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Chapter

Industrial Safety Management 
Using Innovative and Proactive 
Strategies
Siyuan Song and Ibukun Awolusi

Abstract

Safety is considered a top priority due to its significance in safeguarding human 
lives and properties, especially in high-risk industrial sectors such as aviation, oil 
and gas, construction, transportation, steel manufacturing, and mining industries. 
These industries are plagued by workplace injuries, illnesses, and fatalities because 
of the dangerous work environments. As such, it is very vital to integrate safety 
into every work process in any industrial environment just like quality is built into 
products and services. It is important to establish and execute an effective safety 
management system to prevent the risks of irreversible accidents. This chapter 
begins with a background to safety management in industrial engineering and a 
discussion of the various issues of industrial safety management. It follows with an 
extensive description of existing and commonly used safety performance measure-
ment methods. Several case studies are used to explain the methods and explore the 
important application areas relevant to most industrial sectors. The techniques and 
tools for safety data collection, analysis, and sharing are introduced together with 
their applications for safety management. The last section explains how emerg-
ing technologies can be implemented in most industrial sectors to enhance safety 
management.

Keywords: emerging technologies, hazard identification, safety management

1. Introduction

Industrial work environments are often characterized by dynamic resources 
including interactions between mobile equipment and pedestrian workers. The 
hazardous work environment characteristic of industrial facilities is evident in the 
high rates of workplace injuries and fatalities experienced regularly. These high-risk 
industries include construction, steel manufacturing, oil and gas, aviation, agricul-
ture, forestry, fishing, and hunting, etc.

For instance, the construction industry remains one of the most hazardous and 
unsafe industries with fatality and incidence rates considerably higher than the all-
industry average in many countries [1–4]. Incident statistics indicate that construc-
tion workers have consistently incurred more fatal injuries than in other industries. 
Despite the efforts to improve safety performance, the construction sector continues 
to account for disproportionate injury rates accounting for the most on-the-job fatal 
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injuries. In the United States, construction remains the most hazardous industry in 
terms of the aggregate number of fatalities [1]. Thus, innovative intervention strate-
gies are being continuously explored by researchers and practitioners to enhance 
management controls as well as modify human behavior and work environment to 
improve construction safety.

Steel manufacturing is one of the most hazardous industries because of its 
complex socio-technical system. The steel manufacturing process involves the use 
of high technology and physical labor, making safety management a complicated 
task [5]. Members of the U.S. steel manufacturing industry continue to experience 
a significant number of injuries, illnesses, and fatalities [6]. The combination of 
intricate technology and physical labor creates a complicated challenge for safety 
managers in steel manufacturing [5].

The fundamental goal of measuring safety performance is to create and 
implement intervention strategies for potential avoidance of future accidents. 
Recognizing signals before an accident occurs offers the potential for improving 
safety; many organizations have sought to develop programs to identify and benefit 
from alerts, signals, and prior indicators [7]. Traditional measures of safety perfor-
mance rely on some form of accident or injury data [8], with actions being taken in 
response to adverse trends in injuries [9]. Many organizations rely heavily on failure 
data to monitor performance. The consequence of this approach is that improve-
ments or changes are only determined after something has gone wrong [10]. In 
most cases, the difference between whether a system failure results in a minor or 
catastrophic outcome is purely a matter of chance.

Effective management of major hazards requires a proactive approach to risk 
management, so information to confirm that critical systems are operating as 
intended is essential [11]. Transitioning the emphasis in favor of leading indicators 
to confirm that risk controls continue to operate is an important step forward in the 
management of major hazard risks [10]. Accurate safety performance measurement 
facilitates the evaluation of ongoing safety management and the motivation of 
project participants to improve safety [12].

The ability to collect, analyze and disseminate safety information using a large 
amount of useful data from leading indicators can allow for hazardous events 
and conditions to be efficiently mitigated and controlled before a lagging indica-
tor occurs [11]. In this chapter, a background to safety management in industrial 
engineering is presented followed by a discussion of the various issues of industrial 
safety management. The existing and commonly used safety performance measure-
ment methods are extensively described. Several case studies are used to explain the 
methods and explore the important application areas relevant to most industrial 
sectors. The techniques and tools for safety data collection, analysis, and sharing 
are introduced together with their applications for safety management while the use 
of emerging technologies for enhancing safety management in most industries is 
discussed in the last section.

2. Safety culture

The safety culture of an organization refers to the product of individual and 
group values, attitudes, perceptions, competencies, and patterns of behavior that 
determine the commitment to and the style and proficiency of an organization’s 
safety and health management [13]. Safety culture has been defined in a variety of 
ways and there is no standard definition of safety culture. This is mainly because a 
culture of safety has diverse meanings in different industries and people may have 
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various understandings in different situations. Selected examples of safety culture 
definitions are organized and shown in Table 1.

Strong safety culture has a significant impact on improving safety performance, 
reducing incidents, conducting a successful near-miss, and incident reporting 
in an organization. The growing importance of safety culture to the industry is 
evidenced by reports, guidelines, publications, workshops, and conferences. As an 
industry-led initiative, the Center for Offshore Safety (COS) defined six specific 
elements characteristic of a successful offshore safety culture, including leader-
ship, respect and trust, environment for raising concerns, open communication, 
personal accountability, and inquiring attitude [15]. According to the European 
Union Agency for Railways (ERA), “Safety culture refers to the interaction between 
the requirements of the Safety Management System (SMS), how people make sense 
of them, based on their attitudes, values, and beliefs, and what they actually do, 
as seen in decisions and behaviors.” [16]. A safety culture model (Figure 1) was 
developed by ERA to assess safety culture and identify improvable areas [16]. The 
model is made up of three building blocks: cultural enablers, behavior patterns, and 
railway safety fundamentals [16].

• Cultural enablers: those levers through which an organizational culture 
develops;

• Behavior patterns: those shared ways of thinking and acting which convey the 
organizational culture;

• Railway safety fundamentals: those core principles which must be reflected by 
behavior patterns to achieve sustainable safety performance and organizational 
excellence.

Reference Definition of safety culture

[8] Safety culture is thought to influence employees’ attitudes and behavior in relation to an 

organization’s ongoing health and safety performance [14]

[68] The Safety Culture is made up of a collection of individual cultures and other subcultures 

within the environmental constraints and promotions of the organization [68]

[69] Safety culture is defined as a set of prevailing indicators, beliefs, and values that the 

organization owns in safety [69]

[70] Safety culture is a sub-facet of organizational culture, which is thought to affect 

members’ attitudes and behavior in relation to an organization’s ongoing health and safety 

performance [70]

[71] Safety culture forms a subset of organizational culture relating specifically to the values and 

beliefs concerning health and safety within an organization [71]

[72] Safety culture refers to shared attitudes, values, beliefs, and practices concerning safety and 

the necessity for effective controls [72]

[73] Safety culture is defined as: those aspects of the organizational culture which will impact on 

attitudes and behavior related to increasing or decreasing risk [73]

[74] Safety culture is shaped by people working together in organizational structures and social 

relationships in the workplace. The key attributes of organizational culture are defined 

as organizational communication, senior management commitment and organizational 

learning [74]

Table 1. 
Selected safety culture definitions.
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Within a positive safety culture, the organization’s formal management systems 
and leaders’ informal management practices encourage, recognize, and reinforce 
safe behaviors, and create an environment where employees feel responsible for 
their safety and the safety of their peers [14]. The largest indicator of a manage-
ment’s commitment to safety is the investments made for safety including discre-
tionary safety funding [17]. Previous research investigated the correlation between 
safety discretionary funding of construction companies and their corresponding 
safety record [18]. Results suggest that increasing the amount of discretionary safety 
funding in a construction company can improve their incident record. Furthermore, 
companies that invest in safety programs, training, and employee incentives 
can improve their safety record [18]. Finally, results from a construction safety 
study found that organizational commitment throughout all levels (top manage-
ment, site level, to the individual level) is the key to promoting improved safety 
 performance [19].

3. Safety performance measurement

The primary goal of measuring safety performance in a work environment is to 
intervene in an attempt to mitigate unsafe behaviors and conditions that can lead 
to accidents. Various measures of safety performance have been used for decades 
and they have served a useful purpose [20]. Generally, performance measurements 
can either be reactive or active monitoring [10]. While reactive monitoring means 
identifying and reporting on incidents and learning from mistakes, active monitor-
ing provides feedback on performance before an accident or incident occurs [21].

In the US, safety performance has traditionally been measured by metrics such 
as the Occupational Safety and Health Administration (OSHA) recordable injury 
rate (RIR); days away, restricted work, or transfer (DART) injury rate; or the 
experience modification rating (EMR) on workers’ compensation [20]. Past safety 
performance has been largely measured and driven by lagging indicators (including 

Figure 1. 
European Railway Safety Culture Model 2.0: Components.
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injuries, illnesses, and fatalities), but improvements and enhancements of safety 
performance can be experienced through implementing safety leading indicators to 
measure worker safety performance [11]. Although lagging indicators will continue 
to be used, they have serious limitations when it comes to the prediction of the cur-
rent and future safety performance of a project or work environment. This makes 
the need for leading indicators of safety performance very crucial [20].

The term “indicators” is used to mean observable measures that provide insights 
into a concept that is difficult to measure directly; a safety performance indicator 
is a means for measuring the changes over time at the level of safety as the result of 
actions taken [22]. An indicator is a measurable and operational variable that can 
be used to describe the condition of a broader phenomenon or aspect of reality. An 
indicator can be considered any measure (quantitative or qualitative) that seeks to 
produce information on an issue of interest [23]. Safety indicators can play a key 
role in providing information on organizational performance, motivating people to 
work on safety, and increasing the organizational potential for safety [24].

The major distinction between leading and lagging indicators lies in the type of 
response that is elicited by them when the measures indicate that performance is 
not as desired. While in leading indicators, the response is proactive in nature with 
the intent of making changes in the safety process to avoid injuries, with lagging 
indicators, the response is reactive as a response is made after injuries have already 
occurred and the response is initiated to try to prevent the occurrence of further 
injuries [20]. Hence, the two categories of safety metrics are: (1) lagging indicators 
(i.e. metrics linked to the outcome of an injury or accident); and (2) leading indica-
tors (i.e. metrics or measurements linked to preventive actions).

3.1 Lagging indicators

Lagging indicators are related to reactive monitoring which involves identifying 
and reporting on incidents to check that controls in place are adequate, to identify 
weaknesses or gaps in control systems, and to learn from mistakes [10]. They show 
when the desired safety outcome has failed, or when it has not been achieved [25]. 
Since lagging indicators might prompt response after an injury or a series of injuries 
have occurred, it should be evident that lagging indicators of safety performance 
are based on past safety performance results [20]. Lagging indicators do not provide 
further insights on the existing safety conditions once an accident has occurred 
because they do not give room for informed decision making based on continuous 
data collection and analysis [26]. The most commonly used lagging indicators are 
accident rate, lost workday injuries, medical case injuries, and experience modifica-
tion rate (EMR), among others.

3.2 Leading indicators

Leading indicators are measurements of processes, activities, and conditions 
that define performance and can predict future results [9]. A leading indicator is the 
result of periodic measurements of specific safety performance. Leading indicators 
provide opportunities for safety managers to identify areas of safety performance 
that need improvement before injuries or fatalities occur [27]. Leading indicators 
measure the building blocks of the safety culture of a project or company. When 
one or more of these measures suggest that some aspect of the safety process is weak 
or weakening, interventions can be implemented to improve the safety process and, 
thereby positively impact the safety process before any negative occurrences (inju-
ries) are sustained [9]. The common leading indicators used in industrial sectors are 
near miss reporting, project management team safety process involvement, worker 
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observation process, job site audits, housekeeping program, stop work authority, 
safety orientation and training, etc. Leading indicators consist of both passive as 
well as active measures. Passive measures are those which can be predictive over an 
extended period while active measures are those which can initiate corrective steps 
in a short period. These two measures of leading indicators are further described as 
follows.

3.2.1 Passive leading indicators

Passive leading indicators are those that provide an indication of the probable 
safety performance to be realized within a firm or on a project. While they may be 
somewhat predictive on a macro scale, they are less effective as being predictive on 
a short-term basis. This implies that the process being monitored by passive leading 
indicators cannot generally be altered in a short period of time [20]. Measures of 
passive indicators are usually binary in that the organization implements them or 
does not [28]. The most reliable information that passive indicators provide when 
properly analyzed and applied is a simple qualitative measure of the knowledge or 
skills base of personnel which is useful in implementing a comprehensive safety 
management system [20].

3.2.2 Active leading indicators

Active leading indicators are those which are more subject to change in a short 
period. Active leading indicators can either be quantitative, but the measures can 
also be qualitative. Quantitative measures may be preferred as they are more objec-
tive and may result in more consistent interpretation. Nonetheless, when no other 
means are available, qualitative measures should not be avoided [20]. The leading 
indicators of safety performance essentially disclose what aspects of the safety pro-
gram are going well and, if there are any weaknesses, these will be identified, and 
implementation of change can be initiated. Active indicators are generally continu-
ous in that they occur at a frequency or are measures of quality of implementation 
[28]. Active leading indicators represent both a qualitative and quantitative measure 
of the actual implementation of the processes within a comprehensive safety 
management system [20].

4. Safety management through hazard identification

In high-risk industrial sectors, workers are constantly exposed to various types 
of occupational hazards due to the nature of their work and condition of the work 
environment. The first step in accident prevention is the identification of hazards. 
The improvement of safety performance requires the implementation of proactive 
worker hazard identification and prevention programs. In many industrial sec-
tors, the safety performance of workers is predominantly measured based of their 
ability to proactively identify and respond to hazards in the work environment 
[29]. Hazards are related to the improper release of energy. Accidents result from 
the interaction of energy, equipment or materials, and one or more people, and the 
potential hazards associated with such interaction can be identified based on the 
energy sources recognition.

Being oblivious of the presence and magnitude of an energy source often results 
in an accident. As a result, it is important to identify highly innovative and effec-
tive hazard recognition strategies such as implementing techniques to avoid future 
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accidents [29]. Because hazards can be caused by different energy sources, the 
awareness of all the energy sources is key to identifying potential hazards and creat-
ing a safe environment. The risk associated with hazardous conditions or situations 
in a work environment can only be analyzes for accident prevention if the related 
hazards can be correctly recognized or identified.

In construction, for instance, workers are constantly exposed to hazards that are 
difficult to measure due to the nature of the work environment and the way construc-
tion tasks are performed [21, 30]. Statistics indicate that fatalities and incidents rates 
in the construction industry remain significantly higher than the all-industry average 
in many countries. This makes the construction industry one of the most hazardous 
and accident-prone industries and the majority of the accidents experienced occur 
due to the inability of the workforce to predict, identify, and respond to hazards at the 
workplace [31]. The dynamic nature of construction work and task unpredictability 
on projects make hazard recognition difficult [32]. The energy required to accomplish 
work tasks on projects if released inappropriately may cause loss-of-control which 
can get construction workers injured [33]. The probability of accidents will increase 
when hazards are not identified and assessed on a typical project.

In the steel manufacturing industry, employees continuously work in highly 
hazardous work environments characterized by limited visibility, hazardous 
proximity situations between heavy equipment and pedestrian workers, and the 
dynamic nature of manufacturing tasks. The working conditions typical of steel 
manufacturing environments include increased amounts of repetitive work tasks 
[34], elevated temperature [35], noisy surroundings [36] and an overall rugged 
work environment [37]. These conditions tend to cultivate conditional and behav-
ioral hazards that increase the probability of employees experiencing an incident 
in the form of an injury, illness, or fatality. The choice and the implementation of 
specific measures for preventing workplace injury and illness in the iron and steel 
industry depend on the recognition of the principal hazards and the anticipated 
injuries and diseases, ill health, and incidents [11]. Although hazard identification 
provides a useful method for mitigating hazards, the impact of specific hazards 
categories on injuries, illnesses, and fatalities has not been quantified [37]. To pro-
actively identify hazardous situations and conditions, details from safety incident 
data can be analyzed to identify predictor variables of future incidents in steel 
manufacturing environments.

4.1 Energy source recognition

An injury occurs whenever energy is released from one or more of these sources 
and transferred to the human body. For instance, a suspended load is a source of 
gravity and motion because it has the potential to fall and swing. If a worker is 
struck by this suspended load, motion energy will be transferred from the load to 
the worker and absorbed by the worker’s body, causing an injury. Other examples of 
energy sources in industrial work environments include radiation from welding, hot 
and cold objects and environments, compressed gas cylinders, hazardous substances, 
moving and noisy equipment and vehicles, and objects and bodies at height [38].

Certain hazard sources and activities may be associated with multiple hazards. 
For example, an electric cable on the floor may be associated with a trip hazard and 
an electrical hazard. Industrial work environments may contain hidden or dormant 
hazards that are not expected or perceived as imposing any imminent danger. Such 
hazards often remain in work environments as latent or stored energy for extended 
periods without causing any harm. However, the unexpected release or trigger of 
these latent sources of stored energy can result in dramatic injury and illnesses. 
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Because of the importance of hazard recognition, employers adopt several methods 
to improve hazard recognition levels. One of these methods is the retrospective 
hazard recognition method which is based on deducing or extrapolating knowledge 
gained and lessons learned from past safety incidents (i.e. accidents data) to new 
situations and projects [39, 40]. Despite these significant advancements, there 
is still a dearth of research that investigates the scientific extension and practical 
application of hazard energy within occupational safety [41].

5. Safety data collection, analysis, and sharing

A strong system of safety data collection, analysis, and sharing will assist the 
industry to understand the root causes of an event, explore existing and potential 
hazards, and continuously improving existing safety programs. Different countries 
and industries have conducted multiple reporting systems to collect, analyze, and 
share information with the public. For example, HSE has collected data on fatal 
injuries, nonfatal injuries, and ill health through the Labour Force Survey (LFS). 
The nonfatal injury and ill health estimates from the LFS are based on averages over 
3 years. The fatal injuries data are collected based on RIDDOR (the Reporting of 
Injuries, Diseases, and Dangerous Occurrences Regulations) reports. In the United 
States, the Occupational Safety and Health Administration (OSHA) inspects the 
workplace to ensure compliance with minimum safety standards. If OSHA compli-
ance officers find any violations on a site, they may issue a citation and a penalty. 
A company that had more than 10 employees at any time during the last calendar 
year must keep OSHA injury and illness records. Even if an employer is not required 
to keep injury and illness records, they are still required to report to OSHA within 
8 hours any workplace incidents that result in death or the hospitalization of three 
or more employees. If there is a serious accident at a job site in which three or more 
workers are hospitalized or someone is killed, OSHA must be notified. OSHA will 
then investigate the accident.

5.1 Safety data collection

According to Section 3, safety incident data contains leading indicators (e.g. near 
misses) and lagging indicators (injures, illnesses, fatalities). Near-miss and incident 
reporting programs have been promoted and developed across high-risk industries 
[42]. OSHA requires employers to report all work-related fatalities and severe 
injuries according to OSHA Regulations (Standards—29 CFR 1904):

• All employers are required to notify OSHA when an employee is killed on the 
job or suffers a work-related hospitalization, amputation, or loss of an eye.

• A fatality must be reported within 8 hours.

• An in-patient hospitalization, amputation, or eye loss must be reported within 
24 hours.

Besides the OSHA recordkeeping, many of the current companies in the high-
hazard industries use daily reporting applications (apps) to collect the safety data 
from their project sites. However, those data are mainly used internally for company 
future development. Figure 2 shows examples of safety data collected by the Bureau 
of Labor Statistics (BLS) and safety apps.
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5.2 Safety data analysis

According to OSHA, the incidence rates represent the number of injuries and 
illnesses per 100 full-time workers and are calculated as (N/EH) × 200,000:

 
( )#of cases or days year 200,000

Incident rate
Total employee hours year

´
=

per

per
  (1)

Where N = number of injuries and illnesses; EH = total hours worked by all 
employees during the calendar year; 200,000 = base for 100 equivalent full-time 
workers (working 40 hours per week, 50 weeks per year).

The US BLS Injuries, Illnesses, and Fatalities (IIF) program produces a wide 
range of information about workplace injuries and illnesses. These data are collected 
and reported annually through the Survey of Occupational Injuries and Illnesses 
(SOII) and the Census of Fatal Occupational Injuries (CFOI). Table 2 is the latest 
industry incidence rates (OSHA recordable case rates) from BLS.

5.2.1 EMR (cost of accidents)

An accident cost usually includes direct and indirect costs. The biggest differ-
ence is if the costs can/cannot be directly attributed to the incident. The National 
Council on Compensation Insurance (NCCI)’s EMR is a metric to calculate workers’ 
compensation insurance premiums.

EMR is calculated by trends in the loss ratio:

 
( )

( )

Claims in $
Loss ratio

Premiums payments in $
=   (2)

Figure 2. 
Safety data collection methods (image source: https://www.bls.gov/iif/oshsum.htm and https://conappguru.
com/apps/apps-for-construction-safety-2016/).
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The average EMR is 1.0. If a company’s EMR is above 1.0, the company is 
considered riskier than most. For example, if a company has an EMR of 1.3, that 
means the insurance premiums could be up to 30% higher than a company with an 
EMR of 1.0. On the other hand, if a company has an EMR below 1.0, the company is 
considered safer than most which could receive a lower premium.

To better understand the collected incident data, many statistical modeling 
methods were used to identify the impact factors of incidents. The following two 
case studies introduced how statistical modeling helps with analyzing safety leading 
indicators and lagging indicators.

5.2.1.1 Case study #1 (using binary logit regression)

In this case study, approximately 2300 reported incidents at an active steel 
manufacturing facility in the U.S. between January of 2010 and August of 2016 
were input into statistical predictive models [37]. The objective of this research is 

Industry Total recordable cases Cases with days away from 

work

2017 2018 2017 2018

Private industry 2.8 2.8 0.9 0.9

Agriculture, forestry, fishing, and hunting 5.0 5.3 1.7 1.7

Mining, quarrying, and oil and gas extraction 1.5 1.4 0.7 0.6

Construction 3.1 3.0 1.2 1.2

Manufacturing 2.5 3.4 0.9 0.9

Wholesale trade 2.8 2.9 1.0 1.0

Retail trade 3.3 3.5 1.0 1.1

Transportation and warehousing 4.6 4.5 2.0 2.1

Utilities 2.0 1.9 0.7 0.7

Information 1.3 1.3 0.6 0.6

Finance and insurance 0.5 0.5 0.1 0.1

Real estate and rental and leasing 2.4 2.3 1.0 0.8

Professional, scientific, and technical  

services

0.8 0.8 0.2 0.2

Management of companies and enterprises 0.9 0.8 0.2 0.2

Administrative and support and waste 

management and remediation services

2.2 2.3 0.9 0.9

Educational services 1.9 1.9 0.5 0.6

Health care and social assistance 4.1 3.9 1.1 1.1

Arts, entertainment, and recreation 4.2 4.1 1.2 1.1

Accommodation and food services 3.2 3.1 0.9 0.9

Other services (except public administration) 2.1 2.2 0.7 0.8

Table 2. 
Incidence rates of nonfatal occupational injuries and illnesses by selected industry and case types, private 
industry, 2017-2018 [43].



11

Industrial Safety Management Using Innovative and Proactive Strategies
DOI: http://dx.doi.org/10.5772/intechopen.93797

to identify specific variables using statistical models that increase the probability 
of an unsafe event or condition within a steel manufacturing facility [37]. Due to 
the organization and metrics recorded for the steel manufacturing safety inci-
dent database analyzed in this research, a statistical prediction model - Binary 
Logit Model was selected for data analysis. The probability denoted Pr(Y), is 
assumed to be determined by a set of independent variables (X1, X2, …, Xj), and 
a corresponding set of parameters (β0, β1, β2, …, βj). The dependent (Response) 
variables include OSHA Recordable, Lost time, First Aid, Property Damage, 
Environmental Incident, and Fire. The independent (predictor) variables 
describe the incident occurred situations [37]. Variables can be divided into six 
categories: summer indicator (June, July, or August), task performed indicators 
(operating or driving), moving equipment indicators (crane, truck, forklift, or 
trailer), mobile equipment indicator, location indicators (roll shop, coil yard/
disposition, cut to length shop, west gate, water system, or melt shop), and pre-
liminary cause indicators (defective equipment or personal responsibility) [37]. 
Findings from the regression analysis suggest that a positive correlation exists 
between incidents and summer months. One possible explanation is that employ-
ees have higher possibility to be distracted and fatigued due to high temperature. 
Results also suggest that injuries have a positive correlation with pedestrian 
employees near pieces of moving equipment [37]. Mobile equipment including 
trucks, forklifts, and truck and trailer combinations have a positive correlation 
with an incident [37].

5.2.1.2 Case study #2 (using text mining)

This study analyzes OSHA inspected fatalities data in the past 5 years from June 
2014 to Aug 2018 with a total of 4769 accident records. Text mining techniques 
were deployed in this study for hazard report extraction [29]. Figure 3 shows the 
research framework.

The incident description variables were processed using the R package 
‘openNLP’ [44]. This package allows users to clean text data and perform machine-
learning-based entity extractions. An energy source recognition method was then 
used to categorize the data into 10 energy source groups. Several corresponding key 
words were identified based on the energy source groups (Table 3). For example, 
“Worker died in fall from ladder” should be classified to Gravity due to the presence 
of the key term “fall”. The findings show that gravity, motion, mechanical, and elec-
trical related incidents have the largest percentage rate (Figure 4). This presented 
data analysis method can help with predicting future events, preventing reoccur-
rence of similar accidents, making scientific risk control plans, and incorporating 
hazard control measures into work tasks.

Figure 3. 
Research framework of incident analysis using text mining and geospatial mapping [29].
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6. Emerging technologies

6.1 Safety training through computer-aided technologies

The development of virtual reality (VR), augmented reality (AR), and mixed 
reality (MR) have embedded worker training systems and become significant cost-
effective and safer ways to educate workers. The immersive VR/AR/MR environ-
ments within computer-generated simulations have also gained popularity in safety 
training to identify the potential hazards as well as educate moving vehicle opera-
tors on the job site. Hazardous construction scenarios can be simulated interactively 
with the working environment, workers’ behavior, high-risk equipment, and 
working sequence [45]. Researchers also found that many VR/AR systems had been 
proved as efficient, usable, applicable, and accurate approaches in hazard identifi-
cation, safety training, and education, and safety inspection [45].

6.2 Integrating BIM and safety

Numerous studies and industrial applications evidenced that safety and BIM 
integration can assist in safety planning and execution of projects, for example 
to automatic checking of construction models and schedules for preventing 

Figure 4. 
Distribution of the energy sources [29].

Energy source Corresponding key words

Gravity Fall, excavation, collapsing, elevated, uneven, open holes

Motion Confined space, movement, struck by, caught in, caught between, lifting

Mechanical Rotating, compressed, conveyor, belt, motors, power tool, hand tool

Electrical Electrocuted, power line, light fixtures, circuit panel, wiring, batteries

Pressure Piping, cylinders, control liners, vessels, tanks, hoses, pneumatic, hydraulic

Temperature Ignition, cold, hot, fumes, heat, molten slag

Chemical Vapors, corrosive, gas, carbon monoxide, asphyxiation, chemical, toxic, sulfur dioxide

Biological Animals, bacteria, viruses, insects, blood-borne pathogens, contaminated water, food

Radiation Lighting, welding, arc, flash, X-rays, solar rays, microwaves, sunlight

Sound Noise, vibration

Table 3. 
Categorization of data into 10 energy source groups.
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fall-related accidents; automated scaffolding-related safety hazard identification 
[46], visualization [47], and prevention [48], blind spots identification and map-
ping [49], path planning [50], near-miss information reporting and visualization 
[51], towel crane location optimization [52], etc.

6.3 Proximity detection devices

Many proximity avoidance systems have been developed by utilizing various 
technologies, such as an ultrasonic-based sensor [53], radio-frequency identifica-
tion (RFID) sensing technology [54–56], radar [53, 57], GPS [58–59], and magnetic 
field generators [60], to prevent contact accidents, particularly for accidents due to 
being struck by equipment. Most of these technologies provide some form of warn-
ing signals to workers when they are close to heavy equipment. These signals could 
be visual, vibratory, or audible warning signals [61].

6.4 Wearable sensing devices

A wide range of wearable devices has been applied across different industrial sec-
tors including health care, manufacturing, mining, and athletics [62]. Some of these 
devices have proven to be very useful and beneficial to these industries and efforts are 
being made by both researchers and industry practitioners to improve on these tech-
nologies and learn from their initial implementation [63]. With the attention being 
gained by wearable devices worldwide, mobile devices are becoming part of everyday 
life and the number, types, and forms of wearable devices are increasing exponentially 
in recent years [64]. The most widespread adoption and implementation of wearable 
devices have been in the healthcare industry for the continuous monitoring of a user’s 
physiological status [65]. For instance, wearable devices are used in the healthcare 
sector by patients personally to continuously monitor their physiological parameters 
and manage their health and well-being on a personal basis, or grant physicians remote 
access to their health data and receive personalized medical care [66]. Similarly, 
wearable devices incorporated with sensors such as the GPS, heart rate monitors, and 
pedometers are widely used in sports and fitness for tracking performance through 
unobtrusive and noninvasive monitoring and measurements [62]. Wearable sensors 
are integrated into a multitude of equipment used by professional athletes to monitor 
and measure their performance and safety [67]. For instance, sensors are incorporated 
into the helmets of National Football League (NFL) players to detect concussions and 
wired smart compression shirts are used to measure arm movement, and techniques 
are deployed to determine a pitcher’s effectiveness in Major League Baseball (MLB). 
These different categories of wearable sensing devices can be efficiently deployed 
for safety and health data collection and analysis to provide real-time information to 
workers in industrial environments for accident prediction and prevention.

7. Conclusions

This chapter has discussed multiple industry safety-related topics including safety 
culture, hazard identification, safety leading and lagging indicators, safety data 
collection, analysis and sharing, and emerging technologies that can be embedded in 
safety management, training, and design. Multiple case studies and references were 
introduced to explain the different safety topics. Many more safety topics were not/
briefly discussed in this chapter but still very important to know, for example, safety 
laws and regulations, design for safety, safety activity analysis, safety and productiv-
ity, heavy equipment management, occupational health illness-related topics, etc.
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