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Chapter

Multi-Strategy MAX-MIN Ant
System for Solving Quota
Traveling Salesman Problem with
Passengers, Incomplete Ride and
Collection Time
Bruno C.H. Silva, Islame F.C. Fernandes,

Marco C. Goldbarg and Elizabeth F.G. Goldbarg

Abstract

This study proposes a novel adaptation of MAX-MIN Ant System algorithm for
the Quota Traveling Salesman Problem with Passengers, Incomplete Ride, and
Collection Time. There are different types of decisions to solve this problem: satis-
faction of the minimum quota, acceptance of ride requests, and minimization of
travel costs under the viewpoint of the salesman. The Algorithmic components
proposed regards vehicle capacity, travel time, passenger limitations, and a penalty
for delivering a passenger deliverance out of the required destination. The ant-
based algorithm incorporates different sources of heuristic information for the ants
and memory-based principles. Computational results are reported, showing the
effectiveness of this ant-based algorithm.

Keywords: Traveling Salesman, integer programming, transportation,
shared mobility, Ant Colony Optimization

1. Introduction

The lives of ordinary consumers have changed almost beyond recognition in the
past 20 years. First, with the introduction of high-speed internet access; but, more
recently, with the arrival of mobile computing devices such as smartphones and
tablets. According to data from the 2017 Gallup World Survey [1], 93 of adults in
high-income economies have their cell phones, while 79% in developing economies.
In India, 69% of adults have a cell phone, as well as 85% in Brazil and 93% in China
[1]. Smartphones and the internet have created a novel digital ecosystem where the
adoption of new paradigms is increasingly fast, and each innovation that appears
and presents itself to the market can disrupt an entire segment.

In the transportation segment, a central theme is how the digital revolution has
created opportunities to consider new models of delivering services under the
paradigm of Mobility as a Service (MaaS) [2]. There is a growing interes%t inMaaS
due to the notion of a sharing economy. Millennials own fewer vehicles than
previous generations [3]. As evidenced by the ascension of on-demand mobility
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platforms, they are quickly adopting car sharing as a mainstream transportation
solution. Investments in new travel patterns have become a priority to enable the
transformation of opportunities in the urban mobility segment into new revenue
streams.

This study deals with a novel optimization model that can improve the services
provided by on-demand mobility platforms, called Quota Traveling Salesman
Problem with Passengers, Incomplete Ride, and Collection Time (QTSP-PIC). In
this problem, the salesman is the vehicle driver and can reduce travel costs by
sharing expenses with passengers. He must respect the budget limitations and the
maximum travel time of every passenger. Each passenger can be transported
directly to the desired destination or an alternate destination. Lira et al. [4] suggest
pro-environmental or money-saving concerns can induce users of a ride-sharing
service to agree to fulfill their needs at an alternate destination.

The QTSP-PIC can model a wide variety of real-world applications. Cases related
to sales and tourism are the most pertinent ones. The salesman must choose which
cities to visit to reach a minimum sales quota, and the order to visit them to fulfill
travel requests. In the tourism case, the salesman is a tourist that chooses the best
tourist attractions to visit during a vacation trip and can use a ride-sharing system to
reduce travel expenses. In both cases, the driver negotiates discounts with passen-
gers transported to a destination similar to the desired one.

The QTSP-PIC was introduced by Silva et al. [5]. They presented a mathematical
formulation and heuristics based on Ant Colony Optimization (ACO) [6]. To sup-
port the ant algorithms, they proposed a Ride-Matching Heuristic (RMH) and a
local search with multiple neighborhood operators, called Multi-neighborhood
Local Search (MnLS). They tested the performances of the ant algorithms on 144
instances up to 500 vertices. One of these algorithms, the Multi-Strategy Ant Col-
ony System (MS-ACS), provided the best results. They concluded that their most
promising algorithm could improve with learning techniques to choose the source
of information regarding the instance type and the search space.

In this study, a MAX-MIN Ant System (MMAS) adaptation to the QTSP-PIC,
called Multi-Strategy MAX-MIN Ant System (MS-MMAS), is discussed. MMAS
improves the design of Ant System [6], the first ACO algorithm, with three impor-
tant aspects: only the best ants are allowed to add pheromone during the pheromone
trail update; use of a mechanism for limiting the strengths of the pheromone trails;
and, incorporation of local search algorithms to improve the best solutions. Plenty
of recent studies proved good effectiveness of the MMAS in correlated problems
to QTSP-PIC [7–10]. However, none of these explored the Multi-Strategy (MS)
concept.

In the traditional ant algorithms applied to Traveling Salesman Problem (TSP),
ants use the arcs’ cost as heuristic information [6]. The heuristic information adopted
is called visibility. When solving the QTSP-PIC, different types of decisions must be
considered: the accomplishment of the minimum quota, management of the ride
requests, and minimization of travel costs. The MS idea is to use different mecha-
nisms of visibility for the ants to improve diversification. Every ant decides which
strategy to use at random with uniform distribution. The MS proposed in this study
extends the original implementation proposed in [5]. MS-MMAS also incorporates
RMH and MnLS and uses a memory-based technique proposed in [11] to avoid
redundant work. In MS-MMAS, a hash table stores every solution constructed and
used as initial solutions to a local algorithm. When the algorithm constructs a new
solution, it starts the local search phase if the new solution is not in the hash table.

The benchmark for the tests consisted of 144 QTSP-PIC instances. It was
proposed by Silva et al. [5]. Numerical results confirmed the effectiveness of the
MS-MMAS by comparing it to other ACO variants proposed in [5].
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The main contributions of this chapter are summarized in the following.

• The extension of the MS concept proposed in [5] with a roulette mechanism
that orients the ants to choose their heuristic information based on the best
quality solutions achieved;

• Improvement of the MMAS design with a memory based technique proposed
in [11];

• Presentation of a novelMMAS variant that combines the improved MS concept
and memory-based principles and assessment of its performance;

• Experiments on a set of QTSP-PIC instances ranging: 10 to 500 cities; and 30 to
10.000 travel requests. The results showed that the proposed MMAS variant is
competitive regarding the other three ACO variants presented in [5] for the
QTSP-PIC.

The remainder of this chapter is organized as follows. Section 2 presents the
QTSP-PIC and its formulation. Section 3 presents the Ant Colony Optimization
metaheuristic and the implementation design of the MS-MMAS. Section 4 presents
experimental results. The performance of the proposed ant-based algorithm is
discussed in Section 5. Conclusions and future research directions are outlined in
Section 6.

2. Problem definition

The TSP can be formulated as a complete weighted directed graph G ¼ N,Að Þ

where N is the set of vertices and A ¼ i, jð Þ j i, j∈Nf g is the set of arcs. C ¼ cij
� �

is

the arc-weight matrix such that cij is the cost of arc i, jð Þ. The objective is to
determine the shortest Hamiltonian cycle in G. Due to its applicability, many TSP
variants deal with specific constraints [12]. Awerbuch et al. [13] presented several
quota-driven variants. One of them, called Quota Traveling Salesman Problem
(QTSP), is the basis for the problem investigated in this study. In the QTSP, there is
a bonus associated with each vertex of G. The salesman has to collect a minimum
quota of bonuses in the visited vertices. Thus the salesman needs to figure out
which cities to visit to achieve the minimum quota. The goal is to find a minimum
cost tour such that the sum of the bonuses collected in the visited vertices is at least
the minimum quota.

The QTSP-PIC is a QTSP variant in which the salesman is the driver of a vehicle
and can reduce travel costs by sharing expenses with passengers. There is a travel
request, associated with each person demanding a ride, consisting of a pickup and a
drop off point, a budget limit, a limit for the travel duration, and penalties associated
with alternative drop-off points. There is a penalty associated with each point differ-
ent from the destination demanded by each person. The salesman can accept or
decline travel requests. This model combines elements of ride-sharing systems [14]
with alternative destinations [4], and the selective pickup and delivery problem [15].

Let G N,Að Þ be a connected graph, where N is the set of vertices and A ¼
i, jð Þ j i, j∈Nf g is the set of arcs. Parameter qi denotes the quota associated with

vertex i∈N and gi the time required to collect the quota. cij and tij denote,
respectively, the cost and time required to traverse edge i, jð Þ∈A. Let L be the set of
passengers. List li ⊆L denotes the subset of passengers who depart from i∈N. Let
org lð Þ and dst lð Þ∈N be the pickup and drop-off points requested by passenger l. The
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salesman departs from city s ¼ 1, visits exactly once each city of subset N0 ⊆N and
returns to s. The quota collected by the salesman must be at least K units. Along the
trip, the salesman may choose which travel requests to fulfill. The travel costs are
shared with vehicle occupants. The number of vehicle occupants, or passengers,
cannot exceed R. Each passenger l∈L imposes a budget limit wl and a trip’s
maximum duration bl. Let hlj be the penalty to deliver passenger l∈L at city j∈N,

j 6¼ dst lð Þ. The value of variable hlj is computed in the final cost of the tour if

passenger l is delivered to city j. If j ¼ dst lð Þ, then hlj ¼ 0. The objective of the

QTSP-PIC is to find a Hamiltonian cycle Ψ ¼ N0,A0ð Þ such that the ride-sharing cost
and eventual penalties are minimized, and the quota constraint is satisfied.

The QTSP is NP-hard [13]. It is a particular case of the QTSP-PIC, in which the
list of persons demanding a ride is empty and the time spent to collect the bonus in
each vertex is zero. Thus, QTSP-PIC also belongs to the NP-hard class.

Silva et al. [5] presented an integer non-linear programming model for the
QTSP-PIC. They defined a solution as S ¼ N0,Q 0,L0,H0ð Þ, where N0 is a list of
vertices that represents a cycle, Ψ, such that the minimum quota restriction, K, is
satisfied; Q 0 is a binary list in which the i-th element is 1 if the salesman collects the
bonus from city i, i∈N0; L0 is a binary list in which the l-th element is 1 if the
salesman accepts the l-th travel request; and H0 is a list of integers in which the l-th
element is the index of the city where the l-th passenger leaves the car. If L0 l½ � ¼ 0,
then H0 l½ � ¼ 0. The cost of solution S, denoted by S:cost, is calculated by Eq. (1).

S:cost ¼
X

i, j∈N0

cij

1þ
P

l∈L0v
l
ij

þ
X

l∈L0

hlH0l (1)

3. Ant Colony Optimization

In the Ant Colony Optimization, artificial ants build and share information
about the quality of solutions achieved with a communication scheme similar to
what occurs with some real ants species. Deneubourg et al. [16] investigated the
behavior of Argentine ants and performed some experiments, where there were two
bridges between the nest and a food source. He observed that the ants initially
walked on the two bridges at random, depositing pheromone in the paths. Over
time, due to random fluctuations, the pheromone concentration of one bridge was
higher than the other. Thus, more ants were attracted to that route. Finally, the
whole colony ended up converging towards the same route. The behavior of artifi-
cial ants preserves four notions of the natural behavior of ants:

• Pheromone deposit on the traveled trail;

• Predilection for trails with pheromone concentration;

• Concentration of the amount of pheromone in shorter trails;

• Communication between ants through the pheromone deposit.

Pheromone is a chemical structure of communication [17]. According to Dorigo
et al. [18], pheromone enables the process of stigmergy and self-organization in
which simple agents perform complex and objective-oriented behaviors. Stigmergy
is a particular form of indirect communication used by social insects to coordinate
their activities [18].
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Considering the context of ant algorithms applied to the TSP, when moving
through the graph G, artificial ants tend to follow paths with higher pheromone
deposits rates. As ants tend to deposit pheromone along the path they follow, as
more ants choose the same path, the pheromone rate tends to increase in these
paths. This cooperation mechanism induces artificial ants to find good solutions, as
it works as a shared memory that is continuously updated and can be consulted by
every ant in the colony [19].

The base-line of the Ant Colony Optimization is the algorithm Ant System [6].
In the TSP application, N is the set of vertices to visit. Ants construct solutions
iteratively. Every iteration, the ant chooses the next vertex based on heuristic
information, η, and pheromone trails, τ. Initially, pheromone trails have the same
amount of pheromone, τ0, computed by Eq. (2), where n is the number of vertices
in N and Cost Dð Þ is the value of the TSP tour built by a greedy heuristic.

τ0ij ¼ n� Cost Dð Þð Þ�1 (2)

The k-th ant iteratively adds new vertices to the solution. The algorithm uses
Eq. (3) to compute the probability of the k-th ant to move from vertex i to j at the

t-th iteration, where ηij ¼
1
cij
is the heuristic factor, τij tð Þ is the pheromone in arc i, jð Þ

in the t-th iteration, and Λ
k is the list of vertices not visited by the k-th ant.

Coefficients α and β weight the influence of the pheromone and heuristic
information, respectively. They are user-defined parameters. If α ¼ 0, the
probability computed by Eq. (3) depends only on the heuristic information. So,
the ant algorithm behaves like a greedy method. If β ¼ 0, ants tend to select
paths with higher pheromone levels. It may lead the algorithm to early
stagnation. So, balancing the values of α and β is critical to guarantee a suitable
search strategy [5].

ϒ
k
ij tð Þ ¼

τij tð Þ
� �α

� ηij

h iβ

P

w∈Λ
k τiw tð Þ½ �α � ηiw½ �β
h i , j∈Λ

k (3)

Eqs. (4) and (5) show the formulas used to update pheromone trails, where ρ is

the evaporation coefficient, Cost Wk
� �

is the cost of the route Wk built by the k-th

ant, and Δτkij is the pheromone deposited on arc i, jð Þ by the k-th ant, computed by

expression (6).

τij ¼ 1� ρð Þ � τij þ ρ� Δτij, ρ∈ 0, 1½ � (4)

Δτij ¼
X

m

k¼1

Δτkij (5)

Δτij ¼

1

Cost Wk
� � , if arc i, jð Þ∈Wk

:

0, otherwise:

8

<

:

(6)

The ant algorithms proposed after AS improved its implementation design
with elitist pheromone update strategies and local search algorithms to improve
solutions [6]. Two well-known variants of AS are the Ant Colony System
(ACS) [20] and MAX-MIN Ant System [21]. Silva et al. [5] presented AS and ACS
adaptations for the QTSP-PIC. Section 3.1 presents the MAX-MIN Ant System
algorithm.
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3.1 Multi-strategy MAX-MIN ant system

MMAS uses Eq. (3) to compute the probability of an ant to move from vertex i
to j. Besides, it incorporates improvements to avoid search stagnation and a phero-
mone update rule that limits pheromone concentration rates. Eq. (7) presents the
pheromone update rule. Limits τmax and τmin prevent stagnation of pheromone
values.

τij ¼ max τmin, min τmax, 1� ρð Þ � τij þ ρ� Δτbestij

n on o

, ρ∈ 0, 1½ � (7)

Δτbestij ¼

1

Cost Wbest
� � , if arc i, jð Þ∈Wbest

:

0, otherwise:

8

<

:

(8)

There are three possibilities for the best route (Wbest) considered in the algo-
rithm: the best route in the current iteration, the best route found so far, and the
best route since the last time pheromone trails were reinitiated. In the MMAS
original design [21], these routes were chosen alternately. The initial value of pher-
omone trails was tmax. If the algorithm reached stagnation, i.e., the best current
route remained the same for several iterations, the pheromone value reinitialized to
tmax. Assigning tmax to pheromone trails produces a small variability among
pheromone levels at the start of the search [21].

The implementation of the MMAS for the QTSP-PIC extends the original
proposal [21] with the following adaptions:

• Ants start at vertex s;

• Ants include vertices in the route up to reach the minimum quota;

• Solution Sk, built by the k-th ant, is computed by assigning passengers to route

Wk with the RMH algorithm [5];

• Use of the MS concept.

The ants in the MMAS, use arc costs to compute heuristic information. In the
MS-MMAS, ants use four sources for this task, listed in the following.

• Cost oriented: uses cij as heuristic information, such that ηij ¼
1
cij
;

• Time oriented: uses tij as heuristic information, such that ηij ¼
1
tij
. This heuristic

information guides ants to vertices that lead to travel time savings.

• Quota oriented: q j is used as heuristic information, ηij ¼
q j

cij
. This heuristic

information guides ants to go to vertices that lead to the maximization of the
quota collected.

• Passenger oriented: the heuristic information is ηij ¼
∣L j∣

cij
. This strategy orients

ants to maximize the number of travel requests fulfilled.

In the MS concept proposed in [5], every ant decides which strategy to use at
random with uniform distribution. A roulette wheel selection improves this
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concept. The proportion of the wheel assigned to each heuristic information is
directly related to the quality of solutions achieved. So, ants learn, at each iteration,
the best heuristic information. At the final iterations, ants tend to use the heuristic
information that proved to be most promising.

Algorithm 1 presents the pseudo-code of the MS-MMAS. It has the following
parameters: maximum number of iterations (maxIter), number of ants (m∈Z >0),
pheromone coefficient (α∈R>0), heuristic coefficient (β∈R>0), evaporation
factor (ρ∈ 0, 1½ �), and pheromone limits (τmax, τmin ∈R>0). It also has the following
parameters and variables:

• N: set of vertices;

• ξ: index of the heuristic information source;

• Wk: route built by the k-th ant;

• Sk: solution produced after applying the RMH heuristic [5] to route Wk;

• W i: the best route built in the i-th iteration;

• Si: the best solution produced in the i-th iteration;

• W ∗ : the best route found so far;

• S ∗ : the best solution found so far;

• Wbest: route used as input to the pheromone updating procedure;

• Π: hash table that stores every solution Si constructed and used as initial
solution to the local search algorithm;

Algorithm 1: MS-MMAS(maxIter, m, α, β, ρ τmax, τmin)

1. Π ∅

2. Initialize pheromone trails
3. For k ¼ 1 to m.

4. Wk 2½ �  random_city(Nn sf g)
5. For i ¼ 1 to maxIter
6. For k ¼ 1 to m
7. ξ chose_heuristic_information()

8. Wk  build_route(α, β, ξ)

9. Sk  assign_passengers(Wk)

10. Update(W i,Si)

11. If Si ∉ Π

12. Si  MnLS(Si)

13. Store(Π, Si)
14. Update(W ∗ ,S ∗ )

15. Wbest  alternate(maxIter, i, W i, W ∗ )

16. Pheromone_update(Wbest,ρ, τmax, τmin)
17. Return S ∗
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The algorithm sets τmax as the initial value of pheromone trails (step 2). Since
ants begin at vertex s, the second vertex is selected randomly with uniform distri-
bution (steps 3 and 4). The k-th ant decides which heuristic information, ξ, to use
(step 7) and builds a route (step 8). The algorithm uses the RMH heuristic to assign

passengers to Wk, completing a solution (step 9). The algorithm updates W i and Si

(step 10). The MnLS algorithm is applied to Si (step 12) if the solution Si ∉ Π. After

the local search, the algorithm stores Si in the hash table Π. At the next iteration, the

current Si is the starting solution of the local search if it is not in Π. This procedure
prevents redundant work. The algorithm updates the best route and the best solu-

tion found so far,W ∗ and S ∗ (step 14). Similar to the original design ofMMAS,W i

is assigned to Wbest at the first 25% iterations or if i ranges from [50%,75%] of

maxIter. W ∗ is assigned to Wbest if i ranges from [25%,50%] of maxIter or if it is
greater than or equal to 75% of maxIter (step 15). This procedure improves diversi-

fication by shifting the emphasis over the search space. Wbest is used to update
pheromones (step 16). Finally, the algorithm returns S ∗ .

4. Experiments and results

This section presents the methodology for the experiments and results from the
experiments. Section 4.1 presents the methodology. Section 4.2 presents the
parameters used in the MS-MMAS algorithm. Section 4.3 presents the results.

4.1 Methodology

The experiments were executed on a computer with an Intel Core i5, 2.6 GHz
processor, Windows 10, 64-bit, and 6GB RAM memory. The algorithms were
implemented in C ++ lan and compiled with GNU g++ version 4.8.4. The bench-
mark set proposed in [5] was used to test the effectiveness of the MS-MMAS. The
sizes of those instances range from 10 to 500 vertices. Small instances have up to 40
vertices, medium up to 100, and large more than 100 vertices. The instances are
available for download at https://github.com/brunocastrohs/QTSP-PIC.

The best, average results, and average processing times (in seconds) are
reported from 20 independent executions of the MS-MMAS. Experiments are
conducted to report the distance between the best-known solutions and the best
results provided by the MS-MMAS. The variability in which the MS-MMAS
achieved the best-known solutions stated in the benchmark set is also calculated.
With these experiments, it is possible to conclude if the MS-MMAS algorithm was
able to find the best-known solution of each instance and with what variability this
happens.

The Friedman test [23] with the Nemenyi post-hoc procedure [24] are applied,
with a significance level 0.05, to conclude about significant differences among the
results of the MS-MMAS and the other three ACO variants proposed in this [5]. The
instances were grouped according to their sizes (number of vertices) for the
Friedman test. There are eight groups of symmetric (asymmetric) instances, each of
them contains nine instances, called g< n> , where < n> stands for the size.

4.2 Parameter tuning

The IRACE software was used, presented by [22], to tune the parameters of the
MS-MMAS algorithm. 20 symmetric and 20 asymmetric instances were submitted
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to adjust the parameters. Those instances were selected at random. The IRACE uses
the maxExperiments and maxTime parameters as stopping criteria. This parameters

were set as follows: maxExperiments ¼ 103; and, maxTime ¼ ∞.
For the asymmetric instance set, the parameters were defined as follows:

maxIter ¼ 31; m ¼ 51; α ¼ 3:08; β ¼ 10:31; ρ ¼ 0:52; τmax ¼ 0:8; and τmin ¼ 0:2. For
the symmetric instance set, the parameters were: maxIter ¼ 29; m ¼ 57; α ¼ 2:92;
β ¼ 9:53; ρ ¼ 0:67; τmax ¼ 0:7; and τmin ¼ 0:2.

4.3 Results

In this section, the results of the MS-MMAS are tested and compared to those
produced by the other three ACO variants proposed in [5]: AS, ACS, and MS-ACS.

Table 1 presents the comparison between the ant algorithms. The best results
obtained by MS-MMAS were compared with those achieved by each ant algorithm
proposed in [5]. The results are in the X � Y format, where X and Y stand for the
number of instances in which the ant algorithm X found the best solution and the
number of instances in which the ant algorithm Y found the best solution,
respectively.

Table 1 shows that the MS-MMAS was the algorithm that reported the best
solution for most instances. This algorithm performed best than other ACO variants
due to its enhanced pheromone update procedures. The MS implementation with
roulette wheel selection proved to be effective at finding the best heuristic infor-
mation used by the ants during the run. Table 1 also shows that the MS-MMAS
provides results with better quality than the MS-ACS in the most symmetric cases.
The MS-ACS was superior to the MS-MMAS in seventeen asymmetric cases and
fourteen symmetric instances. Was observed that the pseudo-random action choice
rule of MS-ACS [20], which allows for a greedier solution construction, proved to
be a good algorithmic strategy for solving large instances.

Tables 2 and 3 shows the ranks of the ant algorithms based on the Friedman test
[23] with the Nemenyi [24] post-hoc test. The first column of this Tables presents
the subsets of instances grouped according to their sizes. The other columns of this
Tables present the p-values of the Friedman test and the ranks from the Nemenyi
post-hoc test. In the post-hoc test, the order ranks from a to c. The c rank indicates
that the algorithm achieved the worst performance in comparison to the others. The
a rank indicates the opposite. If the performances of two or more algorithms are
similar, the test assigns the same rank for them. In this experiment, the significance
level was assigned with 0.05.

The p-values presented in Tables 2 and 3 show that the performance of the ant
algorithms was not similar, i.e., the null hypothesis [24] is rejected in all cases. In
these Tables, can be observed that MS-MMAS ranks higher than AS and ACS for all
subsets. The ranks of MS-ACS and MS-MMAS were the same in the most cases. This
implies that the performance of only these two algorithms where similar, i. e., the
relative distance between the results achieved by these two algorithms are short.

To analyze the variability of the results provided by each ant algorithm com-
pared to the best results so far for the benchmark set, three metrics regarding the

Asymmetric Symmetric

AS ACS MS-ACS AS ACS MS-ACS

MS-MMAS 68 x 0 68 x 1 45 x 17 66 x 1 68 x 2 48 x 14

Table 1.
Comparison between the ant algorithms.
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Asymmetric

Subset p-value AS ACS MS-ACS MS-MMAS

g10 0.003159 b b a a

g20 0.000040 b c a a

g30 0.000017 c c a a

g40 0.000024 b c a a

g50 0.000048 c c b a

g100 0.000045 b c a a

g200 0.000031 b c a a

g500 0.000037 c b a a

Table 2.
Results of Friedman’s test and Nemenyi post-hoc test over asymmetric instances set.

Symmetric

Subset p-value AS ACS MS-ACS MS-MMAS

g10 0.003543 b b a a

g20 0.000205 b c a a

g30 0.000045 c c b a

g40 0.000059 b c a a

g50 0.000035 b b a a

g100 0.000024 b b a a

g200 0.000045 c b a a

g500 0.000098 c b a a

Table 3.
Results of Friedman’s test and Nemenyi post-hoc test over symmetric instances set.

Asymmetric

Metric AS ACS MS-ACS MS-MMAS

ν 4.30% 2.56% 6.8% 11.84%

Φ 0.2075333 0.2773624 0.0541799 0.0054741

Ω 0.2835401 0.4023659 0.1754952 0.5854892

Table 4.
Variability of the ants algorithms for asymmetric instances.

Symmetric

Metric AS ACS MS-ACS MS-MMAS

ν 2.01% 0.69% 8.75% 9.05%

Φ 0.2169756 0.2285948 0.0547890 0.0113889

Ω 0.3017957 0.3620682 0.1656022 0.6432748

Table 5.
Variability of the ants algorithms for symmetric instances.
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Asymmetric Symmetric

Instance Best Average Time Percentage Best Average Time Percentage

A-10-3 478.42 863.13 0.15 100% 545.92 996.34 0.15 25%

A-10-4 523.57 1069.33 0.14 80% 460.00 838.84 0.18 20%

A-10-5 482.60 690.08 0.14 5% 371.93 658.97 0.19 10%

A-20-3 519.67 936.47 0.35 5% 679.75 1363.59 0.32 20%

A-20-4 458.10 1145.88 0.38 0% 346.30 661.82 0.43 35%

A-20-5 398.75 669.82 0.35 10% 351.50 1006.24 0.48 5%

A-30-3 618.33 1180.70 0.48 10% 574.33 1469.68 0.50 5%

A-30-4 401.20 805.32 1.28 5% 654.80 1202.15 0.40 5%

A-30-5 475.83 1033.91 0.58 10% 464.05 911.56 0.66 5%

A-40-3 692.00 1060.67 2.83 5% 718.25 1399.04 0.72 10%

A-40-4 658.95 1088.41 2.52 5% 570.98 961.13 2.95 5%

A-40-5 460.90 900.51 3.11 5% 441.22 836.52 2.89 5%

B-10-3 729.50 925.35 0.13 5% 834.67 1485.47 0.20 20%

B-10-4 306.90 421.35 0.13 15% 493.58 757.45 0.16 10%

B-10-5 434.75 835.01 0.18 55% 726.35 1160.97 0.23 5%

B-20-3 805.42 1251.39 0.28 10% 950.00 1666.22 0.45 5%

B-20-4 848.62 1366.69 0.35 5% 822.82 1386.67 0.49 5%

B-20-5 895.17 1275.78 0.28 70% 660.22 1215.12 0.35 5%

B-30-3 747.75 1316.96 1.31 5% 718.67 1358.11 0.93 5%

B-30-4 723.27 1301.57 1.51 5% 650.35 1272.86 0.69 5%

B-30-5 700.75 1205.96 1.39 5% 504.68 1091.11 0.89 5%

B-40-3 964.42 1574.00 2.02 0% 889.83 1682.76 1.97 5%

B-40-4 1195.62 2134.73 1.20 5% 743.82 1508.16 2.09 0%

B-40-5 819.28 1537.71 1.11 10% 749.82 1351.64 0.85 5%

C-10-3 359.25 604.70 0.17 55% 597.83 697.51 0.05 0%

C-10-4 307.10 514.66 0.20 5% 408.45 514.65 0.15 85%

C-10-5 566.58 783.35 0.17 10% 409.60 846.51 0.23 10%

C-20-3 650.25 978.84 0.46 10% 629.92 1063.99 0.36 0%

C-20-4 563.78 938.50 0.72 5% 441.65 1019.96 1.06 10%

C-20-5 739.22 1056.77 1.02 0% 711.87 1095.84 0.63 5%

C-30-3 837.58 1198.09 1.05 5% 830.17 1221.65 0.61 10%

C-30-4 754.10 1144.99 2.47 5% 745.92 1096.55 1.16 5%

C-30-5 560.18 998.28 2.29 10% 490.80 931.81 2.21 5%

C-40-3 1008.00 1541.54 2.59 5% 607.00 946.57 3.45 10%

C-40-4 695.30 1172.76 2.06 10% 699.80 1136.17 2.25 0%

C-40-5 623.33 1097.22 3.24 10% 475.67 898.80 7.82 0%

Table 6.
Results of the MS-MMAS executions for small instances.
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Asymmetric Symmetric

Instance Best Average Time Percentage Best Average Time Percentage

A-50-3 1058.33 2128.68 2.31 5% 1000.33 1943.13 2.91 5%

A-50-4 774.93 1473.57 4.48 5% 783.40 1345.19 3.53 5%

A-50-5 673.42 1314.54 4.16 5% 583.08 1008.33 2.59 0%

A-100-3 1431.42 2046.96 53.44 5% 1514.08 2292.08 15.66 20%

A-100-4 1456.47 2705.07 23.12 5% 1165.90 1595.91 37.11 5%

A-100-5 1106.17 1778.38 40.57 10% 980.28 1366.09 58.20 5%

A-200-3 2806.75 3610.22 424.60 0% 2793.33 3272.00 257.42 0%

A-200-4 2388.88 3196.15 381.07 0% 2199.45 2807.06 79.32 10%

A-200-5 1753.00 2286.08 1380.26 10% 2086.82 3237.85 55.37 10%

A-500-3 6878.42 7165.39 1641.92 33% 6331.75 7679.65 732.94 10%

A-500-4 5572.42 5637.26 4939.84 0% 5030.48 5080.66 913.82 0%

A-500-5 4389.92 4539.44 16990.77 50% 4610.95 4696.91 73.97 33%

B-50-3 1338.42 2356.24 5.82 10% 966.42 1770.88 4.60 5%

B-50-4 951.87 1757.61 5.00 5% 772.67 1490.01 1.47 5%

B-50-5 1083.18 1943.22 3.91 5% 692.42 1342.78 4.74 5%

B-100-3 1781.00 3115.78 30.96 5% 1803.33 3258.90 15.11 5%

B-100-4 1409.65 2467.02 61.76 5% 1648.58 3360.93 11.00 5%

B-100-5 1361.20 2734.24 39.89 5% 1018.37 1536.34 99.02 5%

B-200-3 3302.83 4840.94 317.37 0% 3016.67 4267.17 56.62 0%

B-200-4 2536.80 3477.13 681.75 0% 2326.97 3139.57 81.34 10%

B-200-5 2127.88 2814.24 906.74 0% 1893.67 2506.64 102.33 10%

B-500-3 6994.84 7203.61 3857.77 0% 6433.92 6475.67 126.51 0%

B-500-4 5419.87 5730.97 24183.87 100% 5191.77 5276.98 267.72 0%

B-500-5 4546.28 4643.03 21118.98 0% 4379.43 4494.11 164.08 33%

C-50-3 1201.92 1801.68 3.12 5% 829.75 1482.86 2.82 5%

C-50-4 937.25 1651.11 7.96 5% 901.40 1605.24 6.16 10%

C-50-5 609.60 1127.99 16.58 5% 766.48 1366.58 7.43 5%

C-100-3 1496.58 2001.76 47.62 0% 1364.00 1819.03 14.21 10%

C-100-4 1352.85 2458.82 32.32 5% 1099.00 1445.29 23.98 0%

C-100-5 1022.70 1466.42 127.11 0% 991.12 1472.23 35.21 5%

C-200-3 2629.00 3197.13 478.90 10% 2510.50 3171.66 65.07 10%

C-200-4 2184.85 2648.38 710.70 10% 2141.40 2741.11 52.59 0%

C-200-5 1881.03 2296.53 486.62 0% 1713.17 2127.84 126.85 10%

C-500-3 6528.08 6618.16 2484.52 0% 6023.42 6087.14 138.12 33%

C-500-4 5139.54 5298.21 8188.46 0% 4942.28 4958.64 65.19 33%

C-500-5 4286.45 4278.49 6061.78 0% 4167.67 4178.10 302.79 0%

Table 7.
Results of the MS-MMAS executions for medium and large instances.
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results produced by the experiments were adopted. The first metric, ν, shows the
percentages relative to the number of times an ant algorithm found the best-known
solution along 20 independent executions. The second metric, Φ, is the relative
distance between the cost of the best-known solution χ ∗ and the best solution χmin

of each ant algorithm. The third metric, Ω, is the relative distance between χ ∗ and
the average solution χa of each ant algorithm. To calculate Φ, the Eq. (9) was used.
Ω is calculated using the formula (10). The average values of ν, Φ and Ω are
reported in Tables 4 and 5.

Φ ¼
χmin

χ ∗
� 1 (9)

Ω ¼
χa

χ ∗
� 1 (10)

It can be observed from Tables 4 and 5 that the MS-MMAS is the best one
concerning the ν and Φmetrics. The MS-ACS is the best algorithm concerning the Ω
metric. Tables 6 and 7 show the data regarding the results of MS-MMAS reported
in Tables 4 and 5. The results of the other ACO variants can be seen in [5].

Tables 8 and 9 present the average processing time (in seconds) spent by each
heuristic. Instances are grouped by the number of vertices. From these tables, it can
be conclude that the MS-MMAS was the ant algorithm that demanded more

n AS ACS MS-ACS MS-MMAS

10 0.05 0.06 0.12 0.15

20 0.10 0.13 0.26 0.46

30 0.20 0.30 1.92 1.37

40 0.34 0.48 2.29 2.29

50 0.41 2.20 5.77 5.92

100 6.68 28.85 32.69 50.75

200 31.81 270.94 409.72 640.89

500 41.72 3477.13 3545.20 9940.87

Table 8.
Average time spent by the ant algorithms for the set of asymmetric instances.

n AS ACS MS-ACS MS-MMAS

10 0.05 0.06 0.12 0.17

20 0.10 0.13 0.27 0.51

30 0.18 0.24 0.49 0.89

40 0.28 0.38 0.73 2.78

50 0.40 0.56 5.41 4.02

100 8.13 13.51 29.17 34.93

200 22.94 51.92 112.58 97.43

500 40.53 75.72 127.83 309.46

Table 9.
Average time spent by the ant algorithms for the set of symmetric instances.
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processing time. Tables 6 and 7 (1) present detailed results concerning the average
time required by the MS-MMAS. Data regarding the time consumption of the other
ACO variants can be seen in [5].

5. Discussion

The purpose of this study was to adapt MMAS to the QTSP-PIC and compare its
performance with the ACO variants proposed in [5]. As expected, MS-MMAS
proved to be competitive regarding the other ACO variants proposed to solve
QTSP-PIC. Similarities and differences that were observed in the results are
discussed in section 5.1. The limitations of the study are discussed in Section 5.2.

5.1 Comparison between ACO algorithms

The ACO algorithms proposed by Silva et al. [5] showed to be a viable method
for solving QTSP-PIC. Yet, the performance of AS and ACS algorithms, when
compared to MS-MMAS, was rather poor for the benchmark set studied. MS-
MMAS improved the results achieved by AS in 134 instances. Compared to ACS,
MS-MMAS performed better in 136 instances. The results achieved by MS-MMAS
improved those produced by MS-ACS in 93 instances. It is interesting to note that
the MS-ACS algorithm performed slightly better on the large instances than the MS-
MMAS. The Friedman test and Nemenyi post-hoc ranked these two ACO algo-
rithms with the same scale for the most instance groups, which means that differ-
ence between the results achieved by the MS-ACS and MS-MMAS was significantly
small.

These observations are also supported by the variability results of each ACO
algorithm. Metric ν showed that MS-MMAS was the algorithm that achieved the
best know solutions of the benchmark set in most cases. Metric Φ showed that the
MS-MMAS performed slightly better overall on the benchmark set than the MS-
ACS. A possible explanation for this is that the MS-ACS variation might converge to
a local minimum faster than the MS-MMAS.

Results presented in this study showed that the MS-MMAS algorithm is better
suited than the other three ACO variants proposed in [5] to solve QTSP-PIC. This
suggests a positive impact of the implementation design proposed in this study and
a contribution to the MAX-MIN Ant System state of the art.

5.2 Limitations

Due to limited time, parallel computing techniques could not be tested to
improve the performance of MS-MMAS. A previous study done by Skinderowicz
[10] investigated the potential effectiveness of a GPU-based parallelMAX-MIN Ant
System in solving the TSP. In this study, the most promising MMAS variant was
able to generate over 1 million candidate solutions per second when solving a large
instance of the TSP benchmark set. Other techniques can improve the MS-MMAS
design and could not be tested due to the lack of time:

• A rank-based pheromone updating rule [25];

• The application of the pseudo-random action choice rule proposed in [21];

• Hybridization with other meta-heuristics [26–28].
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6. Conclusions

This work dealt with a recently proposed variant of the Traveling Salesman
Problem named The Quota Traveling Salesman Problem with Passengers, Incom-
plete Ride, and Collection Time. In this problem, the salesman uses a flexible
ride-sharing system to minimize travel costs while visiting some vertices to satisfy a
pre-established quota. He must respect the budget limitations and the maximum
travel time of every passenger. Each passenger can be transported directly to the
desired destination or an alternate destination. The alternative destination idea
suggests that when sharing a ride, pro-environmental or money-saving concerns
can induce persons to agree to fulfill their needs at a similar destination. Operational
constraints regarding vehicle capacity and travel time were also considered.

The Multi-Strategy MAX-MIN Ant System, a variant from the Ant Colony
Optimization (ACO) family of algorithms, was presented. This algorithm uses the
MS concept improved with roulette wheel selection and memory-based principles
to avoid redundant executions of the local search algorithm. The results of MS-
MMAS were compared with those produced by the ACO algorithms presented in
[5]. To support MS-MMAS, the ride-matching heuristic and the local search heu-
ristic based on multiple neighborhood operators proposed by [5] were reused.

The computational experiments reported in this study comprised one hundred
forty-four instances. The experimental results show that the proposed ant algorithm
variant could update the best-known solutions for this benchmark set according to
the statistical results. The comparison results with three other ACO variants pro-
posed in [5] showed that MS-MMAS improved the best results of MS-ACS for
ninety-three instances, and a significant superiority of MS-MMAS over AS and
ACS.

The presented work may be extended in multiple directions. First, it would be
interesting to investigate if the application of the pseudo-random action choice rule
[20] could improve the MS-MMAS results. Another further promising idea is the
use of pheromone update rule based on ants ranking [25]. Extension of the MS-
MMAS implementation design with parallel computing techniques [10] and
hybridization with other meta-heuristics [26–28] is other interesting opportunity
for the future research.

Abbreviations

MaaS Mobility as a Service
QTSP-PIC Quota Traveling Salesman Problem with Passengers, Incomplete

Ride and Collection Time
ACO Ant Colony Optimization
RMH Ride-Matching Heuristic
MnLS Multi-neighborhood Local Search
MS-ACS Multi-Strategy Ant Colony System
MMAS MAX-MIN Ant System
MS-MMAS Multi-Strategy MAX-MIN Ant System
MS Multi-Strategy
TSP Traveling Salesman Problem
QTSP Quota Traveling Salesman Problem
AS Ant System
ACS Ant Colony System
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