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Abstract

We present simulations and continuum calculations of the rheology and structure of vortex

matter confined to flow in narrow channels.

First, through the use of Langevin dynamics we perform two-dimensional Couette flow

simulations of the vortex liquid in a homogeneous magnetic field. In this sheared geometry

we report wall slip at the channel boundary for high shear rates. A result that contrasts

with the Newtonian constitutive relation suggested by Marchetti and Nelson(Marchetti,

M. C. & Nelson, D. R. Phys. Rev. B 42 , 9938 (1990)). We also find structural ordering

near the solid channel boundaries above the bulk melting temperature, T bulk
m .

We also present simulations and analysis of a novel field gradient applied to a narrow

channel superconductor. Here the “solid” vortex lattice flows plastically by enlisting two

distinct populations of dislocations. One that relaxes density along the channel and the

other that relaxes shear stresses at the boundary. In spite of the lack of a commensurate

field over the majority of the channel, the vortex glass remains commensurate with the

width of the channel along its entire length by stretching parallel to the flow direction.

This non-equilibrium system reaches a steady-state marked by a stable density profile

and localised repeatable non-linear dislocation motion. We are further able to show the

source of this non-linearity is due to image forces in the channel edges.

For wider channels we discuss and implement a novel vortex reservoir geometry de-

signed to generate a continuous source of circular grain boundary scars - bubbles. The

presence of the bubbles in the channel does not alter the density of the channel but does

disturb the steady-state structure and motion of the other populations of dislocations.
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Finally we discuss the details of a new versatile simulation software that was created

for this research, VLSim. This software utilises object-orientation techniques to allow

fast future prototyping of varied geometry and magnetic fields.
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Chapter 1

MOTIVATION

The results presented in this thesis focus on the structure and rheology of vortex matter

in narrow channel superconductors. Vortex matter in its ground state forms a triangular

lattice at low temperatures. Due to thermal fluctuations, inhomogeneous magnetic fields,

stress fields or geometric constraints, this structure can contain defects called disloca-

tions, marking local regions where the 6-fold symmetry of a pair of neighbouring vortices

has been replaced by a pair of vortices, that are 5 and 7 fold coordinated respectively.

Dislocations will prove central to the research described; a simple picture of a dislocations

in both a square and triangular geometry is shown in Fig. 1.1.

Dislocations are ubiquitous in the physical sciences. They are topological objects that

emerge out of the underlying structure of a system. Intensively studied, many aspects

of dislocations are well understood, for instance how they interact with stresses in the

system and with each other. However, properties such as their maximum speeds still have

no complete description. A microscopic description of plasticity requires the presence of

dislocations. Dislocations provide a mechanism by which planes of material are able to

shear against each other. Due to their ubiquitous nature, exploration of dislocations in

one system can shed light on aspects of dislocations in physically unrelated systems.

To demonstrate the range of physical systems which dislocations are relevant, we

highlight here a few diverse examples. Here we will present a small selection from different

fields of the physical sciences. Imaging dislocations in different systems is reliant on
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Figure 1.1: a Dislocation in a square lattice. b Dislocation in a triangular lattice. The ’T’
shape marks the centre of the dislocation, and points towards an extra row of additional
material that creates the dislocation. Figure from Ref[1].

the ability to image the underlying material structure. This often requires advanced

techniques. For example using electron tomography and 3D Fourier filtering Chen et

al.[2] were able to produce images of the core structure of 3D dislocations at atomic

resolution, Fig. 1.2.

Other systems are easier to image. A popular system is that of bubble rafts, Fig. 1.3.

These rafts of bubbles floated on the surface of water provide a two-dimensional system

to explore dislocations on the macroscale.

Dislocations are also relevant in microscopic biological systems. Recent work by Amir

et al.[1], explored the growth, by elongation, of E-coli bacteria. They showed that disloca-

tions were a plausible mechanism by which new structural material is added to the walls

of these bacteria. The hexagonal structure in Fig. 1.4 shows the dislocation mechanism

they suggested. The presence of dislocations can be inferred by tracking fluorescently

labeled proteins, such as MreB, whose position strongly correlates with the sites where

material is added to the structure.

A branch of materials science that has proved to be very fertile ground for the study

of dislocations is colloids. These two-phase systems have highly tuneable complicated

structures. Fig. 1.6 shows a confocal microscope image of rod shaped silica arrange

in rows. The dislocations in this structure are easily seen in the images, marked by a
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Figure 1.2: Three-dimensional imaging of dislocations in a nanoparticle at atomic reso-
lution. Figure from Ref[2].

Figure 1.3: Bubble rafts showing dislocations, vacancies and grain boundaries. Figure
from Ref[3].
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Figure 1.4: Glycan strands added into the peptidoglycan mesh at the site of an edge
dislocation in the Bacteria cell wall. Figure from Ref[1].

Figure 1.5: Dislocation-mediated growth of bacterial cell walls. Schematic illustration of
active (arrows) and inactive (asterisk) dislocations in an otherwise ordered peptidoglycan
mesh. The dislocations with arrows attached are activated by the enzymatic machinery
and move with velocity v. Those with asterisks are inactive. Figure from Ref[1].

19



1.1. THIN CHANNEL LOW DIMENSIONAL SUPERCONDUCTORS

Figure 1.6: Confocal microscopy images of colloidal silica rods showing several types of
defects including edge dislocations. Figure from Ref[4].

transition from 2 to 1 rows of rods.

Finally, dislocations have been imaged by a range of methods in superconducting

vortex matter. Fig. 1.7 shows a dislocations in Nb, imaged using a Lorentz force

microscope[5].

For this thesis we choose to examine the properties of vortex matter in thin chan-

nel geometries. Much like colloidal systems these systems are highly tuneable.

Interaction strengths of the vortex material, sizes of elastic moduli and density of

the system are all easily altered, often by orders of magnitudes.

1.1 Thin Channel Low Dimensional Superconductors

Thin channel superconductors are formed by etching a channel of width w and length L

out of a double layer of superconducting material. A popular[26] choice is aNb3Ge/NbN.

The thin top layer is made of NbN and is ∼ 50nm thick. The bottom layer is made

from a layer of aNb3Ge often around 500nm thick. The etch is to reveal a channel of

aNb3Ge between walls of NbN. The geometry of this system can be seen in Fig. 1.8.

When this channel is placed in a magnetic field at very low temperature, vortices form

that thread the channel perpendicular to the surface. The vortices in the channel edges

become pinned to material defects in NbN but are essentially free to move in the weak

pinning environment of the aNb3Ge channel. Each vortex carries a quantum of magnetic
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Figure 1.7: Lorentz Force measurements of a Nb narrow channel shows defects in the
triangular lattice. Figure from Ref[5].

flux so the number of vortices for a given field can be calculated.

From Fig. 1.8 we see the vortices line up such that rows emerge that are parallel to

the channel edges.

The motivation of this thesis comes from the many groups[27, 28, 29, 30, 31, 25, 32,

33, 19] who have conducted research into various aspects of vortex matter in these narrow

channels systems. In the majority of cases three key parameters are varied. The channel

widths, the applied magnetic field and the applied current. For this thesis the most

critical parameters from these previous experiments are the channel width and magnetic

field.

For a given field the spacing between rows of vortices can be calculated. When a chan-

nel width is an integer multiple of this row spacing the system is known as commensurate

and in a weakly pinned channel a perfect lattice can form free of defects at equilibrium.

If this is not the case and the width is a non-integer multiple of the row spacing this will

lead to an incommensurate lattice that contains a population of dispersed dislocations.

Many authors[34, 35, 6, 22, 28] have studied the commensurability effects of vortex

matter driven by a Lorentz force(coherent driving force). For channel widths that are
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Figure 1.8: Schematic of a narrow channel superconductor. The bilayer is constructed
by etching out a channel through the top layer of strongly pinned NbN to expose the
weakly pinned channel of aNb3Ge.

incommensurate with the applied field, dislocations form in the vortex matter that me-

diate plastic flow, Fig. 1.9. Other measures of the bulk properties such as current and

voltage, show features such as Shapiro-like steps in I − V curves, Fig. 1.10. This type

of feature allows the inference of dislocations in the incommensurate regime where the

critical current raises and dislocations are employed to enable the vortex matter to flow

plastically.

For this thesis we explore aspects of the structure of the vortex liquid in stationary

channels and sheared geometry. We propose and explore simulations of a novel channel

set up that allows a commensurate vortex structure for a large range of B-fields and

channel width, thereby minimising the population of required dislocations. Finally we

present a channel geometry ideally suited to the exploration of circular grain boundaries,

their collapse mechanism and their response to a static stress field.

1.2 Overview of Thesis Chapters

This thesis begins with an exploration into the Phenomenology of the Flux Line

Lattice, Chapter 2. Here we present the fundamental physics and describe the limits
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Figure 1.9: a, b Show the commensurate lattice. c, d show dislocations in an incom-
mensurate lattice. Figure from Ref[6].

Figure 1.10: Shapiro-like steps in IV curves at T=1.94 K. Figure from Ref[6].
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that allow us to explore the vortex state in the regime chosen for this thesis. Then follows

Crystal Defects in Two Dimensions, Chapter 3. This chapter discusses defects in

general with particular focus on edge dislocations in two dimensions. We quantify the

dislocations with the aid of the Burgers vector and Burger circuit and discuss the stress

fields around dislocations and forces between them. We then move on to talk about

Non-Newtonian Fluids, Chapter 4. This chapters presents the background physics for

liquids, describing constitutive equations that may be present in the vortex liquid.

After the extensive physical background, Chapter 5 Simulating the Vortex Lat-

tice, details the overdamped Langevin dynamics required to simulate the vortex lattice.

Here we discuss the simulation software that has been created to achieve this, enabling

exploration of the wide array of system setups we will discuss in the results.

The final three chapters detail the results of this thesis. The first of these Shear Flow

in the Vortex Liquid, Chapter 6, presents the results of two-dimensional Couette Flow

simulations and calculations that investigate the rheology of the vortex liquid. Chapter

7, Density Driven Vortex Lattice begins with a reformatted version of our paper

“Extrusion of a Vortex Lattice: Two Reaction Populations of Dislocations”. This chapter

details the novel simulation setup of a field gradient applied along the length of a narrow

channel superconductor and an analysis of the plastic flow seen in this system. Finally,

Chapter 8, Circular Grain Boundaries in the Vortex Lattice explores a proposed

vortex reservoir that creates a steady supply of circular grain boundaries. We discuss

the physical realisation of this reservoir and present preliminary investigations into this

system.
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Chapter 2

PHENOMENOLOGY OF THE FLUX LINE

LATTICE

This chapter introduces the fundamental physics of the superconducting state, concentrat-

ing on phenomena relevant to this thesis. Particular focus will be given to the interaction

of vortices arranged in a regular array of straight parallel lines called the flux line lat-

tice(FFL). Following a brief history of superconductors we give an overview of the three

key theories describing the superconducting state[7]. We will explore the breakthrough

of Abrikosov in discovering the vortex state and discuss the cross over point in behaviour

from type I to type II superconductivity. Having described where the vortex state comes

from, we will discuss interactions in the flux line lattice that give rise to many of the

phenomena throughout this thesis. We will then move on to the results of elastic theory

calculations that enable us to understand how the FLL responds to deformations. Finally,

we will explore aspects of the melting transition from vortex solid to vortex liquid.

2.1 History

Superconductivity was first discovered by H. Kamerlingh Onnes[36] in 1911 from his mea-

surements of supercooled mercury, tin and lead. Using his newly developed refrigeration

technique of liquid helium he was able to cool these elemental metals down to a few

Kelvin above absolute zero. For each material, below a critical transition temperature
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Figure 2.1: Flux explusion from a type I supercondcutor. Figure from Ref[7].

Tc, he found they possessed no measurable electrical resistance. He called this phenom-

ena perfect superconductivity and it is known as the first hallmark of superconductivity.

In 1933, work by Meissner and Ochsenfeld[37] lead to the second hallmark of super-

conductivity, perfect diamagnetism. This effect describes the complete flux expulsion of

magnetic field from a sample of superconducting material as it is cooled below Tc, Fig.

2.1. The mechanism for this can be attributed to the formation of persistent currents on

the material surface in response to an incident magnetic field. These supercurrents lead

to an induced magnetisation of the material. In pure metal superconductors(except V

and Nb), below a critical field value, Hc, the induced magnetic field perfectly cancels the

applied field, leaving no flux penetrating the material, except for within a small distance

from the surface of the material, Fig. 2.2. Above Hc the flux again begins to penetrate

the material and the superconducting state is lost. The localised field penetrating the

material B = µ0H + M where H is the external field and M is the magnetisation caused

by the supercurrents on the surface. The magnetisation curve is shown in Fig. 2.3a. In

the superconducting phase of a conventional superconductor µ0H = −M. The form of

Hc(T ) was found empirically[7] to be given by Eq. (2.1) and is shown in Fig. 2.3b[7].
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Figure 2.2: Flux penetrating over a length λ at the edge of a type I superconductor.
Figure from Ref[8].

(a) Magnetisation curve for a type I superconductor.
Figure from Ref[8].

(b) Temperature dependence of criti-
cal field. Figure from Ref[7].

Figure 2.3: Type I Superconductor
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Hc(T ) ≈ Hc(0)[1− (T/Tc)
2] (2.1)

In conventional superconductors the abrupt change of state at Hc(T ) from normal to

superconducting gives a first order transition at finite temperatures[7].

The transition temperatures of the early superconductors were only a few degrees

above absolute zero. In the subsequent years materials that are able to remain in the

superconducting state up to much higher temperatures have been found. The highest

transition temperature of any elemental superconductor was found in Nb to be 9.2K

and in amorphous alloys, such as aNb3Ge, transition temperatures have been found up to

23K. Then in 1986 Bednorz and Müller discovered high-Tc superconductors (HTSCs)[38].

These layered materials exhibited significantly higher transition temperatures of Tc ≈

92.5K (YBa2Cu3O7) and Tc ≈ 120K (Bi2Sr2Cu3O10). Transition temperatures as high

as Tc ≈ 164K have been found in pressurised Hg compounds[39, 40].

The discovery of flux expulsion led to the early pioneering work of the London

brothers[41]. In 1935 they wrote down a set of equations relating the electric current to

the magnetic field in a superconductor. Starting from perfect conductivity and Maxwell’s

equations they found a relationship between the change in superconducting current J̇s

and the change in magnetic field Ḃ, with respect to time. Their first attempt started

from

J̇s =
nse
∗2

m∗
E (2.2)

∇× J̇s = −nse
∗2

m∗
Ḃ (2.3) ∇×B = µ0Js (2.4)

where ns is the density of superconducting charge carriers, e∗ is their charge and m∗

the mass. Using these equations they showed

∇2Ḃ =
1

λ2
Ḃ (2.5)
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which can be interpreted as a field penetrating a superconducting material in the nor-

mal state that is locked in upon cooling the material below the superconducting transition

temperature. However, this effect was not seen experimentally[37] and prompted them

to reformulate their ideas. Their breakthrourgh was to remove the time dependence from

Eq. (2.3) yielding the London Equations

J̇s =
nse
∗2

m∗
E (2.6)

∇× Js = −nse
∗2

m∗
B (2.7) ∇×B = µ0Js (2.8)

With these equations they found

∇2B =
1

λ2
B (2.9)

The London equations1 were the first consistent description of the phenomenology of

the superconducting state. Through their formulation they introduced two key parame-

ters, the density of superconducting electrons ns (they only gave an upper limit for ns as

the density of normal electrons) and the magnetic penetration depth λ. The penetration

depth is empirically described as λ(T ) ≈ λ(0)[1− (T/Tc)
4]−1/2 which diverges near Tc as

(Tc − T )−1/2. The Londons’ theory, motivated by the discovery of the Meissner effect,

described the phenomenology of superconductors in terms of the electric and magnetic

fields. A new theory would ultimately give the first concrete description of the mirco-

scopic behaviour of the superconducting state. The existence of an energy gap had been

postulated by Daunt and Mendelsson[42] in 1946 and later proof of its existence could

also be inferred from work by Corak et al.[43] in 1954 and Glover and Tinkham[44, 45] in

1957. Then in 1957 Bardeen, Cooper and Schrieffer (BCS) showed the existence of weak

coupling between electrons of opposite charge and spin caused by electron-phonon inter-

actions. These coupled electrons are known as Cooper pairs and are the quasi-particles

responsible for superconductivity. The BCS theory predicted that the minimum energy

1See Appendix B for full derivation of the London equations.
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required to break this Cooper pair was Eg = 2∆g(T ). Where ∆g is the energy gap be-

tween ground state electrons and quasi-particle excitations. BCS were able to show that

Eg was zero at Tc and raised to a limiting value of Eg = 2∆g(0) = 3.528KTc as the system

was cooled below the transition temperature

The final description of the superconducting state to be discussed was put forward

by Ginzburg and Landau[46] in 1950. Their theory describes superconductivity by intro-

ducing a pseudo-wavefunction for the superconducting electrons. This wave function ψ

is then the order parameter within Landau’s theory of phase transitions. The number of

superconducting electrons is related to ψ as

ns = |ψ(x)|2 (2.10)

This measure gives ψ = 0 in the normal state and ψ 6= 0 in the superconducting state.

GL theory also introduced a length scale ξ(T ) called the coherence length, the length over

which the magnetics field varies. Together with the London penetration depth λ they

define the GL parameter κ = λ/ξ. In conventional superconductors, seen by Meissner et

al. and Onnes, the parameter κ� 1 and the theory state this corresponds to a positive

domain wall cost between coexisting normal and superconducting domains. In 1959, two

years after the release of BCS theory, Gor’kov demonstrated that GL is a limit of the BCS

theory that was especially useful for describing spatial variation in magnetic fields[47].

Following on from GL theory the next significant advance was made by (one of Lan-

dau’s students) Abrikosov[48]. In 1957 Abrikosov investigated what would happen if

κ � 1. He showed that the surface energy cost would be negative leading to the for-

mation of multiple domain walls, thereby maximising the surface area - the effect only

limited[49] by ξ. He named this state type II superconductivity. He demonstrated that

the transition between type I and type II occurred at κ = 1/
√

2. In his work Abrikosov

stated that we would see a continuous transition from normal to fully superconducting

state due to the presence of vortices containing normal cores of magnetic flux. He said

surrounding these vortices would be supercurrents that screen the superconducting do-
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Figure 2.4: Flux tubes threading a type II superconductor. Figure from Ref[9].

mains from the penetrating magnetics fields[7]. Fig. 2.4 shows a schematic of these flux

lines penetarting through a piece of superconductor. The second order nature is seen in

the magnetisation curves for type II superconductors shown in Fig. 2.5 where it can be

seen that flux penetration begins at Hc2 and goes fully superconducting at Hc1 . In type

II materials Hc1 < Hc < Hc2 and Hc2 =
√

2κHc [7].

Abrikosov[49] also calculated the form of the stable regular arrangement of these flux

lines. At the time he calculated this to be a square lattice but it was later shown to be

triangular, due to a simple numerical error. The triangular lattice in superconductors is

known as - the Abrikosov lattice.

It took seven years for the first experimental evidence of the vortex lattice to be pro-

duced. In 1964 weak Bragg peaks were seen in small angle neutron scattering measurements[50]

of Nb allowing the inference of the lattice structure. In 1967 the FFL was imaged by

Essman and Träuble [51] with a magnetic decoration technique using ferromagnetic mi-

crocrystals that could be seen through an electron microscope, Fig. 2.6. Since these

first images many other techniques have been used to probe the vortex lattice. Spatial

resolution of the density of states of the quasi particles was measured using scanning
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Figure 2.5: Magnetisation curves for Type I and II superconductors. H is the applied
field and B is the resultant field in the superconductor. Hc1 and Hc2 are the lower and
upper critical fields for a type II superconductor. Hc is the critical field for a type I.
Figure from Ref[8].

tunnelling microscopes by Hess et al.[52, 53] in 1990. Single fluxon resolution has since

been achieved by Bending et al.[54] in 1990 and by Stoddart et al.[55] in 1993 using a

microscopic Hall probe. Of particular relevance to this thesis is the work of Schuster et

al.[56] in 1993 who used magneto optics to visualise motion of the flux lines in YBCO

and the work of Brüll et al.[57] in 1991, Brawner and Ong[58] in 1993, Brawner et al.[59]

in 1993 and Xing et al.[60] in 1994 who used scanning Hall probes and Tamegai et al.[61]

in 1992, and Zeldov et al.[62] in 1994, amongst others who used Hall-sensor arrays to

gain more quantitative measurements of the vortex lattice whilst still retaining some spa-

tial resolution of the vortex lattice. The FFL was imaged using magnetic decorationin

the new HTSC[63]. These materials have layers containing pancake vortices that repel

each other in the same layer and attract in different layers leading to flux lines threading

through the material[10].

Important to understanding of the vortex lattice is the quantisation of magnetic flux.

In a type II superconductor each vortex carries a quantum of magnetic flux,2 Φ0. From the

quantisation condition and the triangular arrangement of the vortex lattice the number

density of the vortices and the associated lattice parameters can be calculated. The

2See Appendix C for a the proof of flux quantisation
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Figure 2.6: Image seen through an electron microscope of a decorated vortex lattice.
Figure from Ref[10].
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Figure 2.7: At low fields vortices are separated O(λ). Upper limit of vortex density is
reached when vortices are spaced O(ξ). Figure from Ref[8].

number of vortices per unit area is given in terms of the local magnetisation field B and

the flux quantum Φ0 as

nv =
B

Φ0

(2.11)

For a section of material, ignoring boundary effects, the vortices would be arranged

as shown in Fig. 2.7. The series of images show the effect of increasing the applied field

and therefore the density of the vortices. It is clear from these images that there is an

upper limit for density (or applied field). In the upper limit the cores, which are of size

ξ and separation λ, overlap and the superconducting phase is destroyed; there is full flux

penetration and the superconducting phase disappears. This corresponds to κ ∼ 1.

The separation is governed by the strength of the local B-field and resulting density

of vortices. From Eq. (2.11) we can calculate the lattice parameters of the vortex lattice

for a given B as

a2
0 =

2Φ0√
3B

=
2√
3nv

(2.12)

This corresponds to the vortex spacing and determines the strength of repulsion be-

tween the vortices. For the triangular lattice vortices align in rows and we can calculate

the separation of these rows as
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Figure 2.8: aNb3Ge/NbN layered system

b0 =

√
3a0

2
(2.13)

.

These lattice parameters are shown in Fig. 2.8 for the aNb3Ge/NbN superconducting

layered system.

2.2 Interactions in the Flux Line Lattice

In the following section we will discuss four types of interaction felt by the flux lines.

• The mutually repulsive force felt by flux lines that is responsible for the arrangement

of the vortex lattice.

• A Magnus force generated by the presence of an applied electric current that creates

motion of the FLL.

• A viscous drag due to the scattering of the quasiparticle from the vortex cores.

• A pinning force due to the interaction of the vortex lattice with the material defects

of size ∼ λ
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2.2.1 Force Between Straight Parallel Flux Lines

A simple approach for deriving the force between flux lines is the London equations. This

approach is possible for materials where κ� 1 and scenarios with small magnetic fields

b̃ � B/Bc2 (the London limit). This is the case for materials such as aNb3Ge which we

will be investigating in this thesis (Experimental results by Kes et al.[64] show κ ∼ 60 for

prepared aNb3Ge samples. At this κ with fields of B ∼ 0.25T , lattice spacing is around

100nm with the vortex cores size of ∼ a0/100). In this setting the magnetic fields of

the vortex lattice can be written down as the linear superposition of the single flux line

expression from the London equations. This result is applicable for straight parallel flux

lines in materials where the thickness d� λ, such as the experimental samples generated

by many experimental groups[35, 22, 6]. It is also applicable to layered HTSCs where

superconducting layers (interleaved with planes of CuO2) are separated by s� λ. From

the London equations3 the field at a distance r from the vortex core is given by

B(r) =
Φ0

2πλ2

∫ ∞
0

exp
(
− r
λ

cosh t
)
dt =

Φ0

2πλ2
K0

( r
λ

)
(2.14)

The Bessel function, K0(x) has limits

K0(x) =

− ln(x) x→ 0√
π
2x

e−x x→∞
(2.15)

The current associated with this field is also radially symmetric and defined as

J(r) =
|B′(r)|
µ0

=
Φ0

2πµ0λ3
K1

( r
λ

)
(2.16)

where we have used the relationship K ′0(r/λ) = −K1(r/λ)/λ.

Throughout this thesis we work in the κ � 1 limit and λ > a0. In this regime the

magnetic fields of vortices are long ranged and overlap with many vortices whereas the

3See Appendix D for a full derivation
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Figure 2.9: In the high κ limit the core vortex is small and isolated with the magnetic
fields from the vortices are long range and overlap neighbouring vortices. Figure from
Ref[7].

vortex cores (of size ξ) remain small and isolated, Fig. 2.9.

From the linear superposition of fields from two neighbouring vortices[7] the interac-

tion energy is found to be

U(r) =
Φ2

0

2πµ0λ2
K0

( r
λ

)
. (2.17)

To calculate the force between two vortices we can calculate f2(r2) = J1(r2) × Φ0B̂

where J1(r2) is the current induced by a vortex at the origin at the position of a second

vortex at r2. Alternatively, we can differentiate the interaction energy with respect to

position (f(r) = −dU(r)/dr). Both yield the same result of

f(r) =
Φ2

0

2πµ0λ3
K1

( r
λ

)
(2.18)

The values of the constants are

Φ0 =
h

2e
= 2.067× 10−15 Wb (2.19)

µ0 = 4π × 10−7 Vs

Am
(2.20)

This potential has been used by many authors in vortex lattice simulations[65, 34, 28,

66, 32]. A modification to this potential for κ ∼ 1 is used by Brass and Jensen[27, 67].
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They performed simulations of the vortex lattice using a potential proposed by Brandt

[68, 69]

U(r) =
Φ2

0

2πµ0λ2

∑
i

∑
i>j

(
K0(

ri − rj
λ′

)−K0(
ri − rj
ξ′

)

)
(2.21)

where λ′ ≈ λ/(1 − b̃)1/2, ξ′ = ξ/[2(1 − b̃)]1/2 and b̃ = B/Bc2 and it is written as the

sum over all vortices. This reduces to the London potential, Eq. (2.17) in the London

limit of large κ (λ � ξ). This potential describes magnetic repulsion and an attractive

condensation energy. For the simulations in this thesis we will be using the potential of

Eq. (2.17).

2.2.2 Motion of Flux Lines

As already discussed in §2.1 experimental imaging of vortex motion has been seen in the

FLL. The most common vortex motion is the result of an applied current perpendicular

to the flux line. The magnitude and direction of this Magus force (or Lorentz force) felt

by the vortices is given by FL = j×Φ0B̂ resulting in a coherent driving force[7]. Bardeen

and Stephenson showed[70] in an ideal material (free from defects), vortex motion is only

resisted by drag due to the interaction of the quasi-normal cores with the superconducting

material[12]. They found the viscous drag constant of proportionality to be given by

γ ≈ Φ0Hc2

ρnc2
(2.22)

where ρn is the resistivity of the material in the normal state. The key feature is

that γ is independent of B and only depends on the upper critical field. This flux

flow of vortices induces a resistive voltage in the sample. The resistance of this was

proved to be ∼ Bρn/Hc. This induced voltage would make the superconductor useless

for zero resistivity applications. However, in materials where defects[7] in the material

structure are of order λ, these defects cause the vortices to experience a pinning force that
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Figure 2.10: Random distribution of pinning sites interact with the vortex lattice. Grey
circles represent vortices. Black circles represent the random distribution of pinning cites.
Figure reproduced from Ref[8].

can halt the vortex motion and enable the superconductor to retain its zero resistivity

hallmark, Fig. 2.10. The energy barrier created by these pinning sites can be overcome

for sufficiently large applied currents or thermal activation allowing the flux lines to

jump between pinning sites. Some of the key work in recent years has been to find

materials where strong pinning enables large currents to be applied that do not overcome

this energy barrier. The use of superconductors in superconducting magnets depends on

finding materials with this property. Thermal activation at sufficiently high temperatures

allows bundles of flux lines to move cooperatively between pinning sites. The cooperative

nature is due to the long interaction range of vortices for λ � a0. This phenomena

is described by the Anderson-Kim Flux-Creep[71, 72, 8] theory where the jump rate is

given by R = ω0e
−F0/kBT , where w0 is the attempt frequency or characteristic vibration

frequency of the flux bundle. F0 = U − BJlSa is the average barrier energy of a bundle

of area S and length l interacting with a well of depth U and width a.

Three important regimes emerge. At finite, but low temperature T < Tm, in the

absence of an applied current we would observe a potential energy landscape as seen in

Fig. 2.11a. Here flux bundles are confined to local potential wells created by the random

pinning sites. For a current where 0 < j < jc (jc is a critical current), flux bundles

will cooperatively jump between pinning sites at a slow rate given by R, this is the flux

creep scenario, Fig. 2.11b. At j > jc there is no longer an energy barrier, resulting in
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Figure 2.11: A flux gradient allows vortex bundles to overcome the potential energy
barrier. Figure reproduced from Ref[8].

flux flow, Fig. 2.11c. It has also been shown[11, 73] analytically and from simulations

that dynamical ordering of the FLL is present above a crystallisation current jt (where

jt > jc). The phase diagram, Fig. 2.12, shows that flux flow exhibits plastic behaviour

for low j and T changing to a moving crystal (Even weak disorder will break long range

order, so technically this is a glass.) phase above jt(T )

Since the focus of this thesis is on weakly pinned material we choose to simulate a

pin-free channel work with no applied Lorentz force. For our simulations flux flow and

creep phenomena by the discussed mechanisms should not occur. Vortex motion in this

thesis is generated by other mechanisms that will be discussed in Chapters 5, 6 and 7.

2.3 Elastic Properties of the Flux Line Lattice

The literature on linear elasticity of the FLL is extensive[10]. We summarise here the

key results that will enable us to understand how the FLL responds to deformations,

in particular related to the melting transition that is discussed in the next section. In

40



2.3. ELASTIC PROPERTIES OF THE FLUX LINE LATTICE

Figure 2.12: Phase diagram of the moving vortex lattice. ft(T ) marks the transition from
plastic flow to a moving crystal. fc(T ) corresponds to the cross over between flux creep
and flux flow. Figure from Ref[11].

discussing the elastic properties our focus will be on the k and λ dependence of the elastic

moduli. The three elastic moduli that are discussed are for compression or bulk (c11), tilt

(c44) and shear (c66). The derived[74, 75] expressions for the elastic moduli are

c11 ≈ c44 ≈
B2

µ0

(1 + k2λ2)−1 (2.23)

c66 =

(
BΦ0

16πλ2µ0

)(
1− 1

2κ2

)(
1− b̃

)2 (
1− 0.58b̃+ 0.29b̃2

)
(2.24)

where b̃ = B/Bc2. We will be interested in the b̃ � 1 and κ � 1 regime which

simplifies c66 to

c66 =

(
BΦ0

16πλ2µ0

)
(2.25)

The interpretation of these expressions is that the FLL is soft for short wavelength

perturbations, i.e. when 2π/k < 2πλ, k is large (short wavelength) so c11 and c44 are

small. This gives a soft lattice. For long wavelength perturbations, small k, c11 and c44
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are large, i.e. the FLL is resistant to large scale (uniform) compression. Hence the FLL

is long range incompressible, but short range compressible. To quote Brandt[10] who was

the pioneer in this field, “This exact result might appear counter-intuitive since large λ

means a long-range interaction between the flux lines, which sometimes is erroneously

believed to lead to a stiff FLL.”.

These expressions also allows us to make a more quantitative argument about the

straight line nature of the FLL. Straight parallel flux lines are expected in aNb3Ge since

there is weak pinning and a large tilt modulus. This results in the coherence length[64]

along ẑ (parallel to B ) to be Lc � d.

2.4 Melting of the Flux Line Lattice

Thermal fluctuations cause distortions in the FLL. For large enough fluctuations the sta-

ble Abrikosov lattice can melt into a vortex liquid phase above which there is a loss of

long range translational and rotational order. Here we will discuss a simple approach,

developed for conventional crystals, that finds a good approximation for the size of vi-

brations that make the FLL unstable. Combining fluctuation dissipation theory and

the elastic moduli of §2.3 we are able to estimate the melting temperature, Tm. Via

a simple argument we then present a second estimate of the dislocation4 mediated 2D

Kosterless-Thouless transtion temperature, T 2D
m .

The requirement for 2D melting is that the longitudinal correlation length Lc > d/2[76]

(where Lc = (c44/c66)1/2Rc[77], with Rc is defined as the transverse correlation length over

which there is short range order). This is experimentally verified for films of aNb3Ge by

Berghuis et al.[78] (d > 2µm), Kes et al.[64] (d > 1µm) and Wördenweber et al.[76]

(d > 5µm). For Lc < d/2 fluctuations appear in all directions leading to 3D melting of

the FLL, whereas for Lc > d/2 the flux lines are considered straight and parallel and the

system is considered 2D.

4Dislocations are a defect is the lattice structure that will be discussed at length in Chapter 3.

42



2.4. MELTING OF THE FLUX LINE LATTICE

The Lindemann melting criteria is based on determining the fluctuations in the dis-

tances between nearest neighbours of the FLL. The criteria[79] states that a crystalline

lattice is unstable to fluctuations on the order of cLa0 (cL ∼ 0.1 − 0.2 depending on the

material). The Lindemann criteria is then formally stated as

< u2(Tm) >th≈ c2
La

2
0. (2.26)

Using fluctuation dissipation theory5 leads to an estimate of the melting temperature

of a finite system of size L

TFDT
m ≈ c66π(cLa0)2

kB ln(L/a0)
. (2.27)

Tm can also be estimated by assuming that nucleation of dislocations is responsible

for the onset of melting in 2D crystalline systems[10, 80, 7]. An excellent argument by

Huberman and Doniach[81] in 1979 and Fisher[82] in 1980 considers a circular disk of

material of radius R. The cost of nucleation of a single dislocation of core size a is

U = (a2dc66/4π) ln(R/a) with each dislocation adding an entropy of S = kB ln(R/a)

(where R2/a2 comes from counting the possible positions of the dislocation core). This

leads to a free energy of F = (a2dc66/4π) ln(R/a) − TkB ln(R/a). Setting F = 0 and

rearranging finds a transition from positive to negative free energy at T 2D
m = a2dc66/4πkB

(This is lower[10] that the TBKT phase transition predicted by Berezinskii[83], Kosterlitz

and Thouless[84].). At T < T 2D
m nucleation of a dislocation increases free energy, whilst

at T > T 2D
m nucleation decreases free energy.

While the two expressions differ, both are proportional to c66. At melting there is also

a vanishing shear modulus[85, 86].

Evidence of dislocation mediated melting has been seen experimentally by Berghuis et

al. in films of aNb3Ge, from resistivity measurements of Schmidt et al.[87] and from ex-

periments of Theunissen et al.[88] who show a good agreement with dislocation mediated

5See Appendix H for the derivation.
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Figure 2.13: Phase diagram for a thin-film. Figure from Ref[12].

melting above T = 0.2Tc.

The highly cited work by Nelson[80] postulates the two stage melting through and

the existence of an hexatic phase, defined by the loss of long range order, without the

continuous symmetry of the liquid state.

For thin-films a possible phase diagram is shown in Fig. 2.13. The lower critical

field Hc1 drops to zero preventing the formation of a Meissner phase[12] and for a 3D

superconductor a possible phase diagram of a pure material, Fig. 2.14, shows a transition

from flux lattice to isotropic liquid through the intermediate hexatic phase. Here we see

the presence of the Meissner region below which we see perfect diamagnetism.
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Figure 2.14: 3D phase diagram of the FLL. Figure from Ref[12].
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Chapter 3

CRYSTAL DEFECTS IN TWO DIMENSIONS

The field of crystal defects is large - as their properties underpin the understanding of most

physical materials, hence this chapter will concentrate on aspects of crystalline defects

relevant to this thesis. We will start with an overview of crystalline defects, focussing

on defects that are seen in 2D systems. We then focus further on dislocations, as they

will be key to the physical system we will explore. To do this we need to discuss the

Burgers vector, a key parameter in identifying and classifying dislocations. We show how

to calculate it in theory and in practice from simulation data.

We next explore a selection of systems in which dislocations occur, making it a ubiq-

uitous phenomena throughout the physical sciences. We will show that dislocations have

associated stress fields that can interact with other stresses in the material (including

those generated by other dislocations) leading to forces on the dislocations themselves.

We then consider linear arrangements of dislocations, known as grain boundaries.

The phenomena of grain boundaries will be split into two key types of low and high

angle tilt boundaries between grains of differing crystallographic orientation. Finally,

we highlight two central analysis methods; Delaunay Triangulation, a technique that

allows us to quickly find the coordination number of atoms and hence the dislocations,

and measurements of effective order parameters that allow us to categorise the degree

of translational and rotational order in our system. Throughout this discussion (unless

otherwise stated) we will refer to lattice points as atoms or particles, although this is not
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Figure 3.1: a Vacancy b Interstitial. Figure from Ref[13].

necessary in general. Instead, they may be populated by other objects such as vortices,

colloidal particles or soap bubbles.

3.1 Introduction to Crystalline Defects

Defects mark places where there is a deviation from the perfect lattice structure. For the

triangular lattice this corresponds to places that have a coordination number (number of

nearest neighbour points) other than 6. In 3D, there are many defect types. They can be

point defects (interstitials or vacancies), line defects (edge or screw dislocations), planes

(grain boundaries) or volume (bubbles or voids) defects. In 2D geometries relevant to

thesis only point defects, edge dislocations and grain boundaries are possible.

3.2 Point Defects

In the following section we give a description of point defects, these are rarely seen in

the systems we simulate and so will not be covered in detail. Point defects arise when

a single particle from an otherwise perfect system is added or removed. Fig. 3.1 shows

an interstitial where a particle has been added and a vacancy where a particle has been

removed. These defects cause local changes in the lattice structure, particles around the
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point defects are displaced from their original positions. Displacements in the surrounding

material are common to all defects and one of the sources of stress and strain in the

lattice. Point defects have a defined equilibrium concentration at finite temperatures. At

equilibrium[89] the number of point defects np, is given by

np
N − np

= exp

(
−Ef
kBT

)
(3.1)

where, Ef is the formation energy and N is the number of atoms in the crystal. From

experimental data[13], the formation energy for one of these point defect is Ef = 8kBTm

where Tm is the melting temperature. This calculation estimates approximately 10−5

defects per atom at the onset of melting[13].

3.3 Dislocations

Dislocations are the focus of the remainder of this chapter. The discovery of dislocations

begins with the first estimates of shear stresses calculated in 1926 by Frenkel[90]. He was

attempting to calculate the applied shear stress needed to glide one plane of atoms over

another, Fig. 3.2. This type of deformation, where atoms take up new positions when

stresses are removed is called plastic deformation. Frenkel started by assuming that the

atoms are formed into periodic lattice with row spacing b and atomic separation a. Then

he assumed that shearing a plane of atoms required the simultaneous movement of the

entire plane of atoms through a distance a. He estimated the energy of the lattice to be a

periodic sine function. The shear stress is defined as proportional to the spatial derivative

of the measured work which led to an estimate of shear stress of

τ =
c66a

2πb
sin

2πx

a
(3.2)

where c66 is the shear modulus from elastic theory. The maximum value of the shear

stress occurs when x = a/4, leading to a maximum value of
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Figure 3.2: Frenkel’s model of shear in plastic deformation. Lattice layers move cooper-
atively in response to shear stress. Figure reproduced from Ref[13].

τfkl =
c66a

2πb
(3.3)

This result led to the first estimate of the maximum shear stress required for plastic

deformation, τfkl ≈ c66/5. The estimate was later revised by Mackenzie to τmac ≈ c66/30

using a more accurate potential. At the time of Mackenzie the best experimental mea-

surements of the shear stress in bulk materials were τ ≈ c6610−9, orders of magnitude

lower than the theoretical values. However one measurement that did better agree with

Mackenzie’s estimate was the measurement of shear stresses required to deform whiskers

of various metals[91]. These whiskers have at least one reduced spatial dimension[16].

In these materials τ ≈ c66/15. The discrepancy between the values of shear stress in

bulk material led many authors to postulate that defects were the cause of plastic flow,

however these authors all tried defect arrangements of defects types that were already

discovered at the time. None of these were able to solve the problem. A number of years

after Frenkel’s work, in 1934 Orowan[92], Polyanyi[93] and Taylor[94] all predicted the

existence of the dislocation, a new type of defect and a mechanism by which plastic flow

can occur at much lower stress levels in bulk materials. The dislocation mechanism meant

movement of one plane against another did not have to happen cooperatively. Fig. 3.3

shows how the lattice planes rearrange themselves as the dislocation passes. With the

dislocation mechanism only a small local change is required to effect a large change in
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Figure 3.3: A small change in the position of (1) causes a large change in the connections
across the plane. Figure from Ref[13].

Figure 3.4: AB line through the continuum.

the lattice structure.

Later work by Peierls[95] and Nabarro[96] was able to calculate the stress more accu-

rately by taking into account the local periodicity of the lattice along with the elasticity

of the surrounding material. It also demonstrated that in the absence of dislocations

the theoretical value of Mackenzie was closer to the actual value required to shear the

system1.

1See §2.4
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Figure 3.5: Screw dislocation. Figure from Ref[14].

3.3.1 Burgers Vector

Dislocations are line defects that can be categorised into three types, edge, screw and

mixed (mixed dislocations are deformations made up of edge and screw dislocations,

which are not relevant to this thesis). Edge and screw dislocations are best illustrated

with an example. To create a screw dislocation the perfect lattice in Fig. 3.4 is cut along

the line AB. The material on one side of the cut is then shifted parallel to the line AB.

This creates a deformation as illustrated in Fig. 3.5. In this case the line AB marks a

screw dislocation. To create an edge dislocation, a cut is also made along the line AB, but

this time we displace the material perpendicular to the line AB. This creates the edge

deformation seen in Fig. 3.6. In 2D geometries the normal to the plane is parallel to the

dislocation line AB. It is quite clear from this construction that only edge dislocations

are possible in flat geometry.

To quantitatively describe these deformations we now introduce the Burgers vector,

b, first described by Burgers[97] in 1939. The Burgers vector quantifies the degree of

mismatch in a section of crystalline material. It is defined as the contour integral circling

the dislocation line as

b =

∮
∂u

∂l
dl (3.4)
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Figure 3.6: Edge dislocation. Figure from Ref[14].

In practice, calculation of this quantity follows a method introduced by Frank[98] in

1951. This method is commonly know as the Burgers Circuit. A complication is that

there are two different Burgers vectors, the true and the local Burgers vectors. For the

true Burgers vector, the value of b is always integer multiples of the lattice vectors of the

perfect lattice. For the local Burgers vector, strain fields and thermal fluctuations around

the dislocation cause the value to slightly deviate from the perfect lattice vectors. We

will discuss both, however throughout the rest of this thesis we will implement the local

Burgers vector, that, for sufficiently large Burgers circuits (away from the strain fields

of the dislocations), tends to the true value. We will perform this procedure on a single

dislocation, however it is just as applicable for calculating the Burgers vector of a group

of dislocations.

To construct the true Burgers vector we draw a circuit in the deformed crystal around

the line of a dislocation, in a plane with normal parallel to the dislocation line. The

example in Fig. 3.7a, shows the circuit around an edge dislocation. In this example we

can see that to complete the clockwise circuit we must go 4 up, 4 right, 4 down, 3 left.

The broken symmetry is due to the plane of atoms removed or added when creating the

edge dislocation. We then take this circuit and draw it again in an undeformed perfect

lattice. This circuit, shown in the lower image of Fig. 3.7a, does not return to the starting

point. The true Burgers vector is defined as the right hand (clockwise) circuit with the
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Burgers vector joining the Start and Finish points(RHSF).

To construct the local Burgers vector a similar procedure applies, Fig. 3.7b. This

time a circuit is drawn in the perfect lattice first, e.g. 4 up, 4 right, 4 down, 4 left.

The circuit is then drawn around the dislocation line in the deformed lattice. The local

Burgers vector is defined as RHFS. With this circuit, the expansion of material below the

dislocation line would make the local Burgers vector larger than the true Burgers vector.

If the start of this circuit had been draw above the dislocation line the opposite would

have been true.

In practice the local method is easier to calculate and since the true Burgers vector

must be a multiple of lattice vectors, for simple cases the correct lattice vector is easy

to identify. For the edge dislocation the Burgers vector is always perpendicular to the

dislocation line. The analysis for a screw dislocation is similar but the resulting Burgers

vector is parallel to the dislocation line. Calculation of the local Burgers vector can be

easily implemented as a computational procedure2.

There is a lot on confusion in the literature as to the sense of Burgers circuit. To

calculate the local Burgers vector we use the same convection as Nelson[1], the clockwise

circuit, with b defined as the vector between the finish and start points, RHFS.

With this definition of b we are able to easily identify the glide or slip plane along

which a dislocation line will move. The glide plane is defined by the normal b× ξ̂ where

ξ̂ is the direction of the dislocation line. For an edge dislocation this is well defined but

for the screw dislocation b× ξ̂ = 0 since b is parallel to ξ̂. This make the definition of a

glide plane inappropriate for a screw dislocations[14].

Finally, from this definition we see that Burgers vector is conserved. If we draw a

circuit around a pair of dislocations b1 and b2, this would be equivalent to a single

dislocation with Burgers vector b3, where the sum of the Burgers vectors is b1 +b2 = b3.

This conservation of Burgers vector is a very important property and is illustrated in Fig.

3.8.

2See Appendix J
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Figure 3.7: a Burgers circuit to find the true Burgers vector. b Burgers circuit to find
the local Burgers vector. Figure modified from Ref[14].

Figure 3.8: Burgers vector is conserved after a dislocation reaction. b1 + b2 = b3.
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3.3.2 Elastic Theory of Dislocations

Even though the lattice has discrete character, much can be learnt about the behaviour

of dislocations by modelling the system as a continuum. This approach is very successful

at reproducing the displacements of the particles in the presence of the dislocation, every-

where except close to the dislocation line. In a radius of a/2[14] around the dislocation

line, continuum theory fails to accurately predict the properties of the lattice. This is

due to the lattice character becoming relevant at these small length scales. Here we will

present highlights from the linear elastic theory calculations of Kosevich[99]. The methods

and results are generally well known and derived by a number of other authors[16, 14].The

starting point for the derivation is the equilibrium equation

∂σij
∂xj

+ f
(s)
i = 0 (3.5)

where σij is the stress tensor and f
(s)
i is the force density at the surface. From this it

is possible to obtain the general formula for the displacement field around a dislocation

ui(r) = −cjklmbm
∫

Σs

nl
∂

∂xl
Gij (r− r′) dΣ′ (3.6)

Where cjklm is the elastic modulus tensor (defined using the elastic constants λ and µ

as cjklm = λδikδlm + µδimδkl), bm is the Burgers vector, Gij is the Green’s tensor, λ is

the Lamé constant and µ is the shear modulus. In practice, this is often difficult to

solve. However, for simple dislocations, such as an edge dislocation, we instead solve the

equilibrium equation, Eq. (3.5). The derivation of the displacement fields along with the

stress and strain tensors can be found by following Weertman and Weertman[16]. The

displacement fields are not radially symmetric, there is tension created where material is

removed above the dislocation and compression below.

The following fields are for a Burgers vector at the origin b = (b, 0) we label each

component with the superscript b. In the flat geometry relevant to this thesis the stress

fields are
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σbxx = − µb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2
= − µb

2π(1− ν)

y(3x2 + y2)

r4
(3.7)

σbyy =
µb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2
=

µb

2π(1− ν)

y(x2 − y2)

r4
(3.8)

σbxy =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
(3.9)

where ν = λ/(2λ + µ) is the Poisson ratio. For normal materials ν is not usually

greater that 1/2[16].

To find the fields for b̄ = (−b, 0) simply set b to −b in the above equations (or

equivalently x→ −x and y → −y).

3.3.3 Forces Between Dislocations - Peach-Koehler

As seen in §3.3.2, dislocations have associated stress fields, which are long range[99] and

interact with the stress fields created by externally applied stresses or those of other

dislocations. The stress field created by one dislocation causes a force on a neighbouring

dislocation. This force is a function of the Burgers vector of the neighbour and the stress

field created by the first dislocation. The force relationship was first derived by Peach

and Koehler[100] in 1950.

For an edge dislocation on a 2D surface in the presence of a stress field σ the compo-

nents of force on the dislocation are

Fx = σykbk (3.10)

Fy = −σxkbk (3.11)

where bk denotes the kth component of the Burgers vector. From these two relation-

ships the forces between Burgers vectors at any orientation can be calculated. We will

consider here some basic examples as an illustration.

56



3.3. DISLOCATIONS

Figure 3.9: Two parallel edge dislocations with parallel Burgers vector.

Consider first, a dislocation at the origin with a Burgers vector b1 = (b, 0). We

then place a second dislocation with a Burgers vector b2 = (b, 0) in the stress field at a

position (x, y). Fig. 3.9 illustrates the setup. First we need the stress field induced by

the dislocation at the origin. For this system it is straight forward since we can use the

stress results stated above. We will only need the σbxy and σbxx results. The forces on b2

then become

Fx =
µb2

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
(3.12)

Fy =
µb2

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2
(3.13)

The direction of each of these component forces is given in Fig. 3.10. We can see from

the directions of forces that dislocations with the same Burgers vector would repel each

other if they lie with an angle of < π/4 between them. Dislocations with the same Burgers

vector that lie with a angle > π/4 will line up along the y-axis. This is the mechanism

by which grain boundaries are formed, see §3.4. If the Burgers vector of one of the

dislocations was reversed, the directions of all forces would be reversed. This would lead

to neighbouring dislocations lying along y = 0 but separated in x attracting each other.

57



3.3. DISLOCATIONS

Figure 3.10: Direction of forces between dislocations with parallel Burgers vector.

From the conservation of Burgers vector, §3.3.1, we can see that this attraction of Burgers

vectors of opposite sign would lead to an annihilation event, i.e. (b, 0) + (−b, 0) = (0, 0).

3.3.4 Peierls-Nabarro Stress

So far the lattice has been treated everywhere as an elastic medium. This has yielded ex-

pressions for stress and strain fields that beyond the core radius produce a good agreement

with experimental data[14]. Near the core, the continuum approximation fails to predict

the atomic displacements and thus fails to predict the correct value of the core energy. To

correctly calculate the core energy the discrete lattice structure has to be added into the

calculations. This was the breakthrough of Peierls[95] in 1940 and Nabarro[96] in 1947.

They postulated adding a sinusoidal force that represented the local lattice structure.

This dislocation is then embedded in a periodic potential so that its energy varies as a

function of position. We summarise their calculation and some of the quantities required

to calculate it.

We start by considering the mis-registry across the slip boundary of a dislocation.

Above the slip boundary we label the elastic medium A, below we label the elastic medium
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Figure 3.11: a Displacement of atoms around an edge dislocation. b Shows the mis-
registry across the slip plane ∆u. Figure from Ref[13].
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B, Fig. 3.11a. To quantify this mis-registry we introduce the displacement difference

∆u = u(B) − u(A). This is negative on the right of the dislocation and positive on

the left, Fig. 3.11b. The width of the dislocation core is defined as half the maximum

displacement, −b/4 ≤ ∆u ≤ b/4, where b is the magnitude of the Burgers vector. The

calculation of ∆u now allows us to find the Burgers vector distribution(BVD) f(x) =

d/dx(∆u). This quantifies the width of the mis-registry across the boundary. Fig. 3.12

shows the BVD for various of edge dislocations. Using these two quantities Peierls and

Nabarro calculated the dislocation core energy/unit length as a function of position. They

included in the calculation the mis-registry ∆u, a sinusoidal potential, approximating the

lattice, and the elastic energy stored in the planes above and below the dislocation. Their

calculations led to the result for the energy of an edge dislocation of

Epn =
c66b

2

π(1− ν)
exp

(
2πw

b

)
(3.14)

where the width w = a/(1− ν) and a is the interplane spacing and b is the magnitude

of the burgers vector as defined in Fig. 3.11. Differentiating the energy and seeking

the maximum value for the gradient gives the maximum force required to move the

dislocation. This gives a maximum shear stress of

τpn =
2π

b2
Ep =

2c66

1− ν
exp

(
−2πw

b

)
. (3.15)

The final result is a core energy that causes a resistance to movement due to its

interaction with the sinusoidal lattice potential.

The new value calculated by Peierls and Nabarro is much smaller than that of Frenkel

and Mackenzie, τpn � τmac � τfkl. In fact the Peierls-Nabarro result is much closer to the

experimental values of shear stress, demonstrating the importance of dislocations and the

discrete structure of the lattice. However, on a plane away from the dislocation slip plane

the calculations of Frenkel and Mackenzie are in much better agreement with the exper-

imental values of stress measured in a region free from dislocations. This emphasises the
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Figure 3.12: Shows the mis-registry across the slip plane and Burgers vector distribution
for three different edge dislocations. Figure from Ref[13].

importance of dislocations in the softening of materials undergoing plastic deformation.

In the years since Peierls and Nabarro, computer simulations have improved the ac-

curacy of calculation of the dislocation core energy[13].

3.3.5 Dislocation Motion

Dislocations move in response to stress fields. Motion can also be created by thermal

fluctuations, enabling dislocations to overcome the local Peierls-Nabarro stress and find

lower energy states.

So far we have used analogy with crystals to understand the stress fields around

dislocations in the static system. Various arguments[14] have been made for crystals that

describe how the stress fields vary for a moving dislocation and a possible upper limit

to their movement speed. We are hesitant to continue with the analogy to crystals since

arguments rely on the radiation of elastic waves and in our system most of the energy is

lost due to the viscous drag. Arguments such as the Peierls-Nabarro stress still hold due

to the static considerations.
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Figure 3.13: A grain boundary in a bubble raft. Figure from Ref[15].

3.4 Grain Boundaries

During the normal process of crystal formation, crystalline materials form not as a perfect

single crystal, but as a composite crystal made up of smaller grains. Each of these grains

is formed of material that has the same local lattice vector orientations. These grains are

separated by grain boundaries, typically a few atoms thick and made up of defects. This

phenomena is easily seen in bubble rafts, Fig. 3.13. The presence of these grain boundaries

allow the material to remain continuous across the boundary and the individual grains

to remain essentially stress free. The types of boundaries that exist between grains are

often very complicated but under certain conditions they can be described as a line of

separate edge dislocations.

As we saw in §3.3.3, dislocations of the same orientation will line up along an axis

perpendicular to b×ξ̂. This is the low energy state for an array of dislocations on different

slip planes. A similar situation exists along the grain boundary separating two grains of

different lattice vectors. Grain boundaries can be categorised in a number of ways. We

will only discuss categories of GB that exist in 2D. The first grouping of GBs is as either

62



3.4. GRAIN BOUNDARIES

Figure 3.14: A tilt grain boundary. Rotation vector ω is parallel to the boundary. Figure
from Ref[14].

tilt, twist or mixed. Fig. 3.14 and Fig. 3.15 show tilt and twist GBs respectively. For

the case of tilt, all the mis-orientation is contained in the boundary, this is defined by a

rotation vector ω that lies parallel to the boundary. For the twist the mis-orientation is

contained in the rotation of the crystals with ω perpendicular to the boundary. A mixed

dislocation occurs when ω is a sum of both types of rotation and as such ω will lie pointing

neither parallel or perpendicular to the boundary. From this description, it is clear that

only tilt boundaries are possible in 2D, so we will restrict ourselves to a discussion about

this type of boundary.

In general, tilt grain boundaries can be curved, however since boundary tension be-

haves similar to surface tension, straight lines are preferred in equilibrium. Additionally,

grain boundaries must either end at surfaces, join to other boundaries or close on them-

selves. Closed isolated boundaries, are not stable configurations and will collapse on

themselves due to thermal fluctuations[24, 101]. At the junctions of grain boundaries all

tensions must vanish[14].

The degree of mis-orientation across the boundary is an important parameter. For

small tilts . 20◦ the boundary structure can be described be a set of separate dislocations.

This is known as a low angle tilt boundary and can be dealt with fairly effectively as we
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Figure 3.15: A twist grain boundary. Rotation vector ω is normal to the boundary.
Figure from Ref[14].

shall see in §3.4.1. Increasing the mis-orientation increases the density of dislocations

in the boundary. Above 20 − 25◦ the dislocations are overlapping to the extent that

they can no longer be considered separate entities. This is a high angle tilt boundary.

The dislocation structure of low angle grain boundaries was conclusively validated by

experiments[102, 103] and agrees with the theoretical description presented in §3.4.1.

3.4.1 Low Angle Tilt Boundaries

Tilt boundaries can be further categorised by the orientation of the crystal either side

of the GB. If the angle between the GB and the lattice vector on each side of the GB

is equal, this is a symmetric tilt, Fig. 3.16 and otherwise an asymmetric tilt, Fig. 3.17.

We will start with the symmetric tilt case and calculate the density of dislocations and

orientation of the dislocations in the boundary.

Consider the arrangement of planes in Fig. 3.18. This is a symmetric boundary, at

the end of each of the free planes is a dislocation with a Burgers vector perpendicular to

the grain boundary. Clearly the dislocation density must be related to the number of free

planes. The configuration is unstable since dislocations of the same b are sitting on top
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Figure 3.16: Symmetric tilt boundary. Figure from Ref[14].

of each other. The low energy configuration, seen in Fig. 3.19, displaces the ends of the

planes so the dislocations are able to form in stress free locations along x = 0.

The number of planes ending in dislocations is simply given by

np =
2h

b
sin

θ

2
(3.16)

where h is the thickness of the boundary and b is the magnitude of Burgers vector.

The spacing between Burgers vectors is then simply calculated as

Ds =
h

np
=

b

2 sin(θ/2)
(3.17)

From this relationship we can see that when θ ∼ 0.5 radians the dislocations with

core radius of ∼ b/2 begin to overlap.

For an asymmetric boundary if we lined up dislocations along a boundary as we

did for the symmetric case their energy from the stress fields would not be zero along

the boundary, Fig. 3.20. Instead we find that a superposition of two populations of

dislocations with Burgers vectors b1 = (b, 0) and b2 = (0, b) can be used to resolve the

stresses at the end of the lattice planes, Fig. 3.21a. The average of these dislocations is
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Figure 3.17: Asymmetric tilt boundary. Figure from Ref[14].

Figure 3.18: Undeformed end of planes give an unstable configuration of dislocations.
Figure from Ref[14].

Figure 3.19: Ends of plane shift to give a dislocation at the end of each line. Figure from
Ref[14].
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Figure 3.20: Unstable configuration of dislocations in an asymmetric grain bound-
ary.Figure from Ref[16].

b3 =
n1b1 + n2n2

n1 + n2

(3.18)

The spacing between each set of dislocations can be calculated from the angle between

the boundary and planes, Fig. 3.16 as

D1 =
b

θ cosψ
(3.19)

and

D2 =
b

θ sinψ
(3.20)

The configuration in Fig. 3.21b eliminates long range stresses.

3.4.2 Observations of Grain Boundary Structure

Grain boundary structure was inferred from experiments[102] as early as 1953, Fig. 3.22.

The presence of dislocations was seen in these experiments using regularly spaced etch

pits. Other experiments by Hirsch[103] in 1956 using electron microscopy and Hedges[104]

in 1953 using decorated dislocations, directly showing grain boundary structure. Recently,
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Figure 3.21: a Two populations of dislocations with perpendicular Burgers vector form
a stable configuration in an asymmetric grain boundary. b The effective dislocation, b3,
as a superposition of the dislocations in a. Figure from Ref[16].
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Figure 3.22: The arrangement of dislocations (right) revealed by etch pits (left) between
grains of germanium crystals. Figure from Ref[14].

grain boundaries in grown crystals of graphene show the dislocation network in a high

angle tilt boundary at an angle of 28◦, Fig. 3.23.

Grain boundaries can also occur due to the curvature of the surface in which they are

embedded. Irvine[18] demonstrates the existence of grain boundaries on domed surfaces,

Fig. 3.24.

3.5 Lattice Structure in Real Space: Delaunay Tri-

angulation

We end this chapter with a few analysis methods, necessary for dislocation physics. De-

launay triangulation[105] maximises the minimum angle between lines drawn between

neighbouring particles. The result of the triangulation is a list of particles with their

corresponding nearest-neighbour. A straight forward example is seen in the series of im-
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Figure 3.23: Grain boundaries in graphene grown by chemical vapour deposition a Two
grains (bottom left, top right) in CVD graphene intersect with a 27degrelative rotation.
An aperiodic line of defects stitches the two grains together. b The image from a with the
pentagons (blue), heptagons (red) and distorted hexagons (green) of the grain boundary
outlined. Figure from Ref[17].

Figure 3.24: Dislocations arranged into grain boundaries are required to relax the stresses
on the curved surface of a dome, a sphere and a barrel. Figure from Ref[18].
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Figure 3.25: The series of images shows particles being added to a system. The Delaunay
triangulation maximises the minimum angle.

Figure 3.26: Shows a dislocation in a triangular lattice. The dislocation is marked by a
pair of particles with 5 and 7 nearest neighbours.

ages in Fig. 3.25. These show the triangulations generated as new particles are added

to system. The triangulation is a slow process, and is often optimised using a divide

and conquer algorithm. The implementation used to analyse our simulations is based

on functions available in Mathematica 10.0. From the Delaunay triangulation we are

able to calculate coordination number as the length of the nearest-neighbour lists for

each particle. An edge dislocation is marked by a pair of neighbouring particles having 5

and 7 nearest neighbours respectively. The vector joining this 5-7 pair is approximately

perpendicular to the dislocation glide plane, Fig. 3.26.
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3.6 Structure Factors and Order Parameters

The melting transition from solid to liquid in soft matter material is marked by a sharp

increase in dislocation density and a loss of translational and rotational order. We have

also discussed the possible existence of a hexatic phase between the solid and liquid phases

characterised by a loss of translational order only. To characterise the order of the system

we introduce the standard definitions of the translational and rotational (6-fold for the

triangular lattice) order parameters3.

Translational Order Parameter,

ΨT =

∣∣∣∣∣
〈

1

Nv

Nv∑
j=1

eiG·rj

〉∣∣∣∣∣ . (3.21)

where G is the lattice vectors of the perfect lattice and Nv is the number of vortices.

Hexatic Order Parameter,

ΨH =

∣∣∣∣∣
〈

1

Nv

Nv∑
j=1

1

zj

zj∑
k=1

ei6θjk

〉∣∣∣∣∣
2

. (3.22)

where zj is the number of neighbours of particle j and θjk is the angle between particle

j and its kth neighbour.

From Delaunay Triangulation the density of defects (particles that are not 6-fold

coordinated),

Nd =
Nmis

Nv

. (3.23)

where Nmis is the number of particles without 6 nearest neighbours and Nv is the number

of particles (or in our case vortices). Empirically, relaxation times near melting are very

long. Fig. 3.27 shows the relaxation time of the translational order parameter for various

3Mathematica code that calculates the order parameters are listed in Appendix E.
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Figure 3.27: Transient behaviour of ΨT(t) for various temperatures. For this system
Tm = 0.133.

Figure 3.28: Order parameters and density of defects for 2D periodic system containing
1020 vortices. Onset of melting is seen in the dramatic changes in all three parameters
around melting. For this system Tm = 0.133. Figure from Ref[19].

temperatures above and below the melting temperature, Tm. It is of key importance to

understand how the order parameters at a particular temperature are evolving with time

to ensure we produce the correct equilibrium value.
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Chapter 4

NON-NEWTONIAN FLUIDS

This chapter introduces key fluid concepts necessary for discussing the rheology of the

FLL in the liquid state. We will start by discussing two idealised states of matter, the

Hookean elastic solid and the Newtonian viscous liquid. These two model setups will form

the basis for our understanding of more exotic fluid behaviours. We will cover aspects

of non-Newtonian fluids where the constitutive equations, relating stresses to strains, in

the material take on a non-linear form. We will finish with a discussion on viscoelastic

liquids in particular how these materials behave as either elastic solid or viscous liquid

depending on the measurement timescales.

4.1 Overview

We begin by introducing the constitutive equations. We use these equations to understand

viscoelasticity in the linear regime. Modifications to these equations then allow us to

explore models of non-Newtonian fluids that we will discuss further in §4.2.

4.1.1 The Hookean Elastic Solid

The Hookean solid has the constitutive equation, relating stress σ to strain γ is given by

74



4.1. OVERVIEW

Figure 4.1: Strain induced in a sheared elastic solid by an applied stress. Figure from
Ref[20].

σ = Gγ (4.1)

(as per Hooke’s Law) where G is either the shear modulus, c66, or the bulk modulus

c11. Fig. 4.1 illustrates stress and strain for a sheared block. Shear stress is a force per

unit area σ = F/A applied tangentially to the surface of a block of elastic solid. The

strain is the resulting deformation in the material in response to this shear stress. For

this case strain is defined as U/d where U is the displacement parallel to the applied shear

stress and d is the thickness of the material.

These ideas work in complete analogy for a compressed elastic rod. It is important to

note the absence of time dependence in the definitions of an elastic solid. In this model for

an elastic solid, the elastic deformation is reversible, such that any deformation vanishes

after the stress is removed, see Fig. 4.2.

4.1.2 Viscous Newtonian Liquid

Starting from the constitutive equations, we will consider the component relating shear

stress to shear strain. As we saw from §2.4 the shear modulus vanished in the liquid

state for the vortex lattice. This is also true of the viscous Newtonian liquid, by defini-

tion liquids are not able to support strains (i.e. static displacements from their original

positions). For a Newtonian fluid the constitutive equation therefore relates the applied
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Figure 4.2: a Elastic solid block at reset with with no applied force. b Under the action
of an applied shear stress, the block deforms linearly. c The block returns to its original
shape when the shear stress is removed.

Figure 4.3: a A Newtonian fluid at rest. b An applied shear stress at the upper boundary
of a fluid creates a linear velocity profile in the Newtonian viscous liquid. c After the
shear stress is removed from the upper boundary the velocity profile persists in the fluid
until is eventually slows.

shear stress to the velocity gradient, or shear rate γ̇, in the moving fluid

σ = ηγ̇ (4.2)

Here the constant of proportionality is called the dynamic viscosity, or simply the

viscosity. For a Newtonian fluid η is a constant, so it does not change over time or due to

shear rate. To clearly distinguish this from the elastic solid, we notice that if the shear

stress is removed, the flow continues, Fig. 4.3.
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Figure 4.4: Couette flow. a Two co-axial cylinders rotating at different speeds. b 2D
Couette flow, the limit cylinder radius R1 →∞.

To ascertain the flow profile we introduce the equation of motion for a fluid, in terms

of the stress tensor, since this form give us the best access to an understanding of the

constitutive equations. The equation of motion is defined as

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= ρFi +
∂σij
∂xj

(4.3)

where, vi labels the ith component of velocity, Fi the body force and ρ the density.

Two common flows that are easily derived[106] are for Poiseulle flow and Couette flow. We

will not cover the standard derivations of the velocity fields in terms of the Navier-Stokes

equations, but will find a solution from Eq. (4.3) and Eq. (4.2).

4.1.3 Couette Flow

Couette flow describes shear flow between two walls, using the geometry in Fig. 4.4.

2D Couette flow is the limit where the cylinder radius R1 → ∞. For this system a 2D

fluid, of thickness d, confined between two infinite parallel walls. The top wall in this

geometry is sheared against the top surface of the fluid at a velocity V and the bottom

wall is stationary. We assume the fluid does not slip against the walls. This is the no-slip

boundary condition (This condition does not always hold and will be discuss later in this

section.). Rearranging Eq. (4.2) gives

77



4.2. POWER LAW VISCOSITY

σ = ηγ̇ = η
d

dy
v̇ (4.4)

Clearly the shear rate is the velocity gradient across the system γ̇ = dv̇/dy and Eq.

(4.3) reduces to

0 =
dσxy
dy

(4.5)

Furthermore vx(y) = V y/d satisfies this equation and the boundary conditions.

4.1.4 Poiseulle Flow

Consider the 2D case of flow between infinite parallel walls driven by a constant pressure

gradient F = dp/dx = P . We again assume the no-slip condition at the walls such that

v(0) = 0 and v(d) = V . The equations of motion reduce to

dp

dx
= η

dσxy
dy

(4.6)

P = η
d2vx(y)

dy2
(4.7)

This has the parabolic solution vx(y) = P
2η
y(y − d).

In the next section we will go on to look at cases where the viscosity varies as a

function of shear rate.

4.2 Power Law Viscosity

Many ‘everyday’ liquids are not well described as a viscous Newtonian liquid[20], they

frequently display shear thinning. The viscosity of these fluid is reduced as shear rates

78



4.2. POWER LAW VISCOSITY

increase. Viscosity can seen from the gradient of a stress vs shear rate graph. Fig. 4.5

shows three different types of liquid. The linear Newtonian liquid, and two non-Newtonian

liquids. The lower line describes shear thinning. Simple fluids do not display shear

thinning, however many polymer fluids and suspensions do. These fluids can support

much higher shear rates, typically at the boundary, since the viscosity in these regions is

lower in response to the high shear rates. These non-Newtonian fluids no longer have a

viscosity independent of shear rate. One model for non-Newtonian fluids was put forward

by Ostwald-de Waehle,

η = Kγ̇n−1 (4.8)

.

Here, with n > 1 we have shear thickening and n < 1, shear thinning and n = 1

returns constant viscosity, consistent of Newtonian liquid. This model fails to capture

the details of shear thinning or thickening fluids and more fuller descriptions are provided

by Cross[107]. Real liquids can transition through a shear thinning regime to a shear

thickening and then back to shear thinning[20]. This exotic behaviour is not described by

either the Cross or Ostwald-deWaehle models. Fig. 4.5 and Fig. 4.6 show the stress-shear

rate and viscosity-shear rate graphs for various types of material. Here we introduce the

viscoplastic solid. This material behaves as an elastic solid below a critical yield stress,

σc, and for a general viscoplastic, the material flows like a non-Newtonian liquid above

σc. Above the yield stress the material undergoes shear thinning until viscosity plateaus

at a constant value.

4.2.1 Stability of Non-Newtonian Flow

It is useful to examine the stability of non-Newtonian solutions to simple flow models.

Here we will consider a pertubation to the Couette flow solution considered in §4.1.3 when

the viscosity is dependent on shear rate, η(γ̇). Following the arguments of Oswald[20] we

subsitute this visocity into Eq. (4.1.3),
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Figure 4.5: Stress in the long time limit. Figure from Ref[20].

Figure 4.6: Viscosity in the long time limit. Figure from Ref[20].
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∂σxy
∂y

=
∂η(γ̇)γ̇

∂y
= 0. (4.9)

Expanding this to first order in γ̇

(
η + γ̇

∂η

∂γ̇

)
∂γ̇

∂y
= 0 (4.10)

With the boundary conditions in v(0) = 0 and v(d) = V this has the same solution

as the standard Couette flow for a Newtonian liquid,

vx(y) = V
y

d
(4.11)

We now examine the stability of the flow to a time dependent perturbation

vx(y, t) = γ̇y + c(y, t) (4.12)

Taking the derivatives of this quantity gives the local shear rate

∂vx(y, t)

∂y
=
∂(γ̇y)

∂y
+
∂c(y, t)

∂y
(4.13)

γ̇ = γ̇0 +
∂c

∂y
(4.14)

The equation of motion, Eq. (4.10), must be modified to include the time dependence

since to velocity profile perturbation is time dependent. This results in

ρ
∂c

∂t
=

(
η + γ̇

∂η

∂γ̇

)
∂γ̇

∂y
. (4.15)

To examine the stability of the flow we can expand this to first order in γ̇0
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ρ
∂c

∂t
=

(
η(γ̇0) + γ̇0

(
∂η

∂γ̇

)
γ̇0

)
∂2c

∂t2
(4.16)

Now we let the flow perturbation have the form c(y, t) = c0 exp(ωt+ iky), this give a

value for ω of

ω = −k
2

ρ

(
η(γ̇0) + γ̇0

(
∂η

∂γ̇

)
γ̇0

)
(4.17)

For ω > 0 the flow is unstable so we find

γ̇
∂ ln(η)

∂γ̇
> −1. (4.18)

If we assume a power law for viscosity, Eq. (4.8), the flow is unstable for n < 0. This

is the case for a shear thinning fluid. In this case the shear rates can vary quickly without

the viscous cost. The result is profiles that remain flat across the bulk of the channel

since the shear rate is concentrated in the boundary.

4.3 Viscoelasticity

All materials can behave viscoelasticaly. For liquid this means at short timescales they

behave like elastic solids while at long time scales the behave as viscous liquids (This is

reversed for viscoelastic solids, such as rubber, that behave like liquids at short timescales

and solid at long timescales.). In the case of water this timescale is very short, such

that all familiar behaviour of water is viscous. However, at very short timescales water

will behave elastically. Very viscous liquids, such as silly putty, have longer viscoelastic

relaxation times, enabling their elastic behaviour to be easily seen.

To understand the cross over regime between elastic and viscous behaviour in liquids

we turn to the Maxwell model for a viscoelastic fluid. This model consists of a spring

that deforms elastically and a dashpot (a device that produces damping by viscous fric-
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tion), the provides viscous damping, Fig. 4.7. This model gives a single characteristic

time for viscoelastic relaxation. A more realistic description of viscoelasticity is found

by chaining together combinations of springs and dashpots. These models such as the

Jeffery’s Model[20] are able to give multiple characteristic relaxation times. The strain

for the Maxwell model system is defined as

γ̇ = γ̇E + γ̇v. (4.19)

The constitutive equations for each of these parts are the elastic solid Eq. (4.1) and

ideal viscous fluid Eq. (4.2). Substitution into eq.. gives Maxwells equation

γ̇ =
σ̇

G
+
σ

η
(4.20)

multiplying by η gives

σ + τ σ̇ = ηγ̇ (4.21)

Here τ = η/G is the Maxwell relaxation time and has the solution

σ(t) = ηγ̇

(
1− exp(− t

τ
)

)
(4.22)

The behaviour of this equation gives

σ(t) =

Gγ̇t ≈ Gγ t < τ

ηγ̇ t > τ

(4.23)

At short times the material responds elastically and at long times as a viscous liquid,

Fig. 4.8. This approximation holds for a liquid in the linear regime. The linear regime is

defined by two conditions that must be met. First, shear rates must be low so that objects
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Figure 4.7: Maxwell model of a viscoelastic liquid with a single relaxation time. The
model consists of a spring and dashpot. Figure from Ref[20].

Figure 4.8: Below τ = η/G a viscoelastic fluid responds elastically. Above it flows like a
viscous liquid. Figure from Ref[20].
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Figure 4.9: As t → ∞ an viscoelastic fluid will flow as a Newtonian liquid for small
shear rates. For large shear rates the fluid becomes non-linear and we see non-Newtonian
behaviour. Figure from Ref[20].

of the fluid (such as colloidal particles) only deform elastically. This gives a constant shear

rate, G. Also the structure of the fluid should not be altered by the shearing. This gives a

constant viscosity in the viscous flow regime. In general this is not the case for most fluids

and the characteristic time is written as a function of shear rate, τ = η(γ̇)/G(γ̇). For

these systems we see a linear regime below a critical shear rate γ̇c and a shear thinning

non-linear regime above, see Fig. 4.9. Since most fluids show shear thinning behaviour,

high shear rates reduce the characteristic time and elastic behaviour becomes harder to

see. One regime that these conditions usually hold in is small amplitude oscillatory flow.

This type of flow in the FLL is explored in Chapter 6.
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Chapter 5

SIMULATING THE VORTEX LATTICE

5.1 Vortex Lattice Dynamics

To access the dynamical behaviour of the vortex lattice we employ the technique of molec-

ular dynamics (MD). Specifically a branch of MD called Langevin dynamics (LD) that

was first introduced[108, 109] as a description of Brownian motion[110]. Brownian motion

is the result of a large number of collisions with the small atoms of the fluid, resulting in

the apparently random motion of a large suspended particle. LD models this system by

separating the effects of the fluid suspension into an average deterministic effect(viscous

drag) and a random effect(thermal noise). These modifications to the equations of motion

model the complicated interactions of the particle with the solvent.

To understand why we can apply LD to simulate the dynamics of the vortex lattice

we must first look at a simplified model of vortex motion. A model by Bardeen and

Stephenson[70] shows that in the flux flow regime1, vortices experience a viscous drag term

due to the interaction of the quasi-normal cores with the superconducting material[12].

The form of this drag term is given in Eq. (2.22). This viscous drag acts as an implicit

solvent that can be suitably modelled by the drag term in the Langevin equation.

In the previous chapter we discussed melting of the vortex lattice and thermally

activated flux creep. These phenomena showed how thermal fluctuations of the flux lines

1see §2.2.2 for a longer discussion about the flux flow regime.
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cause changes of behaviour in the vortex dynamics. Thermal fluctuations acting upon the

flux lines can be modelled by a coupling of the vortices to a heat bath at temperature, T .

The thermal noise created by the heat bath coupling is described by the stochastic term

in the Langevin equation.

To continue we start with the usual form of the Langevin equation for N particles,

ma = −γv + χ(t) (5.1)

and build in the modifications needed to capture all the relevant features of vortex

dynamics where a and v are the 3N components of acceleration and velocity and χ(t)

is the stochastic noise term. As discussed in Chapter 2, vortices in thin superconductors

interact by a 2D potential, and in the regime where Hc1 < B � Hc2 the force between

vortices is dependent only on the separation of the vortex centres. We also choose their

motion to be confined to a 2D plane. To describe this phenomenology, vortices in the

following simulations should be considered to be point particles that reside in a 2D plane.

This reduces the number of components of the Langevin equation to 2N . For the vortex

lattice it is known that viscous drag is far greater than inertia[10], this is equivalent to

setting m = 0 so that we only see terminal velocities of the vortices and no accelera-

tion. This is often known as overdamped Langevin dynamics. Previously we described

the vortices interacting by a repulsive Bessel function force Eq. (2.18) so an additional

deterministic force term needs to be added to Eq. (5.1) to describe this. We also add

additional terms to model a Lorentz force2 FL and a random site pinning force Fp. This

random pinning term is often modelled by a Gaussian force and will be discussed briefly

in §5.3. These modifications the dynamics of the vortex lattice can then be described by

the 2N equations

γv = Fvv + FL + Fp + χ(t) (5.2)

2see Chapter 2.
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where Fvv is the vortex-vortex interaction.

5.2 Andersen Thermostat

The stochastic thermostat we are going to use was first described by Andersen[111] in

1980. The thermostat is designed to produce the expected energy fluctuations of the

constant temperature canonical ensemble (NVT). To produce these energy fluctuations

Andersen proposed the addition of a stochastic term to standard molecular dynamics

that allows for the exploration of energy-momentum phase space. The addition of the

stochastic term creates a Markov chain[111] where the current state is uncorrelated with

any of the previous ones. The major premise of this thermostat is that if the Markov

chains generated are irreducible (meaning they explore all of phase space in finite or

simulation time) the time average of any quantity along a trajectory is equal to the

canonical ensemble average for that same quantity. The biggest problem that occurs

with this is due to the presence of local minima in phase space which causes the system

to be unable to explore certain energy-momentum manifolds in finite time. This situation

invalidates the premise of this thermostat.

The Andersen thermostat is constructed as a Poisson process that delivers thermal

kicks to a given particle at intervals that are exponentially distributed as p(t) = νe−νt

where ν is the average rate of kicks. The exponential distribution of events is equivalent

to a particle receiving a kick in a time interval of ∆ with a probability of p = ν∆ = ∆/τ

where τ is the average time between kicks. To create a Poisson process we require the

stochastic term to have the following properties3.

3The derivation of this is covered in detail in Appendix G.
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Stochastic Noise Term

• Thermal kicks must be uncorrelated in time and between particles.

• The time average of the thermal kicks must be zero.

• At equilibrium the term must produce a Boltzmann distribution of the particle

energies.

Mathematically this is defined as

〈χi(t)〉 = 0 (5.3)

〈χi(t)χj(t′)〉 = 2kBTγδ(t− t′)δij (5.4)

It follows from this, that the stochastic term in the Langevin equation for the ith

vortex has the form

χi(t) = (2∆kBT/γp)
1/2NΘ(p− qj) (5.5)

where N is a random number chosen from a Gaussian distribution N (0, 1). The theta

(or Heaviside) function has the usual meaning and qj is a uniformly distributed random

variate qj ∼ U(0, 1). This description of the thermostat describes a Markov chain where

collisions with the heat bath are instantaneous, moving the particle to another energy-

moment manifold, with between-collision trajectories evolving deterministically according

to Eq. (5.2).

To ensure we are describing a physically correct coupling with the heat bath the value

of ν must be judiciously chosen. There is extensive literature on this, however, two pri-

mary methods exist that allow us to achieve this. The first is described by Andersen[111].

By construction the irreducibility condition is not dependent on the value of however An-

dersen states it is “It is reasonable to choose ν so that the time for the decay of energy

fluctuations along the trajectory will be the same as the time for decay of energy fluctua-
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tions of a small volume of real liquid surrounded by a much larger volume.”. To do this we

consider a small sample of fluid that is a a temperature ∆T higher than its surroundings.

We then equate the rate of energy gain in the sample, due to stochastic collisions, with

the rate of energy loss, through thermal conductivity. Andersen found the collision rate

ν ∼ O(N−2/3). For the systems we will investigate N ∼ 1000 so ν ≈ 0.01. The second

method comes from Jensen and Brass[67, 27] who describe the requirement that thermal

fluctuations must not be so frequent as to overwhelm the deterministic portions of the

trajectories. They impose the requirement

∆� 2kBTγ/〈F 〉2 � τ (5.6)

where < F > is the average of the deterministic forces on a given particle.

Jensen and Brass suggest a computational technique to ensure the correct distribution

is being sampled. They propose that calculation of the moments of the Langevin equation

can be used to check the energies in the simulation are correctly distributed. The time

average over all particles can be taken for the quantities 〈δx〉 and 〈δx2〉 (where x is the

positions of the particles) and compared to the expected moments of the Fokker-Planck

equation 4.

M1 =
1

∆
〈δx〉 =

〈F 〉
γ

M2 =
1

∆
〈δx2〉 =

2kBT

γ
(5.7)

This is a useful tool, but alone this cannot be used to ensure that the trajectories

are not dominated by the stochastic terms. For this we must ensure that we are also

satisfying Eq. (5.6).

4see Appendix G.
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5.3 Integrating the Langevin Equation

The aim here is to generate an integration procedure, suitable for use in a computer.

Physical constants should be set to appropriate values so as to avoid the tracking of small

numbers and to simplify analysis. To do this a suitable length scale is chosen as well as

a rescaling of constants.

Many integration schemes exist for standard MD. For the Langevin equation this

set is much smaller since the trajectories now contain discrete jumps that preclude the

calculation of, for example, the corrector step in Predictor-corrector method. For non-zero

temperatures the presence of the stochastic term forces us to use the Euler method[67, 32]

for integration. With a suitably small step size this method accurately generates the

trajectories of the canonical ensemble[111]. The explicit integration of the Euler scheme

results in the following discretised equation of motion

xn+1
i = xni + [(Fvv + Fp + FL)/γ] ∆ + (2∆kBT/γp)

1/2NΘ(p− qj) (5.8)

where xi is the 2D position of the ith vortex, Fvv is the vortex-vortex interaction, Fp

is the pinning force due to M randomly placed defects and FL is the constant driving or

Lorentz force.

The full forms for the force terms are

Fvv =
∑
j 6=i

− φ2
0

2πµ0λ3
K1

(
|rij|
λ

)
r̂ij (5.9)

Fp =
∑
m

2Ap

Rp
2 |rim| exp

[
−|rim|
Rp

2

]
r̂im (5.10)

FL = j× Φ0B̂ (5.11)
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For this thesis we choose to simulate a pin-free system with no Lorentz force. We will

omit the Fp and FL terms and proceed to insert the full form for the vortex-vortex force

Fvv into Eq. (5.2),

xn+1
i = xn

i

+
∑
j 6=i

− φ2
0∆

2πµ0γλ3
K1

(
|rij|
λ

)
r̂ij

+ (2∆kBT/γp)
1/2NΘ(p− qj). (5.12)

To rescale these equations we let

x

a0

→ x,
λ

a0

→ λ,
T

a2
0

→ T, Φ0a
2
0 → Φ0, (5.13)

where we have used the same symbols for the rescaled terms to avoid additional

notation. The power in the third term of Eq. (5.12) leads to the natural rescaling of

temperature by a2
0.

For simulation purposes we enforce a force cut-off range[34] rcut = 6λ where λ, was

chosen to be 1.11a0 in line with the work of Besseling’s group[28]. This allows us to create

a soft lattice where λ > a0 but ensures the forces are not too long range. As a measure

we can consider the relative size of forces at λ and 6λ finding K1(6)/K1(1) ∼ 0.0022. We

let kB = γ = f0 = 1. (This choice of units gives a fundamental mass of M = γa0/f0 = 1

and time T = γ2a0/f0 = 1.)

It was found empirically5 that ∆ = 0.01 and τ = 1 satisfy the Andersen and Jensen and

Brass conditions. This step size satisfies Eq. (5.6) and generates the correct moments

of Eq. (5.7). This step size also ensures that under normal operation there is a low

probability (P < 1%) that a vortex will be displaced > a0/50 in a single time step[28].

5See app for discussion of these values.

92



5.4. OPTIMISATIONS

5.4 Optimisations

The large phase space that the code will need to run over requires that it be efficient.

These optimisations are selected such that they retain the accuracy of the simulation but

improve the speed of summations and force calculations.

5.4.1 Force Calculations

The force between vortices is a modified Bessel function of the second kind K1(r). This

function is relatively slow to calculate. The fastest versions that exist are in the Boost

C++ library, an extension to C++ 03 (Most of Boost including the Bessel functions

are integrated into the C++11/C++14 standards). An implementation is given in the

following code block.

1 #include <boost/math/special_functions/bessel.hpp >

2
3 int main()

4 {

5 double r = 1.0; // distance of 1 unit

6 double f = boost::math:: cyl_bessel_k (1, r); // K_1(r)

7 }

In integrating the Langevin equation the majority of the time is spent calculating the

vortex-vortex interaction terms. Without optimisation there are N2 force calculations

between vortices. Clearly the call to the Bessel function routine will be preformed N2

times so optimising the speed of the Bessel function will be beneficial. There are two

standard approaches to slow force calculations. One is to find an approximation to the

original function that is computational quicker whist retaining the form of the original.

For the vortex-vortex interaction this is implemented by Koshelev[11], where he uses a

log form of the potential which results is a simple polynomial expression for the force

f(r) = (1/r)(1 − r2/r2
cut)

2 (For this force expression rcut = 3.33). This is > 200 times

faster than, and retains most of the features of, the Bessel function potential, Fig. 5.2.

This polynomial force overestimates the Bessel function near r = a0 and underestimates

93



5.4. OPTIMISATIONS

Figure 5.1: Comparison of force forms used in simulations of the vortex lattice. The poly-
nomial force slightly overestimates the Bessel function force at r ∼ a0 and underestimates
at r & 2a0.

for r & 2a0. The force is plotted against the Bessel function force in Fig. 5.1. The

second approach, which is usually employed for complicated or non-standard potentials,

is the tabulation method. This involves tabulating the potential on a discrete grid in

r. The strength of the force at an arbitrary r is then calculated using the known points

and an interpolation routine. For quickly varying potentials, higher order interpolation

is required but for the vortex-vortex potential very accurate and fast results can be

achieved with a linear interpolation. Comparison on timings are given in Fig. 5.2. For

our simulations we will be using the tabulated force method since this method is > 100

times faster than the Boost function and more accurate than the polynomial force. To use

this method, the forces f(ri) atM points on a uniform grid are precomputed at the start of

the simulation using the numerically exact form of the potential. Here we use the C++

library function boost::math::cyl bessel k(1, r). The result of this precomputing

stage is a set of forces f(ri). To find the force at an arbitrary point r′ /∈ r1, r2, ..., rM we

first find the two values of force either side of r′, we label these as f(r−) and f(r+). The

gradient at r− is then f ′(r−) = (f(r+)− f(r−))/h. where h is the step size in the grid of

ri. We can calculate the interpolated value of f(r′) as

94



5.4. OPTIMISATIONS

Figure 5.2: Timings for force forms used in simulations of the vortex lattice. The fastest
is the polynomial force but is less accurate than either the tabulated or Bessel function
forms. The tabulated potential is significantly faster than the Boost function. Each f(r)
was run 10 000 times. The tabulated potential uses a linear interpolation with a step size
h = 0.0001.

f(r′) =


f(h) r′ < h

f(r−) + (f(r+)− f(r−))
(r′ − r−)

h
h < r′ ≤ rcut

0 r′ > rcut

(5.14)

The force is set to zero above rcut and to f(h) below h. This latter step avoids infinities

in the calculations.

The step size of the grid is chosen as h = 0.0001. This leads to accurate values for the

force, even close to r = 0 whilst still providing the required speed-up. The implementation

is given in the code block below.

1 #include <boost/math/special_functions/bessel.hpp >

2 #include <vector >

3
4 // prototypes

5 double ftab(double r);

6 double LinearInterp(double a, double b, double f);

7
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8 // initialise force

9
10 std::vector <double > pot_table;

11
12 double step = 0.0001;

13 double ostep = 1.0/ step;

14 double olambda = 1 0/ 1.11;

15 double rcut = 6.66;

16 double fmax = 0;

17
18 for (long i = 1; i <= static_cast <int>(rcut / step) + 1; ++i)

19 {

20 double r = step * i;

21 double f = boost::math:: cyl_bessel_k (1, r * olambda );

22 pot_table.push_back(f);

23 }

24
25 // calculates force at r

26 // using a linear interpolation of

27 // a the tabulated potential

28 double ftab(double r)

29 {

30 double f = 0.0;

31 if (r < step) f = pot_table [0]; // special case if r < h

32 else if (r > rcut) f = fmax; // special case if r > rcut

33 else

34 {

35 int pot_lindex = static_cast <int>(floor(r/step ))-1;

36 f = LinearInterp(pot_table[pot_lindex],

37 pot_table[pot_lindex + 1],

38 r*ostep - (pot_lindex + 1));

39
40 }

41 return f;

42
43 }

44
45 // performs linear interpolation

46
47 double LinearInterp(double flow , double fhigh , double d)

48 {

49 return flow + d * (fhigh - flow);

50 }

51
52
53 int main

54 {

55 double r = 1.0; // distance of 1 unit

56 double f = ftab(r); // tabulated K_1(r)

57 }
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5.4.2 Cell-Linked Lists and Parallelisation

Further optimisation can be made by reducing the number of vortex-vortex interactions

that we need to consider at each time step. To date we have employed a force cut-

off, beyond which the force is zero. This still requires an if-statement for each of the

N2 interactions to decide if the vortices are beyond rcut. We would prefer to have a

reduced set of vortices in the summation that is made up of only vortices near to the

current particle being integrated. To produce this reduced list and lower the order of the

problem from N2 we can employ the technique of cell-linked lists.

Computationally this is a very well understood technique and is always employed by

molecular dynamics simulations where a large number of computational objects - such as

particles - are being updated every iteration. The idea is built on the list data structure

which is of vital importance to the quick storage and recovery of this type of data. The

linked-list data structure allows for quick access to a sequential list of items - where

random access is not required - and is particularly useful for removing items from the

middle of a list very quickly. The method requires a force that falls off quickly with

distance, such that it can be approximated to zero outside a chosen range. In these

simulations the cut off distance is known as rcut and the force follows the form of Eq.

(5.14).

To implement this method, each time step, the 2D system is divided up into a regular

grid of P squares with edge length rcut, Fig. 5.3. Then a list is constructed of all the

vortices in each of the P cells. Each cell is then iterated over with the integration for

each particle being performed. Only particles in the current cell or the neighbouring cells

are calculated in the force term, since these necessarily contain the subset of all possible

vortices within rcut of the particles in P .

For N atoms this technique allows an increase in calculation time from O(N2) to

O(N). A significant increase in calculation time for a large N system. The additional

cost of calculating the linked-lists is an O(N) operation and can performed every time

step without a large increase in the calculation time of the simulation.
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Figure 5.3: Cell Division for Cell Linked List Technique

A further advantage of using cell-linked lists is easy parallelisation on a multi-core

computer. Since each time step the new positions of the vortices are calculated from the

last time step. Each cell can be calculated separately on a separate core, making this

kind of multi-threading very popular in MD simulations.

5.5 Vortex Lattice Simulation Software

There are many examples of good MD packages already in use throughout the MD com-

munity. One question is to explore whether any of these packages is able to simulate

the vortex lattice with the range of geometries and parameters that are required for this

research. The two obvious choices here are LAMMPS[112] and HOOMD-blue[113]. Both

of these packages have a large user base and detailed documentation. Both are capable

of dealing with custom interaction potentials but neither of these are able to be easily

manipulated to simulate the overdamped Langevin dynamics or allowed fine control over

the local density of vortices after the initial conditions of the simulations. Due to these

obvious problems we will create a custom piece of software that allows access to the de-
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tails of the simulations that are relevant to this present work. Listed below are some of

the features of the Vortex Lattice Simulation (VLSim) software

• Overdamped Langevin dynamics

• Built in geometries, Channel, Tube, ShearedWall, OscWall, Custom

• Custom periodicity XY, X, Y, none

• Easy to create new geometries

• Per step analysis

• Per step physics update

• Outputs to Mathematica formated data files

• Custom input scripts

• Cross-platform compatible Windows/Linux/Mac

• Built with cmake

• Implements parallelised cell-linked lists

The remainder of this chapter discusses the code design and the feature implemen-

tations. Particular focus will be placed of the concept of geometries as it relates to this

software.

5.5.1 Code Design

The obvious language of choice for this simulation is C++. C++03 could also be used,

with the addition of libraries such as Boost. C++ is a one of the fastest languages available

today and has advanced support for object orientation and well supported containers

such as vectors and lists. The code will use the Pseudo factory design pattern. This

pattern allows us to generate generalised code that we can add to when we require new

features. The creation of an engine in this style requires good decisions about the high
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level structure of the code, making sure each component and their interactions are well

understood.

5.5.2 Top-Level Code Structure for the Vortex Lattice Simula-

tion Software

The main run procedure of the program details the top-level of organisation of this code.

In all the code blocks that follow, only key lines of code have been listed for brevity.

1
2 void CSimulation ::Run()

3 {

4 std::cout << "Initialising simulation ..." << std::endl;

5
6 ReadVariablesFromBatchFile ();

7 geom = CreateGeometry ();

8 geom ->Initialise ();

9 integrator = CreateIntegrator ();

10 integrator ->Initialise ();

11
12 std::cout << "Simulation running ..." << std::endl;

13
14 for (t=1; t<= simulation_time; ++t)

15 {

16 geom ->PerStepUpdates ();

17 integrator ->Integrate ();

18 geom ->PerStepAnalysis ();

19
20 }

21
22 std::cout << "Simulation finished." << std::endl << std::endl;

23
24 geom ->EndofSimAnalysis ();

25 OutputSimulationTimes ();

26
27 }

Note, there are two objects that do the bulk of the work for this simulation, integrator

and geom. The integrator object has no knowledge of the geometry of the system. It only

takes two lists of vortices (pointers to these lists are set in the geom->Initialise()

routine.). The first list contains the Langevin vortices, these are vortices that need to be

integrated using Langevin dynamics and new positions and velocities found. The second
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list is a superset of the first, it contains the vortices that provide the field felt by the

Langevin vortices of the first list. This list contains the all vortices in the system includ-

ing any vortices defining the walls of the system (or channel edge (CE)). The vortices in

the second list are not integrated, their values of position and velocity do not get update

by the integrator object. In both lists each vortex has properties x and y and vx and

vy for positions and velocities.

The contents of each of these lists are generated by the geom object. The geometry

object is responsible for populating the two lists. It understands the CE and periodic-

ity of the system. This flexibility makes the addition of new exotic geometries easy to

implement. The type of geometry is specified by a parameter in the the batch file that

is read in by the ReadVariablesFromBatchFile() function. Here either channel, tube,

shearedwall, oscwall, wedge or custom is chosen. Each of these corresponds to a different

geometry object, all of which are based on the a GeometryBase base class. The base class

is an abstract base class implementing the Interface design pattern and has the structure

listed in the code block below.

1
2 class GeometryBase

3 {

4 public:

5 virtual ~GeometryBase (){}

6
7 virtual void InitialiseGeometry () = 0;

8 virtual void PerStepAnalysis () = 0;

9 virtual void PerStepUpdates () = 0;

10 virtual void EndofSimAnalysis () = 0;

11
12 // returns particles to be integrated

13 virtual std::list <CParticle > * GetIParticles () = 0;

14
15 // returns particles seen by integrated particles

16 virtual void GetJParticles

17 (std::list <CParticle >& vorticesList_) = 0;

18
19 // Needed by the integrator to construct cell -linked list

20 virtual double GetXLo () const = 0;

21 virtual double GetXHi () const = 0;

22 virtual double GetYLo () const = 0;

23 virtual double GetYHi () const = 0;

24 virtual double Geta0() const = 0;

25
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26 };

Any geometries that are constructed in this simulation must inherit this base class and

implement these methods. The two functions GetIPartices() and GetJParticles()

return the lists we discussed in the previous paragraph. The last set of getters are used

by the integrator to determine the bounds of the simulation. The integrator gets its

knowledge about the system size and other parameters from the geometry class. The top

four pure virtual functions are all called by the main run function to do jobs specific to

each geometry. We will discuss these in later chapters. For now it is clear by the names

of these functions what they do.

5.5.3 Input and Output for Vortex Lattice Simulation Software

To avoid hardcoding of parameters that would require a recompile each run, job parame-

ters can be specified by using a parameter file. Each geometry requires slightly different

parameters but there are many common elements. A listing of a sample job file is shown

below. Parameters describing the geometry are listed under the [Geometry] tree node.

[Header]

outputType =1

geometry =0

simulationTime =10000

temp =0.0001

lorentzForce =0.0

[Geometry]

sourceBfield =0.25

sinkBfield =0.14

bathLength =10

bathWidth =8

channelLength =60

channelWidth =8

periodicity=

[InputData]

altPosFile=false

altPosFileName=posdata.txt

altPinsFile=false

altPinsFileName=pinsdata.txt
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[GeneralParameters]

a0 = 1

binSize = 5

cellSize =6.66

pi = 3.14159265358979

forceRange =6.66

eta =1.0

kB=1.0

Ap=1

dt =0.01

tau=1

triangulationInterval =5

framedataInterval =100

drawCoordinateGrid=false

showParticleTracker=false

thermostat=Anderson

disorderDensity =0

disorderStrength =1e-11

disorderRange =0.2e-7

[BathParameters]

applyBathVelocities=false

applyStiffBath=false

[Interactions]

vvForce =1

Phi =0.2067

lambda =1.11

[Job]

jobtag=job1

To specific a job file the program is run using the syntax VLSim <jobfile name>.

The type of output generated by the program is specified by the geometry. When

the geometry is initialised it registers the filestreams that is requires and then passes

output to the files during the PerStepAnalysis() or EndofSimAnalysis() functions.

Each geometry has a choice of which files to create. Listed below are the three common

output files and a sample from each.

posfile.txt

# Output at the end of a simulation

# type x y

A 46.6158 2.52544

A 47.7663 6.23157

A 44.4337 6.25711

A 46.0577 1.59619
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A 49.4663 3.46011

A 47.1861 1.60263

W 80 0.433013

W 80.5 1.29904

W 81 0.433013

W 81.5 1.29904

W 82 0.433013

guidata.dat

# This file contains frame data

# It is formatted as a Mathematica list

# Each line is a frame containing a list of particles

# { t, numofparticles , {id1 ,type1 ,ghost1 ,x1,y1,velx1 ,vely1

,coordnum1 },...,{idN , typoN , ghostN , xN ,yN ,velxN ,velyN ,

coordnumN }}

{100, 518, { -1272774779 , A, 0, 22.5816 , 2.3013 , 0.0355829 ,

-0.000225265 , 0}, {698648221 , A, 0, 24.4601 , 6.44107 ,

0.0380501 , -0.00110409 , 0}, ... }

{200, 518, { -1272774779 , A, 0, 22.6171 , 2.30104 , 0.0352775 ,

-0.000514583 , 0}, {698648221 , A, 0, 24.4976 , 6.43991 ,

0.0369383 , -0.00119137 , 0}, ... }

framevel.txt

# Output each time step

# Contains the space average of the sum of the vortex

velocities in a frame SAvx , SAvy ,

# Contains the space and time average of the sum of the

vortex velocities STAvx , STAvy

# timestep SAvx SAvy STAvx STAvy

1 0.0454276 9.60129e-05 0.0454276 9.60129e-05

2 0.0454331 9.68888e-05 0.0454303 9.64509e-05

3 0.0454308 9.76812e-05 0.0454305 9.6861e-05

4 0.0454333 0.000106322 0.0454312 9.92262e-05

5 0.0454336 0.00011608 0.0454317 0.000102597

6 0.0454323 0.0001199 0.0454318 0.000105481

5.5.4 Results Processing - Mathematica/Bash

VLSim is designed to be a simulation engine and has only basic analysis built in. Most

of the in-simulatation analysis is to format or collate data to be output to one of the

filestreams generated by the program. The analysis of the physics is done by Mathematica

notebooks, additional C++ programs or bash scripts. We will discuss these when they
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are used in the later chapters.

5.5.5 Job Submission to High Performance Computing Cluster

Many different properties of the dynamics of the vortex lattice can be analysed with this

simulation. Generating statistically accurate sequences of data points for graphs often

requires the simulation to be run many times with the same or different parameters. This

type of data collection is only feasible with a supercomputer. At the University of Birm-

ingham we have access to BlueBEAR. A high performance computing cluster designed

for this type of research. Jobs are routinely submitted to BlueBEAR using MOAB job

script. A sample script for the VLSim program with a basic job file (myjob.bat) is listed

below.

#!/bin/bash

#MOAB -l nodes =1:ppn=16, walltime =1:0:0

#MOAB -j oe

#MOAB -N Simple_job

cd "$PBS_O_WORKDIR"

module load apps/intel

module load apps/boost

../../ VLSim myjob.bat

To run multiple jobs with different parameters, we can use bash scripts to manipulate

job files and perform the submission. This process requires a template job file that is

modified by the batch.sh script. The following script runs 9 jobs with a different value

for the parameter V and different initial positions for the vortices specified again by the

V parameter.

batch.sh

#!/bin/bash

id=1;

walltime="10:0:0";

for i in $(ls posdata *.txt)

do

for V in 0.0010 0.0020 0.0025 0.0040 0.0060

0.0100 0.0200 0.0400 0.1000

do
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printf "%s\n" "${i}";

comment="wallvel_${V}";

comment=$(echo $comment | sed -e "s/\./p/g");

comment="ShearedWall -${comment}";

printf "%s\n" "${comment}";

jobfile="job_${comment}-${Time :(-4)}${RANDOM }.bat";

sed -e "s/NEWPOSDATA/${i}/g" -e "s/NEWVEL/${V}/g" -e

"s/COMMENT/${comment }/g" shearedwall.template > "$

{jobfile}";

sed -e "s/WALLTIME/${walltime }/g"

-e "s/COMMENT/${comment }/g"

-e "s/JOBFILE/${jobfile }/g"

bbjob.template > bbjob.run;

msub bbjob.run;

id=‘expr $id + 1‘;

done

done

bbjob.template

#!/bin/bash

#MOAB -l nodes =1:ppn=16, walltime=WALLTIME

#MOAB -j oe

#MOAB -N COMMENT

cd "$PBS_O_WORKDIR"

module load apps/intel

module load apps/boost

VLSim JOBFILE

The values WALLTIME, COMMENT and JOBFILE are all dummy strings that are replaced

for each run of the job. We can also use bash scripts to collate data from the output

files generated by this set of simulations. Below is a sample bash script that collates the

results from this set of runs.

for i in $(ls -d job */); do

field=$(echo ${i:26:15});

field=$(echo $field | sed ’s/\///g’);

echo $field;

cp ${i}Vxofyprofile.txt results/$field;

cp ${i}jobheader.ini results/jobheader_${field}.ini;

done

These types of scripts are useful tools for interacting with BlueBEAR (or any super-

computing cluster) and become valuable time savers when analysing large sets of data or

runs.
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5.6 Simulation Geometries Discussion

In the following research the results will explore a number of different vortex lattice

simulations(geometries in the simulation software). The simulations we create are all 2D

or 2D wrapped on a 3D surface. The systems are formed by clean (unpinned) regions

often between walls provided by two (usually) pinned regions of vortex lattice. Altering

the external magnetic field alters the density of vortices within the channel, while the

pinned regions are unaltered for moderate changes of field.

In the first geometry (GeometryShearedWall) we will explore shearing effects by mov-

ing a single wall with the other stationary whist measuring the velocities of the free vor-

tices in the channel, Chapter 6. These simulations will be performed with periodic bound-

ary conditions in the x-direction in an homogeneous field. A second set of related simu-

lations(GeometryShearedWall), Chapter 6, will explore the effects of a single oscillating

walls. The final set of simulations(GeomteryChannel, GeometryTube,GeometryWedge),

Chapter 7 and Chapter 8, will be exploring the novel system of a channel or cylinder (the

former has pinned CEs) that bridges between a source and sink vortex reservoir such that

particles will flow along the channel. This system will have no periodicity and will have

an implicit field gradient in x applied.
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Chapter 6

SHEAR FLOW IN THE VORTEX LIQUID

Continuum calculations of the rheology of the vortex liquid were presented by Marchetti

and Nelson[21]. They calculated the velocity profiles, Fig. 6.1, for a 2D pressure driven

vortex liquid with the addition of a drag term in the continuum equations of motion.

From this model they found an exponential velocity profile with a characteristic length of

δ =
√
η/γ, where η is the viscosity and γ the viscous drag, that is independent of shear

rate, indicating a Newtonian viscosity.

Here we present the results of Couette flow simulations of the vortex liquid that show

a boundary layer that heavily depends on wall velocity, in direct contrast to the work of

Marchetti and Nelson.

We first consider the continuum solution for Couette flow in the 2D channel, where

the equations of motion, Eq. (4.5), must be modified to include the viscous drag on

the vortices. We then examine if the melting temperature is modified by the channel

geometry and from these results we set T > T bulk
m as our temperature for the liquid

simulations. By varying wall velocity, channel width and B-field we explore the boundary

layer thickness using Couette flow simulations of the vortex liquid. In the final liquid

section we examine a non-Newtonian constitutive relation by probing the vortex liquid

in an oscillating shear simulation.
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Figure 6.1: Marchetti and Nelson velocity profiles for channel flow in a channel of width
W . Large boundaries layers dramatically slow the flow. Figure from Ref[21].

6.1 Continuum Solution to Couette Flow of the Vor-

tex Liquid

For channel widths w � a0, it is a reasonable assumption to model the vortex liquid as a

continuum and calculate the expected velocity profile for Couette flow in the 2D channel.

We start from the standard equations of motion for a Newtonian fluid and assume a

Newtonian viscosity. We must modify the equation of motion to include a contribution

due to the viscous drag. Similar calculations were performed by Marchetti and Nelson

for the case of pressure driven flow in 2D[21]. We assume the velocity profile is not time

dependent and so we seek a steady-state solution. The geometry of the system can be

seen in Fig. 6.2. The set of equations we need to solve are

v = vx(y) (6.1) η
d2vx
dy2

= γu (6.2)

with the associated boundary conditions
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Figure 6.2: Couette flow of the vortex lattice. The upper wall is sheared with velocity V
while the lower wall is left stationary. The no-slip condition is assumed. The competition

between viscosity and drag forces result in a boundary layer δ =
√

η
γ
. The deviation from

the Newtonian flow can be seen for η/γ � 1.

vx(y = 0) = 0 (6.3) vx(y = W ) = V (6.4)

Here the top wall of the system will be given a velocity V and the bottom wall will

remain stationary. We also assume the no-slip boundary condition at the walls.

This set of equations has a straight forward general solution

vx(y) = αe
√

γ
η
y + βe−

√
γ
η
y (6.5)

with a length scale that can be identified as δ =
√

η
γ
. This length scale describes a

boundary layer due to the competition between the viscosity and drag forces.
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Figure 6.3: Melting transition in a periodic 30x30 system. Tm = 0.014

The particular solution for our boundary conditions is

vx(y) = V
sinh y/δ

sinhW/δ
(6.6)

This equation shows, as expected, that the drag forces act to slow the velocity of the

whole system. The profiles for this equation are in Fig. 6.2, where we show a range of δ

to illustrate the effect of the viscosity-drag interaction.

6.2 Melting Transitions in the Vortex Liquid

We first calculate the melting transition for a periodic system of size 30 x 30 at a field

of B0. In this and subsequent simulations we consider the order parameters from §3.6

to be our effective order parameters. In our system we have no long range order by

construction. From these order parameter measures this leads to an estimate of the bulk

melting temperature, T bulkm = 0.014, Fig. 6.3.
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Figure 6.4: Sheared wall simulation.

6.3 Simulations of Couette Flow of the Vortex Liquid

Calculation of the continuum solution neglected effects due to the microscopic structure

of the vortex matter and assumes a no-slip condition at the walls. We may expect that

the structure of the liquid and its interaction with the CE might play a key role in

understanding the rheology of the vortex liquid. Here we examine via simulations the

microscopics of the system with the aim of establishing any additional factors controlling

the flow, beyond the description of the continuum model.

In the following section we will be simulating Couette flow in the 2D vortex liquid.

Unless otherwise stated simulations are performed at T = 0.02. We construct a channel

of width w and length L, wrapped periodically in x. The channel edges are defined by

an array of vortices, locally fixed as a triangular lattice with field B0 = 0.25T . For all

simulations the vortices in the lower CE are fixed whereas the vortices in the upper CE

are usually sheared at a velocity V x̂. The geometry is illustrated as a schematic in Fig.

6.4.
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6.4 No-Slip Boundary Condition

One of the major assumptions of this continuum model is the no-slip condition. This

approximation enables easier analytic access to flow fields of the liquid state but micro-

scopically the no-slip condition is not well understood[114]. Particle models of no-slip

do exist, such as the bounce-back conditions[114], but these are required to be explicitly

added to the simulation. An alternative to the bounce-back conditions are rough channel

edges. Here hard walls are replaced by rough boundaries such that particles near the

boundaries are slowed (or trapped) by their interaction with the walls. This has been

shown to produce an approximation to the no-slip condition[114]. We will not add bounce

back conditions, relying instead on the standard vortex-vortex interactions to provide the

confining potential for the mobile vortices and any shear interaction at the channel edge.

However, there may be an effect due to the ‘roughness’ of the CE. The arrangement of

CE vortices creates a washboard potential that penetrates into the channel, imparting a

shear on the vortices in the boundary layer of the channel.

6.4.1 Key Liquid Coding Algorithms

To perform the simulations we employ the basic Langevin dynamics engine described in

Chapter 5. For these simulations we create a new GeometryBase object called

GeometryShearedWall. Each time step we perform analysis and physical update to

particle positions and momentums that are unique to this geometry. The per time step

updates and analysis functions for this geometry are listed in the code block below.

1 // class GeometryShearedWall implementations

2
3 void GeometryShearedWall :: PerStepUpdates ()

4 {

5 // Add functions here to be run every timestep

6 MoveTopCE ();

7 }

8
9 void GeometryShearedWall :: PerStepAnalysis ()

10 {

11 OutputParticlePositions ();
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12 CalculateVxofyProfile ();

13 OutputVxofyEvolveProfile ();

14 }

15
16 void GeometryShearedWall :: EndofSimAnalysis ()

17 {

18 OutputFinalParticlePositions ();

19 OutputAverages ();

20 OutputVxofyProfile ();

21
22 }

Each time step the top CE particles (marked as type ’S’ in the simulation input files)

are moved at a velocity of topwallvel. This value is specified in the input script for the

job. This update is performed by the MoveTopCE() function, listed below

1 void GeometryShearedWall :: MoveTopCE ()

2 {

3 double dt = sim ->get_dt ();

4 for (std::list <CParticle >:: iterator p =

5 OtherParticlesList ->begin ();

6 p!= OtherParticlesList ->end(); ++p)

7 {

8 if (p->get_type () =="S") // this indicates a sheared

9 wall particle

10 {

11 p->set_vel(topwallvel , p->get_vely ());

12 p->set_x(p->get_x ()+p->get_velx ()*dt);

13 }

14 }

15
16 }

For analysis we output two velocity profiles. < vx(y) > (where vortex velocities are

average is over x, bins in y of size ybin and over all time steps tsim) gives the average

velocity profile across the channel. The results of this profile are output at the end of

the simulation by the OutputVxofyProfile() function. We also calculate < v(y, ti) >

(where spatial average is the same as the previous average but time average is up to the

current time step, ti.) is output during the simulation every 1000 time steps. Monitoring

this profile enables us to ensure we are in a steady state. This analysis is contained in

the OutputVxofyEvolveProfile() function.

The starting positions for the channel particles are labelled with i and j indices and
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defined as aij = e0i + e1j + (U(−0.2, 0.2),U(−0.2, 0.2)). This ensures a uniform density

and a randomised starting position away from the solid state.

6.5 Melting Transitions in Channel Geometry for the

Vortex Liquid

We continue by repeating this procedure for the channel geometry. Due to the presence of

the pinned channel edges we anticipate a cool boundary layer effect and possible ordering

effects as seen in molecular dynamics simulations of Leonard-Jones fluids[115]. It is

expected that the structure of the channel edges will stabilise the vortices such that order

will be retained in the boundary layers up to higher temperature than in the centre of the

channel. To confirm this we calculate the order parameters for melting in three sections

across the channel of width d/3. Fig. 6.5 shows the results of these calculations where

we see the enhanced melting temperature in the sections next to the CE. The melting

temperature for the central region of the channel remains the same as the bulk, T bulk
m

(the same as the xy periodic system.). An estimate for the edge regions is more difficult

as the transition regions for these sections is dramatically spread out. The system loses

residual rotational order at around T channel
m = 0.03.

To further confirm the structural differences in these regions we can examine trajec-

tories of the vortices. At T = 0.015 > T bulk
m the trajectories in the edge regions remain

localised and we see thermal oscillations around the triangular ground states positions,

Fig. 6.6. In the central regions the trajectories are not localised and appear as fully

random walks.

Next we will probe the melting temperature and trajectories of the vortices in the

sheared flow. We perform simulations of the sheared vortex liquid at increasing temper-

atures through the melting transition for the bulk T bulkm .

The initial simulations are run for a channel width 21b0 and at a low wall velocity

of V ∈ (0.001, 0.01, 0.1). The order parameters for V = 0.01 are given in Fig. 6.7.
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Figure 6.5: Melting transition in a channel of width 21b0. Order parameters are calculated
in sections of width d/3. V = 0.0.

Figure 6.6: Trajectories in a channel of width w = 21b0, T = 0.015, ordering near the
channel edges is apparent from this image.
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Figure 6.7: Order parameters for sections of a sheared channel of width d/3. The central
bin melts at T = 0.014, whereas the sections adjacent to the walls do not fully converge
to until T & 0.03. V = 0.01.

The results indicate the same spatial differences in order parameters as in the channel

simulations in the absence of shear.

6.5.1 Wall Velocity Dependence on Boundary Layer Thickness

The shear rate can potentially modify the velocity profile. We fix channel width at

w = 21b0 and T = 0.02. The sheared wall velocity V ∈ (0.001, 0.002, 0.0025, 0.004,

0.006, 0.01, 0.02, 0.04, 0.1).

Figs. 6.8 and 6.9 show the velocity profiles for the different wall velocities. Plotted

with the data points are the fits to Eq. (6.6), where the drag, γ = 1 leaving only the

viscosity as a fitting parameter. We can clearly see the wall velocity effects the boundary

layer thickness, Fig. 6.10. At a wall velocity V > 0.01 the boundary is confined to a length

less than a single bin width of 2b0. At most this corresponds to 2 layers of vortices. Each

velocity profile is fitted with a constant η. Normally a constant viscosity would indicate a

Newtonian behaviour, however, we see that increasing wall velocity reduces the effective

viscosity between simulations Fig. 6.10b.
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Figure 6.8: Velocity profiles for sheared wall velocities V ∈ (0.001, 0.002, 0.0025, 0.004,
0.006, 0.01, 0.02, 0.04, 0.1). Fitted line from continuum solution, Eq. (6.6).

Figure 6.9: Fitted velocity profiles for sheared wall simulations, V ∈ (0.001, 0.002, 0.0025,
0.004, 0.006, 0.01, 0.02, 0.04, 0.1). Fitted line from continuum solution, Eq. (6.6).
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Figure 6.10: a Boundary layer calculated from fits to continuum solution. Thickness
decreases as sheared wall velocity increases. Limit of resolution is the ybin size of 2b0 b
Viscosity falls with increasing sheared wall velocity. b Viscosity.

Further analysis of the vortex trajectories just above T bulk
m , Figs. 6.11 and 6.12, show

trajectories for wall velocities of V = 0.01 and V = 0.1. At V = 0.01 the vortices in the

edge layer retain partial rotational symmetry and are pulled along with the sheared wall.

At the higher shear rate, V = 0.1, the edge layer detaches from the wall.

6.5.2 Channel Width Dependence on Boundary Layer Thick-

ness

Next we examine the effect of the channel width. To carefully control the density, the

width is increased in quantised values of b0 while the density of channel and CE are

maintained at B0.

The tabulated velocity profiles in Fig. 6.13 show the boundary layer reaches fully

across the channel for channels where w < 4δ. For channels where w > 4δ portions

of the vortex liquid near the lower wall remain stationary. These regions of stationary

liquid increase in size with increasing channel width. The cross over occurs at wc ≈ 12.

Extracting the fitted values for δ demonstrates the boundary layer thickness alters with

width. We can see in Fig. 6.14, that above wc the boundary layer thickness plateaus

at a value of δc ≈ 2.8 (Note: δc ∼ 4δc). Clearly the channel width only modifies the

boundary layer thickness for narrow channels. For wide channels above wc, all shear is
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Figure 6.11: Trajectories in sheared wall system. V = 0.01, T = 0.015, ordering near
the channel edges is apparent from this image. Trajectories following the motion of the
boundary near the channel edges.

Figure 6.12: Trajectories in sheared wall system. V = 0.1, T = 0.015, ordering near
the channel edges is apparent from this image. Vortex trajectories are stationary near
the lower channel edge. The fast moving upper wall separates from the channel vortices
resulting in layer of stationary triangular lattice near this boundary.
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Figure 6.13: Velocity profiles of sheared vortex liquid for a range of channel widths.
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Figure 6.14: a As width is increased, the boundary layer thickness plateaus. For channel
widths w . 12 the boundary reaches across the whole channel width. b Viscosity.

dropped within 4δc of the moving boundary and hence the velocity profiles beyond this

range reduce to zero.

6.5.3 B-Field Dependence on Boundary Layer Thickness

We would anticipate that the behaviour will be dependent on the background magnetic

field, in the bulk this leads to a phase transition. To perform these simulations the CE

field is fixed at B0 but the field of the channel vortices, B ∈ (0.30, 0.35, 0.40 ... 0.95, 1.0).

The other simulation parameters chosen are a low wall velocity of V = 0.004, channel

width of w = 21b0 and T = 0.02.

Lowering the field in the channel whilst maintaining the field of the channel edge as

B0 results in two competing effects. Lowering the field reduces the number of vortices in

the channel, increasing the average spacing of the vortices. However because the relative

density of the channel vortices is less than the CE vortices there is a resultant compression

on the channel vortices due to the density differences. This effect acts to decrease the

average distance between particles and pushes the channel vortices away from the channel

edge by a distance > a0. From Eq. (2.25) we find a low field would soften the vortex

lattice and reduce the melting temperature, ensuring we remain in the liquid regime.

These effects are important to consider when deciphering the sheared wall results at

varying field strengths. Fig. 6.15 shows the tabulated velocity profiles across the channel
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for different values of field, again using the continuum result to fit the profiles. The set

of figures show that only fields where B/B0 ' 1 fit with the continuum solution. All

other results give zero flow field induced by the sheared wall. Any boundary layers have

characteristic length below the resolution for these results of 2b0. The interpretation of

this is the force falls off exponentially with λ = 1.1a0. Hence little momentum can be

transferred to the channel vortices at low fields where the channel vortices are compressed

away from the wall by the higher density CE.
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Figure 6.15: Velocity profiles of sheared vortex liquid for a range of B-fields.

6.6 Simulations of Oscillating Couette Flow of the

Vortex Liquid

One possible probe of the non-Newtonian nature of the vortex liquid is to perform an

oscillating wall simulation. We will first examine the continuum solution with an oscil-
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Figure 6.16: Oscillating wall schematic.

lating boundary and then follow this with a study of the harmonics of the CE velocity to

determine the presence of non-linear terms in the constitutive equation.

6.6.1 Continuum Solution to Damped Oscillating Flow in the

Vortex Liquid

The system of interest is give in Fig. 6.16. The system of equations for this system are

(assuming a Newtonian fluid)

v = vx(y) (6.7)
∂vx
∂t

= η
∂2vx
∂y2

− γvx (6.8)

The boundary conditions on this flow are
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vx(y = 0) = 0 (6.9) vx(y = W ) = V eiωt (6.10)

With these boundary conditions the solution has the form vx(y, t) = Vx(y)eiΩt

Substitution into Eq. (6.8) allows separate the solution into a time dependent part

and a spatial part. The spatial part becomes

iωVx(y)eiωt = ηV
′′

x (y)eiωt − γVx(y)eiωt (6.11)

iωVx(y) = ηV
′′

x (y)− γVx(y) (6.12)

(iω + γ)Vx(y) = ηV
′′

x (y) (6.13)

For the boundary conditions on Vx(y) we eliminate the t dependence from the original

boundary conditions.

vx(y = 0) = 0 = Vx(y = 0)eiωt (6.14)

vx(y = W ) = V eiΩt = Vx(y = 0)eiωt (6.15)

Assuming the no-slip boundary condition, Ω = ω, the new system of equations for Vx(y)

are

(iω + γ)Vx(y) = ηV
′′

x (y)Vx(y = 0) = 0 (6.16)

Vx(y = W ) = V (6.17)

The general solution is

Vx(y) = αe

√
iω+γ
η

y
+ βe

−
√
iω+γ
η

y
(6.18)

= αeλy + βe−λy (6.19)

(6.20)
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where λ =
√

iω+γ
η

. To proceed we remove a factor of
√
γ/η and let (1 + iω/γ)1/2 =

X + iY . Doing so allows us to resolve λ into real and imaginary parts,

λ =

√
γ

η

[
1√
2

(
ω

γ
+ 1

)1/2

+ i
ω

γ

1√
2

(
ω

γ
+ 1

)−1/2
]

= R + iI (6.21)

where R and I are the real and imaginary parts of λ.

Substitution and expanding of λ = R + iI into Vx(y) gives

Vx(y) = α
[
eRyeiIy − e−Rye−iIy

]
(6.22)

where we have used the boundary conditions to find α = −β. We now write the

exponentials as trigonometric and hyperbolic functions.

eRy = cosh(Ry) + sinh(Ry) = C + S (6.23)

e−Ry = cosh(Ry)− sinh(Ry) = C − S (6.24)

eiIy = cos(Iy) + i sin(Iy) = c+ is (6.25)

e−iIy = cos(Iy)− i sin(Iy) = c− is (6.26)

(6.27)

The expression for Vx(y) now simplifies to

Vx(y) = α [Sc+ iCs] (6.28)

Using the boundary condition Vx(y = W ) = V gives the value of the constant.

α =
V

SW cW + iCW sW
(6.29)
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where the subscript W indicates the expressions have the same form as C, S, c and

s but with y → W . We have now arrived at the solution for our particular boundary

conditions as

Vx(y, t) =
V eiωt [Sc+ iCs]

SW cW + iCW sW
(6.30)

We are only interested in the real part of this solution which is found as

V (y, t) = V cos(ωt) [sinh(Ry) cos(Iy) sinh(RW ) cos(IW ) + cosh(Ry) sin(Iy) cosh(RW ) sin(IW )]

(6.31)

where R =
√

γ
η

1√
2

(
ω
γ

+ 1
)1/2

and I =
√

γ
η
ω
γ

1√
2

(
ω
γ

+ 1
)−1/2

.

6.6.2 Oscillating Couette Flow Simulations for the Vortex Liq-

uid

It may be possible for the fluid to have a non-Newtonian constitutive relation. We can

explore this with simulations if we can understand how the harmonics of the CE oscillation

appears in the velocity profiles.

Consider the equation of motion for unidirectional incompressible flow:

∂v

∂t
= ν

∂2v

∂y2
(6.32)

where ν = η/ρ is the “kinematic viscosity”. We assume for simplicity that the non-

Newtonian nature of the viscosity is of the form:

ν = ν0 + νn

(
∂v

∂y

)m
= ν0

[
1 + ε

(
∂v

∂y

)m]
. (6.33)

The following analysis may allow us to deduce or disprove such a relation by comparing

the results with those of the simulation. Firstly absorb the ν0 into the definition of time,
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i.e. t→ νt = t′, but we will drop the prime immediately.

The idea is to determine whether the nonlinearity can be via harmonics of a time-

dependent imposed force on the system. For a viscous liquid undergoing plane flow, this

could be via one of the plates oscillating with velocity V cosωt. Now we know in the

Newtonian case[116], that the solution for v(y, t) = vx(y, t) (we drop the x subscript to

simplify notation) is

v(y, t) = <{eiωtv(y)} (6.34)

where < denotes the real part and v(y) satisfies:

iωvx =
d2v

dy2
(6.35)

with solution, obeying no-slip boundary condition of velocity at the oscillating plate and

decaying to zero at large positive y is:

v(y) = V exp
{
−(1 + i)(ω/2ν)1/2y

}
(6.36)

implying that

v(y, t) = V exp
{
−(ω/2ν)1/2y

}
cos[ωt− (ω/2ν)1/2y] (6.37)

Now specialise to the case m = 1.

We will look for solution of the form v(y, t) ' v(0)(y, t) + εv(1)(y, t), which could easily

be generalised to hight powers of ε. Then we substitute and find, discarding terms of

order ε2 or higher,

∂v(0)

∂t
+ ε

∂v(1)

∂t
=

[
1 + ε

(
∂v(0)

∂y

)](
∂2v(0)

∂y2
+ ε

∂2v(1)

∂y2

)
(6.38)

collecting terms in ε0 we regain the original equation and to order ε we find:

ε
∂v(1)

∂t
= ε

∂2v(1)

∂y2
+ ε

∂v(0)

∂y

∂2v(0)

∂y2
(6.39)
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So we get same equation for v(1) as for v(0), but with inhomogeneous term in v(0). so we

need to find a CF and PI to the equation for v(1).

But note that we need a solution which vanishes on both the oscillating plate and at

infinity. The CF solution to the homogeneous equation can only be a constant then. And

we need a particular integral, noting the form of the homogeneous solution it is good to

Fourier decompose the inhomogeneous term in terms of time and then to look for a PI

for each harmonic. Use the following representations (using scaled time so ν0 absorbed

into t):

∂v(0)

∂y
= −

(ω
2

)1/2

exp[−(ω/2)1/2y]<
[
eiωte−i(ω/2)1/2y(i+ i)

]
=

(ω
2

)1/2

exp[−(ω/2)1/2y]
[
cos{ωt− (ω/2)1/2y} − sin{ωt− (ω/2)1/2y}

]
∂2v(0)

∂y2
=

(ω
2

)
exp[−(ω/2)1/2y]<

[
eiωte−i(ω/2)1/2y(i+ i)2

]
= −2

(ω
2

)
exp[−(ω/2)1/2y]

[
sin{ωt− (ω/2)1/2y}

]
So the product of these terms is (using a couple of trigonometric identities)

∂v(0)

∂y

∂2v(0)

∂y2
=

(ω
2

)3/2

exp[−2(ω/2)1/2y]
[
sin 2{ωt− (ω/2)1/2y} − (1− cos 2{ωt− (ω/2)1/2y})

]
=

(ω
2

)3/2

exp[−(2ω)1/2y]
[
−1 +

√
2 cos

(
2{ωt− (ω/2)1/2y} − π

4

)]
(i.e. using

cosA+ sinA =
√

2

(
1√
2

cosA+
1√
2

sinA

)
(6.40)

Now represent the complete equation for v(1) as

∂v(1)

∂t
− ∂2v(1)

∂y2
=

1

8
(2ω)3/2 exp[−(2ω)1/2y]

[
−1 +

√
2 cos

(
2{ωt− (ω/2)1/2y} − π

4

)]
(6.41)

A particular integral for the term -1 in the square brackets is

v(1)
a = −

√
2ω

8
exp[−(2ω)1/2y] (6.42)
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For the second term in square brackets, denote the PI by v
(1)
b , and use complex notation

again:

∂v
(1)
b

∂t
− ∂2v

(1)
b

∂y2
=

√
2

8
(2ω)3/2 exp[−(2ω)1/2y]<

[
exp

{
i
(

2ωt− (2ω)1/2y} − π

4

)}]
(6.43)

Notice the dependence on y and t both have the correct factors of 2ω to satisfy homo-

geneous equation. To look for a PI, we multiply the right hand side by a function of y.

then the terms where the partial derivatives operate on the the terms in the right hand

side cancel, leaving the remaining terms.

So let

v
(1)
b = <

[
f(y)

√
2

8
(2ω)1/2 exp

{
i2ωt− (i + 1)(2ω)1/2y} − π

4

}]
. (6.44)

Then upon substitution, the exponentials all cancel and we find:

1

2ω
f” +

2√
2ω
f ′ = 1 (6.45)

I.e. a linear second order ODE with constant coefficients.

The important point is that the solution is time-dependent with a frequency of 2ω. If

we had had m 6= 1 in the constitutive relation, then we would have found harmonics of

order m+ 1 in the solution - as well as lower ones in general. So the harmonic content of

the solution tells us about the highest order term in the constitutive relation.

6.6.3 Key Coding Algorithms for Couette Flow

Here we perform oscillating wall simulations and examine the harmonics of the wall

frequency. To do this we choose the bins near the CE and calculate the velocity values

< vx(y, t) >.

To perform these simulations we introduce a further geometric object, GeometryOscWall,

which is a modification to the GeomteryShearedWall object. The modifications are to
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the update and analysis sections and are listed in the code block below.

1 // class GeometryOscWall implementations

2
3 void GeometryOscWall :: PerStepUpdates ()

4 {

5 // Add functions here to be run every timestep

6 OscillateTopCE ();

7 }

8
9 void GeometryOscWall :: PerStepAnalysis ()

10 {

11 OutputParticlePositions ();

12 CalculateVxofyProfile ();

13 CalculateVxofytProfile ();

14 OutputVxofyEvolveProfile ();}

15
16 void GeometryOscWall :: EndofSimAnalysis ()

17 {

18 OutputFinalParticlePositions ();

19 OutputAverages ();

20 OutputVxofyProfile ();

21
22 }

We have three new functions. The first OscillateTopCE() oscillates the top CE at

an amplitude Amp and a frequency omega specified in the job file.

1 void GeometryOscWall :: OscillateTopCE ()

2 {

3 double t = sim ->get_time ();

4
5 static double V0 = omega*Amp;

6
7 for (std::list <CParticle >:: iterator p =

8 OtherParticlesList ->begin ();

9 p!= OtherParticlesList ->end(); ++p)

10 {

11 if (p->get_type () == "S")

12 {

13 p->set_vel(V0*cos(omega*t), p->get_vely ());

14 p->set_x(p->get_x ()+p->get_velx ()*dt);

15 }

16 }

17 }

The second function, VxofytProfile(), calculates the profile < v(y, t) > (where time

is divided up into Ns slices of the wall oscillation period.). This is shown pictorially in
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Figure 6.17: To get a profile for v(y, t) we divide each period up into slices and average
over that single slice. In the example shown here we have Ns = 10 slices.

Figure 6.18: To get a profile for v(y) we divide each period up into slices and average
over the same slices in each period. With each period we have Ns slices. There are Np

periods in the simulation.

Fig. 6.17.

Finally, to get an average profile for < v(y) > we use the VxofyProfile() function.

This allows us to average the same time slice of the wall period over the whole simula-

tion. This is shown pictorially in Fig. 6.18, where Np is the number of periods in the

simulation, Ns is the number of slices per period and Si is the slice index with a period.

Its implementation is given in the code block below.

1 void GeometryOscWall :: CalculateVxofytProfile ()

2 {

3 int t = sim ->get_t ();

4
5 static int numslices = 20;

6 static double period_timesteps = 2*pi/omega/dt;

7 static double slice_timesteps = period_timesteps/numslices;
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8
9 static int lastsliceindex = 0;

10 int sliceindex = (t \% int(period_timesteps ))/ slice_timesteps;

11 if (sliceindex != lastsliceindex)

12 {

13 OutputVxofytProfile ();

14 Vxofyt ->ClearValues ();

15 lastsliceindex = sliceindex;

16 }

17
18 for (std::list <CParticle >:: iterator p =

19 triangulatedParticlesList ->begin ();

20 p != triangulatedParticlesList ->end(); ++p)

21 {

22 double y = p->get_y ();

23 double f = p->get_velx ();

24 Vxofyt ->AddValue(y,f);

25 }

26
27 }

A snap shot of the simulation indicating the ybin is given in Fig. 6.19.

6.7 Oscillating Wall Simulation Results

Fig. 6.20, shows power spectrum analysis, of the frequency modes of the velocity profile

v(y, t) at a number of points near the oscillating boundary, bin numbers 20, 21, 22, 23

and 24 where 24 is the wall bin and 23 is the first bin in the fluid near the moving wall.

Bin widths are 2b0. The plots in Fig. 6.20 show clearly the wall frequency, however none

of the harmonics can be seen in the figures.
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Figure 6.19: Oscillating wall simulations. Shows walls (Red) and channel particles (Blue).
Bottom wall is fixed. Top wall is oscillating horizontally with frequency ω. Bins numbers
for averaging are marked in the plot.
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Figure 6.20: Oscillating walls ω = 0.01, “x” marks fundamental and first 3 harmonics.
Symmetry in the profiles is an artefact of the power spectrum method.
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Chapter 7

DENSITY DRIVEN VORTEX LATTICE

This chapter focuses on a novel channel geometry that provides a new mechanism, via

vortex reservoirs for propelling vortices along a narrow channel superconductor. We begin

with a summary of the key results and their explanation as we have presented them in a

letter currently under review for publication. The paper has been reformatted, to fit with

the thesis style and we have signposted throughout, via footnotes to later sections in the

chapter where the technical details are justified in depth. We finish the chapter with a

potential application of the underlying dislocation mechanism in a real material system.
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7.1 Paper: Extruding the Vortex Lattice: Two Re-

acting Populations of Dislocations

Extruding the vortex lattice: two reacting populations of dislocations

J.S. Watkins1 and N.K. Wilkin1

1School of Physics and Astronomy, University of Birmingham,Birmingham, B15 2TT,

UK

n.k.wilkin@bham.ac.uk

ABSTRACT

A uniquely controllable soft solid is realised in vortex matter[117, 30, 118] in a type

II superconductor. The two-dimensional unit cell area can be varied[119] by a factor of

104 in the solid phase, without a change of crystal symmetry offering unparalleled, and

easy, exploration of extreme regimes compared to ordinary materials. The capacity to

confine two-dimensional vortex matter to mesoscopic regions[6, 118] provides an arena for

the largely unexplored metallurgy of plastic deformation at large density gradients. Our

simulations reveal a novel plastic flow in this driven non-equilibrium system, utilising two

distinct, but strongly interacting, populations of dislocations. One population facilitates

the relaxation of density; a second aids the relaxation of shear stresses concentrated at

the boundaries. The disparity of the bulk and shear moduli in vortex matter ensures the

dislocation motion follows the overall continuum flow reflecting density variation.

Soft matter forms a versatile laboratory to study plastic deformation, including: the

observation of dislocation nucleation[120], motion[121, 122, 22, 6, 32], reactions[24] and

role in grain boundary processes. Soft vortex matter has the specific advantage that

the density of vortices can be changed easily by altering the magnetic field applied, and

a density gradient is created by applying a field gradient. The novel regime of large

density gradients is naturally studied by extrusion along a channel between reservoirs of

different densities. The resulting time dependent non-equilibrium state is the subject of

this article.
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Figure 7.1: The model of a thin channel superconductor with an imposed mag-
netic field gradient B(x)ẑ, where z is normal to the plane. Mobile vortices from a
high-density source move along the channel under the action of a vortex density gradient.
The channel edges are defined by pinned vortices. Figure submitted to Nature.

The channel is formed by a clean (unpinned) region of width w between walls provided

by two pinned regions of vortex lattice. Altering the external magnetic field alters the

density of vortices within the channel, while the pinned regions are unaltered for moderate

changes of field. Except when we explicitly compare with the liquid phase, our simulations

are at a sufficiently low temperature that–for our finite sample–there are no thermally

excited Halperin-Nelson-Young dislocations.

That vortex dynamics is collective in such a channel was demonstrated[6] by the

application of the electrical current to a small region of the channel which generated

motion of vortices up to 5µm = 30w away. This implies a value of 5µm for the Larkin-

Ovchinnikov length[77], over which the vortex lattice is not pinned. Motivated by these

results, we will consider the clean limit for the channel in this article, with an ordered

pinned lattice defining the channel edges.

To investigate flow (both in solid and liquid phases) at significant and controllable

density gradients, our simulations add a reservoir, with a chosen vortex density, to each

end of the channel (Fig. 7.1). Experimentally, the reservoirs could be fed via vortex

pumps[31]; in the simulation vortices are added or removed sufficiently remotely from the
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channel exit and entrance so as not to affect the flow.

The geometry of the channel is shown in Fig. 7.1, where BL and BR, with BL > BR,

are the magnetic fields in the reservoirs, favouring vortex motion from left to right in the

channel. We work in the regime where the average density in the channel is comparable to

the pinned lattice, so experimental changes of field would be small. We examine a “wide”

channel of width, w ∼ 10a0, where a0 is the lattice parameter of the pinned lattice, which

is our unit of length (and the associated unit of field, B0). So, although the channel

lattice is only slightly mismatched with the pinned lattice, the cumulative effect across

the width of the channel can be several lattice parameters. The “wide” channel will allow

a continuum description.

Fig. 7.2 shows the yield stress for plastic flow at BL − BR = ∆By = 0.08 for T = 0.

Above the yield stress v ∝ (∆B), i.e. linear to a good approximation. In the liquid phase,

for T > Tm = 0.012 , linearity is present for all ∆B. That ∆By and Tm are numerically

small reflects the disparity of bulk and shear moduli in the vortex lattice.

A reference for density changes along the channel is provided by the local vortex

spacing in the liquid phase, a`(x), which is smooth:

a`(x) '

√
2√
3

Φ0

(BR −BL)(x/L) +BL

, (7.1)

where L is the channel length and Φ0 is the flux quantum. If the “solid”, plastic, phase

were glassy or hexatic, the density might vary continuously as well. However, as can be

seen from Fig. 7.4, this is not true. While the inter-vortex spacing parallel to the channel,

ap(x), tracks the liquid variation, a`(x), the perpendicular component of the spacing, bp(x)

(b =
√

3/2a for an equilateral triangular lattice), is step-like along the channel.

The interpretation, confirmed by examination of Fig. 7.6, is that the vortex matter

is mostly crystalline with the inter-row spacing commensurable with the channel width.

The commensurability dictates discrete changes along the channel, where rows disappear,

associated with an edge dislocation in the “bulk” of the channel. Because vortex matter

has no cohesive energy, the inter-row separation expands (and the unit cell expands) as
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Figure 7.2: Overall flow and yield along channel. Shows the variation of the vor-
tices’ average velocity, v(∆B), with field difference. There is a critical field difference
for the solid to yield at sufficiently low temperatures, which disappears above the melt-
ing temperature (similar to the velocity/Lorentz relation from the Leiden group[22, 6]).
Figure submitted to Nature.
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Figure 7.3: Shows the velocity profile, vx(x), in the channel and sleeve (cylindrical)
geometries, with ∆B = 0.46. The continuum expression for v(x) is shown, as is an
expression for a cutoff discrete lattice sum. As the channel width grows v(x) approaches
the cylindrical result (which is closer to the continuum model), showing the diminishing
effect of edge shear. Figure submitted to Nature.
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Figure 7.4: The discontinuous evolution of the lattice along the channel. a
shows the variation in the vortex spacing (found using Delaunay triangulation) parallel
to the channel boundary, a(x), with vertical arrows indicating jumps mentioned in the
text. The component of the separation perpendicular to the channel edges, b(x), is also
plotted. The system contains three zones of nr = 8, 7 and 6 rows of vortices. Figure
submitted to Nature.

Figure 7.5: Shows the density of GNDs(geometrically necessary dislocations). The solid
line is calculated using an interpolated ap(x) from the simulation and Eq. (7.2). The
dashed line is a continuum prediction. The red line is from the simulations. Figure
submitted to Nature.
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Figure 7.6: The double dislocation network in the channel. A snapshot of the
vortex positions in a channel, of width w = 8b0, is shown. There are three “bulk” edge
dislocations. The Burgers circuit construction[13] for the second dislocation is indicated.
Pinned vortices in the channel edges are marked with (×). 4 and � mark vortices with
5 and 7 neighbours respectively. All other vortices have 6 neighbours. (Top) An bulk
dislocation approaching the lower channel edge. (Bottom) The same dislocation after
the interaction with a GND with b = −ŷ. Figure submitted to Nature.

x passes an edge dislocation, the lattice filling the channel laterally with fewer rows. The

required number of bulk dislocations is increased by increasing the magnetic field gradient

or the width of the channel (which requires more rows to be removed for a given density

change). Our simulations demonstrate this for density gradients necessitating up to 4

edge dislocations, with channel widths of up to 30b0.

The unit cell changes shape from a compressed isosceles triangle to an equilateral

triangle upon passing an edge dislocation. I.e. the transition from n + 1 rows to n rows

occurs when b = (
√

3/2)ap(x) = w/n. To avoid gross mechanical disequilibrium, we

expect the unit cell area to be continuous as a function of x. Equating the unit cell

sizes in the sections with different rows at the boundary implies a discontinuity in ap(x),

a+ − a− = (2/
√

3)(w/n2), where a+ is the lattice parameter on the side with n+ 1 rows

and a− that with n rows. This difference is indicated in Fig. 7.4, agreeing with the

simulations.

The “geometrically necessary strain” caused by the lattice parameters of the pinned
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region and the channel lattice becoming increasingly mismatched as x increases is concen-

trated in “misfit”, or geometrically necessary dislocations (GNDs) at the interface Fig.

7.6). The “charge” density of GNDs, ρg, reflecting the lack of registry due to the variation

in ap(x), is:

ρg =
1

a0

(
1− a0

ap(x)

)
(7.2)

Fig. 7.12 shows the agreement between this expression and the density of GNDs found

in the simulation.

The dynamic behaviour Fig. 7.7 of the plastic flow reflects the interacting popula-

tions of GND and “bulk” dislocations. The GNDs glide parallel to the channel edges,

lubricating the vortex lattice motion along the channel. The bulk dislocations glide on

symmetry-related glide-planes across the channel. The video appears to show that bulk

dislocations are reflected at the channel edge onto to the other glide-plane not parallel

to the channel edge, and repeat this zig-zagging motion between the channel edges. We

have followed this periodic motion for more than 100 periods.

However, it cannot be a reflection, as the conserved[13] Burgers vector changes when

gliding on different planes. The resolution is that a “reaction” occurs, visible in Fig. 7.7,

a bulk dislocation upon reaching a channel edge combines with a GND producing an bulk

dislocation on the third glide-plane (i.e. the three possible Burgers vectors add to zero).

The steady state of plastic flow is constituted by the regions of constant row number,

delimited, in the laboratory-frame, by the average x-coordinates of the zig-zagging bulk

dislocations. The gliding GND dislocations ensure this.

Building a global picture of the flow down the channel from these local descriptions

of dislocation motion is aided by Fig. 7.2. Note the near identity of flow rates in liquid

and plastic phases–despite the considerable difference in structure. The underlying cause

is that vortex matter is soft but incompressible[10]: the ratio of the bulk, κ, to shear,

µ, moduli is κ/µ = 16π(λ/ξ)2 � 1, for strongly type II superconductor, where ξ is

the coherence length and λ is the penetration depth of the superconductor. Thus the

macroscopic flow rate, reflecting density gradients, is insensitive to crystalline order and
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Figure 7.7: Shows the motion of the two populations of dislocations in the channel
geometry. The GNDs are confined to the boundary between the mobile vortices and
the pinned channel edge vortices. The second population move in the bulk along glide
planes tilted at π/3 to the channel edge and relax the density changes along the channel.
The GNDs and bulk dislocations interact at the channel edge through an process that
conserves Burgers vector and allows the bulk dislocations to change glide plane.
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the steady-state profile for v(x) and ρ(x) along the channel may be derived using the

continuity equation for the vortices and the force equation on each vortex 1,

v(x) = − Φ2
0

γπµ0

dρ

dx
(7.3)

They yield:

ρc(x) = ρl(0)

√
1− x

L0

; v(x) =
Q

ρ(x)
, (7.4)

where x = 0 has been chosen to be the start of the channel, Q = ρ(x)v(x) is conserved

in steady state and L0 = Φ2
0ρ

2
0/(πγQµ0)� L in our simulations (i.e. the number of rows

does not drop to zero). The resulting velocity field is shown in Fig. 7.3.

The microscopic dislocation motion is slaved to this density–gradient dominated con-

tinuum description (i.e. determined kinematically) as the Peierls-Nabarro stress for glide

is determined[13] by the small shear modulus. The GNDs ensure the average motion of

the channel lattice occurs with the velocity v(x): each GND translates the lattice by a0

as it passes, so their velocity, vg(x) = v(x)/(a0ρg(x)).

The zig-zagging dislocations ensure that the density profile is stationary in the labo-

ratory frame. They move backwards, see Fig. 7.9, at an average velocity vzig = −2v(x),

where the factor of two comes from the angle of the glide plane. Channel-edge friction

can be removed by considering a “sleeve”, with a periodic boundary condition in the

y-direction, Fig. 7.8. On the sleeve there are still preferred row separations due to com-

mensurability with the circumference of the cylinder. Fig. 7.3 shows indeed that the

sleeve-system is closer than the channel to the continuum model. This is then remi-

niscent to the description[123, 124] of bacterial cell wall growth and provides a physical

mechanism for the observations in colloidal dynamics as seen in Deutschländer et al.[125].

In summary, the first study of plastic deformation under significant density gradients

has demonstrated the existence of a new steady-state with a strongly interacting set of

dislocations on all of the glide planes of the vortex crystal. Whilst the vortex crystal

has no cohesive energy, one would expect similar behaviour for any two-dimensional

1see §7.3
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Figure 7.8: Dislocation motion in the sleeve geometry. The removal of the channel edges
results in a steady circumferential velocity for the dislocations. The tilt of the lattice also
alters the angle of the Burgers vector compared to the channel system.
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Figure 7.9: Motion of the “bulk” dislocations, kinematic and dynamic. Dislo-
cation paths are shown for both the channel and the sleeve, in a reference frame moving
with the channel/sleeve lattice. In the case of the channel, non-kinematic influences are
implied an additional velocity modulation: moving faster as they leave a channel edge
and slowing are they approach an edge. This is due to image forces being repulsive due
to the rigid pinned lattice, although this is partly cancelled by the lubrication of the
GND’s allowing slip along the surface[23]. There is no correlation between the different
zig-zagging dislocations–presumably because their velocities are different (as v(x) varies)
and interactions are suppressed by exponential screening due to the image arrays. Figure
submitted to Nature.
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matter compressed sufficiently from its equilibrium density. The generalization to three

dimensions–either for flux lines or particles–is an open question, as is the potential of

the latter for high/low compressibility (cf pinned/channel) heterogeneous mixtures in

geophysical flows.
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7.2 Simulating the Density Driven Flow

The results presented in §7.1, require carefully controlled simulations, optimised to enable

the full parameter space to be explored. We now review the decisions made and the

reasons why. In particular we need to ensure that

• The field in the reservoirs is well controlled

• The system displays physical results

• That the code is optimised subject to these constraints, as the phase space of

parameters over which the simulations needed to be run was large.

The extensive simulation literature that exists2 is based upon the the magnetic field,

and therefore density of the vortices, being homogeneous on length scales above a few

lattice spacings. The results we have presented rely upon the field gradient induced

motion, clearly controlling smoothly the vortex density in the reservoirs, in order not to

significantly perturb the channel is essential. We discuss below how this process has been

optimised.

Vortices are added at random locations within the source region and removed in a

similar fashion in the sink - where both source and sink are identical but with differ-

ent vortex density imposed. This is relevant to the yield stress results where low field

differences are imposed, §7.4.

The channels and vortex baths are lined by pinned vortices, providing a confining

potential for all other mobile vortices, Fig. 7.1, to flow between. The field for the channel

edges (CE) are maintained at B0 = 1 giving a density of 1/(a0b0) = 2/(
√

3a2
0). For this

system we define the source and sink reservoir fields as BL and BR, respectively. The

subscripts simply indicate the orientation of the system with the source on the left and

sink on the right. For reservoirs where BL = BR, in the solid phase no vortex motion

will be perceptible after any initial inhomogeneities have been resolved. The liquid phase

allows individual vortices to diffuse but overall density is homogeneous throughout the

2See §1.1.
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channel, and we select BL > BR, Fig. 7.1.

For the simulation values for the source and sink fields could be set at any value,

however, physically it is required that the fields are similar that they be similar to the

CE field B0 - otherwise the pinned channel edge will no longer be energetically stable.

It is clear that the local field and local density must be related - but the values along

the channel are determined by the flow, rather than externally imposed. We proceed by

imposing the fields in the source and sink regions. This generates two queries:

• What B-field profile does this give along the channel?

• What is the corresponding density regime?

7.3 Expected Profiles for Field, Density and Lattice

Spacing in the Liquid Regime

To address these two questions we call upon a continuum based calculation and sim-

ulations of the liquid phase. (Within the solid phase structural inhomogeneities could

potentially affect the profile.) We commence with the defined values of the field in the

source and sink and the relationship between field and density. We also make a linear

extrapolation of the field along the channel between the source and sink. In equilibrium,

the number of vortices in an area A in proportional to the applied field strength B,

nv = BA/Φ0. Rearranging leads to an equation for the density

ρ =
nv
A

=
B

Φ0

(7.5)

We can also use the symmetry of the triangular lattice to relate the field to the lattice

parameters. If we set nv = 1 and A = a0b0 (which is correct for the triangular lattice) we

rearrange to an equation that relates the lattice parameters to the applied field,
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Figure 7.10: Comparison between linear field assumption and continuum analysis for a
density and b lattice parameter.

a =

(
2√
3

)1/2(
Φ0

B

)1/2

(7.6)

AssumingB varies linearly with x, B(x) = BL + (BR −BL)x/L where L is the length

of the channel. Substitution of B(x) into both the above equations for density and the

lattice parameter give a functional form for the variation along the channel.

ρl(x) =
nv
A

=
BL + (BR −BL)x/L

Φ0

(7.7)

al(x) =

(
2√
3

)1/2(
Φ0

BL + (BR −BL)x/L

)1/2

(7.8)

The graphs of these two quantities can be seen in Fig. 7.10.

Deviations from this for both the liquid and solid state are discussed in §7.5 due to

energetic constraints which arise from the microscopic structure.
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7.4 Langevin Dynamics

It is standard practice to model liquids and vortex lattices via Langevin dynamics. Novel

to our work is applying the drive via a density gradient. The primary issue is in fact

the simulation of the vortex reservoirs. The reservoirs are required to maintain a fixed

average field across the whole reservoir. How can this be practically achieved? In a pseudo

code approach we write, Algorithm 1.

Algorithm 1 UpdateReservoir - Attempt 1

1: procedure UpdateReservoir(B) . Maintains average field of reservoir
2: currentB← CalculateField( )
3: if currentB < B then
4: AddVortex( )
5: else if currentB > B then
6: RemoveVortex( )
7: end if
8: end if
9: end procedure

If we attempt this simple approach, further queries arise.

1. Is it safe to assume that the average B- field is the correct quantity to calculate?

2. Where should vortices be added or removed?

3. How often should this routine be run? and is this method computationally efficient?

We address these questions below.

7.4.1 How Should We Calculate the B-Field?

We could perform a Delaunay Triangulation on the particles in the reservoir leading to

determination of an average lattice spacing, a. This is potentially slow and problematic

when the reservoir B-field is much lower than the channel edge field, B0. This leads to

a slight compression of the vortices in the centre of the reservoir, artificially raising the
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local B field. Alternatively one could count the total number of vortices in the reservoir

and directly determine the B-field of the reservoir, using the formula

B = Φ0
nv

Lresw
. (7.9)

where nv is the vortex count in the reservoir, Lres is the reservoir length and w the

reservoir width. This requires less computation but has the disadvantage that average

field is now quantised in Φ0/Ares (where Lresw). It also depends where the vortices are

added and removed from the reservoir as to whether the average field across the whole

source is the correct quantity to calculate.

7.4.2 Where Within the Reservoirs Should Vortices be Added

or Removed?

The naive approach is to randomly add or remove a vortex from anywhere in the reservoir.

Empirically this was found to have problems. The addition or removal of a vortex is

destructive to the local structure in the solid phase. We require the reservoirs to present

a stable set of particles, optimally in a triangular lattice formation, at the start of the

channel.

If instead, we add and remove particles well away from the start and end of the channel

in very large reservoirs,Fig. 7.11, we do create a stable lattice structure at the start and

end of the channels.

Unfortunately this creates a field gradient across the reservoir, such that the average

field for a large reservoir and the value of the field at the entrance to the channel are

significantly different. What value of field should we be using to respond to changes in the

reservoir?
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Figure 7.11: a Shows a fit to the lattice parameters in the channel, found using Delaunay
Triangulation. We see a gradient across the reservoirs due to particles added and remove
at the extreme end of the channel. b We can see a stable lattice is created by the addition
of vortices away from the channel edges. Marked by vertical red lines.

7.4.3 Implementation of the Vortex Reservoir

Taking into account the reservoir issues discussed above, it was found that the most

robust approach was to create a small source ∼ 10− 20a0 where vortices are added and

removed in the first/last 5a0 region. This creates a small gradient across the reservoir

but does give the lattice time to stabilise.

We calculate the field at at the boundary between the reservoir and the channel,

at x = 0 and x = L, since this is the field of interest, using a binned approach with

bin widths of 5a0. Since particles are added/removed away from these regions, changes

induced by adding/removing vortices are not felt instantaneously at the channel ends.

The relaxation time, can be estimated and we use this as a relaxation time, Tr for the

reservoirs and only allow particles to be added/removed at most every 2Tr seconds. This

procedure results in a stable lattice of the required B fields at the ends of the

channel.
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7.4.4 Is the Routine Computationally Efficient?

Although individual runs of the system take usually less than an couple of hours to run,

the phase space to be explored is large, and hence optimisation is essential.

The biggest calculation cost for this comes from the use of triangulation to calculate

the B-field. This can be vastly optimised by counting vortices instead, which becomes

increasingly accurate with reservoir area.

Incorporating these issues the second algorithm Algorithm 2 captures these modifica-

tions, and is run for both reservoirs.

Algorithm 2 UpdateReservoir - Attempt 2

1: procedure UpdateReservoir(B) . Maintains average field of reservoir
2: if timer >= Trelaxation then . timer increases each time step
3: timer← 0
4: currentB← CalculateField( )
5: if currentB < B then
6: AddVortex( )
7: else if currentB > B then
8: RemoveVortex( )
9: end if

10: end if
11: end procedure
12:

13: procedure CalculateField( ) . Calculates field at reservoir/channel interface
14: N ← CountVorticesInBin( )
15: Area← BinArea( )
16: return EffectiveField(N,Area) . Calculates field from vortex count and

area
17: end procedure
18:

19: procedure AddVortex( ) . Adds a vortex to reservoir
20: v ← CreateVortex(xLow, yHigh)
21: end procedure
22:

23: procedure RemoveVortex( ) . Removes a random vortex
24: vlist← v from all vortices where v.x ∈ [xLow, xHigh]
25: vptr ← random v from vlist
26: Remove(vptr)
27: end procedure
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With this algorithm deployed, each reservoir can equivalently act as a source or sink.

A further issue can occur if the vortices added to the reservoirs are placed close to

other vortices, within a range of� a0. This can result in very large forces that can expel

a vortex from the system. Within the code this is dealt with by deleting any escaped

vortices from the the vortex list and replacing it by a vortex at the same x position but a

different random y position. Vortices, escaping the channel ends are not replaced by this

algorithm and are instead dealt with by the normal UpdateReservoir() procedure. In

the liquid systems, thermal noise can also result in vortices becoming very close to each

other and then being expelled from the system. If this occurs in the channel region we

employ the same proceedure as the reservoirs and replace the escaped vortex at the same

x position in order to maintain the field value in a given area.

To facilitate these techniques the average velocities of the vortices needs to be evalu-

ated.

7.5 Application of the Continuum Approximation Re-

sults

Modelling the system using the continuum approximations allows for the spatial variation

of ρ(x) and v(x) to be determined. The starting point is to ignore edge effects, working

more than a penetration depth into the channel, so inter-vortex interactions have decayed

to zero. Then the equation of motion becomes a force balance between the viscous drag

term and the sum over repulsive vortex-vortex interactions, roughly over a penetration

depth area. Replacing the discrete sum over vortices with an integral over density gives

an equation of the form

γv(r) =

∫
dr′f vv(r− r′)ρ(r′) ̂(r− r′) (7.10)

The viscous term on the left hand side is due to the “normal fluid” of excited quasi-
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particles scattering from the vortex, or trapped in its core. We now use the small value

for the change in vortex density over a distance of the penetration depth to approximate

Eq. (7.10). Performing a change of basis r′ → r + ζ and Taylor expanding ρ(r + ζ) to

first order in ζ gives the transformed equation

γv(r) '
∫

dζf vv(ζ) [ρ(r) + ζ · ∇ρ(r)] ζ̂ (7.11)

Since ζ = (ζ cosφ, ζ sinφ), ζ̂ = (cosφ, sinφ) and ∇ρ = (∂ρ/∂x, ∂ρ/∂y), only the term

in ∂ρ/∂x survives, which results in

v(x) = − Φ2
0

γµ0

dρ

dx
(7.12)

To determine the density profile the steady state continuity equation is introduced, in

1D this is Q = ρc(x)v(x). Substituting Eq. (7.12) and performing the integration gives

the density profile

ρc(x) =

√
ρ(0)2 − γQµ0

Φ2
0

x (7.13)

where the boundary condition on the entrance to the channel ρ = ρl(0) was used and

we let −2Q→ Q.

To determine Q for given values of BL, BR and L we find

Q =
Φ2

0

γµ0L

[
ρl(0)2 − ρl(L)2

]
(7.14)

where we can use the local density in the source and sink regions, given by Eq. (7.7).
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Figure 7.12: Shows the density of GNDs. The solid line is calculated using an interpolated
ap(x) from the simulation and Eq. (7.2). The dashed line is a continuum prediction.
The red line is from the simulations. Figure submitted to Nature.

7.6 Peach-Koehler Forces - Dislocation Interactions

The zig-zagging motion of the bulk dislocations, Fig. 7.9, shows the dislocations slowing

down when approaching the CE. They are two possible reason for this, both arising due

to forces between dislocations. We will first consider the forces between bulk dislocations

and the GNDs that inhabit the CE interface. To continue we need to calculate the

Peach-Koehler forces between these populations of dislocations. This requires access to

the elastic constants for the material in question which is not easy for this system. Even

so a qualitative understanding can be gained by examining these stress fields and the

interactions of the bulk dislocations and GNDs with these fields. We wish to ask what

force the bulk dislocation might feel due to the presence of the GNDs. To simplify this

calculation we will just consider a single GND interacting with a bulk dislocation, Fig.

7.13. The GNDs do get removed via the reaction mechanism already described but as

they are fast moving a bulk dislocation will always feel the influence of a GND. For this

orientation of b1 we can use the stress field from Eq. (7.17), Eq. (7.18) and Eq. (7.19)

but set b → −b and the force from Eq. (3.10) and Eq. (3.11). The force felt by the

160



7.6. PEACH-KOEHLER FORCES - DISLOCATION INTERACTIONS

Figure 7.13: Schematic of GNDs and bulk dislocations system. Upon approach
to the CE the bulk dislocations will feel the influence of the GNDs. Since GNDs are
fast moving we will consider that the dislocation always feels the influence of the GND.
Figure submitted to Nature.

dislocation b2 = (b/2,
√

3b/2) is then

Fx = σyxbx + σyyby (7.15)

Fy = −σxxbx − σxyby (7.16)

With stress terms

σb̄xx =
µb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2
(7.17)

σb̄yy = − µb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2
(7.18)

σb̄xy = − µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
(7.19)

Substitution for the stress terms and Burgers vectors gives
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Figure 7.14: Direction of Peach-Koehler force between GNDs and bulk disloca-
tions (approaching CE). Force components felt by a dislocation b2 due to a dislocation
b1 at the origin. (left) Force-field in x̂ direction. (right) Force-field in ŷ direction. Bulk
dislocation feels an attractive force in the vicinity of the channel edge. Channel is defined
as x > 0.

Fx = − µb2

4π(1− ν)

x(x2 − y2)

(x2 + y2)2
−
√

3µb2

4π(1− ν)

y(x2 − y2)

(x2 + y2)2
(7.20)

Fy = − µb2

4π(1− ν)

y(3x2 + y2)

(x2 + y2)2
+

√
3µb2

4π(1− ν)

x(x2 − y2)

(x2 + y2)2
(7.21)

Figure Fig. 7.14 and Fig. 7.15 show the direction of the force felt by the bulk

dislocation. In the y-direction it is always attractive on approach and repulsive when

leaving. This effect alone may be enough to generate the profile seen in Fig. 7.9, however

we must also consider the image forces felt by the dislocation near the boundary.

Images forces are analogous to those encountered in electromagnetism. A dislocation

will feel an image force due to the reflection of the dislocations own stress field in the CE.

General calculations of image forces are intricate - but we can proceed via a simplified

argument as we only require the direction of the force.

The approach is to determine the sign of the image dislocation. A dislocation and
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Figure 7.15: Direction of Peach-Koehler force between GNDs and bulk dislo-
cations (leaving CE). Force components felt by a dislocation b2 due to a dislocation
b1 at the origin. (left) Force-field in x̂ direction. (right) Force-field in ŷ direction. Bulk
dislocation feels a repulsive force in the vicinity of the channel edge. Channel is defined
as x > 0.

its image with like sign will repel each other and with opposite sign, will attract. A

relationship for the Burgers vector of an image dislocations for a screw dislocation can be

derived in terms of the shear modulus on either side of the boundary. For a dislocation

with a Burgers vector b, the image dislocation has

b
′
= b

c
′
66 − c66

c
′
66 + c66

, (7.22)

where c66 is the elastic modulus of the medium containing b and c
′
66 is the elastic

modulus of the medium containing the image dislocation, b
′
. For our case where the

vortices are pinned in the channel walls this gives c
′
66 → ∞, resulting in b

′
= b. The

pinned boundary acts to resist the approach of the dislocation, through stiffening of the

vortex matter in the region near the CE. This relationship is not straight forward to

derive for edge dislocations, but the general result holds. If c
′
66 > c66 we will have a

repulsive boundary due to the image forces.
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7.7. APPROACHING THE CONTINUUM: THE ROLE OF THE CHANNEL EDGE

7.7 Approaching the Continuum: The Role of the

Channel Edge

We asserted above that the non-constant velocity of the bulk dislocations was as a result

of image forces originating from the channel edge. There is a definitive simulation test of

this, and that is to wrap the 2D channel onto the surface of a cylinder, effectively periodic

boundary conditions in the y-direction. We should note that this is an unlikely physical

scenario for a superconducting system - but that systems of this type are currently being

investigated for understanding biological cell growth via a dislocation mechanism[1].

We maintain the same vortex-vortex force. We would except the GNDs to disappear,

which they do, since there are no stresses created at CE for the GNDs to relax and

there is no mis-match between lattice parameters in this region. What has changed? As

we see from Fig. 7.9 the striking difference between the bulk dislocation profile in the

channel and on the cylinder. The dislocations now proceed on a linear trajectory at

constant speed. Returning to the channel system, the effect of the CE can clearly be

seen in Fig. 7.16, which shows that as we increase channel width the non-linearity of the

dislocation trajectories are isolated near the CE, indicating that the effect is due to a

localised boundary mechanism.

We now turn back to the Fig. 7.3. In this figure we see the velocity, v(x) along the

channel/cylinder as calculated from binned averages in the simulations, a continuum cal-

culation and a numerical calculation based on resolving just the nearest neighbour forces.

It is clear that the results for the channel deviate from the continuum result, but that as

channel width is increased and then the CE is removed, the profile approaches the con-

tinuum solution. For reference, the numerical calculation using just nearest-neighbours

is approximately half the continuum v(x) which strongly suggests the asymmetry in local

vortex lattice is larger above a0 and that this asymmetry is contributing to the overall

velocity of the vortices.
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7.7. APPROACHING THE CONTINUUM: THE ROLE OF THE CHANNEL EDGE

Figure 7.16: As channel width increases we can see a linear profile in the dislocation
movement across the channel, with a small non-linear region near the boundary. The
steps in the profile are due to the dislocations being confined to the rows of the moving
vortex matter.

165



7.8. DISLOCATIONS AS A NOISE REMOVAL MECHANISM
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Figure 7.17: Shown are all dislocations that are active in the channel apart from the
GNDs. The trajectory in the x-direction is shown. The five dislocations (bottom third
of the figure) are due to defects generated by the source. The line at 22a0 corresponds to
the first bulk dislocation, and it is clearly acting as a grain boundary. Note how “clean”
the system is further along the channel.

7.8 Dislocations as a Noise Removal Mechanism

It is inevitable that disorder from the reservoir will enter the channel. What is remarkable

is that the noise does not persist past the first dislocation, Fig. 7.17. Resulting in ‘clean’

crystal structure for the remainder of the channel. The periodicity of the first dislocation

is perturbed by the noise from the reservoir, and results in the noise being absorbed.

We are able to exploit this phenomenon to produce cleaner data for the remainder of

the channel. This “cleaning” of the lattice is of potential interest for real mechanical

materials, and is the subject of discussions with experts in the School of Metallurgy and

Materials. [126].
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Chapter 8

CIRCULAR GRAIN BOUNDARIES IN THE

VORTEX LATTICE

The formation and stability of “bubbles” are the focus of recent research in a broad range

of physical systems. These are the result of inclusion of a mis-orientated region of lattice

within a bigger two dimensional system. This scenario can be arrived at artificially, via,

for instance topological tweezers, in a colloidal system, as in the recent paper of Irvine et

al. [24]. Importantly for our work, they show that they can enable the bubble to move via

a commensurate potential placed on one side of the grain boundary. Analysis techniques

have focussed on energetic considerations. In particular they show that dislocation motion

involved in the rotation of grain boundaries is not reversible. Bubble-like structures can

also exist as a result of non-flat geometries, a major area of research in studying the

stability and growth of biological cells. The “bubbles” are sometimes described as “grain

boundary scars”. That is the boundary separating the two mis-orientated phases is

separated by a string of dislocations as per a grain boundary - but is curved in order to

contain the central region, Fig. 8.1.

The initial selection of results presented here are an indicator of the rich phenomena

that exist in the wider system. The potential parameter space to explore is vast, with

extensive potential for further study. Discussions with Basoalto [126] indicate that this

may be fruitful in understanding dislocation mechanisms within genuine material, in

particular titanium.
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8.1. RESERVOIR GEOMETRY

Figure 8.1: Circular grain boundaries consisting of dislocations. Figure from Ref[24].

We have chosen to focus on a system of width 20b0 with a fixed field difference of

0.46B0. The system has then been observed over 1 000 000 time steps, after the initial

transient phase. In this range it is found that the average lattice parameter profile along

the length of the channel is well defined over the timescales of the simulation.

8.1 Reservoir Geometry

The particular vortex source described and used in Chapter 7 was intended for investi-

gation into commensurability effects in the channel. The requirement was to minimise

the number of defects arising from the source by choosing a geometry aligned with the

channel. For the study of grain boundary scars we propose a new geometry that produces

vortices in the reservoir with rows tilted at π/6 to the normal orientation of the rows in

the channel and CE vortices. This reservoir geometry is described as the wedge geometry,

Fig. 8.2.

The walls of the wedge bath are cut at an angle of ±π/6 and the lattice vectors for

the CE particles surrounding the bath are also tilted. This system can be etched in a

aNb3Ge/Nb bilayer.

A possible physical realisation of the tilted geometry can be found in the work of

Plourde et al.[25] where thin amorphous MoGe superconductors have been etched with

mesoscopic octagonal surface trenches and imaged with SSM, Fig. 8.3. In this system, no
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8.2. PRODUCTION OF CIRCULAR GRAIN BOUNDARY ‘BUBBLES’
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Figure 8.2: Bath with wedge geometry defined by channel edges at ±π/6.

drive is applied to the vortices but we can see that vortices aligning themselves with the

edge of the channel creating an arrangement of vortices that mimic the CE construction

of the wedge bath.

8.2 Production of Circular Grain Boundary ‘Bub-

bles’

Unlike with the bulk dislocation mechanism, described in Chapter 7, the flow in the

wider channel does not demonstrate peridocity. Instead, the constructed reservoir leads

to a mis-orientated lattice entering the channel intermittently. Observations show that

the grain boundary bubbles exist, travel, dissolve, and then reappear. Inspection of the

average lattice parameter along the length of the channel, indicates that the bubble does

not differ in density compared to systems where it is not present, Fig. 8.4.

In Irvine’s work[24] the bubble is created by slowly twisting the trapped section of

lattice and monitoring the dislocation creation - with a maxima expected, and observed at

169



8.2. PRODUCTION OF CIRCULAR GRAIN BOUNDARY ‘BUBBLES’

Figure 8.3: 60 nm deep trench in 200nm thick aMoGe. The vortices align with the edges
of the trench. Figure from Ref[25].

π/6. However, continuing to π/3, where the lattice is now perfectly orientated, there are

residual dislocations, which are slow to relax on the timescales that the system is observed

on. In the density driven channel system we do not tune the angle of the region inside

the bubble - hence we need to measure this once a bubble is isolated1 with a simulation.

Sample results are shown in Figs. 8.5, 8.6 and 8.8 - we observe that, for bubbles to

travel along the channel the bubble lattice, is orientated at ≈ π/9. Shorter lived bubbles

also exist, and they are characterised by π/36, corresponding to a low-angle grain bound-

ary. We will concentrate on the longer-lived high angle grain boundary bubbles(HAB).

Visual inspection of the high-angle grain boundary bubbles (HAB) shows that in

comparison to the work of Irvine, the bubbles are elongated along the channel, with the

overall “size” changing as the HAB moves down the channel and eventually dissipates.

What should we measure to determine the “size”? We currently track,

1The routine to determine the bubble relies upon techniques from image processing, and is discussed
in Appendix K.
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8.2. PRODUCTION OF CIRCULAR GRAIN BOUNDARY ‘BUBBLES’

Figure 8.4: Plot of length nearest neighbour lines between vortices a with a HAB (seeFig.
8.6), b free from bubbles. c Shows the difference between the two (abub(x)− a(x))/a0.
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8.2. PRODUCTION OF CIRCULAR GRAIN BOUNDARY ‘BUBBLES’

Figure 8.5: a Shows the average angle of rotation in the lattice parameter to the hori-
zontal. The low angle bubble is rotated at an angle of ∼ 6deg. b Shows the dislocations
belonging the bubble as a connected path. The population of dislocations in the grain
boundary is low due to the small rotation angle. Here dislocations are distinct and sep-
arated by D � b(where b is the magnitude of the Burgers vector). Colour is used to
indicate angle of rotation of the lattice parameters away from the CE orientation.
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8.2. PRODUCTION OF CIRCULAR GRAIN BOUNDARY ‘BUBBLES’

Figure 8.6: a Shows the average angle of rotation in the lattice parameter to the hori-
zontal. The high angle bubble is rotated at an angle of ∼ 22deg. b Shows the dislocations
belonging the the bubble as a connected path. The population of dislocations in the grain
boundary is high due to the high rotation angle. In this regime dislocation separation
D < b(where b is the magnitude of the Burgers vector). Colour is used to indicate angle
of rotation of the lattice parameters away from the CE orientation.
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8.3. DISLOCATION AND ‘BUBBLE’ INTERACTION

1. The number of vortices in the HAB, naHAB
v

2. The number of vortices on the boundary npHAB
v

3. The number of dislocations on the boundary

If we consider the number of dislocations on the boundary, this indicates that there

is a roughness to the boundary - which has been identified as an interesting phenomena,

but has not yet been fully analysed.

The results in Chapter 7 were remarkable for their periodicity, and controlled stable

population of bulk dislocations. What has happened to these dislocations in this new

system? The reservoirs are set such that for our previous mechanism, we would expect

three bulk dislocations for the required row drops. With the bubbles present, “rows”

will require a more robust count, which can be performed at selected points along the

channel. We choose to look for the shortest trajectory that enables one to cross the

channel, starting from a given x-position. Sample results can be seen in Figs. 8.7 and

8.8, for the same channel at time steps with and without the bubble present.

8.3 Dislocation and ‘Bubble’ Interaction

Empirical evidence indicates that the HAB alters the x-positions at which the bulk dislo-

cations would choose to be localised, and in fact it is possible that the bulk dislocations

choose to travel along the grain boundary. The persistence and details of this effect,

is currently being quantified. Fig. 8.9 shows a sequence of images as a bubble passes

a bulk dislocation glide plane. As the bubble passes the bulk dislocation located at xd

the dislocation becomes part of the bubble grain boundary. This configuration lowers

stress by confining dislocations to grain boundaries. The addition of the bulk dislocation

increases the total Burgers vector of the bubble by the Burgers vector of the bulk dislo-

cation, b. Since this is a high angle grain boundary the location of the bulk dislocation

is no longer distinct and cannot easily be found. Interestingly the dislocations emerge

from the trailing edge of the bubble ∼ 10a0 before its initial glide plane (i.e. smaller x).
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8.3. DISLOCATION AND ‘BUBBLE’ INTERACTION

Figure 8.7: a Shows the row count in the channel. The channel transitions from 21 down
to 18 rows mediated by oscillating dislocations. b Shows the locations of the dislocations
in the channel. Colour is used to indicate angle of rotation of the lattice parameters away
from the CE orientation.
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8.3. DISLOCATION AND ‘BUBBLE’ INTERACTION

Figure 8.8: a Shows the row count in the channel. The channel transitions from 21 down
to 18 rows mediated by oscillating dislocations. The row drop across the bubble is 0. b
Shows the locations of the oscillating dislocations in the channel and a HAB. Colour is
used to indicate angle of rotation of the lattice parameters away from the CE orientation.
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8.4. TWIN GRAIN BOUNDARIES

Indicating the density is in a transient regime after the bubble passes. Local relaxation

takes approximately 3 000 time steps, at which time the oscillating dislocation returns

to its original position in the channel. The dislocation then remains in its steady state

position until another bubble passes, then the process repeats.

8.4 Twin Grain Boundaries

The use of artificial bubbles created by a rotation similar to Irvine’s work, can also be used

to demonstrate the relationship between twin grain boundaries in the cylindrical geometry

and circular grain boundaries in the channel geometry. Fig. 8.10 shows snap shots taken

from a channel simulation containing an artificial bubble. The geometry is then modified

to wrap the channel periodically in the y−direction. Random thermal fluctuations of the

grain boundary causes the bubble to notice it is wrapped on the cylindrical geometry and

as such is able to find a new configurational state where the bubble joins up to itself in the

y−direction. The structure is now a twin grain boundary. The result of this procedure

is a steady state twin grain boundary that flows down the channel (without collapsing)

at the same speed as the underlying vortices.

If instead we start from a twin grain boundary in a cylindrical geometry and then

unwrap and place in the channel bounded by pinned vortices, Fig. 8.11, immediately a

layer of dislocations appear along the CE creating a “square” bubble. This configuration

is unstable and a boundary layer quickly opens up between the bubble and the CE as the

bubble transitions into a more circular shape.

These preliminary results indicate that novel phenomena exist in this geometry - and

are a potential future research area.
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8.4. TWIN GRAIN BOUNDARIES

Figure 8.9: Sequence of frames from a simulation with a wedge bath geometry. Initially
the channel contains only ODs, a bubble then passes through changing the position of
the ODs. The ODs return to their usual location after the bubble has passed.
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8.4. TWIN GRAIN BOUNDARIES

Figure 8.10: A channel containing a bubble is wrapped periodically in the y−direction.
The bubble is seen to transition into a stable twin grain boundary that flows down the
cylinder and remains steady for the entire length of the channel.
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8.4. TWIN GRAIN BOUNDARIES

Figure 8.11: A stable twin grain boundary from a cylindrical simulation is placed into
a channel geometry with pinned vortices defining the CE. The twin grain boundary
transitions into a square bubble then into the standard circular grain with slowly collapses
as it flows down the channel. 180



Chapter 9

CONCLUSIONS

In conclusion, we have reported a novel set of results by undertaking not previously

considered investigations into the structure and rheology of vortex matter in thin channel

superconductors. Our key results are that

• We show a breakdown of wall-slip in sheared wall experiments in the vortex liquid

phase.

• We find ordering of the liquid phase above T bulkm in regions near the channel edges

in static and sheared channel simulations.

• We present a novel field gradient applied to a thin channel geometry that allows the

incommensurate vortex matter to remain commensurate along the entire length of

the channel, minimising the presence of random defects, via two distinct populations

of dislocations.

• We find a defect sink mechanism that cleans the channel of extraneous defects

leaving a mostly 6-fold coordinated plastic in the remainder of the channel. This

mechanism has potential applications in the aerospace industry.

• Finally we demonstrate a novel vortex reservoir that enable the continuous produc-

tion of circular grain boundary bubbles.

In the liquid phase we have shown that the continuum solution to Couette flow does

not fully capture the rheology of the vortex lattice even in channel widths w � a0.
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The origin of this is likely to be either the drag forces that prevent the wall imparting

momentum to the vortices at high shear rates or viscoelastic effects. From trajectory and

structure factor measurements we have found that the boundary layer structure displays

6-fold symmetry above the melting temperature for the bulk T bulkm . This aspect requires

further investigation, but may contribute to the wall slip seen at high shear rates. From

oscillating wall simulations we have probed a non linear viscosity η = η0 + η1dv/dy and

found no evidence of higher order terms, above η0.

We have presented a novel vortex matter simulation where we imposed a magnetic

field gradient through the use of a vortex source and sink. This system finds a non-

equilibrium steady state where two distinct populations of dislocations are present in the

system. First a population of oscillating dislocations are present in the channel, spaced

out at distances that relax stresses along the channel. The longitudinal positions of these

oscillating dislocations in the channel remains stable throughout the simulations. These

dislocations travel via glide motion along the planes of the triangular vortex matter, tilted

at π/3 to the horizontal. The second population of geometrically necessary dislocations

are confined to the boundary between the moving vortex matter and the pinned channel

edges. Their role is the relaxation of shear stress at boundary. The displacement profiles

of the oscillating dislocations have been shown to be linear across the width of the channel

except in upon approach to the channel edges. Here image forces provide the source of the

non-linear trajectories. That this is a boundary effect was demonstrated through the use

of simulations in a cylindrical geometry which removes the channel edges completely and

wraps the channel onto the surface of the cylindrical system. In this geometry we show

the oscillating dislocations proceed on a purely linear trajectory in the absence of the

channel edges, proving that the non-linearity near the boundaries is indeed a boundary

effect.

We have demonstrated the mechanism by which the vortex lattice remains commen-

surate with the channel width throughout the entire length of the channel, in spite of

the lack of a commensurate relationship between the B-field and the channel width. It

achieves this through the use of two populations of dislocations that relax density and
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shear stresses along the channel. This surprising result is achieved through stretching of

the lattice parameters parallel to the channel edge allowing a continuous decrease in den-

sity whilst retaining a fixed row width in sections of the channel. These effects minimise

the density of dislocations in the channel and allow the system to remain almost perfectly

6-fold coordinate throughout the channel. Deviating from this only at the core of the

small population of oscillating dislocation. This is perhaps striking given the change in

density along the channel is around a factor of two.

We also demonstrated a defect sink mechanism. Where, through dislocation reactions

this first oscillating dislocation ‘collects’ defects that arise from the source reservoir al-

lowing the remainder of the channel to be free from extraneous defects. Conversations

with Dr. Basoalto[126] suggest further investigation as to whether this mechanism could

be deployed in real materials (e.g. titanium) to remove defects.

Finally, using the same field gradient system but changing the structure of the vortex

reservoirs to a wedge geometry, we were able to produce circular grains of vortex matter

tilted at ∼ π/6 to the remainder of the vortices in the channel. The lattice parameters

across these tilted grains also shows an asymmetry in the lattice parameters. Here the

perpendicular lattice parameters remain fixed across the bubble, whilst stretch is taken

up by the lattice parameters tilted at ∼ π/6 to the channel edge.

In summary, we have shown that the superconducting vortex lattice is a versatile

laboratory for investigation into dislocation dynamics, both for isolated dislocations and

for the more complex dislocation arrangements as grain boundaries. The vortex liquid

deserves further investigation but through the use of simulations we have demonstrated

wall slip at the boundary for high shear rates, making this an interesting area for further

study. Analogies with colloidal and biological systems are strong and further work would

hope to replicate these results for both these scenarios.
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Appendix A

SYMBOLS

Symbol Description

a0 Lattice parameter for triangular lattice, corresponding to B0

ac(x) Lattice parameter from force balance calculation in channel geom-

etry

al(x) Vortex liquid average vortex separation in channel geometry

ap(x) Plastic phase lattice parameter in channel geometry

Ap Amplitude of random pinning sites

b Burgers vector

b0 Row spacing for a the triangular lattice with field B0

b̃ B/Bc2 Dimensionless penetrating field

B Magnitude of magnetic induction or flux denisty

B Magnetic induction or flux density

B0 Flux density of channel edge vortices B0 = 0.25T

B̂ Unit vector in direction of B-field
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Symbol Description

c Velocity of light

c11 Compression (Bulk) modulus

c44 Tilt modulus

c66 Shear modulus

cL Lindemann parameter

cjklm Elastic modulus tensor from elastic theory

ds Thickness of superconductor

Ds Spacing between dislocations in a symmetric low-angle grain bound-

ary

e Charge of the electron

Ef Point defect formation energy

Eg Energy required to break a Cooper pair

f0 Scale of vortex-vortex force interactions f0 = 1

fvv Magnitude of force between vortices

Fvv Force between vortices

FL Lorentz force vector

Fp Random pinning sites force vector
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h Plank constant

H Magnetic field

Hc Critical applied magnetic field for type I superconductor

Hc1 Lower applied critical field for type II superconductor

Hc2 Upper applied critical field for type II superconductor

jc Critical current for the onset of flux creep

jt Crystallisation current in flux pinning

Js Supercurrent due to superconducting electrons

kB Boltzmann constant kB = 1

Kn Modified Bessel function of second kind

Lc Longitudinal coherence length of the flux line

me Mass of the electron

M Magnetisation

nl Number of planes ending in dislocations

np Number of point defects

nr Number of rows of vortices in channel geometry
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ns Number density of superconducting electrons

nv Number density of vortices

Nd Number density of defects from Delaunay triangulation

N Normal distribution N (0, 1)

p Probability of a particle receiving a thermal kick

rpcut Polynomial potential cut-off range

rcut Bessel function potential cut-off range

Rp Range of random pinning sites

s Layer separation in HTSC

Tc Critical transition temperature for a type I superconductor

T 2D
m 2D melting temperature of vortex lattice

TBKT BKT temperature of vortex lattice

TFDT
m Vortex lattice melting temperature from fluctuation dissipation the-

ory

T bulkm Melting temperature in channel from simulations

u Displacement in elastic theory

u, v, w Components of displacement in elastic theory

< u2(Tm) >th Thermal average of mean square displacements of vortex lattice

from equilibrium positions

Uvv Interaction energy of vortices

vx, vy, vz Velocity in x, y, z directions

vzig Velocity of oscillating dislocations in channel geometry
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Symbol Description

γ Drag

γ Shear strain

γ̇ Shear rate

γ̇c Critical shear rate for non-Newtonian viscoelasticity

δ Boundary layer thickness

∆ Time step size in simulations

∆ud Burgers vector distribution

εij Strain tensor from elastic theory

η Dynamic Viscosity

κ Ginzburg-Landau parameter

λ London penetration depth

µ0 Permeability of free space

ν Collision rate in the Andersen thermostat

ν Poisson ratio

ξ Ginzburg-Landau Coherence length
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Symbol Description

ξ̂ Direction of dislocation line

ρn Normal state resistivity

ρ Density of vortices

ρ(x) Denisty from force balance calculation in channel geometry

ρg Density of GNDs in channel geometry

σij Stress tensor from elastic theory

τ Average time between thermal kicks

τ Shear stress

τfkl Frenkel’s shear stress

τmac Mackenzie’s shear stress

τpn Peierls-Nabarro stress

Φ0 Flux quantum

ψ Order parameter for superconducting electron wavefunction

ΨT Translational order parameter

ΨH Hexatic order parameter
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Appendix B

LONDON EQUATIONS

A perfect conductor (ie n conductors moving without collision)

J = −ne∗v (B.1)

In the presence of an electric field, Newton’s second law gives

m∗v̇ = −e∗E→ J̇ =
ne2

m∗
E (B.2)

Using the Maxwell equation

∇× E = −Ḃ (B.3)

and the above equation for J we get

∇× J̇s = −nse
∗2

m∗
Ḃ (B.4)

And using Maxwell’s

∇×B = µ0J (B.5)
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we now have three equations

J̇s =
nse
∗2

m∗
E ∇× J̇s = −nse

∗2

m∗
Ḃ ∇×B = µ0Js (B.6)

We can then substitute the time derivative of equation (3) into (2) to give

∇×∇× Ḃ = −nsµ0e
∗2

m∗
Ḃ (B.7)

Using a vector identity we have

∇(∇ · Ḃ)−∇2Ḃ = −nsµ0e
∗2

m∗
Ḃ (B.8)

Which gives

∇2Ḃ =
1

λ2
Ḃ (B.9)

where
1

λ2
=
nsµ0e

∗2

m∗
(B.10)

This does not predicted field expulsion. It predicts field lock in. To get an equation

that predicts the correct behaviour we remove the time dependence from Eq. (B.6) to

give

∇× Js = −nse
∗2

m∗
B (B.11)

following the same steps through again we find

∇2B =
1

λ2
B (B.12)

where
1

λ2
=
nsµ0e

∗2

m∗
(B.13)
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This result originally found by the London brothers gives a phenomenological descrip-

tion of the Meissner effect. The London Equations are therefore

J̇s =
nse
∗2

m∗
E ∇× Js = −nse

∗2

m∗
B (B.14)
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Appendix C

FLUX QUANTISATION FOR G-L THEORY

London introduced the concept of the fluxoid Φ′ associated with each hole or normal

region passing through a superconductor.[7]

His definition was

Φ′ = Φ +

(
4π

c

)∮
λ2Js.ds = Φ +

(
m∗c

e∗

)∮
vs.ds (C.1)

where Φ =
∫

h.dS =
∮

A.ds is the ordinary magnetic flux through the integration

circuit. From Eq. (C.1) we can see that any circuit not containing a hole will result in

Φ′ = 0.

We can quantise this equation by applying the the Bohr-Sommerfeld quantisation

condition[7]

∮
p.dq = nh (C.2)

Φ′ =
c

e∗

∮ (
m∗vs +

e∗A

c

)
· ds =

c

e∗

∮
p.ds = nh

c

e∗
= nΦ0 (C.3)

London was not aware of the Cooper pairs so they believed e∗ = e and m∗ = me. However

the actual values are e∗ = 2e and m∗ = 2me.
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Φ0 =
h

2e
= 2.067× 10−15Wb (C.4)

Note: Wb = KgM2

Cs
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Appendix D

B-FIELD SURROUNDING A VORTEX FROM

THE LONDON EQUATIONS

The superconducting flux line vortex is modelled in two parts. Outside the core of size

ξ, the field is represented by the Landau Equation

µ0λ
2∇× Js + B = 0 (D.1)

Including the core, which carries a flux quantum of Φ0 = h
2e

as a delta function, gives

µ0λ
2∇× Js + B = Φ0δ

2(r)k̂ (D.2)

Following the London brothers approach for relating the magnetic field to current

∇×B = µ0Js ⇒ Js =
∇×B

µ0

(D.3)

⇒ λ2∇×∇×B + B = Φ0δ
2(r)k̂ (D.4)
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Now using the identity

∇×∇×B = ∇(∇ ·B)−∇2B = −∇2B (D.5)

and since ∇ ·B = 0 (i.e. Maxwell’s Equation for no monopoles.)

beginequation0.5cm] Eq. (D.4) now becomes

∇2B− 1

λ2
B = −Φ0

λ2
δ2(r)k̂ (D.6)

A vortex tube is assumed to be cylindrically symmetric so, B = B(r)k̂ and writing ∇2

in cylindrical polars gives

k̂

r

(
d

dr
r
d

dr
B(r)

)
− B(r)

λ2
k̂ = −Φ0

λ2
δ2(r)k̂ (D.7)

Away from the core, r > 0, the k̂ component is

1

r

d

dr
r
dB(r)

dr
− B(r)

λ2
= 0 (D.8)

⇒ d2B(r)

dr2
+

1

r

dB(r)

dr
−
(

1

λ2

)
B(r) = 0 (D.9)

The solution to an equation of this form is a modified Bessel’s function

B = a1J0

(
−i r
λ

)
+ a2Y0

(
−i r
λ

)
= C1I0

( r
λ

)
+ C2K0

( r
λ

)
(D.10)

where I0 and K0 are modified Bessels functions of the first and second kinds respec-

tively.

Since I0(∞)→∞, C1 = 0 for convergence. Therefore
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B(r) = C2K0

( r
λ

)
= C2

∫ ∞
0

exp
(
− r
λ

cosh t
)
dt (D.11)

From the asymptotics

K0(x) ≈

 − lnx x→ 0√
π
2x
e−x x→∞

(D.12)

with C2 = Φ0

2πλ2
.

Therefore the magnetic field away from the core due to a single vortex is found to be

B(r) =
Φ0

2πλ2
K0

( r
λ

)
=

Φ0

2πλ2

∫ ∞
0

exp
(
− r
λ

cosh t
)
dtk̂ (D.13)

197



Appendix E

ORDER PARAMETERS

The order parameters to determine melting temperatures are implemented using Mathe-

matica.

1 Angle[c1_ , c2_] := (x = c2 [[1]] - c1 [[1]];

2 y = c2 [[2]] - c1 [[2]];

3 ArcTan[x, y])

4
5 nnDistance[i_, j_, set_] := Norm[set[[i]] - set[[j]]]

6
7 RemoveLongDistanceNN[nnlist_ , set_] := (newnnlist = {};

8 Do[i = nnlist [[n, 1]];

9 j = nnlist [[n, 2]];

10 thislist =

11 DeleteCases[If[nnDistance[i, #, set] < 4.0, #, Null] & /@ j,

12 Null];

13 newnnlist = Append[newnnlist , {i, thislist}], {n, 1,

14 Length[nnlist ]}];

15 newnnlist );

16
17 HexaticOP[set_] := (

18 thisset = DeleteDuplicates[set];

19 nnlist = DelaunayMesh[thisset ]["VertexVertexConnectivity"];

20 nnlist = Table[{n, nnlist [[n]]}, {n, 1, Length[nnlist ]}];

21 (* Print[nnlist ];

22 nnlist=DelaunayTriangulation[thisset ];

23 Print[nnlist ];*)

24 nnlist = RemoveLongDistanceNN[nnlist , thisset ];

25
26 jSum = Sum[kSum = Sum[jindex = nnlist [[j]][[1]];

27 kindex = nnlist [[j]][[2]][[k]];

28 pj = thisset [[ jindex ]];

29 pk = thisset [[ kindex ]];

30 Exp[I*6* Angle[pj , pk]], {k, 1, Length[nnlist [[j]][[2]]]}];

31 kSum = kSum/Length[nnlist [[j]][[2]]] , {j, 1, Length[nnlist ]}];
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32 jSum = jSum/Length[nnlist ];

33 ans = Abs[jSum ]^2;

34 If[NumberQ[ans], ans , -1]

35 );

1 NdCount[frame_ , xl_ , xh_ , yl_ , yh_] :=

2 (

3 subset =

4 DeleteCases[

5 If [#[[1]] > xl && #[[1]] < xh && #[[2]] > yl && #[[2]] < yh , #,

6 False] & /@ frame , False ];

7 NTotal = Length[subset ];

8
9 NdList =

10 DeleteCases[If[Round [#[[3]]] != 6, #, False] & /@ subset , False ];

11 Nd = Length[NdList ];

12 {NTotal , Nd, Nd/NTotal}

13
14 );
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Appendix F

SIZE OF TIME STEP

The time step of the simulation is chosen to ensure the majority of displacements in

the simulation are � a0. The size of displacements depends on the size of deterministic

forces but mostly on the temperature of the simulation. In the solid phase we perform

simulations at T = 0.0025. For the liquid state, the maximum temperature we will use

is T = 0.05. We must explore how the displacements at these values depend of the size

of the time step. In general the displacement are

< |dx| >=
√
A
√

∆t (F.1)

From this we can see that reducing ∆T to ∆T/100 gives a change in < |dx| > of 1/10.

For T = 0.0025 and 0.05 we use values of ∆t = 0.01 and ∆t = 0.0001.

The thermostat provides each particle a thermal kick with a probability p = ∆/τ .

To understand how size of these kicks are distribution we look at the aspects of the

cumulative distribution function and the moments. Table F gives a breakdown of results

from these measures. Two temperatures were chosen and two values of ∆. We require

the displacements in any given timestep be � a0. We choose a maximum preferred

displacement of a0/50. With this value we can calculate the probability that a particle

will receive a kick larger than a0/50, P (dx > a0/50). For all cases this is < 1%.
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(a) Full distribution (b) Enlarged distribution.

Figure F.1: Cumulative probability distribution for dx. T = 0.0025, ∆ = 0.0001.

(a) Full distribution (b) Enlarged distribution.

Figure F.2: Cumulative probability distribution for dx. T = 0.05, ∆ = 0.0001.

time steps=10 000 N=1000 P(dx> a0/50) M2 = 2TkB/η Max(dx)

T = 0.0025 ∆ = 0.0001 0.0000437299 0.00497406 0.329977

T = 0.05 ∆ = 0.0001 0.00528661 0.100641 0.13382

T = 0.0025 ∆ = 0.01 0.00777666 0.00507433 0.34063

T = 0.05 ∆ = 0.01 0.0128923 0.102503 2.0814

201



(a) Full distribution (b) Enlarged distribution.

Figure F.3: Cumulative probability distribution for dx. T = 0.0025, ∆ = 0.01.

(a) Full distribution (b) Enlarged distribution.

Figure F.4: Cumulative probability distribution for dx. T = 0.05, ∆ = 0.01.
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Appendix G

MOMENTS OF THE FOKKER-PLANCK

EQUATION

The aim is to determine the form of the stochastic noise term in Eq. (5.12) if we require

the particle energies to obey Boltzmann statistics in equilibrium. To do this we can find

the Fokker-Planck equation[127] for Eq. (5.12). The Fokker-Planck (or Kolmogorov

forward) equation describes the time evolution of a probability distribution, in this case,

for the position of a particle at a time, t. We start with the probability of finding a

particle at x and time t if it were at x0 at time t0

P (x, t|x0, t0) = P (x, t− t0|x0). (G.1)

via the Kramers-Moyal expansion we can say that P obeys

∂P

∂t
=
∞∑
n=1

(−1)n

n!

∂n

∂nx
[MnP (x, t|x0)] (G.2)

where the moments are defined as

Mn =
1

τ

∫
ξnP (x+ ξ, τ |x)dξ. (G.3)

We need to connect Eq. (G.2) to Eq. (5.12). The method is to replace the moments
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Mn by the moments calculated from Eq. (5.12). We begin by assuming the stochastic

term is a Gaussian white noise function with

〈χi(t)〉 = 0 〈χi(t1)χj(t2)〉 = Aδ(t1 − t2)δ(i− k) (G.4)

The required moments from Eq. (5.12) are 〈δx〉 and 〈(δx)2〉.

The first moment is

〈δx〉 = 〈x(dt)− x0〉 (G.5)

=

〈∫ dt

0

v(t′)dt′
〉

=

∫ dt

0

〈v(t′)〉 dt′

=

∫ dt

0

〈
F

γ
+
χ(t′)

γ

〉
dt′

=

∫ dt

0

1

γ
〈F 〉+

1

γ
〈χ(t′)〉︸ ︷︷ ︸

= 0 by definition

dt′

〈δx〉 =
〈F 〉
γ

dt (G.6)

For the second moment
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〈
(δx)2〉 =

〈
(x(dt)− x0)2〉

=

〈(∫ dt

0

v(t′)dt′
)2
〉

=

∫ dt

0

∫ dt

0

dt1dt2

〈(
F

γ
+
χ(t1)

γ

)(
F

γ
+
χ(t2)

γ

)〉

=

∫ dt

0

∫ dt

0

dt1dt2


〈
F 2

γ2

〉
+

〈
Fχ(t1)

γ2

〉
︸ ︷︷ ︸

= 0

+

〈
Fχ(t2)

γ2

〉
︸ ︷︷ ︸

= 0

+

〈
χ(t1)χ(t2)

γ2

〉
︸ ︷︷ ︸

Aδ(t1−t2)


=

∫ dt

0

∫ dt

0

dt1dt2

(〈
F 2

γ2

〉
+ Aδ (t1 − t2)

)
=

〈
F 2

γ2

〉
dt2 +

∫ dt

0

dt1A

=
〈F 2〉
γ2

dt2 + Adt (G.7)

For small dt we find 〈
(δx)2〉 ≈ Adt (G.8)

Both the first and second moments can be used as a check in the simulation to ensure

the correct distribution is being sampled.

We are now positioned to replace the moments of the Fokker-Planck equation with

the moments calculated from the equation of motion. We have

M1 =
1

dt
〈δx〉 =

〈F 〉
γ

M2 =
1

dt

〈
(δx)2〉 = A (G.9)

We now substitute these into Eq. (G.2) and find

∂P

∂t
= − ∂

∂x

[
1

γ
FP (x, t|x0)

]
+

1

2

∂2

∂x2

[
AP (x, t|x0)

]
(G.10)
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Assume in thermal equilibrium we have the Boltzman distribution

P (x,∞|x0) ∝ e−βU(x) (G.11)

where we have used β = 1/kBT so that at t =∞,
∂p

∂t
= 0. Eq. (G.10) becomes

0 = − ∂

∂x

[
1

γ
F e−βU(x)

]
+

1

2

∂2

∂x2

[
Ae−βU(x)

]
= −1

γ

∂F

∂x
����
e−βU(x) +

1

γ
βF

∂U

∂x︸︷︷︸
=−F

����
e−βU(x) − 1

2
βA

∂2U

∂x2︸︷︷︸
=− ∂F

∂x

����
e−βU(x) +

1

2
β2A

∂U

∂x︸︷︷︸
=−F

����
e−βU(x)

= −1

γ

∂F

∂x
− 1

γ
βF 2 +

1

2
βA

∂F

∂x
− 1

2
β2AF

0 =

[
−1

γ
+

1

2
βA

]
∂F

∂x
+

[
−1

γ
β +

1

2
β2A

]
F 2

This is satisfied if

A =
2

βγ
or A =

2kBT

γ
(G.12)
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Appendix H

MELTING TEMPERATURE - FLUCTUATION

DISSIPATION THEORY

Calculation of the melting temperature Tm of the flux line lattice follows the approach

laid out by Brandt[10].

Assuming small fluctuations, we can write the positions of the flux lines in terms of

their in-plane displacements from the ideal lattice positions Ri = (X i, Y i, z) within linear

elastic theory as

ui(z) = ri(z)−Ri = (uix, u
i
y, 0) (H.1)

where i labels each particle and z is the coordinate in the ẑ direction.

Starting from the elastic free energy and considering an expansion to second order,

the elastic free energy in k-space is[10]

FE =
1

2

∫
BZ

d3k

8π3
uα(k)Φαβ(k)u∗β(k) (H.2)

where Φαβ(k) is the elastic matrix and α, β = x or y. Let each elastic mode of the

flux line lattice have energy 1
2
kBT . This gives
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1

2
〈uα(k)Φαβ(k)uβ(k)〉 =

1

2
kBT (H.3)

Inverting Φαβ(k) allows us to find

〈uα(k)uβ(k)〉 = kBT Φ−1
αβ(k) (H.4)

From Parseval’s Theorem the real space average 〈u2〉 is obtained by a sum over all

the reciprocal space modes. Letting V →∞ we have

〈u2〉 = 〈u2
x(k) + u2

y(k)〉 = kBT

∫
BZ

d2k⊥
4π2

∫ ∞
−∞

dkz
2π

[
Φ−1
xx (k) + Φ−1

yy (k)
]

(H.5)

Returning to the elastic matrix we need an expression for the elastic matrix in terms

of the compression, tilt and shear moduli - in compact notation referred to as c11, c44 and

c66 respectively. The general expression for isotropic films in the continuum limit is

Φαβ(k) = (c11 − c66)kαkβ + δαβ
[
(k2
x + k2

y)c66 + k2
zc44 + αL(k)

]
(H.6)

where the Labusch parameter αL is included to describe the interaction of the flux

lines with the material defects. Using the general expression, Eq. (H.6), we can generate

the matrix entries for Φxx and Φyy

Φxx(k) = c11k
2
x + c66k

2
y + c44k

2
z + αL(k) (H.7)

Φyy(k) = c11k
2
y + c66k

2
x + c44k

2
z + αL(k) (H.8)

Φxy(k) = (c11 − c66)kxky (H.9)
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We need the inverse of Φαβ =

Φxx(k) Φxy(k)

Φxy(k) Φyy(k)



Φ−1
αβ(k) =

1

Φxx(k)Φyy(k)− Φ2
xy(k)

 Φyy(k) −Φxy(k)

−Φxy(k) Φxx(k)

 (H.10)

This gives

Φ−1
xx (k) =

Φyy(k)

Φxx(k)Φyy(k)− Φ2
xy(k)

Φ−1
yy (k) =

Φxx(k)

Φxx(k)Φyy(k)− Φ2
xy(k)

(H.11)

Substituting the pair of equations Eq. (H.11) into the expression for 〈u2〉

〈u2〉 = kBT

∫
BZ

d2k⊥
4π2

∫ ∞
−∞

dkz
2π

Φxx(k) + Φyy(k)

Φxx(k)Φyy(k)− Φ2
xy(k)

(H.12)

now using the expressions for equations Eqs. (H.7 - H.9) we find

〈u2〉 = kBT

∫
BZ

d2k⊥
4π2

∫ ∞
−∞

dkz
2π

c11k
2
⊥ + c66k

2
⊥ + 2c44k

2
z + αL(k)(

c11k2
x + c66k2

y + c44k2
z + αL(k)

) (
c11k2

y + c66k2
x + c44k2

z + αL(k)
)
− (c11 − c66)2 k2

xk
2
y

(H.13)

This can be rearranged into a simpler form (see Appendix I), the result is shown below

〈u2〉 = kBT

∫
BZ

d2k⊥
4π2

∫ ∞
−∞

dkz
2π

[
1

c66k2
⊥ + c44k2

z + αL(k)
+

1

c11k2
⊥ + c44k2

z + αL(k)

]
(H.14)

The integrand is symmetric in kz so we pick up a factor of 2 and change the kz limits

from 0 to ∞.
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〈u2〉 = kBT

∫
BZ

d2k⊥
4π2

∫ ∞
0

dkz
π

[
1

c66k2
⊥ + c44k2

z + αL(k)
+

1

c11k2
⊥ + c44k2

z + αL(k)

]
(H.15)

In the continuum limit the hexagonal brillouin zone is replaced by a circle of radius

kBZ = (4πB/Φ0)1/2 so we let

∫
BZ

d2k⊥ →
∫ kBZ

0

dk⊥k⊥

∫ 2π

0

dkθ (H.16)

In the integrand there is no dependence on kθ as only k2
⊥ appears for the in plane

variables. This means we can evaluate the kθ integral as
∫ 2π

0
dkθ = 2π which leaves us

with

〈u2〉 =
kBT

2π2

∫ kBZ

0

dk⊥k⊥

∫ ∞
0

dkz

[
1

c66k2
⊥ + c44k2

z + αL(k)
+

1

c11k2
⊥ + c44k2

z + αL(k)

]
(H.17)

Since c11 � c66 the second term is small in comparison with the first, leaving

〈u2〉 ≈ kBT

2π2

∫ kBZ

0

dk⊥k⊥

∫ ∞
0

dkz

[
1

c66k2
⊥ + c44k2

z + αL(k)

]
(H.18)

Letting kz have a maximum value of 2π and performing the kz integral gives us

〈u2〉 ≈ kBT

π

∫ kBZ

0

dk⊥k⊥

[
1

c66k2
⊥ + c44k2

z + αL(k)

]
(H.19)

For all of the simulations considered in this work c44 = 0 and αL(k) = 0. This reduces

to

〈u2〉 ≈ kBT

c66π

∫ kBZ

0

dk⊥
k⊥

(H.20)
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In order to integrate this we must introduce upper and lower cutoffs on the BZ. We

use π/L < k⊥ < π/a0 which gives

〈u2〉 ≈ kBT

c66π

[
dk⊥
k⊥

]π/a0
π/L

=
kBT

πc66

ln

(
L

a0

)
(H.21)

Using the phenomenological Lindemann criteria, that melting occurs when vibrations

are on the order of u ∼ cla0, allows us to replace 〈u2〉 with (cLa0)2. The Lindemann

parameter usually lies within a range cL ∼ 0.1 − 0.2, we set cL = 0.2 in line with

previous work by other groups[128]. Rearranging for T gives an estimate of the melting

temperature.

Tm ≈
c66π(cLa0)2

kB ln(L/a0)
(H.22)

The same equation is used by Spencer et al.[19] for their simulations of the vortex

lattice. The value of c66 can be determined from Brandt’s[10] expression

c66 ≈
Bφ0

16πλ2µ0

(
1− 1

2κ2

)
(1− b2)(1− 0.58b+ 0.29b2) (H.23)

where b̃ = B/Bc2. In the London limit b � 1 and κ � 1 so we can use the k

independent shear modulus

c66 ≈
Bφ0

16πλ2µ0

(H.24)

This leaves c66 proportional to B and 1/λ2. We see the effect of reducing λ is to stiffen

the lattice and increase the melting temperature.
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Appendix I

SIMPLIFYING THE ELASTIC MODULI

EXPRESSION

The expression from Eq. (H.13) can be simplified. We start with the integrand

c11k
2
⊥ + c66k

2
⊥ + 2c44k

2
z + 2αL(k)(

c11k2
x + c66k2

y + c44k2
z + αL(k)

) (
c11k2

y + c66k2
x + c44k2

z + αL(k)
)
− (c11 − c66) k2

xk
2
y

.

Consider first the expansion of the denominator

c2
11k

2
xk

2
y + c11c66k

4
x + c11c44k

2
xk

2
z + c66c11k

4
y + c2

66k
2
yk

2
x + c66c44k

2
yk

2
z + c44c11k

2
zk

2
y

+ c44c66k
2
zk

2
x + c2

44k
4
z − c2

11k
2
xk

2
y − c2

66k
2
xk

2
y + 2c11c66k

2
xk

2
y

+ αL(k)
(
c11k

2
y + c66k

2
x + c11k

2
x + c66k

2
y + 2c44k

2
z

)
+ α2

L(k)

= c11c66

[
k4
x + k4

y + k2
xk

2
y

]
+ c11c44

[
k2
xk

2
z + k2

yk
2
z

]
+ c44c66

[
k2
xk

2
z + k2

yk
2
z

]
+ c2

44k
4
z

+ αL(k)
(
c11k

2
y + c66k

2
x + c11k

2
x + c66k

2
y + 2c44k

2
z

)
+ α2

L(k)

Let k2
⊥ = k2

x + k2
y
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Reintroducing the numerator

c11k
2
⊥ + c66k

2
⊥ + 2c44k

2
z + 2αL(k)

c11c66k4
⊥ + c44c66k2

⊥k
2
z + c11c44k2

zk
2
⊥ + c2

44k
4
z + αL(k) (c11k2

⊥ + c66k2
⊥ + 2c44k2

z) + α2
L(k)

=
c11k

2
⊥ + c66k

2
⊥ + 2c44k

2
z + 2αL(k)

(c66k2
⊥ + c44k2

z + +αL(k)) (c11k2
⊥ + c44k2

z + αL(k))

=
1

(c66k2
⊥ + c44k2

z + +αL(k))
+

1

(c11k2
⊥ + c44k2

z + αL(k))

as required.
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Appendix J

LOCAL BURGERS VECTOR CALCULATION

A Mathematica implementation of the Burgers vector calculution is given in the code

block below. It requires a support function that finds the closest particle to a given

point.

1
2 calculateBurgersCircuit[lattice_ , r0_ , moves_] := (

3 burgerslist = {lattice [[ findclosestatom[lattice , r0]]]};

4
5 Do[

6 burgerslist =

7 Append[burgerslist ,

8 lattice [[

9 findclosestatom[lattice ,

10 burgerslist [[ Length[burgerslist ]]] + moves [[i]] ]]]]

11
12
13 , {i, 1, Length[moves ]}];

14 burgersVector =

15 burgerslist [[ Length[burgerslist ]]] - burgerslist [[1]];

16 \[Theta]effective =

17 ArcTan[burgersVector [[2]]/ burgersVector [[1]]]/\[ Pi ]*180;

18 {burgerslist , \[Theta]effective , {burgerslist [[

19 Length[burgerslist ]]], burgerslist [[1]]} });

20
21 findclosestatom[lattice , pos] := (j = 0;

22 Do[

23 ds2 = (pos [[1]] - lattice [[i, 1]])*( pos [[1]] -

24 lattice [[i, 1]]) + (pos [[2]] - lattice [[i, 2]])*( pos [[2]] -

25 lattice [[i, 2]]);

26 If[i == 1,

27 (smallest = ds2; j = i),

28 If [smallest > ds2 , (smallest = ds2; j = i)]

29 ];
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30 , {i, 1, Length[lattice ]}]; j);

To use this function we must specify the reference circuit in terms of moves on the

perfect lattice. These are specified as jumps in terms of lattice vectors. It also requires a

starting point for the circuit. The following sets up these conditions and runs the code.

The result is a set of coordinates marking the points on the Burgers circuit as well as the

angle of the Burgers vector to the horizontal and the Burgers vector itself.

1 (* lattice vectors *)

2 e1 = {1, 0};

3 e2 = {-Cos[Pi/3], Sin[Pi /3]};

4
5 (* Moves for burgers circuit *)

6 v = {e1 , e1 , e1, e1, e1,

7 e1, -e2, -e2, -e2, -e2, -e1, -e1, -e1, -e1, -e1, -e1, -e1, -e1, e2,

8 e2 , e2 , e2 , e1 , e1};

9 (* Nelson ’s convention for the burgers circuit *)

10 (*v=Reverse[-v]; *)

11 \

12
13 (* starting point form burgers circuit *)

14 bvstart = {27, 5.5};

15
16 r0 = full[[ findclosestatom[full , r0 = bvstart ]]];

17
18 {burgersCircuit , \[Theta]effective , burgersVector} =

19 calculateBurgersCircuit[full , r0 , v];
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Appendix K

BUBBLE ANALYSIS ROUTINES

Finding the bubble and analysis

1
2 cluste[data6_ , data5_ , data7_] :=

3 Block [{}, ftmp = data5;

4 ftmp[[All , 1]] += -Mean[data5 /. {a_ , b_} -> a];

5 ftmp[[All , 2]] += -Mean[data5 /. {a_ , b_} -> b];

6 data1 = ftmp /. {a_, b_} -> Sqrt[a^2 + b^2];

7 clust = FindClusters[data1 -> Range[Length[data1 ]]];

8 c50 = Extract[data5 ,

9 Map[k, Extract[clust , Ordering[Map[Length , clust], -1]]] /.

10 k[a_] -> {a}];

11 gt[ld_] :=

12 Union[Flatten[

13 Table[Complement[Nearest[data5 , ld[[i]], 3], {ld[[i]]}], {i, 1,

14 Length[ld]}], 1]];

15 c5 = FixedPoint[gt , c50 , 10];

16 tc5a = Table[Norm[c5[[i]] - Median[c5]], {i, 1, Length[c5]}];

17 ac5 = Mean[tc5a];

18 c5f = Extract[c5 , Position[tc5a , x_ /; x < 1.5 ac5]];

19 c7 = Flatten[

20 Union[Table[Nearest[data7 , c5f[[i]], 2], {i, 1, Length[c5f]}]], 1];

21 bub1 = Union[Join[c5f , c7]]; fst = FindShortestTour[bub1];

22 bubper = bub1[[Last[fst ]]];

23 g1 = Graphics[Line[bubper ]]; mf = RegionMember[Polygon[bubper], six];

24
25 (* bubble numbers *)

26 countinbubble = Count[mf, True];

27 countperbubble = Length[Union[bubper ]];

28 AppendTo[countAP , {tstep , countinbubble , countperbubble }];

29 int = Graphics [{ AbsolutePointSize[

30 3], {mf /. {True -> Red , False -> Gray},

31 Point /@ six}\[ Transpose ]}];

32 g2 = Show[int ,

33 ListPlot [{ Complement[data5 , c5f], Complement[data7 , c7], c7, c5f},
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34 PlotMarkers -> {{\[ EmptySquare], 10}, {\[ EmptyUpTriangle],

35 10}, {\[ FilledSquare], 10}, {\[ FilledUpTriangle], 10}},

36 PlotStyle -> {Green , Blue , Green , Blue},

37 PlotLabel -> {countinbubble , countperbubble }], g1,

38 PlotRange -> pra]]

Row count

1 df = 1;

2
3 row2[val_ , testa_] :=

4 Block [{}, vala = Nearest[testa , {val , 0}][[1 , 1]];

5 test3 = Cases[

6 testa , {x_ , y_} /; x > vala - 2 && x < vala + 2] /. {x_ ,

7 y_} -> {x - vala , y}; test4 = Sort[test3 , #1[[2]] < #2[[2]] &]]

8
9 va2[{a_ , b_}] :=

10 Min[VectorAngle [{a - start [[1]] , b - start [[2]]} , {1, 0}],

11 VectorAngle [{a - start [[1]], b - start [[2]]} , {-1, 0}]]

12
13 ty[i_] :=

14 Block [{}, start = test4 [[i]];

15 end = Extract[test4 ,

16 Position[test4 [[All , 2]], Max[test4 [[All , 2]]]]];

17 len = Length[Drop[test4 , i]];

18 If[len > 0, poss = Nearest[Drop[test4 , i], start , Min[3, len ]];

19 last = IntersectingQ[poss , end]; vang = Map[va2 , poss];

20 se = Select[vang , # > 0.2 &, 1];

21 If[Length[se] > 0,

22 Position[test4 , Extract[poss , Position[vang , se [[1]]]][[1]]][[1 ,

23 1]], i], i]]

24
25 pathg[val_] :=

26 Block [{},

27 path = Extract[test4 ,

28 Map[k, Union[FixedPointList[ty , 1]]] /. k[a_] -> {a}] /. {a_ ,

29 b_} -> {a + vala , b}; AppendTo[pathL , {vala , Length[path ]}];

30 pg[val] =

31 Show[ListPlot[path , Joined -> True , PlotRange -> {All , {0, 19}}],

32 Graphics[

33 Text[Style[Length[path], "Helvetica", 12, Red], {vala + 0.5,

34 17.5}]]]]

Orientation of the lattice

With ONLY one argument, finds the six-fold vortex closest to the selected point, area

of polygon, perimeter, angle wrt x-axis, and for lattice parameter (min,max,mean, std)

OTHERWISE does the same but for the centre of the bubble”
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If the second argument is true, it calculates for the centre of the bubble. Angles are

in degrees.

1 LocLattice[posi__ , isbub_: False] :=

2 Block [{}, If[TrueQ[isbub],

3 inbub = Cases [({mf /. {True -> 1, False -> 0}, six}\[ Transpose ]),

4 {1, {b_ , c_}}] /. {1, {b_ , c_}} -> {b, c}; nib =

5 Nearest[inbub , Mean[inbub]],

6 nib = Nearest[six , posi ]];

7 part1 = Complement[Nearest[vort , nib , 7][[1]] , nib]; {perim , pathp} =

8 FindShortestTour[part1]; pathp = Drop[pathp , -1];

9 parea = Area[Polygon[part1 [[pathp ]]]];

10 ango = Min[

11 Cases[Table[

12 ArcTan [(part1 [[i]] - nib [[1]]) /. List -> Sequence], {i, 1, 6}]

13 180/Pi, x_ /; x > 0]];

14 lens = Map[Norm , Table[part1[[i]] - nib [[1]], {i, 1, 6}]]; {minlen ,

15 maxlen , meanlen , stdlen} = {Min[lens], Max[lens], Mean[lens],

16 StandardDeviation[lens ]};

17 dpos =

18 {nib[[1]] , parea , perim , ango ,

19 {minlen , maxlen , meanlen , stdlen},

20 Line[{ part1[[ Position[lens , Min[lens]]

21 /. {{a_}} -> a]] , nib [[1]]}]}]

22
23 m60[a_] := If[a < 65, Min[a, 60 - a], a]

24
25
26 prx = {20, 80}; pry = {-2, 24}; pra = {prx , pry}; aratio =

27 Differences[pry]/ Differences[prx];

28
29 LocLatticeTrack[yval_] :=

30 Block [{}, llt = Table[LocLattice [{i, yval}], {i, 10, 80, 1.2}];

31 posM = llt [[All , 1]];

32 listDensityBubble =

33 Show[lp , g2 ,

34 ListPlot[posM , PlotStyle -> {Magenta},

35 PlotMarkers -> \[ FivePointedStar ]], PlotRange -> pra ,

36 AspectRatio -> aratio [[1]], ImagePadding -> {{30, 30}, {30, 0}}];

37 lpang = Show[

38 ListPlot[Transpose [{llt[[All , 1, 1]], Map[m60 , llt[[All , 4]]]}] ,

39 PlotMarkers -> {\[ FivePointedStar ]}, PlotStyle -> Magenta ,

40 Joined -> True , Frame -> True , PlotRange -> {prx , All}],

41 AspectRatio -> aratio [[1]], ImagePadding -> {{30, 30}, {4, 0}},

42 GridLines -> {gridx , None }];

43 ava[tstep] = Transpose [{llt[[All , 1, 1]], llt[[All , 5, 3]]}];

44 latp = ListPlot [{ Transpose [{llt[[All , 1, 1]], llt[[All , 5, 1]]}],

45 Transpose [{llt[[All , 1, 1]], llt[[All , 5, 2]]}] ,

46 Transpose [{llt[[All , 1, 1]], llt[[All , 5, 3]]}]} ,

47 Joined -> {False , False , True}, AspectRatio -> aratio [[1]],

48 ImagePadding -> {{30, 30}, {4, 30}}, GridLines -> {gridx , None }];

49 plotOrient[ToExpression[tstep ]] =
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50 GraphicsGrid [{{ latp}, {lpang}, {pathLP}, {gmin}, {listDensityBubble }},

51 Frame -> True , ImageSize -> 600,

52 PlotLabel ->

53 Style[Framed[

54 StringJoin["tstep=", ToString[tstep], "\n", ToString[countinbubble],

55 " vortices in the Bubble \n" , ToString[countperbubble],

56 " vortices on the Bubble perimeter "]], 16, blue , Bold ,

57 FontFamily -> "Helvetica", Background -> GrayLevel [0.8]] ,

58 FrameStyle -> Directive[blue ]]]

59
60 grids[min_ , max_] :=

61 Join[Range[Ceiling[min], Floor[max], 2],

62 Table [{j + 1, Dashed}, {j, Round[min], Round[max - 1], 1}]]

63
64 gridx = Table[i, {i, 20, 70, 10}];

65
66
67
68 createP[jj_] :=

69 Block [{}, tstep = tstepL [[jj]]; Print[tstep ];

70 fileinFull[tstepLFull [[jj]]];

71 cluste[six , five , seven]; orient1[vort]; orient3[dela];

72 test = Cases[vort , {x_, y_} /; x > 20 && x < 80]; pathL = {};

73 Table [{row2[i, test];, pathg[i]}, {i, 25, 75, 1}];

74 Show[lp, g2, PlotRange -> All ,

75 PlotLabel ->

76 StringJoin[ToString[countinbubble], " vortices in the Bubble \n" ,

77 ToString[countperbubble], " vortices on the Bubble perimeter "]];

78 pathL = {}; Table [{row2[i, test];, pathg[i]}, {i, 25, 75, 1}];

79 pathLP = ListPlot[pathL , Joined -> True , GridLines -> { gridx , grids},

80 AspectRatio -> aratio [[1]], ImagePadding -> {{30, 30}, {4, 0}},

81 PlotRange -> {prx , {12, 28}}];

82 minlatL = Table[LocLattice[vort[[i]]] // Last , {i, 1, Length[vort ]}];

83 gmin = Show[g2,

84 Graphics[Map[gchoose , minlatL] /. gchoose[a__] -> {Magenta , a}],

85 AspectRatio -> aratio [[1]], ImagePadding -> {{30, 30}, {4, 0}},

86 PlotRange -> pra , GridLines -> {gridx , None}, Frame -> True];

87 LocLattice [{0, 0}, True]; AppendTo[countBubbleC , dpos];

88 Show[LocLatticeTrack [9]]]
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