechanisms create an environment which is 

highly toxic to most pathogens (11,19). 

The process of degranulation involves mobilisation of the previously described 

neutrophil granules, with those granules formed last during neutrophil 

maturation, released first. Granules can fuse either with the plasma membrane 

to release their contents into the extracellular space, or with the phagosome. 

Although many studies have shown that degranulation into tissue could 

contribute to the antimicrobial milieu during an immune response against 

microorganisms, most data were generated in vitro and have therefore to be 

interpreted with caution (9,11).  
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Finally, a further antimicrobial strategy and, simultaneously, a novel form of cell 

death of neutrophils was reported by Brinkmann and his team in 2004 (21). The 

formation of NETs was revealed to be part of an active form of cell death that 

leads to the release of highly decondensed chromatin structures into the 

extracellular space. Although NETs were primarily described not only to entrap 

and immobilise microorganisms but also to kill them, the killing capacity was 

recently been questioned (22) and requires further examination. Due to the 

significance of NET formation for this thesis, this antimicrobial mechanism will 

be discussed in more detail in the following section. 

 

1.1.4 NETosis 

Initially, the formation of NETs was described as a distinct form of active cell 

death and was therefore termed “NETosis” to distinguish it from apoptosis and 

necrosis (23). In contrast to apoptotic cells, no internucleosomal DNA 

fragmentation and exposure of phosphatidylserine or activation of caspases 

have been observed. Also, neutrophils undergoing NETosis do not appear to 

show morphological characteristics typical of necrotic cells (24). In vitro, 

activated neutrophils flatten, lose their characteristic lobular nuclear form and 

decondense their chromatin (23,25). Subsequently, the nuclei and granules 

begin to lose their integrity during the first hour of activation and the nuclear 

membrane fragments into vesicles. This process results in mixing of 

decondensed chromatin with the granule contents which is followed by cell 

membrane rupture and release of NETs into the extracellular compartment. 
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Although alternative models of NET formation (such as the release of 

mitochondrial DNA from intact neutrophils (26) or the presence of anuclear 

viable neutrophils after NET formation (27)) have recently been described, 

these mechanisms are not discussed in more detail in this thesis. In the 

following, the term "NET formation" will therefore only be used to describe the 

lytic cell death process of "NETosis" which has been characterised in the 

original publication by Brinkmann et al. (21) and also underpins the majority of 

publications in this area. 

 

1.1.4.1 Signalling mechanisms leading to NETosis 

To date, very little is known about the cellular processes leading to NET 

formation (23). Since the discovery of NETs, there have been a number of 

studies published which found that the formation of extracellular traps does not 

appear to be restricted to neutrophils. Indeed other cell types, such as 

eosinophils and mast cells, have been shown to release extracellular DNA 

complexed with antimicrobial proteins (26,28). In addition, the list of synthetic 

and physiological molecules, as well as microorganisms able to induce NETs is 

growing. Indeed NETs have been found to be induced by Gram-positive and 

Gram-negative bacteria, by fungi, viruses, parasites, LPS, IL-8 and antibodies 

(21,24,29–33) (Table 1-1).  

Additionally, NETs can also be induced by artificial chemical stimuli such as 

Phorbol-12-myristat-13-acetate (PMA), which actives protein kinase C (PKC), or 

the ionophore A23187 (34). The high diversity of stimuli found to induce NET 

formation so far, complicates investigation of shared signalling pathways. 
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Additionally, signalling molecules such as ROS are known to participate in 

several cell death programmes in the same cell (35) further adding to the 

complexity of the process. Currently, the vast majority of stimuli described to 

induce NETosis are dependent on ROS generation by NADPH oxidase. Thus, 

neutrophils from patients with Chronic Granulomatous Disease (CGD), who lack 

this enzyme are not able to form NETs (36). When neutrophils of CGD patients 

are treated with H2O2, however, the pathway downstream of the NADPH 

oxidase is rescued enabling NET formation (24). In addition, MPO which 

converts H2O2 and generates hypohalous acids, was also shown to be essential 

for NET formation (37). Accordingly, hypochlorous acid, one of the products 

generated by MPO, is also able to induce NET release (38). 

Moreover, MPO together with neutrophil elastase (NE), was recently shown to 

be involved in the chromatin decondensation observed during NETosis. Both 

proteins have been shown to enter the nucleus, via as yet an undescribed 

mechanism, whereby NE degrades histones and synergises with MPO driving 

chromatin decondensation independent of its known enzymatic activity 

(39). Furthermore, the autophagy pathway has been proposed to be required 

for NETosis since neutrophils upon stimulation with PMA, develop large 

vacuoles that are reminiscent of autophagosomes (40). This, however, has  

only been shown using a broad range inhibitor of autophagy and has yet to be 

confirmed in further studies (23).  

With regard to signalling pathways upstream of the NADPH oxidase, it has been 

proposed that the Raf-MEK-ERK pathway is implicated in NET formation (41) 

as is Rac2 (42). These observations may be explained by the finding that Rac2-
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deficient cells cannot form a functional NADPH oxidase complex to generate 

ROS.  

 

  

Table 1-1 Examples showing the range of stimuli known to induce NETosis 

  

 

 

 

 

Echerichia coli Grinberg et al. 2008
Shigella flexneri Brinkmann et al. 2004
Staphylococcus aureus Fuchs et al. 2007

Plisczek et al. 2010
Berends et al. 2010

Streptococcus pyogenes Mori et al. 2012
Buchanan et al. 2006

HIV-1 Saitoh et al 2012
Influenza viruses Narasaraju et al. 2011

Hemmers et al. 2011

Candida albicans Urban et al. 2009
Papayannopoulos et al. 2010

Aspergillus fumigatus Bruns et al. 2010

Leishmania spp. Guimaraes-Costa et al. 2009
Gabriel et al. 2010

Plasmodium falciparum Baker et al. 2010

PMA Brinkmann et al. 2004
H2O2, IL-8, LPS Fuchs et al. 2007
MSU christals Mitroulis et al.  2011
ANCA antibodies Kessenbrock et al. 2009
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1.1.4.2 The role of PAD4 in NET formation 

Several studies have demonstrated that NETosis also involves activation of the 

enzyme peptidylarginine deiminase 4 (PAD4) (34,43,44). PAD4 belongs to a 

family of five PAD isoforms, whose enzymatic activity leads to citrullination of 

the arginine side chains of proteins. This enzymatic reaction is discussed in 

more detail in chapter 1.3.2.  

PAD4 is the only PAD enzyme with a nuclear localisation signal sequence (45) 

and the importance of this enzyme in NETosis is underlined by the observation 

that neutrophils in PAD4-deficient mice cannot generate NETs (46). Initially it 

was assumed that citrullination was induced by elevated calcium concentrations 

during apoptosis, however this view has now been revised (34). Instead, PAD4 

is known to catalyse the citrullination of histones during NETosis and this 

mechanism is now proposed as an important step in the decondensation of the 

nuclear DNA. Whereas increased supraphysiological calcium concentrations 

are known to be required for full PAD4 activity (47–49), the exact mechanism 

inducing intracellular PAD4 activity still remains to be elucidated.  

Citrullination was initially implicated in an epigenetic form of gene regulation in 

the human HL-60 granulocyte cell line (23,50). Latterly, Neeli et al. were able to 

show citrullinated histone H3 within NET structures in LPS-stimulated 

neutrophils using confocal microscopy (34). In this report, it was demonstrated 

that citrullination of histones H2A, H3 and H4 in neutrophils forming NETs, but 

not during apoptosis, represents a response to inflammatory stimuli. This was 

also confirmed by Wang and coworkers who demonstrated that histone 

hypercitrullination mediates chromatin decondensation and NET formation (44). 

In this study it was proposed that the conversion of certain arginine residues to 
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citrullines by PAD4 leads to a loss of their positive charge and thereby weakens 

the interaction between histones and DNA (23). The elimination of these 

positive charges may enable the unwinding of chromatin and thus, the formation 

of NETs. PAD4 inhibitors, such as Cl-amidine, in contrast, significantly reduced 

histone decondensation and NET formation in response to either Ionomycin or 

Shigella flexneri (44). Moreover, neutrophils from PAD4-/- mice were shown to 

be incapable of forming NETs upon activation by different stimuli, and 

furthermore no hypercitrullination of histone H3 was detectable (46). In vivo, 

these mice exhibited more severe bacterial infections than wildtype mice and 

developed larger lesions when challenged with a S. pyogenes infection (23). 

Citrullination of histone H3 can be induced by a number of bacterial and pro-

inflammatory signalling molecules, including LPS, TNF, f-MLP, lipoteichoic acid 

(LTA), and H2O2 (34,46,51). Importantly, however, not all stimuli discovered to 

induce NETs so far have been clearly demonstrated to also induce histone 

citrullination. The significance of the stimulus PMA for histone citrullination, 

which is also utilised in this thesis, for example, is currently under debate. While 

a very recent publication by Neeli and colleagues has questioned as to whether 

PMA induces histone citrullination (52), several other studies (including those 

presented in this thesis) have observed the opposite (46,53) suggesting that 

factors such as the stimulation time or concentration of PMA, which differed 

between studies, may be important factors. Since the generation of ROS is also 

required for NETosis, it is likely that ROS may also be involved in the initiation 

of PAD4 activation. Indeed, H2O2, for example, is reportedly able to induce 

PAD4-dependent histone citrullination in neutrophils (34). Also, when 

neutrophils are pre-incubated with the NADPH oxidase inhibitor apocynin, LPS-
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induced citrullination of histone H4 is decreased (51). Furthermore, since NE 

was recently found to cleave histones to drive chromatin decondensation during 

NET formation, as described previously (see 1.1.4.1), and PAD4 is known to 

promote relaxation of the chromatin structure, the interaction of both these 

enzymes and their exact role in the chromatin decondensation during NETosis 

remains to be clarified. All proposed mechanisms upstream of PAD4 activation 

are summarised in Figure 1-1. 

 

 

 

 

Figure 1-1 Role of PAD4 signalling in NETosis 

Decondensation of chromatin during NETosis has been shown to require PAD4 activity (44). 
However, the cellular pathways involved in PAD4 activation and whether they converge upon 
the chromatin decondensation process is currently unknown. Thus far, there are several lines of 
evidence implicating signalling involvement of elevated calcium levels (Ca

2+
), activation of PKC, 

ROS generation and cleavage of histones by neutrophil elastase (NE).  

 

Histones

Granular proteins
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1.1.4.3 NETs and autoimmunity 

Whereas initially NET formation was regarded mainly as an additional defence 

mechanism against extracellular microorganisms, recent work suggests that 

these structures could also serve as putative sources of immuno-stimulatory 

proteins with the potential of inducing autoimmunity and tissue damage (23).  

Indeed neutrophil components are well established as a source of autoantigens 

in a number of autoimmune conditions, primarily in small-vessel vasculitides 

(SVV) and SLE (Figure 1-2). For example, MPO and PR3 were discovered as 

the predominant autoantigens recognised by anti-neutrophil cytoplasmic 

antibodies (ANCA) in SVV  (54). Interestingly, ANCA were also shown to 

activate neutrophils in vitro (55), and are able to induce vasculitis in animal 

models (56,57). 

 

Figure 1-2 Autoantigens present in NETs 

The number of NET proteins reported to be autoantigens in various diseases is quantified and 
reveals that NET autoimmunity is most common in patients with vasculitis, SLE, and RA (Darrah 
et al., 2013). 
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In SLE, an autoimmune syndrome that is characterised by immune complex 

deposition, inflammation and organ damage (58), autoantibodies are primarily 

directed against nucleosomes, but also against neutrophil components such as 

NE, MPO and LL-37 (23,59). In addition, elevated plasma levels of defensins 

(60) and HMGB1 (61) can be detected in SLE patients. 

Thus, neutrophil-associated proteins appear to be targets for autoantibodies in 

patients with systemic autoimmunity, however, the reason why these cells are 

targeted still remains unclear. One possible explanation could be related to 

neutrophil death at sites of inflammation. However, neutrophil death by 

apoptosis generally does not lead to release of intracellular constituents unless 

the mechanisms involved in uptake and removal of these cells are 

compromised (23).  

In this context, the discovery of NETs has provided a new perspective for 

neutrophil research in the above-described autoimmune diseases. Not only, 

because a large proportion of NET components have been found to serve as 

autoantigens in systemic autoimmune diseases, but also because of their 

potential to induce tissue damage. For example, low density granulocytes 

(LDGs), have been isolated from SLE patients and characterised for their 

pathogenic role in endothelial damage and abnormal endothelial differentiation 

leading to accelerated atherosclerosis in SLE (59,62). Furthermore, impaired 

serological DNase-I activity has been reported in 36.1% of patients with SLE, 

leading to impaired degradation of NETs and more active disease (63,64) .  

In vivo, neutrophils releasing NETs have also been identified in kidney biopsies 

from patients with ANCA-positive vasculitis (33). Increased NET formation has 

also been reported in SLE (65). Lande et al. recently described a mechanism by 
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which antimicrobial peptides, such as LL-37, were able to protect self-DNA in 

SLE patients from degradation by nucleases, and, as such, stimulated self-

DNA-induced triggering of TLR9 signalling in plasmacytoid dendritic cells 

(pDCs) (66). In this study, these DNA-protein-complexes induced enhanced 

IFN-alpha synthesis by pDCs, which is in agreement with current models of 

lupus pathogenesis, in which an activation of the type I IFN pathway lowers the 

threshold for autoreactivity of both antigen-presenting and antibody-producing 

cells (23,67,68). 

 

1.2 Rheumatoid Arthritis 

Rheumatoid Arthritis (RA) is an inflammatory disease of unknown aetiology with 

a prevalence of 0.5-1.0 % within the adult population worldwide (69,70). Median 

age at disease onset is around 50 years and approximately 2.5 times more 

women are affected than men (71). Although the joints are the main affected 

location in the body, many organs can be involved so RA is generally 

considered a systemic disease. The aetiology and pathogenesis is complex and 

a combination of different genetic, environmental or other factors are known to 

play a role. Monozygotic twins exhibit a concordance rate of 12-30% (72,73) 

and while this provides evidence of the genetic component it also indicates that 

other environmental factors are involved in disease pathogenesis. In recent 

years several studies have shown that early and aggressive treatment with 

disease-modifying anti-rheumatic drugs (DMARDs) and biologic therapies can 

be effective in controlling inflammation and joint destruction (69). Nevertheless, 
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disease control is still insufficient in many RA patients and drug-free remission 

still remains a key future goal (74). 

 

1.2.1 Clinical features and classification 

The classic predominant clinical features of RA include bilaterally symmetric 

painful swelling of the metacarpophalangeal or proximal interphalangeal joints 

of the hands and the wrists (72,75). Many patients develop chronic inflammation 

eventually involving several joints which leads to cartilage damage and bone 

erosion, if not treated aggressively. Several classification criteria for RA were 

described by the American College of Rheumatology (ACR) in 1956 and were 

later revised in 1987 (76). Although these criteria are not used for the diagnosis 

of individual cases in clinical practice, they were developed to select patients for 

clinical trials and also serve as guidance for physicians. Since the criteria from 

1987 were developed based on data from patients with established RA, they 

were not suitable to diagnose patients with early disease who can present with 

very few or even no swollen or tender joints (69). New criteria were therefore 

published in 2010 by the ACR//European League Against Rheumatism 

(EULAR) (77), which were more adapted for early diagnosis and placed greater 

emphasis on serological markers such as the so-called anti-cyclic citrullinated 

peptide (anti-CCP) antibodies (also referred to as anti-citrullinated 

peptide/protein antibodies (ACPA) and are further described in Chapter 1.3.1). 
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1.2.2 Phases of RA 

Rheumatoid Arthritis appears to develop in several phases (78–80) (Figure 1-3), 

beginning with a pre-clinical phase during which genetic susceptibility and 

environmental factors can lead to the breakdown of tolerance and appearance 

of autoantibodies such as ACPA (see section 1.3.1). These antibodies can be 

detected up to 14 years prior to the onset of disease symptoms (81). 

Additionally, other biomarkers, such as CRP or cytokines (82,83) associated 

with systemic inflammation, have been reported to be abnormal prior to disease 

onset. With regard to the local inflammation in  joints during this pre-clinical 

phase, some studies, using a range of imaging techniques, have reported 

subclinical inflammation in a small number of patients with serum ACPA and 

'arthralgia' but no clinically-evident synovitis (84–86). However the specificity of 

these techniques  is not clear, but most current studies agree on the fact that 

individuals who have RA-specific autoantibodies and joint pain but no clinically 

apparent joint swelling show no signs of synovial inflammation (histologically 

and by imaging) (87,88). Subsequently it has been proposed that autoimmunity 

is more likely to be initiated outside the joint.  
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Figure 1-3 Rheumatoid Arthritis develops in several phases 

The first phase of RA development is characterised by the influence of environmental and 
genetic risk factors and is followed by non-clinically apparent inflammation and appearance of 
autoantibodies. Following these two pre-clinical phases initial symptoms of inflammatory arthritis 
develop (undifferentiated arthritis) and may further progress to the phase of classifiable RA. 
Importantly, not all individuals at risk progress through all of these phases and there are also 
subjects who show resolution of inflammatory arthritis, autoimmunity or inflammation (indicated 
by the return arrows). 

 

 

 

Disease progression from the preclinical phase to RA often involves a phase of 

undifferentiated arthritis. During this phase synovitis either resolves or becomes 

persistent. If joint inflammation becomes chronic the disease often fulfils the 

classification criteria for RA as is described in chapter 1.2.1. Importantly, while 

each of the above described phases are well recognised, the mechanisms of 

transition between these phases are far less well understood. Moreover, not all 

individuals who are at risk of developing RA will progress through all of these 

phases and ultimately develop RA so that the term 'preclinical RA', needs to be 

used with caution (79,89).  

Asymptomatic 
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1.2.3 Synovial biology and pathology 

The primary site of inflammation in RA patients is the synovial membrane, 

which lines the cavity of synovial joints. It consists of an inner intimal lining layer 

and an outer synovial sublining layer, which mostly consists of connective tissue 

and merges with the joint capsule. The intimal lining layer in healthy individuals 

is composed of one or two cell layers of synoviocytes. This layer consists of 

macrophage-like (type A) and fibroblast-like synoviocytes (FLS) (type B) and 

lacks a definite basement membrane and tight junctions (72). Additionally, 

fenestrated capillaries are present through which blood plasma is ultra-filtrated 

to form an interstitial fluid. This fluid, together with additional constituents 

secreted by synoviocytes, forms the synovial fluid (SF). Nutrients and oxygen 

can diffuse through the SF and nourish the avascular cartilage.  

In patients with RA, an increase in synoviocyte numbers and SF volume can be 

observed, and the sublining layer is infiltrated by mononuclear cells including 

macrophages and lymphocytes (predominantly T cells) (4). Type A 

synoviocytes in RA secrete pro-inflammatory cytokines and growth factors, 

which can induce FLS to produce cytokines such as IL-6 and matrix 

metalloproteinases (MMPs) (90). RA FLS show aggressive tumour-like features 

such as loss of contact inhibition and anchorage independence, and can play a 

role in cartilage destruction (91). The lymphocyte infiltration shows different 

patterns of distribution, which varies from a diffuse infiltrate to discrete focal 

aggregates, particularly around blood vessels (Figure 1-4). Sometimes these 

focal aggregates contain clusters of follicular dendritic cells (FDCs) within 

structures resembling germinal centres (92), and synovial-vessel endothelial 

cells, which are transformed into high endothelial venules. Although focal 
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lymphoid aggregates seem to be associated with a more severe synovial and 

systemic inflammation in some studies, the function of these structures and the 

relation to a specific clinical phenotype is currently the subject of debate (93–

96). 

 

Importantly, the histological changes of the synovium described above are not 

specific for RA but can also be observed in other forms of persistent 

inflammatory arthritides irrespective of the diagnosis (97). In early RA, however, 

it has been proposed that the degree and pattern of vascularity may be used to 

distinguish RA from other inflammatory arthritides (97,98). Additionally, the 

formation of a destructive synovial tissue at the cartilage-bone interface, the so-

called pannus, is regarded as a characteristic feature of erosive RA (71,97). 

 

Figure 1-4 Histopathologic appearance of the RA synovium 

Different patterns of leukocyte infiltration in the RA synovium can be observed, ranging 
from scarce infiltration (left), diffuse infiltration (centre) to the formation of focal 
lymphocytic aggregates (right). Arrows indicate thickened synovial lining layer and 
stars indicate blood vessels in the sublining layer. Images courtesy of Dr. Dagmar 
Scheel-Toellner (University of Birmingham). 
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The pannus consists of mostly fibroblasts, macrophages and osteoclasts, which 

express high levels of proteases and invade cartilage and bone (99). At the 

pannus-cartilage junction, the site of active tissue damage, an accumulation of 

polymorphonuclear granulocytes (PMNs) can be seen, suggesting a role in 

tissue destruction (see chapter 1.2.4). 

 

1.2.4 Role of neutrophils in RA 

The early stages of most inflammatory responses are characterised by the 

influx of neutrophils into the tissue in which the response is triggered (23). 

Although in a very small sample of RA patients has it been suggested, that in 

the earliest stages of synovial inflammation, neutrophils may predominate the 

infiltrate (100). Furthermore only relatively low numbers of these cells can be 

found in the chronically inflamed synovium of RA patients (23,101). Primarily, 

neutrophils are present in the SF but can also be observed at the 

pannus/cartilage interface (102,103). To understand the role of neutrophils in 

the complex microenvironment of the inflamed joint, it is important to consider 

the different dynamics which regulate the cell pool of neutrophils and allow the 

accumulation of these cells in the inflamed joints at different phases of 

inflammation. Mature neutrophils are considered to be terminally differentiated 

cells, hence they do not divide and show only a low level of de novo protein 

synthesis. After their recruitment into the joints of RA patients, neutrophils can 

be removed from the joints through different cell death mechanisms such as 

apoptosis (35). On the other hand, neutrophils can contribute to the 

enlargement of the cell pool in the joints by their prolonged survival (Figure 
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1-5A). In patients with early RA, synovial neutrophils show significantly lower 

levels of apoptosis compared with patients with other persistent forms of 

arthritis or a self-limited disease course (104). This may relate to high levels of 

anti-apoptotic cytokines such as GM-CSF and G-CSF (105). Additionally, 

neutrophils are also able to secrete IL-8, which creates a "feed-forward" 

response that drives further recruitment of neutrophils from the circulation. 

Interestingly, recent in vitro (106) and in vivo studies using mouse (107) and 

zebrafish models (108) have shown that neutrophils may be able to migrate 

from peripheral organs back into the bloodstream through "reverse migration". 

Although the relevance of this mechanism in humans, and particularly in 

inflamed joints, would need to be determined, it represents one possible 

mechanism for neutrophils to escape cell death within the joints and thus an 

additional factor how the neutrophil cell pool in the inflamed joint may be 

regulated and inflammation modulated (Figure 1-5A). 

 

Once neutrophils have been recruited to the joints, they can interact with other 

immune cells and regulate inflammation in the joints in several ways (Figure 

1-5B). Neutrophils from the peripheral blood of RA patients are primed for the 

generation of ROS (109) and neutrophils isolated from RA SF show evidence of 

enhanced intracellular ROS production in vivo (110). Due to the presence of 

aggregates of immunoglobulins such as RF in the SF or on the surface of the 

joint, neutrophils can be activated through the engagement of Fcγ receptors on 

the surface of the neutrophil (Figure 1-5B). Whereas soluble immune 

complexes from RA SF were shown to induce extracellular secretion of ROS 

and proteases through FcγRIIIb, generation of intracellular ROS is mediated 
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through FcγRIIa (111,112). In addition to ROS, neutrophils are able to release 

other substances with cytotoxic potential. Neutrophil granular enzymes such as 

gelatinase (113,114) and NE (115) are likely to promote cartilage damage, 

however, no in situ demonstration of direct neutrophil attack on cartilage has yet 

been demonstrated (72). Granule proteases cannot only activate or deactivate 

cytokines (116) but also cleave complement proteins and generate chemotactic 

activity (72). High levels of these neutrophil proteases could overwhelm the 

antiprotease protective mechanisms and also lead to tissue damage.  

RA SF neutrophils have also been demonstrated to release a range of 

cytokines. Aside from IL-8, neutrophils can shed the B cell stimulating cytokine 

BLyS or BAFF from their surface following stimulation with TNF-α (117). 

Additionally, neutrophils express many of the cytokines produced by 

macrophages such as IFN-α and BAFF (118). Since neutrophils vastly 

outnumber macrophages in the RA synovial fluid, it is likely that they 

considerably contribute to the cytokines present in the SF. Interestingly, 

neutrophils isolated from RA SF have also been demonstrated to be able to 

transdifferentiate into MHC class II-expressing antigen presenting cells (APCs) 

(119). These cells can present antigens to T cells in an MHC class II restricted 

manner (18,119). Since neutrophils express different proteases compared with 

other APCs it is possible that MHC-II+ neutrophils could play a particular role in 

antigen presentation in the RA SF. Recently, it has also been demonstrated that 

neutrophils from the peripheral blood and SF of RA patients show enhanced 

rate of NETosis compared with neutrophils from healthy individuals and that 

NETs produced by activated neutrophils can augment inflammatory responses 



25 
 
in fibroblasts. These data suggest they may play an important role in the 

perpetuation of pathogenic mechanisms (120). 

Although data from animal models of RA are difficult to extrapolate they may 

provide an important insight into the mechanisms of human disease 

pathogenesis. Both in the Collagen-induced arthritis (CIA) model and in the 

K/BxN murine autoantibody-mediated model of arthritis (described in more 

detail in Chapter 1.3.5.4) neutrophils are required for full expression of the 

disease (72). Depletion of neutrophils in these models results either in a 

significantly decreased severity or a complete abrogation of arthritis (121,122). 

Additionally, antibody blockade or knockout of key neutrophil signalling 

receptors such as the C5aR (123), FcγR (124) or leukotriene B4 receptors (125) 

can prevent initiation and propagation of inflammation in K/BxN mice. 
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Figure 1-5 Neutrophils in the joints of RA patients 

(A) Regulation of the neutrophil cell pool in RA joints by mechanisms including 
neutrophil recruitment, cell death, prolonged survival and possible exit through reverse 
migration. Cell numbers may alter over time depending on the phase of the 
inflammatory response. (B) Neutrophils can modulate inflammation in several ways. 
Secretion of cytokines is important for the recruitment of other inflammatory cells into 
the joints as well as activation of other immune cells. Release of granule enzymes can 
activate or deactivate cytokines but can also lead to tissue destruction. Generation of 
reactive oxygen species (ROS) can, for example, occur following stimulation by 
immune complexes, which are taken up through Fc receptors. Finally, increased 
expression of MHC class II molecules on SF neutrophils may enable presentation of 
antigens to T cells further propagating inflammation. 
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1.3 Autoimmunity in Rheumatoid Arthritis 

At the turn of the 20th century Paul Ehrlich proposed the threat of an 

organism´s uncontrolled immune system, potentially causing a condition called 

“horror autotoxicus” in which an immune response is evoked against self (126). 

Approximately 50 years later, studies by Rose and Roitt for the first time 

demonstrated the presence of an autoimmune component in Hashimoto’s 

thyroiditis (127,128) and Frank McFarlane Burnet published his hypothesis 

regarding “the forbidden clone” in 1949 (129), in which he proposed that 

autoimmune diseases develop from the escape of self-reactive lymphocyte 

clones which should have been deleted through normal immune tolerance 

mechanisms. Further research followed and finally laid the foundation for the 

current, more complex, understanding that autoreactivity is indeed present even 

in a healthy organism and is essential for the establishment of normal immune 

system homeostasis during lymphocyte selection. According to this view 

autoreactive T and B cells are negatively selected and deleted in primary 

lymphoid organs during maturation while lymphocytes that are non-reactive to 

self survive (central tolerance) (130). Autoreactive lymphocytes, which escape 

deletion in primary lymphoid organs, can still be suppressed in the periphery by 

mechanisms of peripheral tolerance. Importantly, tolerance mechanisms are 

mediated through the engagement of antigenic receptors (BCR and TCR) and 

co-stimulatory signals (largely provided by cells of the innate immune system) 

and are controlled by the developmental stage of lymphocytes as well as 

additional modulating factors including cytokines (131). It is therefore rather the 



28 
 
transformation from subclinical self-reactivity to pathogenic autoimmunity that is 

believed to play an important role in clinical practice (132). 

 

There are over 80 autoimmune diseases known to date which affect about 6% 

of the world population (133) and a wide range of these conditions are 

encompassed by the medical subspecialty of rheumatology. Although the 

prevalence of autoimmune diseases in general is low, their effects on mortality 

and morbidity are high and the incidence for some of these conditions is 

reported to be increasing (134–137). Altogether, autoimmune diseases are 

currently the third-largest clinical burden after cardiovascular diseases and 

cancer (138). 

There are currently no universally accepted criteria for the classification of 

autoimmune diseases. One possibility is to categorise them based on the site-

specificity of their clinicopathology (131). According to this categorisation 

diseases such as Hashimoto´s thyroiditis, idiopathic thrombocytopenic purpura 

or Multiple Sclerosis are termed organ-specific and are characterised by an 

immune response against specific cells or tissues. End-organ damage in organ-

specific autoimmune diseases can be mediated by antibodies and/or T cells. In 

comparison, diseases such as RA, SLE or primary Sjögren´s syndrome belong 

to the systemic category where the immune system targets ubiquitously 

expressed autoantigens. This type of condition typically leads to tissue 

destruction mediated by autoantibodies and, less commonly, by T cells (132).  

Additionally, autoimmune diseases can share symptoms with so-called auto-

inflammatory syndromes. Although autoinflammatory syndromes are typically 

only mediated through the innate arm of the immune system and are in most 
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cases rare monogenic disorders, they could also be considered as one end of a 

broader definition of autoimmunity. In this context, McGonagle and McDermott 

proposed in 2006 that the disease categories “autoimmune” and 

“autoinflammatory” should not be seen as completely separate (139). Instead, 

they should be regarded as a part of a broad spectrum of diseases, ranging 

from autoimmune to autoinflammatory. Based on this idea the place on the 

spectrum of a particular disorder would therefore depend on the relative 

importance of the innate versus the adaptive immune system in disease 

pathogenesis (140).  

In general, autoimmune diseases are defined by the presence of autoreactive B 

and T cells, which leads to tissue injury. However, not only has autoreactivity 

been found to play a role in autoimmune diseases but also target-organ 

vulnerability (141,142). It is thought that genetic factors governing specific organ 

vulnerability differ from those governing autoreactivity (141–143). This means 

that individuals may present with different autoimmune diseases despite sharing 

the same pathways promoting autoreactivity. For example, while nephritis in the 

two diseases SLE and Goodpasture syndrome differs in the nature of the 

inciting antibodies and the localisation of the immune deposits, animal models 

of the diseases have shown that a significant fraction of the differentially 

expressed genes that distinguish the nephritis-sensitive strains from the control 

strains belong to the kallikrein gene family (142). Kallikreins are involved in the 

regulation of inflammation, apoptosis, redox balance, fibrosis and local blood 

pressure within the kidneys and possibly impact both diseases concordantly in 

humans (144).  
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The clustering of autoimmune disorders in families suggests that the genetic 

background has an influence on the development of autoimmunity. Genome-

wide association studies (GWAS) have recently identified a large number of 

genetic associations with human autoimmune diseases. In particular, variations 

in the MHC locus are linked to most autoimmune diseases studied so far (130). 

In addition, monogenic primary immunodeficiencies, some of which are 

associated with autoimmunity (145), and animal models, have been useful in 

exploring a wide range of defects in tolerance mechanisms (131). One example 

of a defect in central tolerance leading to autoimmunity, is the mutation of the 

transcription factor AIRE (autoimmune regulator), which causes a rare disease 

in humans, the autoimmune polyendocrinopathy-candidiasis-ectodermal 

dystrophy (APECED) and leads to the destruction of multiple endocrine organs 

(146). Another very common primary immunodeficiency is selective IgA 

deficiency, which not only results in an increased number of infections in 

affected individuals but is also associated with several autoimmune diseases 

(147). Nevertheless, the aetiology of most autoimmune diseases is believed to 

be more complex. Current evidence suggests that the breakdown of central 

and/or peripheral tolerance is influenced not only by genetic but also 

environmental and gender-specific factors.   

 

In the following sections, the mechanisms of autoimmunity in RA patients will be 

described with a particular emphasis on autoimmunity against antigens which 

have been post-translationally modified by citrullination. Additionally, unresolved 

questions will be explored and discussed in the context of other autoimmune 

conditions. 
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1.3.1 Autoantibodies in RA 

Throughout history, Rheumatoid Arthritis has been considered to be a chronic 

inflammatory disease. The discovery of autoantibodies in 1940 demonstrated 

an autoimmune component in RA pathogenesis. Eric Waaler initially observed 

that sera from patients with RA are able to agglutinate sheep red blood cells 

sensitised by subagglutinating doses of rabbit antibodies (148) and this 

phenomenon led to the discovery of autoantibodies now known as rheumatoid 

factor (RF), and their specificity for the Fc fragment of the IgG heavy chain. 

Rheumatoid factor can be detected in up to 50% of patients with early RA, 

however, sensitivity increases with long-standing disease to between 60–80% 

(149). These antibodies can be of any isotype, but IgM-RF is not only the most 

frequently identified isotype but also the one exhibiting the highest sensitivity 

subsequent to disease onset (150). Prior to disease onset, IgA-RF has been 

shown to have the highest sensitivity of the rheumatoid factors (151). RFs are 

not specific for RA and can also be detected in up to 15% of healthy individuals 

and in patients with other autoimmune conditions (152). IgM-RFs in healthy 

individuals have been shown to be produced by natural CD5-expressing B cells 

and these antibodies are polyreactive, at low titre and of low affinity (153,154). 

Interestingly, whereas IgM-RF levels increase with age, IgG-RF levels decline in 

the elderly (155). IgM-RFs in healthy individuals also exhibit a low ratio of 

replacement to silent mutations in their complementarity determining regions 

(CDRs) (156) suggesting mechanisms preventing affinity maturation. Potentially 
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beneficial effects of RFs in healthy individuals include binding to immune 

complexes (ICs), leading to complement fixation and an enhanced clearance of 

ICs (157,158). Nevertheless, the presence of RF in healthy individuals is 

associated with up to 26-fold higher risk of developing RA (159). In RA patients 

RFs can undergo somatic hypermutation and isotype switching (160), however, 

at the same time also highly conserved IgM-RFs are present (161). It therefore 

remains unclear as to how exactly RF antibodies from RA patients differ from 

RFs produced in healthy individuals and whether or not they depend on T cell 

help (162). Interestingly, IgM-RFs can be detected before the onset of RA and, 

at relatively high levels, are associated with more severe joint damage (81,163). 

Conversely, RF levels were shown to decrease with effective therapy (164). RF 

has therefore remained a component of the classification criteria for RA (77) 

and RF titres are part of routine clinical assessment  (165). 

 

In addition to RFs a variety of other autoantibodies exist in RA patients, 

however,  most of them are not specific for RA (166) and some are directed 

against nuclear antigens. For example, anti-heterogeneous nuclear 

ribonucleoprotein (hnRNP) A2 (anti-RA33) is detected in 30-40% of RA patients 

and may have a diagnostic potential in early inflammatory joint disease (167). 

Other types of autoantibodies in RA are the anticollagen antibodies, which 

appear to play a more important role in experimental arthritis models rather than 

in human RA (165,166). 

In the past two decades, the anti-citrullinated protein antibodies (ACPA), a new 

group of autoantibodies has received a considerable amount of attention. These 

autoantibodies were demonstrated to be more specific for RA than RF (168–
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170).  In contrast to RF, ACPA only exist in about 2% of healthy individuals and 

are also very rare in other inflammatory conditions (171). Originally, these 

antibodies were described as “anti-perinuclear factor antibodies” or “anti-keratin 

antibodies” by Guy Serre’s group in France and the target of these antibodies 

was initially shown to be filaggrin (170,172). At that time, however, it was not 

known that these antibodies recognise specifically citrulline residues. Notably in 

1998, did Walther van Venrooij’s group in the Netherlands demonstrate that 

antibodies in the sera of RA patients recognise filaggrin-derived peptides, which 

have been citrullinated at their arginine residues (169). In the following years, it 

was soon understood that ACPA display strong cross-reactivity and react not 

only with one specific target antigen but with a wide range of citrullinated 

autoantigens, of which vimentin (173), α-enolase (174), fibrinogen (175,176) 

and type II collagen (177) are the best characterised. Assays to determine the 

ACPA status of patients in clinical practice were therefore developed by 

screening libraries of citrulline-containing peptides for reactivity with RA sera to 

identify those yielding the highest sensitivity and specificity (178). Soon after the 

development of the first assay using artificial cyclic citrullinated peptides (CCP), 

the first commercial version of this test, the CCP2 assay, became available in 

2002 and was followed by the third-generation CCP3 assay in 2010 (179). The 

CCP assay was included in the 2010 revised classification criteria for RA (77). 

All of these assays slightly differ in terms of specificity and sensitivity, and 

although the identity of the peptides used in these assays remains a 

commercial secret, it is likely that they are of non-physiologic origin (178). For 

this reason, despite their usefulness in clinical practice, CCP assays do not 

provide insight into real physiologic antigenic targets of ACPA. Future studies 
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are needed to study the immune response against citrullinated proteins in more 

detail to be able to understand the fine specificity of the anti-citrulline 

autoimmune response in RA patients. Current knowledge regarding ACPA fine 

specificity, the citrullinated targets and the role that ACPA may play in the 

pathogenesis of RA patients will be discussed in the subsequent sections. 

 

Recently an additional autoantibody system, the so-called anti-carbamylated 

(anti-CarP) antibodies, has been discovered (180). Carbamylated proteins are 

generated through post-translational modification (PTM) of lysine residues into 

homocitrulline. Interestingly, the structure of homocitrulline highly resembles 

that of the citrulline residue. Surprisingly, however, it was reported that most 

ACPA do not react with homocitrulline residues (181,182) and reactivity can be 

detected in both ACPA positive and ACPA negative RA patients with 13-20% of 

ACPA negative RA patient sera reacting with carbamylated proteins (180,182). 

Interestingly, anti-CarP antibodies are associated with a higher rate of joint 

damage, which was most prominent in ACPA negative patients (181). This new 

antibody system may therefore represent an additional disease entity and could 

potentially be used to better characterise ACPA-negative patients. 

Nevertheless, many questions with regard to the anti-CarP response in RA 

patients still remain to be answered in order to understand the relevance of this 

autoimmune response.  
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1.3.2 Citrullination and ACPA generation 

1.3.2.1 Physiological role of citrullination 

ACPA in RA patients are directed against protein post-translational 

modifications termed citrullination (or deimination). This process is a hydrolytic 

enzymatic reaction catalysed by Ca2+- dependent peptidylarginine deiminases 

(PADs) and leads to the conversion of the positively charged peptidylarginine 

into the neutral peptidylcitrulline with ammonia released as a reaction by-

product (Figure 1-6). The enzymatic reaction results in an increase in molecular 

mass of less than 1 Da (183). Importantly, the loss of a positive charge per 

citrulline also reduces the net charge of the protein and thus has consequences 

on the protein structure (184,185).  

 

 

 

Figure 1-6 Enzymatic conversion of peptidylarginine into peptidylcitrulline 

Citrullination is catalysed by the family of peptidylarginine deiminase enzymes (PADs). The 
guanidino group of the positively charged arginine residue is hydrolysed yielding a neutral 
ureido group and ammonia. Modified from Wegner et al. (70). 
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Citrullination is implicated in several physiologic processes such as gene 

regulation or the terminal differentiation of keratinocytes in the skin. There are 

five mammalian isoenzymes of PADs that are highly homologous and 

functionally similar, but differ in their expression pattern throughout organ 

systems and cell types (23,185,186). Whereas PADs 1, 3, and 6 are primarily 

expressed in the skin and female reproductive organs (185,187), PAD2 

expression can be detected in a wide range of tissues including the central 

nervous system and skeletal muscle (185). PAD4 expression is found in 

granulocytes, as well as in some cancerous cell lines and tumours (187,188). 

The human PAD4 gene was originally named PAD5, but when the close 

similarity to murine PAD4 was observed, it was renamed PAD4. Subsequently 

there is no human PAD5 isoform, and when another PAD isoform was identified 

it was named PAD6 to avoid confusion with this previous work (185,186,189). 

Since PADs 1, 2, and 4 are the only PADs expressed in cells of the 

hematopoietic lineage, they are of special immunological interest.  

Importantly, several in vitro studies suggest that theoretically all arginine 

residues can be citrullinated. Nevertheless, different kinetic parameters were 

determined depending on the primary and secondary structure of the substrates 

(184). Interestingly, in vitro studies have shown that a high degree of 

citrullination (over 10% of arginine residues in a given protein) can denature 

proteins (190). Whether this also takes place in vivo, is not yet known. It can be 

assumed that citrullination causes changes in the protein structure which results 

in a looser, more open configuration (190). In the skin, for example, it was 

shown that citrullination of (pro)filaggrin is essential for its degradation by the 
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protease calpain, which enables aggregation of keratin filaments into an 

organised matrix (184,185). Further citrullination is also believed to facilitate 

degradation of filaggrin to free amino acids (191), which are a component of the 

so-called ‘Natural Moisturising Factor’ responsible for the hydration of the 

stratum corneum (192). Thus citrullination is believed to change the protein 

structure in a way that makes it more susceptible to proteolysis, a process that 

was also recently shown to play a role in the degradation of the myelin basic 

protein (MBP) by cathepsin D in the brain (185,193). Here citrullination was 

shown to open up the structure of MBP so that Phe-Phe peptide bonds within 

the protein could be exposed and targeted by cathepsin D five-times faster than 

the native form of the protein (184).  

Another process in healthy individuals where citrullination plays an important 

role is gene regulation. Cuthbert and colleagues proposed a model in which 

citrullination of arginines in histones antagonises arginine methylation and 

thereby represses transcription (194). Since PADs cannot only convert arginine 

residues but also monomethylated arginine residues into citrulline (50), only 

dimethylation of arginine residues was shown to prevent citrullination and 

maintain transcriptional activation.  

 

1.3.2.2 Regulation of PAD activity 

PADs require high calcium concentrations for their activity (184) and treatment 

of cells with calcium ionophores can therefore induce the generation of 

citrullinated residues in proteins (195,196). Nevertheless, little is known about 

the physiologic stimuli capable of inducing calcium-dependent PAD activity 
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(186). Interestingly, in vitro enzymatic assays measuring PAD activity have 

demonstrated that calcium concentrations that are required for half maximal 

activity, are between 0.15-0.5 mM (48,197,198), which is much higher than 

physiological calcium concentrations. This therefore suggests there must be an 

additional regulatory mechanism present in vivo to either raise calcium levels to 

above normal levels or lower the calcium dependence of PADs. 

Research into the mechanism of regulation of PAD4 activity revealed that PADs 

also auto-citrullinate upon activation by calcium. Although Andrade et al. 

reported that citrullination of a cluster of arginines around the active site cleft 

can lead to inactivation of the enzyme (199), subsequent studies from 

Thompson and colleagues argued that auto-citrullination does not affect its 

enzymatic activity (200).  

On activation, binding of Ca2+ moves the key catalytic thiolate anion C645 

residue to the enzyme active site (47), which is essential for PAD4 activity 

(201). Since PADs may represent potential therapeutic targets for a variety of 

inflammatory diseases including RA, inhibitors are being developed to prevent 

PAD activity. For example, F- and Cl-amidine covalently bind to C645 and act 

as irreversible PAD inhibitors (201). The efficacy of Cl-amidine in vivo has been 

demonstrated in the CIA model in rodents as it was able to significantly reduce 

disease severity, by up to 55% (202). Interestingly, however, it did not show any 

effect in the collagen antibody-induced arthritis (CAIA), which is a model 

generally used to study the effector phase of RA pathogenesis (202).  

Furthermore, a recent study suggests that different PAD isoenzymes have 

different substrate specificities (203), which may be essential for the 

pathogenesis of the inflammatory conditions mentioned above including RA, 
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since only one of the PAD enzymes could be essential for the citrullination of 

target proteins. The development of PAD-selective inhibitors may therefore 

prove to be more useful than pan-PAD inhibitors in the future for disease 

treatment. 

 

1.3.3 Variability in clinical observations in RA 

RA is a complex and heterogeneous disease. Patients often vary in disease 

course, have diverse extra-articular manifestations, experience different 

patterns of disease flares, remissions, and response to treatment. Nevertheless, 

in recent years research of the anti-citrulline immune response in RA patients 

has provided a more comprehensive picture regarding the role of possible 

environmental triggers and susceptibility genes in this disease compared to 

many other autoimmune diseases. Based on the presence of ACPA it has been 

proposed to divide RA into separate subsets of disease: ACPA positive and 

ACPA negative RA (168). Clinically, ACPA positive patients generally develop a 

considerably more severe disease course with more radiological joint damage 

than ACPA negative patients, irrespective of treatment provided (204,205). 

Also, ACPA positive RA patients were demonstrated to show differences in 

disease risk factors. Most of the HLA-DR alleles that confer susceptibility to RA 

(particularly HLA-DRB1*) have a common amino acid motif – named the shared 

epitope (SE) – at positions 70–74 in the third hypervariable region of the DRβ1 

chain of the HLA-DR molecule (206). According to the SE hypothesis the SE 

motif (QKRAA, QRRAA, or RRRAA) allows the presentation of an arthritogenic 

peptide to T cells and is thus directly involved in the RA pathogenesis (206). 
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The second most important susceptibility gene, PTPN22, identified in 2005 

(207), codes for a tyrosine phosphatase.  A single nucleotide polymorphism in 

this gene was shown to be involved in deregulation of T cell and B cell 

signalling in RA and  also in other autoimmune diseases (207–209). 

Interestingly, both the above mentioned risk alleles are associated with the 

ACPA positive but not the ACPA negative RA subset (210,211). APCA negative 

RA, in contrast, is associated with other genes such as HLA-DRB1*03 

(212,213). 

Among autoimmune diseases, RA is well-known for the thorough 

characterisation of the role of smoking as an environmental risk factor and 

constitutes as a risk factor for the ACPA positive RA subset (214). Furthermore, 

several studies have shown that this risk factor interacts with the HLA-DR SE 

genes (209,214,215) supporting the possible nature of an MHC class II-

dependent immune response. In this context, using the large case-controlled 

Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA) cohort, 

Lundberg and colleagues have recently demonstrated that HLA-DRB1 SE, 

PTPN22 and smoking are associated with the presence of specific ACPA 

reactivities rather than overall anti-CCP levels (216). The strongest association 

of HLA-DRB1 SE, PTPN22 and smoking was identified for the RA subset which 

was defined by the combined presence of antibodies to citrullinated 

autoantigens α-enolase and vimentin.  

On the basis of these studies on environmental and genetic associations, it is 

therefore considered that the two forms of ACPA positive and ACPA negative 

RA are likely to exhibit overlapping but individually distinctive pathogenic 

mechanisms (217).  
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1.3.4 T and B cell responses to citrullinated proteins 

The current view of the critical role of both T and B cells in the pathogenesis of 

RA is supported by the observations that i) the ST of RA patients is strongly 

infiltrated by T and B cells, ii) defined HLA-DR alleles are associated with 

disease, and iii) in many patients disease specific circulating autoantibodies can 

be detected.  

In RA synovium predominantly CD45RO+ expressing CD4+ as well as CD8+ T 

cells  cells with characteristics of memory T cells can be detected (218,219). 

Although T cells have long been thought to be major drivers of disease, their 

relevance and contribution to RA pathogenesis has recently been challenged 

(220). In RA, T cells generally display an activated phenotype with relatively 

high expression of HLA-DR, CD27, CD69 and CD28, their proliferation and 

cytokine secretion in synovial T cells are usually less pronounced compared 

with autologous peripheral blood T cells from the same patient (72). In this 

context it has also been suggested that synovial T cells functionally resemble 

resting T cells that have been activated by cytokines rather than by antigen 

(221). Furthermore, the memory cell phenotype of synovial T cells suggests the 

presence of already mature T cells that have been previously stimulated 

elsewhere and recruited to the joints as opposed to the stimulation and 

maturation of these cells inside the joints (72).  

Synovial T cells have been shown to have a restricted T cell repertoire in ACPA 

positive RA patients compared with OA and SpA patients (222). In a recent 

study using peptide:TCR tetramers and looking at proliferative responses, Snir 
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and colleagues  demonstrated enhanced reactivity to a citrullinated vimentin 

peptide in HLA-DRB1*0401 SE positive patients compared with healthy controls 

(223). The binding of this HLA-DR*0401 tetramer loaded with an autoantigenic 

citrullinated vimentin demonstrated the presence of autoreactive CD4+ T cells 

both in RA patients and healthy controls but with the difference that RA patients 

had significantly increased pro-inflammatory responses following stimulation. In 

a more recent study, crystal structures and peptide elution experiments 

demonstrated that whereas citrullinated peptides can be bound by RA-

predisposing HLA-DRB1 proteins and RA non-associated HLA-DRB1*04:02 

protein, only RA-predisposing HLA-DRB1 molecules could not accommodate 

arginine peptide side chains in the P4 pocket of the molecules (224). These 

data therefore suggest that the absence of presentation of non-citrullinated 

peptides may be critical in RA pathogenesis and suggest a possible altered 

negative selection of T cells in the thymus dependent on the DR4 allotype. 

Nevertheless, many questions regarding the importance of autoreactive T cells 

in RA still remain to be answered. For example, despite extensive research it is 

still not clear whether the high numbers of T cells in the synovium are a result of 

clonal expansion to a specific antigen (225,226). Furthermore, limited efficacy of 

T cell-depleting therapies (227) may reflect the need to look at different T cell 

subsets in RA in more detail to avoid simultaneous deletion of both effector T 

cells as well as immune-suppressing regulatory T cells. 

 

To better understand the development of autoimmunity in RA, it is important to 

also investigate the role of B cells. B cells and plasma cells constitute only 

about 5% of cells in most RA synovia compared with 30-50% T cells (72) and 
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different studies investigating the significance of B cell infiltration with regard to 

disease prognosis have reported conflicting results (95,228,229). Nevertheless, 

the success of the B cell depleting therapy using anti-CD20 antibody 

(rituximab), has focussed much attention on the contribution of B cells to RA 

pathogenesis. In particular, autoantibody production and differentiation into 

plasma cells have been intensely studied. As described in section 1.3.1, a 

growing number of autoantibodies generated towards a variety of antigens have 

been identified in recent years. Importantly, however, mechanisms that initiate 

and maintain autoantibodies may not only be different from antibody responses 

against recall antigens (for instance following vaccination) but may also differ 

between different autoantibody systems in RA (179). Rheumatoid factor, for 

example, which consists predominantly of non-switched IgM antibodies, is 

suggested to be generated outside of germinal centres upon TLR signalling 

and, at least initially, independent of T cell help (230). At the same time, 

however, some RF clones from RA patients have been identified to be 

somatically mutated compared with those from healthy subjects (161). Since 

there is only minimal evidence for extrafollicular responses in human 

autoimmune disease (231), T cell dependent germinal centre responses are 

more likely to be involved in the generation of pathogenic autoantibodies (232). 

Nevertheless, the role of T cells for the induction of RFs still remains unclear 

and differences between RA patients and healthy individuals cannot be 

excluded.  

In contrast with RF, ACPA are strongly associated with HLA-DR alleles (216) 

and there is a growing body of data showing immune reactions against 

citrullinated autoantigens and other antigens locally inside joints of RA patients 
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(73,233). In comparison with ACPA negative RA patients (234), the ST 

architecture of ACPA positive RA patients is primarily characterised by a 

generally higher lymphocyte infiltrate and lower degree of fibrosis (234). 

Furthermore, it has been demonstrated that variable region genes coding for 

ACPA in joint-derived B cells are hyper-mutated. If these mutations were 

reverted back to the corresponding germline sequences autoantibody binding 

was nullified (235) suggesting that B cells producing these antibodies were 

most likely driven toward differentiation by local T cells in germinal centres. 

Given these data, however, it still remains elusive why ACPA IgG show a much 

lower avidity when compared with normal protective antibody responses against 

pathogens in the same patients (236). If B cells undergo affinity maturation and 

isotype switching in germinal centres, the avidity of immunoglobulins expressed 

by these B cell clones would normally be expected to increase due to the 

competition for antigens bound on the surface of FDCs. ACPA avidity in 

individual RA patients, therefore suggests different regulation mechanisms of 

autoantibody responses, which still remain to be elucidated (179). 

In addition to antibody production, it should not be overlooked that B cells are 

efficient APCs and also able to release cytokines during immune responses. 

For example, Flores-Borja and colleagues have shown that 

CD19+CD24hiCD38hi regulatory B cells in healthy individuals can inhibit naïve T 

cell differentiation into Th1 and Th17 effector T cells in vitro while converting 

CD4+CD25- into regulatory T cells, in part through the production of IL-10 (237). 

In RA patients, numbers of regulatory B cells were found to be reduced in the 

peripheral blood and no suppressive Treg cells could be induced by these 

regulatory B cells. This study therefore indicates that CD19+CD24hiCD38hi 
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regulatory B cells in RA patients may fail to prevent autoreactive responses, 

which could finally result in autoimmunity (237). 

Furthermore, work from our group has shown that B cells in the RA synovium 

are capable of producing pro-inflammatory and bone-destructive cytokines 

including RANKL (118). RANKL-producing B cells in RA synovial tissue and 

fluid were identified as belonging to a distinct subset of B cells defined by 

expression of the transmembrane protein FcRL4 (238) suggesting that FcRL4+ 

B cells are likely to represent a pathogenic B cell subset in RA. 

 

1.3.5 Role of ACPA in the pathogenesis of RA 

Recent data have contributed considerably to our understanding of APCA in the 

pathogenesis of RA. Nevertheless, the sequence of events involved in the 

different stages of disease pathogenesis still remains unclear. Several currently 

discussed concepts are detailed below:  

1.3.5.1  The 'second hit' hypothesis 

As previously described, citrullination is a physiological process of post-

translational modification of proteins, but hyper- or hypo-citrullination can also 

play a role in   pathobiological settings distinct from RA. An increased amount of 

MBP or histone H3 protein citrullination has been observed in the brain of 

patients with Multiple Sclerosis (193,239,240) or Alzheimer’s disease (241), 

while a reduced amount of citrullination of cytokeratin K1 in the epidermis was 

reported to be pathological in Psoriasis (242). Furthermore, citrullination of 

proteins such as α-enolase (243) and PAD4 overexpression (244) were 

observed in a number of different tumours. In RA, the presence of citrullinated 
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proteins was initially considered to be specific to the synovium (245) and 

generated a great deal of interest in this PTM. In this context, Suzuki and 

colleagues also found that one haplotype of PAD4 was associated with 

increased susceptibility for RA due to increased PAD4 mRNA stability (246), 

which could explain a possible increased citrullination of proteins. However, 

thus far these findings have not been repeated in Caucasian populations.  

The presence of PAD isoenzymes and citrullinated proteins in the inflamed ST 

and SF of RA patients has been well characterised (175,247–249). PAD2 and 

PAD4 expression in the synovium was found in close proximity to citrullinated 

fibrin deposits and correlated with the inflammatory cell infiltration (250). 

However, soon after it was recognised that citrullination is an inflammation-

dependent process and also present in non-rheumatoid arthritis (251,252), 

attention focussed on the role of the highly specific ACPA antibodies which can 

be detected in approximately 60-70% of RA patients (168,171,253). ACPA 

levels are elevated in SF compared with the peripheral blood, and ACPA 

production was described in the inflamed RA joint (254) suggesting a local, 

antigen-driven B cell response at the site of inflammation. Similar to 

autoantibodies in many other autoimmune diseases, ACPA emerge several 

years before the onset of disease (81,151) and very few RA patients develop 

ACPA after the start of their symptoms (204,255). As several studies also 

suggest the absence of synovial inflammation in ACPA positive individuals with 

no clinically apparent joint swelling, the concept has been proposed that the 

initiating event leading to ACPA production is more likely to be located outside 

the joint and that another, “second hit” (for example, infection or trauma) needs 

to take place in ACPA positive individuals that causes joint inflammation and 
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generation of citrullinated proteins which are then targeted by the already 

present ACPA (168). Currently, there are several lines of evidence suggesting 

that RA-related autoimmunity may be generated at mucosal surfaces such as 

the gingiva, lungs or gut. As described in section 1.3.3, smoking represents the 

most established environmental risk factor for RA. The lung was therefore 

suggested to be one of the possible sites where anticitrulline immunity could be 

triggered (168). Despite this association, however, recent studies have 

demonstrated that increased expression of citrullinated proteins can be found 

not only in smokers, but also in ACPA positive non-smokers (256). Furthermore, 

only one-third of ACPA-positive RA cases can be attributed to smoking (257). It 

can therefore be assumed that other environmental triggers are involved. For 

example, it has been reported that airway exposures like coal dust (258), silica 

dust (259) or air pollution from traffic (260) could play a role. Additionally, in 

support of the notion that autoimmunity might originate at mucosal sites, ACPA 

are enriched in both bronchoalveolar fluid of early untreated RA patients and 

even in induced sputum of arthritis-free individuals at risk of developing RA 

(256,261). Finally, several species of microorganisms at mucosal sites have 

been implicated in RA pathogenesis, notably overexpansion of Prevotella copri 

in the gut (262) or Porphyromonas gingivalis of the oral microbiome (discussed 

in section 1.3.5.3). 

 

1.3.5.2 Fine specificity of ACPA and epitope spreading 

Another possible mechanism by which ACPA may be involved in RA 

pathogenesis may be related to the process of 'epitope spreading', which 
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enables the diversification of the immune response from a single epitope to 

many epitopes on the same molecule (intramolecular epitope spreading) or 

from one molecule to other molecules (intermolecular epitope spreading). 

Essential for this mechanism to occur is a need for the ability of  B cells to take 

up antigens, process them intracellularly, load a limited number of peptides from 

the antigens on MHC class II molecules, and present them on the cell surface to 

T cells. Intriguingly, although a large number of peptides can theoretically be 

presented, only a few 'immunodominant' peptides will be selected (263). As 

shown in Figure 1-7, following T cell dependent or -independent activation of a 

B cell that is specific for one epitope of an antigen, the same B cell can activate 

and receive help from T cells that are specific for other epitopes of the antigen 

(Figure 1-7A). In turn, T cells that are specific for a certain epitope of an 

antigen, can trigger different B cell specificities (Figure 1-7B) (264). By 

expanding the number of antigenic epitopes that are recognised, the immune 

system can thus optimise the immune response to the antigen and this is 

believed to contribute to the efficient clearance of pathogens (265,266). In many 

autoimmune diseases, however, this mechanism may contribute to the 

propagation of disease. 
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Figure 1-7 Mechanisms of epitope spreading 

(A) A B cell, specific for the epitope 'b', takes up through its B cell receptor (BCR) a complex 
antigen, which consists of multiple epitopes ('a-c'). These multiple T cell-antigenic determinants, 
all arising from one initial complex antigen, are processed by the B cell and presented in the 
context of major histocompatiblily complex (MHC) class II. This way, the anti-b-specific B cell 
can activate, and receive help from, several T cells with different specificities. (B) An activated, 
a-specific Th cell can, in turn, provide help to B cells that can recognise the same determinants 
but are specific for other accessible epitopes of the complex. This can finally lead to generation 
of anti-b and anti-c antibodies.  

 

 

 

 

As mentioned earlier, ACPA in RA patients can be detected several years 

before the first symptoms of the disease appear. Interestingly, closer to the 

onset of disease (within 6-12 months), antibody characteristics of ACPA change 

into higher titres, higher number of specificities and an increase in the number 

of isotypes used (267–271). Altogether, these data suggest that progressive 

intra- and intermolecular epitope spreading (as observed by the targeting of 

additional citrullinated epitopes) together with the emergence of subclinical 

inflammation (as evidenced by increases in blood cytokine levels (267)) may 
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play a central role in the progression of individuals from preclinical to clinical RA 

(256). This notion finds support in other autoimmune conditions like pemphigus 

(272) or SLE (273) where a similar shift in the antigen recognition profile prior to 

clinical onset can be observed. Based on these considerations and examples 

from other autoimmune conditions the hypothesis was therefore made that 

ACPA may initially be non-pathogenic during the preclinical phase and only gain 

arthritogenic properties after the above described changes in antibody 

characteristics (256).  

 

1.3.5.3 Molecular mimicry –link between RA and periodontitis 

It has long been suspected that there may be a link between infections and the 

generation of autoimmune diseases. In 1964, R.T. Damian initially coined the 

term “molecular mimicry” to describe antigen sharing between host and parasite 

and thus provided a mechanistic explanation for this association (274). 

According to the molecular mimicry hypothesis an immune response can be 

caused by a pathogen that shares an immunodominant epitope with a self-

antigen. The conformational structure of the epitope from the self-antigen can 

then be recognised by B cells or linear peptide sequences recognised by T cells 

in the context of MHC molecules. This process is referred to as cross-reactivity. 

The autoimmune reaction against the self-antigen will persist even if the cross-

reacting microorganism has already been eliminated from the body (275). 

There have been several epidemiological and experimental studies 

demonstrating a positive association between RA and periodontitis (PD) (276–

280). PD is a chronic inflammatory disease of the gingiva and underlying 
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connective tissues and affects almost half of the adult population in the UK 

(281). It can cause tooth loss but can also lead to, or associate with, several 

systemic complications (277,282). Historically, it has been considered that three 

main bacterial species are closely associated with disease pathogenesis, 

namely P.gingivalis, T.denticola and T.forsynthia (283). However it is suggested 

that disease is rather caused by an imbalance in the microbial community of the 

biofilm around the gingival margin accompanied by a dysregulation of the host 

immune system. In line with this model, it was demonstrated that P.gingivalis 

was one of the pathogens closely associated with periodontitis in susceptible 

individuals, resulting in inflammatory bone loss (284–286).  

In general, the published association studies regarding the link between PD and 

RA indicate that chronic periodontitis is more prevalent in individuals with RA 

and vice versa. Interestingly, PD and RA share similar pathobiology (278) and 

risk factors such as smoking (287). One explanation for the association 

between these diseases is based on the fact that P.gingivalis has the unique 

capability of expressing a bacterial peptidylarginine deiminase (PPAD) (288). In 

2004, Rosenstein et al. first proposed that citrullinated proteins generated by 

PPAD might become systemic autoantigens in the inflammatory context of PD, 

and ultimately cause autoimmunity in RA (278). This notion was further 

extended by Wegener and colleagues who found that PPAD is not only able to 

citrullinate its own proteins but also host proteins such as human fibrinogen and 

human -enolase, which are known autoantigens in RA (279). Furthermore, 

they discovered that the immunodominant peptide CEP-1 of the human protein 

-enolase shows 82% sequence identity with the region corresponding to CEP-

1 of the bacterial enolase (289). Intriguingly, antibodies to CEP-1 from RA 
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patients also cross-react with in vitro citrullinated enolase from P.gingivalis, 

which suggests a link between the bacterium P.gingivalis and RA based on the 

mechanism of molecular mimicry (290). Interestingly, the link between 

P.gingivalis and RA was supported by two recent and independent animal 

studies: In CIA, but also in CAIA, it was shown that the ability of P.gingivalis to 

exacerbate disease strictly depends on PPAD expression, as mutants lacking 

this enzyme fail to influence disease outcome (291,292).  

Nevertheless, further studies are needed to investigate the link between 

P.gingivalis and/or PD with ACPA-positive RA, since compelling evidence of 

exact molecular mechanisms by which P.gingivalis may induce the loss of 

tolerance to citrullinated proteins is still lacking and a subject of significant 

debate (293–296).  

 

1.3.5.4 Possible effector mechanisms of ACPA 

In order for antibodies to be effective during immune responses, they must in 

general not only bind to their corresponding antigen but also induce immune 

effector mechanisms through the activation of the complement system and the 

engagement of Fc receptors. Depending on the endogenous or exogenous 

nature and location of the antigen, and on the type of immune response 

responsible for the tissue damage, such effector mechanisms in immune-

mediated processes such as allergy and autoimmunity were historically 

categorised into different types of so-called hypersensitivity reactions (297,298).  

One of the most extensively studied murine models of RA to unravel the role of 

antibody induced joint inflammation is the K/BxN mouse model which results 
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from crossing KRN-TCR transgenic mice with NOD mice (23). Notably the F1 

K/BxN offspring develop spontaneous arthritis (299). The antigen recognised by 

the KRN TCR in the context of MHC-II I-Ag7 has been identified as glucose-6-

phosphate isomerase (GPI) a glycolytic enzyme that is widely expressed (300). 

Sera from these mice contain GPI specific antibodies and transferring these into 

healthy as well as in lymphocyte deficient mice, induces joint inflammation. 

Intriguingly, systemic presence of immune complexes together with participants 

of the innate immune system like complement, FcγRIII, mast cells and 

neutrophils induce an inflammatory response reminiscent of the type III 

hypersensitivity (or 'Arthus') reaction, which can theoretically manifest at many 

sites in the body. Why this is manifested particularly in the joints of these mice, 

however, is not well understood. Possibilities discussed include the effect of 

hydrostatic pressure, regionally distinct vascular properties (301) or further 

mechanisms leading to a lack of clearance of ICs from the inflamed joint. In the 

K/BxN model, GPI and associated antibodies have been shown associated with 

the cartilage surface. Similarly, in ACPA positive RA patients, precipitates of RA 

and their immunoglobulin antigens are found on the surface of the cartilage 

(302). The presence of citrullinated proteins has also been observed in 

precipitates on the surface of the synovial lining of RA patients, suggesting that 

these may also involve formation of ICs (248). When immune complexes were 

purified from plasma (303) and the SF of RA patients (304), and analysed for 

the antigens involved, citrullinated proteins were detected. Importantly, these 

ICs may play a critical role, because they can activate macrophages to produce 

cytokines such as TNF-α, which is the driving force in the chronicity of RA (305). 

Interestingly, this TNF-α secretion can even be increased, if RF IgM are 



54 
 
incorporated into ICs already containing ACPA, and likely depends on an 

increase in the number of IgG-engaged FcγR (306).  An interaction between 

ACPA and RF has also been suggested due to the fact that RFs preferentially 

interact with hypoglycosylated IgG and that ACPA are hypoglycosylated 

compared with total IgG (179). Experiments using mice deficient in individual 

immunoglobulin receptors revealed that ICs binding to FcγRIII but not to FcγRII 

were necessary for arthritis development (307,308). Furthermore it has been 

shown that the inflammatory response depends on the presence of neutrophils, 

macrophages and the alternative and classical complement pathway (309). In 

vivo inhibition of the CXCR2 receptor led to significant reduction in RA, 

reflecting its important role in neutrophil recruitment (310). In addition, a recent 

report has also shown that expression of Syk, a kinase downstream of the Fcγ 

receptor, specifically in neutrophils is necessary for development of arthritis 

(23,311).  

 

Finally, in addition to the effector mechanisms described above, the pathogenic 

role for the anticitrulline response was recently supported by a study 

demonstrating that ACPA can also affect bone destruction through the 

activation of osteoclasts (312). If these findings are confirmed they would imply 

that ACPA have functional properties in the initiation of RA and may be directly 

pathogenic in contrast to the possibility of just simply enhancing a pre-existing 

inflammation. Additional investigations are therefore needed to elucidate the 

exact mechanisms of ACPA contribution to RA pathogenesis. 

 



55 
 

1.4 Aims 

Neutrophils can enter a novel form of cell death known as NETosis, which 

depends on the enzymatic activity of PAD4. The overarching aim of the work 

described in this thesis was to test the hypothesis that enzymatically active 

PADs during NETosis are involved in the generation of citrullinated 

autoantigens in the inflamed joint, and that these antigens are targeted by anti-

citrullinated protein antibodies (ACPA) in RA patients. 

 

In particular, the objectives of this project were: 

 

 To investigate evidence for NETosis in the joints of patients with 

arthritides. 

 To develop a suitable assay to study the release of PADs and 

citrullinated proteins from neutrophils going into NETosis. 

 To relate findings of in vitro NETosis to the in vivo situation in the joints of 

RA patients by measuring PAD activity in the synovial fluid and by 

investigating the composition of proteins in NETs isolated from the 

synovial fluid. 

 To assess the presence of known and novel citrullinated antigens in 

NETs. 

 To examine the antigenicity of NET-associated citrullinated proteins in 

ACPA positive RA patients. 
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2 Materials and Methods 
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2.1 Antibodies 

The following antibodies shown in Tables 2.1-2.3 were used for 
immunofluorescence staining and Western Blotting. 
 
Table 2.1 Details of conjugated primary antibodies used 

Immunofluorescence 

antibody 
concentr.* 
[μg/ml] 

species isotype supplier clone 
product 
number 

anti-PAD4 10.1 mouse IgG2a Abcam 4H5 ab128086 

anti-PAD2 5 rabbit IgG Abcam - ab50257 

anti-CD68 5 mouse IgG2b BD Pharmingen Y1/82A 556059 

anti-CD15 10 mouse IgM Immunotools MEM-158 21270151 

anti-neutrophil 
elastase 

12.5 rabbit IgG Abcam - ab21595 

Western Blotting 

anti-PAD4 1 mouse IgG2b 
Novus 
biologicals 

4D8 
H00023569-
M01 

anti-PAD4 3.2 mouse IgG2a Abcam 4H5 ab128086 

anti-PAD2 25 rabbit IgG Abcam - ab50257 

anti-neutrophil 
elastase 

0.15 mouse IgG1 SantaCruz NP57 53388 

anti-modified 
citrulline (AMC) 

2 human IgG1 ModiQuest clone C4 
MQR2.601-
100 

anti-histone H3 0.08 rabbit IgG Abcam - ab1791 

anti-citrullinated 
histone H3 

1.33 rabbit IgG Abcam - ab5103 

*end concentration (concentr.)  

 

 

Table 2.2 Isotype control antibodies used 

isotype 
concentration 
[μg/ml] 

species supplier product number 

IgG1 * mouse DAKO X0931 

IgG2a * mouse DAKO X0943 

IgG2b * mouse DAKO X0944 

IgG * rabbit DAKO X0936 

IgM * mouse DAKO X0942 

*Isotype control antibodies were isotype-, concentration- and species-matched to primary 
antibodies  
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Table 2.3 Conjugated antibodies used 

conjugate description dilution supplier product number 

Cy5 goat anti-mouse IgG2b 1:250 
Jackson 
ImmunoResearch 

115-175-207 

DyLight 488 donkey anti-mouse IgM 1:100 
Jackson 
ImmunoResearch 

715-486-020 

AlexaFluor 488 donkey anti-rabbit IgG 1:100 Life technologies A21206 

AlexaFluor 647 goat anti-rabbit IgG 1:400 
Jackson 
ImmunoResearch 

111-605-047 

Biotin goat anti-mouse IgG2a 1:50 
Southern 
Biotechnology 

1080-08 

Streptavidin-
AlexaFluor 488 

- 1:100 
Jackson 
ImmunoResearch 

016-540-084 

HRP goat anti-human IgG 1:10000 
Jackson 
ImmunoResearch 

109-036-008 

HRP donkey anti-rabbit IgG 1:10000 Amersham NA934 

HRP sheep anti-mouse IgG 1:10000 Amersham NA931 

 

 

2.2 Quantification of extracellular DNA in SF samples 
(untreated or cell-free)  

Untreated synovial fluid samples were used immediately following aseptic 

aspiration from the joints (see section 2.9) and were diluted with PBS to 1:10, 

1:100 and 1:1000. Levels of free DNA were assessed using SYTOX Green as 

described in section 2.6.1.2. DNA concentrations were calculated using a 

standard curve of purified DNA (placental DNA, Sigma-Aldrich, D4642). To 

obtain cell-free SF, samples were centrifuged for 10 min at 300 x g, the 

supernatants were carefully aspirated away from the cell pellets and used to 

assay DNA concentration. 

2.3 Quantification of cells in SF samples 

Untreated SF samples were obtained immediately after joint aspiration. The 

total cell count and proportion of neutrophils and macrophages within the 

synovial infiltrate was determined using a Neubauer hemocytometer and 
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cytospin preparations after a modified Giemsa staining (Diff-Quick™, Gamidor 

Technical Services, Didcot, UK). To generate cytospins SF cells were re-

suspended in MACS buffer (0.5% BSA and 2mM EDTA in PBS) and 1 x 105 

cells were transferred onto a clean glass slide using a cytocentrifuge, stained 

with modified a Giemsa stain (Diff-Quick, Gamidor Technical Services, Didcot, 

UK) and examined by light microscopy (Axiocam, Ero5S, Zeiss). For this 

purpose slides were fixed for 10 min in methanol (Sigma) and then stained 

according to manufacturer’s instructions. Neutrophils and macrophages were 

identified by their characteristic morphology. Giemsa staining of neutrophils 

showed cells with a multilobed blue-violet nucleus and a pale pink granular 

cytoplasm while macrophages were identified as cells with an irregular 

amoeboid shape and a pale blue and vacuolated cytoplasm (Figure 2-1). The 

ratio of neutrophils or macrophages compared with the total cell number was 

determined in five microscopic fields (40 x 10 original magnification) with a total 

minimum cell number of 200 cells per sample. Finally, the concentration was 

calculated using the ratios and the total cell count in the infiltrate. Other cells 

such as lymphocytes with their high nucleus:cytoplasm ratio or synoviocytes, 

which were usually found in the form of aggregates, were not considered for the 

differential leukocyte count.  

 



60 
 

 

Figure 2-1 Example image of neutrophils and macrophages in the synovial fluid infiltrate used for 
cell characterisation and quantification 

Cytospin preparation of SF cells from an RA patient stained with Diff-QuickTM. The 
dashed arrow indicates an example of a neutrophil and the solid arrow a macrophage 
(40 x 10 original magnification). 

 

2.4 Isolation of neutrophils from peripheral blood 

Peripheral blood from healthy donors was anti-coagulated with EDTA (Sigma-

Aldrich, E7889) at a final concentration of 1.5 mM and 1 ml of 0.04 mM Dextran 

T-500 (Sigma-Aldrich, 31392) was added per 6 ml blood to sediment 

erythrocytes. The supernatant without erythrocytes was then layered on top of a 

discontinuous Percoll (Sigma-Aldrich, Poole, UK) gradient of 56% Percoll over a 

layer of 80% Percoll and finally centrifuged at 190 x g for 20 minutes at RT with 

the centrifugal brake turned off. Neutrophils were collected at the interface 

between both Percoll layers using a Pasteur pipette and transferred into RPMI 

1640 medium (Sigma-Aldrich) containing 2 mM L-glutamine, 100 U/ml penicillin 

and 100 µg/ml streptomycin (Sigma-Aldrich). The cells were washed by 

centrifugation at 300 x g for 10 min and resuspended in RPMI. Purity of 
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neutrophil isolation was determined by Diff-Quick™ staining of cytospins and 

light microscopy (as described above). Routinely >97% of neutrophils were 

obtained in preparations, with eosinophils being the main contaminating cell. 

Cells were counted using a Neubauer hemocytometer.  

2.5 Induction of necrotic cell death in neutrophils 

Neutrophils were pipetted into 2 ml polypropylene tubes at a cell concentration 

of 1 x 106 ml-1 in 1 ml and subjected to 5 freeze-thaw cycles as has previously 

been described elsewhere (313). After the final freeze-thaw cycle samples were 

centrifuged for 10 min at 300 x g to remove intact cells, supernatants were 

transferred to fresh tubes and centrifuged a second time for 10 min at 16000 x g 

to remove cell debris. The supernatants of unstimulated neutrophils and 

NETotic neutrophils (generated as described in section 2.6) of the same donors 

after 4 h of incubation without or with PMA, respectively, were used as controls. 

Finally, DNA concentration (section 2.6.1.2) and PAD activity (section 2.10) in 

the supernatants was determined. 

 

2.6 Isolation of NETs  
 

2.6.1 Isolation of NETs from neutrophils stimulated with PMA 

(in vitro) 

Isolated neutrophils from healthy donors were seeded in 12-well tissue culture 

plates at a density of 1 x 106 ml-1 (1.7 x 106 cells per well) and were induced to 

form NETs using 25 nM phorbol myristate acetate (PMA) for 4 h at 37°C in a 
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5% CO2 atmosphere (314). To ensure appropriate stimulation of the cells, cell 

morphology was checked following stimulation under light microscopy. 

Unstimulated neutrophils demonstrated a typical rounded shape while 

neutrophils stimulated with PMA became flattened and exhibited a loss of cell 

membrane integrity (Figure 2-2). Supernatants from stimulated (SN) and 

unstimulated neutrophils (SN (unst.)) were harvested and wells were washed 

three times by removing the supernatant and carefully adding 500 μl of fresh 

pre-warmed RPMI into the well. Each wash was incubated for 20 min at 37°C. 

This process was undertaken to remove proteins that do not bind firmly to NETs 

as is previously described (315).  

 

 

Figure 2-2 Example images of cell morphology of unstimulated and PMA-stimulated neutrophils 
(25 nM PMA) after 4h cell culture (20 x 10 original magnification) 

 

Cell-associated NETs were solubilised with 10 U/ml DNase-I (Ambion AM2235, 

Applied Biosystems) for 20 min in 500 μl RPMI and protease inhibitor cocktail 

(Sigma-Aldrich, P8340) at a dilution of 1:200 (Sigma-Aldrich, P8340) and the 

Neutrophils
unstimulated

Neutrophils
stimulated with 

25 nM for 4 h
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reaction was stopped using a final concentration of 5 mM EDTA. Supernatants 

from all washing steps (W1-3), DNase-I treated NET fraction (+DNase-I) and 

control fractions were collected. The supernatants were centrifuged for 10 min 

at 300 x g to remove intact cells and then centrifuged for 10 min at 16000 x g to 

remove cell debris (Figure 2-3). 

 

 

 

2.6.1.1 Precipitation of proteins using trichloroacetic acid (TCA) 

Proteins in the supernatants of neutrophils (including the NET fraction) were 

precipitated using a final concentration of 15% w/v trichloroacetic acid (TCA) 

(T6399, Sigma-Aldrich) for 20 min on ice and centrifuged for 10 min at 16000 x 

g. Pellets were washed twice with 500 μl ice-cold acetone (Sigma) and then 

alllowed to air dry on ice. Finally, all protein pellets were solubilised in equal 

volume of SDS loading buffer or prepared for MS identification as described in 

section 2.14.  

 

Figure 2-3 The steps in the process used for the isolation of NETs using DNase-I 

 

+DNase-I
Release of NETs

3x wash

Supernatant
= NET fraction 
(after DNase-I treatment)

Supernatant
= SN

PMA

NETs
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2.6.1.2 Measurement of DNA concentration in supernatants of neutrophils  

To quantify DNA, 90 µl of each supernatant was incubated with 10 µl of 10 µM 

SYTOX Green (Invitrogen) at a final concentration of 1 µM in a black 96-well 

assay plate (Corning) and incubated for 10 min at RT. Readings were obtained 

at a wavelength of 530 nm using a plate reader (BioTek-Synergy 2). Values 

obtained were compared with a standard curve of purified DNA (placental DNA, 

Sigma-Aldrich, D4642). Differences in volumes were accounted for in the 

calculation of the final DNA concentration. 

2.6.2 Isolation of NETs from synovial fluid of RA patients (ex 
vivo) 

For isolation of NETs from SF samples a modified version of the protocol 

described in section 2.6.1 was applied. Undiluted synovial fluid containing 

infiltrating cells was seeded on poly-L-lysine (Sigma) coated 12-well plates at 

300 µl per well, centrifuged at 300 x g at room temperature to sediment the cells 

and incubated at 37°C in a 5% CO2 atmosphere for 30 min. After removing the 

supernatant 500 μl pre-warmed RPMI were added into each well to gently wash 

the cells eight times so that proteins are removed which are not firmly attached 

to NETs. Each wash was incubated for 10 min at 37°C and the supernatants 

from 1 plate of the last washing step were collected as washing step 8 (W8). 

Subsequently NET-bound proteins from 1 plate were solubilised for 20 min in 

500 μl RPMI with 10 U/ml DNase-I (Ambion AM2235, Applied Biosystems) and 

protease inhibitor cocktail (Sigma-Aldrich) at a dilution 1:200 (+DNase-I). 

Importantly, EDTA at a final concentration of 5 mM, was used to stop the 

activity of DNase-I directly after incubation. A further plate was used as a 

control with RPMI alone and without DNase-I (-DNase-I) to ensure the 
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specificity of NET release. The supernatants were then centrifuged for 10 min at 

300 x g to remove intact cells and again for 10 min at 16000 x g to remove cell 

fdebris. Finally, proteins from each fraction (W8, +DNase-I and -DNase-I) were 

precipitated with TCA (as described in section 2.6.1.1), pellets were dissolved in 

SDS buffer and loaded onto an acrylamide gel (see below). In parallel, DNA 

levels in all supernatants were tracked using SYTOX Green as described in 

section 2.6.1.2.  

 

2.7 SDS-PAGE (Sodium Dodecyl Sulfate- 
Polyacrylamide Gel-Electrophoresis) and Western 
Blotting 

 

 

Acrylamide gels were prepared at 12% or 15% for the resolving gel and 5% for 

the stacking gel. Gels were placed in a electrophoresis chamber and immersed 

in running buffer (Geneflow). Protein precipitates were solubilised in SDS 

loading buffer (0.35 mM SDS, 2.74 mM Glycerol, 0.04% β-Mercaptoethanol, 

Bromophenol blue powder, 0.1 M Tris, pH 6.8), boiled at 95ºC for 5 min, 

separated on SDS-PAGE gels using tris-glycine SDS-PAGE Tank Buffer 

(Geneflow). Samples were transferred to polyvinylidene difluoride (PVDF) 

membranes (345774, GE Healthcare, Amersham) using Electroblotting Buffer 

Tris-glycin (Geneflow). After blocking with 5% milk powder (Marvel powder) in 

TBS with 0.05% Tween-20 (Fisher BioReagents), membranes were incubated 

overnight at 4°C with primary antibody and developed with HRP conjugated 

secondary antibody and ECL Plus or ECL Prime (GE Healthcare, Amersham). 
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2.7.1 Sample preparation 

Precipitated proteins from pooled supernatants of 4 wells of PMA-stimulated 

neutrophils or from pooled supernatants of 12 wells of synovial fluid cells were 

solubilised in 25 µl SDS buffer prior to loading on a polyacrylamide gel. Intact 

neutrophils and human skeletal muscle tissue were lysed in RIPA-buffer 

(Sigma-Aldrich, R0278) in combination with protease inhibitor cocktail (Sigma-

Aldrich, P8340) first and the protein concentration was determined using the 

BCA protein assay kit (Thermo Scientific) according to the manufacturer's 

instructions. The samples were diluted with 5 x SDS loading buffer prior to 

loading on a polyacrylamide gel. 

2.7.2 Depletion of albumin from the synovial fluid 

Frozen and cell-free SF samples were thawed and albumin was removed from 

supernatants using the ProteoExtract Albumin/IgG Removal Kit, Maxi 

(Calbiochem). Protein concentrations of the eluate were determined using the 

BCA protein assay kit (Thermo Scientific) according to the manufacturer's 

instructions. Twelve µg of each sample was diluted with 5 x SDS loading buffer 

prior to analysis by SDS-PAGE and Western Blotting (section 2.7). 

2.7.3 Relative quantification of protein signal  

Images were captured with the ChemiDoc MP imaging system (Bio-Rad) and 

analysed using Image Lab 4.0 software (Bio-Rad) in the ‘manual band 

quantification’ mode and the ‘Identify Bands’ tool was used to detect individual 

bands. By default, the bands were labelled by band number. The ‘assign 

quantity’ tool was used to assign the brightest or reference band a value of 1. 
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All other band intensities were subsequently given values between 0-1 relative 

to this reference band. An example is shown in Figure 2-4. 

 

Figure 2-4 Relative quantification of protein bands using Image Lab 4.0 software 

Relative quantification of western blot signals was performed using the Image Lab 4.0 
software by Bio-Rad. In this example 8 bands were automatically detected by the 
programme and band 6 was identified as the reference band (in red) with the value 1.0. 
The signals of the other bands were calculated in relation to this reference band. 

 

2.7.4 Detection of citrulline modifications using the AMC-kit 

Citrullinated residues in proteins from neutrophil supernatants blotted on PVDF 

membranes were modified for assay using the protocol described by Senshu et 

al. (316). Briefly, membranes were incubated overnight at 37°C with an end 

concentration of 0.77 mM FeCl3, 1.47 M H3PO4 and 2.25 M H2SO4 in 

combination with 0.25 M C2H4O2, 25 mM 2,3-butanedione monoxime and 6.64 

mM antipyrine. After rinsing with dH2O and blocking with 5% milk powder in 

TBS with 0.05% Tween-20 next day, membranes were probed overnight at 4°C 

with a monoclonal human anti-modified citrulline (AMC) antibody (ModiQuest, 

clone C4) and developed with HRP conjugated goat anti-human antibody 

(Jackson ImmunoResearch Laboratories) and ECL Prime (GE Healthcare, 

Amersham). 

1             2 3 4 5 6 7 8
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100 kD

63 kD
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2.7.5 Staining of SDS-PAGE gels or PVDF membranes with 

Coomassie Blue 

Gels were prefixed in 50% methanol (MeOH), 10% acetic acid (HOAc) and 40% 

H2O overnight and stained in the same solution with 0.25% Coomassie Blue (R-

250) for 4 h on the next day until the gel became a uniform blue colour. Finally, 

the gel was destained for 4 h in 5% MeOH, 7.5% HOAC, 87.5% H2O until bands 

began to appear and the background became clear. In comparison, PVDF 

membranes were not prefixed and stained in the above Coomassie Blue 

solution for 30 sec. Destaining of PVDF membranes was undertaken using the 

same solutions and in the same way as that described for gels. 

2.7.6 Generation of gel slices for mass spectrometry 

Proteins of the in vitro isolated NET fractions from 5 donors were separated 

using SDS-PAGE as described above (section 2.7) and thin slices (2 x 4 mm) 

were dissected from the polyacrylamide gel at the molecular weight of 11 kD in 

a ventilation hood to avoid contamination with keratin. In-gel digestion of the gel 

slices followed by mass spectrometry analysis were performed by Jimmy 

Ytterberg at the Karolinska institutet in Sweden. 

 

2.7.7 Generation of PVDF strips and incubation with patient 
sera or antibodies 

Either precipitated proteins from in vitro NET fractions (from the supernatants of 

36 wells) or 3.2 µg recombinant histone protein (New England Biolabs) were 

evenly distributed in one large well on the surface of an acrylamide gel, 



69 
 
separated using SDS-PAGE and blotted onto a PVDF membrane. After the 

blocking step, eight strips of PVDF membrane of the same size were dissected 

out of one membrane for the incubation with eight different patient sera or eight 

different antibodies. 

2.8 Immunoprecipitation of PAD4 from the synovial 
fluid 

Initially 100 µl of protein G microbeads (Miltenyi, 130-071-101) were pre-

coupled with 3 µg of an anti PAD4 antibody (abcam, ab128086) in 0.4 ml ice-

cold PBS and mixed for 3 h at 4°C on a rotating table. An isotype-, 

concentration- and species- matched antibody was used as negative control for 

the immunoprecipitation. In the subsequent step, SF samples were pre-cleared 

by addition of 40 µl A/G plus agarose beads (Santa-Cruz, sc-2003) per SF 

sample and incubated for 3 h at 4ºC on a rotating table. After centrifugation at 

800 x g agarose beads were removed and 1.5 µg recombinant human PAD4 

(rPAD4, Cayman, 10500) was added as a positive control in combination with 

the specific antibody. Pre-cleared SF samples were then combined with the pre-

coupled Miltenyi beads and incubated overnight at 4°C with agitation to allow 

the binding of the PAD4 protein to the anti-PAD4 antibodies on the surface of 

the beads. Next day, the immune complexes were loaded on µMACS columns 

(Miltenyi) and allowed to filter through. After washing the columns according to 

the manufacturer's instructions, 20 µl 95°C pre-heated SDS loading buffer was 

added to the columns and the flow-through was discarded. Finally, another 20 

µl 95°C-warm SDS loading buffer was added and the eluate with the protein-

antibody complexes collected and loaded on SDS-PAGE gels (section 2.7). 
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2.9 Patient selection and sample collection 

RA patients studied all fulfilled the 1987 ARA classification criteria (76). At initial 

assessment, the disease activity score in 28 joints (DAS28) was calculated, and 

blood samples were analysed for C-reactive protein (CRP), erythrocyte 

sedimentation rate (ESR), rheumatoid factor and anti-CCP antibody. 

Seropositivity for anti-ccp antibody was defined as a titre of ≥7 IU/ml and a 

maximum cut-off level of 340 IU/ml. Seropositivity for rheumatoid factor was 

defined as a titre of ≥11 IU/ml. Psoriatic arthritis was diagnosed according to 

established criteria (317). Samples were obtained from patients seen by 

consultant rheumatologists, Prof Karim Raza or Dr Andrew Filer. Synovial fluid 

was aspirated from joints under manual palpation or ultrasound guidance. 

Synovial tissue was obtained by ultrasound guided synovial biopsy (318). 

Ethical approval was obtained and participants gave informed, written consent. 

Clinical details of patients are provided in the appendix (section 8.1). 

2.10 Measurement of PAD activity (ABAP-assay) 

The Antibody Based Assay for PAD activity (ABAP) was purchased from 

ModiQuest Research, MQ-17.101-96. The assay utilises a solid Enzyme-linked 

immunosorbent assay (ELISA) for the determination of PAD enzyme activity 

(197). The wells of a 96-well plate were pre-coated with arginine containing 

peptides (Figure 2-5). After incubation with PAD enzyme-containing solutions, 

arginine residues can then be citrullinated and recognised by a monoclonal 

detection antibody specific for citrullinated arginine. In the final step wells are 

incubated with a HRP-labelled polyclonal anti-mouse immunoglobulin antibody 

which is then developed using the HRP substrate tetramethylbenzidine (TMB) 
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(Sigma) (Figure 2-5). The staining reaction is directly proportional to the amount 

of arginine residues that have been citrullinated. For quantification of the 

measured optical density at a wavelength of 450 nm a standard control PAD 

enzyme diluted in deimination buffer (40 mM Tris-HCl pH 7.5; 5 mM CaCl2; 1 

mM DTT) was used. Synovial fluid samples from patients with RA and OA and 

supernatants from in vitro PMA stimulated neutrophils were diluted in 

deimination buffer according to the manufacturer’s instructions.  

 

 

Figure 2-5 The Antibody Based Assay for PAD activity (ABAP) 

Schematic diagram showing the sequential steps (bottom to top, as described in the 
text) involved in quantifying PAD activity in PAD enzyme-containing solutions using the 
ABAP-Assay (ModiQuest). Arginine-containing proteins (Arg), Citrulline-containing 
proteins (Cit). 
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2.10.1 PAD activity measurement in the supernatants of 

neutrophils (in vitro) 

For analysis of PAD activity released by in vitro stimulated neutrophils, isolated 

cells were seeded at 1 x 106 ml-1 in individual wells of a 12-well plate and 

allowed to sediment for 1 h at 37 °C at 5% CO2 in RPMI 1640 medium (Sigma-

Aldrich). Following sedimentation, the supernatant was replaced either by 1 ml 

pre-warmed RPMI (unstimulated control) or with 1 ml 25 nM PMA in RPMI. 

Following stimulation the supernatants were collected and treated with 1:100 

protease inhibitor cocktail (Sigma-Aldrich) with an additional 3.5 mM 

aminoethylbenzene-sulfonyl fluoride hydrochloride (AEBSF) on ice. 

Supernatants were centrifuged at 4 °C for 5 min at 300 x g to remove residual 

cells and diluted 1:2 with self-prepared deimination buffer (8.58 mM CaCl2, 5 

mM DTT and 40 mM Tris-HCl pH 7.5) which, together with the 0.42 mM calcium 

in RPMI 1640, resulting in a calcium concentration of 4.5 mM. Supernatants 

were transferred to the ABAP-Assay (ModiQuest), incubated for 1.5 h at 37 °C 

and further processed according to the manufacturer’s instructions. 

 

2.10.2 PAD activity assay in synovial fluid  

Frozen, cell-free synovial fluid samples from patients with RA and OA were 

either used non-diluted (at physiological calcium concentration) or diluted 1:100 

with deimination buffer (artifical calcium concentration of 5 mM) before transfer 

of 100 µl onto the ABAP assay plate.  
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2.11 In vitro citrullination 

Human recombinant histones H3.3, H2A and H4 (New England Biolabs), His-

tagged human recombinant vimentin (Sigma, SRP5150) and calf thymus 

histones (Worthington Biochemical Corporation) were used as a substrate for 

the human recombinant PAD4 enzyme (MQ-16.203-2.5, stock concentration 

18.7 mU/µl). For the enzymatic reaction 1 µg of substrate was added to 5 mU of 

PAD4 enzyme and diluted in deimination buffer, which was provided with the 

ABAP assay kit (compare 2.10.1). After citrullination for 2 h at 37ºC proteins 

were diluted with 5 x SDS loading buffer and used for Western Blotting (section 

2.7). 

2.12 Peptide ELISAs 

Citrullinated and non-citrullinated peptides from histone H3.3 were synthesised 

by Innovagen, Sweden. Nunc high-binding 96-well plates (Thermo Scientific, 

442404) were coated overnight with the peptide, which was diluted in carbonate 

coating buffer (Na2 CO3 1,59g/l , NaHCO3 2,93g/l, pH 9.6) at a concentration of 

5 µg/ml. Next day, plates were washed and blocked with 1% bovine serum 

albumin (BSA) in PBS for 1 h and then incubated for 2 h with control and test 

sera, which were previously diluted 1:50 in RIA-buffer (10 g/L BSA, 350 mM 

NaCl, 1% Triton-X-100, 5g/L Na-deoxycholate (0.5%), 0.1% SDS, 10 mM Tris-

HCl pH 7.6). Positive control sera were pooled from four anti-ccp antibody 

positive RA patients and negative control sera were pooled from four healthy 

individuals. 

After washing with PBS and 0.05%Tween, plates were incubated with a 

secondary goat anti-human IgG HRP-conjugated antibody (Jackson 109-036-



74 
 
008) at a final concentration of 0.04 µg/ml for 1 h. The HRP substrate 

tetramethylbenzidine (TMB) (Sigma) was diluted in phosphate-citrate buffer with 

sodium perborate (P4922-100) and the reaction stopped by addition of 2 M 

H2SO4. The optical density was measured at a wavelength of 450 nm in a plate 

reader. 

 

2.13 Immunofluorescence microscopy 

All samples were visualised using a Zeiss UV confocal LSM 510 microscope 

(Zeiss, Germany) and captured and processed using Zeiss LSM Image 

Examiner software (Zeiss).  

2.13.1 Immunofluorescence staining of synovial fluid 
preparations and synovial tissue sections 

Synovial fluid slide preparations were generated by pipetting 30 μl synovial fluid 

from patients onto a glass slide and cells were allowed to sediment for 2 min at 

RT. Supernatant was subsequently carefully removed and slides were left to air 

dry and then frozen at -20°C prior to use. Immunofluorescence staining was 

also performed on 5 m frozen synovial tissue sections from RA patients. When 

required, synovial fluid slide preparations and synovial tissue slides were 

defrosted and fixed in 4% paraformaldehyde (PFA) (P-6148, Sigma) for 10 min, 

hydrated in PBS and blocked for 30 minutes with 10% FCS/PBS. Primary 

antibody preparations (CD15, neutrophil elastase or CD68) were incubated for 1 

h at room temperature in PBS supplemented with 10% FCS and then washed in 

PBS. Concentration-, species- and isotype-matched antibodies were used as 

controls. Secondary antibodies (donkey anti-mouse IgM-Dylight 488,  donkey 
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anti-rabbit IgG-Alexa Fluor 647, goat anti-mouse IgG2a-Cy5, respectively) were 

incubated for 30 min at room temperature in the dark, and nuclei were 

counterstained using 10 µg/ml Hoechst S769121 (Life Technologies). Slides 

were mounted with mounting medium (DABCO, in-house).  

2.13.2 Staining of in vitro isolated neutrophils on 
coverslips  

For immunofluorescence staining of in vitro stimulated cells, neutrophils were 

seeded on coverslips and fixed with 4% PFA for 10 min after stimulation and 

incubated overnight at 4oC. Coverslips were rinsed with PBS, blocked for 45 

min with PBS in 2% BSA, 2% goat and/or donkey serum and 0.25% Triton-X-

100 as described (21). Samples were then exposed to primary antibody in PBS 

with 2% BSA and 0.25% Triton-X-100, washed in PBS, revealed using Alexa 

Fluor conjugated secondary antibodies and counterstained with 10 µg/ml 

Hoechst S769121.  

2.13.3 Staining of cytospins of isolated neutrophils and 

synovial fluid cells 

Cytospins of neutrophils from the peripheral blood of six healthy individuals and 

of peripheral blood neutrophils or SF infiltrate cells of five RA patients were re-

suspended in MACS buffer and 1 x 105 cells were transferred onto a clean 

glass slide using a cytocentrifuge. All cytospins were stained using the same 

protocol and the images were acquired with the same settings. Cytospins were 

initially fixed with 4% PFA for 10 min, rinsed with PBS and then blocked for 45 

min with PBS in 2% BSA, 2% goat serum, 2% donkey serum and 0.25% Triton-

X-100. They were then exposed to anti-PAD4 and anti-NE antibodies in PBS 
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with 2% BSA and 0.25% Triton-X-100, washed in PBS, revealed using Alexa 

Fluor conjugated secondary antibodies (Biotin- and Streptavidin-conjugated 

antibodies for anti-PAD4) and counterstained with 10 µg/ml Hoechst S769121. 

2.13.4 Quantification of PAD4 signal in neutrophils  

For the quantification of cytoplasmic PAD4 signal compared with the total PAD4 

signal on the immunofluorescence stainings obtained from cytospins described 

in section 2.13.3, pixel counts per µm2 area were analysed using the ZEN 2010 

software (ZEISS). For this purpose all NE-positive and intact neutrophils (60-80 

cells) from five different fields of vision were isolated using the overlay function 

within the ZEN software as shown in the example provided in Figure 2-6A. The 

Image calculator function was then applied to subtract all PAD4 pixels, which 

overlap with the nuclear DNA signal, from the total PAD4 signal. Importantly, 

when the pixels of the DNA signal were subtracted from the total PAD4 signal, 

only the overlapping pixels were subtracted and not the total DNA signal. The 

histogram function within the software was used to obtain the pixel counts for 

each channel. After the subtraction a separate pixel count was generated for 

the PAD4 channel. Pixel counts of all different intensities (Figure 2-6B) from all 

channels were then exported from the ZEN software into Excel software 

(Microsoft) excluding the first 30 intensities in order to avoid the inclusion of 

intensities, which are artificially high. In the Excel software, the sum of all pixel 

intensities per µm2 area for individual cells was calculated and the average for 

each cytospin determined. The percent of cytoplasmic PAD4 signal was then 

calculated using the following equation:  
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%cytoplasmic PAD4=100×(total PAD4 positive pixels per µm2 area - 

overlapping pixels per µm2 area) /total PAD4 positive pixels per µm2 area 

These values were then plotted graphically to enable identification of 

differences between neutrophils from the synovial fluid and peripheral blood of 

patients and healthy controls. 
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Figure 2-6 Image calculator function of the ZEN 2010 software 

(A) To calculate the cytoplasmic pixel count of the PAD4 signal (green) in channel Ch3-T2 
(Input S1), the Image calculator function in ZEN 2010 (indicated by the arrow) was used. With 
the subtraction of pixels in one channel (DNA signal, Input S2) from another channel (PAD4 
signal, Input S1) only pixels overlapping in both channels are subtracted from the total PAD4 
signal. For this purpose the formula Input S1 - Input S2 was typed into the formula display 
resulting in all pixels in Ch3-T2 without the one overlapping with the DNA signal. (B) Using the 
histogram function within the ZEN software all intensities excluding the first 30 strongest 
intensities (31-286) from each channel were exported into Excel software. Additionally, also the 
pixel intensities in Ch3-T2 (PAD4) excluding the one overlapping with Ch2-T1 (DNA) (not 
shown here) were added into the excel sheet. The sum of all intensities divided by the area 
[µm x µm] was then calculated for each channel separately and the ratio cytoplasmic 
PAD4/total PAD4 was determined. 
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2.14 Mass spectrometry 

All mass spectrometry analyses were performed in collaboration with Jimmy 

Ytterberg at the Karolinska Institutet, Stockholm, Sweden. 

2.14.1 Quantification of proteins in the supernatants and 
NET fractions of activated neutrophils 

Quantitative comparison of protein levels in supernatant directly after PMA 

stimulation (SN) and DNase-I treated NETs (+DNase-I and/or D) were 

undertaken. Supernatant (SN) and DNase-I treated NETs (D) from stimulated 

neutrophils from 7 donors were digested with trypsin, analysed by mass 

spectrometry (4 donors by LTQ OrbitrapVelos ETD and 3 donors by Q 

Exactive), searched against the human complete proteome database and 

quantified by the Quanti software (319). Details are described in the appendix 

section 8.2. The list provided in the appendix (section 8.2.2) shows the 286 

proteins that were quantified in both fractions of all patients. The data from the 

two instruments used for analysis is presented separately. The “PROTEIN ID” 

lists the UniProt accession numbers, the “PROTEIN IDs” lists all the accessions 

sharing peptides with the quantified accession, “log2 (D/SN)” lists the log2 of 

the ratio of medians of the two fractions, the “P (D vs SN)” lists the p-value 

using t-test, the “E” show the expectation value (n x p) together with the number 

of quantified proteins in the dataset. The Bonferroni corrected thresholds for 

significance are p = 1.70E-4 (Velos) and p = 9.01E-5 (Q Exactive) respectively. 



80 
 

2.14.2 Qualitative analysis of the presence of citrullinated 
proteins in the supernatants and NET fractions of 
activated neutrophils 

The presence of citrullination in the total SN and DNase-I treated NET (alias 

"D") fractions was investigated by re-searching the data (generated as 

described in section 2.14.1) with the inclusion of citrullination (R) and 

deamidation (N/Q) as variable modifications. Spectra identifying citrullinated 

peptides were validated manually, by verifying that the precursor mass was 

correctly assigned and that the modified site was consistent with observed 

mass shifts in the fragment ions. All peptides identified as citrullinated with a 

Mascot score of at least 20 are shown. A score of 20 is a commonly used 

threshold (320) and is defined as −10 log(P), where P is the probability of a 

random match between the theoretical MS/MS spectra of a peptide and the 

measured MS/MS spectrum. 

 

For the analysis of citrullinated peptides of 11 kD in the NET fractions, bands 

from five donors were excised from 1D-SDS-PAGE, reduced, alkylated and 

digested by trypsin using standard protocols (321). After zip tipping (Merck 

Millipore Ltd, Irland), the peptides were separated using on-line nLC-MS/MS 

(RP C18) and analysed on a LTQ Velos Orbitrap ETD MS (Thermo Fisher 

Scientific, Germany). The following gradient was used for the separation: 5-30% 

B in 35 min and 30-95% B in 5 min (A: 1% formic acid in water; B: 1% formic 

acid in acetonitrile), all at a flowrate of 300 nl/min. 
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2.15  Stimulation of neutrophils with enriched immune 
complexes from the SF of RA patients  

Based on previous protocols published by Robinson et al. (322) and Mathson et 

al. (323) frozen and cell-free SF samples from  RA patients were thawed and 

either pooled or used individually from each patient. Immune complexes (ICs) 

were enriched overnight at 4°C by combining the SF with an equal volume of 

ice-cold 5% polyethylene glycol (PEG) 6000 (Fluka, 03394) with a final 

concentration of 0.1 M EDTA. The following day, precipitates were centrifuged 

at 11600 x g at 4˚C for 10 min and washed twice with sterile PBS (Sigma). The 

precipitate, after centrifugation, was then diluted in the same volume of PBS as 

the original pool of synovial fluid samples. This solution of immune complexes 

(100%) was then further diluted to determine the percentage of 40% immune 

complexes sufficient to show an effect on freshly isolated neutrophils from the 

peripheral blood of healthy donors. For the blocking experiments antibodies 

against CD32a and CD16b (R&D) were used. 

 

2.16 Statistical analyses 

Each experiment was performed at least three times with a minimum number of 

two technical replicates unless otherwise stated. Non-parametric distribution 

was assumed for all assays. Individual tests used are indicated in the figure 

legends. p-values of less than 0.05 were considered statistically significant. 

Data were analysed using GraphPad Prism (version 5.0, GraphPad Software).  
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3.1 Introduction 

A considerable body of work suggests that neutrophils in patients with RA are 

functionally different from those isolated from healthy individuals (116). 

Neutrophils of RA patients, for example, are already primed for ROS production 

(109) and show an increased expression of several different cytokines (118). In 

the inflamed RA joints, these cells are rarely observed in synovial tissue, while 

they are the most abundant cell type in the SF (102). The abundance of 

neutrophils in early stages of disease (324–326) implicates a role in the 

pathogenesis of joint inflammation. This is also supported by several animal 

models of rheumatoid arthritis which depend on the presence of neutrophils 

(121,327,328). 

SF neutrophils in RA patients have been shown to be activated and secrete 

cytokines which activate other immune cells such as B-cells (117,118) and 

promote further neutrophil recruitment from the circulation amplifying the 

inflammatory response (116). Additionally, exposure to immune complexes, 

cytokines and rheumatoid factor in the SF of RA patients can induce neutrophil 

activation and secretion of ROS and proteases (322,329) and may thus lead to 

damage of cartilage and surrounding tissue (330,331).  

Autoantibodies against neutrophils have been described not only in systemic 

vasculitis and SLE but also in RA (332–334). Interestingly, anti-neutrophil 

cytoplasmic antibodies (ANCAs) were found to activate neutrophils causing 

degranulation and tissue damage and their presence was associated with 

higher joint scores in RA (335,336).  
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Recently, a novel cell death mechanism was described in neutrophils, the 

formation of neutrophil extracellular traps (NETs) or ‘NETosis’ (21). NETs are 

composed of chromatin associated with granular proteins and were found to 

primarily capture and immobilise microorganisms. Additionally, these structures 

were also demonstrated to be involved in the pathogenesis of several 

inflammatory conditions such as SLE, small vessel vasculitis, psoriasis or 

crystal arthritis (20–25). 

Based on the above-described significance of neutrophils in RA and  

previous findings of extracellular DNA in the SF of RA patients (26,27) it was 

hypothesised here that neutrophils may contribute through NETosis to the pool 

of extracellular DNA detected in the synovial fluid of RA patients. In this chapter, 

the formation of NETs in the SF and ST in relation to evidence of neutrophil 

infiltration and extracellular DNA levels is investigated.  

 

3.2 Extracellular DNA levels in the synovial fluid of 

patients with inflammatory arthritis correlate with 

neutrophil cell numbers 
 

As described in detail by Fuchs et al. NETosis is characterised by the entire 

fragmentation of the nuclear envelope and the active release of free DNA into 

the extracellular space (24). In order to quantify extracellular DNA that may be 

released during NETosis into the SF the DNA dye SYTOX green was used, 

which has been previously described to be suitable for the staining of NETs due 

to its cell-impermeability (314). Subsequently SF samples were freshly obtained 
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and immediately processed without cryopreservation to exclude artificially 

induced necrosis of cells and thus release of DNA.  

 

Quantification of extracellular DNA in untreated SF of patients with RA, OA and 

other types of inflammatory arthritis confirmed and extended previous findings 

that free extracellular DNA can be found in RA SF. Samples were compared to 

a known DNA standard solution in individual experiments and freshly isolated 

neutrophils from peripheral blood of healthy donors (PB PMNs) were used as 

negative control. Significantly higher DNA levels were found in SF of patients 

with RA compared to patients with osteoarthritis (OA) (p<0.001) and psoriatic 

arthritis (PsA) (p<0.05) (Figure 3-1A). A small number of patients with different 

types of inflammatory arthritis, including gout (n=2), pseudo gout (n=2), 

spondyloarthritis (SpA), reactive arthritis (n=1) or unclassified inflammatory 

arthritis (n=3), showed variable levels of extracellular DNA in the SF (Figure 

3-1B). Validation experiments in which the DNA concentration in untreated SF 

samples was measured before and after centrifugation of cells showed that 

78% (IQR 65-89, n=12) of the signal derived from cell-free SF samples 

suggesting that cells with permeable membranes such as necrotic or late-stage 

apoptotic cells contributed only a small proportion of the DNA signal (Figure 

3-1C). In parallel experiments neutrophils from healthy donors were isolated 

and after inducing NETosis and necrosis the release of free extracellular DNA 

was compared. As shown in Figure 3-1D, a significantly higher amount of 

soluble extracellular DNA is released after NETosis compared with unstimulated 

and necrotic cells (p<0.05). 
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No statistically significant correlations were observed between DNA 

concentration and clinical parameters such as ESR, CRP, DAS28 (ESR), VAS, 

SJC and TJC (Figure 3-2 A-F). Interestingly, however, levels of free DNA in SF 

samples showed a weak, although significant positive correlation with disease 

duration (r=0.4; p<0.01), which could be increased when excluding patients 

receiving DMARDs (Figure 3-2G-H). 
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Figure 3-1 Detection of extracellular DNA in the synovial fluid of patients with inflammatory arthritis 

(A) Extracellular DNA was quantified in the synovial fluid (SF) of patients with RA (n=54), 
osteoarthritis (OA) (n=15) and Psoriatic Arthritis (PsA) (n=12) using the cell-impermeable dye 
SYTOX Green. Freshly isolated neutrophils from peripheral blood of healthy donors (PB PMNs) 
(n=6) were used as negative control. (B) Quantification of extracellular DNA in the SF of 
patients with different types of inflammatory arthritis: gout (n=2), pseudo gout (n=2), 
spondyloarthropathy (SpA) (n=2), reactive arthritis (n=1), unclassified inflammatory arthritis 
(unclass. inflam. arthr.) (n=3). (C) Quantification of the DNA signal in 12 SF samples from 
patients with inflammatory arthritis revealed an approximate percentage of 78% (IQR 66-89) of 
the DNA signal derived from the cell-free fraction of SF samples. (D) Release of DNA into the 
supernatant of unstimulated, NETotic or necrotic neutrophils of healthy donors (n=6). To induce 
necrosis, neutrophils were frozen and then thawed and to induce NETosis the cells were 
stimulated with 25 nM PMA. Statistical analysis was performed using a Mann-Whitney test with 
horizontal bars representing median values (* indicates p<0.05, ** indicates p<0.01, *** 
indicates p<0.001). 
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Figure 3-2 Relationship between DNA concentration and clinical parameters in RA patients 

(A-F) Scatter plot showing relationship between DNA levels and erythrocyte sedimentation rate 
(ESR) (r=0.07; p=0.7), C-reactive protein (CRP) (r=0.2; p=0.1), DAS28(ESR) (r=0.09; p=0.6), 
visual analogue scale (VAS) (r= -0.2; p=0.3), swollen joint count (SJC) (r=0.1; p=0.4), and 
tender joint count (TJC) (r=0.1; p=0.4). (G) Scatter plot showing relationship between disease 
duration and DNA concentration in patients treated with DMARDs (n=37; r=0.36; p=0.03). (H) 
Scatter plot showing relationship between disease duration and DNA concentration in patients, 
which did not receive DMARDs (n=12; r=0.74; p=0.006). Data were analysed using Spearman’s 
test for correlation. DMARDs= disease modifying anti-rheumatic drugs. 
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Concentrations of different cell populations including neutrophils in the SF 

infiltrate were determined using cytospins of cells, stained with a Romanowski 

stain (Diff Quick™). Using light microscopy cells were then quantified based on 

cell morphology. Occasionally, cells with decondensed nuclei within neutrophil 

aggregates could be detected suggesting the presence of neutrophils in the 

early stage NETosis (Figure 3-3A). Quantification of different cell populations 

revealed that neutrophils predominate in the synovial fluid infiltrate in most RA 

SF samples (Figure 3-3B). 

 

Levels of free DNA in SF samples of RA patients showed a strong positive 

correlation both with total number of cells in the SF infiltrate (Figure 3-4A) and 

also neutrophil cell counts (Figure 3-4B). In contrast, no correlation between 

macrophage cell counts and DNA levels (Figure 3-4C) was observed. Instead, 

SF samples, in which neutrophil concentrations were higher than macrophage 

concentrations, displayed significantly higher DNA levels compared with SF 

samples, in which macrophages outnumbered neutrophils (Figure 3-4D). 

Additionally, a strong significant negative correlation between DNA levels and 

the proportion of macrophages from the total SF cell infiltrate could be observed 

(Figure 3-4E). Finally, a strong positive correlation between neutrophil numbers 

and disease duration was observed in RA patients when excluding those 

receiving methotrexate (MTX) treatment (Figure 3-4F). 

In conclusion, these results support the notion that neutrophils may be a 

source of extracellular DNA in the SF while macrophages may be potentially 
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involved in the regulation of this DNA release from neutrophils, although 

additional investigations would be required to confirm this concept. 

 

 

 

 

 

 

 

 

 

Figure 3-3 Determination of the cell composition in the RA synovial fluid 

(A) Synovial fluid cells from RA patients were re-suspended in MACS buffer and 1 x 10
5
 cells 

were transferred onto a clean glass slide using a cytocentrifuge, stained with Diff Quick™ and 
examined under light microscopy (40 x 10 original magnification). Representative synovial fluid 
sample with a predominantly neutrophilic infiltrate and cells with decondensed nuclei (indicated 
by arrows) are shown. (B) Comparison of the concentration of different cell populations in the 
SF infiltrate of RA patients. Other cells represent SF cells excluding macrophages and 
neutrophils, of which most were lymphocytes. Wilcoxon matched pairs test; n=20; **p<0.01. 
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Figure 3-4 Neutrophil cell counts in RA patients correlate with DNA levels and disease duration 

(A) Results are depicted as a scatter plot of DNA concentration (DNA Conc) against cell 
infiltrate and cell counts of different cell populations in SF from 22 patients with rheumatoid 
arthritis. (B) DNA concentration is shown in relation to neutrophil concentrations in SF from 20 
patients with rheumatoid arthritis (n=20, r=0.88, p<0.0001). (C) DNA concentration is shown in 
relation to macrophage concentrations in SF from 20 patients with rheumatoid arthritis (n=20, 
r=0.4, p=0.88). (D) Significantly higher DNA levels are detected in RA SF samples with more 
neutrophils than macrophages (ratio Neutr./Macr. > 1) compared with SF samples, in which 
neutrophils are outnumbered by macrophages (ratio Neutr./Macr.< 1). Statistical analysis was 
performed using the Mann-Whitney test and horizontal bars represent median values (n=20; 
**indicates p<0.01). (E) Relationship between DNA concentration and the proportion of 
macrophages from the total number of cells in the SF infiltrate of RA patients (n=18, r=-0.7, 
p=0.001). (F) Neutrophil concentrations are shown in relation to disease duration in RA patients 
excluding those receiving methotrexate (MTX) treatment (n=9, r=0.74, p=0.2). Relationships 
between two variables were analysed using Spearman’s test for correlation. 
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3.3 Visualisation of NETs in the synovial fluid and 
tissue of RA patients 

 

Neutrophils are considered to be the most abundant cell type in the synovial 

fluid and show evidence of having initiated ROS generation in vivo (110), which 

is an absolute requisite for the induction of NETosis (24). Based on our findings 

of extracellular DNA in the SF and its strong correlation with neutrophil cell 

counts we hypothesised that the source of measured extracellular DNA may be 

NETs released from activated neutrophils in the joint. Therefore we sought to 

examine the neutrophil population in the joints of RA patients in more detail 

using confocal laser-scanning microscopy. To avoid NET disruption, synovial 

fluid was pipetted onto a glass slide and cells were allowed to sediment for 2 

min. Subsequently the supernatant was carefully removed and slides were 

allowed to air dry. As shown in Figure 3-5, immunostaining of preparations of 

RA SF revealed a network of extracellular DNA strands similar to that reported 

for NETs in a range of studies. DNA co-localised with neutrophil elastase 

(Figure 3-5), a protein, which is tightly associated with NETs and currently 

widely accepted to represent a marker for NETosis (39,342). The majority of 

cells detected within this meshwork of DNA fibres were neutrophils, but also 

some macrophages were observed (Figure 3-6). 

 

In frozen sections of synovial tissue, neutrophil aggregates were observed on 

the surface of the synovial lining, facing the joint cavity (Figure 3-7A). In 

agreement with the literature, relatively few neutrophils were detected within the 
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synovial tissue. As shown in Figure 3-7B, DNA staining revealed extracellular 

DNA associated within these aggregates. 

 

 

Figure 3-5 NETs can be detected in the synovial fluid of RA patients 

Synovial fluid preparations from RA patients were stained for DNA (grey) and Neutrophil 
Elastase (green). Lower panel shows concentration and isotype matched control staining. 
Immunofluorescence staining was visualised using a confocal microscope and viewed at a final 
magnification of 63 x 10 original magnification. Images are representative of at least 10 SF 
samples. 

 

 

 

DNA NE merged

DNA NE merged
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Figure 3-6 Neutrophil and macrophages staining in SF infiltrate 

Confocal laser-scanning microscopy images of synovial fluid preparations (63 x 10 original 
magnification). Upper panel shows specific staining and lower panel concentration and isotype 
matched control staining. DNA is revealed with Hoechst dye (blue). CD15 is shown in green; 
CD68 is shown in violet. CD15-positive neutrophils and CD68-positive macrophages were found 
to be associated with NETs in the SF of RA patients. 
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Figure 3-7 NETs within neutrophil infiltrate attached to synovial tissue of RA patients 

(A) Confocal laser-scanning microscopy (10 x 10 original magnification) imaging revealed 
presence of neutrophil aggregates attached to synovial lining layer (n=3) (NE is shown in green 
and nuclear counterstain in grey). (B) 63 x 10 original magnification of neutrophils and 
extracellular DNA (indicated by arrows) attached to the surface of synovial tissue of RA patients 
(n=3). CD15 is shown in green; DNA is shown in grey. 
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3.4 Antibodies as potential triggers of NETosis in the 

synovial fluid of RA patients 
 

The amount of extracellular DNA detected in the synovial fluid of RA patients 

suggests that the RA SF may represent an environment which promotes cell 

death. According to this scenario, studies were undertaken to determine 

whether NETosis of neutrophils could be induced after recognition of immune 

complexes by Fc receptors, especially as the induction of NETosis by 

autoantibodies such as ANCA or anti-ribonucleoprotein antibodies has been 

shown in SLE and small-vessel vasculitis (33,65). Although RF levels and 

ACPA levels above (7 units) and below (340 units) the threshold of detection in 

ACPA positive RA patients did not correlate with DNA levels in the SF (Figure 

3-8A-B), a small but statistically significant difference in DNA levels of ACPA 

positive (n=34) compared with ACPA negative patients (n=12) could be 

observed (p=0.04) (Figure 3-8C), which could not be seen with RF levels 

(Figure 3-8D).  
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Figure 3-8 Influence of serum antibody levels on DNA levels in the SF 

(A) DNA concentration is shown in relation to anti-citrullinated protein antibodies (ACPA) levels 
in the serum of 23 ACPA positive (ccp level >7 units) RA patients (r=0.1, p=0.6). Anti-ccp values 
above the detection limit of 340 units were excluded from the calculation. (B) DNA 
concentration is shown in relation to rheumatoid factor (RF) levels (r=-0.02, p=0.9) in 38 RA 
patients. (C) Statistically significant difference (p=0.04) of SF DNA levels between ACPA 
positive (anti-ccp value >7 units, including levels >340 units, n=34) and ACPA negative patients 
(anti-ccp vlaue <7 units, n=12). (D) Comparison of SF DNA levels between RF positive (n=37) 
and RF negative (n=9) RA patients (p=0.13). Statistical analysis was performed using Mann-
Whitney test with horizontal bars representing median values. 
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To investigate the influence of antibodies in the synovial fluid of RA patients on 

neutrophils we enriched immune complexes (IC) based on previously reported 

protocols using precipitation with polyethylene glycol (PEG) (323,343). The 

synovial fluid of 8 ACPA positive and negative RA patients was pooled together 

and the immune complexes were enriched with PEG overnight. Subsequently 

the precipitate was centrifuged and diluted in the same volume of PBS as the 

original pool of synovial fluid samples. This solution of immune complexes 

(100%) was then further diluted to determine the percentage of immune 

complexes that is sufficient to show an effect on freshly isolated neutrophils 

from the peripheral blood of healthy donors. Validation experiments also 

excluded the possibility that PEG itself activates neutrophils (data not shown). 

As indicated by the co-staining of DNA and neutrophil elastase, a 40% IC 

solution was able to induce NETosis of neutrophils after only 30 min stimulation 

(Figure 3-9). In comparison, unstimulated neutrophils did not show any 

detectable signs of NETosis even at 240 min of culture (Figure 3-9). These 

findings were also confirmed using SYTOX green staining, which revealed 

significantly increased DNA levels in the supernatants of stimulated cells 

compared with unstimulated cells after only 30 min of stimulation, which could 

not be observed after 30 min of stimulation with 25 nM PMA, a well-described 

stimulant for NETosis (314) (Figure 3-10A). At 240 min, however, a comparable 

amount of DNA could be detected in immune complex-stimulated neutrophils 

compared with PMA-stimulated neutrophils (Figure 3-10A). 

 

To investigate further whether the observed activation and NET release of 

neutrophils is influenced by the presence of ACPA within immune complexes, 
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neutrophils were separately stimulated with IC enriched from SF samples of 

ACPA negative (n=8) and ACPA positive (n=10) patients. Compared with 

neutrophils, which were stimulated with IC enriched from ACPA negative 

samples, a trend towards a higher DNA signal in the supernatant of cells, which 

were stimulated with IC enriched from ACPA positive SF samples could be 

observed (Figure 3-10B), although no statistically significant difference was 

detected (Figure 3-10C). Similarly, no statistically significant difference was 

observed when comparing RF positive and negative samples (data not shown). 

Additionally, to assess whether the induction of NETosis is mediated through Fc 

receptors, the two main Fc receptors, FcγRIIA (CD32a) and FcγRIIIb (CD16b), 

present on neutrophils were blocked. To exclude the possibility that the blocking 

antibodies themselves could activate neutrophils, unstimulated neutrophils were 

incubated with the same concentration of blocking antibodies as the stimulated 

cells, respectively. No reduction of NETosis, as induced by 40% IC, was 

observed after incubation with 20 µg/ml or 60 µg/ml blocking antibodies (Figure 

3-10D).  
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Figure 3-9 Immune complexes enriched from RA SF induce NETosis 

Synovial fluid from 8 RA ACPA positive and ACPA negative patients were pooled; immune 
complexes (IC) were precipitated and used at a concentration corresponding to 40% of the 
original volume SF. Neutrophils were isolated from peripheral blood of healthy donors and left 
to adhere for 30 min before stimulation. Confocal laser-scanning microscopy analysis of 
neutrophils from healthy donors (63 x 10 original magnification). Cells were either left 
untreated for 240 min (unstimulated) or stimulated with 40% IC for 30 min, 120 min and 240 
min. Upper panel on the right shows concentration and isotype matched control staining of 
unstimulated neutrophils at 0 min (isotype control). To exclude a possible enrichment of NETs 
within the added immune complexes, cells were fixed immediately after adding 40% IC (40% 
IC background) as a control (bottom panel on the right). Neutrophil elastase is shown in red 
and nuclear counterstain in grey. One representative experiment out of three independently 
performed experiments is shown. 
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Figure 3-10 Influence of enriched immune complexes from RA synovial fluid on neutrophils 

Release of extracellular DNA after stimulation with 40% IC is measured in arbitrary fluorescence 
units at 530 nm (AFU (530 nm)) using SYTOX green. (A) Time course study of release of 
extracellular DNA from neutrophils stimulated with 40% IC enriched from the pooled SF of 8 
ACPA positive and negative patients in 5 independently performed experiments. 25 nM PMA 
was used as a positive control for the induction of NETosis and unstimulated neutrophils as a 
negative control. Statistical significance was determined by paired Student's t-test (*p<0.01). (B) 
Neutrophils were stimulated for 1 h separately with 40% IC isolated from the SF of 8 ACPA 
negative (1-8 ACPA neg) and 10 ACPA positive RA patients (9-18 ACPA pos). 25 nM PMA was 
used as positive control for the induction of NETosis (PMA). Horizontal broken line indicates 
background level of extracellular DNA in the supernatant adjusted to unstimulated neutrophils 
after 1 h in cell culture (unst.). One experiment out of 4 independently performed experiments is 
shown. (C) Statistical analysis of difference in DNA levels shown in (B) using Mann-Whitney test 
with horizontal bars representing median values (p=0.9). n.s.=non-significant. (D) Neutrophils 
were either stimulated with 40% ICs from pooled SF samples (40% IC) or left untreated (unst.) 
for 1 h in the presence of 20 µg/ml or 60 µg/ml receptor blocking antibodies against the Fc 
receptors FcγRIIA (CD32a) and FcγRIIIb (CD16b). One representative experiment out of two 
independently performed experiments is shown. All results are shown as mean ±S.D.  
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3.5 Discussion 
 

This chapter addresses the question as to whether neutrophils could contribute 

through NETosis to the pool of extracellular DNA detected in the synovial fluid 

of RA patients. Previous findings of free DNA in the synovial fluid of RA patients 

were confirmed and found to be not only strongly correlated with neutrophil cell 

numbers in the RA SF but also with disease duration. Extensive NET formation 

in the joints of RA patients were visualised using confocal microscopy and 

NETosis of neutrophils from the peripheral blood of healthy donors could be 

induced with immune complexes enriched from the synovial fluid of RA patients. 

 

The presence of free DNA in the synovial fluid and serum of patients with 

arthritis has already been described by Leon et al. in 1981 (340). In agreement 

with our findings, this study reported significantly increased levels of DNA in RA 

SF compared with DNA levels in the SF of OA patients. The same results were 

confirmed in a more recent study, which in addition also found a correlation 

between DNA levels in the synovial fluid and SF leukocytes (341). This is 

similar to our observations which demonstrate a strong correlation with the total 

population of synovial fluid cells and, more precisely, neutrophil cell counts. 

 

Several previous studies have reported the presence of NETs at the site of 

inflammation. Although NETs were originally shown to be involved in the 

immobilisation and killing of microbes due to the concentrated presence of 

antimicrobial agents within NETs (24,36,315), their presence was recently also 

described in sterile inflammation (339,344). Confocal microscopy analysis used 
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in this study revealed the presence of a meshwork of DNA fibres co-localised 

with neutrophil elastase and associated with neutrophils and occasionally 

macrophages in the joints of RA patients, but also patients with other forms of 

inflammatory arthritis (data not shown). They were not only found in the SF but 

were also attached to the surface of the synovial lining facing the joint cavity 

and resembled the appearance of NETs reported in a range of studies. These 

results are therefore consistent with the concept that extracellular DNA is 

associated with the localisation and number of neutrophils present in the SF of 

patients with inflammatory arthritis and likely to be a result of extensive NET 

formation in the inflamed joint. These results are also in line with a recent study, 

in which NETs were generated upon activation of neutrophils by MSU or CPPD 

crystals in gout and pseudo gout patients, respectively (339,345), which indicate 

the different mechanisms for the induction of NETs in different types of 

inflammatory arthritis. 

 

Whereas in chronically inflamed synovial tissue only relatively low numbers of 

neutrophils are observed, these cells are in general known to be the most 

abundant cell type present in the SF of patients with RA (103,116). In light of 

the high abundance of neutrophils, the strong correlation with DNA levels and 

the observed NET formation, these data suggest that NETosis may be a source 

of extracellular DNA in the synovial fluid. Interestingly, this notion is also 

reinforced by the finding of significantly lower DNA levels in psoriatic arthritis 

patients, in which a trend of decreased neutrophil cell counts was detected 

compared to RA SF samples. Nevertheless, this study cannot exclude the 

possibility that cells other than neutrophils contribute to the levels of DNA in RA 
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SF. As noted, macrophages can also account for a large proportion of the 

cellular infiltrate. Furthermore, cells such as eosinophils, mast cells or 

macrophages can release their chromatin in a process similar to NETosis 

(28,346,347). However, eosinophils and mast cells are present in only relatively 

low numbers in RA SF in a small proportion of RA patients (28). In addition, 

macrophage cell counts in this study showed no significant correlation with 

levels of extracellular DNA. Instead, SF samples, in which macrophages 

outnumbered neutrophils, showed significantly lower DNA levels compared with 

SF samples, in which neutrophils outnumbered macrophages in the SF 

infiltrate. As macrophages are one of the main professional phagocytes 

participating in the removal of dead cells (348,349), it is therefore conceivable 

that SF macrophages are involved in the removal of cellular debris derived from 

neutrophils. With regard to clearance mechanisms of dead cells it was also 

interesting to find that the only clinical parameter that DNA levels in the RA SF 

correlated with was disease duration. At the same time, a strong correlation 

between neutrophil but not macrophage numbers and disease duration could be 

found when excluding patients receiving treatment with methotrexate. There 

could be several possible explanations for this association between DNA levels 

in the SF with disease duration. One possibility is that the equilibrium between 

influx in, and removal of, neutrophils from the SF becomes disturbed over time 

due to changes in neutrophil recruitment or clearance defects. Another 

possibility, however, could also be that changes in the disease phenotype over 

time lead to an increased rate of cell death in the SF with disease duration. In 

support of this view and in the context of NETosis it was shown in SLE patients 

that complement protein C1q appears to protect NET DNA from DNase I 
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degradation, and that an increased binding of autoantibodies over time further 

increased C1q deposition which resulted in decreased NET degradation (64). 

Similar processes are also possible in RA, but would need to be proven 

experimentally in future studies. Additionally, it was interesting to observe that a 

much weaker correlation between DNA levels and/or neutrophils and disease 

duration was observed when patients receiving methotrexate or other DMARDs 

were included. This would indicate that neutrophil cell death could potentially be 

influenced by DMARDs and, more precisely, methotrexate. In this context it was 

reported that low doses of methotrexate can enhance adenosine release from 

connective tissue cells which inhibits neutrophil adherence to these cells 

(350,351). In view of these data, patients treated with methotrexate may 

therefore show decreased levels of neutrophil recruitment into the synovial fluid 

and neutrophil cell death, which could explain the observed weaker association 

of DNA levels and/or neutrophil concentrations with disease duration when 

including these patients in the statistical analysis. 

 

In search of an answer to the question as to how neutrophils are possibly 

activated to enter into NETosis in the RA SF we hypothesised an influence of 

autoantibodies, as ANCA and anti-DNA antibodies in SLE and ANCA-

associated vasculitides have been shown to induce NETosis (33,66). The exact 

molecular mechanism, as to how this may happen, still remains elusive. In 

addition, immune complexes in RA have long been proposed to play a role in 

neutrophil activation primarily based on data generated from murine arthritis 

models such as the K/BxN model (300,311). In humans, immune complexes 

(IC) have also been found in the SF and ACPA in the SF were shown to be 
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enriched compared to the peripheral blood (352). Recently, rheumatoid factor 

was reported to activate neutrophils via Fcγ receptors on neutrophils in arthritis-

associated vasculitis (331). In view of these studies it was interesting to find that 

indeed PEG enriched immune complexes from SF of RA patients induced 

NETosis in neutrophils. PEG precipitation is a well-recognised technique for the 

isolation of high-molecular-weight ICs. However, earlier investigations showed 

PEG-precipitated sera to contain uncomplexed immunoglobulins, C3 (353) and 

a number of serum proteins including fibronectin and albumin (343). Therefore 

PEG precipitates are not only composed of ICs. This may explain why the rate 

of NETosis is not decreased by pre-incubating the cells with blocking antibodies 

against the Fc receptors FcγRIIA (CD32a) and FcγRIIIb (CD16b). This would 

suggest that other factors, which were co-enriched by PEG, are possibly also 

involved in the induction of NETosis. 

 

In agreement with an ACPA-dependent induction of NETosis, a trend of 

increased release of extracellular DNA could be detected when stimulating 

neutrophils with IC enriched from the SF of ACPA positive patients compared 

with ACPA negative patients. Additionally, a small but statistically significant 

difference in DNA levels in the SF of ACPA-positive compared with ACPA-

negative RA could be detected. However, it can be assumed that this study 

currently does not have sufficient statistical power to reveal the influence of 

ACPA on DNA levels in the SF. Additionally, due to the low number of available 

samples, in which the cell number could be determined, it could not be identified 

as to whether the difference in DNA levels arises because of a difference in 

neutrophil numbers between ACPA positive and negative RA patients or 
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whether other factors are involved. Interestingly, in the previously mentioned 

work of Leon et al., in which a larger sample number of 106 patients was 

studied, a statistically significant difference between seropositive and 

seronegative samples could be measured (340). Nevertheless, since no 

sufficient knowledge about ACPA was available at that time no further details 

can be drawn from this report. More recently, two publications reported on the 

association of NETosis with ACPA (120,354). In agreement with the IC 

experiments in this thesis, Khandpur et al. detected induction of NETosis in 

control and RA peripheral blood (PB) neutrophils upon exposure to sera and SF 

from RA patients. Interestingly, they also found a correlation between NET 

formation by peripheral blood (PB) neutrophils from RA patients and the titre of 

ACPA, but no correlation with disease duration. In this regard, our data 

therefore do not overlap with these results, however, due to missing information 

with regards to the number of experiments and samples included in  their study 

it was difficult to make direct comparisons with the experiments presented here 

and ultimately draw definitive conclusions. With regard to additional stimuli that 

may induce NETosis in RA patients, Khandpur et al. also reported that the 

presence of TNF-α and IL-17 triggered NETosis in a ROS-dependent manner 

supporting our view of further antibody-independent ways of inducing NETosis 

in RA. Nevertheless, the exact explanation as to how this induction may occur 

remains elusive, as it is still unknown how neutrophils are activated by IL-17 

since studies suggest that these cells do not express the IL-17 receptor C which 

forms a multimeric complex with IL-17 receptor A and is required for IL-17 

receptor signal transduction (355,356). Others also report about the induction of 

NETosis by the alarmin HMGB1 (344) or GM-CSF in combination with the 
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complement factor 5a (C5a) (357). Taking into account that the concentrations 

of GM-CSF (358) and C5a (309) are much higher in the SF of RA patients, and 

considering the fact that we found macrophages which are known to produce 

GM-CSF in high amounts associated with neutrophils and NETs on SF 

preparations, these mediators could possibly be of great importance for NET 

formation. Moreover, findings in mouse models of inflammatory arthritis have 

revealed that C5a is critically involved in inflammatory joint damage and that 

anti-C5a antibodies have been proven effective in the prevention of the disease 

in these mice (359,360). 

 

Although the in vitro experiments presented here demonstrate less DNA release 

from necrotic neutrophils compared with NETotic neutrophils and although 

attempts were made to exclude the measurement of DNA derived from SF cells 

with permeable membranes in our assays, it is still difficult to certain as to which 

type of cell death precisely contributed to the pool of extracellular DNA in the SF 

of patients with inflammatory arthritis. Indeed NETosis may well be not the only 

source of extracellular DNA in the joints of patients with inflammatory arthritis. 

Additionally, caution has to be taken with respect to the significance of NETosis 

for the RA pathogenesis compared with other cell death mechanisms in the RA 

joint since different types of cell death were reported to have either pro- or anti-

inflammatory effects on macrophages (349,361). 

 

Nevertheless, the discovery of NETosis in the joints of patients with 

inflammatory arthritis, no matter at what proportion, not only implies a possible 

pathogenic role due to cytotoxicity of NETs but also suggests an important role 
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for neutrophils in the supply of intracellular autoantigens. This concept 

associates with the widely-accepted hypotheses linking cell death to the 

initiation of systemic autoimmunity (361–363). This aspect will further be studied 

in the following chapters and its significance particularly for RA will be 

highlighted. 
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4 Peptidylarginine deiminase activity in the 
synovial fluid of RA patients 
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4.1 Introduction 

Citrullination (or deimination) is a post-translational modification, in which 

arginine residues are converted into citrulline. This calcium-dependent 

enzymatic reaction is catalysed by peptidylarginine deiminases (PADs) and 

leads to a change in protein structure. The family of PADs consists of five highly 

homologous and functionally similar isoenzymes, but these enzymes differ in 

their expression pattern throughout organ systems and cell types (185,186). 

Activation of PAD isoforms is relevant to RA, as specific autoimmunity to 

citrullinated proteins can be observed in approximately 60% of RA patients 

(171,364) and their presence defines a group of patients with more aggressive 

disease and distinct genetic associations. Anti-citrullinated protein antibodies 

(ACPA) are enriched in the synovial fluid of RA patients compared with serum 

(352,365) and local B cell responses to citrullinated proteins have been 

observed in the rheumatoid joint (235). Although citrullination of intra- and 

extracellular proteins can be found in the synovial tissue and synovial fluid of 

RA patients (248,249,254), it is a general inflammation-dependent process and 

not specific for RA (251,252). 

Neutrophils express PAD2, which is ubiquitously expressed, and PAD4 which is 

mainly expressed by myeloid cells. Recently, PAD3 expression in human 

primary neutrophils has also been described (203). PAD4 is the only PAD 

isoform with a nuclear localisation signal and its activity was described to be 

essential for NET formation (44,46).  

Our observation of NETosis in arthritic joints raises the possibility that 

enzymatically active PADs are released into the SF during NET formation, and 
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thus implicates a central role for neutrophils in the generation of autoantigens 

for the local inflammatory response. In the work described in this chapter the 

development of an in vitro assay will initially be reported and the release of 

PADs from neutrophils entering into NETosis and the localisation of PADs in 

these cells is investigated. Furthermore levels of PAD activity in SF in relation to 

the observed neutrophil infiltration will be examined and lastly, possible 

additional PAD release mechanisms will be discussed. 

 

4.2 Method development for the in vitro isolation of 

NETs 

Since NETosis leads to the release of intracellular proteins, firstly it was sought 

to determine whether, and how, neutrophils undergoing NETosis release PADs 

into the extracellular space. If neutrophils in the SF contribute to the pool of 

available extracellular PADs it is important to know whether PAD isoforms 

during NETosis are released attached to the DNA/protein complex of the NETs 

or whether they diffuse freely. If PADs remain tethered to NETs, this would 

potentially limit the role of neutrophil-derived PADs to the SF. For this purpose, 

an in vitro assay of NET isolation and detection was developed based on a 

previously published method (315). Initially, to determine an optimal time point 

for the isolation of NETs, a time course after stimulation of neutrophils with 25 

nM PMA was performed using SYTOX green in order to monitor DNA levels in 

the supernatants. As shown in Figure 4-1, a statistically significant difference 

between the release of extracellular DNA in stimulated and unstimulated 
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neutrophils could be observed 240 min after stimulation with 25 nM PMA. This 

time point was therefore selected for the isolation and purification of NETs in the 

following experiments. 
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Figure 4-1 In vitro time course analysis of DNA release post-stimulation with PMA 

Neutrophils were isolated from peripheral blood of healthy subjects and stimulated with 25 nM 
PMA. Significantly higher DNA levels were found in the supernatant after 4 h of stimulation with 
PMA compared with non-stimulated cells (Wilcoxon matched-pairs signed rank test, n=8; n.s.: 
non-significant; ** indicates p<0.01). Results are shown as mean ±S.D. 
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For the study of NET-associated proteins it is essential to avoid contamination 

with unbound proteins that are released freely into the extracellular space 

during NETosis. The method developed therefore took advantage of the 

capacity of activated neutrophils to attach firmly to the bottom of tissue culture 

plates. For this purpose, peripheral blood neutrophils were isolated from healthy 

donors and seeded in 12-well plates. After stimulation of 4 h with 25 nM PMA 

neutrophils were washed three times to remove unbound proteins. At this stage, 

the majority of the NETs remained associated with activated neutrophils at the 

bottom of the plate. In the final step DNase-I was used to release NETs from 

the cells into the supernatant. To verify the purification procedure, DNA levels in 

the supernatants generated during NET isolation were tracked using SYTOX 

green. As shown in Figure 4-2, only a small proportion of DNA was detectable 

in the supernatant of stimulated neutrophils (SN) indicating that NETs remain 

largely attached to the neutrophil-layer at this stage. After 3x washing (W1-W3) 

DNase-I treatment released a fraction containing significantly higher levels of 

DNA (+DNase-I) compared with fractions derived from stimulated neutrophils 

incubated without DNase-I (-DNase-I) or non-stimulated neutrophils treated with 

DNase-I (+DNase-I (unst.)) (Figure 4-2). Importantly, all supernatants were 

centrifuged once at 300 x g to remove cells and a second time for 16 000 x g to 

remove cell debris from the supernatants to ensure the specific measurement of 

NET-derived DNA. 
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Figure 4-2 DNA levels in supernatants generated during in vitro NETosis 

Supernatants of unstimulated (SN (unst.)) or stimulated neutrophils (SN) were collected. After 
stimulation, cells were washed 3 x with RPMI (W1-W3) and subsequently incubated with or 
without DNase-I (+DNase and –DNase). Non-stimulated cells were treated with DNase-I 
(+DNase (unst.)) as control. NETs could be specifically enriched in the supernatant of 
stimulated neutrophils treated with DNase-I (+DNase-I = NET fraction) compared with control 
fractions (Wilcoxon matched-pairs signed rank test, n=7; * indicates p<0.05). All fractions were 
centrifuged to remove cells and cell debris. Release of NETs was detected using SYTOX 
Green. Results are shown as mean ±S.D. 
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4.3 Analysis of PAD release during in vitro NETosis 

Having established and validated a method for the isolation of NETs, the protein 

composition in the different fractions of the in vitro model were determined, as 

described in 4.2. The supernatants were precipitated using trichloroacetic acid 

(TCA) and western blotting was performed with each of the fractions. 

Importantly, anti-PAD2 and anti-PAD4 antibodies were assayed for cross-

reactivity using human recombinant PAD4 and human skeletal muscle tissue, 

which is known to specifically express just the isoform PAD2, but not PAD4. As 

shown in Figure 4-3A, the antibodies did not show any cross-reactivity between 

different PAD isoforms. Using these antibodies it was then demonstrated that 

both PAD2 and PAD4 can be detected in the SN and in the NET fraction 

(+DNase-I), suggesting that PAD2 and PAD4 are both freely diffusible as well 

as released attached to NETs (Figure 4-3B). Neutrophil elastase, which was 

already shown to be one of the most abundant NET-associated proteins, was 

used as an additional control. As expected it was found to be associated with 

the NET fraction in this approach. Additionally, in accordance with the 

previously shown STYOX green assay (Figure 4-2) for DNA release, histone H3 

could be detected both in the SN and the chromatin-rich NET fraction.  

 

To validate these results quantitative proteomics after trypsin digestion was 

performed. In agreement with Urban et al. a small number of mainly granular 

and nuclear proteins were confirmed to be enriched in the NET fraction (315) 

(Table 4-1). In comparison, a wide range of proteins were found to be released 

into the supernatant during NETosis, which were either enhanced in the SN 
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fraction or present in both fractions (listed in Appendix, Table 8.5). In agreement 

with the western blotting data, PAD2 and PAD4 were detected both in the 

supernatant and in the DNase-I treated NET fraction from seven patients in two 

different analyses: while PAD2 was more abundant in the SN fraction, PAD4 

was more abundant in the NET fraction (listed in Appendix, Table 8.5). 

 

Furthermore, to test whether the PAD2 and PAD4 enzymes that are released 

into the supernatant during in vitro NETosis are enzymatically active, PAD 

activity was determined using a recently developed assay (19). Firstly, 

increased PAD activity with the addition of protease inhibitors was observed 

(Figure 4-4A). This is not potentially surprising, as enzymatically active PADs 

are known to be autocitrullinated (199,200) and citrullinated proteins have been 

reported to be more susceptible to proteolysis due to citrullination-induced 

protein unfolding (185,191,193). Additionally, enzymatic PAD activity in 

supernatants from neutrophils could be increased by diluting the supernatants 

1:2 with calcium concentrations of up to 8.58 mM resulting in a final 

concentration of 4.5 mM calcium (Figure 4-4B). At final calcium concentrations 

at 10 mM and higher, however, no PAD activity could then be detected (Figure 

4-4B). PAD activity in RPMI, which contains a physiological calcium 

concentration of 0.42 mM, was therefore minimally detectable but could be 

increased at non-physiological calcium concentrations in agreement with 

previous reports (48). Using a final calcium concentration of 4.5 mM together 

with protease inhibitors, the PAD activity assay could be optimised in a way that 

revealed significantly higher levels of PAD activity in the supernatants of in vitro 
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stimulated neutrophils compared with non-stimulated cells after 2.5 h of 

stimulation with 25 nM PMA (Figure 4-4C).  
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Figure 4-3 Identification of PADs released during NETosis in vitro 

(A) Immunoblotting using human recombinant PAD4 (250 ng) and PAD2-expressing human skeletal muscle tissue lysate (7 or 15 
µg). To demonstrate the absence of cross-reactivity, membranes were incubated with anti-PAD2 and two anti-PAD4 antibodies 
(Abcam and Novus Biologicals). (B) Proteins were precipitated from supernatants as described and their presence analysed by 
western blotting using antibodies against the proteins histone H3, neutrophil elastase, PAD4 and PAD2. One representative blot out 
of 4 independent experiments is shown.  
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Cellular localisation Protein name 

Granules 

Neutrophil Elastase 

Azurocidin 

Myeloperoxidase 

Cathepsin G 

Non-secretory ribonuclease 

Nucleus 

Histone H4 

Histone H2B type 2-E 

Histone H2A (fragment) 

Histone H2A type 3 

Histone H2B 

MNDA 

Cytoskeleton Cytokeratin 10 

other 
Eosinophil cationic protein 

Complement C3 
 

Table 4-1 Proteins enriched in the NET fraction 

268 proteins from 3 matched SN and DNase-I treated NET fractions were quantified using 1% 
FDR and 2 peptides per protein. Abundance of proteins in D compared to SN was calculated 
using t-test (cut-off p<0.05). 14 proteins were found to be enhanced in the NET fraction of all 3 
samples and are shown here. 
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Figure 4-4 PAD activity in the supernatants of in vitro stimulated neutrophils entering into NETosis 

PAD activity was determined in the supernatant of unstimulated neutrophils and neutrophils 
stimulated with 25 nM PMA. (A) PAD activity in the supernatant of neutrophils after 4 h 
stimulation was increased by adding protease inhibitor cocktail (PI-Mix). (B) PAD activity was 
increased when diluting the supernatant of neutrophils after 2 h stimulation 1:2 with a 5.58 or 
8.58 mM calcium concentration, whereas activity was abolished over a 19.58 mM calcium 
concentration. (C) PAD activity in the supernatant of neutrophils after 2.5 h stimulation (SN) 
compared with unstimulated controls (SN (unst.)). Statistical significance was determined by 
Wilcoxon matched-pairs signed rank test (n=10; **p<0.01). 
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Furthermore, in order to visualise the time point of PAD2 and PAD4 release in 

relation to NETosis in vitro, immunofluorescence staining was performed. Since 

the localisation of PAD4 is still under debate, it was interesting to find that PAD4 

localisation in unstimulated peripheral blood neutrophils from healthy donors 

was restricted to the nucleus (Figure 4-5) in agreement with Nakashima et al. 

(196) while PAD2 was largely restricted to the cytosol. Upon stimulation, at 120 

and 240 min a proportion of the cells had changed their nuclear morphology. 

Nuclei appeared rounded and decondensed indicating a stage of NETosis 

directly preceding DNA release (Figure 4-5). PAD2 staining was reduced within 

30 min of stimulation, while PAD4 staining was lost from the nuclei after DNA 

decondensation. Surprisingly, in contrast to our western blotting and mass 

spectrometry data, the association of PAD4 with NETs could not be confirmed. 

This could, however, be explained by the absence of protease inhibitors in the 

neutrophil cell culture. As previously mentioned, active autocitrullinated PAD4 

could have been cleaved by proteases preventing the binding of anti-PAD4 

antibodies. 
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Figure 4-5 Time course of PAD2 and PAD4 release during in vitro NETosis 

Confocal microscopy reveals that part of the cells begin entering NETosis after 120 min of 
stimulation. While PAD2 is only seen in the cytosol, in resting neutrophils PAD4 is localised in 
the nucleus. PAD2 levels decrease after 30 min and PAD4 is not detected in the nuclei of cells 
undergoing DNA decondensation (DNA is shown in blue, PAD2 in green, PAD4 in red and co-
labelled with neutrophil elastase (NE) in green). No PAD4 signal was detected after 240 min of 
stimulation in cells that had reached a stage of NETosis at which nuclear morphology had 
changed. 
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4.4 Peptidylarginine deiminases in the SF of RA 

patients 

After having demonstrated the release of extracellularly active PADs after 

NETosis in vitro, the presence and enzymatic activity of PADs in the synovial 

fluid of RA patients was assayed. In agreement with Kinloch et al. (249), PAD2, 

PAD4 and neutrophil elastase  were detected in the cell-free SF of patients with 

RA (Figure 4-6A). Whereas PAD4 varied considerably in its expression level 

between patients, the amount of PAD2 was found to be more consistent. In 

preliminary experiments, attempts were made to immunoprecipitate 

endogenous PAD4 from the SF of RA patients using a purified mouse anti-

human PAD4 antibody raised against the recombinant full length protein, 

corresponding to amino acids 1-663 of human PAD4. The same antibody was 

successfully used for immunofluorescence staining in the previously shown 

results (see Figure 4-5). In addition, the SF was spiked with recombinant human 

PAD4 to validate the method. Interestingly, similar to results of PAD4 in 

activated neutrophils in a publication by Andrade et al. (199), endogenous 

PAD4 from the SF could not be immunoprecipitated, whereas the spiked 

recombinant PAD4 was detected (Figure 4-6B). This would indicate that 

although this antibody recognises both denatured recombinant and denatured 

endogenous PAD4 in immunoblotting, it is unable to immunoprecipitate native 

endogenous PAD4 from the SF of RA patients in contrast to native recombinant 

PAD4 protein. Since it was previously reported that PAD4 can autocitrullinate 

itself during activation (199,200) and that citrullination leads to changes in 

protein structure (190), it is therefore likely that endogenous PAD4 in the SF is 
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in an autocitrullinated state, which alters its structure and recognition by 

antibodies generated against non-citrullinated PAD4 and suggests that the SF 

seems to provide high enough calcium concentration to enable enzymatic PAD4 

activity. Indeed, PAD activity in the SF of RA patients could be detected using 

the previously described PAD activity assay. To assess, whether the variable 

citrullination efficiency in the samples can be related to the abundance of PAD2 

and/or PAD4 in the RA SF samples and thus the signal strength on the 

immunoblot shown in Figure 4-6A, relative quantitation of the PAD2 and PAD4 

signal was performed using the Image Lab 4.0 software by Bio-Rad. An 

exposure time below the saturation level of the signal was used. The band with 

the highest intensity was used as reference band and assigned a value of 1.0. 

The intensity of the remaining bands on the blot were then calculated by the 

software in relation to this reference band. Surprisingly, no correlation between 

citrullination efficiency and PAD2 or PAD4 signal strength on the immunoblot 

was deteted. This suggests that the efficiency by which the substrate in the 

assay was citrullinated by the PADs present in the SF of these patients cannot 

be exclusively explained by the quantity of PAD2 and/or PAD4 protein present 

in the samples (Figure 4-6C-D). 

As shown in Figure 4-7A, PAD enzymatic activity was significantly higher in the 

SF of RA patients than in that of OA patients at the supraphysiological calcium 

concentrations used in the assay (p<0.05). Variable amounts of PAD activity at 

supraphysiological calcium levels could also be detected in the SF of patients 

with different forms of inflammatory arthritis (Figure 4-7B). Interestingly, the 

difference between RA and OA could also be observed with non-diluted SF 

samples at their native calcium concentration, however this was at ~140-fold 
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lower median value of PAD activity in the RA SF samples when accounting for 

the dilution factor (Figure 4-7C).  
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Figure 4-6 Presence of PAD2 and PAD4 in the synovial fluid of RA patients 

(A) Immunoblotting of albumin depleted SF samples from 8 RA patients incubated with 
antibodies against neutrophil elastase (NE), PAD4 and PAD2. (B) Immunoprecipitation (IP) of 
PAD4 from SF of an RA patient using mouse anti-human PAD4 antibody (ab128086) (lane 1) 
and mouse anti-human IgG2a isotype control (lane 2). In lane 3, SF was spiked with 
recombinant human PAD4 protein (r hu PAD4) and the same amount of specific mouse anti-
human PAD4 antibody was added as in lane 1. All lanes are probed with mouse anti-human 
PAD4 antibody (ab128086). As secondary antibody an anti-mouse IgG, HRP-linked antibody 
was used. (C,D) Relationship between citrullination efficiency (expressed as PAD activity 
measured with the PAD activity assay) and PAD2 or PAD4 signal strength (relative 
quantification) calculated from blot shown in (A). Relative quantification was performed using 
the Image Lab 4.0 software by Bio-Rad and the reference band with the highest intensity was 
assigned the value 1.0. The intensity of all other bands was then calculated by the software in 
relation to this reference band. Data were analysed using Spearman’s test for correlation. 
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Figure 4-7 PAD activity at physiological and supraphysiological calcium levels 

(A) Comparison of PAD activity in RA patients and OA patients. SF samples were diluted 1:100 
with deimination buffer. Data were analysed using Mann-Whitney test. (B) Comparison of PAD 
activity in RA patients and patients with different forms of inflammatory arthritis. (C) PAD activity 
in SF samples, which were either diluted 1:100 in deimination buffer with 5 mM calcium 
concentration (supra-physiological) or were used undiluted (physiological). Significantly higher 
PAD activity could be observed in RA patients (n=6) compared to osteoarthritis (OA) patients 
(n=9) (Mann-Whitney test; * indicates p<0.05; ** indicates p<0.01). Horizontal bars represent 
median values. 
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Furthermore, PAD activity strongly correlated not only with the level of 

extracellular DNA in the SF (r = 0.8; p < 0.001) (Figure 4-8A) but also with total 

cell counts (Figure 4-8B) and neutrophil cell counts (r = 0.8; p = 0.002) (Figure 

4-8C) in untreated, fresh SF samples. Interestingly, whereas a statistically 

significant difference in DNA levels between ACPA positive and ACPA negative 

RA patients could be detected (chapter 3.4), no statistically significant 

difference in PAD activity between ACPA positive and ACPA negative RA 

patients could be observed (Figure 4-8D). However, PAD activity was found to 

correlate with disease duration similar to the DNA levels in SF samples shown 

in chapter 3.2 (Figure 4-8E).  
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Figure 4-8 Correlation of PAD activity with DNA levels, neutrophil numbers and disease duration 

(A) PAD activity correlates significantly with DNA levels in the SF of RA patients (n=22; r=0.8, 
p<0.0001). Data were analysed using Spearman’s test for correlation. (B) PAD activity 
correlates significantly with the total cell count in untreated synovial fluid of RA patients (n=15; 
r=0.72, p=0.002). Data were analysed using Spearman’s test for correlation. (C) PAD activity 
correlated significantly with neutrophil cell counts in the synovial fluid of RA patients (n=13; 
r=0.8, p=0.002). Data were analysed using Spearman’s test for correlation. (D) Comparison of 
PAD activity in ACPA positive and ACPA negative (p=0.47) and/or rheumatoid factor (RF) 
positive and negative patients (p=0.9), respectively. Data were analysed using Mann-Whitney 
test. (E) Relationship between PAD activity and disease duration. Data were analysed using 
Spearman's test for correlation (n=21; r=0.44, p=0.04).  
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4.5 Localisation of PAD4 in neutrophils from RA 

patients 

After having studied localisation and PAD release mechanisms in in vitro 

stimulated neutrophils and having detected PAD activity in the SF of RA 

patients, we were also interested in visualising the localisation of PAD4 in 

neutrophils from RA patients. Similar to unstimulated neutrophils, PAD4 

localisation was found to be restricted to the nucleus. Unexpectedly, however, a 

proportion of neutrophils within the synovial fluid infiltrate of RA patients 

displayed an additional cytoplasmic localisation, whereas at the same time a 

reduced co-localisation between PAD4 and the DNA signal was detected in 

these cells (Figure 4-9) suggesting a potential translocation of the protein from 

the cell nucleus to the cytoplasm. The amount of cells displaying a cytoplasmic 

PAD4 localisation varied between the analysed 5 RA patients; this needs to be 

further confirmed and studied in more detail due to the low number of available 

samples. Interestingly, the cytoplasmic PAD4 staining displayed a granular 

pattern and would suggest a possible release mechanism via degranulation. 

Which of the four types of granules are involved, however, needs to be a target 

of further investigation. 

To determine whether the increased cytoplasmic PAD4 staining can be 

explained by the translocation of the enzyme from the cell nucleus to the 

cytoplasm, the percentage of cytoplasmic PAD4 signal compared with the total 

PAD4 signal in each cell was calculated based on pixel count per µm2 area 
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using the histogram function and the image calculator function of the ZEN2010 

software (details are provided in the Materials and Methods Chapter 2). 

Importantly, all intact neutrophil elastase positive neutrophils on a cytospin from 

a patient sample were included into the calculation (Figure 4-10A). Each data 

point in Figure 4-10B therefore represents the average percentage of 

cytoplasmic PAD4 pixel count of the total PAD4 pixel count in neutrophils in one 

RA patient sample. As shown in Figure 4-10B, a significantly increased 

percentage of cytoplasmic PAD4 in neutrophils within the SF infiltrate of RA 

patients (RA SF) was found compared to the signal in peripheral blood 

neutrophils of RA patients (RA PB) and peripheral blood neutrophils of healthy 

controls (HC PB) (Figure 4-10B). These data therefore indicate that there may 

be a role for cytoplasmic PAD4 expression in the SF of RA patients.  

At this stage, no correlation of cytoplasmic PAD4 expression with DNA levels, 

PAD4 activity or any clinical parameters could be assessed due to the small 

number of analysed samples, however, cytoplasmic PAD4 expression was 

present in both ACPA positive and ACPA negative RA patients. No information 

can also be provided with regard to the presence of cytoplasmic PAD4 in 

patients with different types of inflammatory arthritis. In light of the importance of 

anti-citrulline immunity in RA, however, these preliminary observations are 

intriguing and would warrant further investigation. 
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Figure 4-9 Cytoplasmic localisation of PAD4 in a population of SF neutrophils from RA patients 

Immunofluorescence of cytospins from cells of the SF of RA patients. Cells were stained for 
DNA (grey), PAD4 (green) and neutrophil elastase (NE) (red). Lower panel shows concentration 
and isotype matched control staining. Immunofluorescence staining was visualised using a 
confocal microscope and viewed at a final magnification of 63 x 10 original magnification. 
Images are representative of 5 SF samples from RA patients. 
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Figure 4-10 Quantification of percentage of cytoplasmic PAD4 signal of total PAD4 signal in 
neutrophils using the ZEN 2010 software 

(A) Immunofluorescence staining of a cytospin from SF cells taken from an RA patient. The 
cytospins were stained with antibodies specific for PAD4 (green) and neutrophil elastase (NE) 
(red). Nuclei were counterstained using Hoechst 33258 (blue). Cytospins were stained 
alongside isotype- and concentration-matched controls, which were negative. Images were 
taken at x 630 total magnification using a Zeiss confocal LSM 510 microscope. To perform the 
analysis, neutrophil elastase positive neutrophils were selected (drawn around) using the 
overlay function within the ZEN software. (B) Percentage of cytoplasmic PAD4 of total PAD4 
pixel count was determined using the method described in (A). Significantly increased 
percentage of cytoplasmic PAD4 in relation to the total PAD4 signal in neutrophils within the SF 
infiltrate of RA patients (RA SF) was compared with the signal in peripheral blood neutrophils of 
RA patients (RA PB) and peripheral blood neutrophils of healthy control subjects (HC PB). 
Mann-Whitney test was used to determine statistical significance with ** indicating p<0.01. 
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4.6 Discussion 

The mechanisms behind the activation of PADs in RA patients, as well as the 

sites and circumstances of citrullination of autoantigens in RA remain unknown. 

In this chapter an in vitro assay for NETosis was established which 

demonstrates that NETosis provides a source of freely diffusible enzymatically 

active PADs. Importantly, significantly increased PAD activity in the SF of RA 

patients compared with OA patients was shown and found to strongly correlate 

with neutrophil numbers. Together with these findings regarding NETosis in 

arthritic joints these results therefore indicate NET formation as one possible 

source of PAD activity and thus a prerequisite for the generation of citrullinated 

autoantigens in ACPA positive RA. 

 

In line with the in vitro findings demonstrating the presence and activity of PADs 

in the supernatants of neutrophils stimulated to go into NETosis, the presence 

and activity of PADs could also be demonstrated in the SF of RA patients. 

These findings are in agreement with previous reports demonstrating the 

presence of PAD2, PAD4 and citrullinated proteins in the joints of RA patients 

(249,250). Kinloch and colleagues showed that PAD4 protein is present in SF 

samples of OA patients, although at lower levels than in SF samples of RA and 

SpA patients. Presence of PAD2 and citrullinated proteins, however, could only 

be detected in RA and SpA SF samples but not in OA SF samples, 

subsequently the hypothesis was proposed that it may be mainly the PAD2 

enzyme that is responsible for the extracellular citrullination of synovial fluid 

proteins in patients with inflammatory arthritis (249). The assay for the detection 

of PAD activity used in the experiments presented here however cannot 
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distinguish between different isoforms of PADs. This hypothesis can therefore 

not be tested here, although indeed significantly higher PAD activity in RA 

patients and in patients with other forms of inflammatory arthritis was found 

compared with OA patients. Interestingly, however, it has to be noted that even 

though no presence of PAD2 protein in OA SF samples was found by Kinloch et 

al., the PAD activity assay in our experiments revealed a low, but still existing 

activity of up to 0.3 mU in some OA patients, suggesting that the enzymatic 

activity of PAD isoforms other than PAD2 should not be discounted. 

Furthermore, it should be considered that the measured PAD activity in cell 

lysates or SF only reflects the efficiency with which moles of substrate are 

converted in a given time. Not only the PAD isoform but also the quantity of 

enzyme as well as the state of activity of the enzymes within the samples are, 

however, unknown factors. PAD activity in the SF of RA patients may therefore 

not only be based on the quantity of enzymes alone but could also be 

influenced by additional factors such as endogenous PAD activators or 

inhibitors. In support of this idea data presented here indeed revealed no 

significant correlation between the intensity of PAD2 and/or PAD4 protein signal 

on immunoblots and measured PAD activity. Although this would suggest that 

the general citrullination efficiency in the SF does probably not increase with 

higher abundance of the enzymes, these data have to be interpreted with 

caution due to the small number of analysed samples. In this context, Darrah 

and colleagues suggested in a recent study that PAD4 activity can be regulated 

by PAD3/PAD4-cross-reacting autoantibodies binding to and changing the 

protein structure of PAD4 (366), which is itself known to be an autoantigen in 

ACPA positive RA (199,367,368). This change in protein structure strikingly 
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increased the catalytic efficiency of PAD4 by decreasing the enzyme’s 

requirement for calcium in vitro. Patients with these antibodies displayed a 

higher likelihood of radiographic progression compared with individuals who 

responded negatively for these antibodies (369). Interestingly, these cross-

reacting autoantibodies are only present in a subpopulation of anti-PAD4 

antibody positive individuals, which themselves are known to be strongly 

associated with anti-ccp antibodies (368). This may also explain why no 

statistically significant difference in PAD activity levels was detected here when 

comparing ACPA positive with ACPA negative RA SF samples. A comparison 

between patients positive and negative for PAD3/PAD4-cross-reactive 

antibodies in this study would have been potentially interesting in order to 

determine whether the in vitro observations by Darrah et al. could be confirmed 

in vivo. 

 

The above mentioned study by Darrah et al. is also interesting in another aspect 

as it provides a potential mechanism for the well-known mismatch between the 

in vitro and in vivo calcium requirements for PAD4 activity (47,48,369). PAD 

enzymatic activity depends on the presence of calcium and intracellular calcium 

levels are reportedly below the level needed for in vitro PAD activity. Whereas 

most in vitro citrullination assays including the ABAP assay used in this study 

utilise calcium concentrations of 5-10 mM calcium to achieve maximal PAD 

activation (47,48,197), cytosolic levels of free Ca2+ are known to increase in 

activated cells only up to 10 µM. Under pathological conditions these levels can 

further rise up to 100 µM for a short time, but need to return to original levels to 

ensure cell survival (370). In comparison, calcium levels in the extracellular 
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space are estimated to range between 1.1-1.3mM in plasma and 0.49-0.98mM 

in SF (369,371). In line with these observations it was interesting to see that 

PAD activity in RA SF samples measured at 5 mM calcium concentration 

decreased ~140-fold when measuring PAD activity at physiological calcium 

levels and accounting for the dilution factor. This indicates that PAD enzymes in 

the SF appear to possess a “general fitness” of increased activity towards the 

substrate used in the assay when they come into contact with higher calcium 

concentrations. Although it is in general possible that a PAD activity below the 

theoretical potential activity is still sufficient for citrullination of synovial fluid 

proteins at the heightened calcium levels in the extracellular space, it is, 

nevertheless, imaginable that additional factors such as cross-reactive 

antibodies or other modulators regulate PAD activity in vivo.  

 

Other possible factors suggested to modulate PAD activity are proteolysis and 

citrullination itself. Although Andrade et al. described in 2010 that 

autocitrullination of PAD4 at several sites of the enzyme inactivates its function 

(199), this finding could not be confirmed in a more recent study by Slack and 

colleagues (200). Interestingly, the main difference in Andrade’s data was that 

citrullinated and native PAD4 was incubated with lysates from HL-60 cells 

whereas highly purified substrates were used by Slack et al. It is therefore 

possible that factors present in the lysate could have inactivated specifically the 

citrullinated form of the enzyme. Although enzyme degradation was excluded by 

Andrade et al., it is surprising that in the studies presented here PAD activity in 

the supernatant of activated neutrophils was only detectable in the presence of 

a protease inhibitor cocktail containing components such as AEBSF, E-64 and 
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Pepstatin A. Indeed, citrullination of proteins is known to lead to their 

degradation by proteases. For example, Hsu et al. reported that citrullination of 

human fillaggrin-2 by PAD1, PAD2 and PAD3 promotes its proteolytic 

degradation by calpain-1 (191). Since citrullination induces a decrease in 

positive charge of the protein, the conformation is changed and makes the 

protein more susceptible to proteolysis (185). 

 

As the assay used for measuring PAD activity does not distinguish between 

different PAD isoforms, it has to be considered that a contribution to the total 

PAD activity by PAD2, PAD3 and PAD4 is possible. Interestingly, mass 

spectrometry data did not identify any unique peptides matching PAD3 as being 

present in neutrophils. Identification of PAD isoforms that are responsible for the 

observed PAD activity is of interest as it was recently reported that different 

PAD enzymes display distinct substrate specificities (203) and could therefore 

lead to the citrullination of different autoantigens. Interestingly, Darrah et al. also 

showed that the citrullination activity of each PAD isoform appears to be specific 

and directed preferentially against distinct substrates, independent of their 

cellular localisation. Indeed this substrate preference becomes even more 

evident when the enzymes are exposed to a larger number of substrates. For 

example, in cell lysates, actin and histone H3 are only citrullinated by PAD2 and 

PAD4, respectively, which means that although actin and histone H3 can be 

citrullinated by all PAD isotypes, each enzyme has a clear, intrinsic substrate 

preference. These results are also in agreement with data from Nakayama-

Hamada et al. who demonstrated that human rPAD2 citrullinates purified 

fibrinogen and filaggrin more efficiently than human rPAD4 (372). In this context 
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different PAD isoforms may have different citrullination efficiency towards the 

substrate used in the PAD activity assay presented here. 

 

In relation to the presence of extensive NET formation in the joints of RA 

patients it was interesting to observe that the PAD activity in the SF of RA 

patients showed, in general, very similar properties compared with DNA levels 

described in Chapter 3: PAD activity was significantly increased in RA patients 

compared with OA patients, it was present in the SF of patients with different 

forms of inflammatory arthritis and also correlated strongly with neutrophil 

numbers. Intriguingly, PAD activity also increased with disease duration. A 

decrease of regulatory factors over time may lead to increases of both DNA 

levels and PAD activity with disease duration and/or degradation and removal of 

the products of NETosis may be affected. Interestingly, Makrygiannakis et al. 

published in a recent study that intra-articular injection of glucocorticoids, and 

not oral methotrexate, resulted in a reduction in synovial inflammation, 

intracellular citrullination, and PAD expression (373). In this study, we could not 

see a significant difference between PAD activity levels in the SF of patients 

taking methotrexate compared with patients taking other medication (data not 

shown). Additionally, no difference between patients taking oral prednisolone 

was found, although the number of analysed samples was relatively small. In 

the future it would be interesting to determine whether the results published by 

Makrygiannakis could be confirmed when examining PAD activity levels in the 

SF of patients after intra-articular injection of glucocorticoids. 
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Citrullination of histones H2A, H3 and H4 is catalysed by PAD4 and was shown 

to be an important step in the decondensation of DNA and NET formation 

(34,44), however, the exact mechanism through which PAD4 is involved in the 

unwinding of chromatin is still unclear. Additionally, PAD4 was reported to have 

a crucial role in gene regulation by citrullinating arginine residues on histones 

and thus counteracting arginine methylation that coincides with the 

transcriptionally active state (194). It was therefore not unexpected to find PAD4 

localised in the cell nucleus of unstimulated neutrophils and in the NET fraction 

of in vitro stimulated neutrophils. In contrast, the significantly increased 

percentage of cytoplasmic staining in neutrophils from RA patients compared 

with healthy controls was a novel and unexpected finding. Few studies have so 

far attempted to visualise PAD4 in cells using confocal microscopy due the lack 

of specific and non-cross-reactive antibodies. In a study by Asaga et al. in 2001 

it was initially reported that PAD4 could be localised in myeloperoxidase-

negative neutrophil granules (45), however, the same group published a year 

later results which questioned their previous observations (196). The 

cytoplasmic staining in the previous study was explained by overfixation which 

masked nuclear antigens within the nucleus. Interestingly, in a third study, after 

examining synovial tissue from RA patients it became apparent that whereas 

PAD2 localisation was restricted to the cytosol, PAD4 appeared to be present in 

both cytosol and nucleus (372). Since then no other studies have examined 

PAD4 localisation using immunofluorescence, however, Lominadze et al. 

detected PAD4 in gelatinase as well as specific granules of unstimulated human 

neutrophils using mass spectrometry (374). Interestingly, the cytosolic 

localisation of PAD4 in granules was confirmed by the group of Niels 
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Borregaard in 2013 using proteomics, however, PAD4 was this time found to be 

enriched in secretory granules (13) of unstimulated human neutrophils. Similar 

to previous publications in mouse and human oligodendroglial cell lines 

stimulated with TNF-α (240), translocation of PAD4 from the cytoplasm to the 

nucleus upon stimulation was also speculated to be present in neutrophils from 

RA patients (354). However, no experimental data were provided in this study to 

confirm the theory of PAD4 redistribution, and therefore, in summary, it can be 

concluded that there does not seem to be agreement in the literature with 

regard to cytoplasmic PAD4 localisation. Since cytoplasmic PAD4 expression 

could not be induced with PEG-enriched immune complexes from the SF of RA 

patients (data not shown), it is concluded here that the stimulus inducing 

cytoplasmic PAD4 expression can either not be enriched with PEG and 

therefore present in the discarded SF fraction or it is based on cell-cell contact 

with cells present in the SF.  

 

As previously discussed in Chapter 3, the study presented here cannot exclude 

the possibility of cells other than neutrophils contributing to the extracellular 

DNA concentration and PAD activity in the SF of RA patients. In addition, 

NETosis may also not be the only source of citrullinated proteins in the joints of 

patients with inflammatory arthritis. Intracellular citrullination was reported in 

several cell populations in the synovium (250,251) and in SF cells (53) and 

further studies are required to examine mechanisms underlying the initial 

intracellular activation of PADs in relation to different cell death pathways.  
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Nevertheless, in agreement with our findings on PAD activity in the SF, several 

studies have already described the presence of citrullinated proteins in the SF 

of patients with inflammatory arthritis (249,375). The view that NETosis 

contributes to citrullination is also supported by data from De Rycke et al. who 

observed localisation of citrullinated proteins within extra-synovial deposits of 

polymorphonuclear cells on the surface of the lining layer in RA patients (248). 

Understanding the mechanisms that generate citrullinated antigens in ACPA 

positive RA may identify unique pathways that regulate antigen drive in this 

disease, which might be relevant to the development of novel therapies. In the 

following chapter, the generation of citrullinated antigens during NETosis will be 

examined and its relevance for the autoimmunity in RA will be discussed. 
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5 Investigation into the antigenicity of NETs 

in RA patients 
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5.1 Introduction 
 

Rheumatoid arthritis is characterised by the presence of a range of 

autoantibodies of which rheumatoid factor (RF) and anti-citrullinated protein 

antibodies (ACPA) are best characterised and used clinically for patient disease 

classification (158,233,376,377). Whereas RF and other autoantibodies can 

also occur in healthy individuals or patients with other inflammatory conditions, 

ACPA represent the most specific autoantibodies in RA discovered to date  and 

can be detected in 60-70% of RA patients (69,377,378). ACPA can be detected 

several years before the onset of clinical symptoms (81,151) and their presence 

is associated with more erosive disease (205). Additionally, several 

environmental (214) and genetic (210,379,380) risk factors are associated 

specifically with the ACPA positive subtype of RA patients. For the above-

mentioned reasons it was therefore proposed that ACPA positive and negative 

RA are regarded as two different disease entities (168) and a test for ACPA, the 

anti-ccp antibody test, was included into the ACR criteria in 2010 (77). ACPA 

target a wide range of citrullinated proteins with the best characterised 

autoantigens being fibrinogen, vimentin, α-enolase, and type II collagen (CII) 

(70,178) with others awaiting further characterisation. 

Key questions regarding the observed autoimmunity against citrullinated 

proteins that have still remained unanswered are whether ACPA are causally 

related to the disease or whether they are just a consequence of the condition. 

Furthermore, it is not known where autoimmunity to citrullinated proteins is 

initiated and whether there is a single or restricted group of antigens 

responsible for the breakdown of tolerance. Since several studies suggest the 

absence of synovial inflammation in individuals who have pre-existing ACPA 
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and joint pain but no clinically apparent joint swelling (85,87,88), the concept 

was proposed that the initiating event leading to ACPA production is more likely 

to be located outside the joint. Examples for such extra-articular locations that 

are currently being discussed are the periodontal tissues  (276,278), the lungs 

(381) and the gut (80). In view of this concept it was therefore proposed that an 

unrelated “second-hit” could represent an episode of otherwise self-limiting 

synovial inflammation resulting in an exacerbation and perpetuation of the 

synovitis in ACPA positive individuals (168). 

In the previous chapters the presence of NETs and enzymatically active PADs 

in the SF of RA patients has been demonstrated. The following chapter reports 

on the identification of citrullinated proteins that are potentially generated during 

NETosis. Since NETs provide an explanation for how otherwise intracellular 

proteins could be released into the extracellular space and exposed to the 

immune system, it was of interest to determine whether NETs contain already 

known intracellular candidate autoantigens such as vimentin or α-enolase. 

Additionally, the analysis of further citrullinated targets was planned using mass 

spectrometry. Finally, it was aimed to determine whether citrullinated proteins in 

NETs isolated from in vitro stimulated neutrophils, but also isolated ex vivo from 

the SF, are targeted by autoantibodies in RA patients. 
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5.2 Citrullinated proteins are released during NETosis 
in vitro 

In the work presented in Chapter 4, a method for the isolation of NETs from in 

vitro activated neutrophils was established in order to study the release of 

enzymatically active peptidylarginine deiminases. In this chapter the same 

assay was applied to assay whether the process of NETosis would result in the 

generation of citrullinated proteins. Briefly, peripheral blood neutrophils from 

healthy volunteers were stimulated for 4 h with 25 nM PMA, washed and finally 

incubated with DNase-I to release NETs from the cells and into the supernatant. 

All generated culture supernatants were centrifuged to remove intact cells and 

cell debris and the proteins precipitated and modified according to the Senshu 

protocol (316) (see Chapter 2 for details). Modified citrullinated proteins could 

then be detected using an anti-modified citrulline antibody (AMC) on western 

blots. As shown in Figure 5-1A, a large number of citrullinated proteins were 

released from stimulated neutrophils into the supernatant after 4 h of stimulation 

(SN) compared to only a relatively small number of citrullinated proteins being 

present in the DNase-I treated NET fraction (+DNase-I). One prominent band 

was detected at 11 kD and, interestingly, a band of the same size was also 

detected using an antibody, which was raised against a synthetic peptide 

corresponding to human histone H3, aa 1-100 and citrullinated at the arginine 

residues 2, 8 and 17 (Figure 5-1A). The presence of this 11 kD band was 

further confirmed in the NET fraction of several donors (Figure 5-1B). 

Additionally, some other citrullinated proteins of a size ranging between 48 and 

75 kD was detected in some of the donors. 
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The detection of an 11 kD band with the anti-citrullinated histone antibody was 

unexpected as the predicted molecular mass for histone H3 is 15.2 kD. It was 

therefore subsequently decided to test for potential cross-reactivity of this 

antibody. For this purpose recombinant histones were first in vitro citrullinated 

with PAD4 enzyme. Histones H2A, H3 and H4 were selected, as these are well-

known targets of PAD4 (50,194,196,382) in contrast to histone H2B, which has 

not been reported to be citrullinated by PAD4 yet. As shown in Figure 5-1C, 

indeed only citrullinated histone H3 was recognised by the anti-citrullinated 

histone H3 antibody confirming its specificity. Interestingly, Urban et al. have 

reported a specific reduction in the molecular weight of histones, but not of 

other proteins, in NETs compared with proteins found in unstimulated 

neutrophils following SDS-PAGE analysis (315). The authors proposed that 

post-translational modifications may be responsible for this phenomenon. 

Indeed, the same mass shift when comparing citrullinated with native forms of 

recombinant histones H2A, H3 and H4 using coomassie blue staining was 

observed (Figure 5-1C). Importantly, the staining did not appear equal as each 

histone type is known to have a different affinity for Coomassie blue (383). To 

conclude, these data indicate that the citrullination of histones results in an 

increased mobility of these proteins during reducing SDS-PAGE, which could 

explain their apparent decreased molecular weight of citrullinated histone H3. 

 

Mass spectrometry data presented here potentially indicated a significant 

enrichment of histones H2A, H2B and H4 but not H3 in the NET fraction 

compared with the supernatant fraction (SN) (refer to Table 4-1 in Chapter 4 

and Figure 8.1 in the Appendix). Indeed, total histone H3 protein was also found 
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to be present in both fractions on immunoblot (Chapter 4, Figure 4.3). These 

findings therefore suggest that the enrichment of citrullinated histone H3 cannot 

be explained by its overall increased abundance within NETs. Instead the 

citrullinated form of histone H3 appears to be specifically associated with NETs 

as reported in several previous publications (34,44).  

 

Importantly, to validate the method of detection of citrullinated proteins, the 

specificity of the anti-modified citrulline antibody for citrullinated proteins after 

Senshu modification was demonstrated using concentration and isotype-

matched control antibody (Figure 5-2A). Additionally, it was aimed to establish 

whether the citrullinated proteins that are released during in vitro NETosis are 

generated de novo during activation or whether they are already present in 

unstimulated neutrophils. For this purpose, lysed unstimulated neutrophils were 

assessed for the presence of citrullinated proteins. As shown in Figure 5-2B, 

even with double the amount of protein loaded from lysed unstimulated 

neutrophils compared with supernatants of stimulated neutrophils from matched 

donors along with an increased exposure time, no citrullinated proteins were 

detected in unstimulated neutrophils (Figure 5-2B). These data therefore 

suggest the specific generation of citrullinated proteins during NETosis and the 

absence of detectable levels of citrullination in unstimulated neutrophils. 
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Figure 5-1 Release of citrullinated proteins from neutrophils undergoing NETosis 

The supernatants of unstimulated (SN (unst.)) or PMA stimulated neutrophils (SN) were 
collected. After stimulation cells were washed 3 x with RPMI (W1-W3) and subsequently 
incubated with or without DNase-I (+DNase and –DNase). Non-stimulated cells were treated 
with DNase-I (+DNase (unst.)) as control. Proteins were precipitated from supernatants and 
analysed by western blotting.  Citrullinated proteins (cit.prot.) on western blots are detected 
using the previously described Senshu method (316) and a monoclonal human anti-modified 
citrulline antibody from ModiQuest. (A) Western blots from all supernatants were probed with a 
monoclonal human anti-modified citrulline antibody after Senshu-modification and an anti-
citrullinated histone H3 antibody. One representative blot out of at least 3 independent 
experiments is shown. (B) Detection of citrullinated proteins in +DNase-I treated NET fractions 
from four different donors out of six independent experiments are shown. (C) To demonstrate 
specificity of the human anti-citrullinated histone H3 antibody, western blots from non-
citrullinated and citrullinated recombinant histones H3.3, H2A and H4 (expected size of 15.2 kD, 
14 kD and 11.2 kD, respectively) were incubated with anti-citrullinated histone H3 antibody. 
Coomassie blue staining of the SDS-PAGE gel is also shown in the bottom panel. One 
representative blot out of 3 independent experiments is shown 
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Figure 5-2 Demonstration of specific detection of citrullinated proteins  

Neutrophils from 4 donors were purified and immediately lysed in RIPA buffer after purification 
(unst.). In parallel, neutrophils from the same 4 donors were stimulated for 4 h with PMA and 
the supernatants were collected (SN). Both supernatants and lysed neutrophils were 
centrifuged at 300 x g and a second time at 16 000 x g to remove intact cells and cell debris. 
Proteins were precipitated from the supernatants of stimulated neutrophils and the protein 
amount was determined for both fractions (SN and unst.). Citrullinated proteins (cit.prot.) are 
detected using the modified Senshu method. (A) To demonstrate specificity of the human anti-
modified citrulline antibody (specific ab), the same blot was incubated after chemical 
modification with a concentration- and isotype-matched control antibody, human IgG (hu IgG). 
Coomassie blue staining of the PVDF membrane is shown in blue below to test equal protein 
loading (20 µg per lane). (B) Comparison of the amount of citrullinated proteins in lysed, 
unstimulated neutrophils from 4 donors (unst. donor 1-4) and the SN fractions of the same 
donors (SN donors 1-4) using immunoblotting after Senshu modification. Blots were developed 
with a short exposure time of 1 sec and a longer exposure time of 10 sec. Twenty μg of 
supernatant proteins and 40 μg of lysed neutrophils were loaded per lane. Coomassie blue 
staining of the membrane is shown below. 
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5.3 Qualitative analysis of protein composition of NETs 
using mass spectrometry 

 

To determine the origin of the citrullinated 11 kD band in PMA-generated NETs, 

mass spectrometry was kindly performed by Jimmy Ytterberg from the 

Karolinska Institutet in Stockholm, Sweden. In an initial approach, the total 

DNase-I treated NET fraction (NET) and the supernatant fraction after 4 h of 

PMA stimulation (SN) from two different data sets were analysed and data  is 

presented in tables 5-1 and 5-2: Two different donor groups (different patients 

on two different days) were analysed on two different instruments (Q Exactive 

MS and LTQ Velos Orbitrap ETD MS) but with otherwise same search 

parameters (for details refer to Chapter 2.14.2). In light of the immunoblotting 

data, it was not unexpected to find a wide range of citrullinated peptides in the 

SN fraction, although the variability between donors was very high and many 

citrullinated peptides, which were present in one donor group, were not 

detected in the other. Nevertheless, two different peptides from coronin-1A were 

identified using both approaches and were present in both the SN as well as the 

NET fraction (compare Table 5-1 and 5-2). Interestingly, one of these peptides, 

which was present in NETs, has also been reported to be present in the SF of 

RA patients (375). Additionally, two previously published citrullinated peptide 

sequences derived from vimentin (375,384,385) and myeloid cell nuclear 

differentiation antigen (MNDA) (375) were detected in the NET fraction of one 

donor, respectively. Furthermore, a peptide sequence which is shared by 

histone H3.1 and H3.2 was detected in the NET fraction of one donor using the 

Q Exactive MS instrument (Table 5-1). It is interesting to note that the 

citrullinated arginine in this peptide was immediately next to a dimethyl-
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modification of a lysine and that the same peptide was also detected after in-gel 

digestion of an 11 kD gel slice in two out of five donors from a separate analysis 

(Table 5-3). The data generated from the in-gel digestion of the 11 kD gel slices 

not only demonstrated the presence of this peptide but also of an additional 

peptide from histone H3 in one of the donors (Table 5-3). This peptide was 

shared between all histone H3 subtypes and was derived from the N-terminus 

of histone H3 (Figure 5-3). In contrast, neither peptide was detected in the SN 

fraction. This finding was unexpected with regard to the previously used anti-

citrullinated histone H3 antibody purchased from Abcam, which reacted strongly 

with the in vitro generated NET fractions. Since this antibody was raised against 

a synthetic peptide containing citrullinated arginines at the positions 2, 8 and 17 

in histone H3, it should theoretically also react with a peptide sequence 

corresponding to the immunogen peptide sequence. Such a sequence, 

however, was neither detected in the total NET fraction nor in the 11 kD gel 

slices. It is therefore possible that the antibody also cross-reacts with additional 

epitopes in histone H3 such as the two sequences that have been detected 

using mass spectrometry analysis. To conclude, these data suggest that the 

citrullinated protein detected at the molecular weight of 11 kD on immunoblots 

from NET fractions of in vitro stimulated neutrophils is likely to be citrullinated 

histone H3, especially as no other citrullinated peptides from histones in the gel 

slices of the five analysed donors could be detected using the mass 

spectrometry approach. As mentioned previously, the difference between the 

expected molecular weight of 15 kD for histone H3 and the actual presence of 

citrullinated H3 peptides at 11 kD in SDS-PAGE analysis may be explained by 
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the presence of post-translational modifications such as citrullination or 

methylation. 

 

Table 5-1 Citrullinated proteins released from neutrophils undergoing NETosis – Q Exactive MS 

Neutrophils from 3 different donors were stimulated to enter into NETosis and after 4 h 
supernatants were collected (SN1-3). After stimulation cells were washed 3 x with RPMI and 
subsequently incubated with DNase-I to generate the NET fraction (NET1-3). All fractions were 
centrifuged and subsequently precipitated with TCA. After trypsinisation samples were 
processed and analysed by mass spectrometry (Q Exactive from Thermo Scientific). The 
data were searched against Swiss Prot (human protein database) using Mascot. All spectra 
identified as citrullinated with a score of at least 20 were analysed. Values in the table represent 
Mascot scores. Empty cells signify that either no peptides or peptides with a Mascot score 
below 20 were identified. 

 

 

Table 5-2 Citrullinated proteins released from neutrophils undergoing NETosis – LTQ Velos 
Orbitrap ETD MS  

Neutrophils from 4 different donors were stimulated and after 4 h supernatants were collected 
(SN1-4). After stimulation cells were washed 3 x with RPMI and subsequently incubated with 
DNase-I to generate the NET fraction (NET1-4). All fractions were centrifuged and subsequently 
precipitated with TCA. After trypsinisation samples were processed and analysed by mass 
spectrometry (LTQ Velos Orbitrap ETD MS). The data were searched against Swiss Prot 
(human) using Mascot. All spectra identified as citrullinated with a score of at least 20 were 
analysed. Values in the table represent Mascot scores. Empty cells signify that either no 
peptides or peptides with a Mascot score below 20 were identified. 
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Table 5-3 Citrullinated proteins detected in the 11 kD band of the NET fraction  

NET fractions from 5 different donors were loaded and analysed by SDS-PAGE and the 11 kD 
bands, which were shown to be citrullinated, were excised from gels, digested with trypsin and 
subjected to LTQ Velos Orbitrap ETD MS analysis. Values in the table represent Mascot scores. 
Empty cells signify that no peptides were identified. 

 

 

 

Figure 5-3 Alignment of protein sequences from histone subtypes 

Protein sequence alignment of the N-terminus of histones H1, H2A, H2B, H3.1, H3.2, H3.3 and 
H3.1t using UniProt. Residues 26 and 49 were found to be citrullinated within 2 peptides in 
NETs (indicated with green boxes) using mass spectrometry by this approach (compare with 
Table 5-3) . Arginine residues at position 2, 8 and 17 are previously described targets of 
citrullination by PAD4 in histone H3 (386,387). 
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5.4 Purified ACPA specifically recognise an 11 kD band 
within in vitro and ex vivo NETs 

 

After the identification of citrullinated proteins in NETs generated by in vitro 

stimulated neutrophils, it was of interest to determine whether these structures 

were antigenic in RA and, in particular, whether the citrullinated 11 kD protein is 

specifically recognised. For this purpose, Prof Karin Lundberg at the Karolinska 

Institutet in Stockholm kindly provided us with ACPA, which were purified from 

serum and plasma of RA patients using affinity chromatography on columns 

with covalently bound CCP2 peptides (388). The anti-CCP IgG that bound to 

the columns were finally eluted and pooled. The corresponding flow through 

(FT) IgG pool therefore contained all antibodies except for the one reacting with 

CCP2 peptides. Both the ACPA and FT IgG pool were validated for their binding 

specificity for citrullinated proteins. First of all, it was demonstrated that 

citrullinated recombinant vimentin and calf thymus histones (CTH) can be 

specifically detected using Senshu modification and human anti-modified 

citrulline antibody (Figure 5-4A). Finally, the native and citrullinated form of the 

proteins were probed with the same concentration of ACPA and FT IgG to 

confirm and validate the specificity of the eluted antibodies for known 

autoantigens such as vimentin. As shown in Figure 5-4B, the specific binding of 

these purified anti-CCP IgG (purified ACPA) and not FT IgG with the 

citrullinated form but not the native form of vimentin was confirmed. 

Interestingly, this specific binding with the citrullinated form of the protein could 

also be observed for calf thymus histones, which were not previously studied by 

Lundberg and colleagues (personal communication). Furthermore, both the first 

supernatant after 4 h of PMA stimulation of neutrophils (SN) and the DNase-I 
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treated NET-fraction were probed with purified ACPA and human IgG but not 

FT IgG as negative control. This decision was based on the fact that many 

antibodies present in FT IgG may still bind to neutrophil proteins and thus mask 

a specific binding of anti-CCP IgG when compared with this antibody pool. In 

addition, the detection system using the Senshu modification and anti-modified 

citrulline antibodies does not discriminate between citrulline and homocitrulline 

residues (389) so that non-CCP2-cross-reactive anti-carbamylated antibodies 

present in the FT IgG pool could bind to carbamylated neutrophil proteins and 

thus prevent a specific recognition of protein targets. As shown in Figure 5-5, 

purified ACPA could not specifically bind to neutrophil proteins present in the 

SN fraction. In contrast, a strong reactivity of purified ACPA compared with 

human IgG could be observed with an 11 kD band present in the NET fraction, 

although the signal strength exhibited variability between donors (Figure 5-6). 

Additionally, several bands in the molecular weight range 48-75 kD were 

observed, which resembled the pattern of citrullinated proteins in NET fractions 

detected on immunoblots, which were modified with the Senshu method and 

developed with a monoclonal human anti-modified citrulline antibody (compare 

Figure 5-1B). These proteins were, however, not consistently present in the 

NET fraction from all donors. For this reason, analysis concentrated on the 

citrullinated proteins present at the molecular weight of 11 kD. 
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Figure 5-4 Specific recognition of the citrullinated form of Vimentin and calf thymus histones by 
purified ACPA from RA patient sera 

Recombinant vimentin (Vim) and calf thymus histones (CTH) were in vitro citrullinated with 
enzymatically active PAD4 for 2h. (A) Specificity of citrullination was first demonstrated using 
Senshu modification and human anti-modified citrulline antibody. (B) Citrullinated and non-
citrullinated forms of vimentin and calf thymus histones were probed in parallel with purified 
ACPA and the corresponding flow through fraction (FT) following affinity chromatography on 
columns with covalently bound CCP2 peptide. PAD4, which was added for the citrullination, was 
also detected. 
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Figure 5-5 No specific recognition of antigens in the SN fraction of activated neutrophils by purified 
ACPA 

Supernatants from 4 donors after 4 h of stimulation with PMA (SN) were collected, centrifuged 
and precipitated with TCA. Western blots were probed with purified ACPA and human 
immunoglobulin (hu IgG), which was used as a concentration-matched control.  
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Figure 5-6 ACPA specifically and consistently recognise a 11 kD antigen in NETs  

After stimulation with PMA neutrophils were washed and subsequently incubated with DNase-I. 
All fractions were centrifuged to remove cell debris. Proteins in the DNase-I treated NET fraction 
were precipitated from supernatants and analysed by western blotting. Purified ACPA and 
human immunoglobulin (hu IgG), which was used as concentration-matched control, were used 
at the same concentration. Four representative blots from four different donors out of eight 
independent experiments with eight different donors are shown. 
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As antigens could specifically be detected in the NET fraction of in vitro 

stimulated neutrophils, it was of interest to determine whether the same antigen 

of 11 kD size could also be identified within NETs from the SF of RA patients. 

For this purpose, NETs were initially isolated ex vivo from the SF using a 

method modified from the protocol used for the isolation of in vitro generated 

NETs (see Chapter 4.2). As shown in Figure 5-7A, a significantly higher DNA 

concentration could be detected in the DNase-I treated NET fraction (+DNase-I) 

suggesting that NETs can specifically be enriched after eight washing steps 

from the SF. Additionally, similar to the previously shown in vitro NET isolation, 

the presence of neutrophil elastase (NE) and PAD4 could be demonstrated 

specifically in the DNase-I treated NET fraction (+DNase-I), whereas no PAD4 

and NE were detected in the final washing fraction (W8) and in the fraction of 

SF cells, which were solely incubated with RPMI under the same conditions (-

DNase-I) (Figure 5-7B). Finally, the same fractions were incubated with purified 

ACPA to assay whether the same reactivity that was observed with in vitro 

isolated NETs (Figure 5-6) could also be found with ex vivo isolated NETs from 

the SF. As shown in Figure 5-7C, indeed, a specific reactivity of ACPA was 

detected against an 11 kD protein in the NET fraction compared with the W8 

and –DNase-I-control fractions. Although these data suggest that the same 

antigen of an approximate molecular weight of 11 kD was detected as the 

antigen in in vitro NETs, the presence of citrullinated proteins using mass 

spectrometry analysis in these ex vivo NETs could not be studied further in 

more detail and therefore would need to be assessed in future studies. 
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Figure 5-7 ACPA recognise an 11kD band within ex vivo NETs 

(A) SF cells were seeded on 12-well plates. The supernatant was then removed and the cells 
attached to the bottom of the well were washed 8 x with RPMI (washing steps W1-W8). After 
the final washing step, cells were incubated with or without DNase-I (+DNase-I and –DNase-I). 
Extracellular DNA was quantified using SYTOX Green. Extracellular DNA could be specifically 
enriched in the supernatant of SF cells treated with DNase-I (Wilcoxon matched-pairs signed 
rank test, n = 7, *p<0.05). Results are shown as mean ±S.D. (B) Western blot of the final 
washing step W8, the DNase-I treated NET fraction (+DNase-I) and the mock-digested NET 
fraction (-DNase-I) probed for the presence of neutrophil elastase (NE) and PAD4; 
representative of at least 3 independent experiments per protein. (C) Ex vivo isolated NETs 
(+DNase-I) from the SF of 3 RA patients were probed with 1.7 µg/ml purified ACPA. The final 
washing step (W8) and the supernatant of the mock-digested cells (-DNase) are shown as 
controls. 
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5.5 Citrullinated Histone H3 is an autoantigen in RA 

patients 

Core histones were previously reported to account for 70% of all NET-

associated proteins (315). Using immunoblotting we revealed the presence of a 

protein with an approximate molecular weight of 11 kD, which is recognised by 

purified ACPA. In the same samples the presence of two citrullinated histone 

H3 peptides using mass spectrometry were also demonstrated. In the following 

section, characterisation of the immune response towards histones in RA 

patients in more detail is reported using the citrullinated and native form of 

recombinant histone H3 and compared with the reactivity for histones H2A and 

H4. For this purpose all three types of histones in vitro were citrullinated using 

the PAD4 enzyme. As shown in Figure 5-8A, 5 mU enzyme per 1 μg protein for 

the enzyme-to-substrate-ratio was sufficient to detect maximum citrullination on 

immunoblots. Interestingly, it could be detected that despite using the same 

enzyme- and substrate- concentrations under exactly the same reaction 

conditions, the efficiency of citrullination of different histone types differed. 

Indeed this efficiency was highest for citrullinated H3.3, but decreased for 

citrullinated H2A and was the lowest for histone H4 (Figure 5-8B). Similarly, a 

strong reactivity of ACPA was found for citrullinated H3.3, however, despite the 

low citrullination efficiency, a faint signal was detected for citrullinated H4 

whereas no reactivity was found with H2A, which was citrullinated more 

efficiently than histone H4 (Figure 5-8B). Since the purified ACPA that were 

used for the previous experiments reflect a global reactivity of all antibodies 

present in pooled sera from at least 10 different ACPA positive RA patients, it is 

conceivable that the observed reactivity in our experiments derives from 
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antibodies present in relatively few patient sera. For this reason, it was decided 

to examine the reactivity with recombinant histones in individual patient sera. In 

agreement with results using purified ACPA, practically no reactivity with 

histone H2A was observed in the 8 tested sera, which derived from treatment-

naïve RA patients (Figure 5-9). The strongest response, similarly to the purified 

ACPA, was however detected with citrullinated histone H3.3 in 2 out of the 4 

tested ACPA positive RA sera. The same sera also reacted to a lesser degree 

with citrullinated histone H4. Interestingly, serum 8 also reacted additionally with 

the native form of histone H4 but not the native form of histone H3.3. In 

conclusion, both purified ACPA as well as RA patient sera seem to most 

strongly recognise the citrullinated form of recombinant histone H3 compared 

with the native form and other histone types. These data support our findings of 

strong reactivity of anti-citrullinated histone H3 antibodies and purified ACPA 

with citrullinated histone H3 in in vitro and possibly also ex vivo NETs. 
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Figure 5-8 Purified ACPA strongly react with in vitro citrullinated histone H3.3 

In vitro citrullination of recombinant human histone H3.3, H2A and H4 for 2 h. (A) Different 
enzyme-substrate ratios for PAD4 and its substrate H3.3 were used to test for maximum signal 
on immunoblot after Senshu modification and incubation with anti-modified citrulline antibody. 
(B) Immunoblot revealing different efficiency of in vitro citrullination of 400 ng histone H3.3, H2A 
and H4 by PAD4 (5 mU) under the same reaction conditions. One representative blot out of 
three independent experiments is shown. The same blot is shown below after re-probing with 
purified ACPA. Equal protein loading is demonstrated by Coomassie blue staining of the gel. 
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Figure 5-9 ACPA positive RA patient sera recognise histones 

Native and citrullinated form of histone H3.3, H2A and H4 (400 ng) probed with RA sera from 4 ACPA positive and 4 ACPA negative RA patients diluted 
1:100 in 5% milk/TBS-Tween.   
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5.6 Antibodies derived from SF B cells recognise 
histones 

 

Anti-citrullinated protein antibodies, especially a high abundance of ACPA from 

the IgM isotype, were previously reported to be enriched in the SF compared 

with serum (365) suggesting a continuous autoimmune response in the joints. In 

light of data that demonstrated the presence of NETs in the SF of RA patients, 

we wished to investigate whether histones in NETs could be recognised by local 

B cells in the joints of RA patients and thus represent a potential local driver for 

the immune response. In collaboration with Prof Vivianne Malmstrӧm from the 

Karolinska Institutet, single B cells were sorted from the SF of patients with 

active RA and their Ig variable region genes were sequenced and subsequently 

expressed to generate recombinant monoclonal antibodies as has been 

previously described (235). This part of the project was undertaken by Dr 

Khaled Amara from the Karolinska Institutet, Stockholm, and Lorraine Yeo from 

the University of Birmingham. Equal amounts of non-citrullinated native 

recombinant histones (nat) alongside in vitro citrullinated histones (cit) were 

probed with an equal concentration of these recombinant antibodies from RA 

patients on immunoblots. The antibodies used were all derived from ACPA 

postivie RA patients. Initially 14 different antibodies were tested at a 

concentration of 5 μg/ml. From these 14 antibodies, 4 derived from 3 different 

patients and showed reactivity with histones H3.3 and H4 whereas no reactivity 

with histone H2A could be detected (data not shown). As shown in Figure 5-10, 

the reactivity of these antibodies from 3 ACPA positive RA patients are 

analysed at a higher concentration of 10 μg/ml. Purified ACPA and human IgG 
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were used as positive and negative controls, respectively. Whereas antibodies 

from B cells from patient 1 and 2 showed only a weak or comparable reactivity 

with the native and citrullinated form of H3.3 and/or H4, the three recombinant 

antibodies from patient 3 (clone 4-6) reacted more strongly with the citrullinated 

form of histone H3.3 and H4 compared to the native form (Figure 5-10). In 

conclusion, although these data are preliminary and a wider range of different 

antibodies would need to be screened for reactivity with histones, they suggest 

that joints of RA patients contain B cell clones with a stronger reactivity with the 

citrullinated form of histone H3 and H4 compared with the non-citrullinated form. 

Additionally, similar to purified ACPA and RA patient sera, no reactivity could be 

detected with histone H2A (data not shown). Histones released into the 

extracellular space during NETosis in the SF may therefore well be recognised 

by SF B cells. 
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Figure 5-10 Antibodies from SF B cells react with both the native and citrullinated form of histone H3 and H4 

 

Single B cells were sorted from the SF of patients with active RA. Their Ig variable region genes were sequenced and subsequently expressed to 
generate recombinant monoclonal antibodies. Equal amounts of non-citrullinated recombinant histones H3.3 and H4 (nat) alongside in vitro citrullinated 
histones (cit) were probed with an equal concentration of recombinant antibodies (10 μg/ml) derived from 6 B cell clones from 3 ACPA positive RA 
patients (patient 1: clone 1; patient 2: clone 2 & 3; patient 3: clone 4-6) using immunoblotting. Purified ACPA and human IgG were used as positive and 
negative controls, respectively.  

H3.3 

H4

patient 1 patient 2 patient 3
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5.7 RA patient sera recognise citrullinated epitopes in 
histone H3 

 

Several different experimental approaches presented in this chapter have 

supported the notion of the presence and antigenicity of citrullinated histone H3 

in NETs. To further characterise the reactivity of RA patient sera with this 

protein it was decided to investigate different epitopes of this protein in more 

detail. Based on mass spectrometry analysis (see chapter 5.3), two native and 

two citrullinated peptide sequences from the N-terminus of histone H3 were 

designed, and termed peptide 2 and 3 (Figure 5-11A). The citrullinated form of 

peptide 2 also contained a dimethylated lysine at position 27, which was 

present in in vitro generated NETs (see chapter 5.3). In addition, another 

citrullinated peptide sequence, cit peptide 1, was generated, which contained 

citrullinated residues at three positions (2, 8 and 17). This epitope was chosen 

due to the fact that it is an important target of PAD4 during decondensation of 

chromatin in NETosis (34,43). Furthermore, some reactivity of sera from SLE 

patients has recently been demonstrated against this post-translationally 

modified epitope (390) making it therefore an interesting antigenic target. All 

three peptides were coated on ELISA binding plates and tested for antigenicity 

with sera from 14 treatment-naïve RA patients. Pooled sera from 4 healthy 

individuals was used to determine the background level and was set to the 

value 0.0 as shown in Figure 5-11B. In total 10 out of 14 sera reacted with the 

citrullinated form of peptide 1 while only 3 sera reacted with the native form. 

Although the number of sera in these preliminary experiments was very low, a 

significantly higher reactivity could be found with the citrullinated form of peptide 
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1 compared with the native form, while the other 2 peptides showed a similar 

trend.  

 

 

 

 

 

Figure 5-11 Reactivity of RA patient sera with three synthetic citrullinated cyclic peptides from 
histone H3 

(A) Three different peptides from the N-terminus of histone H3 (peptide 1-3) with native 
arginine-residues (nat) (shown in the sequence alignment) and the corresponding 3 peptide 
sequences, in which the arginine residues were replaced by citrulline (cit) or the lysine residues 
by dimethylene residues (K-Me2), were synthesised by the company Innovagen. In total, six 
different protein sequences were synthesised. For the use of these peptides in ELISA assays, 
one cysteine residue at the N- and C-terminus was added (highlighted in red). (B) ELISA with 
the synthesised peptides were generated and their antigenicity was tested using sera from 14 
RA patients. The background level was determined using pooled sera from healthy individuals 
(n=4) and set to 0.0 (dashed line). A significantly higher reactivity of RA sera against the 
citrullinated form of peptide 1 compared to the native form could be detected (Wilcoxon 
matched-pairs signed rank test, n=14, ***p<0.001). 
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5.8 Discussion 
 
The overarching aim of the work presented in this chapter was to address the 

question as to whether citrullinated proteins are released during NETosis and 

whether they could serve as autoantigens in ACPA positive RA patients. Firstly, 

the release of free and NET-bound citrullinated proteins was demonstrated. 

Purified ACPA from RA sera were then found to specifically react with a 

citrullinated antigen of 11 kD in NETs from activated neutrophils. A band 

running at the same apparent molecular weight was recognised by anti-

citrullinated histone H3 antibodies. Mass spectrometric analysis detected only 

two citrullinated peptides in gel slices from this molecular weight. These were 

identified as citrullinated histone H3. In further confirmatory studies, antibodies 

from RA patients were shown to strongly and specifically react with citrullinated 

recombinant histone H3 and with citrullinated epitopes from histone H3. 

Therefore results from a range of different experimental strategies point towards 

a strong immune response to citrullinated histone H3 in RA patients. 

 

Post-translational modifications (PTMs) are known to lead to the generation of 

neo-epitopes and are proposed to initiate autoimmune responses in a range of 

autoimmune diseases (391–393). These modifications have also been 

described to occur in different forms of cell death, such as in apoptosis (394–

396). With regard to rheumatoid arthritis the PTM citrullination is of utmost 

interest as anticitrulline autoimmunity is highly specific for this disease (70). In 

this study it was therefore interesting to observe that a large number of 

citrullinated proteins can be generated during PMA-induced NETosis. However, 

in agreement with previous work using HL-60 cells and human primary 
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neutrophils (34,44,390) no citrullinated proteins could be observed in 

unstimulated neutrophils using immunoblotting, although some degree of 

citrullination in unstimulated cells would be conceivable due to its role in gene 

transcription (50). It is possible that the levels of citrullination in the context of 

gene regulation are too low to be detected with the methods used here. Indeed 

global de novo generation of a wide range of citrullinated proteins after 

neutrophil activation observed in this study, which in some publications is 

referred to as hypercitrullination (43,44,53), could therefore be regarded as a 

consequence of activation and NETosis.  

 

Citrullination of a range of proteins such as fibrinogen, filaggrin, collagen and 

histones has previously been described to induce a shift in the mobility of the 

citrullinated form of the proteins during reducing SDS-PAGE analysis. Whereas 

citrullination of filaggrin and fibrinogen by PAD2 and PAD4, was shown to 

induce a decrease in the mobility compared with the native form of the proteins 

(175,372,397), an increased mobility in reducing SDS-PAGE analysis has been 

demonstrated for citrullinated histones (50,315,398) and was indeed confirmed 

in data presented here. Interestingly, although a mobility shift for fibrinogen 

chains under reducing conditions was confirmed by Okumura and colleagues in 

another study, the authors did not observe this mobility shift when using non-

reducing conditions (397). For this reason, this phenomenon cannot simply be 

explained by a loss of protein charge after citrullination alone. It is conceivable 

that the number and position of citrullinated arginine residues within the protein 

alters intermolecular interactions in a way that affects its susceptibility to 

reducing conditions, which can ultimately result in decreased or increased 
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mobility through the SDS-PAGE-gel. Citrullination could therefore be one 

explanation for the detection of histone H3 in in vitro NETs at the size of 11 

instead of 15 kD. Since the citrullination of recombinant histone H3.3 expressed 

in E.coli, which is devoid of eukaryotic posttranslational modifications, could not 

induce a mobility shift to 11 kD in these experiments, additional post-

translational modifications other than citrullination may also add to the observed 

shift in the mobility of histones generated during NETosis.  

 

Currently, there are several lines of evidence indicating the occurrence of 

histone citrullination as a result of PAD4 activity. PAD4 was shown to citrullinate 

arginine residues at the positions 2, 8, 17 and 26 in histone H3 (194) and at 

position 3 on the N-terminal sequence shared by histone H2A and H4 (382), 

whereas the citrullination of histone H2B, to our knowledge, has yet to be  

described in the literature. These results are consistent with our observation of 

recombinant histone H3, H2A and H4 in vitro citrullination by PAD4. In NETs 

citrullinated histone H3 has been detected in several reports using confocal 

microscopy (34,354,399) with the same antibody that was used in the approach 

presented here using immunoblots, thus supporting the presence of this histone 

subtype in NETs. Furthermore, histone citrullination in NETs from in vitro 

stimulated neutrophils in our study could also be demonstrated using mass 

spectrometry. In excised 11 kD gel slices from NET fractions separated on 

SDS-PAGE gels two citrullinated peptides derived from histone H3 were 

detected and among these one was found to be citrullinated at the arginine 

residue 26. The second H3 peptide was shown to be citrullinated at position 49. 

This finding is intriguing as this same peptide was the only citrullinated peptide 
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detected in the SF of RA patients by van Beers and colleagues (375) and thus 

supports our notion that histone H3 citrullination occurs during NETosis in the 

SF. Furthermore, similar to our approach, Pratesi et al. recently reported the 

reactivity of RA patient sera with an 11 kD band using NET fractions generated 

with PMA (400), which is also in agreement with findings presented here. At 

variance with this data, however, Pratesi et al. only identified one citrullinated 

peptide from histone H4, which was citrullinated at arginine residue 3 and no 

citrullinated peptides from histone H3 were detected (400). Although Arg3 in 

histone H4 is a well-described target of PAD4 (390) and a weak reactivity of 

citrullinated recombinant histone H4 with purified ACPA could also be 

demonstrated in experiments presented here, this peptide was not found in the 

SF by van Beers and colleagues (375). The discrepancy in the data may be 

explained by the different protocols used for processing of protein samples for 

mass spectrometry, the use of different analytical instruments and also the 

search parameters used in the downstream analysis in the study.  

It is interesting to note in this context that Neeli et al. recently proposed that 

although PMA is able to induce NETosis it would neither cause PAD4 activation 

nor histone citrullination (52). However citrullination of histones induced by PMA 

has been shown not only in data presented here but also previously by others  

(399–401). Furthermore, the finding described by Neeli and colleagues also 

challenge the current view that citrullination is a requirement for chromatin 

decondensation during NETosis (44,46). One possible explanation, however, 

could be that a shorter PMA stimulation time of 2 h compared with 4 h as 

undertaken here, did not allow sufficient histone citrullination.  Additionally, 

differences in the concentration of the PMA stimulus may be responsible for 
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these strikingly different results. Since it is not known how PAD4 is activated 

during NET formation and how it exactly leads to the citrullination of histones 

(402), further investigations are required to elucidate the role of PAD4 in NET 

formation. 

 

PAD4 is the only PAD isoenzyme with a nuclear localisation signal, which 

allows the translocation of the enzyme into the nucleus enabling the 

citrullination of histones (196). However, recent studies have also reported on 

the presence and activity of PAD2 in the cell nucleus (403,404). Indeed Zhang 

et al. have described that the arginine at position 26 in recombinant histone H3 

is citrullinated more efficiently by PAD2 than by  PAD4 (403) suggesting that 

more than one PAD isoform may be involved in the citrullination of different 

arginine residues and/or  histone types during NET formation. In this context, 

data presented here indeed showed a difference in the efficiency between 

citrullination of histones H3, H2A and H4 by PAD4 enzyme. This observation is 

in agreement with a report from Darrah et al. which demonstrated that although 

PAD2 and PAD4 are in principle both capable of citrullinating histones, only 

PAD4 would target histone H3 in cell lysates whereas PAD2 would show an 

instrinsic substrate preference for other targets such as beta actins (203). It is 

therefore necessary to consider that both detected citrullinated peptides from 

histone H3 are likely to be citrullinated by PAD4 during NET formation.  

In addition to citrullinated peptides derived from histone H3 we detected three 

additional citrullinated peptides derived from vimentin, myeloid cell nuclear 

differentiation antigen (MNDA) and coronin-1A released from in vitro activated 

neutrophils. Coronin-1A was identified in both the SN as well as the NET 
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fraction whereas vimentin and MNDA were exclusively present in NETs. 

Interestingly, citrullinated peptides from all three proteins were among 53 

citrullinated proteins detected in albumin depleted SF samples from RA patients 

in the previously mentioned study by van Beers and colleagues (375). Together 

with the evidence that vimentin and MNDA are both known ACPA targets it can 

thus be assumed that NETosis might be a source for the generation of not only 

citrullinated histone H3 but also of further known autoantigens in the SF of RA 

patients. Since synthetic citrullinated peptides, which were used for the 

purification of ACPA, however, do not represent physiologic peptides, it can be 

assumed that potentially not all anti-citrulline reactive ACPA could be purified 

using this method. Future experiments with in vitro NETs and ACPA positive RA 

patient sera may therefore reveal whether the additionally identified citrullinated 

proteins such as coronin-1A could be specifically targeted by autoantibodies in 

RA patients. Additionally, it should be considered that the mass spectrometry 

data revealed a large variability between donors and different instruments and 

therefore not all citrullinated peptides were consistently present in all samples 

analysed. Methods are therefore under development to control for this issue 

and thereby reduce the risk of obtaining false-positive or false-negative hits. 

 

As demonstrated in this chapter the isolation of ex vivo NETs was not as 

efficient as in the in vitro experiments leading to mean DNA concentrations in 

the NET fractions being four times lower than in vitro (compare Chapter 4, 

Figure 4-2). The low abundance of NETs released after DNase-I treatment 

could, however, be explained by the fact that cell associated NETs are less 

frequently present in the SF due to the fragile nature of these structures. 
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Mechanical stress during the assay procedure could lead to the dissociation of 

NETs from neutrophils over time, which may decrease the efficiency of the ex 

vivo NET isolation approach. Nevertheless, although the stimulus of PMA used 

in the experiments here is not physiological and therefore unlikely represents a 

stimulus for NET formation in the joints, it was interesting to find that purified 

ACPA showed not only a specific reactivity with a protein at 11 kD in PMA 

induced in vitro NETs, but also with a protein of the same size in NETs isolated 

ex vivo from the SF of RA patients. Although the identity of this protein could so 

far not be determined in this thesis it is tempting to speculate at this point that 

this protein at 11 kD may be citrullinated histone H3. Indeed, a preliminary 

proteomic analysis of the total protein composition in an 11 kD gel slice from the 

ex vivo NET fraction of one RA patient sample showed the presence of histone 

H3.1 (data not shown). An analysis of citrullinated proteins, however, has not 

been performed yet. 

 

Following the identification of citrullinated peptides from histone H3 in in vitro 

NETs, several validation experiments have been performed with recombinant 

histones to demonstrate antibody reactivity with citrullinated histone H3 in RA 

patients. The antigenicity of citrullinated and native histones was not only 

assessed using purified ACPA from pooled patient sera, but also using single 

RA patient sera and with antibodies derived from single SF B cells. Both purified 

ACPA and two out of four analysed ACPA positive RA patient sera showed 

similar results with the strongest reactivity indeed detected against citrullinated 

recombinant histone H3. In addition, despite lower citrullination efficiency by 
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PAD4, some reactivity against citrullinated recombinant histone H4 was 

present.  

In comparison, the reactivity pattern of antibodies derived from SF B cells 

showed a high degree of variability and thus slightly differed from the results 

obtained with antibodies present in RA patient sera. With a low number of only 

14 antibodies from SF B cells analysed on western blots so far, the strongest 

reactivity of one antibody was noted with citrullinated histone H4. The same 

reactivity pattern could also be seen with two other clones from the same 

patient, although not all analysed B cell clones from the same patient showed 

reactivity with histones (data not shown). Concomitantly, the same antibody 

also displayed some cross-reactivity with citrullinated histone H3. Interestingly, 

Amara et al. reported in this context that a high proportion of these IgG-

expressing memory B cells and early plasmablasts  from the joints of ACPA 

positive RA patients are biased toward reactivity with known citrullinated 

autoantigens and subsequently suggested that the generation of citrulline-

specific antibodies may result from T cell-dependent B cell immune responses 

(235). Based on these studies it is therefore tempting to speculate that synovial 

IgG-expressing B cells specific for citrullinated autoantigens such as 

citrullinated histones could represent APCs important for T cell reactivation. 

 

Overall, the work detailed in this chapter demonstrates that citrullinated histone 

H3 and citrullinated histone H4 can be recognised not only by antibodies in RA 

patient sera but also by antibodies derived from SF B cells. Two recent studies 

indeed reported about the reactivity of RA patient sera with citrullinated histones 

present in NETs. Whereas Pratesi et al. identified a strong reactivity of RA 
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patient sera with citrullinated histone H4 (400), Dwivedi and colleagues, 

however, found the strongest reactivity of patient sera with Felty’s syndrome 

and RA directed against citrullinated histone H3 (398). These different results 

may be explained by different experimental protocols of the ELISA or a different 

degree of the purity of histones. Additionally, due to the different type of linear 

or conformational epitopes detected in western blotting or ELISA, discrepancies 

may be found in the results depending on the technique. Finally, core histones 

are known to be heavily post-translationally modified and anti-histone antibodies 

can be found in healthy individuals, RA, SLE, drug-induced SLE and different 

other conditions (390,405,406). The use of total histones in combination with 

patient sera from different cohorts may thus also lead to differences in the 

background and impede the detection of antibodies that target citrullinated 

histones. Future studies with a higher number of patient sera and antibodies 

from SF B cells would be needed to investigate the disease specificity and 

citrulline specificity of the anti-citrullinated histone H3 response in RA patients 

with peptide ELISAs as a potential method of choice. 

 

Currently, it is still not known whether ACPA are directly pathogenic or whether 

they contribute to local perpetuation of synovial inflammation. Assuming that 

ACPA indeed just enhance synovial inflammation, the continuous supply of 

citrullinated ACPA targets from newly recruited neutrophils would potentially 

provide an explanation for the persistence of B cell clones specific for 

citrullinated proteins in the inflamed synovium and the enrichment of ACPA in 

the SF compared to serum. 
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The main purpose of the immune system is to rapidly detect and destroy 

pathogens. Only when the pathogen is removed from the body can the immune 

response return to its homeostatic state which is essential to prevent 

development of chronic inflammation and subsequent tissue damage. In 

autoimmune diseases the immune system is directed against self-molecules 

and can ultimately fail to remove these autoantigens from the body so that 

subsequently the inflammation finally evolves into a chronic state. While 

autoantibody responses in some autoimmune diseases are well-characterised, 

the initiating triggers and source of autoantigens still remain largely unknown. In 

ACPA positive RA patients the generation of citrullinated autoantigens after 

protein deimination by PADs is a key stage in the autoimmune response (168). 

Nevertheless, the mechanisms behind the activation of PADs, as well as the 

sites and circumstances of citrullination of autoantigens in RA have remained 

unclear. In this thesis I have investigated whether neutrophils undergoing 

NETosis can contribute to the production of citrullinated autoantigens in RA 

patients. Using different experimental approaches NETosis was identified as a 

source of freely diffusible enzymatically active PADs as well as of citrullinated 

proteins. Moreover, I have provided evidence that isolated NETs are antigenic 

and have demonstrated a reactivity of RA patient sera with citrullinated 

histones, particularly with citrullinated histone H3. Altogether, these data 

suggest a central role for neutrophils in the generation of autoantigens in RA.  

 

Neutrophils are the most abundant cell type present in the SF of patients with 

RA (102,105), where they are found in an activated state producing ROS and 

releasing cytokines and proteases with cytotoxic potential (109,117,407,408). 
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Similar to what has been previously reported regarding the presence of NETs in 

infections (409), autoinflammatory conditions (339) and autoimmune diseases 

such as SLE (410) or ANCA vasculitis (33), the data presented here show that 

neutrophils undergo NETosis in the joints of patients with inflammatory arthritis 

and thereby release decondensed DNA. In agreement with a previous study by 

Khandpur and colleagues (120) extracellular DNA in RA joints was observed 

within neutrophil infiltrates attached to the surface of the synovial lining layer. In 

addition to these findings the presence of NETs on synovial fluid preparations 

was demonstrated. 

 

The data presented here indicate that extracellular DNA levels and neutrophil 

concentrations in the SF correlate with PAD activity in agreement with the 

proposition that PADs are released and activated as a result of NETosis in the 

joints of patients with RA while in SF from patients with OA minimal PAD activity 

was demonstrated. PAD enzymatic activity is regulated by calcium ions (47), 

indeed intracellular Ca2+ levels are below the level required for in vitro PAD 

activity, indicating further yet undefined regulatory mechanisms (411). Hence, in 

vitro PAD activity was initially measured at supraphysiological calcium 

concentrations. However, while the PAD activity measured in RA SF at 

physiological calcium concentrations was lower, it was still detectable with the 

ABAP assay used in this study and was significantly higher than in OA SF. This 

observation was also confirmed by others in a recent relatively small study 

using human fibrinogen as the substrate for PAD activity (412). In agreement 

with the data presented in this thesis, calcium concentrations in RA SF samples 

in that publication were found to be sufficient to support PAD activity. It can 
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therefore be concluded that the conditions for optimal activity in vitro differ from 

the conditions in vivo. In this regard, a recent study by Darrah et al. reported a 

mismatch between the in vitro and in vivo calcium requirements for PAD4 

activity and explained this by the presence of PAD3/PAD4 cross-reactive 

antibodies that may play a major role in decreasing the enzyme’s requirement 

for calcium into the physiologic range in vivo (369). Future studies are needed 

to identify the contribution of different isoenzymes to the overall PAD activity 

observed during NETosis and to investigate regulatory factors that might 

modulate enzymatic activity.  

As the assay used for measuring PAD activity does not distinguish between 

different PAD isoforms, a contribution to the total PAD activity by PAD2, PAD3 

and PAD4 is possible (411). Interestingly, mass spectrometry data did not 

identify any unique peptides matching PAD3 as being present in neutrophils. 

Identification of PAD isoforms that are responsible for the observed PAD activity 

is of interest as it was recently reported that different PAD enzymes display 

distinct substrate specificities (203) and could therefore lead to the citrullination 

of different autoantigens. 

Additionally, the mass spectrometry data shown here could demonstrate that 

PAD2 and PAD4 both diffuse freely into the supernatant during NETosis and 

also remain attached to the DNA/protein complex of the NETs. This finding is 

important since PADs that remained exclusively tethered to NETs, would 

potentially limit the role of neutrophil-derived PADs to the SF. The lack of a 

basement membrane and tight junctions in the synovial lining together with 

these results regarding freely diffusible PADs therefore suggest that freely 

diffusible PADs released from neutrophils within the SF could enter synovial 
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tissue and potentially contribute to the local production of autoantigens 

throughout the inflamed synovium (250). 

 

Though currently topical, the discovery of extracellular DNA in autoimmune 

diseases is not novel. Circulating nucleosomal DNA has been observed in 

patients with SLE (413), scleroderma, Sjögren syndrome and ANCA-associated 

vasculitis (414). DNA has also been found in the SF of RA patients (340,341). 

For many years, the presence of extracellular DNA in these diseases has been 

explained with clearance defects and secondary necrosis of apoptotic cells and 

linked to the pathogenesis of autoimmune diseases, particularly SLE (415). 

When studying cell death mechanisms, however, we must be aware that 

different cell death mechanisms are difficult to distinguish due to the lack of 

understanding of their complexity. In many publications at present, for example, 

the most widely accepted way to define necrosis has been to demonstrate the 

absence of apoptosis (416). Furthermore, since NETosis shares many features 

initially ascribed to apoptosis and necrosis in systemic autoimmunity, and since 

the exact signalling pathways inducing NETosis are not fully investigated yet 

(compare section 1.1.4.1), the discovery of NETs has added layers of more 

complexity. The data presented in this thesis cannot exclude the possibility of 

cells other than neutrophils contributing to the extracellular DNA levels, PAD 

activity and/or citrullination detected in the SF of RA patients. In addition, 

activation of other cell death mechanisms in neutrophils other than NETosis 

cannot entirely be ruled out. Intracellular citrullination was reported in several 

cell populations in the synovium (250,251) and in SF cells (53), and cell lysis 

induced by immune-mediated membranolytic pathways, for example, could 
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represent another source of PADs and citrullinated proteins (53). Furthermore, 

monocytes and macrophages can also be a source of PADs (195), and cells 

such as eosinophils, mast cells or macrophages can reportedly release their 

chromatin in a process related to NETosis (346). However, eosinophils and 

mast cells are present in relatively very low numbers in RA SF (417). Moreover, 

extracellular DNA levels in the SF showed no significant correlation with 

macrophage counts while there was a highly significant association between 

DNA levels and neutrophil numbers. In addition, comparison of neutrophils 

undergoing necrosis and NETosis showed that there is significantly less release 

of soluble extracellular DNA from necrotic neutrophils (411). This difference 

may be explained by the high level of nuclear decondensation during the 

process of NETosis. However, these results should be interpreted with caution 

as they may not reflect the true situation in the joints in vivo.  

 

While the role of NETs during infections was identified primarily as a process for 

the immobilisation of microbes (24,36,315), the reason for their release in 

autoimmune diseases remains less clear. NETs could theoretically be involved 

in the initiation of autoimmunity based on the concept of cryptic antigens 

originally proposed by Sercarz and colleagues (418). According to this 

hypothesis cryptic antigens that are otherwise located intracellularly and are not 

visible to the immune system could become exposed during NETosis and 

activate autoreactive lymphocytes. A further possibility is that NETs could 

contribute to the propagation of inflammation at a later stage of the 

inflammatory process after the breakdown of tolerance and thereby fuel the 

chronic inflammatory cycle by releasing cytotoxic proteins and autoantigens 
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(419,420). Interestingly, a large amount of NET-associated proteins are known 

autoantigens in systemic autoimmune diseases (21,66,315,361,419) (compare 

section 1.1.4.3) suggesting that autoantigens present in NETs may be targeted 

across the broad spectrum of different autoimmune diseases (361). Importantly, 

these autoantigens clearly differ from the ones exposed during apoptosis with a 

different range of post-translational modifications (PTMs). Nuclear autoantigens 

such as Ro, La and Sm have not been detected in NETs previously (419,421) 

and were also not identified in the experiments performed here. Additionally, 

PTMs of autoantigens that have been described in apoptotic cells, for example, 

phosphorylation or transglutamination (361,422) have also not been detected in 

NETs thus far. One exception with regard to PTMs appears, however, to exist 

with regard to methylation and acetylation. Similar to data previously reported in 

apoptotic cells (395,396) both PTMs were detected in a recent study in NETs 

(390) and a dimethlyated lysine residue in histone H3 was observed in the study 

presented here. Nevertheless, the induction of PTMs in NETs seems to be 

much more limited than in apoptosis. A further PTM in addition to methylation 

and acetylation has been described in NETosis: citrullination. While apoptotic 

cells have yet not been reported to generate citrullinated proteins (34), PAD4 

induced citrullination is known to be essential for NETosis (43,44,46). Indeed, 

the mass spectrometry data presented in this thesis has revealed a number of 

citrullinated proteins in NETs and among these were vimentin and MNDA which 

are already known autoantigens in RA (304,352,375). Furthermore, certain 

proteins including several peptides were identified which are already published 

as being present in the SF of patients with inflammatory arthritis (249,375,423) 

supporting the supposition that NETs are a possible source for these 
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citrullinated proteins. The view that NETosis contributes to citrullination in the 

joints of RA patients is also supported by data from De Rycke et al. who 

observed localisation of citrullinated proteins within extra-synovial deposits of 

polymorphonuclear cells on the surface of the lining layer in RA patients (248).  

 

To determine whether the citrullinated proteins released during NETosis could 

represent antigenic targets in RA patients, experimental approaches in this 

thesis, including immunoblotting and ELISAs using total proteins or cyclic 

peptides, were undertaken to narrow the broad range of possible candidates. In 

concordance with recently published work (398,400) a particularly prominent 

and consistent reactivity against citrullinated histones within NETs could be 

observed. Whereas Pratesi et al. identified a strong reactivity of RA patient sera 

with citrullinated histone H4 using peptide ELISA (400), Dwivedi and colleagues 

used ELISA with total histone proteins and found the strongest reactivity against 

citrullinated histone H3 with sera from patients with Felty’s syndrome and some 

reactivity with RA patient sera (398). In agreement with Pratesi and co-workers 

a strong reactivity of ACPA and RA patient sera with a citrullinated protein of the 

size of 11 kD in in vitro NETs was observed in this study. Notably, ACPA were 

also found to react with ex vivo NETs isolated from the SF of RA patients. In 

addition, similar to the data reported by Pratesi et al., some reactivity of RA 

patient sera with citrullinated histone H4 (400) on immunoblots was detected, 

however, a much stronger reactivity was observed with citrullinated H3. 

Moreover, no peptides from citrullinated H4 could be detected after in-gel 

digestion of 11 kD gel slices from NET fractions in the work presented here. 

Instead, peptides from citrullinated H3 were identified in the gel slices and a 
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reactivity of RA patient sera could be observed against these peptides. The 

number of citrullinated proteins identified with mass spectrometry is relatively 

small and the very rigorous validation process used to minimise false positives 

(as described in the Materials and Methods Chapter 2 and the Appendix 

Chapter 8) may have contributed to this. Further work therefore remains to be 

undertaken to ensure more consistency in the detection of citrullinated proteins 

using mass spectrometry analysis. Additional citrullinated antigens, such as, for 

example, autocitrullinated PAD4 have been identified by others and could 

(199,200) well be also generated during NETosis.  

 

One of the major questions in autoimmunity is why many autoantibodies are 

already generated before the onset of clinical symptoms and which role these 

autoantibodies play in the pathogenesis. ACPA can be found several years 

before onset of clinical symptoms (81) and ACPA positive RA patients generally 

develop a more severe disease (204,205). In addition, genetic susceptibility and 

environmental factors in RA are associated with autoimmunity to citrullinated 

proteins (210,211). Taken together, these observations suggest that ACPA are 

likely to be involved in the pathogenesis of RA (23) but that they on their own 

are not sufficient to cause disease. For this reason, we need to determine the 

answer to the question as to how exactly the pathogenesis in ACPA positive 

individuals differs from ACPA negative individuals as this would provide a major 

step forward in our understanding of the disease process. One possible 

mechanism as to how ACPA could contribute to an aggravation of disease was 

demonstrated in a recent study in which anti-citrullinated vimentin antibodies 

were able to directly interact with osteoclasts and induce osteoclastogenesis 
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and bone loss (312). Interesting in this context is also the finding that other 

autoantibodies such as ANCA in ANCA-associated vasculitides were shown to 

activate neutrophils in vitro (55), and are able to induce vasculitis in animal 

models (56,57). The exact mechanisms responsible for this activation, however, 

still remain to be characterised. A further possibility as to how ACPA may be 

involved in disease pathogenesis may depend on the formation of ICs and 

activation of the complement system. While neither the injection of NETs (390), 

nor of apoptotic or necrotic debris on their own have been shown to be able to 

induce inflammation in animal models (424–426), autoantibodies were found to 

convert cell debris into immunostimulatory ICs, which bind to Fc receptors on 

macrophages, neutrophils and B cells, leading to their activation (112,305,427). 

This effect may also be enhanced by the presence of RF, which was suggested 

to participate in forming ICs by crosslinking IgG (161,428). Indeed, data 

presented in this thesis suggest that PEG enriched ICs from SF of RA patients 

appear to have the potential to induce NETosis. Since the preliminary results in 

this study, however, were not able to show that this phenomenon is mediated 

through Fc receptors, additional molecules within NETs, such as damage-

associated molecular patterns (DAMPs) may contribute to the activation of 

immune cells through their binding to PRRs (429,430). To follow up on the 

findings reported here, it would therefore be interesting to investigate which 

mechanisms may contribute to the induction of NETosis in the SF of RA 

patients to potentially develop therapeutic compounds, which may inhibit the 

deleterious aspects triggered by NET released locally within the joints.  
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Several studies indicate that the absence of synovial inflammation (as 

determined histologically and by imaging) in individuals who have RA-specific 

autoantibodies and joint pain but no clinically apparent joint swelling (85,87,88), 

and therefore propose the concept that the initiating event leading to ACPA 

production is more likely to occur outside the joint. Recent findings of increased 

protein citrullination and ACPA enrichment in the lungs (431) or the 

periodontium (432) early after disease onset support this notion. Based on 

findings of NETs in inflamed gingiva (433) and lungs (342) it is possible that 

PAD release during NETosis contributes to generation of citrullinated proteins 

initiating the ACPA response at these sites. In addition, other mechanisms such 

as the generation of citrullinated peptide-MHC complexes in autophagosomes 

of APCs followed by the induction of autoimmunity are possible (434). The 

production of citrullinated proteins during NETosis in the joint is therefore 

unlikely to represent the original breakdown of immune tolerance to citrullinated 

proteins.  

Based on the work presented in this thesis and as illustrated in Figure 6-1, 

release of PADs from neutrophils in the joints of RA patients is more likely to 

represent a later event in the disease process where citrullinated proteins and 

pre-existing ACPA form pro-inflammatory immune complexes drive a 

continuous inflammatory response in the joints. This notion is also supported by 

the finding of significantly higher DNA levels in ACPA positive RA patients 

compared with ACPA negative RA patients. In this context a recent publication 

reporting that PAD4 is not essential for disease in the K/BxN murine 

autoantibody-mediated model of arthritis does not conflict with these 

observations, as this model does not depend upon autoimmunity to citrullinated 
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proteins (435). According to our proposed model (Figure 6-1), NETosis and the 

release of enzymatically active PADs in the SF of patients with inflammatory 

arthritis may, as has been described by Vossenaar et al., represent 'sparks that 

may ignite the fire of RA' (247). The continuous supply of citrullinated ACPA 

targets from newly recruited neutrophils could potentially provide an explanation 

for the persistence of B cell clones specific for citrullinated proteins in the 

inflamed synovium of RA patients (235) and the enrichment of ACPA in the SF 

compared to serum (352).  

 

Since the data presented in this thesis cannot prove a causal relationship 

between the observed neutrophil concentration and DNA levels and PAD 

activity in the SF, future investigations into different cell death mechanisms of 

neutrophils and other cells in RA patients is warranted. Furthermore studies in 

patients with other forms of autoimmune diseases, where cell death of 

neutrophils appears to play an essential role, may provide important insights 

into the role of these cells in autoimmunity. Assuming that neutrophils are cells 

that are particularly prone to die at the site of inflammation and expose 

autoantigens, the mechanisms of recruitment and activation in sterile 

inflammation requires further research with the aim of development of novel 

therapeutic interventions which antagonise their recruitment to the site of 

inflammation and modulate their death and clearance. 

Although NETs can be distinguished morphologically from other cell death 

mechanisms in vitro, further studies of signalling pathways and specific markers 

of NETosis would be useful to avoid difficulties in distinguishing NETosis from 

other modes of cell death in vivo. This may enable a much better understanding 
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of the in vivo pathogenic mechanisms relating to this process which occur within 

the joints of RA patients. 

Another aspect that would be interesting to address in future studies concerns 

the possibility that the composition of NETs may also change depending on the 

stimulus that is used for their induction. This has already been demonstrated for 

the total amount of NET proteins (12) and would be also interesting to explore 

with regard to citrullinated proteins. Currently, there are experiments under way 

in house which utilise a larger cohort of RA patients, disease and healthy 

control subjects to validate the preliminary ELISA results presented here, and to 

address the question as to which degree RA patient sera react with different 

citrulline-containing epitopes of histone H3.  

Although each serum sample from an RA patient has its own pattern of 

reactivity, many sera are known to react with more than just one citrullinated 

antigen (70,436). Recent studies have started to characterise the fine specificity 

and epitope spreading in RA patients with the aim to define ACPA reactivities 

predictive of a particular clinical phenotype and disease development 

(215,216,267,437,438). Likewise, it would be interesting to extend these studies 

by investigating a broader spectrum of reactivities and/or targets such as, for 

example, citrullinated histones. In this context it is interesting to highlight the 

fact that patients with the previously mentioned Felty's syndrome (FS), which is 

characterised by a severe arthritis and neutropenia, also seem to produce 

antibodies against citrullinated histones (398). FS has been reported to occur in 

1-3% of RA patients after an average of 10-15 years of arthritis (439,440) and it 

has been proposed to be a more aggressive form of RA (441). While 

preferential binding to citrullinated histones over non-citrullinated histones by 
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ELISA was found in the majority of sera from FS patients in the previously 

mentioned study by Dwivedi and colleagues (398), RA sera generally bound 

less avidly to histones and a smaller proportion of RA sera showed preference 

for citrullinated histones (398). It is tempting to speculate in this context that the 

existence of APCA fine specificities that are reactive against citrullinated 

histones before the onset of disease may predispose ACPA positive individuals 

to develop a more aggressive arthritis or certain clinical symptoms that are 

typically associated with FS patients. 
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Figure 6-1 Model of NETs as a source of PADs and citrullinated proteins in RA pathogenesis 

Upon activation of neutrophils by as yet unknown mechanisms, for example, DAMPs in 
combination with immune complexes, these cells undergo NETosis and release NETs 
decorated with citrullinated proteins such as citrullinated histone H3 (cit H3) (1.). In addition, 
NETosis may lead to the release of PAD enzymes, which are activated by the increased 
calcium levels in the extracellular space and generate citrullinated proteins (2.). In ACPA 
positive RA patients citrullinated proteins within NETs and/or citrullinated proteins that are 
generated in the extracellular space can be recognised by pre-existing ACPA that have entered 
the joints. These processes result in the formation of immune complexes and chronic 
inflammation. ACPA are believed to be generated at mucosal surfaces (f.ex. gingiva, the lungs 
or the gut) in individuals with a certain genetic background and upon exposure of certain 
environmental risk factors under inflammatory conditions and/or tissue damage.  
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8.1 Patient clinical data 

 
Table 8-1 Clinical data for RA patients  

Synovial fluid samples from these patients were used for experiments described in Chapter 3, 
Chapter 4 and Chapter 5. Erythrocyte Sedimentation Rate (ESR), C Reactive Protein (CRP), 
Rheumatoid Factor (RF), Cyclic Citrullinated Peptide Antibody (CCP), Tender Joint Count 28 
(TJC), Swollen Joint Count 28 (SJC), Disease Activity Score 28 (DAS28), data not available 
(NA). 

 
Table 8-2 Clinical data for PsA patients 

Synovial fluid samples from these patients were used for experiments described in Chapter 3, 
Chapter 4 and Chapter 5. Erythrocyte Sedimentation Rate (ESR), C Reactive Protein (CRP), 
Rheumatoid Factor (RF), Cyclic Citrullinated Peptide Antibody (CCP), Tender Joint Count 28 
(TJC), Swollen Joint Count 28 (SJC), Disease Activity Score 28 (DAS28), data not available 
(NA). 

Gender Age (yrs)

Disease 

duration (yrs)

Rheumatoid 

factor (value) ACPA (value) TJC (28) SJC (28) ESR CRP DAS 28 ESR Medication

1 f 52 NA 58.1 261 20 8 26 52 NA NSAID

2 m 67 1 128 96 1 1 29 48 4.23 nil

3 f 65 4 148 6.8 7 4 41 10 5.62 MTX, SSZ, HCQ, RTX

4 m 85 4 13.4 >340 3 1 na 138 NA SSZ, prednisolone

5 m 65 3 713 231 3 12 72 81 5.33 nil

6 m 42 6 <11 NA 4 3 27 95 5.00 SSZ, MTX, prednisolone, TCZ

7 m 58 2 50.8 >340 18 6 46 22 6.86 nil

8 m 42 6 5120 NA 2 2 7 23 3.45 MTX, prednisolone, RTX

9 f 65 4 148 6.8 15 4 72 33 6.51 SSZ, HCQ, MTX, RTX

10 m 43 7 5120 NA 2 13 31 64 5.40 MTX, prednisolone, RTX

11 f 72 3 NA 0.7 1 2 31 0 3.65 MTX, HCQ, etanercept

12 m 82 1 NA >340 21 12 76 31 7.88 prednisolone, adalimumab

13 m 50 2 12.3 5 13 16 117 184 7.52 MTX, SSZ, etanercept

14 f 35 1 100 100 8 11 23 4 6.11 MTX 

15 f 26 1 47 71 3 3 25 8 3.71 MTX

16 f 43 10 343 NA 3 1 44 0 4.86 leflunomide, HCQ

17 m 72 27 61.4 >340 22 5 16 51 5.85 MTX

18 f 44 6 1in128 261 5 1 37 16 4.06 etanercept, MTX, prednisolone

19 f 57 1 0 1 5 5 28 20 5.33 nil

20 f 61 11 NA 54 9 9 21 27 4.65 diclofenac

21 f 56 12 61.7 >340 3 3 23 0 4.91 cimzia, HCQ

22 f 58 8 80 >340 6 5 124 99 6.70 MTX

23 f 47 0 140 91 10 7 34 17 6.24 ibuprofen

24 f 82 8 31.2 <7 26 7 11 0 6.67 HCQ, prednisolone TCZ

25 f 76 12 476 272 2 2 NA NA NA leflunomide

26 f 70 7 24.7 >340 19 12 NA 56 NA MTX

27 f 62 10 27.2 71 28 10 46 108 7.84 MTX, prednisolone, nabumetone

28 f 75 24 NA NA 7 6 18 7 4.19 MTX

29 m 71 16 661 188 1 1 NA NA NA MTX, HCQ, etanercept

30 f 56 0 22 58 9 3 48 47 5.92 naproxen

31 f 57 1 37.7 NA 3 2 68 55 4.46 HCQ, MTX, prednisolone

32 m 54 1 583 >340 5 7 NA <5 NA MTX, prednisolone

33 f 48 2 417 >340 11 7 70 22 5.41 MTX, HCQ, 

34 f 59 24 NA NA 1 5 18 3 4.19 etanercept

35 f 32 13 <11 2.1 1 1 17 17 3.48 MTX, HCQ, prednisolone, RTX

36 m 61 5 338 33 7 7 30 21 5.58 prednisolone, leflunomide

37 f 50 1 48 340 3 3 49 64 5.19 HCQ

38 f 58 0 57 52 2 2 43 11 5.08 ibuprofen

39 f 77 3 NA 84 5 5 19 5 4.64 SSZ, HCQ

40 f 23 0 15 1 12 5 3 16 4.39 nil

41 f 56 6 324 100 9 7 NA 58 NA MTX, SSZ

42 f 51 3 0 1.8 6 2 26 19 5.03 MTX, SSZ, HCQ

43 m 60 0 0 1 3 3 10 5 3.77 ibuprofen

44 f 58 3 0 1 1 1 NA 8 NA MTX, HCQ

45 f 64 18 NA 34 6 1 8 2 4.10 MTX

46 m 71 2 14.7 >340 2 1 16 9 3.29 MTX HCQ 

47 m 72 NA 661 188 NA NA 13 3 NA MTX, HLQ, etanercept 

48 f 49 7 780 180 10 10 48 58 NA prednisolone

49 f 40 9 <11 117 NA NA 24 12 NA MTX

50 f 52 3 524 359 14 10 34 13 6.54 NA

51 f 33 2 1211 >340 8 6 48 15 5.90 ibuprofen, loratidine 

52 f 42 11 <11 1.3 5 2 52 77 5.62 MTX, etanercept 

53 m 62 NA 66 186 NA NA NA NA NA etanercept, alendronic acid, prednisolone

Gender Age (yrs)

Disease 

duration (yrs)

Rheumatoid 

factor (value) ACPA (value) TJC (28) SJC (28) ESR CRP DAS 28 ESR Medication

1 f 44 NA NA NA 1 1 NA NA NA nil

2 f 26 1 <11 1.3 4 2 100 25 5.90 SSZ, ibuprofen

3 m 51 21 NA NA 1 1 8 3 3.00 etanercept

4 m 46 NA <11 1 4 1 5 <5 2.85 NA

5 m 43 NA <11 1.5 2 2 2 10 2 etanercept, prednisolone

6 f 43 19 NA NA 1 1 6 9 2.09 MTX, infliximab

7 m 31 10 NA NA 2 4 2 0 2.26 adalimumab 

8 m 58 NA NA NA NA NA NA NA NA MTX

9 m 39 5 NA NA NA NA 6 NA NA MTX

10 m 58 9 NA 3 3 NA NA NA NA MTX

11 f 41 7 NA NA NA NA 3 NA NA topical steroids

12 m 44 NA <11 1.5 2 2 10 10 2.9 etanercept



239 
 

 

 

 

 
8.2 Quantitative proteomics data on the protein 

composition in the supernatant of cells going into 
NETosis 

 

Pellets from the D (+DNase-I, alias "NET fractions") and SN supernatant 

fractions isolated from 7 patients were cleaned using acetone precipitation and 

resuspended in 2 % SDS. The protein concentrations were determined by the 

Pierce BCA protein assay kit (Thermo Fisher, USA).  10 µg of each sample 

were reduced, alkylated and digested in-solution according to Ytterberg et al. 

2006 (442). After zip tipping (Merck Millipore Ltd, Irland), 1 µg of each sample 

 
Table 8-3 Clinical data for OA patients 

Synovial fluid samples from these patients were used for experiments described in Chapter 
3. 

 

 
Table 8-4 Clinical data for OA patients 

Synovial fluid samples from these patients were used for experiments described in Chapter 
4. 

Gender Age (yrs) BMI (Scales) Hip:Waist Height (cm) Weight (kg) Waist (cm) Hip (cm) Fat % systolic BP diastolic BP

1 m 50 31.3 1.06 179 100.4 116 109 30.1 131 87

2 f 65 22.6 0.83 161.5 58.7 81 98 33.6 120 62

3 f 64 20.3 0.70 172 60.1 66 94 30.1 177 99

4 m 68 21.2 0.90 186 73.4 94 104 18.7 159 102

5 f 44 33.1 0.88 174 100.1 105 119 46.3 123 75

6 m 70 34.4 1.05 176.5 107.3 118 112 34.4 171 88

7 m 71 27 0.88 173 80.7 95 108 28 139 88

8 f 53 43.7 0.74 150 105.1 102 137 45.8 130 73

9 m 65 21.4 0.87 182.5 71.800 86 99 18.6 119 66

10 f 53 29.3 0.82 164 78.8 93 114 41.5 146 94

11 f 52 25.7 0.80 160 65.75 80 100 35.7 110 59

12 f 54 29.9 0.89 169 85.5 104 117 42.8 122 68

13 m 66 23.4 0.90 175 72.1 94 104 21.4 136 76

14 f 67 32.5 0.96 164 87.5 110 114 45.6 152 83

15 m 64 24.9 0.97 170 72.1 96 99 25.6 129 85

Gender Age BMI (Scales) Hip:Waist Height (cm) Weight (kg) Waist (cm) Hip (cm) Fat % systolic BP diastolic BP

1 f 53 28.9 0.79 167 80.5 88 111 44.2 120 76

2 f 63 29.2 0.83 155 70.2 95 115 45.2 153 81

3 f 71 30.7 0.88 163 81.6 101 115 44.5 140 75

4 f 50 43.1 0.92 161 111.8 47 51 49.2 137 80

5 f 44 33.1 0.88 174 100.1 105 119 46.3 123 75
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was separated using C18 RP columns coupled on-line to an LC-MS/MS. The 

chromatographic separation was achieved using an ACN/water solvent system 

containing 0.1 % formic acid. The gradient was set up as following: 3−35 % 

ACN in 89 min, 35−95 % ACN in 5 min and 95 % ACN for 8 min all at a flow 

rate of 300 nl/min. The samples from 4 patients were analyzed by LTQ Orbitrap 

Velos ETD and 3 by Q Exactive MS (Thermo Fisher Scientific, Germany). The 

spectra were acquired on the Velos with a resolution of 60,000 in MS mode, 

and the top 5 precursors were selected for fragmentation using CID. The 

spectra on the Q Exactive were acquired with a resolution of 70,000 in MS 

mode, and the top 10 precursors were selected for HCD fragmentation with a 

resolution of 17,000. 

The data acquired using the Velos and the Q Exactive were quantified in 

separate analyses. Mass lists were extracted from the raw data using 

Raw2MGF v2.1.3 and combined into one file using Cluster MGF v2.1.1, 

programs part of the Quanti work flow (319). The data was searched against a 

concatenated version of the human complete proteome database (2013/4) 

using the Mascot search engine v2.4.1 (Matrix Science Ltd., London, UK). The 

following parameters were used: tryptic digestion (max 2 miscleavages); 

carbamethylation (C) as fixed modification; oxidation (M), pyroglutamate (Q) as 

variable modifications; 5 ppm as precursor tolerance; 0.25 Da (Velos) or 0.01 

Da (Q Exactive) as fragment tolerance. The threshold for 2% FDR was 

calculated to a peptide score of 22.80 (Velos) and 13.97 (Q Exactive). The 

quantification was done using the Quanti work flow, which is a quantification 

software based on extracted ion chromatograms.(319) In short, after searching 

the combined mgf against the human complete proteome, the resulting dat file 

and the 6 respectively 8 raw files (representing D and SN fractions from 3 

respectively 4 patients) were uploaded into Quanti v2.5.4.3. The following 

parameters were used: score threshold 20.8 (Velos) or 13.97 (Q Exactive); 

mass tolerance 10 ppm; minimum peptides/protein 2; maximum allowed 

deviation in retention time 3% or 5 min; rt order 50 (Velos) or 70 (Q Exactive); 

only “charge deconvolution” and “use best mascot peptide” were used. The 

quantitative values were further processed by multiplying the values with the 

reference abundance and normalizing each sample to the median of the 

summed intensities for all the samples. The values were finally log 10 
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transformed. p-values were calculated using Student’s t-test and expectation 

values were calculated by multiplying the p-values with the number of 

observations. Prior normalisation, the serum albumin and keratins were 

removed. 
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8.2.1 Proteins enriched in the NET (D) fraction 

Data were analysed using 

268 proteins from 3 matched D/SN samples were quantified using 1%FDR and 2 peptides per 
protein. Abundance of proteins in D compared to SN was calculated using t-test (cut-off 
p<0.05). 14 proteins were found to be enriched in all 3 matched samples. 

 

 List of enriched proteins in D (DNase-I treated NET fraction) fraction 

Histone 4 (p=0.015)

Neutrophil elastase (p=0.0026)

Histone 2B type 2-E (p=0.016)

A B 
Histone 2A (fragment) (p=0.0030) Histone 2A type 3 (p=0.0041)

C D 

Histone 2B (p=0.014)
E 

Azurocidin (p=0.0025)
F 

Cathepsin G (p=0.0041)
G 

Myeloperoxidase (p=0.0024)
H 

I 
MNDA (p=0.0017)

J Eosinophil cationic 
protein (p=0.0085)

K 
Complement C3 (p=0.047)

L 

Keratin, type I cytoskeletal 10 
(p=0.044)

M 
Non-secretory ribonuclease
(p=0.049)

N 

Figure 8-1 Enriched proteins in D (DNase-I treated NET fraction) fraction 
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8.2.2 Total list of proteins quantified in SN and NET 

fraction 

 

Quantitative comparison of protein levels in supernatants and NETs

PROTEIN ID DESCRIPTION PROTEIN IDs log2(D/SN) P (D vs SN) E (n = 294) PROTEIN ID DESCRIPTION PROTEIN IDs log2(D/SN) P (D vs SN) E (n =555)

PADI2_HUMAN Protein-arginine deiminase type-2 
PADI2_HUMAN;B4DIU3_HUMAN;Q

96DA7_HUMAN
-2.26 7.50E-03 2.44E+00 PADI2_HUMAN Protein-arginine deiminase type-2 

PADI2_HUMAN;B4DIU3_HUMAN;

Q96DA7_HUMAN
-4.94 1.58E-02 8.77E+00

PADI4_HUMAN Protein-arginine deiminase type-4 
PADI4_HUMAN;KI26B_HUMAN;B7

WPD9_HUMAN
2.60 5.38E-03 1.75E+00 PADI4_HUMAN Protein-arginine deiminase type-4 

PADI3_HUMAN;PADI4_HUMAN;KI

26B_HUMAN;B7WPD9_HUMAN
3.91 2.59E-01 1.44E+02

1433B_HUMAN 14-3-3 protein beta/alpha 
1433B_HUMAN;Q4VY19_HUMAN;

Q4VY20_HUMAN
-2.74 4.78E-03 1.56E+00 1433B_HUMAN 14-3-3 protein beta/alpha 

1433B_HUMAN;Q4VY19_HUMAN;

Q4VY20_HUMAN
-1.11 6.98E-01 3.87E+02

1433E_HUMAN 14-3-3 protein epsilon 
1433E_HUMAN;K7EM20_HUMAN;

K7EIT4_HUMAN
-3.91 1.54E-03 5.02E-01 1433E_HUMAN 14-3-3 protein epsilon 

1433E_HUMAN;K7EM20_HUMAN;

B4DJF2_HUMAN;I3L3T1_HUMAN;

K7EIT4_HUMAN

-2.74 1.78E-01 9.90E+01

1433G_HUMAN 14-3-3 protein gamma 1433G_HUMAN 13.05 2.16E-03 7.05E-01 1433G_HUMAN 14-3-3 protein gamma 1433G_HUMAN -2.06 5.64E-01 3.13E+02

1433T_HUMAN 14-3-3 protein theta 1433T_HUMAN;E9PG15_HUMAN -4.70 1.76E-04 5.73E-02 1433T_HUMAN 14-3-3 protein theta 1433T_HUMAN;E9PG15_HUMAN -0.04 6.09E-01 3.38E+02

1433Z_HUMAN 14-3-3 protein zeta/delta 

1433Z_HUMAN;E5RGE1_HUMAN;E

7EVZ2_HUMAN;E7ESK7_HUMAN;E

7EX29_HUMAN;E5RIR4_HUMAN;E

9PD24_HUMAN;B7Z2E6_HUMAN;B

0AZS6_HUMAN;E7EX24_HUMAN;H

0YB80_HUMAN

-3.40 6.25E-04 2.04E-01 1433Z_HUMAN 14-3-3 protein zeta/delta 

1433Z_HUMAN;B0AZS6_HUMAN;

E7EVZ2_HUMAN;E7ESK7_HUMAN;

E7EX29_HUMAN;E9PD24_HUMAN

;B7Z2E6_HUMAN;E7EX24_HUMA

N;H0YB80_HUMAN;E5RGE1_HUM

AN;E5RIR4_HUMAN

-3.86 1.68E-01 9.32E+01

6PGL_HUMAN 6-phosphogluconolactonase 
6PGL_HUMAN;M0R1L2_HUMAN;M

0R261_HUMAN;M0R0U3_HUMAN
-5.87 9.08E-03 2.96E+00 6PGL_HUMAN 6-phosphogluconolactonase 

6PGL_HUMAN;M0R261_HUMAN;

M0R0U3_HUMAN;M0R1L2_HUM

AN

-5.07 1.01E-02 5.58E+00

A1AG1_HUMAN Alpha-1-acid glycoprotein 1 A1AG1_HUMAN;A1AG2_HUMAN -0.53 8.41E-01 2.74E+02 A1AG1_HUMAN Alpha-1-acid glycoprotein 1 A1AG1_HUMAN -0.82 2.29E-01 1.27E+02

A1AT_HUMAN Alpha-1-antitrypsin 

A1AT_HUMAN;G3V5R8_HUMAN;G

3V544_HUMAN;G3V387_HUMAN;

G3V2B9_HUMAN

-3.30 3.68E-03 1.20E+00 A1AT_HUMAN Alpha-1-antitrypsin 

A1AT_HUMAN;G3V2B9_HUMAN;G

3V544_HUMAN;G3V5R8_HUMAN;

G3V387_HUMAN;REVERSED_DYH

10_HUMAN

-4.37 1.42E-02 7.86E+00

A6NG51_HUMAN
Spectrin alpha chain, non-erythrocytic 

1 
SPTN1_HUMAN;A6NG51_HUMAN -3.12 9.55E-07 3.11E-04 A6NG51_HUMAN

Spectrin alpha chain, non-erythrocytic 

1 
SPTN1_HUMAN;A6NG51_HUMAN -3.63 2.21E-02 1.23E+01

A6NKB8_HUMAN Aminopeptidase B 
AMPB_HUMAN;A6NKB8_HUMAN;C

9JMZ3_HUMAN;H7C2T3_HUMAN
-3.19 1.42E-02 4.63E+00 A6NKB8_HUMAN Aminopeptidase B 

AMPB_HUMAN;A6NKB8_HUMAN;

C9JMZ3_HUMAN;H7C2T3_HUMA

N

-2.25 5.38E-03 2.99E+00

A6PW80_HUMAN Elongation factor 1-alpha 1 (Fragment) 

EF1A1_HUMAN;EF1A3_HUMAN;Q5

JR01_HUMAN;A6PW80_HUMAN;EF

1A2_HUMAN

-2.97 1.66E-02 5.42E+00 EF1A3_HUMAN
Putative elongation factor 1-alpha-like 

3 

EF1A1_HUMAN;EF1A2_HUMAN;EF

1A3_HUMAN;Q5JR01_HUMAN;A6

PW80_HUMAN

-1.82 7.98E-02 4.43E+01

A8MU27_HUMAN Small ubiquitin-related modifier 3 

SUMO2_HUMAN;SUMO3_HUMAN;

A8MUA9_HUMAN;J3KRH1_HUMAN

;A8MU27_HUMAN;SUMO4_HUMA

N;B4DUW4_HUMAN;H7BZT4_HUM

AN

-4.88 8.98E-03 2.93E+00 A8MU27_HUMAN Small ubiquitin-related modifier 3 

SUMO2_HUMAN;SUMO3_HUMAN

;SUMO4_HUMAN;A8MUA9_HUM

AN;B4DUW4_HUMAN;A8MU27_H

UMAN;H7BZT4_HUMAN;J3KRH1_

HUMAN

-0.96 6.90E-02 3.83E+01

A8MYE6_HUMAN Integrin beta ITB2_HUMAN;A8MYE6_HUMAN -2.98 1.39E-02 4.53E+00 ITB2_HUMAN Integrin beta-2 

ITB2_HUMAN;J3KNI6_HUMAN;E7

EVZ9_HUMAN;ITB7_HUMAN;F5H6

T4_HUMAN;A8MYE6_HUMAN;E5R

K25_HUMAN;E5RIG7_HUMAN

-2.11 1.33E-01 7.39E+01

ACTC_HUMAN Actin, alpha cardiac muscle 1 

ACTA_HUMAN;ACTC_HUMAN;ACTH

_HUMAN;ACTS_HUMAN;C9JFL5_HU

MAN;F6UVQ4_HUMAN;A6NL76_H

UMAN;F6QUT6_HUMAN;Q5T8M8_

HUMAN;Q5T8M7_HUMAN

-2.05 9.99E-02 3.26E+01 ACTS_HUMAN Actin, alpha skeletal muscle 

ACTC_HUMAN;ACTS_HUMAN;A6N

L76_HUMAN;Q5T8M8_HUMAN;A

CTA_HUMAN;ACTH_HUMAN;C9JFL

5_HUMAN;F6UVQ4_HUMAN;F6Q

UT6_HUMAN

-3.66 1.07E-01 5.92E+01

ACTG_HUMAN Actin, cytoplasmic 2 

ACTB_HUMAN;ACTG_HUMAN;I3L3I

4_HUMAN;POTEE_HUMAN;I3L4N8

_HUMAN;ACTBM_HUMAN;POTEF_

HUMAN;POTEI_HUMAN;POTEJ_HU

MAN;I3L1U9_HUMAN;I3L3I0_HUM

AN;G5E9R0_HUMAN;K7EM38_HU

MAN;J3KT65_HUMAN;I3L3R2_HU

MAN;E7EVS6_HUMAN;ACTBL_HUM

AN

-1.57 9.74E-03 3.18E+00 ACTG_HUMAN Actin, cytoplasmic 2 

ACTB_HUMAN;ACTG_HUMAN;I3L3

I4_HUMAN;I3L1U9_HUMAN;I3L4

N8_HUMAN;I3L3I0_HUMAN;ACTB

M_HUMAN;POTEE_HUMAN;POTEF

_HUMAN;POTEI_HUMAN;POTEJ_H

UMAN;G5E9R0_HUMAN;K7EM38_

HUMAN;J3KT65_HUMAN;I3L3R2_

HUMAN;E7EVS6_HUMAN;ACTBL_H

UMAN

-1.04 1.53E-01 8.50E+01

ACTN1_HUMAN Alpha-actinin-1 

ACTN1_HUMAN;B7TY16_HUMAN;H

9KV75_HUMAN;H0YJW3_HUMAN;

G3V2N5_HUMAN;G3V2W4_HUMA

N;H7C5W8_HUMAN;G3V380_HUM

AN;G3V5M4_HUMAN;G3V2X9_HU

MAN;H0YJ11_HUMAN

-4.89 2.28E-03 7.43E-01 ACTN1_HUMAN Alpha-actinin-1 

ACTN1_HUMAN;B7TY16_HUMAN;

H7C5W8_HUMAN;H9KV75_HUM

AN;G3V2N5_HUMAN;G3V2W4_H

UMAN;G3V2X9_HUMAN;H0YJW3_

HUMAN;H0YJ11_HUMAN;G3V380

_HUMAN;G3V5M4_HUMAN;REVE

RSED_RHDF1_HUMAN;REVERSED_

Q4TT58_HUMAN;REVERSED_B8ZZ

07_HUMAN;REVERSED_A2IDA2_H

UMAN;REVERSED_F8WCF7_HUMA

N;REVERSED_F5GWL4_HUMAN;RE

VERSED_F8WBS4_HUMAN

-4.41 2.05E-02 1.14E+01

ACTN4_HUMAN Alpha-actinin-4 

ACTN4_HUMAN;D6PXK4_HUMAN;

H7C144_HUMAN;F5GXS2_HUMAN;

K7EP19_HUMAN;K7EJH8_HUMAN

-4.72 3.62E-03 1.18E+00 ACTN4_HUMAN Alpha-actinin-4 

ACTN4_HUMAN;D6PXK4_HUMAN;

F5GXS2_HUMAN;H7C144_HUMA

N;K7EJH8_HUMAN;K7EP19_HUM

AN

-3.21 2.00E-02 1.11E+01

ALDOA_HUMAN Fructose-bisphosphate aldolase A 

ALDOA_HUMAN;J3KPS3_HUMAN;H

3BQN4_HUMAN;H3BPS8_HUMAN;

H3BUH7_HUMAN;H3BR04_HUMA

N;H3BMQ8_HUMAN;H3BU78_HU

MAN;H3BR68_HUMAN

-4.22 1.18E-04 3.83E-02 ALDOA_HUMAN Fructose-bisphosphate aldolase A 

ALDOA_HUMAN;J3KPS3_HUMAN;

H3BQN4_HUMAN;H3BPS8_HUMA

N;H3BUH7_HUMAN;H3BR68_HU

MAN;H3BU78_HUMAN;H3BR04_H

UMAN;H3BMQ8_HUMAN

-2.16 1.36E-02 7.56E+00

ALDOC_HUMAN Fructose-bisphosphate aldolase C 

ALDOC_HUMAN;J3KSV6_HUMAN;J

3QKP5_HUMAN;K7EKH5_HUMAN;

A8MVZ9_HUMAN;C9J8F3_HUMAN;

J3QKK1_HUMAN

-3.36 2.44E-03 7.96E-01 ALDOC_HUMAN Fructose-bisphosphate aldolase C 

ALDOC_HUMAN;J3KSV6_HUMAN;

C9J8F3_HUMAN;J3QKK1_HUMAN;

J3QKP5_HUMAN;K7EKH5_HUMA

N;A8MVZ9_HUMAN

-2.61 5.32E-02 2.95E+01

ANXA1_HUMAN Annexin A1 
ANXA1_HUMAN;Q5T3N1_HUMAN;

Q5T3N0_HUMAN
-0.08 5.49E-01 1.79E+02 ANXA1_HUMAN Annexin A1 

ANXA1_HUMAN;Q5T3N1_HUMAN

;Q5T3N0_HUMAN
1.32 3.96E-01 2.20E+02

ANXA3_HUMAN Annexin A3 

ANXA3_HUMAN;D6RA82_HUMAN;

D6RFG5_HUMAN;D6RCA8_HUMAN

;D6RAZ8_HUMAN;D6RFJ9_HUMAN

-1.98 2.03E-02 6.62E+00 ANXA3_HUMAN Annexin A3 

ANXA3_HUMAN;D6RA82_HUMAN;

D6RFG5_HUMAN;D6RAZ8_HUMA

N;D6RCA8_HUMAN;D6RFJ9_HUM

AN

-1.76 6.74E-01 3.74E+02

APEX1_HUMAN
DNA-(apurinic or apyrimidinic site) 

lyase 

APEX1_HUMAN;G3V3M6_HUMAN;

G3V5Q1_HUMAN;G3V574_HUMA

N;G3V5M0_HUMAN;G3V3C7_HUM

AN;G3V5D9_HUMAN;G3V359_HU

MAN;H7C4A8_HUMAN

-2.30 2.21E-02 7.20E+00 APEX1_HUMAN
DNA-(apurinic or apyrimidinic site) 

lyase 

APEX1_HUMAN;G3V3M6_HUMAN

;G3V5Q1_HUMAN;G3V574_HUM

AN;H7C4A8_HUMAN;G3V5M0_HU

MAN;G3V3Y6_HUMAN;G3V3C7_H

UMAN;G3V5D9_HUMAN;G3V359_

HUMAN

-3.35 2.33E-02 1.29E+01

APT_HUMAN Adenine phosphoribosyltransferase 

APT_HUMAN;H3BQZ9_HUMAN;H3

BQB1_HUMAN;H3BQF1_HUMAN;H

3BSW3_HUMAN

-0.21 9.49E-01 3.09E+02 H3BQF1_HUMAN
Adenine phosphoribosyltransferase 

(Fragment) 

APT_HUMAN;H3BSW3_HUMAN;H

3BQB1_HUMAN;H3BQZ9_HUMAN

;H3BQF1_HUMAN

-1.71 3.30E-01 1.83E+02

ARC1B_HUMAN
Actin-related protein 2/3 complex 

subunit 1B 

ARC1B_HUMAN;F8WCG3_HUMAN;

ARC1A_HUMAN;B4DLQ7_HUMAN;E

9PF58_HUMAN;C9JQM8_HUMAN;

C9J4Z7_HUMAN;C9JTT6_HUMAN;C

9J6C8_HUMAN;C9JFG9_HUMAN;C

9K057_HUMAN;C9JBJ7_HUMAN;C

9JEY1_HUMAN

-4.48 7.16E-03 2.33E+00 ARC1B_HUMAN
Actin-related protein 2/3 complex 

subunit 1B 

ARC1B_HUMAN;F8WCG3_HUMAN

;C9JQM8_HUMAN;C9J4Z7_HUMA

N;C9JTT6_HUMAN;C9J6C8_HUMA

N;C9JFG9_HUMAN;C9K057_HUM

AN;C9JBJ7_HUMAN;C9JEY1_HUM

AN;ARC1A_HUMAN;B4DLQ7_HUM

AN;E9PF58_HUMAN

-3.74 1.46E-02 8.10E+00

ARGI1_HUMAN Arginase-1 ARGI1_HUMAN -4.66 1.14E-03 3.71E-01 ARGI1_HUMAN Arginase-1 ARGI1_HUMAN -4.12 1.33E-02 7.41E+00

ARP2_HUMAN Actin-related protein 2 ARP2_HUMAN;F5H6T1_HUMAN -4.49 1.32E-03 4.32E-01 ARP2_HUMAN Actin-related protein 2 ARP2_HUMAN;F5H6T1_HUMAN -3.90 2.32E-02 1.29E+01

ARP3_HUMAN Actin-related protein 3 

ARP3_HUMAN;B4DXW1_HUMAN;F

5H3P5_HUMAN;ARP3B_HUMAN;F8

WEW2_HUMAN;F8WE84_HUMAN;

ARP3C_HUMAN;C9IZN3_HUMAN;H

7C4J1_HUMAN

-4.92 1.71E-05 5.57E-03 ARP3_HUMAN Actin-related protein 3 

ARP3_HUMAN;B4DXW1_HUMAN;

F5H3P5_HUMAN;ARP3B_HUMAN;

F8WEW2_HUMAN;F8WE84_HUM

AN;ARP3C_HUMAN;C9IZN3_HUM

AN;H7C4J1_HUMAN

-3.97 1.26E-02 6.97E+00

ARPC2_HUMAN
Actin-related protein 2/3 complex 

subunit 2 

ARPC2_HUMAN;H7C3F9_HUMAN;

G5E9J0_HUMAN;C9JTV5_HUMAN;

G5E9S7_HUMAN

-4.81 2.22E-04 7.23E-02 ARPC2_HUMAN
Actin-related protein 2/3 complex 

subunit 2 

ARPC2_HUMAN;H7C3F9_HUMAN;

G5E9J0_HUMAN;G5E9S7_HUMAN

;C9JTV5_HUMAN

-4.49 3.79E-02 2.10E+01

ARPC3_HUMAN
Actin-related protein 2/3 complex 

subunit 3 

ARPC3_HUMAN;C9JZD1_HUMAN;F

8VR50_HUMAN
-5.37 7.91E-05 2.58E-02 ARPC3_HUMAN

Actin-related protein 2/3 complex 

subunit 3 

ARPC3_HUMAN;C9JZD1_HUMAN;

F8VR50_HUMAN
-5.30 1.38E-01 7.64E+01
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ARPC5_HUMAN
Actin-related protein 2/3 complex 

subunit 5 
ARPC5_HUMAN;B1ALC0_HUMAN -3.80 6.04E-04 1.97E-01 ARPC5_HUMAN

Actin-related protein 2/3 complex 

subunit 5 

ARPC5_HUMAN;B1ALC0_HUMAN;

ARP5L_HUMAN
-3.73 1.22E-01 6.75E+01

ASC_HUMAN
Apoptosis-associated speck-like protein 

containing a CARD 
ASC_HUMAN;H3BP42_HUMAN -5.13 1.94E-05 6.34E-03 ASC_HUMAN

Apoptosis-associated speck-like 

protein containing a CARD 
ASC_HUMAN;H3BP42_HUMAN -0.27 5.80E-01 3.22E+02

B0V0T3_HUMAN Proteasome subunit beta type 

PSB9_HUMAN;A2ACR1_HUMAN;B0

V0T3_HUMAN;A2ACR0_HUMAN;B0

V0T2_HUMAN

-3.52 1.44E-04 4.71E-02 A2ACR1_HUMAN Proteasome subunit beta type 

PSB9_HUMAN;A2ACR1_HUMAN;B

0V0T3_HUMAN;A2ACR0_HUMAN;

B0V0T2_HUMAN

-0.70 2.59E-01 1.44E+02

B0YJC4_HUMAN Vimentin 

VIME_HUMAN;B0YJC4_HUMAN;B0

YJC5_HUMAN;Q5JVS8_HUMAN;PER

I_HUMAN;H7C5W5_HUMAN;DESM

_HUMAN;GFAP_HUMAN;K7EKH6_H

UMAN;E9PAX3_HUMAN

-4.19 6.97E-04 2.27E-01 B0YJC4_HUMAN Vimentin 

PERI_HUMAN;VIME_HUMAN;B0YJ

C4_HUMAN;B0YJC5_HUMAN;Q5JV

S8_HUMAN;H7C5W5_HUMAN;GF

AP_HUMAN;K7EKH6_HUMAN;E9P

AX3_HUMAN

-5.40 1.75E-01 9.71E+01

B1AHC9_HUMAN
X-ray repair cross-complementing 

protein 6 

XRCC6_HUMAN;B1AHC9_HUMAN;

B1AHC8_HUMAN;F5H1I8_HUMAN
0.56 3.14E-01 1.02E+02 B1AHC9_HUMAN

X-ray repair cross-complementing 

protein 6 

XRCC6_HUMAN;B1AHC8_HUMAN;

B1AHC9_HUMAN;F5H1I8_HUMAN
-2.75 5.75E-02 3.19E+01

B1AK88_HUMAN
Capping protein (Actin fi lament) muscle 

Z-line, beta, isoform CRA_d 

CAPZB_HUMAN;B1AK87_HUMAN;B

1AK88_HUMAN;B1AK85_HUMAN;F

6USW4_HUMAN;F6Q0E3_HUMAN

-5.20 2.60E-03 8.46E-01 B1AK88_HUMAN
Capping protein (Actin fi lament) 

muscle Z-line, beta, isoform CRA_d 

CAPZB_HUMAN;B1AK87_HUMAN;

B1AK85_HUMAN;B1AK88_HUMA

N;F6USW4_HUMAN;F6Q0E3_HU

MAN

-5.03 2.90E-03 1.61E+00

B3AT_HUMAN Band 3 anion transport protein B3AT_HUMAN 1.94 1.20E-02 3.90E+00 B3AT_HUMAN Band 3 anion transport protein B3AT_HUMAN 3.93 1.38E-01 7.66E+01

B4DJP7_HUMAN Small nuclear ribonucleoprotein Sm D3 
SMD3_HUMAN;B4DJP7_HUMAN;H

3BT13_HUMAN
-3.26 2.59E-06 8.44E-04 B4DJP7_HUMAN

Small nuclear ribonucleoprotein Sm 

D3 

SMD3_HUMAN;B4DJP7_HUMAN;

H3BT13_HUMAN
-0.98 2.23E-01 1.24E+02

B4DQJ8_HUMAN
6-phosphogluconate dehydrogenase, 

decarboxylating 

6PGD_HUMAN;B4DQJ8_HUMAN;F

5H7U0_HUMAN;K7EPF6_HUMAN;K

7EMN2_HUMAN;K7EM49_HUMAN;

K7ELN9_HUMAN

-3.98 1.18E-04 3.84E-02 B4DQJ8_HUMAN
6-phosphogluconate dehydrogenase, 

decarboxylating 

6PGD_HUMAN;B4DQJ8_HUMAN;F

5H7U0_HUMAN;K7EPF6_HUMAN;

K7EMN2_HUMAN;K7EM49_HUM

AN;K7ELN9_HUMAN

-2.99 1.29E-02 7.16E+00

B4DTG2_HUMAN Elongation factor 1-gamma 
EF1G_HUMAN;B4DTG2_HUMAN;E7

EMT2_HUMAN
-4.25 5.40E-04 1.76E-01 B4DTG2_HUMAN Elongation factor 1-gamma 

EF1G_HUMAN;B4DTG2_HUMAN;E

7EMT2_HUMAN
-2.61 1.43E-02 7.94E+00

B4DU58_HUMAN Macrophage-capping protein 

CAPG_HUMAN;E7ENU9_HUMAN;B

4DU58_HUMAN;B8ZZL6_HUMAN;H

7C0X8_HUMAN

-4.47 5.64E-04 1.84E-01 CAPG_HUMAN Macrophage-capping protein 

CAPG_HUMAN;B4DU58_HUMAN;

H7C0X8_HUMAN;E7ENU9_HUMA

N;B8ZZL6_HUMAN

-2.93 1.12E-02 6.22E+00

B4DVE7_HUMAN Annexin 
ANX11_HUMAN;B4DVE7_HUMAN;

H0Y6E1_HUMAN
-4.18 2.14E-03 6.99E-01 B4DVE7_HUMAN Annexin 

ANX11_HUMAN;B4DVE7_HUMAN;

H0Y6E1_HUMAN
-1.43 4.02E-01 2.23E+02

B4E0K5_HUMAN Mitogen-activated protein kinase 14 

MK14_HUMAN;B4E0K5_HUMAN;B

5TY33_HUMAN;E7EX54_HUMAN;H

7C4E2_HUMAN

-3.15 6.45E-02 2.10E+01 B4E0K5_HUMAN Mitogen-activated protein kinase 14 
MK14_HUMAN;B4E0K5_HUMAN;E

7EX54_HUMAN;B5TY33_HUMAN
-4.69 2.56E-01 1.42E+02

B4E2V5_HUMAN
Erythrocyte band 7 integral membrane 

protein 
STOM_HUMAN;B4E2V5_HUMAN 0.11 5.30E-01 1.73E+02 B4E2V5_HUMAN

Erythrocyte band 7 integral membrane 

protein 
STOM_HUMAN;B4E2V5_HUMAN 2.91 1.61E-01 8.92E+01

B4E3K9_HUMAN Superoxide dismutase 

SODM_HUMAN;B3KUK2_HUMAN;B

4E3K9_HUMAN;G5E9P6_HUMAN;F

5GXZ9_HUMAN;G8JLJ2_HUMAN;F5

GYZ5_HUMAN;F5H4R2_HUMAN;F5

H3C5_HUMAN

-1.74 1.71E-02 5.56E+00 B4E3K9_HUMAN Superoxide dismutase 

SODM_HUMAN;B3KUK2_HUMAN;

B4E3K9_HUMAN;F5GYZ5_HUMAN

;F5H4R2_HUMAN;F5H3C5_HUMA

N;G5E9P6_HUMAN;F5GXZ9_HUM

AN;G8JLJ2_HUMAN

-1.54 3.02E-01 1.68E+02

B4E3P0_HUMAN ATP-citrate synthase ACLY_HUMAN;B4E3P0_HUMAN -0.04 9.86E-01 3.21E+02 ACLY_HUMAN ATP-citrate synthase 
ACLY_HUMAN;B4E3P0_HUMAN;K

7ESG8_HUMAN;K7EIE7_HUMAN
-2.05 9.04E-02 5.01E+01

B7Z3I9_HUMAN Delta-aminolevulinic acid dehydratase 
HEM2_HUMAN;B7Z3I9_HUMAN;B7

ZBK6_HUMAN
-2.36 6.75E-04 2.20E-01 B7Z3I9_HUMAN

Delta-aminolevulinic acid 

dehydratase 

HEM2_HUMAN;B7Z3I9_HUMAN;B

7ZBK6_HUMAN
-2.46 1.59E-01 8.82E+01

B7Z7E9_HUMAN Aspartate aminotransferase AATC_HUMAN;B7Z7E9_HUMAN -5.06 9.24E-04 3.01E-01 AATC_HUMAN
Aspartate aminotransferase, 

cytoplasmic 
AATC_HUMAN;B7Z7E9_HUMAN -3.84 9.76E-04 5.42E-01

B7Z9G5_HUMAN BRO1 domain-containing protein BROX 
BROX_HUMAN;B7Z9G5_HUMAN;Q

5VW33_HUMAN;F5GXQ0_HUMAN
-0.67 6.99E-01 2.28E+02 B7Z9G5_HUMAN

BRO1 domain-containing protein 

BROX 

BROX_HUMAN;B7Z9G5_HUMAN;F

5GXQ0_HUMAN;Q5VW33_HUMA

N

-4.14 7.06E-02 3.92E+01

B8ZZK2_HUMAN Gamma-glutamylcyclotransferase 

GGCT_HUMAN;B8ZZR8_HUMAN;B8

ZZN4_HUMAN;B8ZZK2_HUMAN;H7

BZK5_HUMAN

-0.20 4.99E-01 1.63E+02 GGCT_HUMAN Gamma-glutamylcyclotransferase 

GGCT_HUMAN;B8ZZR8_HUMAN;B

8ZZK2_HUMAN;M0QZK8_HUMAN

;B8ZZN4_HUMAN;H7BZK5_HUMA

N

-3.39 1.28E-01 7.08E+01

BASP1_HUMAN Brain acid soluble protein 1 BASP1_HUMAN -3.96 4.26E-02 1.39E+01 BASP1_HUMAN Brain acid soluble protein 1 BASP1_HUMAN -4.06 7.95E-02 4.41E+01

BPI_HUMAN
Bactericidal permeability-increasing 

protein 
BPI_HUMAN;H0Y738_HUMAN 0.00 8.48E-01 2.77E+02 BPI_HUMAN

Bactericidal permeability-increasing 

protein 
BPI_HUMAN;H0Y738_HUMAN 0.77 8.57E-01 4.76E+02

C9J592_HUMAN Ras-related protein Rab-7a (Fragment) 

RAB7A_HUMAN;C9J592_HUMAN;C

9J8S3_HUMAN;C9IZZ0_HUMAN;FR

1L6_HUMAN;OTOF_HUMAN;C9J7D

1_HUMAN;C9J4V0_HUMAN;C9J4S4

_HUMAN

-5.35 4.72E-03 1.54E+00 RAB7A_HUMAN Ras-related protein Rab-7a 

RAB7A_HUMAN;C9J7D1_HUMAN;

C9J4V0_HUMAN;C9J4S4_HUMAN;

C9J592_HUMAN;C9J8S3_HUMAN;

C9IZZ0_HUMAN;FR1L6_HUMAN;O

TOF_HUMAN

-6.99 6.00E-03 3.33E+00

C9JC60_HUMAN Nicotinate phosphoribosyltransferase 

PNCB_HUMAN;G5E977_HUMAN;C

9J8U2_HUMAN;C9JC60_HUMAN;H

0YF31_HUMAN;H0YDA6_HUMAN

-4.18 1.77E-04 5.77E-02 PNCB_HUMAN Nicotinate phosphoribosyltransferase 

PNCB_HUMAN;G5E977_HUMAN;C

9JC60_HUMAN;C9J8U2_HUMAN;

H0YDA6_HUMAN;H0YF31_HUMA

N

-3.70 1.98E-02 1.10E+01

C9JIF9_HUMAN Acylamino-acid-releasing enzyme 

ACPH_HUMAN;H7C1U0_HUMAN;H

0YFE5_HUMAN;C9JIF9_HUMAN;C9

JLK2_HUMAN;H7C393_HUMAN

-3.82 1.40E-02 4.58E+00 C9JIF9_HUMAN Acylamino-acid-releasing enzyme 

ACPH_HUMAN;C9JLK2_HUMAN;H

7C1U0_HUMAN;H7C393_HUMAN;

C9JIF9_HUMAN;H0YFE5_HUMAN;

F8WEH5_HUMAN

-2.54 2.44E-03 1.36E+00

GBB1_HUMAN
Guanine nucleotide-binding protein 

G(I)/G(S)/G(T) subunit beta-1 

GBB1_HUMAN;B3KVK2_HUMAN;F

6X3N5_HUMAN;F6UT28_HUMAN
0.61 8.77E-01 4.86E+02

C9JIS1_HUMAN

Guanine nucleotide-binding protein 

G(I)/G(S)/G(T) subunit beta-2 

(Fragment) 

GBB2_HUMAN;GBB4_HUMAN;B3K

PU1_HUMAN;E7EP32_HUMAN;C9

JZN1_HUMAN;C9JXA5_HUMAN;H7

C5J5_HUMAN;C9JIS1_HUMAN

-3.81 1.20E-03 6.63E-01

CAH1_HUMAN Carbonic anhydrase 1 

CAH1_HUMAN;E5RG43_HUMAN;E5

RGU8_HUMAN;H0YBE2_HUMAN;E5

RIF9_HUMAN;E5RFL2_HUMAN;E5R

FE7_HUMAN;E5RHP7_HUMAN;E5R

H81_HUMAN;E5RJI8_HUMAN;E5R

G81_HUMAN;E5RJF6_HUMAN;E5RI

I2_HUMAN

-1.41 1.51E-02 4.94E+00 CAH1_HUMAN Carbonic anhydrase 1 

CAH1_HUMAN;H0YBE2_HUMAN;E

5RJI8_HUMAN;E5RFE7_HUMAN;E

5RHP7_HUMAN;E5RH81_HUMAN;

E5RJF6_HUMAN;E5RG43_HUMAN;

E5RGU8_HUMAN;E5RIF9_HUMAN

;E5RFL2_HUMAN;E5RII2_HUMAN;

E5RG81_HUMAN

-2.20 2.58E-01 1.43E+02

CAH2_HUMAN Carbonic anhydrase 2 
CAH2_HUMAN;E5RID5_HUMAN;E5

RK37_HUMAN
-1.41 2.49E-02 8.10E+00 CAH2_HUMAN Carbonic anhydrase 2 

CAH2_HUMAN;E5RID5_HUMAN;E

5RK37_HUMAN
-2.54 1.24E-01 6.85E+01

CALR_HUMAN Calreticulin CALR_HUMAN -3.78 1.60E-05 5.23E-03 CALR_HUMAN Calreticulin CALR_HUMAN;K7EJB9_HUMAN -2.44 3.24E-03 1.80E+00

CAN1_HUMAN Calpain-1 catalytic subunit 
CAN1_HUMAN;E9PRM1_HUMAN;E

9PL37_HUMAN
-4.61 7.61E-05 2.48E-02 CAN1_HUMAN Calpain-1 catalytic subunit 

CAN1_HUMAN;E9PJA6_HUMAN;E

9PLC9_HUMAN;E9PLQ6_HUMAN;

E9PRM1_HUMAN;E9PIA9_HUMA

N;E9PLX0_HUMAN;E9PQB3_HUM

AN;E9PSA6_HUMAN;E9PJJ3_HUM

AN;E9PMC6_HUMAN;E9PL37_HU

MAN

-3.90 4.24E-04 2.35E-01

CAP1_HUMAN Adenylyl cyclase-associated protein 1 

CAP1_HUMAN;Q5T0R4_HUMAN;Q

5T0R3_HUMAN;Q5T0R9_HUMAN;

Q5T0R2_HUMAN;Q5T0R7_HUMAN

;Q5T0R6_HUMAN;Q5T0R1_HUMA

N;Q5T0R5_HUMAN;Q5T0S3_HUM

AN

-4.22 2.28E-05 7.42E-03 CAP1_HUMAN Adenylyl cyclase-associated protein 1 

CAP1_HUMAN;Q5T0R4_HUMAN;

Q5T0R3_HUMAN;Q5T0R2_HUMA

N;Q5T0R7_HUMAN;Q5T0R6_HUM

AN;Q5T0R1_HUMAN;Q5T0R5_HU

MAN;CAP2_HUMAN;B7Z1C4_HU

MAN;B7Z214_HUMAN;B7Z385_H

UMAN;E9PDI2_HUMAN;Q5T0S3_

HUMAN

-2.71 1.89E-02 1.05E+01

CAP7_HUMAN Azurocidin 

CAP7_HUMAN;REVERSED_F86B1_H

UMAN;REVERSED_F86B2_HUMAN;

REVERSED_E9PLC7_HUMAN;REVER

SED_E9PLW5_HUMAN;REVERSED_E

9PN63_HUMAN;REVERSED_E9PRJ7

_HUMAN;REVERSED_H0YDM8_HU

MAN;REVERSED_H7BXI9_HUMAN;R

EVERSED_E9PM45_HUMAN;REVER

SED_E9PQV7_HUMAN;REVERSED_E

9PNH4_HUMAN;REVERSED_E9PPT

9_HUMAN;REVERSED_H0YD24_HU

MAN;REVERSED_E9PJ39_HUMAN

5.35 2.19E-05 7.15E-03 CAP7_HUMAN Azurocidin CAP7_HUMAN 6.37 2.84E-03 1.58E+00

CATA_HUMAN Catalase CATA_HUMAN -4.26 2.09E-05 6.82E-03 CATA_HUMAN Catalase CATA_HUMAN -4.00 1.78E-03 9.89E-01

CATG_HUMAN Cathepsin G CATG_HUMAN 5.55 2.69E-07 8.77E-05 CATG_HUMAN Cathepsin G CATG_HUMAN 5.86 2.50E-03 1.39E+00

1.48E+00 CAZA1_HUMAN
F-actin-capping protein subunit alpha-

1 
CAZA1_HUMAN -3.01 1.56E-02 8.68E+00

1.48E+00 CAZA2_HUMAN
F-actin-capping protein subunit alpha-

2 

CAZA2_HUMAN;B4DG50_HUMAN;

C9JUG7_HUMAN;F8W9N7_HUMA

N

-1.77 7.68E-02 4.26E+01

CDC42_HUMAN
Cell division control protein 42 

homolog 
CDC42_HUMAN;E7ETU3_HUMAN -0.73 8.32E-02 2.71E+01 CDC42_HUMAN

Cell division control protein 42 

homolog 

CDC42_HUMAN;E7ETU3_HUMAN;

Q5JYX0_HUMAN
-0.62 7.90E-01 4.39E+02

CDD_HUMAN Cytidine deaminase CDD_HUMAN -5.59 5.58E-03 1.82E+00 CDD_HUMAN Cytidine deaminase CDD_HUMAN -6.18 2.52E-03 1.40E+00

C9JIS1_HUMAN
Guanine nucleotide-binding protein 

G(I)/G(S)/G(T) subunit beta-2 (Fragment) 

GBB1_HUMAN;GBB2_HUMAN;GBB

3_HUMAN;GBB4_HUMAN;E7EP32_

HUMAN;C9JZN1_HUMAN;B1AKQ8_

HUMAN;C9JXA5_HUMAN;F6X3N5_

HUMAN;F5H8J8_HUMAN;F5H100_

HUMAN;E9PCP0_HUMAN;F5H0S8_

HUMAN;C9JD14_HUMAN;F6UT28_

HUMAN;C9JIS1_HUMAN

-2.85 1.68E-01 5.49E+01

CAZA1_HUMAN F-actin-capping protein subunit alpha-1 

CAZA1_HUMAN;CAZA2_HUMAN;B4

DG50_HUMAN;C9JUG7_HUMAN;F8

W9N7_HUMAN

-5.18 4.54E-03
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CEAM8_HUMAN
Carcinoembryonic antigen-related cell  

adhesion molecule 8 

CEAM1_HUMAN;CEAM5_HUMAN;C

EAM8_HUMAN;H9KVA7_HUMAN;E

7EUB1_HUMAN

-1.84 6.62E-03 2.16E+00 CEAM8_HUMAN
Carcinoembryonic antigen-related cell  

adhesion molecule 8 

CEAM8_HUMAN;CEAM1_HUMAN;

CEAM5_HUMAN;H9KVA7_HUMAN

;E7EUB1_HUMAN

-1.45 2.11E-01 1.17E+02

CH3L1_HUMAN Chitinase-3-like protein 1 
CH3L1_HUMAN;H0Y3U8_HUMAN;Z

N423_HUMAN;F5H7S1_HUMAN
-2.90 9.32E-03 3.04E+00 CH3L1_HUMAN Chitinase-3-like protein 1 CH3L1_HUMAN;H0Y3U8_HUMAN -5.73 7.95E-04 4.41E-01

CLH1_HUMAN Clathrin heavy chain 1 

CLH1_HUMAN;J3KS13_HUMAN;J3K

RF5_HUMAN;K7EJJ5_HUMAN;CLH2

_HUMAN;J3KR87_HUMAN;J3KSQ2

_HUMAN;J3QL20_HUMAN

-3.22 4.25E-04 1.38E-01 CLH1_HUMAN Clathrin heavy chain 1 

CLH1_HUMAN;J3KS13_HUMAN;J3

KRF5_HUMAN;K7EJJ5_HUMAN;CL

H2_HUMAN;J3KR87_HUMAN;J3KS

Q2_HUMAN;F5H5N6_HUMAN

-2.43 4.21E-02 2.34E+01

CLIC1_HUMAN Chloride intracellular channel protein 1 

CLIC1_HUMAN;CLIC2_HUMAN;CLIC

4_HUMAN;CLIC5_HUMAN;A6PVS0_

HUMAN

-3.82 1.12E-02 3.64E+00 CLIC1_HUMAN
Chloride intracellular channel protein 

1 

CLIC1_HUMAN;CLIC2_HUMAN;CLI

C4_HUMAN;CLIC5_HUMAN;A6PVS

0_HUMAN

-3.38 4.59E-02 2.55E+01

COR1A_HUMAN Coronin-1A 

COR1A_HUMAN;H3BRY3_HUMAN;

DDX46_HUMAN;D6RJA6_HUMAN;

H3BTU6_HUMAN;H3BNA2_HUMAN

;H3BU76_HUMAN;H3BSL1_HUMAN

;H3BRJ0_HUMAN

-3.51 1.94E-03 6.33E-01 COR1A_HUMAN Coronin-1A 

COR1A_HUMAN;H3BRY3_HUMAN;

H3BTU6_HUMAN;H3BRJ0_HUMA

N;DDX46_HUMAN;D6RJA6_HUMA

N;H3BNA2_HUMAN;H3BU76_HU

MAN;H3BSL1_HUMAN

-2.44 4.45E-02 2.47E+01

COTL1_HUMAN Coactosin-like protein COTL1_HUMAN;H3BT58_HUMAN -4.91 5.36E-03 1.75E+00 COTL1_HUMAN Coactosin-like protein COTL1_HUMAN;H3BT58_HUMAN -4.45 3.15E-02 1.75E+01

CPNE3_HUMAN Copine-3 

CPNE3_HUMAN;CPNE2_HUMAN;CP

NE4_HUMAN;CPNE5_HUMAN;CPNE

6_HUMAN;CPNE7_HUMAN;CPNE8_

HUMAN;CPNE9_HUMAN;Q86VY2_

HUMAN;Q719H8_HUMAN;Q7Z6C8

_HUMAN;E7ENV7_HUMAN;F5GXN1

_HUMAN

-1.64 1.04E-02 3.38E+00 CPNE3_HUMAN Copine-3 

CPNE3_HUMAN;CPNE2_HUMAN;C

PNE4_HUMAN;CPNE5_HUMAN;CP

NE6_HUMAN;CPNE7_HUMAN;CPN

E8_HUMAN;CPNE9_HUMAN;Q86V

Y2_HUMAN;Q719H8_HUMAN;Q7

Z6C8_HUMAN;E7ENV7_HUMAN;F

5GXN1_HUMAN

-3.71 1.19E-01 6.60E+01

CPPED_HUMAN
Calcineurin-like phosphoesterase 

domain-containing protein 1 
CPPED_HUMAN;B4DQ68_HUMAN -3.25 8.90E-03 2.90E+00 CPPED_HUMAN

Calcineurin-like phosphoesterase 

domain-containing protein 1 
CPPED_HUMAN;B4DQ68_HUMAN -4.82 1.64E-03 9.08E-01

D6R9A6_HUMAN
High mobility group protein B2 

(Fragment) 
HMGB2_HUMAN;D6R9A6_HUMAN -3.84 6.16E-03 2.01E+00 HMGB2_HUMAN High mobility group protein B2 

HMGB2_HUMAN;D6R9A6_HUMA

N
-0.32 5.54E-01 3.08E+02

D6RAU8_HUMAN Calnexin (Fragment) 

CALX_HUMAN;B4DGP8_HUMAN;D

6RB85_HUMAN;D6RHJ3_HUMAN;D

6RAQ8_HUMAN;D6RDP7_HUMAN;

D6RD16_HUMAN;H0Y9Q7_HUMA

N;D6RAU8_HUMAN

-0.51 9.74E-01 3.18E+02 B4DGP8_HUMAN Calnexin 

CALX_HUMAN;B4DGP8_HUMAN;D

6RB85_HUMAN;D6RAQ8_HUMAN

;D6RDP7_HUMAN;H0Y9Q7_HUM

AN;D6RAU8_HUMAN;B4E2T8_HU

MAN

-3.42 3.11E-02 1.73E+01

D6REY1_HUMAN Chitotriosidase-1 
CHIT1_HUMAN;G5EA51_HUMAN;D

6REY1_HUMAN
-5.23 1.97E-04 6.42E-02 CHIT1_HUMAN Chitotriosidase-1 

CHIT1_HUMAN;G5EA51_HUMAN;

D6REY1_HUMAN
-6.82 1.42E-02 7.90E+00

D6RFM0_HUMAN
Ubiquitin-conjugating enzyme E2 D2 

(Fragment) 

UB2D2_HUMAN;UB2D3_HUMAN;D

6RAH7_HUMAN;H9KV45_HUMAN;

D6RFM0_HUMAN;D6RAW0_HUMA

N;D6RA11_HUMAN;D6RIZ3_HUMA

N

-4.64 1.17E-04 3.80E-02 UB2D3_HUMAN Ubiquitin-conjugating enzyme E2 D3 

UB2D2_HUMAN;UB2D3_HUMAN;

D6RAH7_HUMAN;D6RA11_HUMA

N;D6RIZ3_HUMAN;H9KV45_HUM

AN;D6RAW0_HUMAN;D6RFM0_H

UMAN;D6R933_HUMAN;D6R9F6_

HUMAN;D6R980_HUMAN;D6RGD

0_HUMAN

-4.77 2.58E-03 1.43E+00

DEF3_HUMAN Neutrophil defensin 3 DEF1_HUMAN;DEF3_HUMAN -2.10 1.06E-03 3.44E-01 DEF1_HUMAN Neutrophil defensin 1 DEF1_HUMAN;DEF3_HUMAN -1.81 6.21E-01 3.45E+02

E5RK69_HUMAN Annexin 

ANXA6_HUMAN;A6NN80_HUMAN;

E5RK69_HUMAN;E7EMC6_HUMAN

;E5RJF5_HUMAN;E5RIU8_HUMAN;

E5RFF0_HUMAN;E5RI05_HUMAN;E

5RK63_HUMAN;E5RJR0_HUMAN

-2.84 5.15E-02 1.68E+01 E5RK69_HUMAN Annexin 

ANXA6_HUMAN;A6NN80_HUMAN

;E7EMC6_HUMAN;E5RK69_HUMA

N;E5RJF5_HUMAN;E5RIU8_HUMA

N;E5RFF0_HUMAN;E5RI05_HUMA

N;E5RK63_HUMAN;E5RJR0_HUMA

N

-0.13 8.20E-01 4.55E+02

E7EMB3_HUMAN Calmodulin 

CALM_HUMAN;M0QZ52_HUMAN;

H0Y7A7_HUMAN;G3V479_HUMAN

;E7ETZ0_HUMAN;E7EMB3_HUMAN

;F8WBR5_HUMAN;Q96HY3_HUMA

N;G3V361_HUMAN;G3V226_HUM

AN

-1.21 6.55E-01 2.13E+02 E7EMB3_HUMAN Calmodulin 

CALL3_HUMAN;CALM_HUMAN;TN

NC2_HUMAN;M0QZ52_HUMAN;C

9J7T9_HUMAN;H0Y7A7_HUMAN;

G3V479_HUMAN;E7ETZ0_HUMAN

;E7EMB3_HUMAN;F8WBR5_HUM

AN;Q96HY3_HUMAN;G3V361_HU

MAN

4.43 3.94E-01 2.18E+02

E7EMG9_HUMAN
Lymphocyte-specific protein 1 

(Fragment) 

LSP1_HUMAN;C9JDV1_HUMAN;C9J

U59_HUMAN;E7EMG9_HUMAN;E9

PBD8_HUMAN;C9JKF7_HUMAN;C9

J9B9_HUMAN;C9JNQ1_HUMAN

-6.38 7.40E-03 2.41E+00 E7EMG9_HUMAN
Lymphocyte-specific protein 1 

(Fragment) 

LSP1_HUMAN;C9JDV1_HUMAN;C9

JU59_HUMAN;E7EMG9_HUMAN;E

9PBD8_HUMAN;C9JKF7_HUMAN

-0.37 2.28E-01 1.27E+02

E7ENQ5_HUMAN Annexin 

ANXA5_HUMAN;E9PHT9_HUMAN;E

7ENQ5_HUMAN;D6RBL5_HUMAN;

D6RBE9_HUMAN

-2.51 4.97E-01 1.62E+02 ANXA5_HUMAN Annexin A5 

ANXA5_HUMAN;E9PHT9_HUMAN;

E7ENQ5_HUMAN;D6RBL5_HUMA

N;D6RBE9_HUMAN;D6RCN3_HUM

AN

0.67 7.14E-01 3.96E+02

E7ERI3_HUMAN Threonine--tRNA ligase, cytoplasmic 
SYTC_HUMAN;G3XAN9_HUMAN;E7

ERI3_HUMAN
5.47 1.45E-01 4.73E+01 E7ERI3_HUMAN Threonine--tRNA ligase, cytoplasmic 

SYTC_HUMAN;G3XAN9_HUMAN;E

7ERI3_HUMAN
-1.89 1.35E-01 7.48E+01

E7ERL0_HUMAN Nucleoside diphosphate kinase A 

NDKA_HUMAN;NDKB_HUMAN;E5R

HP0_HUMAN;Q32Q12_HUMAN;J3

KPD9_HUMAN;C9K028_HUMAN;E7

ERL0_HUMAN

-6.45 4.14E-03 1.35E+00 Q32Q12_HUMAN Nucleoside diphosphate kinase 
NDKB_HUMAN;F6XY72_HUMAN;Q

32Q12_HUMAN;NDK8_HUMAN
-3.42 3.18E-02 1.76E+01

E7EU23_HUMAN Rab GDP dissociation inhibitor beta 

GDIB_HUMAN;Q5SX90_HUMAN;Q

5SX86_HUMAN;E7EU23_HUMAN;Q

5SX87_HUMAN;Q5SX91_HUMAN

-4.97 2.90E-03 9.45E-01 E7EU23_HUMAN Rab GDP dissociation inhibitor beta 

GDIB_HUMAN;E7EU23_HUMAN;Q

5SX90_HUMAN;Q5SX86_HUMAN;

Q5SX87_HUMAN;Q5SX91_HUMA

N

-5.03 2.48E-03 1.38E+00

E7EUC7_HUMAN
UTP--glucose-1-phosphate 

uridylyltransferase 

UGPA_HUMAN;E7EUC7_HUMAN;C

9JNZ1_HUMAN;C9JQU9_HUMAN;C

9JVG3_HUMAN;C9JUW1_HUMAN;

C9JWG0_HUMAN;C9JTZ5_HUMAN

-2.04 1.70E-03 5.54E-01 E7EUC7_HUMAN
UTP--glucose-1-phosphate 

uridylyltransferase 

UGPA_HUMAN;C9JQU9_HUMAN;F

2Z3H1_HUMAN;C9JVG3_HUMAN;

E7EUC7_HUMAN;C9JUW1_HUMA

N;C9JWG0_HUMAN;C9JNZ1_HUM

AN;C9JTZ5_HUMAN

-3.03 2.88E-02 1.60E+01

E9PCY7_HUMAN
Heterogeneous nuclear 

ribonucleoprotein H 

HNRH1_HUMAN;HNRPF_HUMAN;G

8JLB6_HUMAN;H0YBD7_HUMAN;F

5GZT4_HUMAN;E9PCY7_HUMAN;H

0YB39_HUMAN;H0YBG7_HUMAN;

HNRH2_HUMAN;E5RGV0_HUMAN;

H0YAQ2_HUMAN;D6R9T0_HUMAN

;D6RIU0_HUMAN;E7EQJ0_HUMAN;

D6RBM0_HUMAN;D6RJ04_HUMAN

;D6RIH9_HUMAN;E5RGH4_HUMAN

;D6RAM1_HUMAN;D6RFM3_HUM

AN;D6RIT2_HUMAN;D6RDU3_HUM

AN

-4.80 6.36E-04 2.07E-01 E9PCY7_HUMAN
Heterogeneous nuclear 

ribonucleoprotein H 

HNRH1_HUMAN;HNRH2_HUMAN;

G8JLB6_HUMAN;E5RGV0_HUMAN

;H0YAQ2_HUMAN;D6R9T0_HUMA

N;D6RIU0_HUMAN;E7EQJ0_HUM

AN;E9PCY7_HUMAN;D6RBM0_HU

MAN;D6RJ04_HUMAN;D6RIH9_H

UMAN;E5RGH4_HUMAN;D6RAM1

_HUMAN;D6RFM3_HUMAN;D6RIT

2_HUMAN;D6RDU3_HUMAN;E7EN

40_HUMAN;H0YB39_HUMAN

-3.96 1.37E-02 7.61E+00

E9PDB2_HUMAN Malate dehydrogenase, mitochondrial 
MDHM_HUMAN;G3XAL0_HUMAN;

E9PDB2_HUMAN
-2.30 2.20E-03 7.16E-01 MDHM_HUMAN Malate dehydrogenase, mitochondrial 

MDHM_HUMAN;E9PDB2_HUMAN

;G3XAL0_HUMAN
-1.24 1.65E-01 9.14E+01

E9PK25_HUMAN Cofil in-1 

COF1_HUMAN;G3V1A4_HUMAN;E

9PLJ3_HUMAN;E9PP50_HUMAN;E9

PK25_HUMAN;E9PS23_HUMAN;E9

PQB7_HUMAN;COF2_HUMAN;G3V

5P4_HUMAN;F8WDN3_HUMAN;G3

V2U0_HUMAN;DEST_HUMAN;F6RF

D5_HUMAN

-4.40 1.81E-05 5.89E-03 E9PK25_HUMAN Cofil in-1 

COF1_HUMAN;G3V1A4_HUMAN;E

9PLJ3_HUMAN;E9PP50_HUMAN;E

9PK25_HUMAN;E9PS23_HUMAN;

E9PQB7_HUMAN;COF2_HUMAN;

G3V5P4_HUMAN;F8WDN3_HUM

AN;G3V2U0_HUMAN;DEST_HUMA

N;F6RFD5_HUMAN

-3.18 3.88E-02 2.15E+01

E9PLD0_HUMAN Ras-related protein Rab-1B 
RAB1B_HUMAN;RAB1C_HUMAN;E

9PLD0_HUMAN
-3.92 5.74E-02 3.18E+01

RAB8A_HUMAN Ras-related protein Rab-8A RAB8A_HUMAN;B4DEK7_HUMAN -4.18 1.46E-02 8.10E+00

H0YNE9_HUMAN Ras-related protein Rab-8B (Fragment) 
RAB8B_HUMAN;H0YNE9_HUMAN;

F5GY21_HUMAN
-1.75 5.72E-01 3.18E+02

ECP_HUMAN Eosinophil cationic protein ECP_HUMAN 1.29 5.44E-02 1.77E+01 ECP_HUMAN Eosinophil cationic protein ECP_HUMAN 2.18 1.19E-02 6.61E+00

EF2_HUMAN Elongation factor 2 EF2_HUMAN -2.55 5.99E-04 1.95E-01 EF2_HUMAN Elongation factor 2 

EF2_HUMAN;U5S1_HUMAN;K7EJ7

4_HUMAN;K7EJ81_HUMAN;K7EP6

7_HUMAN

-2.89 1.01E-02 5.58E+00

EFHD2_HUMAN EF-hand domain-containing protein D2 EFHD2_HUMAN;H0Y4Y4_HUMAN -6.50 4.79E-04 1.56E-01 EFHD2_HUMAN EF-hand domain-containing protein D2 

EFHD2_HUMAN;H0Y4Y4_HUMAN;

EFHD1_HUMAN;Q8WYH2_HUMA

N;C9JTV4_HUMAN

-5.92 6.53E-02 3.62E+01

ELNE_HUMAN Neutrophil elastase ELNE_HUMAN 2.99 5.18E-04 1.69E-01 ELNE_HUMAN Neutrophil elastase ELNE_HUMAN 4.51 2.70E-03 1.50E+00

ENOA_HUMAN Alpha-enolase 

ENOA_HUMAN;K7EM90_HUMAN;K

7EN23_HUMAN;K7EQF3_HUMAN;K

7ERS8_HUMAN

-4.22 1.03E-04 3.35E-02 ENOA_HUMAN Alpha-enolase 

ENOA_HUMAN;K7EM90_HUMAN;

K7EN23_HUMAN;K7EQF3_HUMA

N;K7ERS8_HUMAN

-2.88 1.27E-02 7.06E+00

F2Z2Y4_HUMAN Pyridoxal kinase PDXK_HUMAN;F2Z2Y4_HUMAN -3.34 3.15E-04 1.03E-01 PDXK_HUMAN Pyridoxal kinase 
PDXK_HUMAN;F2Z2Y4_HUMAN;A

8MV33_HUMAN
-2.56 1.01E-01 5.58E+01

1.38E+00E9PLD0_HUMAN Ras-related protein Rab-1B 

RAB1A_HUMAN;RAB1B_HUMAN;RA

B1C_HUMAN;B7Z8M7_HUMAN;E7

END7_HUMAN;E9PLD0_HUMAN;RA

B8A_HUMAN;RAB8B_HUMAN;B4DE

K7_HUMAN;H0YNE9_HUMAN;F5GY

21_HUMAN;H0YMN7_HUMAN;E7E

-4.81 4.24E-03
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F5GXR5_HUMAN NAD kinase 

NADK_HUMAN;Q5QPS4_HUMAN;Q

5QPS5_HUMAN;J3KSP9_HUMAN;F

5GXR5_HUMAN;J3KTI3_HUMAN

-3.01 4.99E-04 1.63E-01 F5GXR5_HUMAN NAD kinase 

NADK_HUMAN;Q5QPS4_HUMAN;

F5GXR5_HUMAN;REVERSED_ABCA

4_HUMAN;Q5QPS5_HUMAN;REVE

RSED_F5H6E5_HUMAN;J3KSP9_H

UMAN;J3KTI3_HUMAN

-4.43 4.02E-03 2.23E+00

F5H1A8_HUMAN Gelsolin 

GELS_HUMAN;Q5T0H8_HUMAN;Q

5T0H7_HUMAN;F5H1A8_HUMAN;

Q5T0H9_HUMAN

-4.18 2.54E-03 8.27E-01 F5H1A8_HUMAN Gelsolin 
GELS_HUMAN;Q5T0H8_HUMAN;Q

5T0H7_HUMAN;F5H1A8_HUMAN
-3.06 3.22E-03 1.79E+00

F5H1J5_HUMAN Septin-6 

SEPT6_HUMAN;B1AMS2_HUMAN;B

4E049_HUMAN;F5H1J5_HUMAN;S

EP11_HUMAN;SEPT8_HUMAN;D6R

GI3_HUMAN;C9JV02_HUMAN;A6N

MH6_HUMAN;F8W8I8_HUMAN;A6

NFQ9_HUMAN;D6RER5_HUMAN;D

6RDU5_HUMAN;F6W7K9_HUMAN

-0.07 7.24E-01 2.36E+02 D6RDU5_HUMAN Septin-11 (Fragment) 

SEP11_HUMAN;SEPT6_HUMAN;SE

PT8_HUMAN;D6RGI3_HUMAN;B1

AMS2_HUMAN;B4E049_HUMAN;C

9JV02_HUMAN;A6NMH6_HUMAN

;F8W8I8_HUMAN;A6NFQ9_HUMA

N;D6RER5_HUMAN;F5H1J5_HUM

AN;D6RDU5_HUMAN;F6W7K9_H

UMAN;D6R9Y6_HUMAN;D6RDP1_

HUMAN

-1.11 1.69E-01 9.40E+01

F5H6I0_HUMAN Beta-2-microglobulin form pI 5.3 
B2MG_HUMAN;F5H6I0_HUMAN;H

0YLF3_HUMAN
-4.31 6.40E-07 2.09E-04 F5H6I0_HUMAN Beta-2-microglobulin form pI 5.3 

B2MG_HUMAN;F5H6I0_HUMAN;

H0YLF3_HUMAN
-3.65 1.37E-02 7.62E+00

F5H6Q2_HUMAN Polyubiquitin-C (Fragment) 

RL40_HUMAN;RS27A_HUMAN;UBB

_HUMAN;UBC_HUMAN;B4DV12_H

UMAN;F5H041_HUMAN;Q96C32_

HUMAN;F5GXK7_HUMAN;J3QS39_

HUMAN;M0R1V7_HUMAN;J3QKN0

_HUMAN;F5GYU3_HUMAN;M0R1

M6_HUMAN;F5H7Y5_HUMAN;F5H

7K6_HUMAN;F5H4D8_HUMAN;F5

H388_HUMAN;F5H2Z3_HUMAN;J3

QTR3_HUMAN;F5H265_HUMAN;F5

H747_HUMAN;F5H6Q2_HUMAN;M

0R2S1_HUMAN;J3QSA3_HUMAN;F

5GZ39_HUMAN;J3KSM4_HUMAN;J

3QLP7_HUMAN;J3QRK5_HUMAN;K

7EMA8_HUMAN

-1.61 1.59E-04 5.17E-02 F5H6Q2_HUMAN Polyubiquitin-C (Fragment) 

RL40_HUMAN;RS27A_HUMAN;UB

B_HUMAN;UBC_HUMAN;B4DV12_

HUMAN;F5H041_HUMAN;Q96C3

2_HUMAN;J3KSM4_HUMAN;F5GX

K7_HUMAN;J3QS39_HUMAN;M0R

1V7_HUMAN;J3QKN0_HUMAN;F5

GYU3_HUMAN;J3QLP7_HUMAN;M

0R1M6_HUMAN;F5H7Y5_HUMAN

;F5GZ39_HUMAN;F5H7K6_HUMA

N;F5H4D8_HUMAN;F5H388_HUM

AN;J3QRK5_HUMAN;F5H2Z3_HU

MAN;J3QTR3_HUMAN;F5H265_H

UMAN;F5H747_HUMAN;F5H6Q2_

HUMAN;M0R2S1_HUMAN;K7EMA

8_HUMAN;J3QSA3_HUMAN

-0.66 7.77E-02 4.31E+01

F8VW92_HUMAN Tubulin beta chain 

TBB2A_HUMAN;TBB2B_HUMAN;TB

B4A_HUMAN;TBB4B_HUMAN;TBB5

_HUMAN;TBB6_HUMAN;TBB8L_HU

MAN;TBB8_HUMAN;YI016_HUMAN

;Q5SQY0_HUMAN;F8VYX6_HUMAN

;E7EWR1_HUMAN;Q5JP53_HUMA

N;Q5ST81_HUMAN;F8VUJ7_HUMA

N;F5H0I4_HUMAN;K7ESM5_HUMA

N;I3L2F9_HUMAN;F8VW92_HUMA

N;C9JAA5_HUMAN;E9PBJ4_HUMA

N;TBB3_HUMAN;A8K854_HUMAN;

TBB1_HUMAN;G3V2A3_HUMAN;M

0R2D3_HUMAN;M0QYM7_HUMAN

;M0R042_HUMAN;G3V2R8_HUMA

N;G3V2N6_HUMAN;G3V3R4_HUM

AN;G3V5W4_HUMAN

3.54 3.90E-03 1.27E+00 F8VW92_HUMAN Tubulin beta chain 

TBB4A_HUMAN;TBB4B_HUMAN;T

BB5_HUMAN;F8VYX6_HUMAN;E7

EWR1_HUMAN;Q5JP53_HUMAN;

Q5ST81_HUMAN;F8VUJ7_HUMAN

;F8VW92_HUMAN;TBB2A_HUMA

N;TBB2B_HUMAN;TBB6_HUMAN;T

BB8L_HUMAN;TBB8_HUMAN;YI01

6_HUMAN;Q5SQY0_HUMAN;F5H0

I4_HUMAN;K7ESM5_HUMAN;I3L2

F9_HUMAN;C9JAA5_HUMAN;TBB3

_HUMAN;A8K854_HUMAN;E9PBJ

4_HUMAN

2.70 1.46E-01 8.13E+01

F8W1A4_HUMAN Adenylate kinase 2, mitochondrial 

KAD2_HUMAN;F8VY04_HUMAN;F8

W1A4_HUMAN;G3V213_HUMAN;F

8VZG5_HUMAN

-2.66 1.62E-02 5.27E+00 F8W1A4_HUMAN Adenylate kinase 2, mitochondrial 

KAD2_HUMAN;G3V213_HUMAN;F

8VZG5_HUMAN;F8W1A4_HUMAN

;F8VY04_HUMAN;F8VPP1_HUMA

N

-5.50 3.93E-02 2.18E+01

F8W8N6_HUMAN CD177 antigen CD177_HUMAN;F8W8N6_HUMAN -2.35 4.06E-02 1.32E+01 CD177_HUMAN CD177 antigen 
CD177_HUMAN;F8W8N6_HUMA

N;H7BYC5_HUMAN
-3.96 4.92E-03 2.73E+00

F8WCF6_HUMAN
Actin-related protein 2/3 complex 

subunit 4 

ARPC4_HUMAN;F6TTL5_HUMAN;H

7C0A3_HUMAN;F8WCF6_HUMAN;

F8WDD7_HUMAN;F8WE39_HUMA

N

-3.63 5.90E-05 1.92E-02 ARPC4_HUMAN
Actin-related protein 2/3 complex 

subunit 4 

ARPC4_HUMAN;H7C0A3_HUMAN;

F8WDD7_HUMAN;F8WCF6_HUM

AN;F6TTL5_HUMAN;F8WE39_HU

MAN;F8WDW3_HUMAN

-4.36 2.12E-01 1.18E+02

FA49B_HUMAN Protein FAM49B 

FA49B_HUMAN;E5RGI7_HUMAN;E

5RI16_HUMAN;E5RJE1_HUMAN;E5

RFS4_HUMAN;E5RIR8_HUMAN;E5R

JL8_HUMAN;E5RHU5_HUMAN;E5R

K61_HUMAN;Q9NW21_HUMAN;FA

49A_HUMAN

-5.57 2.96E-06 9.64E-04 FA49B_HUMAN Protein FAM49B 

FA49A_HUMAN;FA49B_HUMAN;Q

9NW21_HUMAN;E5RI16_HUMAN;

E5RJE1_HUMAN;E5RIR8_HUMAN;

E5RJL8_HUMAN;E5RGI7_HUMAN

-3.43 7.28E-02 4.04E+01

FKB1A_HUMAN
Peptidyl-prolyl cis-trans isomerase 

FKBP1A 

FKB1A_HUMAN;Q5W0X3_HUMAN;

Q1JUQ5_HUMAN;TM163_HUMAN;

Q5VVH2_HUMAN;A8MSS1_HUMA

N

-4.18 1.24E-04 4.03E-02 FKB1A_HUMAN
Peptidyl-prolyl cis-trans isomerase 

FKBP1A 

FKB1A_HUMAN;Q5W0X3_HUMA

N;Q5VVH2_HUMAN;Q1JUQ5_HU

MAN;A8MSS1_HUMAN

-5.90 2.22E-03 1.23E+00

FLNA_HUMAN Filamin-A 

FLNA_HUMAN;F8WE98_HUMAN;Q

5HY54_HUMAN;E9PHF0_HUMAN;H

0Y5C6_HUMAN;FLNC_HUMAN;FLN

B_HUMAN;H0Y5F3_HUMAN

-3.88 1.42E-04 4.62E-02 FLNA_HUMAN Filamin-A 

FLNA_HUMAN;Q5HY54_HUMAN;F

8WE98_HUMAN;E9PHF0_HUMAN

;H0Y5C6_HUMAN;FLNB_HUMAN;H

7C5L4_HUMAN;E7EN95_HUMAN;

H0Y5F3_HUMAN;H7C2E7_HUMA

N;FLNC_HUMAN

-3.17 1.12E-02 6.22E+00

G3P_HUMAN
Glyceraldehyde-3-phosphate 

dehydrogenase 

G3P_HUMAN;E7EUT5_HUMAN;E7E

UT4_HUMAN;G3PT_HUMAN
-2.71 6.64E-04 2.16E-01 G3P_HUMAN

Glyceraldehyde-3-phosphate 

dehydrogenase 

G3P_HUMAN;E7EUT5_HUMAN;E7

EUT4_HUMAN;G3PT_HUMAN
-1.41 1.25E-01 6.92E+01

G3V2F7_HUMAN HCG2044781 UB2V1_HUMAN;G3V2F7_HUMAN -4.71 4.85E-04 2.69E-01

UB2V2_HUMAN
Ubiquitin-conjugating enzyme E2 

variant 2 

UB2V2_HUMAN;G3V113_HUMAN;

H0YBP9_HUMAN;H0YBX6_HUMA

N

-6.47 4.35E-04 2.42E-01

G3V5V7_HUMAN
Heterogeneous nuclear 

ribonucleoproteins C1/C2 (Fragment) 

HNRPC_HUMAN;B4DY08_HUMAN;

G3V576_HUMAN;G3V2D6_HUMAN

;G3V2Q1_HUMAN;G3V4C1_HUMA

N;G3V4W0_HUMAN;G3V5V7_HUM

AN;HNRCL_HUMAN

-1.64 1.09E-01 3.55E+01 G3V5V7_HUMAN
Heterogeneous nuclear 

ribonucleoproteins C1/C2 (Fragment) 

HNRCL_HUMAN;HNRPC_HUMAN;B

4DY08_HUMAN;G3V576_HUMAN;

G3V2D6_HUMAN;G3V2Q1_HUMA

N;G3V4C1_HUMAN;G3V4W0_HU

MAN;G3V5V7_HUMAN

-0.12 6.37E-01 3.53E+02

G3V5Z7_HUMAN Proteasome subunit alpha type 

PSA6_HUMAN;B4DXJ9_HUMAN;G3

V3U4_HUMAN;G3V295_HUMAN;G

3V5Z7_HUMAN;G3V3I1_HUMAN;B

4DQR4_HUMAN

-2.99 2.26E-03 7.36E-01 G3V5Z7_HUMAN Proteasome subunit alpha type 

PSA6_HUMAN;B4DXJ9_HUMAN;G

3V3U4_HUMAN;G3V295_HUMAN;

G3V5Z7_HUMAN;G3V3I1_HUMAN

;B4DQR4_HUMAN;G3V4S5_HUMA

N;G3V2S7_HUMAN

-2.04 6.97E-02 3.87E+01

G6PD_HUMAN Glucose-6-phosphate 1-dehydrogenase 
G6PD_HUMAN;E9PD92_HUMAN;E

7EM57_HUMAN;E7EUI8_HUMAN
-5.12 5.48E-09 1.79E-06 G6PD_HUMAN

Glucose-6-phosphate 1-

dehydrogenase 
G6PD_HUMAN;E9PD92_HUMAN -3.96 1.31E-02 7.27E+00

G6PI_HUMAN Glucose-6-phosphate isomerase 

G6PI_HUMAN;K7EIL4_HUMAN;K7E

P41_HUMAN;K7ERK8_HUMAN;K7E

RC6_HUMAN;K7ELR7_HUMAN;K7E

NR8_HUMAN;K7ESF4_HUMAN;SIX

5_HUMAN

-4.07 3.54E-05 1.15E-02 G6PI_HUMAN Glucose-6-phosphate isomerase 

G6PI_HUMAN;K7EP41_HUMAN;K

7ELR7_HUMAN;K7ENR8_HUMAN;

K7ESF4_HUMAN;K7ERK8_HUMAN

;K7ERC6_HUMAN;K7EIL4_HUMAN

;SIX5_HUMAN

-3.46 1.43E-02 7.94E+00

G8JLA2_HUMAN Myosin l ight polypeptide 6 

MYL6_HUMAN;G3V1V0_HUMAN;B

7Z6Z4_HUMAN;G3V1Y7_HUMAN;F

8VZU9_HUMAN;F8VZV5_HUMAN;G

8JLA2_HUMAN;F8W1R7_HUMAN;J

3KND3_HUMAN;F8VPF3_HUMAN;F

8W180_HUMAN;F8VXL3_HUMAN;

H0YI43_HUMAN;MYL6B_HUMAN;F

8W1I5_HUMAN

-3.65 5.62E-03 1.83E+00 G8JLA2_HUMAN Myosin l ight polypeptide 6 

MYL6_HUMAN;G3V1V0_HUMAN;B

7Z6Z4_HUMAN;G3V1Y7_HUMAN;

F8VZU9_HUMAN;F8VZV5_HUMAN

;G8JLA2_HUMAN;F8W1R7_HUMA

N;J3KND3_HUMAN;F8VPF3_HUM

AN;F8W180_HUMAN;MYL6B_HU

MAN;F8W1I5_HUMAN;H0YI43_H

UMAN;F8VXL3_HUMAN

-4.17 4.36E-02 2.42E+01

G8JLH9_HUMAN
Signal transducer and activator of 

transcription 3 

STAT3_HUMAN;K7ENL3_HUMAN;G

8JLH9_HUMAN
-2.46 7.46E-02 2.43E+01 G8JLH9_HUMAN

Signal transducer and activator of 

transcription 3 

STAT3_HUMAN;K7ENL3_HUMAN;

G8JLH9_HUMAN
-4.93 6.27E-02 3.48E+01

GDIR1_HUMAN Rho GDP-dissociation inhibitor 1 

GDIR1_HUMAN;A8MXW0_HUMAN

;J3KTF8_HUMAN;J3KRY1_HUMAN;J

3QQX2_HUMAN;J3KRE2_HUMAN

-5.72 9.54E-03 3.11E+00 GDIR1_HUMAN Rho GDP-dissociation inhibitor 1 

GDIR1_HUMAN;J3KTF8_HUMAN;J

3QQX2_HUMAN;A8MXW0_HUMA

N;J3KRY1_HUMAN;J3KRE2_HUMA

N;J3KS60_HUMAN

-3.11 2.49E-02 1.38E+01

GDIR2_HUMAN Rho GDP-dissociation inhibitor 2 

GDIR2_HUMAN;H0YGX7_HUMAN;F

5H3P3_HUMAN;F5H2R5_HUMAN;F

5H6Q0_HUMAN

-3.60 1.06E-03 3.45E-01 GDIR2_HUMAN Rho GDP-dissociation inhibitor 2 

GDIR2_HUMAN;H0YGX7_HUMAN;

F5H3P3_HUMAN;F5H2R5_HUMA

N;F5H6Q0_HUMAN

-3.28 4.02E-03 2.23E+00

GLGB_HUMAN 1,4-alpha-glucan-branching enzyme GLGB_HUMAN;E9PGM4_HUMAN -5.88 3.82E-05 1.25E-02 GLGB_HUMAN 1,4-alpha-glucan-branching enzyme GLGB_HUMAN;E9PGM4_HUMAN -4.31 1.76E-02 9.79E+00

GLRX1_HUMAN Glutaredoxin-1 GLRX1_HUMAN -5.52 9.92E-05 3.23E-02 GLRX1_HUMAN Glutaredoxin-1 GLRX1_HUMAN -4.72 6.64E-04 3.68E-01

GRP78_HUMAN 78 kDa glucose-regulated protein GRP78_HUMAN -2.22 9.74E-03 3.18E+00 GRP78_HUMAN 78 kDa glucose-regulated protein GRP78_HUMAN -2.50 9.86E-03 5.47E+00

GSHR_HUMAN Glutathione reductase, mitochondrial 
GSHR_HUMAN;E5RI06_HUMAN;H0

YBD4_HUMAN
-3.95 2.16E-04 7.05E-02 GSHR_HUMAN Glutathione reductase, mitochondrial 

GSHR_HUMAN;E5RI06_HUMAN;H

0YBD4_HUMAN;H0YC68_HUMAN
-4.04 1.51E-02 8.36E+00

GSTP1_HUMAN Glutathione S-transferase P GSTP1_HUMAN;A8MX94_HUMAN -5.47 4.83E-06 1.57E-03 GSTP1_HUMAN Glutathione S-transferase P GSTP1_HUMAN;A8MX94_HUMAN -4.82 2.31E-02 1.28E+01

GYS1_HUMAN Glycogen [starch] synthase, muscle 

GYS1_HUMAN;B7Z806_HUMAN;M

0QYU1_HUMAN;F5H1N8_HUMAN;

F5H3S3_HUMAN

-3.80 7.62E-04 2.48E-01 GYS1_HUMAN Glycogen [starch] synthase, muscle 

GYS1_HUMAN;B7Z806_HUMAN;F

5H1N8_HUMAN;F5H3S3_HUMAN;

M0QYU1_HUMAN

-2.54 1.89E-01 1.05E+02

G3V2F7_HUMAN HCG2044781 

UB2V1_HUMAN;UB2V2_HUMAN;G

3V113_HUMAN;G3V2F7_HUMAN;E

5RGE2_HUMAN;J3KNL8_HUMAN;H

0YBP9_HUMAN

-0.51 6.13E-01 2.00E+02
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H0YN26_HUMAN
Acidic leucine-rich nuclear 

phosphoprotein 32 family member A 

AN32A_HUMAN;AN32C_HUMAN;A

N32D_HUMAN;H0YN26_HUMAN
-4.67 5.26E-03 1.71E+00 H0YN26_HUMAN

Acidic leucine-rich nuclear 

phosphoprotein 32 family member A 

AN32A_HUMAN;H7BZ09_HUMAN;

H0YN26_HUMAN;AN32C_HUMAN;

AN32D_HUMAN

-5.78 9.97E-02 5.53E+01

H0YFX9_HUMAN Histone H2A (Fragment) 

H2A1D_HUMAN;H2A1H_HUMAN;

H2A1J_HUMAN;H2A1_HUMAN;H2

A2A_HUMAN;H2A2C_HUMAN;H2A

J_HUMAN;H0YFX9_HUMAN

7.77 3.30E-03 1.83E+00

H2A3_HUMAN Histone H2A type 3 
H2A1B_HUMAN;H2A1C_HUMAN;

H2A3_HUMAN
7.46 4.74E-03 2.63E+00

H2AY_HUMAN Core histone macro-H2A.1 

H2AY_HUMAN;B4DJC3_HUMAN;D6

RCF2_HUMAN;H2AW_HUMAN;Q5S

QT3_HUMAN

-4.36 3.08E-03 1.00E+00 H2AY_HUMAN Core histone macro-H2A.1 
H2AY_HUMAN;B4DJC3_HUMAN;H

2AW_HUMAN;D6RCF2_HUMAN
-5.35 1.03E-02 5.73E+00

H3BSC1_HUMAN Ras-related protein Rab-11A 

RB11A_HUMAN;RB11B_HUMAN;B4

DMK0_HUMAN;B4DT13_HUMAN;H

3BMH2_HUMAN;J3KQP6_HUMAN;

H3BSC1_HUMAN;RAB25_HUMAN

-4.96 9.86E-05 3.22E-02 H3BSC1_HUMAN Ras-related protein Rab-11A 

RB11A_HUMAN;RB11B_HUMAN;B

4DMK0_HUMAN;B4DT13_HUMAN

;H3BMH2_HUMAN;J3KQP6_HUM

AN;H3BSC1_HUMAN;B4DQU5_HU

MAN;M0R377_HUMAN;M0R2D0_

HUMAN;H3BN38_HUMAN

-5.35 3.57E-02 1.98E+01

H4_HUMAN Histone H4 H4_HUMAN 7.47 3.90E-07 1.27E-04 H4_HUMAN Histone H4 H4_HUMAN 8.42 1.60E-02 8.87E+00

H7BXD5_HUMAN Grancalcin 

GRAN_HUMAN;H7BXD5_HUMAN;H

7C2Z6_HUMAN;C9JIZ3_HUMAN;C9

JWQ8_HUMAN;C9JV47_HUMAN

-4.72 1.59E-05 5.20E-03 H7BXD5_HUMAN Grancalcin 

GRAN_HUMAN;H7BXD5_HUMAN;

H7C2Z6_HUMAN;C9JIZ3_HUMAN;

C9JWQ8_HUMAN;C9JV47_HUMA

N

-5.09 1.72E-02 9.53E+00

H7BZJ3_HUMAN Thioredoxin (Fragment) 
PDIA3_HUMAN;G5EA52_HUMAN;H

7BZJ3_HUMAN
0.34 9.40E-01 3.06E+02 G5EA52_HUMAN

Protein disulfide isomerase family A, 

member 3, isoform CRA_b 

PDIA3_HUMAN;G5EA52_HUMAN;

H7BZJ3_HUMAN
0.86 1.84E-01 1.02E+02

H7BZT7_HUMAN
S-formylglutathione hydrolase 

(Fragment) 
ESTD_HUMAN;H7BZT7_HUMAN -5.40 6.39E-04 2.08E-01 ESTD_HUMAN S-formylglutathione hydrolase ESTD_HUMAN;H7BZT7_HUMAN -4.63 1.56E-03 8.68E-01

H9KV70_HUMAN
Neutrophil gelatinase-associated 

lipocalin 
NGAL_HUMAN;H9KV70_HUMAN -6.17 3.18E-03 1.04E+00 H9KV70_HUMAN

Neutrophil gelatinase-associated 

lipocalin 
NGAL_HUMAN;H9KV70_HUMAN -6.09 2.76E-03 1.53E+00

HBA_HUMAN Hemoglobin subunit alpha HBA_HUMAN -0.14 4.27E-01 1.39E+02 HBA_HUMAN Hemoglobin subunit alpha HBA_HUMAN -0.45 4.77E-01 2.65E+02

HBB_HUMAN Hemoglobin subunit beta HBB_HUMAN;F8W6P5_HUMAN -0.74 1.32E-01 4.31E+01 HBB_HUMAN Hemoglobin subunit beta HBB_HUMAN;F8W6P5_HUMAN -1.02 2.82E-01 1.56E+02

HBD_HUMAN Hemoglobin subunit delta 
HBD_HUMAN;E9PEW8_HUMAN;E9

PFT6_HUMAN;C9JRG0_HUMAN
-0.80 1.32E-01 4.31E+01 HBD_HUMAN Hemoglobin subunit delta 

HBD_HUMAN;E9PEW8_HUMAN;E

9PFT6_HUMAN;C9JRG0_HUMAN
-1.09 2.86E-01 1.58E+02

HBG2_HUMAN Hemoglobin subunit gamma-2 
HBG1_HUMAN;HBG2_HUMAN;E9P

BW4_HUMAN
-0.05 6.59E-01 2.15E+02 HBG1_HUMAN Hemoglobin subunit gamma-1 

HBG1_HUMAN;HBG2_HUMAN;E9

PBW4_HUMAN;F8WB96_HUMAN
0.98 9.12E-01 5.06E+02

HEBP2_HUMAN Heme-binding protein 2 HEBP2_HUMAN;Q5THN1_HUMAN -4.54 7.96E-03 2.60E+00 HEBP2_HUMAN Heme-binding protein 2 HEBP2_HUMAN;Q5THN1_HUMAN 0.56 3.44E-01 1.91E+02

HPRT_HUMAN
Hypoxanthine-guanine 

phosphoribosyltransferase 
HPRT_HUMAN -4.20 1.21E-04 3.93E-02 HPRT_HUMAN

Hypoxanthine-guanine 

phosphoribosyltransferase 
HPRT_HUMAN;PRDC1_HUMAN -3.44 1.56E-02 8.64E+00

HS90A_HUMAN Heat shock protein HSP 90-alpha 

HS90A_HUMAN;Q86U12_HUMAN;

HS904_HUMAN;G3V2J8_HUMAN;H

S905_HUMAN;HS902_HUMAN

-4.10 3.50E-06 1.14E-03 HS90A_HUMAN Heat shock protein HSP 90-alpha 

HS90A_HUMAN;Q86U12_HUMAN

;HS904_HUMAN;G3V2J8_HUMAN;

HS905_HUMAN

-3.48 3.77E-02 2.09E+01

HS90B_HUMAN Heat shock protein HSP 90-beta 

H90B2_HUMAN;HS90B_HUMAN;H

0Y5S7_HUMAN;H0Y6E4_HUMAN;H

0Y598_HUMAN

-3.89 6.57E-04 2.14E-01 HS90B_HUMAN Heat shock protein HSP 90-beta 

H90B3_HUMAN;HS90B_HUMAN;H

0Y6E4_HUMAN;H0Y5S7_HUMAN;

H0Y598_HUMAN;H90B2_HUMAN

-3.50 6.67E-02 3.70E+01

HSP71_HUMAN Heat shock 70 kDa protein 1A/1B 

HSP71_HUMAN;F8VZJ4_HUMAN;E

7EP11_HUMAN;Q5SP16_HUMAN;E

7EP94_HUMAN;HS71L_HUMAN;Q5

3FA3_HUMAN;B4DXY3_HUMAN;F8

W1P1_HUMAN

-4.47 2.00E-03 6.51E-01 HSP71_HUMAN Heat shock 70 kDa protein 1A/1B 

HSP71_HUMAN;Q5SP16_HUMAN;

E7EP94_HUMAN;F8VZJ4_HUMAN;

E7EP11_HUMAN

-4.30 1.03E-02 5.69E+00

HSP7C_HUMAN Heat shock cognate 71 kDa protein 

HSP72_HUMAN;HSP7C_HUMAN;E9

PQQ4_HUMAN;E9PKE3_HUMAN;E

9PN25_HUMAN;E9PK54_HUMAN;E

9PLF4_HUMAN;E9PN89_HUMAN;E

9PQK7_HUMAN;E9PPY6_HUMAN;E

9PNE6_HUMAN;A8K7Q2_HUMAN;

E9PM13_HUMAN;E9PS65_HUMAN

;E9PI65_HUMAN;E9PSH5_HUMAN;

GRP75_HUMAN

-5.44 5.76E-05 1.88E-02 HSP7C_HUMAN Heat shock cognate 71 kDa protein 

HSP7C_HUMAN;A8K7Q2_HUMAN;

E9PKE3_HUMAN;E9PN89_HUMAN

;E9PNE6_HUMAN;E9PQQ4_HUMA

N;E9PN25_HUMAN;E9PK54_HUM

AN;E9PLF4_HUMAN;E9PQK7_HU

MAN;E9PPY6_HUMAN;E9PS65_H

UMAN;GRP75_HUMAN;HSP72_HU

MAN;E9PI65_HUMAN;E9PM13_H

UMAN;E9PSH5_HUMAN

-3.80 2.74E-03 1.52E+00

HXK3_HUMAN Hexokinase-3 
HXK3_HUMAN;H0Y8U9_HUMAN;

H0Y9N6_HUMAN
-3.74 1.37E-02 7.59E+00

E7ENR4_HUMAN Hexokinase-1 
HXK1_HUMAN;E7ENR4_HUMAN;H

XK2_HUMAN;E9PB90_HUMAN
-3.05 3.31E-01 1.84E+02

I3L0K2_HUMAN
Thioredoxin domain-containing protein 

17 

TXD17_HUMAN;I3L3M7_HUMAN;I

3L0K2_HUMAN
-6.92 9.83E-04 3.20E-01 TXD17_HUMAN

Thioredoxin domain-containing 

protein 17 

TXD17_HUMAN;I3L3M7_HUMAN;

I3L0K2_HUMAN;I3L2R6_HUMAN
-5.22 9.88E-03 5.48E+00

I3L2P8_HUMAN Protein disulfide-isomerase 

PDIA1_HUMAN;F5H8J2_HUMAN;H

7BZ94_HUMAN;I3L398_HUMAN;I3

L2P8_HUMAN;H0Y3Z3_HUMAN;I3L

3U6_HUMAN;I3NI03_HUMAN;I3L0

S0_HUMAN

1.14 7.31E-02 2.38E+01 I3L2P8_HUMAN Protein disulfide-isomerase 

PDIA1_HUMAN;F5H8J2_HUMAN;I

3L3U6_HUMAN;H7BZ94_HUMAN;

I3L2P8_HUMAN;I3NI03_HUMAN;I

3L398_HUMAN;I3L312_HUMAN;I

3L514_HUMAN;I3L1Y5_HUMAN;I

3L0S0_HUMAN;I3L3P5_HUMAN;I

3L4M2_HUMAN;H0Y3Z3_HUMAN

-0.97 2.31E-01 1.28E+02

I3L2U8_HUMAN
Platelet-activating factor 

acetylhydrolase IB subunit alpha 

LIS1_HUMAN;I3L2U8_HUMAN;B4D

F38_HUMAN;I3L3N5_HUMAN
-4.98 3.40E-03 1.11E+00 LIS1_HUMAN

Platelet-activating factor 

acetylhydrolase IB subunit alpha 

LIS1_HUMAN;I3L2U8_HUMAN;B4

DF38_HUMAN;I3L3N5_HUMAN;I3

L495_HUMAN

-5.02 1.25E-02 6.94E+00

I3L3Q4_HUMAN
Glyoxalase domain-containing protein 

4 (Fragment) 

GLOD4_HUMAN;B7Z403_HUMAN;I

3L3Q4_HUMAN;I3L1F4_HUMAN
-4.30 8.78E-03 2.86E+00 GLOD4_HUMAN

Glyoxalase domain-containing protein 

4 

GLOD4_HUMAN;B7Z403_HUMAN;

I3L1I0_HUMAN
-1.67 3.23E-02 1.80E+01

IDHC_HUMAN
Isocitrate dehydrogenase [NADP] 

cytoplasmic 
IDHC_HUMAN;C9J4N6_HUMAN -4.20 1.78E-04 5.79E-02 IDHC_HUMAN

Isocitrate dehydrogenase [NADP] 

cytoplasmic 

IDHC_HUMAN;IDHP_HUMAN;B4D

SZ6_HUMAN;B4DFL2_HUMAN;C9J

4N6_HUMAN;C9JJE5_HUMAN;C9J

LU6_HUMAN

-4.57 5.30E-03 2.94E+00

IGHA1_HUMAN Ig alpha-1 chain C region IGHA1_HUMAN;IGHA2_HUMAN -4.56 9.42E-03 3.07E+00 IGHA1_HUMAN Ig alpha-1 chain C region IGHA1_HUMAN;IGHA2_HUMAN -4.77 1.55E-02 8.62E+00

IGHG1_HUMAN Ig gamma-1 chain C region IGHG1_HUMAN -4.40 2.82E-02 1.57E+01

IGHG2_HUMAN Ig gamma-2 chain C region IGHG2_HUMAN -3.99 2.84E-02 1.58E+01

IGKC_HUMAN Ig kappa chain C region IGKC_HUMAN -6.33 5.67E-08 1.85E-05 IGKC_HUMAN Ig kappa chain C region IGKC_HUMAN -4.73 7.54E-02 4.19E+01

ILEU_HUMAN Leukocyte elastase inhibitor ILEU_HUMAN;B4DNT0_HUMAN -2.97 2.28E-05 7.42E-03 ILEU_HUMAN Leukocyte elastase inhibitor ILEU_HUMAN;B4DNT0_HUMAN -3.32 2.81E-02 1.56E+01

IMB1_HUMAN Importin subunit beta-1 
IMB1_HUMAN;J3QR48_HUMAN;B7

ZAV6_HUMAN
-4.30 6.14E-05 2.00E-02 IMB1_HUMAN Importin subunit beta-1 

IMB1_HUMAN;J3QR48_HUMAN;B

7ZAV6_HUMAN;F5H4R7_HUMAN;

J3KTM9_HUMAN

-3.34 2.56E-02 1.42E+01

IQGA1_HUMAN
Ras GTPase-activating-like protein 

IQGAP1 

IQGA1_HUMAN;IQGA3_HUMAN;H

0YLE8_HUMAN;F2Z2E2_HUMAN
-4.77 1.26E-06 4.12E-04 IQGA1_HUMAN

Ras GTPase-activating-like protein 

IQGAP1 

IQGA1_HUMAN;H0YLE8_HUMAN;I

QGA3_HUMAN;F2Z2E2_HUMAN;I

QGA2_HUMAN;E7EWC2_HUMAN;

F5H7S7_HUMAN;J3KR91_HUMAN

-4.53 4.51E-02 2.51E+01

ITAM_HUMAN Integrin alpha-M ITAM_HUMAN -3.45 3.18E-06 1.04E-03 ITAM_HUMAN Integrin alpha-M 

ITAM_HUMAN;H3BMV4_HUMAN;I

TAD_HUMAN;ITAX_HUMAN;H3BN

02_HUMAN

-2.17 3.20E-02 1.78E+01

J3KNB4_HUMAN Cathelicidin antimicrobial peptide CAMP_HUMAN;J3KNB4_HUMAN -4.73 1.41E-04 4.59E-02 J3KNB4_HUMAN Cathelicidin antimicrobial peptide 
CAMP_HUMAN;J3KNB4_HUMAN;R

EVERSED_AMZ1_HUMAN
-4.62 3.24E-03 1.80E+00

J3KPA1_HUMAN Cysteine-rich secretory protein 3 
CRIS3_HUMAN;J3KPA1_HUMAN;I3

L0A1_HUMAN;J3KQX0_HUMAN
-6.89 3.55E-04 1.16E-01 J3KPA1_HUMAN Cysteine-rich secretory protein 3 

CRIS3_HUMAN;J3KPA1_HUMAN;I

3L0A1_HUMAN;CRIS2_HUMAN;J3

KQX0_HUMAN

-9.04 3.78E-04 2.10E-01

J3KQE5_HUMAN
GTP-binding nuclear protein Ran 

(Fragment) 

RAN_HUMAN;B5MDF5_HUMAN;H0

YFC6_HUMAN;F5H018_HUMAN;J3

KQE5_HUMAN;B4DV51_HUMAN

-2.56 7.60E-04 2.48E-01 J3KQE5_HUMAN
GTP-binding nuclear protein Ran 

(Fragment) 

RAN_HUMAN;B5MDF5_HUMAN;H

0YFC6_HUMAN;F5H018_HUMAN;J

3KQE5_HUMAN;B4DV51_HUMAN

-3.07 6.62E-03 3.67E+00

J3QKR3_HUMAN
Proteasome subunit beta type-3 

(Fragment) 

PSB3_HUMAN;J3KRR2_HUMAN;J3

QKR3_HUMAN;J3KSM3_HUMAN
-4.52 2.59E-02 8.43E+00 J3QKR3_HUMAN

Proteasome subunit beta type-3 

(Fragment) 

PSB3_HUMAN;J3KRR2_HUMAN;J3

QKR3_HUMAN;J3KSM3_HUMAN
-1.09 5.78E-01 3.21E+02

J3QLI9_HUMAN Small nuclear ribonucleoprotein Sm D1 SMD1_HUMAN;J3QLI9_HUMAN -2.11 1.94E-03 6.31E-01 SMD1_HUMAN
Small nuclear ribonucleoprotein Sm 

D1 

SMD1_HUMAN;J3QLI9_HUMAN;J3

QLR7_HUMAN
-1.70 4.65E-02 2.58E+01

J3QR68_HUMAN Haptoglobin (Fragment) 

HPTR_HUMAN;HPT_HUMAN;Q0VA

C5_HUMAN;H0Y300_HUMAN;J3KT

C3_HUMAN;J3QR68_HUMAN;H3BS

21_HUMAN;J3QLC9_HUMAN;J3KR

H2_HUMAN

-6.15 2.08E-05 6.79E-03 HPT_HUMAN Haptoglobin 

HPTR_HUMAN;HPT_HUMAN;Q0VA

C5_HUMAN;H3BS21_HUMAN;J3Q

R68_HUMAN;J3QLC9_HUMAN;J3K

RH2_HUMAN;H0Y300_HUMAN;J3

KTC3_HUMAN;J3QQI8_HUMAN;H

3BMJ7_HUMAN;J3KSV1_HUMAN

-8.69 4.43E-04 2.46E-01

J3QRS3_HUMAN Myosin regulatory l ight chain 12A 
ML12A_HUMAN;ML12B_HUMAN;

MYL9_HUMAN;J3QRS3_HUMAN
-4.46 8.24E-03 2.69E+00 J3QRS3_HUMAN Myosin regulatory l ight chain 12A 

ML12A_HUMAN;ML12B_HUMAN;J

3QRS3_HUMAN;MYL9_HUMAN;J3

KTJ1_HUMAN

-5.06 1.38E-02 7.68E+00

K7ELW0_HUMAN Protein DJ-1 
PARK7_HUMAN;K7ELW0_HUMAN;

K7EN27_HUMAN
-2.08 8.18E-03 2.67E+00 PARK7_HUMAN Protein DJ-1 

PARK7_HUMAN;K7ELW0_HUMAN;

K7EN27_HUMAN
-3.74 4.50E-03 2.50E+00

1.02E+00

H2AJ_HUMAN Histone H2A.J 

H2A1D_HUMAN;H2A1H_HUMAN;H

2A1J_HUMAN;H2A1_HUMAN;H2A2

A_HUMAN;H2A2C_HUMAN;H2AJ_H

UMAN;H0YFX9_HUMAN;H2A1A_H

UMAN;H2A1B_HUMAN;H2A1C_HU

MAN;H2A3_HUMAN;H2AX_HUMAN

7.17 6.61E-10 2.16E-07

HXK3_HUMAN Hexokinase-3 

HXK3_HUMAN;H0Y8U9_HUMAN;H

0Y9N6_HUMAN;HXK1_HUMAN;HX

K2_HUMAN;E9PB90_HUMAN;E7EN

R4_HUMAN

-4.75 3.14E-03

IGHG1_HUMAN Ig gamma-1 chain C region 
IGHG1_HUMAN;IGHG2_HUMAN;IG

HG3_HUMAN;IGHG4_HUMAN
-5.95 1.09E-06 3.57E-04
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KPYM_HUMAN Pyruvate kinase isozymes M1/M2 

KPYM_HUMAN;KPYR_HUMAN;Q50

4U3_HUMAN;H3BTN5_HUMAN;H3

BSU3_HUMAN;H3BQ34_HUMAN;H

3BTJ2_HUMAN;H3BT25_HUMAN;H

3BUW1_HUMAN;H3BQZ3_HUMAN

;H3BU13_HUMAN;H3BN34_HUMA

N

-2.09 3.36E-04 1.10E-01 KPYM_HUMAN Pyruvate kinase isozymes M1/M2 KPYM_HUMAN -3.33 8.10E-02 4.50E+01

LDHA_HUMAN L-lactate dehydrogenase A chain 

LDHA_HUMAN;F5H308_HUMAN;F5

GWW2_HUMAN;F5GXC7_HUMAN;

F5GXU1_HUMAN;F5H8H6_HUMAN

;F5GZQ4_HUMAN;F5GXY2_HUMAN

;F5GXH2_HUMAN;F5GYU2_HUMA

N;F5H5J4_HUMAN;F5H6W8_HUM

AN

-4.22 1.18E-03 3.84E-01 LDHA_HUMAN L-lactate dehydrogenase A chain 

LDHA_HUMAN;F5H308_HUMAN;F

5GXY2_HUMAN;F5GXH2_HUMAN;

F5GYU2_HUMAN;F5H5J4_HUMAN

;F5H6W8_HUMAN;LDH6A_HUMA

N;F5GWW2_HUMAN;F5GXC7_HU

MAN;F5GXU1_HUMAN;F5H8H6_H

UMAN;F5GZQ4_HUMAN

-3.32 3.49E-02 1.94E+01

LDHB_HUMAN L-lactate dehydrogenase B chain 
LDHB_HUMAN;A8MW50_HUMAN;

C9J7H8_HUMAN;F5H793_HUMAN
-3.67 5.20E-04 1.69E-01 LDHB_HUMAN L-lactate dehydrogenase B chain 

LDHB_HUMAN;A8MW50_HUMAN;

C9J7H8_HUMAN;F5H793_HUMAN
-1.13 7.48E-02 4.15E+01

LEG3_HUMAN Galectin-3 LEG3_HUMAN;G3V3R6_HUMAN -4.98 2.58E-04 8.41E-02 LEG3_HUMAN Galectin-3 LEG3_HUMAN;G3V3R6_HUMAN -3.85 2.16E-02 1.20E+01

LKHA4_HUMAN Leukotriene A-4 hydrolase LKHA4_HUMAN;B4DEH5_HUMAN -4.61 1.90E-03 6.20E-01 LKHA4_HUMAN Leukotriene A-4 hydrolase LKHA4_HUMAN;B4DEH5_HUMAN -3.42 1.74E-02 9.66E+00

LMNB1_HUMAN Lamin-B1 LMNB1_HUMAN;E9PBF6_HUMAN -2.57 5.16E-04 1.68E-01 LMNB1_HUMAN Lamin-B1 LMNB1_HUMAN;E9PBF6_HUMAN -5.57 1.26E-02 7.02E+00

LPPL_HUMAN Eosinophil lysophospholipase LPPL_HUMAN -5.00 9.19E-04 3.00E-01 LPPL_HUMAN Eosinophil lysophospholipase LPPL_HUMAN;LEG16_HUMAN -5.10 3.77E-05 2.09E-02

LYSC_HUMAN Lysozyme C LYSC_HUMAN;F8VV32_HUMAN -3.35 8.83E-04 2.88E-01 LYSC_HUMAN Lysozyme C LYSC_HUMAN;F8VV32_HUMAN -2.08 4.08E-02 2.27E+01

M0QYG8_HUMAN Glia maturation factor gamma 

GMFG_HUMAN;M0QYJ8_HUMAN;

M0R0C1_HUMAN;M0R1D2_HUMA

N;M0QYG8_HUMAN;M0QXC2_HU

MAN;GMFB_HUMAN;G3V4P8_HU

MAN

-1.70 2.16E-03 7.05E-01 GMFG_HUMAN Glia maturation factor gamma 

E41L5_HUMAN;GMFG_HUMAN;M

0R0C1_HUMAN;M0R1D2_HUMAN

;M0QX47_HUMAN;M0QYG8_HU

MAN;M0QYJ8_HUMAN;M0QXC2_

HUMAN;GMFB_HUMAN;G3V4P8_

HUMAN

-3.68 5.97E-02 3.31E+01

M0R192_HUMAN Flavin reductase (NADPH) 
BLVRB_HUMAN;M0R192_HUMAN;

M0QZL1_HUMAN
-3.69 2.00E-05 6.53E-03 BLVRB_HUMAN Flavin reductase (NADPH) 

BLVRB_HUMAN;M0R192_HUMAN;

M0QZL1_HUMAN
-3.29 1.01E-01 5.61E+01

MDHC_HUMAN Malate dehydrogenase, cytoplasmic 

MDHC_HUMAN;B9A041_HUMAN;C

9JF79_HUMAN;B8ZZ51_HUMAN;C

9JRL4_HUMAN;C9JLV6_HUMAN;C9

IZI0_HUMAN;F8WFC2_HUMAN

-4.35 5.53E-05 1.80E-02 MDHC_HUMAN Malate dehydrogenase, cytoplasmic 

MDHC_HUMAN;B9A041_HUMAN;

B8ZZ51_HUMAN;C9JF79_HUMAN;

C9JRL4_HUMAN

-1.97 9.82E-03 5.45E+00

MIF_HUMAN Macrophage migration inhibitory factor MIF_HUMAN -6.10 9.56E-03 3.12E+00 MIF_HUMAN
Macrophage migration inhibitory 

factor 
MIF_HUMAN -1.56 1.51E-02 8.37E+00

MMP8_HUMAN Neutrophil collagenase MMP8_HUMAN;H7C1M3_HUMAN -6.54 5.72E-05 1.86E-02 MMP8_HUMAN Neutrophil collagenase 
MMP8_HUMAN;H7C1M3_HUMA

N;MMP10_HUMAN
-7.59 2.22E-03 1.23E+00

MMP9_HUMAN Matrix metalloproteinase-9 MMP9_HUMAN -7.21 1.32E-03 4.30E-01 MMP9_HUMAN Matrix metalloproteinase-9 MMP9_HUMAN -9.79 7.54E-03 4.18E+00

MNDA_HUMAN
Myeloid cell  nuclear differentiation 

antigen 
MNDA_HUMAN;H0Y6P3_HUMAN 3.85 7.66E-05 2.50E-02 MNDA_HUMAN

Myeloid cell  nuclear differentiation 

antigen 
MNDA_HUMAN;H0Y6P3_HUMAN 4.50 1.62E-03 8.98E-01

MOES_HUMAN Moesin MOES_HUMAN -3.72 5.58E-04 1.82E-01 MOES_HUMAN Moesin 
MOES_HUMAN;RADI_HUMAN;A7Y

IJ8_HUMAN;F5H1A7_HUMAN
-2.07 4.26E-02 2.36E+01

MTPN_HUMAN Myotrophin MTPN_HUMAN;C9JL85_HUMAN -2.40 3.18E-02 1.04E+01 MTPN_HUMAN Myotrophin MTPN_HUMAN;C9JL85_HUMAN -1.07 2.80E-01 1.55E+02

MVP_HUMAN Major vault protein 

MVP_HUMAN;H3BNF6_HUMAN;H3

BRL2_HUMAN;H3BUK7_HUMAN;H

3BP76_HUMAN;H3BQK6_HUMAN

0.00 9.50E-01 3.10E+02 MVP_HUMAN Major vault protein 

MVP_HUMAN;H3BNF6_HUMAN;H

3BRL2_HUMAN;H3BUK7_HUMAN;

H3BP76_HUMAN;H3BQK6_HUMA

N;I3L155_HUMAN

-0.40 6.73E-01 3.73E+02

MYH9_HUMAN Myosin-9 

MYH9_HUMAN;MYH10_HUMAN;M

YH11_HUMAN;MYH14_HUMAN;Q5

BKV1_HUMAN;G8JLL9_HUMAN;F2Z

2U8_HUMAN;F8W6L6_HUMAN;M0

QY43_HUMAN;E7ERA5_HUMAN;B1

AH99_HUMAN;MYH13_HUMAN;M

YH1_HUMAN;MYH2_HUMAN;MYH

3_HUMAN;MYH4_HUMAN;MYH6_

HUMAN;MYH7B_HUMAN;MYH7_H

UMAN;MYH8_HUMAN;REVERSED_Z

MY12_HUMAN;REVERSED_E9PFV0

_HUMAN

-2.97 1.46E-03 4.76E-01 MYH9_HUMAN Myosin-9 

MYH10_HUMAN;MYH9_HUMAN;F

8W6L6_HUMAN;Q5BKV1_HUMAN

;REVERSED_MAP2_HUMAN;REVER

SED_TTLL6_HUMAN;REVERSED_F8

W9N0_HUMAN;REVERSED_E7EV0

3_HUMAN;MYH11_HUMAN;MYH1

4_HUMAN;G8JLL9_HUMAN;F2Z2U

8_HUMAN;B1AH99_HUMAN;M0Q

Y43_HUMAN;MYH7B_HUMAN;E7E

RA5_HUMAN;REVERSED_ZMY12_

HUMAN;REVERSED_E9PFV0_HUM

AN

-1.92 8.47E-02 4.70E+01

NAGK_HUMAN N-acetyl-D-glucosamine kinase 

NAGK_HUMAN;E9PPU6_HUMAN;C

9JEV6_HUMAN;H7C3G9_HUMAN;H

7C1L7_HUMAN;H0YEB7_HUMAN;H

0YC94_HUMAN

-3.90 4.82E-04 1.57E-01 NAGK_HUMAN N-acetyl-D-glucosamine kinase 

NAGK_HUMAN;E9PPU6_HUMAN;C

9JEV6_HUMAN;H7C3G9_HUMAN;

H7C1L7_HUMAN;H0YEB7_HUMAN

;H0YC94_HUMAN;H0YF44_HUMA

N

-5.34 2.92E-03 1.62E+00

NAMPT_HUMAN
Nicotinamide 

phosphoribosyltransferase 

NAMPT_HUMAN;Q5SYT8_HUMAN;

F5H246_HUMAN;C9JG65_HUMAN
-4.95 3.39E-06 1.11E-03 NAMPT_HUMAN

Nicotinamide 

phosphoribosyltransferase 

NAMPT_HUMAN;F5H246_HUMAN

;Q5SYT8_HUMAN;C9JG65_HUMA

N;C9JF35_HUMAN

-4.99 2.18E-02 1.21E+01

NCF1_HUMAN Neutrophil cytosol factor 1 

NCF1B_HUMAN;NCF1C_HUMAN;N

CF1_HUMAN;C9J155_HUMAN;H7C

1S1_HUMAN

-4.31 1.57E-05 5.13E-03 NCF1_HUMAN Neutrophil cytosol factor 1 

NCF1B_HUMAN;NCF1_HUMAN;C9

J155_HUMAN;NCF1C_HUMAN;H7

C1S1_HUMAN

-3.85 1.63E-01 9.04E+01

NCF2_HUMAN Neutrophil cytosol factor 2 NCF2_HUMAN;B1ALB7_HUMAN -3.02 2.80E-02 9.11E+00 NCF2_HUMAN Neutrophil cytosol factor 2 
NCF2_HUMAN;B1ALB7_HUMAN;B

1ALB6_HUMAN
-4.32 1.74E-01 9.66E+01

NIT2_HUMAN Omega-amidase NIT2 
NIT2_HUMAN;H7C579_HUMAN;F8

WF70_HUMAN
-3.89 1.22E-04 3.99E-02 NIT2_HUMAN Omega-amidase NIT2 

NIT2_HUMAN;H7C579_HUMAN;F

8WF70_HUMAN
-5.67 2.00E-03 1.11E+00

NPM_HUMAN Nucleophosmin NPM_HUMAN;E5RI98_HUMAN -1.31 1.76E-01 5.72E+01 NPM_HUMAN Nucleophosmin NPM_HUMAN;E5RGW4_HUMAN -3.99 9.35E-02 5.19E+01

OLFM4_HUMAN Olfactomedin-4 
OLFM4_HUMAN;REVERSED_DQX1_

HUMAN
-5.47 2.58E-04 8.40E-02 OLFM4_HUMAN Olfactomedin-4 

OLFM4_HUMAN;REVERSED_DQX1

_HUMAN
-2.30 1.90E-01 1.05E+02

OSTF1_HUMAN Osteoclast-stimulating factor 1 OSTF1_HUMAN -0.73 4.94E-01 1.61E+02 OSTF1_HUMAN Osteoclast-stimulating factor 1 OSTF1_HUMAN 0.60 7.08E-01 3.93E+02

PDC6I_HUMAN
Programmed cell  death 6-interacting 

protein 
PDC6I_HUMAN;F8WDK9_HUMAN 0.31 5.40E-01 1.76E+02 PDC6I_HUMAN

Programmed cell  death 6-interacting 

protein 

PDC6I_HUMAN;F8WDK9_HUMAN

;C9IZF9_HUMAN;F8WBR8_HUMA

N;F8WEQ7_HUMAN

-1.82 3.41E-02 1.89E+01

PEBP1_HUMAN
Phosphatidylethanolamine-binding 

protein 1 
PEBP1_HUMAN -3.81 1.39E-02 4.52E+00 PEBP1_HUMAN

Phosphatidylethanolamine-binding 

protein 1 
PEBP1_HUMAN -2.32 1.26E-02 7.00E+00

PERE_HUMAN Eosinophil peroxidase PERE_HUMAN 3.50 4.44E-03 1.45E+00 PERE_HUMAN Eosinophil peroxidase PERE_HUMAN 1.96 1.14E-01 6.32E+01

PERM_HUMAN Myeloperoxidase PERM_HUMAN;J3QSF7_HUMAN 4.38 4.87E-06 1.59E-03 PERM_HUMAN Myeloperoxidase PERM_HUMAN;J3QSF7_HUMAN 4.64 2.62E-03 1.46E+00

PGAM1_HUMAN Phosphoglycerate mutase 1 
PGAM1_HUMAN;PGAM4_HUMAN;

PGAM2_HUMAN
-4.45 1.72E-05 5.62E-03 PGAM1_HUMAN Phosphoglycerate mutase 1 

PGAM1_HUMAN;PGAM2_HUMAN

;PGAM4_HUMAN
-4.70 2.33E-02 1.29E+01

PGK1_HUMAN Phosphoglycerate kinase 1 
PGK1_HUMAN;PGK2_HUMAN;E7ER

H5_HUMAN;B7Z7A9_HUMAN
-3.84 2.72E-06 8.85E-04 PGK1_HUMAN Phosphoglycerate kinase 1 

PGK1_HUMAN;B7Z7A9_HUMAN;E

7ERH5_HUMAN;PGK2_HUMAN;RE

VERSED_KIT_HUMAN;REVERSED_C

CAR1_HUMAN;REVERSED_F5H1H2

_HUMAN;REVERSED_F5H2E6_HU

MAN

-2.89 8.90E-03 4.94E+00

PGM1_HUMAN Phosphoglucomutase-1 PGM1_HUMAN -4.93 1.55E-07 5.07E-05 PGM1_HUMAN Phosphoglucomutase-1 

PGM1_HUMAN;CP1B1_HUMAN;R

EVERSED_UQCC_HUMAN;REVERSE

D_B7Z1C6_HUMAN;REVERSED_H7

BYA2_HUMAN;REVERSED_B7Z314

_HUMAN;REVERSED_B7Z7J8_HUM

AN;REVERSED_B1AKV3_HUMAN;R

EVERSED_B1AKV4_HUMAN

-4.18 1.60E-02 8.90E+00

PGM2_HUMAN Phosphoglucomutase-2 

PGM2_HUMAN;E7ENQ8_HUMAN;E

9PD70_HUMAN;F5H6V2_HUMAN;

B4E0G8_HUMAN

-4.99 2.40E-05 7.83E-03 PGM2_HUMAN Phosphoglucomutase-2 

PGM2_HUMAN;F5H6V2_HUMAN;

E7ENQ8_HUMAN;E9PD70_HUMA

N;B4E0G8_HUMAN;H0Y921_HUM

AN

-3.79 4.69E-02 2.60E+01

PGRP1_HUMAN Peptidoglycan recognition protein 1 PGRP1_HUMAN -6.71 2.74E-03 8.94E-01 PGRP1_HUMAN Peptidoglycan recognition protein 1 PGRP1_HUMAN -7.96 1.42E-03 7.91E-01

PLEC_HUMAN Plectin PLEC_HUMAN;E9PMV1_HUMAN 7.73 1.19E-01 3.86E+01 PLEC_HUMAN Plectin 
PLEC_HUMAN;E9PMV1_HUMAN;E

9PKG0_HUMAN
-4.15 4.67E-02 2.59E+01

PLSI_HUMAN Plastin-1 PLSI_HUMAN -4.72 1.58E-05 5.14E-03 PLSI_HUMAN Plastin-1 PLSI_HUMAN -2.95 1.49E-02 8.27E+00

PLSL_HUMAN Plastin-2 

PLSL_HUMAN;Q5TBN3_HUMAN;B4

DUA0_HUMAN;Q5TBN5_HUMAN;P

LST_HUMAN;B4DGB4_HUMAN;B7Z

6M1_HUMAN;F8W8D8_HUMAN;B

4DI60_HUMAN;H7C4N2_HUMAN

-5.32 2.00E-05 6.52E-03 PLSL_HUMAN Plastin-2 

PLSL_HUMAN;PLST_HUMAN;B4DG

B4_HUMAN;B7Z6M1_HUMAN;F8

W8D8_HUMAN;Q5TBN3_HUMAN;

B4DUA0_HUMAN;Q5TBN5_HUMA

N;B4DI60_HUMAN;H7C4N2_HUM

AN

-3.29 2.63E-02 1.46E+01

PNPH_HUMAN Purine nucleoside phosphorylase 

PNPH_HUMAN;G3V5M2_HUMAN;

G3V2H3_HUMAN;G3V308_HUMAN

;G3V393_HUMAN

-4.73 1.23E-04 4.00E-02 PNPH_HUMAN Purine nucleoside phosphorylase 

PNPH_HUMAN;G3V5M2_HUMAN;

G3V2H3_HUMAN;G3V393_HUMA

N;G3V308_HUMAN

-2.81 1.67E-02 9.28E+00
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PPIA_HUMAN Peptidyl-prolyl cis-trans isomerase A 

PAL4A_HUMAN;PPIA_HUMAN;F8W

E65_HUMAN;C9J5S7_HUMAN;Q56

7Q0_HUMAN;E5RIZ5_HUMAN;PAL

4D_HUMAN;PAL4G_HUMAN;PPID_

HUMAN;PPIF_HUMAN;PPIH_HUMA

N;RBP2_HUMAN;Q2YDB7_HUMAN;

A6NM32_HUMAN;E9PGT0_HUMA

N;C9JQD4_HUMAN;H0Y548_HUMA

N

-4.36 1.94E-05 6.32E-03 PPIA_HUMAN Peptidyl-prolyl cis-trans isomerase A 

PPIA_HUMAN;Q567Q0_HUMAN;F

8WE65_HUMAN;C9J5S7_HUMAN;

PAL4A_HUMAN;PAL4D_HUMAN;P

AL4G_HUMAN;E5RIZ5_HUMAN

-2.14 4.78E-03 2.65E+00

PPIB_HUMAN Peptidyl-prolyl cis-trans isomerase B PPIB_HUMAN -2.68 8.74E-02 2.85E+01 PPIB_HUMAN Peptidyl-prolyl cis-trans isomerase B PPIB_HUMAN -3.39 2.31E-02 1.28E+01

PRDX2_HUMAN Peroxiredoxin-2 PRDX2_HUMAN;A6NIW5_HUMAN -1.39 3.66E-02 1.19E+01 PRDX2_HUMAN Peroxiredoxin-2 PRDX2_HUMAN;A6NIW5_HUMAN -0.90 4.61E-01 2.56E+02

PRDX6_HUMAN Peroxiredoxin-6 PRDX6_HUMAN -3.59 1.00E-03 3.26E-01 PRDX6_HUMAN Peroxiredoxin-6 PRDX6_HUMAN -1.39 1.45E-01 8.03E+01

PROF1_HUMAN Profil in-1 

PROF1_HUMAN;K7EJ44_HUMAN;I

3L3D5_HUMAN;PROF2_HUMAN;C9

J0J7_HUMAN;G5E9Q6_HUMAN;C9J

712_HUMAN;C9J2N0_HUMAN;C9J

Q45_HUMAN

-5.05 1.44E-03 4.68E-01 PROF1_HUMAN Profil in-1 

PROF1_HUMAN;K7EJ44_HUMAN;I

3L3D5_HUMAN;PROF2_HUMAN;C

9J0J7_HUMAN;G5E9Q6_HUMAN;

C9J712_HUMAN;C9J2N0_HUMAN;

C9JQ45_HUMAN

-3.18 1.35E-02 7.47E+00

PRTN3_HUMAN Myeloblastin PRTN3_HUMAN -3.19 3.64E-04 1.19E-01 PRTN3_HUMAN Myeloblastin PRTN3_HUMAN -3.58 2.66E-03 1.48E+00

PSA1_HUMAN Proteasome subunit alpha type-1 
PSA1_HUMAN;B4DEV8_HUMAN;F5

GX11_HUMAN
-3.22 1.42E-03 4.62E-01 PSA1_HUMAN Proteasome subunit alpha type-1 

PSA1_HUMAN;F5GX11_HUMAN;B

4DEV8_HUMAN
-2.06 4.83E-02 2.68E+01

PSA2_HUMAN Proteasome subunit alpha type-2 

PSA2_HUMAN;C9JCK5_HUMAN;Q6

MZI6_HUMAN;H3BT36_HUMAN;H

7C402_HUMAN

-3.64 1.71E-02 5.57E+00 PSA2_HUMAN Proteasome subunit alpha type-2 

PSA2_HUMAN;H3BT36_HUMAN;H

7C402_HUMAN;C9JCK5_HUMAN;

Q6MZI6_HUMAN

-1.80 5.06E-02 2.81E+01

PSA3_HUMAN Proteasome subunit alpha type-3 
PSA3_HUMAN;G3V5N4_HUMAN;G

3V3W4_HUMAN
-2.09 2.16E-03 7.03E-01 PSA3_HUMAN Proteasome subunit alpha type-3 

PSA3_HUMAN;G3V4X5_HUMAN;G

3V5N4_HUMAN;G3V3W4_HUMA

N;H0YJ03_HUMAN

-1.99 7.95E-02 4.41E+01

PSA5_HUMAN Proteasome subunit alpha type-5 PSA5_HUMAN -3.46 1.56E-03 5.10E-01 PSA5_HUMAN Proteasome subunit alpha type-5 PSA5_HUMAN -3.23 2.39E-02 1.33E+01

PSA7_HUMAN Proteasome subunit alpha type-7 

PSA7_HUMAN;H0Y586_HUMAN;PS

A7L_HUMAN;Q5JXJ2_HUMAN;F5GY

34_HUMAN

-6.13 8.75E-04 2.85E-01 PSA7_HUMAN Proteasome subunit alpha type-7 

PSA7_HUMAN;H0Y586_HUMAN;Q

5JXJ2_HUMAN;PSA7L_HUMAN;F5

GY34_HUMAN

-2.22 1.03E-01 5.69E+01

PSB10_HUMAN Proteasome subunit beta type-10 
PSB10_HUMAN;J3QQN1_HUMAN;J

3QL48_HUMAN
1.49 5.71E-02 1.86E+01 PSB10_HUMAN Proteasome subunit beta type-10 PSB10_HUMAN;J3QQN1_HUMAN -1.79 2.31E-01 1.28E+02

PSB2_HUMAN Proteasome subunit beta type-2 PSB2_HUMAN -2.39 1.30E-02 4.25E+00 PSB2_HUMAN Proteasome subunit beta type-2 PSB2_HUMAN -1.86 3.95E-01 2.19E+02

PSB4_HUMAN Proteasome subunit beta type-4 PSB4_HUMAN -3.97 1.76E-04 5.73E-02 PSB4_HUMAN Proteasome subunit beta type-4 PSB4_HUMAN -1.72 3.43E-02 1.90E+01

PSB6_HUMAN Proteasome subunit beta type-6 PSB6_HUMAN;I3L3X7_HUMAN -2.68 1.88E-03 6.12E-01 PSB6_HUMAN Proteasome subunit beta type-6 PSB6_HUMAN;I3L3X7_HUMAN -1.98 1.85E-02 1.03E+01

PSB8_HUMAN Proteasome subunit beta type-8 
PSB8_HUMAN;Q5JNW7_HUMAN;B

0UZC1_HUMAN
-1.38 2.93E-02 9.54E+00 PSB8_HUMAN Proteasome subunit beta type-8 

PSB8_HUMAN;Q5JNW7_HUMAN;

B0UZC1_HUMAN
-2.15 1.31E-01 7.26E+01

PSME1_HUMAN
Proteasome activator complex subunit 

1 

PSME1_HUMAN;A6NJG9_HUMAN;

H0YNE3_HUMAN;H0YLU2_HUMAN;

H0YKK6_HUMAN

-3.79 1.81E-02 5.89E+00 H0YNE3_HUMAN
Proteasome activator complex subunit 

1 

PSME1_HUMAN;A6NJG9_HUMAN;

H0YNE3_HUMAN;H0YLU2_HUMA

N;H0YKK6_HUMAN

-2.07 7.25E-02 4.02E+01

PTN6_HUMAN
Tyrosine-protein phosphatase non-

receptor type 6 

PTN6_HUMAN;F5GY79_HUMAN;F5

H0N8_HUMAN;F5H5H9_HUMAN;F

5GZM7_HUMAN;F5H1Z8_HUMAN

-3.34 1.43E-02 4.66E+00 PTN6_HUMAN
Tyrosine-protein phosphatase non-

receptor type 6 

PTN6_HUMAN;F5GY79_HUMAN;F

5H0N8_HUMAN;F5GZM7_HUMAN

;F5H1Z8_HUMAN;F5H1V7_HUMA

N;F5GXD4_HUMAN;F5H4Z1_HUM

AN;F5H5H9_HUMAN;PTN11_HUM

AN

-3.51 1.52E-03 8.45E-01

PTX3_HUMAN Pentraxin-related protein PTX3 PTX3_HUMAN -4.64 6.70E-03 2.18E+00 PTX3_HUMAN Pentraxin-related protein PTX3 PTX3_HUMAN -4.65 1.69E-02 9.36E+00

PURA2_HUMAN Adenylosuccinate synthetase isozyme 2 PURA2_HUMAN -5.12 8.24E-03 2.69E+00 PURA2_HUMAN
Adenylosuccinate synthetase isozyme 

2 

PURA2_HUMAN;PURA1_HUMAN;

G3V2N1_HUMAN;G3V232_HUMA

N;G3V5D8_HUMAN

-4.74 7.06E-03 3.92E+00

PYGL_HUMAN Glycogen phosphorylase, l iver form 

PYGL_HUMAN;E9PK47_HUMAN;E

9PMM6_HUMAN;PYGM_HUMAN;

REVERSED_ADIP_HUMAN;REVERSE

D_J3KR02_HUMAN

-4.12 1.35E-02 7.49E+00

PYGB_HUMAN Glycogen phosphorylase, brain form PYGB_HUMAN;H0Y4Z6_HUMAN -0.16 5.30E-01 2.94E+02

Q5T123_HUMAN
SH3 domain-binding glutamic acid-rich-

like protein 3 
SH3L3_HUMAN;Q5T123_HUMAN -3.35 6.24E-04 2.03E-01 Q5T123_HUMAN

SH3 domain-binding glutamic acid-

rich-like protein 3 
SH3L3_HUMAN;Q5T123_HUMAN -2.06 1.82E-01 1.01E+02

Q5T6W1_HUMAN
Heterogeneous nuclear 

ribonucleoprotein K 

HNRPK_HUMAN;Q5T6W2_HUMAN

;Q5T6W5_HUMAN;Q5T6W1_HUM

AN

-0.43 8.44E-01 2.75E+02 Q5T6W5_HUMAN
Heterogeneous nuclear 

ribonucleoprotein K 

HNRPK_HUMAN;Q5T6W2_HUMA

N;Q5T6W5_HUMAN;Q5T6W1_HU

MAN

2.24 4.72E-02 2.62E+01

Q5TA02_HUMAN
Glutathione S-transferase omega-1 

(Fragment) 

GSTO1_HUMAN;Q5TA02_HUMAN;

Q5TA01_HUMAN
-3.75 1.66E-03 5.40E-01 Q5TA02_HUMAN

Glutathione S-transferase omega-1 

(Fragment) 

GSTO1_HUMAN;Q5TA02_HUMAN;

Q5TA01_HUMAN
-2.86 7.96E-02 4.42E+01

Q5VU66_HUMAN Tropomyosin alpha-3 chain 

Q5VU59_HUMAN;Q5VU63_HUMA

N;J3KN67_HUMAN;Q5VU61_HUM

AN;Q5VU66_HUMAN;Q5VU58_HU

MAN;Q5VU72_HUMAN;D6RFM2_H

UMAN;D6R904_HUMAN;TPM3_HU

MAN;TPM1_HUMAN;TPM2_HUMA

N;TPM4_HUMAN;B7Z596_HUMAN;

Q6ZN40_HUMAN;D9YZV2_HUMAN

;H7BYY1_HUMAN;D9YZV8_HUMAN

;D9YZV3_HUMAN;Q5TCU8_HUMA

N;H0YNC7_HUMAN;Q5TCU3_HUM

AN;F5H7S3_HUMAN;H0YK48_HUM

AN;H0YL80_HUMAN;H0YL52_HUM

AN;H0YKP3_HUMAN;H0YKX5_HUM

AN;K7ENT6_HUMAN;K7ERG3_HUM

AN;K7EP68_HUMAN

-0.97 7.49E-01 2.44E+02 Q5VU59_HUMAN Tropomyosin alpha-3 chain 

Q5VU59_HUMAN;Q5VU58_HUMA

N;Q5VU72_HUMAN;D6RFM2_HU

MAN;D6R904_HUMAN;Q5VU61_

HUMAN;Q5VU66_HUMAN

-0.22 3.92E-01 2.18E+02

QSOX1_HUMAN Sulfhydryl oxidase 1 QSOX1_HUMAN;A8MXT8_HUMAN -3.02 2.22E-03 7.24E-01 QSOX1_HUMAN Sulfhydryl oxidase 1 
QSOX1_HUMAN;A8MXT8_HUMA

N
-4.94 2.50E-03 1.39E+00

RAB5C_HUMAN Ras-related protein Rab-5C 
RAB5C_HUMAN;K7ERI8_HUMAN;K

7ENY4_HUMAN;K7ERQ8_HUMAN
-3.89 6.24E-03 2.04E+00 RAB5C_HUMAN Ras-related protein Rab-5C 

RAB5C_HUMAN;K7EIP6_HUMAN;

K7ERI8_HUMAN;K7ENY4_HUMAN;

K7ERQ8_HUMAN

-3.21 4.99E-02 2.77E+01

RAC2_HUMAN
Ras-related C3 botulinum toxin 

substrate 2 

RAC2_HUMAN;B1AH80_HUMAN;B

1AH77_HUMAN;B1AH78_HUMAN;

RAC1_HUMAN;RAC3_HUMAN;J3KS

C4_HUMAN;J3QLK0_HUMAN

-0.05 5.36E-01 1.75E+02 RAC2_HUMAN
Ras-related C3 botulinum toxin 

substrate 2 

RAC2_HUMAN;B1AH80_HUMAN;B

1AH78_HUMAN;B1AH77_HUMAN
-1.13 2.99E-01 1.66E+02

RAP1B_HUMAN Ras-related protein Rap-1b 

RAP1A_HUMAN;RAP1B_HUMAN;F5

GYH7_HUMAN;F5H077_HUMAN;F5

H500_HUMAN;F5H004_HUMAN;F5

H491_HUMAN;F5GWU8_HUMAN;F

8WBC0_HUMAN;F5GX62_HUMAN;

F5H0B7_HUMAN;F5H7Y6_HUMAN;

F5H6R7_HUMAN;F5GYB5_HUMAN;

F5H4H0_HUMAN;E7ESV4_HUMAN;

RP1BL_HUMAN;B7ZB78_HUMAN;F

5GZG1_HUMAN;F5H823_HUMAN

-0.57 1.92E-01 6.26E+01 RAP1B_HUMAN Ras-related protein Rap-1b 

RAP1A_HUMAN;RAP1B_HUMAN;R

P1BL_HUMAN;B7ZB78_HUMAN;F

5GZG1_HUMAN;F5H823_HUMAN;

F5GX62_HUMAN;F5H7Y6_HUMA

N;E7ESV4_HUMAN;F5GYH7_HUM

AN;F5H077_HUMAN;F5H500_HU

MAN;F5H004_HUMAN;F5H491_H

UMAN;F5GWU8_HUMAN;F8WBC

0_HUMAN;F5H0B7_HUMAN;F5H6

R7_HUMAN;F5GYB5_HUMAN;F5H

4H0_HUMAN

-0.58 5.80E-01 3.22E+02

RETN_HUMAN Resistin RETN_HUMAN;Q76B53_HUMAN -4.36 5.56E-05 1.81E-02 RETN_HUMAN Resistin RETN_HUMAN;Q76B53_HUMAN -6.21 2.33E-02 1.30E+01

RHG01_HUMAN Rho GTPase-activating protein 1 
RHG01_HUMAN;H0YE29_HUMAN;E

9PNR6_HUMAN
-5.30 5.22E-03 1.70E+00 RHG01_HUMAN Rho GTPase-activating protein 1 

RHG01_HUMAN;H0YE29_HUMAN;

E9PNR6_HUMAN
-1.27 4.76E-01 2.64E+02

RHG30_HUMAN Rho GTPase-activating protein 30 

RHG30_HUMAN;E9PLT5_HUMAN;R

HG32_HUMAN;RHG33_HUMAN;G3

V174_HUMAN;A1A5D2_HUMAN;K

7EQI6_HUMAN;K7EMC2_HUMAN

-3.75 1.17E-02 3.83E+00 RHG30_HUMAN Rho GTPase-activating protein 30 RHG30_HUMAN;E9PLT5_HUMAN -3.30 6.43E-02 3.57E+01

RHOA_HUMAN Transforming protein RhoA 

RHOA_HUMAN;RHOC_HUMAN;Q5J

R07_HUMAN;C9JX21_HUMAN;Q5J

R08_HUMAN;E9PN11_HUMAN;Q5J

R05_HUMAN;C9JNR4_HUMAN;E9P

QH6_HUMAN;RHOB_HUMAN;E9PL

A2_HUMAN;C9J1T2_HUMAN;Q5JR

06_HUMAN;C9JRM1_HUMAN

-1.34 5.32E-03 1.74E+00 RHOA_HUMAN Transforming protein RhoA 

RHOA_HUMAN;RHOC_HUMAN;E9

PLA2_HUMAN;Q5JR07_HUMAN;C

9JX21_HUMAN;C9J1T2_HUMAN;Q

5JR08_HUMAN;E9PN11_HUMAN;

Q5JR06_HUMAN;Q5JR05_HUMAN

;C9JNR4_HUMAN;C9JRM1_HUMA

N;E9PQH6_HUMAN

0.35 2.68E-01 1.49E+02

RINI_HUMAN Ribonuclease inhibitor 

RINI_HUMAN;E9PMJ3_HUMAN;E9

PIK5_HUMAN;E9PMA9_HUMAN;E9

PIM9_HUMAN;E9PLZ3_HUMAN;E9

PMN0_HUMAN;H0YCR7_HUMAN

-4.25 4.77E-04 1.55E-01 RINI_HUMAN Ribonuclease inhibitor 

RINI_HUMAN;E9PMJ3_HUMAN;E9

PIK5_HUMAN;E9PMA9_HUMAN;E

9PIM9_HUMAN;E9PLZ3_HUMAN;

E9PMN0_HUMAN;H0YCR7_HUMA

N

-3.71 1.73E-02 9.58E+00

RNAS2_HUMAN Non-secretory ribonuclease RNAS2_HUMAN 0.41 3.65E-01 1.19E+02 RNAS2_HUMAN Non-secretory ribonuclease RNAS2_HUMAN 1.85 6.24E-02 3.46E+01

ROA2_HUMAN
Heterogeneous nuclear 

ribonucleoproteins A2/B1 
ROA2_HUMAN -5.24 1.01E-04 3.28E-02 ROA2_HUMAN

Heterogeneous nuclear 

ribonucleoproteins A2/B1 
ROA2_HUMAN -2.41 6.66E-02 3.70E+01

RPIA_HUMAN Ribose-5-phosphate isomerase RPIA_HUMAN -3.85 1.02E-03 3.33E-01 RPIA_HUMAN Ribose-5-phosphate isomerase RPIA_HUMAN -3.44 2.94E-02 1.63E+01

RSU1_HUMAN Ras suppressor protein 1 RSU1_HUMAN;F2Z2H2_HUMAN -4.40 5.98E-04 1.95E-01 RSU1_HUMAN Ras suppressor protein 1 RSU1_HUMAN;F2Z2H2_HUMAN -3.65 1.61E-01 8.93E+01

S100P_HUMAN Protein S100-P S100P_HUMAN -3.93 2.63E-04 8.59E-02 S100P_HUMAN Protein S100-P S100P_HUMAN -4.94 2.95E-02 1.64E+01

S10A4_HUMAN Protein S100-A4 S10A4_HUMAN -4.72 8.62E-03 2.81E+00 S10A4_HUMAN Protein S100-A4 S10A4_HUMAN -3.23 2.30E-02 1.27E+01

5.23E-03PYGL_HUMAN Glycogen phosphorylase, l iver form 

PYGL_HUMAN;E9PK47_HUMAN;E9

PMM6_HUMAN;PYGB_HUMAN;PY

GM_HUMAN;H0Y4Z6_HUMAN

-4.7 1.60E-05
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Table 8-5 Quantitative comparison of protein levels in SN and D (DNase-I treated NET fraction) 
fraction 

Samples from 4 donors (on the left) were acquired using LTQ Orbitrap Velos ETD and samples 
from 3 donors (on the right) using Q Exactive MS. The data was subsequently quantified in 
separate analyses.  

 

 

 

 

 

 

 

 

 

S10A6_HUMAN Protein S100-A6 S10A6_HUMAN -2.26 9.80E-03 3.19E+00 S10A6_HUMAN Protein S100-A6 S10A6_HUMAN -3.56 5.89E-02 3.27E+01

S10A8_HUMAN Protein S100-A8 S10A8_HUMAN -3.40 5.02E-04 1.64E-01 S10A8_HUMAN Protein S100-A8 S10A8_HUMAN -3.91 1.22E-01 6.78E+01

S10A9_HUMAN Protein S100-A9 S10A9_HUMAN -4.92 9.81E-05 3.20E-02 S10A9_HUMAN Protein S100-A9 S10A9_HUMAN -2.62 2.06E-01 1.14E+02

S10AB_HUMAN Protein S100-A11 S10AB_HUMAN -4.12 9.32E-03 3.04E+00 S10AB_HUMAN Protein S100-A11 S10AB_HUMAN -3.29 1.54E-01 8.55E+01

S10AC_HUMAN Protein S100-A12 S10AC_HUMAN -3.38 8.17E-05 2.66E-02 S10AC_HUMAN Protein S100-A12 S10AC_HUMAN -2.13 2.79E-01 1.55E+02

SAHH_HUMAN Adenosylhomocysteinase SAHH_HUMAN -5.09 3.56E-04 1.16E-01 SAHH_HUMAN Adenosylhomocysteinase SAHH_HUMAN -2.97 4.12E-03 2.29E+00

SH3L1_HUMAN
SH3 domain-binding glutamic acid-rich-

like protein 
SH3L1_HUMAN -4.40 2.62E-04 8.53E-02 SH3L1_HUMAN

SH3 domain-binding glutamic acid-

rich-like protein 
SH3L1_HUMAN -1.50 1.99E-01 1.10E+02

SODC_HUMAN Superoxide dismutase [Cu-Zn] SODC_HUMAN;H7BYH4_HUMAN -2.08 1.26E-02 4.10E+00 SODC_HUMAN Superoxide dismutase [Cu-Zn] SODC_HUMAN;H7BYH4_HUMAN -2.95 6.31E-02 3.50E+01

SPB10_HUMAN Serpin B10 
SPB10_HUMAN;H7BYS2_HUMAN;H

7C004_HUMAN
-4.73 2.58E-04 8.40E-02 SPB10_HUMAN Serpin B10 SPB10_HUMAN -5.28 1.06E-02 5.86E+00

SPB6_HUMAN Serpin B6 SPB6_HUMAN;H0Y3G3_HUMAN -4.24 2.05E-04 6.68E-02 SPB6_HUMAN Serpin B6 SPB6_HUMAN;H0Y3G3_HUMAN -4.42 5.04E-03 2.80E+00

SPTB2_HUMAN Spectrin beta chain, non-erythrocytic 1 SPTB2_HUMAN;F8W6C1_HUMAN -3.79 6.12E-03 2.00E+00 SPTB2_HUMAN Spectrin beta chain, non-erythrocytic 1 
SPTB2_HUMAN;F8W6C1_HUMAN;

SPTN2_HUMAN
-3.76 2.64E-02 1.47E+01

SYWC_HUMAN Tryptophan--tRNA ligase, cytoplasmic 

SYWC_HUMAN;H0YJP3_HUMAN;G

3V3H8_HUMAN;G3V3Y5_HUMAN;

G3V3P2_HUMAN;G3V456_HUMAN

;G3V227_HUMAN;G3V3X0_HUMA

N;G3V5U1_HUMAN;G3V423_HUM

AN;G3V277_HUMAN;G3V2Y7_HU

MAN

-4.39 1.97E-05 6.43E-03 SYWC_HUMAN Tryptophan--tRNA ligase, cytoplasmic 

SYWC_HUMAN;H0YJP3_HUMAN;G

3V3P2_HUMAN;G3V456_HUMAN;

G3V227_HUMAN;G3V5U1_HUMA

N;G3V423_HUMAN;G3V277_HUM

AN;G3V3H8_HUMAN;G3V2Y7_HU

MAN;G3V3Y5_HUMAN;G3V3X0_H

UMAN;G3V3S7_HUMAN;G3V5W1

_HUMAN

-3.76 9.08E-03 5.04E+00

TAGL2_HUMAN Transgelin-2 TAGL2_HUMAN -5.33 3.97E-04 1.29E-01 TAGL2_HUMAN Transgelin-2 TAGL2_HUMAN -3.78 2.30E-01 1.28E+02

TALDO_HUMAN Transaldolase 
TALDO_HUMAN;F2Z393_HUMAN;E

9PKI8_HUMAN;E9PM01_HUMAN
-3.65 2.85E-04 9.29E-02 TALDO_HUMAN Transaldolase 

TALDO_HUMAN;F2Z393_HUMAN;

E9PKI8_HUMAN;E9PM01_HUMA

N

-3.30 6.24E-02 3.46E+01

TERA_HUMAN
Transitional endoplasmic reticulum 

ATPase 

TERA_HUMAN;C9JUP7_HUMAN;C9I

ZA5_HUMAN
-3.10 1.11E-02 3.63E+00 TERA_HUMAN

Transitional endoplasmic reticulum 

ATPase 

TERA_HUMAN;C9JUP7_HUMAN;C

9IZA5_HUMAN
-2.30 1.93E-02 1.07E+01

THIO_HUMAN Thioredoxin THIO_HUMAN -6.16 3.72E-03 1.21E+00 THIO_HUMAN Thioredoxin THIO_HUMAN -2.79 5.94E-03 3.30E+00

TKT_HUMAN Transketolase 

TKT_HUMAN;B4E022_HUMAN;F8

W888_HUMAN;E9PFF2_HUMAN;F

8WAX4_HUMAN

-4.45 1.64E-05 5.35E-03 TKT_HUMAN Transketolase 

TKT_HUMAN;B4E022_HUMAN;E9

PFF2_HUMAN;F8W888_HUMAN;T

KTL1_HUMAN;Q5TYJ8_HUMAN;F8

WAX4_HUMAN

-2.43 9.44E-03 5.24E+00

TLN1_HUMAN Talin-1 
TLN1_HUMAN;Q5TCU6_HUMAN;TL

N2_HUMAN;H0YMT1_HUMAN
-4.19 2.04E-03 6.65E-01 TLN1_HUMAN Talin-1 

TLN1_HUMAN;Q5TCU6_HUMAN;T

LN2_HUMAN;H0YMT1_HUMAN
-3.06 4.19E-02 2.32E+01

TPIS_HUMAN Triosephosphate isomerase TPIS_HUMAN -4.01 8.38E-05 2.73E-02 TPIS_HUMAN Triosephosphate isomerase TPIS_HUMAN -2.65 2.02E-02 1.12E+01

TRFL_HUMAN Lactotransferrin 

TRFL_HUMAN;E7EQB2_HUMAN;E7

ER44_HUMAN;C9J0S5_HUMAN;C9J

CF5_HUMAN

0.28 2.29E-01 7.46E+01 TRFL_HUMAN Lactotransferrin 

TRFL_HUMAN;E7EQB2_HUMAN;C

9J0S5_HUMAN;C9JCF5_HUMAN;E

7ER44_HUMAN

-0.03 4.29E-01 2.38E+02

TYB4_HUMAN Thymosin beta-4 TYB4_HUMAN;Q5T4B6_HUMAN -3.28 5.34E-01 1.74E+02 TYB4_HUMAN Thymosin beta-4 TYB4_HUMAN;Q5T4B6_HUMAN -3.63 6.63E-01 3.68E+02

TYPH_HUMAN Thymidine phosphorylase TYPH_HUMAN;C9JGI3_HUMAN -2.29 1.50E-02 4.90E+00 C9JGI3_HUMAN Thymidine phosphorylase (Fragment) TYPH_HUMAN;C9JGI3_HUMAN -2.08 7.75E-02 4.30E+01

UBA1_HUMAN
Ubiquitin-like modifier-activating 

enzyme 1 
UBA1_HUMAN -1.58 2.51E-02 8.19E+00 UBA1_HUMAN

Ubiquitin-like modifier-activating 

enzyme 1 

UBA1_HUMAN;Q5JRR6_HUMAN;Q

5JRS0_HUMAN;Q5JRS1_HUMAN;

Q5JRS2_HUMAN;Q5JRR9_HUMAN

;Q5JRS3_HUMAN

-1.31 9.17E-02 5.09E+01

UBE2N_HUMAN Ubiquitin-conjugating enzyme E2 N 

UBE2N_HUMAN;F8VZ29_HUMAN;F

8VSD4_HUMAN;F8VV71_HUMAN;U

E2NL_HUMAN;F8VQQ8_HUMAN

-4.68 9.52E-03 3.10E+00 UBE2N_HUMAN Ubiquitin-conjugating enzyme E2 N 

UBE2N_HUMAN;F8VQQ8_HUMAN

;F8VSD4_HUMAN;F8VV71_HUMA

N;UE2NL_HUMAN;F8VZ29_HUMA

N

-2.75 4.28E-03 2.37E+00

URP2_HUMAN Fermitin family homolog 3 
URP2_HUMAN;F5H1C6_HUMAN;H

0YFT5_HUMAN
-2.92 1.90E-03 6.21E-01 URP2_HUMAN Fermitin family homolog 3 

URP2_HUMAN;F5H1C6_HUMAN;F

5H3I6_HUMAN;H0YFT5_HUMAN
-0.75 3.92E-01 2.18E+02

VASP_HUMAN Vasodilator-stimulated phosphoprotein 
VASP_HUMAN;K7EM16_HUMAN;K

7EQD0_HUMAN
-2.98 1.10E-02 3.59E+00 VASP_HUMAN

Vasodilator-stimulated 

phosphoprotein 

VASP_HUMAN;K7EM16_HUMAN;K

7EQD0_HUMAN;K7ENL7_HUMAN;

K7ENR7_HUMAN;K7EIG8_HUMAN

-2.61 2.26E-02 1.25E+01

VAT1_HUMAN
Synaptic vesicle membrane protein VAT-

1 homolog 

VAT1_HUMAN;B0AZP7_HUMAN;B4

DPX4_HUMAN;K7ESA3_HUMAN;K7

EM19_HUMAN;K7ENX2_HUMAN;K

7ERT7_HUMAN

-3.48 3.92E-02 1.28E+01 VAT1_HUMAN
Synaptic vesicle membrane protein 

VAT-1 homolog 

VAT1_HUMAN;B0AZP7_HUMAN;B

4DPX4_HUMAN;K7ESA3_HUMAN;

K7ERT7_HUMAN;K7EM19_HUMA

N;K7ENX2_HUMAN;SC31B_HUMA

N;K7EJM4_HUMAN;K7ER81_HUM

AN

-2.32 3.57E-02 1.98E+01

VINC_HUMAN Vinculin 
VINC_HUMAN;Q5JQ13_HUMAN;B4

DTM7_HUMAN
-4.49 8.20E-05 2.67E-02 VINC_HUMAN Vinculin 

VINC_HUMAN;B4DTM7_HUMAN;

Q5JQ13_HUMAN
-3.89 5.96E-03 3.31E+00

WDR1_HUMAN WD repeat-containing protein 1 WDR1_HUMAN;D6RD66_HUMAN -3.63 4.42E-05 1.44E-02 WDR1_HUMAN WD repeat-containing protein 1 WDR1_HUMAN;D6RD66_HUMAN -3.41 6.24E-03 3.46E+00

XRCC5_HUMAN
X-ray repair cross-complementing 

protein 5 
XRCC5_HUMAN -2.50 8.43E-02 2.75E+01 XRCC5_HUMAN

X-ray repair cross-complementing 

protein 5 
XRCC5_HUMAN 1.87 9.32E-02 5.17E+01


