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Abstract

Nitrogenous fertilizer has remarkably improved rice (Oryza sativa L.) yield 
across the world since its discovery by Haber-Bosch process. Due to climate 
change, future rice production will likely experience a wide range of environ-
mental plasticity. Nitrogen use efficiency (NUE) is an important trait to confer 
adaptability across various abiotic stresses such as flooding, drought and salinity. 
The problem with the increased N application often leads to a reduction in NUE. 
New solutions are needed to simultaneously increase yield and maximize the 
NUE of rice. Despite the differences among flooding, salinity and drought, these 
three abiotic stresses lead to similar responses in rice plants. To develop abiotic 
stress tolerant rice varieties, speed breeding seems a plausible novel approach. 
Approximately 22 single quantitative trait loci (QTLs) and 58 pairs of epistatic 
QTLs are known to be closely associated with NUE in rice. The QTLs/genes for 
submergence (SUB1A) tolerance, anaerobic germination (AG, TPP7) potential 
and deepwater flooding tolerance (SK1, SK2) are identified. Furthermore, phy-
tochrome-interacting factor-like14 (OsPIL14), or loss of function of the slender 
rice1 (SLR1) genes enhance salinity tolerance in rice seedlings. This review updates 
our understanding of the molecular mechanisms of abiotic stress tolerance and 
discusses possible approaches for developing N-efficient rice variety.

Keywords: abiotic stress, crop establishment, climate change, QTLs, food security

1. Introduction

Nitrogen is the most abundant (78%) of the atmosphere in gaseous form as an N2 
molecule. But it is not directly available to the plants for their growth and develop-
ment [1]. It is the foremost important major essential nutrient element involved 
in the physiological processes in plants. Globally, nitrogen deficiency is a crucial 
growth-limiting factor for plants, especially under abiotic stresses. The nitrogen 
use efficiency (NUE) is defined as the output of any crop plant per unit of nitrogen 
applied under a specific set of soil and climatic conditions [2]. Agronomist usually 
considers the amount of rough rice produced per unit of nitrogen applied as the 
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efficiency of nitrogen, but physiologist defined it as the amount of rough rice  
produced per unit of nitrogen absorbed [3, 4]. The latter is also termed as N utilization 
efficiency. Apparent N recovery is based on N uptake measurement in the above-
ground plant parts and assumes that fertilized and control crops absorb the same 
amount of soil N. On the other hand, physiological and agronomic efficiencies are 
based on grain yield rather than total dry matter production. However, the enhance-
ment of NUE under an abiotic stressful environment has paramount importance to 
the future rice breeder.

Rice (Oryza sativa L.) is grown in a wide range of ecosystems from the tropic 
to the temperate regions, but productivity is severely tormented by various abiotic 
stresses [5, 6]. Farmers may encounter flooding or waterlogging if heavy rain occurs 
immediately after seeding before or after transplanting. The flooding can cause 
complete crop failure because of the high sensitivity of rice to anaerobic conditions 
caused by flooding during germination [7, 8]. There are various forms of flooding 
caused by directly from heavy rains and/or flooding from adjacent rivers, leading 
to drastic reductions in rice yield, ranging from 0.5 to 2.0 t ha−1 [9]. Flash floods 
are relatively short durations, prevailing some days to a couple of weeks. Apart 
from this, stagnant flooding (30–50 cm water depth) may occur at any time of the 
monsoon. Sometimes, the stagnant flooding may have coincidence with the flash 
flood resulting in severe impacts on rice production. In deepwater areas, stagnant 
water present from 0.5 m to a few meters in the field, usually for 4-6 months. The 
depth of water in some of these deepwater areas can exceed 4 m as in floating-rice 
areas. Rice breeders have been trying to develop a unique rice variety having specific 
adaptive traits to tackle these types of floods [10–12]. Recently, the Bangladesh 
Rice Research Institute has developed a deepwater rice variety, BRRI dhan91, for 
the deepwater ecosystem. However, the application of nitrogenous fertilizer is very 
challenging to the deepwater rice field and the NUE of this ecosystem is not yet 
been well investigated.

Another one among the most important abiotic stresses is drought. Despite the 
importance of drought as a major factor in yield reduction in rainfed ecosystems, 
few efforts have been made to develop high-yielding drought-tolerant rice variety. 
Impending rice production will experience a range of drought stress. The root archi-
tectural plasticity is taken into accounts as a very important characteristic to confer 
tolerance to drought stress [13]. Deciphering the genetic and molecular mechanisms 
controlling root phenotypic plasticity is important for effective screening, selection 
and rice breeding efforts. Despite the likely genetic complexity behind the regula-
tion of trait expression in line with environmental conditions, phenotypic plasticity 
is heritable and selectable. The QTLs have been identified incur for plasticity in 
aerenchyma development and lateral root growth in response to drought stress 
in rice [14]. These QTLs can be used in advanced breeding for the development 
of a drought-tolerant rice variety. Due to global climate change, rice crops will 
face diverse stresses, including prolonged drought stress, poor soil fertility, and 
unpredictable rainfall. Rice establishment, either by transplanting or direct seeding, 
depends upon the rainfall pattern. Therefore, the identification of root phenotypic 
plasticity traits suitable for adaptation to the particular range of conditions faced 
by rice crops, as well as the genetic regions responsible for those plasticity traits, 
may facilitate selection for wide adaptation of rice genotypes to variable conditions 
to confer sustainable yield. Quantification of root architectural plasticity possesses 
significant value to detect which root traits may play the pivotal roles in rice adapt-
ability to drought. It is reported that the most plastic genotypes in root traits may 
show the most yield stability under various dynamics of drought stress [11]. In this 
regard, many drought-tolerant cultivars, like N22 and Moroberekan, have been 
selected from rainfed ecosystems through traditional processes. These cultivars 
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harbor genes for tolerance to abiotic stresses, including a wide range of drought 
[15]. But due to their low yield potential and poor grain quality, farmers and con-
sumers are reluctant to prefer these cultivars. This provides a unique opportunity 
for rice breeders to develop high-yielding drought-tolerant varieties.

Salinity is another major abiotic stress that is globally distributed in both 
irrigated and non-irrigated areas [16, 17]. On a global basis, salinity stress ranked 
second after the drought [18]. Salt stress affects many aspects of rice growth and 
development, especially during seed germination and seedling growth [19]. It is 
one of the most prevalent environmental threats to global agricultural productivity, 
especially in arid and semi-arid climates, where population growth, water shortage 
and land degradation are major concerns [1, 20]. Salt-affected soils are identified by 
high electrical conductivity (EC), sodium adsorption ratio (SAR) and pH, calcar-
eousness, poor organic matter, less biological activity and imbalance in physical soil 
conditions. Salinity causes toxicities of ions like Na+ and Cl−, osmotic stress and ionic 
imbalance to the root zone or in the soil body, including soil impermeability [21], 
resulting in nutrient uptake problems in rice plant. Salt stress is the osmotic stress 
expressed on seedling to the reproductive stage when they are growing under high 
saline conditions. The N is the essential element for the synthesis of chlorophyll, 
amino acids, nucleic acids, and proteins. Reduction in plant dry matter is sometimes 
observed under severe NaCl salt stress and N deficiency. This phenomenon possibly 
happens because of the decrease in sugar or starch accumulation [1, 22]. The NUE 
of nitrogenous fertilizers in saline soil depends upon its mineralization pattern, soil 
salinity levels, soil texture, temperature, freshwater irrigation and soil pH [23]. As 
NUE for rice plants under salt-affected soils is relatively lower than those on normal 
soils, the judicious use of nitrogenous fertilizer application in saline soil is needed. 
Breeders involved in salinity tolerant rice, it is groundbreaking news that the over-
expression of PHYTOCHROME-INTERACTING FACTOR-LIKE14 (OsPIL14), or 
loss of function of the DELLA protein SLENDER RICE1 (SLR1), accelerate meso-
cotyl and root growth under salt stress and minimize the sensitivity to NaCl-induced 
hindrance of seedling growth in rice [17].

2. Crop establishment methods under abiotic stress

Crop establishment under abiotic stress is crucial for farmers, even though 
farmers are coping with this stress condition. There are many more abiotic stresses; 
out of those, we will discuss only flooding, drought and salinity stress.

2.1 Crop establishment under flooding stress

Proper rice establishment is significantly important in flood-prone areas 
because of its sensitivity to flooding during germination (Figure 1) and early seed-
ling stage relative to other growth stages [24, 25]. In most areas of Asia, irrigated 
rice is established by transplanting of seedlings into puddle soil [26, 27], after 
which the fields are flooded for a prolonged time and recession of water is done 
before harvesting. Puddling gives some advantages such as it reduces water loss by 
percolation, assists weed control through destroying weeds, burying weed seeds 
and maintaining anaerobic conditions that impede weed germination, and makes 
the soil soft for transplanting [28, 29]. In many rainfed areas of Bangladesh and the 
eastern part of India, water deposits in the field to around 30 cm or more within 
a few days after the onset of the rainy season, making the farmers to transplant 
taller and older seedlings being their only viable option in their hand [30]. Many 
variations in direct-seeding are being practiced depending on water availability 
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and field conditions [29]. Due to increasing labor scarcity and cost, however, 
the need to shift a more suitable establishment method with much lower labor 
requirement than manual transplanting is conducted. This can be achieved by 
changing to mechanical transplanting or direct-seeding, which also enable timelier 
planting/seeding and improved crop stand [31]. Researchers in China [32], South 
Asia [33], and Australia [34] reported that rice could be successfully grown using 
dry-seeding. Dry-seeding rice has been developed as an alternative establishment 
method of rice that alters labor requirements and other inputs while increasing or 
maintaining economic productivity and alleviating soil degradation problems in 
cropping systems [35, 36].

The three basic methods of direct seeding are water seeding (broadcasting seed 
into standing water), dry-seeding and wet-seeding [31]. In wet seeded rice (WSR), 
the pre-germinated seeds are broadcasted or sown in rows on the saturated soil 
surface, typically after puddling. Dry-seeding involves broadcasting or preferably 
drilling the seed into non-puddled soil, usually after dry tillage [31]. Water seeding 
involves pre-germinated rice seeds broadcast in standing water and is practiced 
in some cooler areas like in California, Central Asia and Australia [30]. The main 
advantage of this method is that the standing water suppresses the majority of 
weed species. This is common in temperate irrigated areas, but could potentially 
be adapted in flood-prone rainfed lowlands in the tropical area where farmers can 

Figure 1. 
Crop establishment methods and seed management options under early flooding stress using anaerobic 
germination (AG) potential rice genotypes in direct-seeded rice (DSR) system under field condition.
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practice early sowing without waiting for a complete recession of floodwater, to 
minimize the risk of delayed maturity and late-season drought [26]. Once the rice 
crop has been established in direct-seeded systems and based on water availability, 
the field is flooded to suppress weed growth and water depth is then maintained 
at 5–10 cm through most of the season, later water is gradually drained prior to 
harvest [30]. The type and degree of adoption of alternative rice crop establishment 
methods to puddling and manual transplanting vary across Asia. In some parts of 
South East Asia (Philippines, Malaysia, and Vietnam) and Sri Lanka, transplanting 
has been replaced in large areas by wet-seeding on puddled soil [2, 26]. In the more 
developed East Asian countries, like Japan and South Korea, transplanting in pud-
dled soil using specialized machinery has been a common practice for many years, 
and there is now emerging interest in mechanical transplanting into either puddle 
or non-puddle/dry tilled soil in parts of India. In parts of South Asia, especially in 
the rice-wheat systems of north-west India, dry-seeding of rice is at the early stages 
of adoption. The same seed drill can also be used for sowing other crops; thus, dry-
seeding may be more conducive to the mechanization of rice establishment than the 
use of a single purpose mechanical transplanters in regions where farmers also grow 
non-rice crops [37].

The establishment methods involving puddling have several disadvantages, 
including higher tillage costs, adverse effects on soil structure for upland crops 
grown in rotation with rice, and high water requirement for crop establishment. 
Irrigation cost for crop establishment can be reduced by avoiding puddling, 
with or without a change in the crop establishment method. For example, both 
mechanical transplanting and wet-seeding can be done in non-puddled soil after 
saturating the soil (after dry tillage or no-tillage) [38]. Dry-seeding into dry or 
moist soil, can further reduce the water requirement for crop establishment, with 
or without prior dry tillage as for transplanted and wet seeded rice. Nevertheless, 
direct-seeded rice in the field for 2–3 weeks is longer than transplanted rice, 
increasing the length of the irrigation season. It has been observed that the 
extraction of water is more uniform across depths with direct-seeded rice 
because of better root growth than with transplanted rice [39]. At the early stage 
of crop growth, up to 60 days after sowing (DAS) growth rate is relatively higher 
in DSR and WSR than transplanted rice, having more plant density per unit area 
compared to transplanting [40].

2.2 Crop establishment under drought stress

Drought is an environmental occurrence imposed by the synergistic effect of 
hydrological, climatic, and natural forces that result in insouciant precipitation for 
agricultural production over a long period [41]. Globally drought severity is one 
of the serious concerns because of its immense impacts [42]. The frequency and 
severity of global drought remain omnipresent and the incidence or extremity of 
drought has been increasing globally, such as in the Mediterranean region [43], 
Central China [44], and Africa [45]. Drought is a major constraint to rice produc-
tion worldwide, as it can occur for varying lengths of time and intensity at any 
stage of rice growth and development. With the increasing human population and 
depleting water resources, the development of drought-tolerant rice is of supreme 
importance to minimizing rice yield losses from drought stress [46]. The major 
obstacle of rain-fed rice production is drought [47]. Irrigated conditions induce 
shallow root systems to uptake the resources from the top layer of the soil, whereas 
rain-fed conditions favor a deep and robust root system, needed to extract the water 
and nutrients from a wider volume of soil [48]. Three common types of drought 
can be found for rice production: early water scarcity that causes a delay in seedling 
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establishment through transplanting, mild sporadic stress having cumulative 
effects, and late stress affecting long duration varieties [49].

Drought stress induces different physiological and biochemical changes in rice 
at various developmental stages [50]. It is reported that the plant acclimatized to 
drought stress through modification of its roots into thicker and longer to uptake 
nutrient and water from a relatively higher depth of soil and it is found that assimi-
lates are translocated to roots instead of shoots in response to drought stress [51]. In 
contrast, some researchers opined that root growth in rice decreases under drought 
stress [52]. These findings show that the response of roots to water stress is highly 
dependent on the rice genotype, period and intensity of stress [53]. The impact of 
drought stress on rice yield also depends on the growth stages, with the seedling, 
tillering, flowering, but if rice plant faces severe drought at the panicle initiation 
stage might be the most sensitive stage resulting huge loss in yield [54].

2.2.1 Role of root to uptake water under drought

As roots uptake water and nutrients from the soil; hence, the morphological and 
physiological characteristics of roots play a vital role in determining shoot growth, 
successive development and ultimate crop production [55]. The access of water to a 
plant is measured by its root system, root properties, root structure, and distribu-
tion of root and rootlets, so improving root traits to expedite the uptake of soil 
moisture and uphold the productivity under drought stress is of paramount interest 
[56, 57]. Herbaceous plants like rice have a root system comprised of coarse roots, 
which include the primary roots that originate from the taproot system and the 
nodal/seminal roots of fibrous root systems, easily distinguishable from the finer 
lateral roots [58]. Moisture deficiency can be recovered through modification of the 
root-shoot ratio and maintain leaf gourd cell-mediated process under drought stress 
[59]. The optimal dry matter partitioning theory proposes that a plant distributes 
the assimilates among its different parts for optimum growth and development 
[60]. It further suggests that the shoot ratio and some other signaling processes may 
change the ratio to balance the assimilates that alter plant growth even the plants 
produce certain root for adaptation [61]. Roots having a small diameter and a high 
specific root length expedite the surface area of roots in contact with soil water 
and also increase the influx of the xylem through the apoplastic pathway [62, 63]. 
Moreover, the decrease in root diameter also assists in enhancing water access and 
upraises the productivity of plants under drought stress [64].

Agronomic adjustments to root plasticity may occur when plant combat with 
multiple resources limitation [65]. Root architecture varying with rice seedling 
establishment methods; dry direct seeding prone to more edaphic stresses than irri-
gated transplanted methods [31]. Moreover, the adjustments in high yield potential 
among genotypes showing the highest degree of root plasticity may be due to genetic 
potentiality rather than functional adjustments. Undesirable traits to drought stress 
such as tall plant height and very early flowering have been reported previously, 
later in high-yielding, medium-duration drought-tolerant rice varieties developed 
[66, 67]. So the exact identification and fine-mapping of the QTLs governing 
the root plasticity traits identified [68]. The positive plasticity values noticed in 
response to stress indicate that the growth of that particular root trait was increased 
due to stress application. This response is distinct from an allometric response, in 
which larger root biomass is related to larger shoot size, because though root growth 
increased under drought stress but shoot growth down-regulated under stress [68]. 
The genotypes showing most root-plasticity have positive correlations for root 
architectural traits between and drought suggest that the most root-plastic geno-
types would consistently show a plastic response in different drought environments 
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either in transplanting or direct seeding or in other soil types [68]. The genotypes 
having the most root-plasticity under drought also would show a relatively greater 
degree of plasticity under low phosphorus content soil, depending on the soil depth 
[68]. Combinations of multiple root plasticity traits in response to drought and/or 
low-phosphorus have been related to genotypic variation for adaptation to various 
environments [69]. It is reported that no single functional parameter was strongly 
incurred to trends in root plasticity or yield [68]. In line with root architectural 
plasticity, traits such as root anatomy, water use efficiency, and phenology has 
been reported to be related to more stable plant establishment across versatile 
environments in various species [70, 71]. In the case of rice, phenological plasticity 
in response to drought may be difficult to assess because rice exhibited delayed 
flowering under drought, and this delay can be reduced by plasticity in root archi-
tectural traits, which improve moisture uptake. A set of QTLs has been identified 
related to root architectural plasticity traits and phenotypic plasticity traits in rice, 
resulting in getting a better understanding of rice establishment under drought 
stress [68].

2.3 Crop establishment under salinity stress

Generally, rice plants are very sensitive to salinity stress during the early stages of 
seedling establishment, post-germination and reproductive stage and relatively less 
sensitive during tillering and grain filling stages [72, 73]. Under salinity altering in 
the shoot to root ratio as a consequence of root length reduction was supposed to be 
the avoidance mechanism of the seedlings from salt stress. Salinity accumulates the 
toxic ion in plants, causing a mineral imbalance. The essential ions are reduced and 
do not meet the demand resulting in hindrance in normal physiological activities of 
rice plants. High salt stress impedes the seed germination process, while low salt stress 
induces seed dormancy [74]. To cope with such stress conditions, seeds develop a 
mechanism of maintaining low water potential, other specific avoidance, escaping, or 
tolerance mechanisms to protect the damage by salt stress [75]. Salinity limits germi-
nation in a number of ways. From reducing the osmotic potential of soil, which makes 
a decline in water imbibitions by seed [74] to the creation of ionic toxicity, which alters 
enzymatic action involved in nucleic acid metabolism. Other effects of salt stress on 
seed germination include changes in the metabolic process of protein [76]. Seeds are 
usually more sensitive to salt stress due to close association to the surface of the soil. 
Accumulation of NaCl to a toxic level in soil, ionic stress decreases the rate of germi-
nation [77]. Seed could not absorb water properly because of lower water potential 
induced by salt stress resulting in toxic effects to the developing embryo and delay in 
the germination process [78]. The average time of seed germination depends on salin-
ity severity and genotype’s inherent quality. There is a strong negative co-relationship 
between the strength of salinity stress and the rate of germination [79]. Salinity 
exhibits an immense effect on the germination index and seed size [80]. Small-sized 
seeds show a relatively higher germination index than large size seeds under salinity 
stress. Salinity has a negative effect on germination percentage, rate of germination 
and germination speed [81]. After germination, in successive growth of the seedling, 
salinity reduces shoot and root dry matter production in rice genotypes [82], and the 
magnitude of reduction increased with increasing salinity level (Table 1).

2.3.1 Plant physiology under salinity

Higher amounts of salt in the soil cause a serious threat to various metabolic 
processes of plants, which results in a reduction of crop yield. Soil salinity limits the 
uptake of essential ions into the plants resulting in metabolic disorder leading to 
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Genotype Salinity level (dS m−1)

0 5 10 15 0 5 10 15

Shoot dry weight (g/10 plants) Root dry weight (g/10 plants)

IR20 0.060 0.05 (17) 0.028 (53) 0.016 (73) 0.068 0.048 (29) 0.036 (47) 0.016 (76)

POKKALI 0.134 0.116 (13) 0.064 (52) 0.044 (67) 0.152 0.076 (50) 0.026 (83) 0.018 (88)

IR29 0.140 0.07 (50) 0.036 (74) 0.014 (90) 0.06 0.048 (20) 0.022 (63) 0.012 (80)

NERICA 1 0.084 0.064 (24) 0.024 (71) 0.008 (90) 0.054 0.038 (30) 0.018 (67) 0.01 (82)

NERICA 5 0.076 0.054 (29) 0.032 (58) 0.02 (74) 0.13 0.056 (57) 0.016 (88) 0.004 (97)

NERICA 12 0.092 0.068 (26) 0.046 (50) 0.028 (70) 0.062 0.04 (35) 0.024 (61) 0.01 (84)

NERICA 19 0.054 0.038 (30) 0.014 (74) 0.004 (93) 0.036 0.028 (22) 0.002 (94) 0.0 (100)

IWAII 0.090 0.068 (24) 0.032 (64) 0.02 (78) 0.068 0.046 (32) 0.028 (59) 0.016 (76)

Values in parenthesis indicate percent reduction to respective controls.

Table 1. 
Effect of salinity on shoot and root dry weight (g/10 plants) of different rice varieties [82].
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downstream in plant growth rate [83]. Excess salt concentration in the root zone of 
plants causes a change in plant water potential. Salinity causes a reduction in turgor 
pressure in plant cells due to less water uptake by the plants. Insufficient water limit 
cell division and regulation of stomatal aperture, which lead to low photosynthesis 
rate and in severe case causes plant tissues death [84]. Aside from this, reduction 
in turgor pressure causes stomatal closure, resulting reduction in gaseous exchange 
of transpiration [20]. Salinity causes other physiological disorders, like changes 
in membrane permeability, leading to misfolding of membrane proteins [85] and 
suppression of the photosynthesis [86]. Reduction in enzymatic activities and 
photopigments causes a lowering of photosynthesis rate [87]. Many plant physio-
logical and biochemical processes, photosynthesis [88], water conductance through 
stomata [75, 89] are affected by salinity, resulting in an adverse effect on biological 
processes and crop yield reduction.

2.3.2 Plant anatomical change under salinity stress

Rice adopts various strategies in response to salinity through their anatomical 
modification, which allows them to cope with the stress. Plants with growth in high 
salt concentration have more thickness of leaves [90], epidermis, cell walls and 
cuticles. The higher the salt concentrations, the higher the mesophyll cell layers 
and cell size up to some extend [91], due to more elasticity in the cell wall at high 
turgor pressure [92]. Salinity expedites the density of stomata at the lower side of 
leaves [93] with increased palisade tissues [94]; however, salinity downregulates the 
number of cells per leaf. Salinity reduces the number of stomata on the surface of 
the epidermis [95], vessels number [94]. However, salinity accelerates subrinization 
inside the roots resulting in hindrance in nutrient uptake from soil [96]. In rice, 
it is reported that stem diameter was reduced [97], while trichome and stomata 
density increased. Salt stress reduced cell size, the epidermal thickness of leaves, 
apical meristem, diameter of the cortex and central cylinder [98]. Salinity induced 
thickening of exodermis and endodermis [99] and assist in developing sclerenchy-
matous tissues [98]. Once the seed has germinated, the next goal for the plant is an 
establishment. Salinity causes a reduction in crop establishment by reducing shoot 
growth, sealing leaf development and expansion, reducing the growth of inter-
nodes and inducing abscission of leaf [91, 100]. Salinity causes some complexity to 
plants, like osmotic stress, ion toxicity and nutrient imbalance, which are detected 
as the most prominent reasons for a reduction in crop growth, resulting in crop 
failure in severe cases. Nonetheless, different developmental stages like germina-
tion, vegetative growth, flowering, spikelet’s setting and grain filling of rice behave 
differently with salinity. It is reported that salinity decreased biomass and leaf area 
in rice [101].

3. QTLs and genes of nitrogen use efficiency

In soil, inorganic nitrogen is available for plants as nitrate (NO3
−) in aerobic 

upland condition and ammonium (NH4
+) in flooded wetland or acidic soils. 

Nitrogen use efficiency (NUE) is a complex trait that is controlled by multiple 
genes. Many genes and/QTLs associated with NUE have been identified in rice. 
Studying and understanding the mechanisms of N utilization at a molecular level 
may help to improve rice varieties for N deficiency tolerance under different abiotic 
stresses. Researchers [102] identified 14 putative QTLs for NUE components and 
63 QTLs for 12 physiological and agronomic characteristics with six hotspot regions 
using 174 recombinant inbred lines derived from the IR64/Azucena cross at the 
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vegetative phase in the hydroponic Yoshida solution with three different N concen-
trations: 1X (standard), 1/4X and 1/8X. In line with this, it is reported that eight 
QTLs for plant height in hydroponics with two N supply levels in the Yoshida cul-
ture solution and 13 QTLs for plant height in a soil mediated experiment with two 
N supply treatments [103]. Twelve QTLs were detected for root weight, 14 for shoot 
weight and 12 for biomass from 239 rice recombinant inbreed lines (RILs) derived 
from a cross between two indica parents (Zhenshan97/Minghui63) under hydro-
ponics medium using two N treatments [104]. In another pot experiment, seven 
QTLs were identified associated with nitrogen use and the yield on chromosome 3 
[105]. Three candidate genes Os05g0208000, Os07g0617800 and Os10g0189600 were 
identified through fine-mapping of four QTLs located on chromosomes 5, 7 and 10 
accelerated yield performance under low N level [106].

Five QTLs were identified on chromosomes 1, 2, 7 and 11 for grain yield (GY) 
using 127 RILs derived from the cross Zhanshan 97/Minghui 63 [107]. The pheno-
typic and genetic associations between grain NUE and GY are positive and highly 
significant; thus, QTLs for both NUE and GY could be used to trigger NUE and 
GY in a breeding program [108]. Seven QTLs for the glutamine synthetase (GS1) 
protein content and six QTLs for the NADH-GOGAT protein content were detected 
using backcross inbred lines between Nipponbare and Kasalath. Some of these 
QTLs were fined mapped to get a structural gene for GS1 from chromosome 2 and 
chromosome 1 [109]. A QTL on chromosome 2 activates cytosolic GS1 for protein 
synthesis in older leaves, resulting in more active tillers during the vegetative stage 
and a more panicle number and total panicle weight [110]. Using 166 RIL popula-
tions, 22 single QTLs and 58 pairs of epistatic QTLs associated with physiological 
NUE in rice have been identified [111]. With the same mapping population, 28 
main effect QTLs and 23 pairs of epistatic QTLs were detected [112]. It is reported 
that [113], using 38 chromosome segment substitution lines derived from a cross 
between “Koshihikari,” a japonica variety, and “Kasalath,” an indica variety, identi-
fied a major QTL qRL6.1 on the long arm of chromosome 6 associated with root 
elongation under deficient and sufficient NH4+ condition. The “Kasalath” allele 
at this QTL region promoted significant root elongation. The marker interval was 
C11635–P3A2 and phenotypic variance explained by this QTL was 76.4%.

A set of RILs grown in four different seasons in two locations with three nitrogen 
fertilization treatments was analyzed for QTL for grain yield components and two 
main effect QTLs were detected viz., grain yield per panicle on chromosome 4 and 
grain number per panicle on chromosome 12 under N zero level [114]. Four QTLs 
for trait differences of plant height and heading date between two N levels have been 
mapped on chromosomes 2 and 8 co-locating with reported QTLs for NUE [111]. In 
response to low nitrogen application for two years, 33 QTL have been identified in 
RIL population, out of which only ten QTLs were consistent under low N [115]. QTL 
mapping for NUE and nitrogen deficiency tolerance traits in RIL population for two 
years resulted in four common QTL on chromosomes 1, 3, 4 and 7 [116].

From a recombinant inbred population, 20 single QTLs (S-QTLs) and 58 pairs 
of epistatic loci (E-QTLs) were detected for the nitrogen concentration of grain, 
nitrogen concentration of straw, the nitrogen content of shoot, harvest index, 
grain yield, straw yield and physiological nitrogen use efficiency (PNUE) [117]. 
Researchers [118] identified seven chromosomal regions using 40 introgression 
lines (ILs) derived from a cross between “Ilpumbyeo,” a temperate japonica variety, 
and “Moroberekan,” a tropical japonica accession from seedlings grown in 0, 250 
and 500 μM NH4

+. Among them, the qRW6 QTL was detected on the long arm of 
chromosome 6 associated with root weight in temperate japonica.

Recently, a group of scientists reported [119] about a main effect QTL qRD-
WN6XB (Table 2) on the long arm of chromosome 6, which positively confers 
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tolerance to N deficiency in the Indica rice variety XieqingzaoB, was identified 
using a chromosomal segment substitution line population using Zhonghui9308 
and XieqingzaoB. Nine candidate genes were found in this region through fine 
mapping. Out of these genes, Os06g15910 was seemed to be a strong candidate gene 
associated with root system improvement under low N status. However, putative 

Figure 2. 
Holistic breeding approach for multiple abiotic stress tolerance in rice. F = flooding, D = drought, S = salinity, 
QTLs = quantitative trait loci.

QTLs/genes Special traits Chr. No Reference

ARE1 High-yield under N limiting condition 8 [108]

qRL6.1 Root elongation under deficient and sufficient NH4
+ condition 6 [113]

qRW6 Enhance root traits and yield potential 6 [118]

qRDWN6XB Confers tolerance to N deficiency 6 [119]

qGYLN7 Increases grain yield under low N 7 [106]

qGYPP-4b Increases grain yield per plant under low N 4 [114]

qGNPP-12 Increases grain number per panicle under low N 12 [114]

Table 2. 
Major QTLs/genes associated with nitrogen use efficiency under abiotic stresses.
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QTLs/genes needed for multiple abiotic stress tolerance, NUE and associated novel 
traits in rice could be discovered through a holistic breeding approach (Figure 2).

4. Hybrid rice production under abiotic stress

Adverse environmental conditions like abiotic factors, triggering abiotic 
stresses, run a key role in determining the productivity of rice yields. Biologically, 
abiotic stress is considered as a substantial deviation from the model environments 
in which plants are grown, inhibiting them from expressing their complete genetic 
potential regarding growth, development and reproduction [120]. Agriculture pro-
duction in Bangladesh is dwindled mainly due to biotic and abiotic stresses. Abiotic 
stress ubiquitously affects the crop growth and development process worldwide. 
Hence, these are one of major areas of concern to fulfill the required food demand 
[121, 122]. The major abiotic stresses, drought, flooding, salinity are making the 
risks to food and nutritional security from tropics to temperate regions worldwide. 
Drought affects plants in numerous ways like it affects plant growth, yield, mem-
brane integrity, pigment content, osmotic adjustments, water relations and photo-
synthetic activity [123]. Over the last three decades, the temperature of the country 
has increased significantly. It is estimated that by 2030, 2050 and 2100, the tem-
perature may increase around 1, 1.4 and 2.4°C, respectively [124]. This is significant 
as an increased temperature reduces the yield of rice. Therefore, the country is in a 
risky situation in meeting future challenges concerning food security.

Bangladesh is facing salinity intrusion into the arable agricultural lands. The 
decline in rice yield under judiciously salt-affected soils is anticipated to be 68 
percent [126]. Due to global warming, the rise in sea levels, surplus irrigation 
without appropriate drainage in the inland area under salt stress is growing. 
Flash flood and cold injury also cause rice production loss almost every year in 
Bangladesh. Rainfed conditions in Bangladesh are quite complex, where multiple 
stresses frequently prevail and even follow in quick succession within a single 
cropping season. Two or more abiotic stresses often coexist in many rainfed low-
land and saline areas of Bangladesh. Most of the rainfed areas in Bangladesh are 
often occurred by multiple abiotic stresses such as flooding, drought and salinity 
even within the same cropping season near the coastal areas. Therefore, we need 
to breed new hybrid rice varieties that could tolerate more than one abiotic stress 
and yield high under normal favorable rainfed conditions as well.

Northern districts of Bangladesh are cold prone areas of the country. Usually, 
Boro (winter) rice is seriously affected by cold during the seedling and flowering 
stage. Seedling mortality sometimes goes up to 90%, especially in the northern part 
of the country. In recent years, more than 2.0 million hectares of rice crops in the 
cold prune area of Bangladesh have been seriously affected by extreme cold stress, 

Years Salinity class and salt affected area (000’ha) Total 

(000’ha)
S1 (2.0–4.0 

dS/m)

S2 (4.1.0–8.0 

dS/m)

S3 + S4 (8.1–16.0 

dS/m)

S5 (>16.0 

dS/m)

1973 287.37 426.43 79.75 39.9 833.45

2000 289.76 307.20 336.58 87.14 1020.75

2009 328.43 274.22 351.69 101.92 1056.26

Source: Soil Resources Development Institute (2010).

Table 3. 
Extent of soil salinity during the last four decades (1973–2009) in coastal areas of Bangladesh.
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causing partial to total yield loss, especially in the northern part of the country. 
In the haor areas of Bangladesh, early planted Boro rice has to face cold stress at 
the reproductive stages (Panicle initiation to flowering). If the mean temperature 
goes down below 20°C for more than 5-6 days during the reproductive stage of the 
hybrid rice plant associated with spikelet sterility, cause serious yield damage.

In particular, abiotic stresses significantly constrain rice production in 
Bangladesh and the frequency of these stresses is, unfortunately, likely to increase 
with climate change. Hybrid rice breeding programs around the world have pre-
emptively responded by breeding stress-tolerant rice varieties. By manipulating the 
heritable variation present in the germplasm, we can develop abiotic stress-tolerant 
cultivars through breeding techniques, but it is a cumbersome and time-consuming 
process. The slow progress is due to the complexity of the problem involving envi-
ronmental conditions and the genetic system. The development of stress-tolerant 
hybrid rice varieties has gained momentum among the breeders in the recent past. 
The development of hybrid rice with inbuilt stress tolerance is most desirable to 
increase the production capacity of rice under saline conditions.

Climate change has affected Bangladeshi agriculture a lot. The most pronounced 
effects of climate change are the heat stress, periodic drought conditions, and 
salinity intrusion in coastal belts due to sudden flood and flash flood in major rice-
growing areas of Bangladesh. In the last couple of decades, the salinity affected area 
increased drastically in Bangladesh. (Table 3) Due to periodic drought and saline 
water intrusion in the coastal belt, the already existing problem of high amounts 
of salts in the upper surface soil has intensified. In the future, efforts should be 
directed to develop climate-smart hybrid rice, which can perform stably under 
diverse environmental conditions. Nonetheless, China is now feeding 20 percent 
of the world’s population from only 10 percent of the world’s arable land where 
hybrid rice covers around 57 percent of the total cultivated rice area [125]. They 
have achieved this success by adopting research on region-based and stress-tolerant 
hybrid rice development. Their way of success was not so smooth, but eventu-
ally, they overcome all the obstacles. On the other hand, rice is called “the life of 
the people of Bangladesh.” No obvious alternative crop can replace rice presently. 
Initially, after the introduction of hybrid rice in Bangladesh in 1998, the area under 
hybrid rice cultivation significantly increased, but not up to the mark. Currently, 
only 7.48 percent of the total rice area is under hybrid rice cultivation in Bangladesh 
[126]. We have released hybrid rice for a favorable environment. It is now world-
wide accepted that hybrid rice can give 15-20% more yield compared to inbred high 
yielding rice cultivars. Therefore, the development of abiotic stress tolerant hybrid 
rice is the demand of the time to sustain food security.

5. Future outlook and conclusions

Among the essential nutrient elements, nitrogen has a paramount importance 
for rice growth and development in natural ecosystems. To promote optimum N 
nutrition for the higher rice yield, it is important to explore the possible variability 
in NUE in rice genotypes. Understanding the molecular mechanisms of variable 
NUE in rice genotypes would help to develop NUE in the elite rice variety under 
abiotic stressful conditions using traditional and molecular plant breeding methods, 
including genome editing. Global climate change plunges world rice production 
toward various abiotic stress. Flooding, drought and salinity are correlated to cause 
problems in rice production. If rice seedlings experience flooding during the vegeta-
tive stage, they may suffer from terminal drought during the reproductive stage, 
depending on the ecosystems. Likewise, periodic drought conditions may upregulate 
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the existing salinity stress through intensification of a high amount of salt layer on 
the upper surface soil. Therefore, there is a dire need to adopt a holistic approach 
to address the problems of abiotic stresses for future rice breeding. Genomics and 
post-genomics approaches have high potentials for dissecting underlying molecular 
mechanisms in differential NUE in rice genotypes. With the help of molecular 
mapping, fine-tuning of target QTLs, genome editing of a number of major and 
minor QTLs associated with abiotic stress tolerance in rice have been detected in 
recent years. Further enhanced research endeavors are now underway toward the 
development of more tolerant rice varieties to abiotic stresses. The identified QTLs 
are valuable resources for marker-assisted selection (MAS) to develop elite rice 
genotypes tolerant to flood, drought and salinity. Novel approaches are needed to 
apply for accelerating the mitigation of the problems of abiotic stresses in rice such 
as marker-assisted breeding (MAB), rapid generation advance (RGA), gene editing 
and transgenic technology. Attempts should be taken to develop abiotic stress-
tolerant rice varieties, which can perform in a sustainable manner in a wide range of 
environmental conditions. Identified QTLs and rice germplasms tolerant to abiotic 
stresses could be explored to understand the molecular genetics of flooding, drought 
and salt tolerance in rice. New genes involved in abiotic stress tolerance are needed 
to be identified. There is a need for strategic research on molecular breeding and 
agronomic aspects to enhance the resilience of global rice production. To achieve 
these goals, capacity building of rice scientists, farmers and other stakeholders 
involved in developing abiotic stress-tolerant rice variety might help to increase the 
desired NUE in rice.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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