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Chapter

Mathematical Modelling and
Numerical Simulation of Diffusive
Processes in Slow Changing
Domains
Dmytro V. Yevdokymov and Yuri L. Menshikov

Abstract

Nowadays, diffusion and heat conduction processes in slow changing domains
attract great attention. Slow-phase transitions and growth of biological structures
can be considered as examples of such processes. The main difficulty in numerical
solutions of correspondent problems is connected with the presence of two time
scales. The first one is time scale describing diffusion or heat conduction. The
second time scale is connected with the mentioned slow domain evolution. If there
is sufficient difference in order of the listed time scale, strong computational diffi-
culties in application of time-stepping algorithms are observed. To overcome the
mentioned difficulties, it is proposed to apply a small parameter method for
obtaining a new mathematical model, in which the starting parabolic initial-
boundary-value problem is replaced by a sequence of elliptic boundary-value prob-
lems. Application of the boundary element method for numerical solution of the
obtained sequence of problems gives an opportunity to solve the whole considered
problem in slow time with high accuracy specific to the mentioned algorithm.
Besides that, questions about convergence of the obtained asymptotic expansion
and correspondence between initial and obtained formulations of the problem are
considered separately. The proposed numerical approach is illustrated by several
examples of numerical calculations for relevant problems.

Keywords: moving boundary problem, Stefan problem, biological tissue growth,
asymptotic method, heat conduction equation, diffusion equation,
Laplace equation, boundary element method

1. Introduction

Processes in moving boundary domains are commonly known starting from
antiquity. Freezing of water with ice creation and an inverse process, when ice
melts, evidently show how important this class of phenomena for environmental
sciences. Similar processes of solidification and melting create physical background
for most technologies of metal or other material productions. Even the mentioned
two examples are enough to understand an urgency of the considered problems.
However, beside of that, free surface fluid flows, shock wave propagations in gases,
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growing processes in biological tissues, virus dynamics can be classified as moving
boundary problems too. Thus, a number of relevant problems are so many, that
they require huge efforts for their mathematical modeling and numerical simulation
in different fields of sciences and industries. As a result, the specific direction in
numerical analysis was developed to satisfy to numerous demands of practical
applications. First of all, the mentioned demands concern accuracy and effective-
ness of the correspondent computational schemes.

Let us consider the specific computational difficulties arising in moving bound-
ary problems, in details. There exist, at least, one physical evolutionary field inside
the solution domain, which determines the considered process of boundary motion.
This field is described by some mathematical model with specific parameters, some
of which would be grouped into dimensionless complexes like Fourier number. At
least, one of such parameters must be connected with dimensionless time for evo-
lutionary problem. Motion of solution domain boundary is completely another
process, determined by different mathematical model. The mathematical model of
boundary motion includes time too and allows its conversion into dimensionless
time. Thus, the general problem includes, at least, two-time scales, connected with
the governing physical field and with the boundary motion. Since there are not any
restrictions on time scales or even connections between them, a relation of the
considered time scales can have any value, including extremely small or extremely
large. In last case, one of the considered processes can be defined as “slow” and
other as “fast”. As a rule, the boundary motion is “slow” and the field governing
equation time is “fast” in the practical applications, like phase transitions in indus-
trial technologies. To obtain an accurate solution using traditional step-by-step
approximation in time, it is necessary to use extremely small-time step (to avoid
sufficient approximation errors) during enough large time interval in “slow” time.
Since such computational procedure requires a huge number of time steps, it is
undesirable due to high-consumed computer resources and possible accumulation
of computational errors. To overcome the described difficulty, an asymptotic anal-
ysis can be applied to the considered problem. A relation of dimensionless “fast”
time to dimensionless “slow” time is dimensionless time-independent constant,
which is enough small. It is suitable to use this value as a small parameter in
correspondent asymptotic expansions. As a result, the obtained asymptotic
sequence of problems gives an opportunity to solve the general problem in “slow”

time instead “fast” time, what provides more effective tools of numerical or
approximate analytical analysis. For example, heat conduction equation in
well-known Stefan problem is replaced by sequence of Laplace equations in
two-dimensional and three-dimensional in space cases and by sequence of second
order ordinary differential equations in one-dimensional in space case. As a rule, the
last one-dimensional case allows analytical integration of the problem.

Generally speaking, arbitrary shapes of domains and their boundaries can arise
in the moving boundary problems, what is connected with rebuilding of computa-
tional grid at every time step. It means very serious computational difficulties for
applications of finite difference and finite element methods, because of their
computational opportunities are sufficiently determined by the grid parameters.
Beside of that, transfer process of the computed solutions from nodes of old grid
into the nodes of new built grid generates hard for checking errors. Boundary
element method is often used for such problem because the rebuilding of boundary
element grid is sufficiently simpler than similar procedure for finite element and
finite difference methods.

At last, moving boundary problems are connected with specific kind of
nonlinearity, which restricts a set of effective tools for the problem analysis. Beside
of that, the governing equations describing temperature fields inside the phases can
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be nonlinear too. Fortunately, asymptotic approach described above provides line-
arization of obtained boundary-value problems.

Taking into account all circumstances and requirements, the following conclu-
sion can be made: only the boundary element method would be effective approach
to numerical solution of the obtained asymptotic sequence of elliptic boundary-
value problems, constructed for moving boundary problems with the governing
parabolic equation.

Two practically important problems are used as examples in the present work.
The first one is well-known and mentioned above Stefan problem, in particular,
case of slow phase transition will be considered below, because the condition, that
Stefan number is less than 1, provides an effective applicability of asymptotic
approach. The second considered problem is biological tissue growth problem,
describing specific processes, which are investigated in biological, medical and
agricultural sciences.

Physical theory of phase transformations on microscopic and macroscopic levels
were good developed and, as a result, there are not sufficient unsolved questions,
what can arise during solution of most of applied heat and mass transfer problems
including phase transition [1]. However, there is not so good situation from the
point of view of computational mathematics, because phase transition problems
contain specific kind of nonlinearity connected with motion of phase transition
boundary. As a rule, time-stepping algorithms are used for numerical solution of
phase transition problems and the domain shape is fixed on the time step, that is,
there is an implicit splitting of the process by the field evolution and interphase
boundary motion. Thus such algorithms provide “jumping” domain shape and time
step must be enough small to guarantee small domain shape “jump” and high
accuracy of the field calculation. Beside of additional time step restriction, there is
an additional error source, concerning the domain boundary motion. Any full
review of numerical methods of Stefan problem solution requires a special investi-
gation and cannot be included in restricted amount of the present paper. However,
the following general conclusion can be made: all mentioned numerical algorithms
of Stefan problem solution, based on finite element or finite difference approaches,
are rather directed to fast phase transformations, because under restricted time step
they require a lot of time steps for slow phase transformations. Then they are found
noneffective in the case of slow phase transitions.

The quasi-stationary approximation (called Leybenzon approximation in
Russian literature) is used to apply for numerical calculations of such processes [1].
However, the number of similar works was very restricted, and they were devoted
to engineering design. This approach becomes popular in problems of freezing
(melting) of soil, for investigation of phase transitions in solid body, in some
evaporation (condensation) problems. The situation in numerical modeling of slow
phase transitions was sharply changed in connection with three new problems. The
first problem was simple attempt to build more accurate mathematical models for
environment processes, for example, in meteorology or soil investigations. The
second problem is phase transitions in microgravity conditions, which became
important with starting of intensive space explorations. And finally, the third prob-
lem was connected with attempts to obtain a material with minimal residual stresses
during material production or during phase transitions in solid body, what was
important in material sciences. An experience of application of traditional finite
difference and finite element approach to the mentioned problems was rather
unsuccessful, because their numerical solution required huge computer resources
and therefore their research opportunities were strongly restricted. Beside of that,
the traditional methods often could not provide necessary accuracy of the numeri-
cal solution. On the other hand, the quasi-stationary approximation had difficulties
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too, because it is related to asymptotically slow processes and doesn’t take into
account initial conditions. Beside of that, elliptical boundary-value problems, which
must be numerically solved at every time step of quasi-stationary problem solution,
are rather inconvenient for finite difference method. As a result, using of
quasi-stationary approximation was very restricted last decades.

Velocity of phase transition is described by dimensionless parameter called
Stefan number [2], which is relation of thermal energy, spent in heating (cooling)
of some phase, to energy spent in phase transformation process. The term “slow”

means that the Stefan number is small and therefore there are two different time
scales in the problem. Asymptotic approaches give an opportunity to build a math-
ematical model excluding “fast” time. The first work in this direction was paper [2],
where the small parameter method was applied to Stefan problem.

After the first original works of Chuang and Szekely [3, 4] a lot of papers were
devoted to boundary element method application to Stefan problem. However
general effectiveness of boundary element method for parabolic problems is less
than similar effectiveness of finite difference method, what was shown in many
papers, see, for example, [5]. Of course, using of some special boundary element
method algorithms can improve the situation, but any time-stepping numerical
method cannot enough effectively solve the problem of slow phase transition.

Boundary element method [6, 7] has become powerful tool for numerical solu-
tion of linear boundary-value problems. It is especially effective in comparison with
traditional finite difference method and finite element method for elliptical prob-
lems in domains of complex geometrical shape. The main idea of the present paper,
concerning the numerical approach, is using of boundary element method for
solution of elliptical boundary-value problems, which arise for every approximation
on every time step. As a result, an effective computational algorithm is developed,
because of well-known advantages of boundary element method such as analysis
boundary alone and high accuracy of computations. First time, the idea to use
asymptotic approach to a wide class of slow phase transition problems was formu-
lated in the paper [8], but the work [8] was mainly devoted to quasi-stationary
approximation and the following terms in asymptotic expansion were not consid-
ered there. The approach was developed in the article [9], where application of
boundary element method in order to solve the obtained elliptic boundary-value
problems was proposed. However, the paper [9] was restricted by quasi-stationary
approximation too. Full idea of boundary element application to the considered
problem was briefly described in the conference paper [10]. The authors of the
present work have to reproduce some results of articles [8, 9], including the initial
problem statement and asymptotic formulations, because they are practically
unknown for modern scientific community.

Problem of biological tissue growth [11] became very actual item at the present
stage of biological science development, because a lot of processes used in agricul-
ture and biotechnology are determined by growth of biological tissue. Beside of
that, problem of tumor growth is one of the most important in medicine [11, 12].
Two kinds of circumstances determine the growth process, the first one is genetic
properties of tissue and the second one is environmental conditions, for example,
nutrition, temperature and so on. Most of investigations concerning a biological
growth are based on phenomenological approach, considering biological tissues as a
“black box” with experimentally determined properties. The growth is one of such
properties of biological tissue. Full review of mathematical modeling in biological
sciences requires a separate investigation, which must be sufficiently more than the
present paper. Since the growth of biological tissue is the object of the present work,
let us consider specific features of the mathematical models of the given processes.
General simplifying assumptions must be made to formulate a mathematical model.
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It is commonly known that any biological tissue consists of cells. Process of cell
reproduction is caution of multicellular tissue growth. The growth process consists of
two parts: growth of individual cells and fission of cells, that is the growth process has
evidently discrete behavior. Since cells are very small and number of them is very
large, consideration of each individual cell is impossible and therefore some averaging
is necessary. As a rule, averaging process used in biology is similar to well-known
continuous approach in mechanics. According to this approach a multicellular
biological tissue is assumed as continues media with distributed sources and some
diffusive properties. In fact, cells create a porous media, but pressure difference
enough for filtration flow is very seldom presence in the biological tissues, therefore
transport phenomena due to filtration flow can be neglected and they are provided by
diffusive mechanisms. There is no single quantitative measure of biological tissue
metabolism, because a lot of chemical reactions mutually interact. However, the
simplest way to formulate a mathematical model for metabolism process is to
introduce some numerical value called metabolism intensity and to assume, that any
chemical reaction and consequently heat and mass transfer process rate is determined
by (in the simplest case it is proportional to) metabolism intensity. As a rule, metab-
olism intensity is connected by linear relation with velocity of tissue growth. This rule
is almost always right for simplest organisms, but metabolism of highest animals is
more complex. All mathematical models, which will be developed in the present
paper below, will be based on this assumption. Of course, it is phenomenological
approach and relation function connecting metabolism intensity and consuming of
nutrient substances (excrement production) must be determined experimentally.
An evident advantage of such mathematical models (so-called one-parametrical
models) is their flexibility and opportunity to take into account different number of
concentration fields on different levels of consideration.

There are two possible mechanisms of biological tissue growth. The first one is
the surface growth and the second one is the volume growth. The intensive cell
fission takes place in relatively thin layer near the tissue surface in the case of
surface growth. Cells situated inside the tissue have stable metabolism without
intensive fission in this case, then their total volume remains constant. Reproduc-
tion of all cells takes place in the case of volume growth, although the most intensive
fission, as a rule, takes place near the surface.

All considered above mathematical models are reduced to initial-boundary-
value problems for system of diffusion equations with nonlinear sources in moving
boundary domain. Motion of the domain boundary is caused by tissue growth, what
is described in the work [13], which immediately preceded to the present work;
however, the main attention in this paper was paid to the analytical solution of the
problem. Boundary element method application for numerical solution of the
obtained asymptotic problems, was, rather, pointed out briefly. Nevertheless, the
problem statement from the paper [13] is reproduced in the present work.

The main aim of the present paper is to develop a universal effective numerical
approach for solution of two physically different diffusive problems in slow moving
boundary domains and to show a mathematical and computational similarity of the
considered problems.

2. Mathematical model of slow-phase transition

2.1 Stefan problem formulation

Stefan problem is traditionally considered as a successful mathematical model of
phase transition process in immovable media. Usually, the Stefan problem does not
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take into account a change of the substance density under phase transition, what is
the main difference between Stefan problem and real phase transition processes. A
density change stimulates specific flows in liquid and gaseous phases and it causes
an appearing of specific additional stress fields under solid-state phase transitions.
However, influence of the mentioned phenomena often can be enough small in
comparison with heat conduction processes. Stefan problems can be classified by
number of phases (see Figures 1 and 2). In particular, one-phase and two-phase
Stefan problems are considered in the present work. The term “one-phase problem”

does not mean that the second phase is absent, it only points out, that the second
phase is kept under constant temperature of phase transition. Generally speaking,
one-phase Stefan problem is particular case of two-phase problem, therefore all
following formulations will be presented for two-phase problem.

Let consider a classical two-phase Stefan problem. Let the first phase occupies
the domain D1 and the second phase occupies the domain D2. The boundary Гp:t:

separates mentioned domains, it is a phase transition boundary and has a constant
temperature Tp:t:. Let domains D1 and D2 are bounded by finite or infinite curves Γ1

and Γ2, correspondingly. For the sake of simplicity, restrict the following consider-
ation by the cases of first and second kind boundary conditions on the outside parts
of curves Γ1 and Γ2. Thus, assuming thermophysical properties of materials as
constant, we obtain the following mathematical model [1, 2].

∂T1

∂τ
¼ a1ΔT1, (1)

∂T2

∂τ
¼ a2ΔT2, (2)

Here Eqs. (1) and (2) describe the temperature fields inside the first phase and
the second phase correspondingly. Boundary conditions of the first or second kinds
must be prescribed on the outside parts of curves Γ1 and Γ2:

Figure 1.
Two-phase Stefan problem.The first phase occupies the domainD1with boundaryΓ1, and the secondphase is situated
in the domain D2 with boundary Γ2. The boundary part Γp:t: ¼ Γ1 ∩Γ2 is moving phase transition boundary.

Figure 2.
The most widespread one-phase Stefan problem. The first phase occupies the domain D1 with boundary Γ1, and
it surrounds the second phase, which is situated in the domain D2 with boundary Γ2 ¼ Γp:t: ⊂Γ1. The second
phase is kept under phase transition temperature T2 ¼ Tp:t:.
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In particular, first kind

T1jГ1 ¼ T1s, (3)

T2jГ2 ¼ T2s, (4)

or second kind

λ1
∂T1

∂n

�

�

�

�

Г1

¼ q1, (5)

λ2
∂T2

∂n

�

�

�

�

Г2

¼ q2, (6)

and boundary conditions on the phase transition boundary

T1jГp:t: ¼ Tp:t:, (7)

T2jГp:t: ¼ Tp:t:, (8)

λ1
∂T1

∂n

�

�

�

�

Гp:t:

� λ2
∂T2

∂n

�

�

�

�

Гp:t:

¼ ρσVp:t:, (9)

where a1, a2 are thermal diffusivity coefficients of phases, T1s, T2s, q1, q2 are
temperatures and thermal fluxes on the outside parts of curves Γ1 and Γ2, λ1, λ2 are
heat conduction coefficients, ρ is density of some phase (as a rule, incompressible
phase, if the both phases are incompressible, the density of initial phase is chosen),
Vp:t: is phase transition boundary propagation velocity. Condition (9) is called
Stefan condition, and it describes the motion of the phase transition boundary in
dependence on balance of thermal fluxes. Note, that the phase transformation
temperature Tp:t: is constant of the material. To complete the formulation, add the
initial conditions:

T1 0, xð Þ ¼ T10 xð Þ, (10)

T2 0, xð Þ ¼ T20 xð Þ: (11)

Let us become to dimensionless variables in the problem, using following
representation

θ1 ¼
T1 � Tp:t:

Tn � Tp:t:
, (12)

where value Tn is chosen as one from following values max T1s, T2sf g or
min T1s, T2sf g (but sometimes it is possible to use max T10, T20f g or min T10, T20f g)
in dependence on the particular problem. The temperature field in the second phase
is transformed by similar way. Thus, Eqs. (1) and (2) have forms

∂θ1

∂Fo1
¼ Δ ∗ θ1, (13)

∂θ2

∂Fo2
¼ Δ ∗ θ2, (14)
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where

Fo1 ¼
τa1

L2 : (15)

The asterisk “*” in Laplace operator means the differentiation with respect to
dimensionless coordinates

X ∗ ¼ x=L: (16)

It will be omitted in following. Dimensionless forms of the boundary and initial
conditions are

θ1jГ1 ¼ θ1s, (17)

θ2jГ2 ¼ θ2s, (18)

θ1jГp:t: ¼ 0, (19)

θ2jГp:t: ¼ 0, (20)

θ1 0, xð Þ ¼ θ10, (21)

θ2 0, xð Þ ¼ θ20: (22)

The dimensionless Stefan condition must be considered in details. Let

Vp:t: ¼
∂n

∂τ
, (23)

where ∂n
∂τ
means the normal velocity of the phase transformation boundary

motion. If n ∗ ¼ n=L, we have following dimensionless relation

∂θ1

∂n
� fλ

∂θ2

∂n
¼

∂n ∗

∂τst
, (24)

where

fλ ¼ λ2=λ1, (25)

and

τst ¼
τλ1 Tn � Tp:t:

� �

L2σρ
, (26)

τst is dimensionless time, connected with the phase transformation process.
Thus there three dimensionless time Fo1, Fo2 and τst in the problem, however it

is desirable to use only one time scale. Since the main interest on the problem is
phase transition process, choose the Stefan time τst as the main time scale. Beside of
that, as a rule, τst is the “most slow” dimensionless time. Then Eq. (13) must be
replaced by

∂θ1

∂τst
St ¼ Δθ1, (27)
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where St is the Stefan number determined as

St ¼
τst

Fo1
¼

τλ1 Tn�Tp:t:ð Þ
L2σρ

τa1
L2

¼
λ1 Tn � Tp:t:

� �

a1σρ
¼

C Tn � Tp:t:

� �

σ
, (28)

Eq. (14) is transformed by following way:

∂θ2

∂τst
faSt ¼ Δθ2, (29)

where

fa ¼
Fo1
Fo2

¼
a1
a2

: (30)

Physical sense of the Stefan number is quite simple; it is equal to relation of heat,
spent to heating (cooling) of the phase, to heat spent to phase transition. But in the
same time, it can be considered as relation of two-time scales, concerning heating
(cooling) and phase transition boundary motion. Since, as a rule, the latent heat of
phase transformation σ is quite large value, St< 1.

Formulated above Stefan problem can be easy generalized for any number of
phases, but one-phase Stefan problem (see Figure 2) has special importance for the
theory. This particular case of general Stefan problem physically corresponds to
situation, when one phase has temperature equal to the phase transformation
temperature and it undergoes the phase transformation due to heat conduction of
the another phase. The phase under constant temperature must be excluded from
the consideration. Thus

∂θ

∂τst
St ¼ Δθ, (31)

θj
Г1

¼ θs, (32)

θj
Гp:t:

¼ 0, (33)

θ 0, xð Þ ¼ θ0, (34)

∂θ

∂n
¼

∂n

∂τst
: (35)

2.2 Asymptotic approach to Stefan problem

As it was noted earlier, the considered Stefan problem is nonlinear, because of
complicated dependence between the temperature field and shape (motion) of the
phase transition boundary. Although the question on existence and uniqueness of
Stefan problem solution is still far from a complete clearness [1], the continuous
dependency of Stefan problem solution on Stefan number is evident. It could be
clear shown, if an integral formulation for temperature field is considered (see
[6, 7]), besides of that, it is seen from the same integral formulation, that the
solution can be continuously differentiated with respect to Stefan number any
number of times. Then the temperature field can represented as a series of Stefan
number orders, which must converge for St< 1, and in the case of slow phase
transformation St< < 1 it must converge quickly.

On the base of above conclusions on the solution properties we shall search
solution in a form of series
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θ1 ¼ θ1
0 x, τð Þ þ

X

∞

k¼1

Stkθ1
k x, τð Þ, (36)

θ2 ¼ θ2
0 x, τð Þ þ

X

∞

k¼1

Stkθ2
k x, τð Þ: (37)

As a result of using of expansions (36) and (37), the initial problem is reduced to

determination of function series θ01 , … , θk1 , … ; θ02 , … , θk2 , … .
Let substitute expansions (36) and (37) into Eqs. (27) and (29) and obtain

St
∂

∂τ
θ1

0 x, τð Þ þ St
∂

∂τ

X

∞

k¼1

Stkθ1
k x, τð Þ ¼ Δθ1

0 x, τð Þ þ Δ
X

∞

k¼1

Stkθ1
k x, τð Þ, (38)

faSt
∂

∂τ
θ2

0 x, τð Þ þ faSt
∂

∂τ

X

∞

k¼1

Stkθ2
k x, τð Þ ¼ Δθ2

0 x, τð Þ þ Δ
X

∞

k¼1

Stkθ2
k x, τð Þ:

If the functions θk1 , θ
k
2 are bounded, the series (36) and (37) absolutely converge;

therefore, correspondent series can be differentiated term by term. Thus

St
∂θ1

0

∂τ
þ
X

∞

k¼1

Stkþ1 ∂θ1
k

∂τ
¼ Δθ1

0 þ
X

∞

k¼1

StkΔθ1
k, (39)

faSt
∂θ2

0

∂τ
þ fa

X

∞

k¼1

Stkþ1 ∂θ2
k

∂τ
¼ Δθ2

0 þ
X

∞

k¼1

StkΔθ2
k:

Since the value of Stefan number is, generally speaking, arbitrary, equality (39)
takes place only in case of equality of factors at equal orders of Stefan number. Hence

Δθ1
0 ¼ 0, (40)

Δθ1
1 ¼

∂θ1
0

∂τ
, (41)

Δθ1
i ¼

∂θ1
i�1

∂τ
, (42)

Δθ2
0 ¼ 0, (43)

Δθ2
1 ¼ fa

∂θ2
0

∂τ
, (44)

Δθ1
i ¼ fa

∂θ1
i�1

∂τ
, (45)

Let prescribe boundary conditions for Eqs. (40)–(45)

θ1
0
�

�

Г1
¼ θ1s, (46)

θ1
0
�

�

Гp:t:
¼ 0, (47)

θ1
i
�

�

Г1
¼ 0, (48)

θ1
i
�

�

Гp:t:
¼ 0, (49)

θ2
0
�

�

Г2
¼ θ2s, (50)
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θ2
0
�

�

Гp:t:
¼ 0, (51)

θ2
i
�

�

Г2
¼ 0, (52)

θ2
i
�

�

Гp:t:
¼ 0: (53)

Let consider the Stefan condition (24) separately. If the series of boundary-value
problems (40)–(45) are solved, the relation (24) can be considered as ordinary
differential equation, what describes motion of phase transformation boundary. If
Eq. (24) is integrated analytically (it is very seldom case, because the right hand part
of relation (24) depends on phase boundary position in a complicated way), the
general problem could be considered as completely solved. In general case Cauchy
problem for Eq. (24) can be solved numerically by some numerical method. How-
ever, the most successful approach is method proposed in the paper [2] and based on
expansion of left-hand side of Eq. (24) into a series with respect to Stefan number.

∂θ1
0 x, τð Þ

∂n
þ
X

∞

k¼1

Stk
∂θ1

k x, τð Þ

∂n
¼ fa

∂θ2
0 x, τð Þ

∂n
þ
X

∞

k¼1

Stk
∂θ2

k x, τð Þ

∂n

 !

¼

¼
∂η0 x, τð Þ

∂τ
þ
X

∞

k¼1

Stk
∂ηk x, τð Þ

∂τ

 !

:

(54)

By the same reasons as earlier let equate factors at equal orders of Stefan number
and obtain

∂θ1
0

∂n
� fλ

∂θ2
0

∂n
¼

∂η0

∂τ
, (55)

∂θ1
i

∂n
� fλ

∂θ2
i

∂n
¼

∂ηi

∂τ
, (56)

where functions ηk are subjects to determination. The relationships (56) must be
complemented by some initial conditions and can be considered as series of Cauchy
problems for phase transition boundary position. The first equations and boundary
conditions in (40)–(53), which describes the temperature approximations indicated
by index “0”, coincide with well-known quasi-stationary approximation. Note that
for one-dimensional (in space) case for any Stefan problems the boundary-value
problems indicated by “0” and “1” can be integrated analytically but the following
approximations requires some numerical method for solution of mentioned Cauchy
problem. Such solutions were built for one-phase and two-phase one-dimensional
(in ordinary Cartesian, polar and spherical coordinate systems) Stefan problems
with different boundary conditions on the outer boundaries. There are particular
cases of one-dimensional Stefan problems, analytical solutions of which are known.
The mentioned analytical solutions were used to check the approach accuracy. As a
result, it is shown that accuracy of test problem solutions is enough high.

The presented series of problem (40)–(53), (55), and (56) is equivalent to the
initial Stefan problem (1)–(4), (7)–(11). Under restrictions imposed on functions,
included into the formulation, concerning their physical sense, (for example,
requirement of piecewise smooth boundary of the finite domain D, where the
problem is solved, and requirement of boundedness of temperatures and thermal
fluxes) the temperature functions inside domains D1 and D2 are differentiable
infinite number of times [2]. Moreover, temperature derivatives with respect to
time are finite too. Last assumption has physical sense, if the moment of phase
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creation is excluded from the consideration, because thermal fluxes can be enough
large (asymptotically infinite) in this case. Under mentioned restrictions the
following theorem takes place.

Theorem 1. If the boundary and initial conditions in the boundary-value prob-
lems (27), (17), (19), (21) and (29), (18), (20), (22) are such that their solutions are
differentiable infinite number of times and these derivatives are restricted, series
(36) and (37) converge under any Stefan number less than 1 (St< 1), and order of

the remainder term is O Stjþ1Mjþ1

� �

, where Mjþ1 ¼ max jþ1≤m<∞θ
m (it is assumed

that the series is cut off after j-th term).
The proof of the Theorem 1 is evident and based onmajorizing sequence, built by

replacing of functions θi byMi. This sequence is geometrical progression with factor St,
which is less than 1, according to the theorem conditions. Therefore, the series converge.

It is necessary to note, that the Theorem 1 proves convergence of asymptotic
expansions and thus it grounds an application of asymptotic approach to the con-
sidered class of Stefan problems. More than that, an error of such approach can be
estimated analytically, however such estimations, as a rule, are found useless for
determination of computation error in whole, because there are other error sources
in the general computational scheme.

Let consider one-phase Stefan problem, which is a particular case of above
formulated problem:

Δθ0 ¼ 0, (57)

Δθ1 ¼
∂θ0

∂τ
, (58)

Δθi ¼
∂θi�1

∂τ
(59)

with boundary conditions

θ0
�

�

Γ1
¼ θs, (60)

θ0
�

�

Γp:t:
¼ 0, (61)

θi
�

�

Γ1
¼ 0, (62)

θi
�

�

Γp:t:
¼ 0, (63)

Stefan condition

∂θ0

∂n
¼

∂η0

∂τ
(64)

∂θi

∂n
¼

∂ηi

∂τ
(65)

3. Boundary element method application to slow phase transition
calculations

However, the temperature fields must be determined numerically in two-
dimensional and three-dimensional cases. Boundary element method [6, 7] is used
in the present work. It supposes transformation of Eqs. (40)–(45) into boundary
integral equations
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C x0ð Þθ01 x0ð Þ ¼

ð

Γ1 ∪Γp:t:

ϕ0 x, x0ð Þ
∂θ01
∂n

ds�

�

ð

Γ1 ∪Γp:t:

θ01
∂ϕ0 x, x0ð Þ

∂n
ds,

(66)

C x0ð Þθ02 x0ð Þ ¼

ð

Γ2 ∪Γp:t:

ϕ0 x, x0ð Þ
∂θ02
∂n

ds�

�

ð

Γ2 ∪Γp:t:

θ02
∂ϕ0 x, x0ð Þ

∂n
ds,

(67)

C x0ð Þθi1 x0ð Þ ¼

ð

Γ1 ∪Γp:t:

ϕ0 x, x0ð Þ
∂θi1
∂n

ds�

�

ð

Γ1 ∪Γp:t:

θi1
∂ϕ0 x, x0ð Þ

∂n
dsþ

ð

D1

ϕ0 x, x0ð Þ
∂θi�1

1

∂τ
dx,

(68)

C x0ð Þθi2 x0ð Þ ¼

ð

Γ2 ∪Γp:t:

ϕ0 x, x0ð Þ
∂θi2
∂n

ds�

�

ð

Γ2 ∪Γp:t:

θi2
∂ϕ0 x, x0ð Þ

∂n
dsþ

ð

D2

ϕ0 x, x0ð Þ
∂θi�1

2

∂τ
dx,

(69)

where ϕ0 is fundamental solution of Laplace equation, C x0ð Þ is special function
reflecting control point x0 position with respect to the boundary and shape of the
boundary. Eqs. (66)–(69) are solved numerically by well-known boundary element
algorithm [6, 7]. According to that algorithm, the boundaries of phases are
fragmented by boundary elements; the temperatures and thermal fluxes are
assumed constant on every boundary element. Thus, the system of linear algebraic
equations with respect to unknown values of temperature or thermal flux on
elements is formed.

Solving mentioned systems of linear algebraic equations, corresponding to every
boundary integral Eqs. (66)–(69) we can obtain the temperature distribution with
required accuracy at some instant of time, that is under specific shape of interphase
boundary. Then new position of interphase boundary must be determined using the
Stefan condition (55) and (56). To build new interphase boundary relations (55)
and (56) must be considered as an ordinary differential equation, and correspon-
dent Cauchy problems must be solved numerically. The Euler method is used for
this aim in the present work. If it is necessary, the problems (66)–(69) can be solved
by boundary element method for new shape of the interphase boundary. Such time-
stepping process can be continued during any time interval. The simplest algorithm
of the boundary element method with approximation of boundary elements by
straight lines segments and approximation of known and unknown function values
on boundary elements by constants [6, 7] is used in the present work. Of course,
using of improved boundary element method algorithm and methods of numerical
solution of Cauchy problem can make the solution procedure more effective;
however their applications require special investigation.
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The main advantage of proposed time-stepping approach in comparison with
time-stepping finite difference and finite element methods is time discretization
with respect to slow time scale determined by interphase boundary motion unlike
finite difference and finite element methods, which requires time discretization
with respect to fast time scale determined by heat conduction process.

4. Results of slow phase transition calculations

The restricted amount of the present paper doesn’t give an opportunity to
analyze a lot of calculation results, therefore the proposed approach is illustrated by
only several following examples of numerical calculations. Melting process of
cylinder, which had initial circular shape, is shown in Figures 3 and 4 under
different conditions of heating.

It is easy to see from comparison of Figures 3 and 4 that the way of heating
sufficiently affects shape of phase transition boundary, in particular, side heating
leads to oval shape of the second phase domain, but nearly circular second phase
domain takes place under multilateral heating. The times of calculations are relatively
small in comparison with known finite difference and finite element calculations.

Since there is not any known analytical solution of Stefan problem to check
accuracy of the obtained numerical solutions, the authors of the present work had to
change numbers of boundary elements and compare correspondent numerical
results. For example, the presented above numerical calculations were made under
following parameters: phase transition boundary is approximated by 40 boundary
elements at every time step of calculation and outer boundaries of the domain were
approximated by 4 � 40 boundary elements. Checking calculations with 80 and
4 � 80 and 160 and 4 � 160 boundary elements and dimensionless time step
varying from Δτ ¼ 0, 1 to Δτ ¼ 0, 001, correspondingly, shows change of the
obtained results no more than 1%. The authors made a conclusion about satisfactory
accuracy of the considered numerical approach.

Some conclusions can be made here. It is evident that the above proposed
approach is more general and has more opportunities than earlier existing compu-
tational methods for slow phase transitions. It gives an opportunity to effectively
calculate of the processes in broader interval of Stefan numbers. Enough high
accuracy of the proposed algorithms is confirmed by the above-mentioned series of

Figure 3.
Sequence of phase transformation boundary positions under side heating.
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test calculations. The results of calculations can be used in investigations of a
number of processes, first of all, in investigations of slow phase transformations in
microgravity and in environment. They also can be used in design of space-rocket
technique.

5. Mathematical model of biological tissue growth

Let consider D1 filled by some biological structures (in the simplest case by
homogeneous or nondifferentiated cellular mass). Let restrict the following consid-
eration by the case of homogeneous cellular structures. The tissue in the domain D1

is porous media where cells form a frame and intercellular space is porosity. Let
assume that pores are filled by same liquid, which is complex solution of nutrient
substances and excrements of cells. There is an intensive heat and mass transfer
between the frame and the liquid in pores, what is very important specific feature of
the described structure. Let the domain D1 is partially or completely surrounded by
the domain D2, filled by the same solution completely. In general case there may be
a convective transfer in the domain D2 and filtration flow in the domain D1. Thus, a
general mathematical model of heat and mass transfer processes is considered
system is following:

∂T1

∂τ
þ Vf � ∇ð Þ � T1 ¼ a1ΔT1 þ qT1, (70)

∂Ci1

∂τ
þ Vf � ∇ð Þ � Ci1 ¼ di1ΔCi1 þ qi1, i ¼ 1,N, (71)

∂T2

∂τ
þ VC � ∇ð ÞT2 ¼ a2ΔT2, (72)

∂Ci2

∂τ
þ VC � ∇ð ÞCi2 ¼ di2ΔCi2, i ¼ 1,N, (73)

where T1 is temperature in the domain D1 (the one-temperature model, assum-
ing the temperatures of frame and solution in pores are equal, is used here), Vf is
filtration velocity, a1 is thermal diffusivity of porous media, qT1 is heat source,
concerning the metabolism of cells, ci1 is concentration of the i-th component in

Figure 4.
Sequence of phase transformation boundary positions under multilateral heating.
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porous media, di1 is diffusion coefficient of i-th component in the porous media,
qi1 is source (sink) of the i-th component in porous media, concerning the

metabolism of cells, T2 is temperature in the domain D2, V2 is flow velocity in the
domain D2, a2 is thermal diffusivity of solution, ci2 is concentration of i-th compo-
nent in the domain D2, di2 is diffusion coefficient of i-th component in the domain
D2, Ni2number of components, participating of heat and mass transfer process, τ is
time, Δ is Laplace operator.

Restrict the following consideration by the case:

Vf ¼ 0, (74)

Vc ¼ 0, (75)

what corresponds to conventional multicellular structure, formed by
independent cells, that is simple colony of one-cellular organisms in immovable
fluid. Then:

∂T1

∂τ
¼ a1ΔT1 þ qT1, (76)

∂Ci1

∂τ
¼ di1ΔCi1 þ qi1, i ¼ 1,N, (77)

∂T2

∂τ
¼ a2ΔT2, (78)

∂Ci2

∂τ
¼ di2ΔCi2, i ¼ 1,N: (79)

If the condition (75) is not realized, it could be better to not consider the system
(72) and (73), but to take into account a convective transfer using boundary condi-
tions for Eqs. (76) and (77). This assumption is quite proved, since the system (76)
and (77) describes enough slow processes.

Let prescribe boundary conditions for the systems (76)–(79). Note the
common boundary of the domain D1 and D2 as Γ and reminder part as Γ1 and Γ2

correspondingly. The first kind boundary conditions can be prescribed on the
boundaries Γ1 and Γ2

T1jГ1 ¼ T1e, (80)

Ci1jГ1 ¼ Сi1e, (81)

T2jГ2 ¼ T2e, (82)

Ci2jГ2 ¼ Ci2e, (83)

or the second kind boundary condition

λ1
∂T1

∂n

�

�

�

�

Г1

¼ q1e, (84)

d1i
∂Ci1

∂n

�

�

�

�

Г1

¼ qi1e, (85)

λ2
∂T2

∂n

�

�

�

�

Г2

¼ q2e, (86)

di2
∂Ci2

∂n

�

�

�

�

Г2

¼ qi2e, (87)
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or the third boundary condition

λ1
∂T1

∂n

�

�

�

�

Г1

þ α1 T1jГ1 � T1e

� �

¼ 0, (88)

di1
∂Ci1

∂n

�

�

�

�

Г1

þ αi1 Ci1jГ1 � Сi1e

� �

¼ 0, (89)

λ2
∂T2

∂n

�

�

�

�

Г2

þ α2 T2jГ2 � T2e

� �

¼ 0, (90)

di2
∂Ci2

∂n

�

�

�

�

Г2

þ αi2 Ci2jГ2 � Сi2e

� �

¼ 0, (91)

where T1e, Ci1e, T2e, Ci2e, q1e, qi1e, q2e, qi2e are known functions, all coefficients in
boundary conditions (80)–(91) are understood in conventional sense. Let consider
boundary conditions on the boundary Γ. It is evident that

T1jГ ¼ T2jГ, (92)

Сi1jГ ¼ Ci2jГ: (93)

It is possible to formulate the second condition as a forth kind boundary condition.

λ1
∂T1

∂n

�

�

�

�

Г

¼ λ2
∂T2

∂n

�

�

�

�

Г

, (94)

di1
∂Ci1

∂n

�

�

�

�

Г

¼ di2
∂Ci2

∂n

�

�

�

�

Г

: (95)

Conditions (94) and (95) correspond to the case of cell fission in whole domain
D1. However, it is possible the situation, when the fission of cells takes place only on
the boundary Γ, then condition (94) is saved, but condition (95) must be replaced
by following condition

di1
∂Ci1

∂n

�

�

�

�

Г

� di2
∂Ci2

∂n

�

�

�

�

Г

¼ χi
∂n

∂τ
, (96)

here ∂n
∂τ
is velocity of the boundary Γ propagation (velocity of biological structure

growth), χi is “expenditure” coefficient of the i-th component during growth of
biological structure. Note that condition (96) is not conventional Stefan condition
(nevertheless its form coincides with Stefan condition), because right hand part of
condition (96) is determined by fission process, that is by parameters determining
the fission process such as the temperature, concentrations and possibly the histo-
ries, therefore right hand part of the condition (96) is prescribed. It means that the
given problem is similar to phase transition problem under prescribed velocity of
phase boundary motion. The moving boundary velocity is determined in the
considered problem as a function of metabolism intensity.

The case, when cellular mass growth takes place in whole domain D1 is more
complex than previous one. Consider a function describing metabolism intensity.
As it is noted earlier, metabolism intensity is assumed proportional to a cellular
mass growth (nevertheless the cell fission is very complex process with possibly
enough large delay time that is with sufficient influence of previous history of
the process). Let metabolism intensity function ω T1, ci1ð Þ is defined, then
correspondent source terms are following
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qi1 ¼ χiω, (97)

q
Г1 ¼ χ

Г
ω: (98)

The function ω is determined experimentally. Let ωi is function of influence of
the i-th parameter on the metabolism velocity function. It is evident that

ω ¼
Y

Nþ1

i¼1

ωi: (99)

As it is noted earlier the growth of cellular mass is proportional to metabolism
intensity

qs ¼ χsω� χ0ω0: (100)

Terms indicated by }0} in last relationship correspond to regular metabolism,
which is specific for tissues of highest animals.

Let consider a problem about motion of the boundary Γ again, in particular, let
consider the case, when local volume change is determined by relation (100). The
velocity (deformation) field depends on mechanical links between cells. If cells are
“free” in intercellular solution the model of distributed sources in incompressible
fluid can be applied, according to which the velocity of the boundary Γ is
determined as

Vn x∘ð Þ ¼
∂

∂n

ð

D1

qs xð Þϕ∘ x, x∘ð Þdx, (101)

where xi is arbitrary point of the curve-line Γ.
If the cells are linked mechanically between themselves, to determine the motion

of the boundary Γ it is necessary to solve an elastoplastic problem, as a rule, under
large strains. Consideration of such problems requires especial investigation and
will not be made in the present work.

However, the another case is possible in biological structures; a biological struc-
ture grows saving its shape in this case. Thus, change of the structure volume can be
referred to the boundary Γ uniformly:

δΩD1 ¼

ð

D1

qs xð Þdx: (102)

The replacement of the boundary Γ is determined by the following relation

δΓ ¼
δΩD1

S
, (103)

here S is square of surface Γ (length of curve line Γ in the plane case).
If for simplest organism’s linear dependence of growth velocity on

metabolism intensity defined by relationship (100) is intrinsic, a tissue
existence during an enough long time without growth, but under nonzero
metabolism intensity, restricted by some limits, is possible for more complex
multicellular organisms.
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6. Boundary element method application to biological tissue growth

The above-developed algorithm cannot be directly applied to the two-
dimensional and three-dimensional problems because boundary-value problems for
partial differential equations arise in the mentioned cases instead boundary-value
problems for ordinary differential equations as above. Thus two- and three-
dimensional cases require some numerical method for solution of elliptic boundary-
value problems in moving boundary domain. The most powerful tool for such
problems is boundary element method [6, 7], which requires a reformulation of the
considered problems as boundary integral equations.

Let consider the initial boundary value problem (76)–(96). Small parameter
method application to this problem is, generally speaking, similar to above one-
dimensional case application (see, for example, [8, 9]). Restrict the following con-
sideration by plane case and by zero approximation of small parameter method,
what corresponds to very small value of the Stefan number analogue. Thus

ΔT0
1 ¼ �

qT1
a1

, (104)

ΔC0
i1 ¼ �

qi1
di1

, i ¼ 1,N, (105)

ΔT0
2 ¼ 0, (106)

ΔC0
i2 ¼ 0, i ¼ 1,N: (107)

Boundary conditions for the system (104)–(107) coincide with boundary condi-
tions for the initial system. Let apply methods of potential theory to the system
(104)–(107).

χ x0ð ÞT0
1 x0ð Þ ¼

ð

Γ1

ϕ0 x, x0ð Þ
∂T0

1

∂n
ds�

ð

Γ1

T0
1

∂ϕ0 x, x0ð Þ

∂n
dsþ

þ

ð

D

ϕ0 x, x0ð Þ
qT1

a1
dxdy,

(108)

χ x0ð ÞC0
i1 x0ð Þ ¼

ð

Γ1

ϕ0 x, x0ð Þ
∂C0

i1

∂n
ds�

ð

Γ1

C0
i1

∂ϕ0 x, x0ð Þ

∂n
dsþ

þ

ð

D

ϕ0 x, x0ð Þ
qi1
di1

dxdy,

(109)

χ x0ð ÞT0
2 x0ð Þ ¼

ð

Γ2

ϕ0 x, x0ð Þ
∂T0

2

∂n
ds�

ð

Γ2

T0
2

∂ϕ0 x, x0ð Þ

∂n
ds, (110)

χ x0ð ÞC0
i2 x0ð Þ ¼

ð

Γ2

ϕ0 x, x0ð Þ
∂C0

i2

∂n
ds�

ð

Γ2

C0
i2

∂ϕ0 x, x0ð Þ

∂n
ds: (111)

Here the function ϕ0 x, x0ð Þ is well-known fundamental solution of Laplace
equation, which is in plane case
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φ0 x, x0ð Þ ¼
1

2π
ln

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0
� �2

q

0

B

@

1

C

A
,

and function χ is determined by the observation point position:

χ x0ð Þ ¼

0, x0ð Þ ∉ D, x0ð Þ ∉ Γ

1=2, x0ð Þ∈Γ

1, x0ð Þ∈D:

8

>

<

>

:

The system (108)–(111) can be easy solved by conventional boundary element
method. A specific feature of the problem is boundary condition on the boundary
Γ ¼ Γ1 ∩Γ2, that is boundary of growth. If the forth kind boundary conditions are
prescribe on the Γ (volume growth), then correspondent integral equations are
simply coupled on the curve-line Γ. If correspondent fluxes on the curve-line Γ are
discontinuous, then the gap value on previous time step is used.

A quite natural problem of calculation of last domain integrals in Eqs. (108) and
(109) arise during the numerical solution. As a rule, it leads to serious computa-
tional difficulties, however since the time scale of growth process is enough large
and the source terms in the initial Eqs. (104) and (105) are understood as averaged
in time, the considered source terms are often constant with respect to space vari-
ables. The case of constant source is considered in the present work. The domain
integrals can be easy transformed in this case

ð

D1

ϕ0 x, x0ð Þqdxdy ¼ q

ð

D1

divgradϕ1dxdy ¼ q

ð

Γ1

∂ϕ1

∂n
ds, (112)

where Δϕ1 ¼ ϕ0, that is ϕ1 ¼ � r2

8π ln r� 1ð Þ.

7. Results of biological tissue growth calculations

The results of numerical calculations of model problems of growth of one-cell
organism colony are shown in Figures 5 and 6 and in Tables 1 and 2.

Growth in direction of maximum concentration of nutrition is evident in both
cases. Note only that the structure shown in Figures 5 and 6 initially were the same
structure and only nutrition concentrations were different.

Figure 5.
Growth of biological structure, which was circular at the beginning; nutritions are going into the domain from
above and from below [13].
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As it can be seen from Table 2, the growth process is accelerated with time. A
caution of such acceleration is approaching of the boundary of growing biological
structure to the outer boundaries of the domain, where high nutrition concentra-
tions are prescribed according to boundary conditions (82) and (83); as a result,
correspondent diffusive fluxes are increasing, what is accelerating the growth
process. However, effect of nutrition consumption by more massive increased
biological structure decelerates the growth process.

Similarly to above considered case of Stefan problem, since there is not any
known analytical solution of biological growth problem to check accuracy of the
obtained numerical solutions, the authors of the present work had to change num-
bers of boundary elements and compare correspondent numerical results. For
example, the presented above numerical calculations were made under following
parameters: phase transition boundary is approximated by 40 boundary elements at
every time step of calculation and outer boundaries of the domain were approxi-
mated by 4x40 boundary elements. Checking calculations with 80 and 4x80 and
160 and 4x160 boundary elements and dimensionless time step varying from
Δτ ¼ 0, 1 to Δτ ¼ 0, 001, correspondingly, shows change of the obtained results no
more than 1%. The authors made a conclusion about satisfactory accuracy of the
considered numerical approach.

Figure 6.
Growth of biological structure, which was circular at the beginning; nutritions are going into the domain from
left and from below [13].

Time (h) Mass of biological structure

0 0.28378030

1 0.28792960

2 0.29541710

3 0.30700770

4 0.32328381

5 0.34431560

6 0.37013320

7 0.40161840

Table 1.
Mass of growing biological structure shown in Figure 5.
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8. Conclusions

Beside formulated above conclusions, some additional conclusions can be made
concerning the whole investigation. As it is mentioned above, the proposed
approach is more general and has more opportunities than earlier existing compu-
tational methods for slow-phase transitions. It gives an opportunity to effectively
calculate of the processes in more broad interval of Stefan numbers in domains of
complex geometrical shapes. Nevertheless, an accuracy of the proposed approach
has not been investigated theoretically by a proper way, and enough high accuracy
of the proposed algorithms is confirmed by the series of test calculations. The
proposed approach can be recommended for calculations of relevant phenomena of
slow phase transformations in microgravity and in environment. They also can be
used in design of space-rocket techniques. The proposed approach is the only way
of calculation for a lot of practically interesting cases. It is necessary to note that the
phase transition process is mainly determined by zeroth approximation; another
approximations starting from the first one have small influences on the process,
especially for small Stefan numbers.

The main idea of the second part of the present paper is to develop a computa-
tional method for the problem of biological structure growth, based on the fact that
biological growth is relatively very slow process. Considered circumstance leads to
asymptotic analysis based on smallness of relation of correspondent time scales.
Nevertheless the problem was formulated in quite general form, as a result of
asymptotic analysis by small parameter method it is managed to build an analytical
solution in one-dimensional case (what was made in previous publications, see, for
example [13]) and to propose effective boundary element algorithm for numerical
solution described above. Note that the above consideration is restricted only by
zero-th approximation in the asymptotic expansion of the solution.

Calculations of specific biological structures did not concern the aim of the
present work. However, the examples of calculations of special model problems
show workability and effectiveness of the proposed method.

There is a quite natural question about applicability of the algorithm to the very
important problem of tumor growth. The answer remains unclear at the moment,
because it is unclear whether the used metabolism model can describe a tumor
growth process or not. However there is no mathematical insuperable hindrance but
only biological.

Time (h) Mass of biological structure

0 0.28751980

1 0.30294060

2 0.32969960

3 0.36981910

4 0.42709790

5 0.50863440

6 0.63095590

Table 2.
Mass of growing biological structure shown in Figure 6.
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