
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

125,000 140M

TOP 1%154

5,000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/335288878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter

Advances in Convolutional Neural
Networks
Wen Xu, Jing He, Yanfeng Shu and Hui Zheng

Abstract

Deep Learning, also known as deep representation learning, has dramatically
improved the performances on a variety of learning tasks and achieved tremendous
successes in the past few years. Specifically, artificial neural networks are mainly
studied, which mainly include Multilayer Perceptrons (MLPs), Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks (RNNs). Among these net-
works, CNNs got the most attention due to the kernel methods with the weight
sharing mechanism, and achieved state-of-the-art in many domains, especially
computer vision. In this research, we conduct a comprehensive survey related to the
recent improvements in CNNs, and we demonstrate these advances from the low
level to the high level, including the convolution operations, convolutional layers,
architecture design, loss functions, and advanced applications.

Keywords: deep learning, CNNs, kernel methods, weight sharing,
comprehensive survey

1. Introduction

Convolutional Neural Networks (CNNs) are specially designed to handle data
that consists of multiple arrays/matrixes such as an image composed of three
matrixes in RGB channels [1]. The key idea behind CNNs is the convolution oper-
ation, which is to use multiple small kernels/filters to extract local features by
sliding over the same input. Each kernel can output a feature map and all the feature
maps are concatenated together, this is also known as a convolutional layer and it is
the core component in a CNN. Note that these concatenated maps can be further
processed by the next layer. To reduce the computational cost, the pooling opera-
tion such as maximum pooling is usually applied on these feature maps. A typical
CNN is usually structured as a series of layers, including multiple convolutional
layers and a few of fully connected layers. For example, the famous LeNet [2]
consists of two convolutional layers and three fully connected layers, and the
pooling operation is used after each convolutional layer.

In addition to building a neural network, a loss function is essential to measure
the model performance. Therefore, the process of training a CNN model is
transformed into an optimization problem, which normally seeks to minimize the
value of the loss function over the training data. Specifically, a gradient-descent
based algorithm is usually adopted to iteratively optimize the parameters in a CNN.

Figure 1 shows the high-level abstraction of CNNs in this survey. Specifically,
we firstly introduce two types of convolution operations in Section 2. Then four

1

methods are summarized for constructing convolutional layers in CNNs in Section
3. In Section 4, we group the current CNN architectures into three types: encoder,
encoder-decoder and GANs. Next, we discuss two main types of loss functions in
Section 5. In Section 6, we give the advanced applications based on the three types
of CNN structures. Finally in Section 7, we conclude this research and give future
trends.

2. Convolution operations

The main reason why CNNs are so successful on a variety of problems is that
kernels (also known as filters) with fixed numbers of parameters are adopted to
handle spacial data such as images. In particular the weight sharing mechanism can
help reduce the number of parameters for low computational cost while remaining
the spacial invariance properties. In general, there are mainly two types of convo-
lution operations, including basic convolution and transposed convolution.

2.1 Basic convolution and dilated kernels

As shown on the left in Figure 2, convolution operation essentially is a linear
model for the local spacial input. Specifically, it only performs the sum of element-
wise dot products between the local input and the kernels (usually including a bias),
and output a value after an activation function. Each kernel slides overall spacial
locations in the input with a fixed step. The result is that we can get an 1-channel
feature map. Note that there are generally many kernels in one convolutional layer,
and all of the output feature maps are concatenated together, e.g., if the number of

kernels used in this convolutional layer isDO, we can get anO∈R3�3�DO feature map.
While the kernel size of 3� 3 is widely used in current CNNs, we may need

large receptive fields in the input for observing more information during each
convolution operation. However, if we directly increase the size of kernels such as

Figure 1.
High-level abstraction of convolutional neural networks in this survey.

Figure 2.
Left:A demonstration of basic 2D convolution with a 3� 3�DI kernel (stride = 1, padding = 0), I∈R5�5�DI is
the spacial input and O∈R3�3 is the 1-channel output feature map. Right:A dilated kernel for increasing the
receptive fields in the input, where the empty space between each element represents 0.

2

Advances in Deep Learning

K ¼ 9� 9�DI, where DI is the depth of input, the total number of parameters will
increase dramatically and the computational cost will be prohibitive. In practical, as
shown on the right in Figure 2, we can insert zeros between each element in the
kernels and get dilated kernels. For example, dilated kernels have been applied in
many tasks such as image segmentation [3], translation tasks [4] and speech
recognition [5].

2.2 Transposed convolution and dilated kernels

Normally the size of output feature maps generated from the basic convolution
is smaller than the input space (i.e., the dimension of input I is 5� 5�DI and the
dimension of output O is 3� 3 in Figure 2), which results in high-level abstraction
by using multiple convolutional layers. Transposed convolution can be seen as a
reverse idea from basic convolution. Its primary purpose is to obtain an output
feature map that is bigger than the input space. As shown on the left in Figure 3, the
size of the input I is 2� 2�DI, after transposed convolution, we can have a 4� 4
feature map O. Specifically, during transposed convolution, each output filed in O is
just the kernel multiplied by the scalar value of one element in I.

Similarly, we can still use dilated kernels in transposed convolution. The main
reason why we need transposed convolution is that it is the fundamental idea to
construct a decoder network, which is used to map a latent space into an output
image, such as the decoders in U-Net [6] and GANs. Specifically, the transposed
convolution is widely used in tasks such as model visualization [7], image segmen-
tation [6], image classification [8] and image super-resolution [9].

3. Convolutional layers

The core components in CNNs are convolutional layers. In the last section, we
have demonstrated two types of convolution operations and they are the main idea
to construct convolutional layers. In this part, we summarize the main methods in
deep learning for building convolutional layers, including basic convolutional
layers, convolutional layers with shortcut connection, convolutional layers with
mixed kernels and convolutional capsule layers.

3.1 Basic convolutional layers

Recall that there are normally DO kernels in one convolutional layer, where DO

also denotes the depth of the output feature map. In other words, the number of

Figure 3.
Left: A demonstration of transposed 2D convolution with a 3� 3�DI kernel (stride = 1, padding = 0),
I∈R2�2�DI is the spacial input and O∈R4�4 is the 1-channel output feature map. Note that the receptive
fields in O can overlap and we normally sum the values where output overlaps. Right: A dilated kernel for
increasing the receptive fields in the input, where the empty space between each element represents 0.

3

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

channels in the output map depends on the number of kernels used in the
convolutional layer. More formally, we can denote it as

O ¼
X

DO

i¼1

I ∗Ki (1)

where ∗ represents the convolution operation which has been addressed above,
P

denotes the concatenation operation and O∈RWOHODO is the output feature map.
After convolution operation, a no-linear activation function is applied on each
element in the concatenated feature map, which can be denoted as

O ¼ σ Oð Þ (2)

While there are many variants related to the activation function, the typical ones
which are widely adopted are ReLU σ xð Þ ¼ max 0, xð Þ, tanh σ xð Þ ¼ ex�e�x

exþe�x and

sigmoid σ xð Þ ¼ 1
1þe�x. Note that the non-linear activation functions are essential for

building multi-layer networks, as it shows that a two-layer network with enough
neurons can uniformly approximate any functions, which is also known as universal
approximation theorem [10].

Note that after convolution operation, the width and height of the output feature

map O∈RWOHODO are usually close to the width and height of the input I∈RWIHIDI .
To further reduce the dimensions of the output feature maps for reducing compu-
tational cost, the pooling operation is widely used in the current CNNs. Specifically,
for 2D pooling operation, two main hyper-parameters are involved: the filter size
F � F and stride S. And after pooling operation, the width of the feature map O
is reduced to WO ¼ WO � Fð Þ=Sþ 1 and the height of the feature map O is
HO ¼ HO � Fð Þ=Sþ 1. In brief, we can have

O ¼ pool Oð Þ (3)

where poolðÞ denotes the pooling operation discussed above. Typical pooling
operations includes max-pooling and average-pooling. A general choice to conduct
pooling operation is to use stride ¼ 2 with 2� 2 filter, which means that each 4
pixels in the 2D feature map Owill be compressed into 1 pixel. Using a toy example,

suppose that there are only four pixels O ¼
1 2

3 4

� �

, then poolmax Oð Þ ¼ 4½ � or

poolavg Oð Þ ¼ 2:5½ �.

3.2 Convolutional layers with shortcut connection

It is true that deep neural networks normally can learn better representation
from the data than shallow neural networks. However, stacking more layers in a
CNN can lead to the problems of vanishing or exploding gradients, which make the
networks hard to optimize. A simple and effective way to address this problem is to
use shortcut connections, which can help directly transform the information from
the previous layer to the current layer in a network.

O ¼ σ

X

DO

i¼1

Icurrent ∗Ki

 !

⊕ Iprevious

 !

(4)

Note that ⊕ can denote two types of operations.

4

Advances in Deep Learning

• Element-Wise Sum: Each element in Icurrent is added by the corresponding
element in Iprevious, which means that the dimensions of Icurrent and Iprevious must
be the same, and the result is that we can get an output O of the same size. This
type of operation is well known as identity shortcut connection and it is the
core idea in ResNet [11, 12]. The main advantage is that it does not add any
extra parameters or computational complexity. The disadvantage is due to its
inflexible.

• Concatenation:We can concatenate the current output and previous input
together. Suppose the size of the current output feature map is WHDO and the
size of the previous input is WHDI, after concatenation, we can have a
concatenated feature map O with a size of WH DO þDIð Þ. Note that the widths
and heights of input and output must be the same. The advantage is that we
can remain the information from the previous layers. The disadvantage is that
we have to use extra parameters to handle the concatenated feature map O.
(i.e., the depth of kernels for processing feature map O is DO þDIð Þ.)
Specifically, this type of convolutional layers is broadly adopted in networks
for image segmentation such as U-Net [6].

3.3 Convolutional layers with mixed kernels

So far we have demonstrated that we normally use many convolutional kernels
with the same size in one convolutional layer such as 3� 3. To enlarge the receptive
field, we may adopt the dilated kernels instead. However, it is difficult to know
what size of kernels we should use in a CNN. Naturally, we may apply different
sizes of kernels in each convolutional layer. E.g., both 1� 1, 3� 3 and 5� 5 kernels
are adopted in one convolutional layer. More formally, we define one convolutional
layer with mixed kernels as

O ¼ σ

X

D1
O

i¼1

I ∗K1�1
i þ

X

D2
O

i¼1

I ∗K3�3
i þ

X

D3
O

i¼1

I ∗K5�5
i þ pool Ið Þ

0

@

1

A (5)

where pool(I) denotes the pooling operation such as max-pooling. Therefore,

the size of the output feature map is WOHO D1
O þD2

O þD3
O þDI

� �

.
However, if we directly add different sizes of kernels in one convolutional layer,

the computational cost involved will increase sharply. In the inception module
[13, 14], a 1� 1 convolutional layer is applied before 3� 3 and 5� 5 convolutional
layers in order to reduce the convolutional cost.

3.4 Convolutional capsule layers

“The pooling operation used in convolutional neural networks is a big mistake and

the fact that it works so well is a disaster.”—Geoffrey Hinton.

In general, pooling operation is essential to reduce the size of output feature
maps so that we can obtain high-level abstractions from input by stacking multiple
convolutional layers in a CNN. However, the cost is that some information in the
feature maps has been abandoned such as conducting max-pooling.

In 2017 [15], Hinton et al. proposed an alluring version of convolutional archi-
tectures, which is known as capsule networks, followed by the updated versions in
2018 [16] and 2019 [17]. The convolutional capsule layers in capsule networks are

5

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

very similar to the traditional convolutional layers. The main difference is that each
capsule (i.e., an element in convolutional feature maps) has a weight matrix W ij

(i.e., the sizes are 8� 16 in [15] and 4� 4 in [16] respectively).

4. Architecture design

Although numerous variants of CNN architectures for solving different tasks
are proposed from the deep learning community every year, their essential
components and over-all structures are very similar. We group the recent classic
network structures into three main types, including encoder, encoder-decoder and
GANs.

4.1 Encoder

In 1990, LeCun et al. proposed a seminal network called LeNet [2], which help
establish the modern CNN structure. Since then, many new methods and composi-
tions are proposed to handle the difficulties encountered in training deep networks
for challenging tasks such as objective detection and recognition in computer vision.
Some representative works in recent years are AlexNet [18], ZFNet [7], VGGNet
[19], GoogleNet [13], ResNet [11], Inception [14]. As mentioned earlier, new
methods for constructing convolutional layers in these networks are proposed, e.g.,
shortcut connection [11] and mixed kernels [14, 20].

In general, the above-mentioned networks can all be regarded as encoders, in
which each input such as an image is encoded into a high-level feature representa-
tion, as shown on the left in Figure 4. And this encoded representation can be
further used for, such as image classification, object detection etc. In some litera-
tures, an encoder is also called as a feature extractor. Specifically, the basic
convolutional layers are the main components for constructing an encoder network,
by stacking multiple layers, each layer in the network can learn high-level abstrac-
tions from previous layers [1]. More formally, an encoder network can be written as

Z ¼ F encoder X;Θð Þ (6)

where X is the input, Θ is the parameters to learn (e.g., kernels and bias) in the
network and Z denotes the encoded representation such as a vector.

4.2 Encoder-decoder

In some specific tasks such as image segmentation [20], our goal is to map an
input image to a segmented output image rather than an abstraction. An encoder-
decoder structure is specifically designed for solving this type of task. There are

Figure 4.
Left: An encoder network. Middle: An encoder-decoder network. Right: Generative adversarial networks.

6

Advances in Deep Learning

many possible ways to implement an encoder-decoder structure, and many variants
have also been proposed to improve the drawbacks in the last few years. A naive
version of encoder-decoder network which was introduced in [20] can be denoted as

Z ¼ F encoder X; θencoderð Þ (7)

X̂ ¼ F decoder Z; θdecoderð Þ (8)

where F encoder denotes an encoder CNN to map an input sample to a representa-
tion Z and F decoder represents a decoder CNN to reconstruct the input sample with
Z. Specifically, CNN encoders usually conducts basic convolution operations (i.e.,
Section 2.1) and CNN decoders perform transposed convolution operations (i.e.,
Section 2.2).

As shown in the middle in Figure 4, an encoder-decoder network is still one
complete network and we can train it with an end-to-end method. Note that there
are generally many convolutional layers in each coder network, which results that it
can be challenging to train a deep encoder-decoder network directly. Recall that the
shortcut connection is often adopted to address the problems in deep CNNs. Natu-
rally, we can add connections between the encoder and the decoder. An influential
network based on this idea is U-Net [6], which is widely applied in many challeng-
ing domains such as medical image segmentation. The above two equations can also
be rewritten as a composition of two functions.

X̂ ¼ F decoder∘F encoder X;Θð Þ ¼ F autoencoder X;Θð Þ (9)

Specifically, in unsupervised learning, an encoder-decoder network is also well
known as autoencoder. And there are many variants of autoencoders proposed in
recent years, some famous ones including variational autoencoder [21], denoising
variational autoencoder [22] and conditional variational autoencoder [23, 24].

4.3 GANs

Since generative adversarial networks were firstly proposed by Goodfellow et al.
[25] in 2014, this type of architectures for playing two-player minimax game has
been most extensively studied. Partly because it is an unsupervised learning method
and we can obtain a fancy generator network which can help generate fake exam-
ples from a latent space (i.e., a vector with some random noise). On the right in
Figure 4 shows the basic structure of GANs, in which a generator network can map
some input noise into a fake example and make it look as real as possible and a
discriminator network always tries to identify the fake sample from its input. By
iteratively training the two players, they can both improve their methods. More
formally, we can have

Ŷ ¼ D G L; θG
� �

;Xreal; θD
� �

(10)

where G denotes the generator function and D represents the discriminator
function. L is the latent space input in the generator, and its output is a fake

example. Xreal is the real samples we have collected. And Ŷ ∈ 0, 1½ � is the predicted
result of the discriminator to show whether the input is real or fake.

As shown in Table 1, numerous variants of GANs architectures can be found in
the recently published literatures and we broadly summarize these representative
networks according to their published time. Note that the fundamental methods
behind these architectures are very similar.

7

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

5. Loss functions

Before introducing the loss functions, we need to understand that the ultimate
goal to train a neural network F X;Θð Þ is to find a suitable set of parameters Θ so
that our model can achieve good performance on the unseen samples (i.e., test
dataset). The typical way to search Θ in machine learning is to use loss functions as a
criterion during training. In other words, training neural networks is equivalent to
optimizing the loss functions by back-propagation. Accurately, a loss function out-
puts a scalar value which is regarded as a criterion for measuring the difference
between the predicted result and the true label over one sample. And during train-
ing, our goal is to minimize the scalar value over m training samples (i.e., cost
function). Therefore, as shown in Figure 1, loss functions play a significant role in
constructing CNNs.

J ¼
1

m

X

m

i¼1

Li (11)

where Li denotes a loss function for the training sample i, and J is often known
as cost function, which is just the mean of the sum of the losses over m training
samples (i.e., usually a batch of m training samples is fed into a CNN during each
iteration of training).

Name Year Summary

GANs [25] 2014 The original version of GANs, where G and D are implemented

with fully connected neural networks.

Conditional GANs [26] 2014 Labels are included in G and D.

Laplacian Pyramid GANs

[27]

2015 CNNs with the laplacian pyramid method.

Deep Convolutional GANs

[28]

2015 Transposed convolutional layers are used to construct G.

Bidirectional GANs [29] 2016 An extra encoder was adopted based on the traditional GANs.

Semi-supervised GANs

[30]

2016 The D can also classify the real samples while distinguishing the

real and fake.

InfoGANs [31] 2016 An extra classifier was added into the GANs.

Energy-based GANs [32] 2016 The D was replaced with an encoder-decoder network.

Auxiliary Classifier GANs

[33]

2017 An auxiliary classifier was used in the D.

Progressive GANs [34] 2017 Progressive steps are adopted to explain the networks.

BigGANs [35] 2018 A large GANs with self-attention module and hinge loss.

Self-attention GANs [36] 2019 The self-attention mechanism is proposed to build G and D.

Label-noise Robust GANs

[37]

2019 A noise transition model is included in D.

AutoGANs [38] 2019 The neural architecture search algorithm is used to obtain G and D.

Your Local GANs [39] 2020 A new local sparse attention layer was proposed.

MSG-GANs [40] 2020 There are connections from G to D.

Table 1.
Representative architectures of GANs in recent years.

8

Advances in Deep Learning

Note that there are numerous variants of loss functions used in the deep learning
literature. However, the fundamental theories behind them are very similar. We
group them into two categories, namely Divergence Loss Functions and Margin
Loss Functions. And we also introduce six typical and classic loss functions that are
commonly used for training neural networks.

5.1 Divergence loss functions

Divergence loss functions denote a family of loss functions based on computing
the divergences between the predicted results and true labels, mainly including
Kullback-Leibler Divergence, Log Loss, Mean Squared Error.

5.1.1 Kullback-Leibler divergence

Before introducing the Kullback–Leibler divergence, we need to understand that
the fundamental goal of deep learning is to learn a data distribution Q over the
training dataset so that Q is close to the true data distribution P. Back in 1951,
Kullback-Leibler divergence was proposed to measure the difference between two
distributions on the same probability space [41]. It is defined as

DKL PkQð Þ ¼
X

X

P Xð ÞlogP Xð Þ �
X

X

P Xð ÞlogQ Xð Þ

¼
X

X

P Xð Þ log
P Xð Þ

Q Xð Þ

(12)

where DKL PkQð Þ denotes the Kullback–Leibler divergence from Q to P.
P

XP Xð ÞlogP Xð Þ is the entropy of P and
P

XP Xð ÞlogQ Xð Þ is the cross entropy of P
and Q. There is also a symmetrized form of the Kullback–Leibler divergence, which
is known as the Jensen–Shannon divergence. It is a measure of the similarity
between P and Q .

JSD PkQð Þ ¼
1

2
DKL Pk

PþQ

2

� �

þ
1

2
DKL Qk

Pþ Q

2

� �

(13)

Specifically, JSD PkQð Þ ¼ 0 means the two distributions are the same. Therefore,
if we minimize the Jensen-Shannon divergence, we can make the distribution Q
close to the distribution P. More Specifically, if Q denotes the distribution on data,
and P represents the distribution which is learned by a CNN model. By minimizing
the divergence, we can learn a model which is close to the true data distribution.
This is the main idea of GANs. The loss function of GANs is defined as

min
G

max
D

: X�P Xð Þ logD X;ΘDð Þ þ L�Q Lð Þ log 1�D G L;ΘGð Þ;ΘDð Þð Þ (14)

where G denotes the generator and D denotes the discriminator. And our goal is
to try to make Q G Lð Þð Þ close to P Xð Þ. In other words, when the generative distribu-
tion of fake examples is close to the distribution of real samples, the discriminator
cannot distinguish between the fake and the real.

5.1.2 Log loss

Log loss is widely used in the current deep neural networks due to its simplicity
and power. The binary log loss function is defined as

9

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

Lbinary ¼ �Ylog Ŷ
� �

� 1� Yð Þ log 1� Ŷ
� �

Y ∈ 0, 1½ �ð Þ (15)

where Y ∈ 0, 1½ � denotes the binary label for a sample and Ŷ is the predicted
result, (i.e., given a training sample with its corresponding label X,Yf g, we can

have an output predicted result with an encoder network Ŷ ¼ F encoder X,Θð Þ.)
When the learning task is multi-class classification, each sample label is normally

encoded with the one-hot-encoding format, which can be denoted as Y ¼

y1, y2, … , ynclass
� 	T

, i.e., if the label is 3, then only y3 ¼ 1 and the others are all given
the value of 0. Therefore, the log loss for one sample can be written as

Llog ¼ �
X

nclass

i¼1

1 yi ¼ 1

 �

log ŷi
� �

(16)

where ŷi is the predicted result for the true label yi. 1 yi ¼ 1

 �

denotes the
indicator function, which means that its output is 1 if yi ¼ 1, otherwise it outputs 0.

We may wonder why the log loss is a reasonable choice. Informally, let Y

denotes the data distribution and Ŷ denotes the distribution leaned by our model,
then based on Kullback–Leibler divergence, we can have

DKL YkŶ
� �

¼
X

YlogY �
X

YlogŶ (17)

And our goal is to minimize the divergence between Y and Ŷ so that the
distribution obtained by our model is close to the true data distribution. Because
the term

P

YlogY is the entropy related to data, and we only need to optimize the

cross entropy term �
P

YlogŶ. Therefore, log loss is also well known as
cross-entropy loss.

5.1.3 Mean squared error

Probably the mean squared error is one of the most familiar loss functions as it is
really like the least square loss function. It directly calculates the difference between
the predicted result and the true label, which is denoted as

Lmean ¼ �
1

2
Y � Ŷ
� �2

(18)

One example which can help us deeply understand the mean squared error is
that minimize the mean squared loss of a linear regression model is equivalent to
maximum likelihood. In other words, this is a method to optimize the parameters of
our model so that the distribution learned by our model is most probable under the
observed training data. Therefore, the fundamental goal is still the same as above,
which is to make the model distribution and the data distribution as close as
possible.

5.2 Margin loss functions

Margin loss functions represent a family of margin maximizing loss functions.
The typical functions include Hinge Loss, Contrastive Loss and Triplet Loss. Unlike
the divergence loss functions, margin loss functions calculate the relative distances
between outputs and they are more flexible in terms of training data.

10

Advances in Deep Learning

5.2.1 Hinge loss

Hinge loss is well known to train Support Vector Machine classifiers. Specifi-
cally, there are two main types of hinge losses. The first type is for each sample with
only one correct label, it is denoted as

Lhinge ¼
X

nclass

i6¼k

max 0,Δþ ŷi � ŷk
� �p

yk ¼ 1,
X

nclass

i 6¼k

yi ¼ 0

 !

(19)

where yi denotes each element in the one-hot-encoding label, yk is the correct
class. ŷi represents the predicted result of our neural network for each class. Δ ¼ 1 is
the standard choice for the margin. If p ¼ 1, the above loss denotes the standard
Hinge loss, and if p ¼ 2, it is the Squared Hinge loss.

However, in real tasks such as attribute classification, each samples can have
multiple correct labels. e.g., a photo posted on Facebook may include a set of
hashtags. Therefore, the second type for multiple labels is

Lhinge ¼
X

nclass

i¼1

max 0,Δ� δ yi ¼ 1
� �

ŷi
� �p

(20)

where δ yi ¼ 1
� �

¼ þ1 if yi ¼ 1, otherwise δ yi ¼ 1
� �

¼ �1. Δ ¼ 1 is still the
common choice for the margin and p ¼ 1 or p ¼ 2.

5.2.2 Contrastive loss

Contrastive loss is specially designed for measuring the similarity of a pair of

training samples. Considering two pairs of samples Xa,Xp

 �

and Xa,Xnf g, where
Xa is known as an anchor sample and Xp denotes the positive sample and Xn

represents the negative sample, Specifically, if the pair Xa,Xp

 �

is matching, then

the loss for the pair is the distance between their outputs from the network
d Za,Zp

� �

. While if the pair Xa,Xnf g is not matching and the distance of their
outputs from the model is small than the pre-defined margin 0,Δ� d Za,Znð Þð Þ>0,
then we need also to calculate the loss. Formally, we can have

Lcontrastive ¼
d Za,Zp

� �

if matched pair

max 0,Δ� d Za,Znð Þð Þ if unmatched pair

(21)

where d can be the Euclidean distance, (i.e., d Za,Zp

� �

Þ ¼ Za � Znk k2). Alterna-
tively, the above equation can be rewritten as

Lcontrastive ¼ yd Za,Zp

� �

þ 1� yð Þmax 0,Δ� d Za,Znð Þð Þ (22)

where y ¼ 1 if the given pair is matching, otherwise y ¼ 0. Δ is the margin which
can affect the loss calculating for the unmatched pairs.

5.2.3 Triplet loss

Triplet loss looks similar to the contrastive loss, but it is a measure of the
difference between the matched pair and the unmatched pair. Considering three

samples Xa,Xp,Xn

 �

, the Triplet loss is denoted as

11

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

Ltriplet ¼ max 0,Δþ d Za,Zp

� �

� d Za,Znð Þ
� �

(23)

Note that minimize the loss function is equivalent to minimizing the distances of
matched pairs and maximizing the distances of unmatched pairs.

6. Advanced applications

One of the most exciting areas in deep learning is that we can apply neural
networks to a numerous number of applications that cannot be solved well or be
handled by the traditional machine learning method. In this section, we summarize
the typical advances that CNNs has achieved based on the three types of CNN
structures.

6.1 Applications with encoders

6.1.1 Image classification

A basic task in machine learning is classification, which is the problem of iden-
tifying to which of a list of labels a new sample belongs, such as the well-known
CIFAR-10 dataset, in which there are 10 categories of images and the goal is to train
a model for correctly classifying an unseen image based on observing the training
dataset. In particular, CNNs have made many breakthroughs on large scale image
datasets such as the ImageNet challenge [18]. As mentioned in Section 4.1, the
classic encoders such as AlexNet [18], ZFNet [7], VGGNet [19], GoogleNet [13],
ResNet [11], Inception [14] are regarded as the milestones in the past few years. The
successes of these encoders are all based on supervised learning, which means that
manual labelling is essential for the dataset such as the ImageNet dataset [42].
Specifically, a labeled dataset is normally divided into training and test dataset (may
also include a validation dataset), and our goal is to achieve good performance on
the test dataset after training a neural network with the training dataset, and the
pre-trained model can be further used for classifying new images that are from the
same data distribution space.

Classification can also be treated as a fundamental problem in machine learning,
the successes of these encoders on image classification also help establish the foun-
dation for many other applications. Specifically, we can utilize an encoder to extract
high-level representation from the low-level input image, and the obtained repre-
sentation can be further used for many other applications.

6.1.2 Object detection

In addition to image classification, object detection is also very important in
computer vision. Image classification gives us the answer to what a given image is,
and object detection is about telling us the specific positions of objects in an image.
Specifically, the goal is to train an encoder to output a suitable bounding box and
associated class probabilities for each object in a given image. Two typical methods
are widely used in the current computer vision, including YOLO [43] and SSD [44].
The core idea of YOLO is that object detection is treated as an regression problem,
which means that each image is divided into multiple grids and each grid cell
outputs a pre-defined number of bounding boxes, the corresponding confidence for
each box and class probabilities [43]. Since the first version of YOLO was proposed,
the updated versions have also been proposed. SSD is a more simple method, which

12

Advances in Deep Learning

utilizes a set of default boxes with different aspect ratios, and each box outputs the
shape offsets and the class confidences [44].

6.1.3 Pose estimation

The multiple levels of representations learned in the multiple layers of CNNs can
also be used for solving the task of human-body pose estimation. Specifically, there
are mainly two types of approaches, including regression of body joint coordinates
and heat-map for each body part. In 2014, a framework called DeepPose [45] was
introduced to learn pose estimation by a deep CNN, in which estimating human-
body pose is equivalent to regressing the body joint coordinates. There are also some
extension works based on this method, such as a process called iterative error
feedback [46], which encompasses both the input and output spaces of CNN for
enhancing the performance. In 2014, Tompson et al. [47] propose a hybrid archi-
tecture which consists of a CNN and a Markov Random Field, in particular the
output of the CNN for an input image is a heat-map. Some recent works based on
the heat-map method such as [48], in which a multi-context attention mechanism
was proposed to incorporate with CNNs.

6.2 Applications with encoder-decoders

6.2.1 Image restoration

The operation of image restoration is to recover a damaged or corrupt image for
the clean image such as image denoising and super-resolution. Therefore, a natural
way to implement this idea is to utilize a pre-trained encoder-decoder network,
where the encoder can map a noise image into a high-level representation, and the
decoder can transform the representation into an original image. For example, Mao
et al. [49] apply a deep convolutional encoder-decoder network for image restora-
tion, in particular the shortcut connection method is adopted between the encoder
and decoder, which has been demonstrated in Section 3.2. And the transposed
convolution is used for constructing the decoder network, as mentioned in Section
2.2. Similar work in [50] has also been introduced for image restoration, in which a
residual method is used in the network (i.e., in Section 3.2).

6.2.2 Image segmentation

The task of image segmentation is to map an input image into a segmented output
image. The encoder-decoder networks have been developed dramatically in recent
years and achieve a significant impact on computer vision. Specifically, there are
mainly two types of tasks including semantic segmentation and instance segmenta-
tion. In 2015, Long et al. [20] firstly showed that an end-to-end fully CNN can achieve
state-of-art in image segmentation tasks. Similar work has also been introduced in [6]
in 2015, in which a U-Net architecture is proposed for medical image segmentation,
and the main advance in this architecture is that the shortcut connection method is
also used between the encoder and decoder network. Since then, a series of papers
based on these two methods have been published. In particular nowadays the U-Net
based architectures are widely used for the medical image diagnosis.

6.2.3 Image captioning

One of the exciting applications achieved by CNNs is image captioning, which is
to describe the content of an input image with natural language. The basic idea is as

13

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

follows: Firstly, a pre-trained CNN encoder is used to extract some high-level
features from an input image. Secondly, these features are typically fed into an
recurrent neural network for generating a sentence. For example, Li et al. [51]
proposed a fully convolutional localization network for extracting representation
from images and the decoder for generating captions is LSTM. Recently, attention
mechanism has been widely used for sequence processing and achieved significant
improvements such as machine translation, Huang et al. [52] introduce an encoder-
decoder framework, where an attention module is used in the encoder and decoder
respectively. Specifically, the encoder is a CNN based network.

6.2.4 Speech processing

Note that speech signals exhibit spectral variations and correlations, CNNs are
very suitable to reduce them. Therefore, CNNs can also be utilized for the task of
speech processing, such as speech recognition. Sainath1 et al. [53] applied deep
CNNs for large vocabulary speech tasks. In [54–56], the CNNs are used for speech
recognition. And the fundamental methods are very similar, both of them use the
CNNs to extract features from the raw input, and then these features are fed into an
decoder for the specific learning tasks.

6.3 Applications with GANs

6.3.1 Image generation

The most typical application of GANs is to generate fake examples. Recall that
there normally are two dependent networks in GANs, including G and D. Once the
training process is finished, we can utilize G to generate fake samples from the
training dataset.

Generating fake samples can be regarded as data augmentation, which means
that these fake data can be further used to train models. Note that deep learning is
also well known as a data-driven approach. In particular most of the advances that
deep neural networks achieved are based on supervised learning. Specifically, the
current successful neural network models usually consist of millions of parameters.
And annotated data is essential to optimize these parameters for guaranteeing the
model accuracy when conducting supervised learning. However, manually labeling
data is time-consuming and expensive, especially in some specific domains such as
medicine. Even more severe is that it can be hard to collect enough data due to the
privacy concerns. There are numerous works to utilize GANs for enhancing model
performance. E.g., in [57], a semi-supervised framework based on GANs is applied
to semantic segmentation in order to address the lack of annotations. [58] is a work
of utilizing synthetic medical images for enhancing the performance of liver lesion
classification.

Despite the successes of GANs, generating high-resolution, diverse samples is
still a challenging task. In [35], they introduce the progressive GANs which can
generate high-resolution human faces. Another impressive work to generate realis-
tic photographs is BigGANs [36].

6.3.2 Image translation

Another interesting application derived from GANs is image translation. While
there are many specific applications, we summarize them into three categories,
including translation of image to image, translation of text to image and translation
of image to super-resolution.

14

Advances in Deep Learning

Image to Image: The task of image-to-image translation is to learn a mapping
G Xð Þ ! Y. E.g., Isola et al. [59] apply conditional GANs for an image-to-image task
and achieve impressive results such as mapping sketches to photographs, black-
white photographs to color etc. Another typical work is the CycleGANs [60], which
can transfer a style of an image into another.

Text to Image: One of the interesting works from GANs is to synthesis a
realistic image based on some text descriptions. E.g., “There is a little bird with red
feather.” Some representative works include: Reed et al. [61] introduce a text-
conditional convolutional GANs. Zhang et al. [62] apply a StackGANs to synthesize
high-quality images from text.

Super Resolution: The task of super-resolution is to map a low-resolution image
to a high-resolution image. In 2017, ledig et al. [63] propose a framework named as
SRGAN, which is regarded as the first work that has the ability to generate photo-
realistic images for 4X upscaling factors. Specifically, the loss functions used in their
framework consist of an adversarial loss and a content loss. In particular the content
loss can help remain the original content from the input images.

6.3.3 Image editing

Image editing is regarded as a fundamental problem in computer vision. The
emergence of GANs has also brought new chances for this task. In the past few
years, GANs have been developed for image editing, such as image inpainting and
image matting.

Image inpainting: The task of image inpainting is to recover an arbitrary dam-
aged region in an image. Specifically, we can utilize the algorithm to learn the
content and style of the image and generate the damaged part based on the input
image, such as [64], in which they introduce a context encoder for natural image
inpainting. And in [65, 66], their works mainly focus on human face completion.

Image matting: The goal of image matting is to separate the foreground object
from the background in an image. This technique can be used for a wide range of
applications such as photo editing and video post-production. And there are also
some representative works such as [67, 68].

7. Summary and future trends

In this research, we have conducted a hierarchically-structured survey of the
main components in CNNs from the low level to the high level, namely, convolu-
tion operations, convolutional layers, architecture design, loss functions. In addition
to introducing the recent advances of these aspects in CNNs, we have also discussed
the advanced applications based on the three types of architectures including
encoder, encoder-decoder and GANs, from which we can see that CNNs have made
numerous breakthroughs and achieved state-of-the-art in computer vision, natural
language processing and speech recognition, especially these fantastic results based
on GANs.

From the above analyses, we can summarize that the current development
tendencies in CNNs mainly focus on designing new architectures and loss functions.
Because these two aspects are the core parts when applying CNNs into various types
of tasks. On the other hand, the fundamental ideas behind these various applica-
tions are very similar, as summarized above.

However, there are still many disadvantages in the current deep learning. The
first problem is the requirement of large-scale datasets, in particular constructing a
labeled dataset is very time-consuming and expensive such as in the medical

15

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

domain. Therefore, we need to pay much more attention to semi-supervised learn-
ing and unsupervised learning. The second disadvantage is the high computational
cost related to training deep CNNs, as the current standard CNN structures become
deeper and deeper and they usually consists of millions of parameters. The third
issue is that applying CNNs into tasks is not an easy job and it usually requires
professional skills and experiences, because training a network involves a lot of
hyper-parameters to tune, such as the number of kernels in each layer, the size of
kernels, the total number of layers, learning rate etc.

Future work should focus on deep learning theory as the solid theory for
supporting the current neural models is lacking. Unlike other machine learning
algorithms such as support vector machines that have obvious mathematical logic, it
is usually very hard to totally understand why a deep network can achieve such an
excellent performance on a task. Therefore, based on the current developments of
deep learning, we give three trends on which we need to work in the future: Neural
Topologies such as the graph neural networks, Uncertainty Estimation such as
Bayesian neural networks and Privacy Preservation.

Acknowledgements

This work is supported by China Scholarship Council and Data61 from CSIRO,
Australia.

Conflict of interest

The authors declare no conflict of interest.

Author details

Wen Xu1,2, Jing He1*, Yanfeng Shu2 and Hui Zheng1

1 Swinburne University of Technology, Australia

2 Data61, CSIRO, Australia

*Address all correspondence to: jinghe@swin.edu.au

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

16

Advances in Deep Learning

References

[1] LeCun Y, Bengio Y, Hinton G. Deep
learning. Nature. 2015;521(7553):
436-444

[2] LeCun Y, Boser BE, Denker JS,
Henderson D, Howard RE, HubbardWE,
et al. Handwritten digit recognition with
a back-propagation network. In:
Advances in Neural Information
Processing Systems. 1990. pp. 396-404

[3] Yu F, Koltun V. Multi-Scale Context
Aggregation by Dilated Convolutions.
arXiv preprint arXiv:1511.07122.
November 23, 2015

[4] Kalchbrenner N, Espeholt L,
Simonyan K, Oord AV, Graves A,
Kavukcuoglu K. Neural Machine
Translation in Linear Time. arXiv
preprint arXiv:1610.10099. October 31,
2016

[5] Sercu T, Goel V. Dense prediction on
sequences with time-dilated
convolutions for speech recognition.
arXiv preprint arXiv:1611.09288.
November 28, 2016

[6] Ronneberger O, Fischer P, Brox T.
U-net: Convolutional networks for
biomedical image segmentation. In:
International Conference on Medical
Image Computing and Computer-
Assisted Intervention. Cham: Springer;
2015. pp. 234-241

[7] Zeiler MD, Fergus R. Visualizing and
understanding convolutional networks.
In: European Conference on Computer
Vision. Cham: Springer; 2014. pp. 818-833

[8] Zhang Y, Lee K, Lee H. Augmenting
supervised neural networks with
unsupervised objectives for large-scale
image classification. In: International
Conference on Machine Learning. 2016.
pp. 612-621

[9]Dong C, Loy CC, He K, Tang X. Image
super-resolution using deep

convolutional networks. IEEE
Transactions on Pattern Analysis and
Machine Intelligence. 2015;38(2):295-307

[10] Cybenko G. Approximation by
superpositions of a sigmoidal function.
Mathematics of Control, Signals, and
Systems. 1992;5(4):455

[11]He K, Zhang X, Ren S, Sun J. Deep
residual learning for image recognition.
In: Proceedings of the IEEE conference
on computer vision and pattern
recognition. 2016. pp. 770-778

[12]He K, Zhang X, Ren S, Sun J.
Identity mappings in deep residual
networks. In: European Conference on
Computer Vision. Cham: Springer;
2016. pp. 630-645

[13] Szegedy C, Liu W, Jia Y,
Sermanet P, Reed S, Anguelov D, et al.
Going deeper with convolutions. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2015. pp. 1-9

[14] Szegedy C, Vanhoucke V, Ioffe S,
Shlens J, Wojna Z. Rethinking the
inception architecture for computer
vision. In: Proceedings of the IEEE
Conference on Computer Vision and
Pattern Recognition. 2016. pp. 2818-2826

[15] Sabour S, Frosst N, Hinton GE.
Dynamic routing between capsules. In:
Advances in Neural Information
Processing Systems. 2017. pp. 3856-3866

[16]Hinton GE, Sabour S, Frosst N.
Matrix capsules with EM routing. In:
International Conference on Learning
Representations. 2018

[17] Kosiorek A, Sabour S, Teh YW,
Hinton GE. Stacked capsule
autoencoders. In: Advances in Neural
Information Processing Systems. 2019.
pp. 15512-15522

17

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

[18] Russakovsky O, Deng J, Su H,
Krause J, Satheesh S, Ma S, et al.
Imagenet large scale visual recognition
challenge. International Journal of
Computer Vision. 2015;115(3):211-252

[19] Simonyan K, Zisserman A. Very
Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv
preprint arXiv:1409.1556. September 4,
2014

[20] Long J, Shelhamer E, Darrell T.
Fully convolutional networks for
semantic segmentation. In: Proceedings
of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015.
pp. 3431-3440

[21] Kingma DP, Welling M. Auto-
encoding variational bayes. arXiv
preprint arXiv:1312.6114. December 20,
2013

[22] Im DI, Ahn S, Memisevic R,
Bengio Y. Denoising criterion for
variational auto-encoding framework.
In: Thirty-First AAAI Conference on
Artificial Intelligence. 2017

[23] Kingma DP, Mohamed S,
Rezende DJ, Welling M. Semi-
supervised learning with deep
generative models. In: Advances in
Neural Information Processing Systems.
2014. pp. 3581-3589

[24] Sohn K, Lee H, Yan X. Learning
structured output representation using
deep conditional generative models. In:
Advances in Neural Information
Processing Systems. 2015. pp. 3483-3491

[25]Goodfellow I, Pouget-Abadie J,
Mirza M, Xu B,Warde-Farley D, Ozair S,
et al. Generative adversarial nets. In:
Advances in neural information
processing systems. 2014. pp. 2672-2680

[26]Mirza M, Osindero S. Conditional
Generative Adversarial Nets. arXiv
preprint arXiv:1411.1784. November 6,
2014

[27]Denton EL, Chintala S, Fergus R.
Deep generative image models using a
laplacian pyramid of adversarial
networks. In: Advances in Neural
Information Processing Systems. 2015.
pp. 1486-1494

[28] Radford A, Metz L, Chintala S.
Unsupervised Representation Learning
with Deep Convolutional Generative
Adversarial Networks. arXiv preprint
arXiv:1511.06434. November 19, 2015

[29]Donahue J, Krähenbühl P, Darrell T.
Adversarial Feature Learning. arXiv
preprint arXiv:1605.09782. May 31,
2016

[30]Odena A. Semi-Supervised Learning
with Generative Adversarial Networks.
arXiv preprint arXiv:1606.01583. June 5,
2016

[31] Chen X, Duan Y, Houthooft R,
Schulman J, Sutskever I, Abbeel P.
Infogan: Interpretable representation
learning by information maximizing
generative adversarial nets. In:
Advances in Neural Information
Processing Systems. 2016. pp. 2172-2180

[32] Zhao J, Mathieu M, LeCun Y.
Energy-Based Generative Adversarial
Network. arXiv preprint arXiv:
1609.03126. September 11, 2016

[33]Odena A, Olah C, Shlens J.
Conditional image synthesis with
auxiliary classifier gans. In:
International Conference on Machine
Learning. 2017. pp. 2642-2651

[34]Karras T, Aila T, Laine S, Lehtinen J.
Progressive Growing of Gans for
Improved Quality, Stability, and
Variation. arXiv preprint arXiv:
1710.10196. October 27, 2017

[35] Brock A, Donahue J, Simonyan K.
Large Scale Gan Training for High
Fidelity Natural Image Synthesis. arXiv
preprint arXiv:1809.11096.
September 28, 2018

18

Advances in Deep Learning

[36] Zhang H, Goodfellow I, Metaxas D,
Odena A. Self-attention generative
adversarial networks. In: International
Conference on Machine Learning. 2019.
pp. 7354-7363

[37] Kaneko T, Ushiku Y, Harada T.
Label-noise robust generative
adversarial networks. In: Proceedings of
the IEEE Conference on Computer
Vision and Pattern Recognition. 2019.
pp. 2467-2476

[38] Gong X, Chang S, Jiang Y, Wang Z.
Autogan: Neural architecture search for
generative adversarial networks. In:
Proceedings of the IEEE International
Conference on Computer Vision. 2019.
pp. 3224-3234

[39]Daras G, Odena A, Zhang H,
Dimakis AG. Your local GAN: Designing
two dimensional local attention
mechanisms for generative models. In:
Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern
Recognition. 2020. pp. 14531-14539

[40] Karnewar A, Wang O. Msg-gan:
Multi-scale gradients for generative
adversarial networks. In: Proceedings of
the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020.
pp. 7799-7808

[41] Kullback S, Leibler RA. On
information and sufficiency. The annals
of mathematical statistics. 1951;22(1):
79-86

[42]Deng J, Dong W, Socher R, Li LJ,
Li K, Fei-Fei L. Imagenet: A large-scale
hierarchical image database. In: 2009
IEEE Conference on Computer Vision
and Pattern Recognition. IEEE; 2009.
pp. 248-255

[43] Redmon J, Divvala S, Girshick R,
Farhadi A. You only look once: Unified,
real-time object detection. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2016. pp. 779-788

[44] Liu W, Anguelov D, Erhan D,
Szegedy C, Reed S, Fu CY, et al. Ssd:
Single shot multibox detector. In:
European Conference on Computer
Vision. Cham: Springer; 2016. pp. 21-37

[45] Toshev A, Szegedy C. Deeppose:
Human pose estimation via deep neural
networks. In: Proceedings of the IEEE
Conference on Computer Vision and
Pattern Recognition. 2014.
pp. 1653-1660

[46] Carreira J, Agrawal P,
Fragkiadaki K, Malik J. Human pose
estimation with iterative error feedback.
In: Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition. 2016. pp. 4733-4742

[47] Tompson JJ, Jain A, LeCun Y,
Bregler C. Joint training of a
convolutional network and a graphical
model for human pose estimation. In:
Advances in Neural Information
Processing Systems. 2014. pp. 1799-1807

[48] Chu X, Yang W, Ouyang W, Ma C,
Yuille AL, Wang X. Multi-context
attention for human pose estimation. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2017. pp. 1831-1840

[49]Mao X, Shen C, Yang YB. Image
restoration using very deep
convolutional encoder-decoder
networks with symmetric skip
connections. In: Advances in Neural
Information Processing Systems. 2016.
pp. 2802-2810

[50] Zhang Y, Tian Y, Kong Y, Zhong B,
Fu Y. Residual dense network for image
restoration. IEEE Transactions on
Pattern Analysis and Machine
Intelligence. 2020

[51] Johnson J, Karpathy A, Fei-Fei L.
Densecap: Fully convolutional
localization networks for dense
captioning. In: Proceedings of the IEEE
Conference on Computer Vision and

19

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

Pattern Recognition. 2016.
pp. 4565-4574

[52]Huang L, WangW, Chen J, Wei XY.
Attention on attention for image
captioning. In: Proceedings of the IEEE
International Conference on Computer
Vision. 2019. pp. 4634-4643

[53] Sainath TN, Mohamed AR,
Kingsbury B, Ramabhadran B. Deep
convolutional neural networks for
LVCSR. In: 2013 IEEE international
conference on acoustics, speech and
signal processing. IEEE; 2013.
pp. 8614-8618

[54] Abdel-Hamid O, Mohamed AR,
Jiang H, Deng L, Penn G, Yu D.
Convolutional neural networks for
speech recognition. IEEE/ACM
Transactions on audio, speech, and
language processing. 2014;22(10):
1533-1545

[55] Amodei D, Ananthanarayanan S,
Anubhai R, Bai J, Battenberg E, Case C,
et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. In:
International Conference on Machine
Learning. 2016. pp. 173-182

[56] Zhang Y, Pezeshki M, Brakel P,
Zhang S, Bengio CL, Courville A.
Towards End-to-End Speech
Recognition with Deep Convolutional
Neural Networks. arXiv preprint arXiv:
1701.02720. January 10, 2017

[57] Souly N, Spampinato C, Shah M.
Semi supervised semantic segmentation
using generative adversarial network.
In: Proceedings of the IEEE
International Conference on Computer
Vision. 2017. pp. 5688-5696

[58] Frid-Adar M, Diamant I, Klang E,
Amitai M, Goldberger J, Greenspan H.
GAN-based synthetic medical image
augmentation for increased CNN
performance in liver lesion
classification. Neurocomputing. 2018;
321:321-331

[59] Isola P, Zhu JY, Zhou T, Efros AA.
Image-to-image translation with
conditional adversarial networks. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2017. pp. 1125-1134

[60] Zhu JY, Park T, Isola P, Efros AA.
Unpaired image-to-image translation
using cycle-consistent adversarial
networks. In: Proceedings of the IEEE
International Conference on Computer
Vision. 2017. pp. 2223-2232

[61] Reed S, Akata Z, Yan X,
Logeswaran L, Schiele B, Lee H.
Generative Adversarial Text to Image
Synthesis. arXiv preprint arXiv:
1605.05396. May 17, 2016

[62] Zhang H, Xu T, Li H, Zhang S,
Wang X, Huang X, et al. Stackgan: Text
to photo-realistic image synthesis with
stacked generative adversarial
networks. In: Proceedings of the IEEE
International Conference on Computer
Vision. 2017. pp. 5907-5915

[63] Ledig C, Theis L, Huszár F,
Caballero J, CunninghamA, Acosta A,
et al. Photo-realistic single image super-
resolution using a generative adversarial
network. In: Proceedings of the IEEE
Conference on Computer Vision and
Pattern Recognition. 2017. pp. 4681-4690

[64] Pathak D, Krahenbuhl P, Donahue J,
Darrell T, Efros AA. Context encoders:
Feature learning by inpainting. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2016. pp. 2536-2544

[65] Yeh RA, Chen C, Yian Lim T,
Schwing AG, Hasegawa-Johnson M,
Do MN. Semantic image inpainting with
deep generative models. In: Proceedings
of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017.
pp. 5485-5493

[66] Li Y, Liu S, Yang J, Yang MH.
Generative face completion. In:

20

Advances in Deep Learning

Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. 2017. pp. 3911-3919

[67] Xu N, Price B, Cohen S, Huang T.
Deep image matting. In: Proceedings of
the IEEE Conference on Computer
Vision and Pattern Recognition. 2017.
pp. 2970-2979

[68] Lutz S, Amplianitis K, Smolic A.
Alphagan: Generative Adversarial
Networks for Natural Image Matting.
arXiv preprint arXiv:1807.10088.
July 26, 2018

21

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512

