MULTIGRID METHODS IN CONVEX
OPTIMIZATION WITH APPLICATION TO
STRUCTURAL DESIGN

by

SUDABA AREF MOHAMMED

d )
-a PER | AD W
.-m! ARDUA ALTA

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Mathematics
College of Engineering and Physical Sciences

The University of Birmingham
October 2015



UNIVERSITYOF
BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.



ABSTRACT

This dissertation has investigated the use of multigrid methods in certain classes of optimization
problems, with emphasis on structural, namely topology optimization. In the first part, we have
investigated the solution bound constrained optimization problems arising in discretization by
the finite element method, such as elliptic variational inequalities. For these problems we have
proposed a “direct” multigrid approach which is a generalization of existing multigrid methods
for variational inequalities. We have proposed a nonlinear first order method as a smoother
that reduces memory requirements and improves the efficiency of the resulting algorithm com-
pared to the second order method (Newton’s methods), as documented on several numerical

examples.

The project further investigates the use of multigrid techniques in topology optimization. Topol-
ogy optimization is a very practical and efficient tool for the design of lightweight structures
and has many applications, among others in automotive and aircraft industry. The project stud-
ies the employment of multigrid methods in the solution of very large linear systems with sparse
symmetric positive definite matrices arising in interior point methods where, traditionally, di-
rect techniques are used. The proposed multigrid approach proves to be more efficient than that
with the direct solvers. In particular, it exhibits linear dependency of the computational effort

on the problem size.



ACKNOWLEDGEMENTS

First and foremost I would like to thank the God. You have given me the power to believe in
myself. I could never have done this without the faith I have in you, the Almighty.

I take immense pleasure to express my sincere and deep sense of gratitude to my supervisor
Professor Michal Koc¢vara. He patiently provided the vision and encouragement to proceed
through the thesis program step by step, without his guidance, experience and persistent help,
this work would not have been possible. I also acknowledge my co-supervisor Sdndor Zoltin
Németh.

Special thanks to my colleague James Turner who has been supporting me in many issues with-
out hesitate. I would like to thank Azizah Alrashidi along with everyone I have collaborated
with in the department over the past four years in particular Mrs Janette lowe. Many thanks
to my husband whose patience and encouragement allowed me to continue this long journey.
I wish to thank my parents, I owe them a much and wish I could show them just how much I
love and appreciate them.

I would like to thank the Iraqi’s ministry of higher education and scientific research for the
financial support and resources to be able to complete this degree along with the staff of Iraqi
Cultural Attach in the UK for their valuable support. Finally, I do really appreciate the ef-
forts made by school of mathematics at Birmingham University for their funding in relation to

conferences and workshops.



CONTENTS

1 Introduction

1.1 Research hypothesis and objectives . . . . . . . ... ... ... ........
1.2 Mainresultsinthethesis . . . . . . . ... ... ... ... ... ... ..
1.3 Practicalimpact . . . . . . . . . . .. e
2 PRELIMINARIES
2.1 Matrix analysis . . . . . ...
2.2 Solution methods of linear systems Ax =b . . ... ... ...........
2.2.1 Krylov subspace methods for solving linear systems . . . .. ... ..
2.2.2 The conjugate gradientmethod . . . . . . .. ... ... ... . ....
223 Preconditioning . . . . . . .. . ...
2.3 Functional analysis . . . . . . . . . ...
3 Multigrid Methods
3.1 Introduction . . . . . . . ..
3.2 Ingredients of multigrid method . . . . . ... ... ... .0
3.2.1 Hierarchy of Linear Systems . . . . . . ... ... ...........
3.3 Finite Element Introductory Model Problem . . . . . .. .. ... .......
33.1 CorrectionScheme . . . . .. .. ... ... ... .
3.3.2 Interpolation and restriction operators . . . . . . . . ... ... .. ..
3.4 Multigrid method algorithms . . . . . . .. .. ... ... L.
34.1 Two-gridmethod . . . . . .. .. ... .. ... .. .. ...
3.5 Nonlinear multigrid methods . . . . . . ... ... ... ... .........
3.5.1 Full approximationscheme . . . . . . .. ... ... .. ........
3.5.2 Full multigrid method . . . . ... ... ... .. .. ... .. ...
4 Optimization
4.1 Basic definitions and theorems . . . . . . .. .. ... oL
4.2 Linesearchmethods . . . .. ... ... .. ... ... ... .. ...
421 StepLength . . . ... .. ... ...
4.2.2 Convergence of generic line search method . . . . .. ... ... ...
4.2.3 Steepestdescentmethod . . . . . .. ... ... oL
424 Newton’smethods . . . ... .. ... ... .. .. .. .. ...
4.2.5 Nonlinear conjugate gradient method . . . . . . ... ... ... ...
4.3 Minimization of constrained problems . . . . . ... ... ... ... ... ..

4.3.1 Projection gradient methods . . . . . . .. ... ... ... ... ..

10
10
11
13
14
20
23



4.3.2 Optimality conditions and step lengths . . . . . . ... ... ... ...
4.3.3 Projectiononaconvex set . . . . . . . .. ..o
4.4 Interior pointmethods. . . . . . . .. . ... ...
4.4.1  Primal barrier methods for constrained optimization . . . .. ... ..
4.4.2 Interior-point for nonlinear programming . . . . . . .. ... ... ..
4.4.3 Basicinterior-point algorithm . . . . . . ... ...
4.4.4 Algorithm development . . . . . .. ... .. ... ... .......
4.4.5 Solving the primal-dual system . . . . .. ... ... .........
4.4.6 Updating the barrier parameter . . . . . . . . . . . .. .. ... ....

A First-Order Multigrid Method for Bound-Constrained Convex Optimization
5.1 Introduction . . . . . . . . L
5.2 Multigrid for bound-constrained optimization . . . . . . . .. ... ... ...
5.2.1 Theproblem . ... ... ... ...
522 Truncation . . . . . . ... e e
5.2.3  Correction scheme truncated multigrid for quadratic problems . . . . .
5.2.4  Full approximation scheme truncated multigrid for general problems . .
5.2.5 Full approximation scheme multigrid without truncation . . . . . . ..
5.3 Equality constraints . . . . . . . .. . ...
5.4 Smoothing by the steepest descent method . . . . . . . ... ... oL
5.4.1 Steepest descent smoother for unconstrained quadratic problems . . . .
542 Linesearch . . . . . . .. . ... .
5.5 Numerical experiments . . . . . . . . . ... e
5.5.1 Example: quadratic obstacle problem . . . . .. ... ... ... ...
5.5.2 Example: non-quadratic obstacle problem . . . . . .. ... ... ...
5.5.3 Example: minimal surface problem . . . ... ... ... ... ....
5.5.4 Example: obstacle problem with an equality constraint . . . . . .. ..
5.5.5 Totruncate ornottotruncate . . . . . . . . . . .. .. ...
5.6 Conclusions . . . . . . ..

Structural Optimization Problem
6.1 Linearelasticity . . . . . . . . . .. . L
6.1.1 Stresstensor . . . . . . . ... e
6.1.2  Straintensor . . . . . .. ... e
6.1.3 Equations of equilibrium . . . . . .. ... ... L L.
6.1.4 Laméequations . . . . . . . . . . . ...
6.1.5 The classic formulation of basic boundary value problems of elasticity .
6.1.6 Korn‘sInequality . . . . . .. ... ... ... ... ... ...
6.1.7 Variational formulation of the elasticity problem . . . ... ... ...
6.1.8 Existence and uniqueness of solutions to variational formulation of the
elasticity problem . . . . . . ... L Lo
6.2 Structural Optimization Problem . . . . . . ... ... ... ... .......
6.2.1 Existence and Uniqueness of Variable Thickness Sheet . . . . . . . ..
6.2.2 Discretization of Variable Thickness Sheet Problem . . . . . . . . . ..
6.2.3 Weak Convergence Result . . . . ... ... ... ...........
6.2.4 Minmax formulation of the variable thickness sheet problem . . . . . .

86
86
89
89
91
93
95
97
99
100
101
104
109
111
113
116
118
119
120



7 Primal-Dual Interior-Point Multigrid Method for Topology Optimization 143

7.1 Introduction . . . . . . ... 143
7.2 Can direct multigrid from Chapter 5 be used for topology optimization problem? 146
7.3 Newton systems for KKT conditions . . . . ... ... ............. 148
7.4 Interior pointmethod . . . . . . .. ... . 151
7.4.1 Thealgorithm . . . . . . . .. .. ... 152

7.4.2 Barrier parameterupdate . . . . . .. ... 152

743 Steplength . . . . . ... 153

744 Stoppingrules . . . . ... 154

7.5 Optimality Conditions method . . . . . . . ... ... ... ... ....... 154
7.5.1 OCalgorithm . . . . ... ... ... 155

7.5.2 Damped OC . . . ... ... ... 156

753 Averaged OC . . . . . . . . . e 156

7.6 Numerical experiments . . . . . . . . . . . ... 157
7.6.1 Example shapel (Figure 7.6) . . . . . . .. ... ... ... ...... 157
7.6.2 Example shape2 (Figure 7.6) . . . . . . . ... ... ... ... 160

7.7 Multigrid conjugate gradient method . . . . . ... ..o oL 164
7.7.1 Multigrid method for linear systems . . . . . ... .. ... ...... 164

7.7.2  Multigrid preconditioned conjugate gradient method . . . . . . .. .. 166

7.8  Multigrid conjugate gradients for IP and OC methods . . . . . ... ... ... 167
7.8.1 Multigrid conjugate gradients forIP . . . . . ... ... 0oL 167

7.8.2  Multigrid conjugate gradients forOC . . . . . .. ... ... ..... 169

7.9 Numerical experiments . . . . . . . . . . . ... e 171
79.1 Examplel . .. ... .. ... 172
792 Example2 . .. . . ... 175

793 Example3 . .. . ... 177

7.10 How exactis ‘exact’? . . . . . . . . . . . e 180
7.10.1 Imterior pointmethod . . . . . . . ... .. ... ... .. L. 180
7.10.2 OCmethod . . . . . . ... . ... 183
7.10.3 Interior point versus OCmethod . . . . . . . . ... ... ... .... 185

7.11 Conclusions . . . . . . .. Lo e e 186
8 CONCLUSION AND FUTURE WORK 189

References 191



SOME BASIC NOTATION



Table 1: Notation and Symbols

Description Notation

Domain with Lipschitz boundary Q, I := 090

Q Qur

The body dimension d=23

Real numbers R

Vector u = (U, U, ooy Uy )T

Vector norm IRl
absolute value |.|

Inner product (.,.)

Unit outer normal vector v V = (V1,eey Un—1,0p)
Matrices A B

Hessian matrix H

Space of square integrable functions L*(Q)

Sobolev spaces WEP(Q), HY(Q)

Gradient of a vector f Vf

Set of real symmetric matrices of size n X n S" =R
Transpose of a matrix A AT

Inverse of a matrix A Al

The residuum r

The search direction d

The step length o

Identity matrix (n X n) I,, oronly
The finite strain tensor e(u)

Strain tensor (small strain tensor) e(u)

Stress tensor T

Material tensor E

Strain energy for material £ ap(u,u)
Surface force t

Body Force f

Work resulted by force f [(u)
Thickness of a sheet P

A restriction operator from the fine level to the coarse level I3

An interpolation operator from the coarse level to the fine level | I},

Linear complementarity problems LCP




CHAPTER 1

INTRODUCTION

Multigrid methods were originally developed for the solution of large systems of linear alge-
braic equations arising from discretization of partial differential equations. The aim was to
accelerate the convergence of relaxation iterative methods such as Gauss-Seidel and Jacobi
methods. These methods typically eliminate quickly high frequency components of the error
while leaving the low frequency components. The remedy of this limitation is the pathway to
multigrid procedure by involving communication between a hierarchy of levels such that the
low-frequency error components at the finer level i can be restricted to the coarser level 2A in
order to reduce the error effectively by a coarse grid correction technique. Once this coarser
problem is solved, the solution interpolates back to the fine grid to correct the approximation

for its low-frequency errors.

A short look at the history of multigrid methods, Fedorenko [34] introduced the first two-grid
method for the Poisson equation, while Fedorenko [35] contains the first multi-grid method.
Bakhvalov [7] followed that by the first more general convergence analysis. The method, how-
ever, only gained huge popularity following the seminal paper by Brandt [16] who demon-
strated the tremendous computational potential of these methods. Since then a vast literature
about multigrid methods has been published and introduced, and we do not try to present this.
Instead we refer to the monographs [57], [115] which are particularly devoted to problems of

fluid dynamics. For the interested reader, the classical texts in multigrid methods include Hack-

1



busch and Trottenberg’s Multigrid methods [60], Brandt’s guide to multigrid methods [18], the
introductory tutorial by Briggs et al., [20] and the comprehensive textbook by Trottenberg et

al. [108], An extensive overview of multigrid methods may also be found in [114].

With regard to applying the multigrid method to optimization problems, multigrid method has
been first and foremost used to solve unconstrained optimization problems; see the articles
[43,53,82]. The concept of MG/Opt is also applied to constrained optimization models, for
example see [74, 111]. In [30] multigrid method has been efficiently applied to optimization
problems with differential equations. Additionally, for an interesting overview about Multigrid
Methods for optimization problems with partial differential equations (PDE) constraints, we

refer the reader to [14].

In reference to application of multigrid to constrained optimization problems, it has been well-
known since the dark ages of multigrid that the methods may loose their superior efficiency
when used for slightly different type of problems, namely the linear complementarily problems
(LCP) [19,59,78]. This is caused by the presence of unilateral obstacles (or box constraints in
the optimization formulation of the problem). The fact that the sets of active constraints may
vary for different discretization levels, and that the constraints may not even be recognized on
very coarse meshes, may lead to poor quality of the coarse level corrections and, in effect, to
significant deterioration or even loss of convergence of the method. Various remedies have
been proposed by different authors [19,59, 62,63, 78]; these usually resulted in “conservative”
methods that were often significantly slower than standard methods for linear systems. Finally
Kornhuber [69] proposed a truncated monotone multigrid method for LCP problems. This
method has the property that as soon as the set of active constraints is correctly identified, the

method converges with the same speed as without the presence of the constraints.

Not many attempts have been done to generalize the multigrid technique to the solution of
optimization problems. From the successful ones, most focused on unconstrained problems
[39,51,53,73,82]. In this case, the problem can be often identified with a discretized nonlin-

ear PDE and thus techniques of nonlinear multigrid can be used. Treating general (equality or

2



inequality) constraints by multigrid may be difficult, if not impossible, as we may not be able
to find the corresponding restriction operators. If the number of constraints is directly propor-
tional to the number of variables (such as for the bound constraints), the restriction operator for
these constraints may be based on that for the variables. On the other hand, if the number of
constraints is independent of the discretization (e.g., a single equality constraint) then the pro-
longation/restriction is simply the identity. All other situations are difficult, in our opinion. For
this reason, all articles on multigrid for constrained problems either treat the bound-constrained
problems or problems with a single equality constraint (e.g., [51,52, 110]) or assume that a re-

striction operator for the constraints exists [83].

The first goal of this thesis is to extend Kornhuber’s technique [69] to nonlinear convex opti-
mization problems with bound constraints. This consists of proposing a smoothing operator
that would only use first-order information, and study the efficiency of the resulting method.
Finally, we extend the developed algorithm to problems with an additional equality constraints.

We study the behaviour of the proposed algorithms on a number of numerical examples.

The second goal is to apply multigrid on topology optimization problem as the discipline of
topology optimization offers challenging problems to researchers working in large scale nu-
merical optimization. The results are essentially colors of pixels in a 2d or 3d “pictures”.
Hence, in order to obtain high-quality results, i.e., fine pictures capturing all details, a very
large number of variables is essential. We will consider the basic problem of topology op-

timization: minimization of compliance under equilibrium equation constraints and the most



basic linear constraints on the design variable:
min  flu (1.1
pER™, uER™

subject to

K(p)u=f
sz‘ =V
i=1

p; =0, i=1,....m

where K(p) = >.7", piK;, K; € R™™ and f € R™. We assume that K; are symmetric and
positive semidefinite and that Y ;" | K is sparse and positive definite. For further reference, we
will call the design variable p the density. The most established and commonly used optimiza-
tion methods to solve this problem are the Optimality Conditions (OC) method [10] and the
Method of Moving Asymptotes by Svanberg [106]. In both methods, the computational bot-
tleneck consists of the solution of a large scale linear system with a sparse symmetric positive
definite matrix (the equilibrium equation). This is traditionally solved by a direct solver, such
as the Cholesky decomposition. Recently, several authors proposed the use of iterative solvers,
mostly a preconditioned Krylov subspace solver, such as Conjugate Gradients (CG), MINRES
or GMRES. These have one big advantage which is specific for their use within optimization
algorithms: in the early (or even not-so-early) stages of the optimization method, only a very
low accuracy of the linear solver is needed. They also have one big disadvantage: in the late
stages of the optimization method, the linear solvers become very ill-conditioned and thus a
vanilla iterative solver can come into extreme difficulties.

It 1s therefore essential to use a good preconditioner for the Krylov subspace method. The
difficulty lies in the fact that as we approach the optimal solution of the topology optimization
problem, the condition number of the stiffness matrices increases significantly. In fact, it is only

controlled by an artificial lower bound on the variable—if this bound was zero, the stiffness ma-



trix would be singular. Wang et al. [113] studied the dependence of the condition number on the
variables and concluded that it is a combination of the ratio of maximum and minimum density
and the conditioning of a corresponding problem with constant density. Consequently, they pro-
posed a rescaling of the stiffness matrix combined with incomplete Cholesky preconditioner.
The rescaling results in constant order of condition number during the optimization iterations.
For large scale example still hundreds of MINRES iterations are needed and hence the authors
use recycling of certain Krylov subspaces from previous iterations of the optimization method.
Recently, Amir et al. [3] proposed a multigrid preconditioner for the systems resulting from OC
or MMA methods and demonstrated that the resulting linear system solver keeps its efficiency

also for rapidly varying coefficient of the underlying PDE, i.e., rapidly varying p in (1.1).

In Chapter 2 the basic concepts related to the background of the current work are provided.
Fundamental concepts from matrix analysis are explained because they are theoretically and
computationally important especially in the optimization field. In the functional analysis sec-
tion, all important definitions and theorems for vector spaces which are needed to define the
mathematical formulation of elasticity are presented. Afterwards, we specify a section for the
solution methods of a linear system of equations in order to introduce fundamental aspects of
such methods which will be used in the current work, among these methods Krylov subspace

methods.

Chapter 3 is concerned with elements of multigrid methods for solving linear and nonlinear
system of equations which results in the solution of partial differential equations. It is an essen-
tial chapter to preface understanding the generalized versions in relation to applying multigrid

methods to optimization problems.

Optimization methods for solving nonlinear constrained problems are presented in Chapter 4.

This includes, line search methods, projected gradient methods and interior-points methods.

Application of multigrid to constrained optimization problems is given in Chapter 5. This is

achieved by considering first order methods such as projected gradient methods, steepest meth-



ods for constrained optimization problems. Numerical examples demonstrate the efficiency of

the proposed methods.

In Chapter 6 the concepts of the stress tensor, strain tensor and their relations are familiarized
with introducing the formulation of basic boundary value problems of elasticity classically and
formulations of the elasticity problem with converting it to topology optimization problems.
Finite element discretization for the variable thickness sheet which represents a special case of

topology optimization problems is discussed with the weak convergence theorem.

Finally, in Chapter 7 we propose a new method for the solution of the topology optimization
problem introduced in Chapter 6. The framework of the method is given by the interior-point
algorithm. The systems of linear equations, arising in this algorithm, are then solved by the
conjugate gradient method preconditioned by one step of the multigrid algorithm. Extensive
numerical test will show that the resulting algorithm is extremely efficient and stable, and its
complexity grows only linearly with the problem size. The thesis is concluded by an outlook

to future work.

1.1 Research hypothesis and objectives

The initial goal of the research was to investigate the multigrid efficiency in certain classes
of optimization problems, with emphasis on structural design, namely topology optimization.
With regard to applying the multigrid method to optimization problems, multigrid method has
been first and foremost used to solve unconstrained optimization problems; see the articles
[43,53,82]. The concept of MG/Opt is also applied to certain constrained optimization models,
for example see [74,111]. In [30] multigrid method has been efficiently applied to optimization
problems in differential equations. As to our knowledge, the article [76] is the first one that
considered the use of multigrid techniques to topology optimization. Similarly, as in the later
article [104], the authors apply the “traditional” multigrid method to systems of linear equations

arising from Newton-type methods. Contrary to that, the aim of this thesis was to apply the



MG/Opt technique directly to the full topology optimization problem. Originally MG/Opt [83]

has been developed for unconstrained optimization problem

n;in fn(zn), (1.2)

where h indicates the level in the hierarchy of models. The attempt was to apply a generalized
version introduced in [83] to solve the so-called minimum compliance problem of topology
optimization that can be written as follows (see [10])

min  f*K(p)" (p)f

p

subject to: Zpi <V, (1.3)
=1

0<p<pi <P

where K(p) = >.7", piK;, K; € R™™ and f € R™. We assume that K; are symmetric and
positive semidefinite and that ) ;" | K; is sparse and positive definite. For further reference, we
will call the design variable p the density. We will assume that there exists a hierarchy of mod-
els, organized from fine h to coarse grids 2k, 4h, 8h, ... with an interest in finding the solutions
on the finest level. In other words, the computations on a coarse level for the problem can be
used to upgrade an approximate result of a finer resolution problem. MG/Opt iteratively utilizes
coarse resolution problem in order to obtain search directions for finer-resolution problem. As
a result, the solution of each finer-resolution problem can be repeated by using a line search
method. Then, applying a line search technique can leads to the possibility to demonstrate the

convergence results for the MG/Opt algorithm [74].

In conclusion, the main target was to introduce a multigrid algorithm for the topology opti-
mization problem. That was based on recalling the definition and convergence analysis of the
MG/Opt method for unconstrained optimization problems, by Nash [83]. After that, defining

and analyzing the method for the topology optimization problem. However, this could not be



done easily because of reasons have been mentioned in Chapter 7 (see 7.2). Alternatively, we
proposed direct multigrid with first order smoother for nonlinear constrained convex optimiza-
tion problems. And also proposing conjugate gradient method preconditioned by multigrid
method within interior point method for solving topology optimization problems as it given in

the following section.

1.2 Main results in the thesis

The main results of the thesis can be classified into two main contributions. In the first case,
multigrid methods is applied as a direct iterative method to bound constrained optimization
problems. Here a first order methods (steepest descent) is proposed as a smoother within multi-
grid technique for the developed algorithms. Numerical experiments show that the proposed
smoother eliminates the high frequency components of the error quickly in the first few iter-
ations. The developed algorithms consider an extension of Kornhuber’s [69] and Hackbusch-
Mittelmann [59] to nonlinear convex optimization problems with bound constraints and an ad-
ditional equality constraints. The behavior of the proposed algorithms is studied on a number

of numerical examples.

The second main result represents the application of multigrid within the interior point methods
for the solution of topology optimization problem. This follows the path outlined by Jarre et
al. [64] and Maar-Schulz [76]. Unlike these, the linear systems which results from the Newton
method within interior point method is reduced to obtain positive definite matrices. This allows
to use standard conjugate gradient preconditioned by standard V-cycle multigrid. Furthermore,
we use the same linear solver in the so-called OC method (in the same way suggested Amir
et al. [3]) to get a comparison with interior point method. In both cases the inexact multigrid
preconditioned CG method leads to a very efficient optimization solver. Most notably, in case
of the interior point method we obtain an approximately constant number of CG iterations
needed to solve the full problem which is independent of the size of the problem. In case of the

OC method, the total number of OC iterations is increasing with the problem size; however, for

8



a given problem size, the number of CG steps per one linear systems remains almost constant,

and very low, in all OC iterations, notwithstanding the condition number of the stiffness matrix.

1.3 Practical impact

The proposed methodology allows to solve very large-scale optimization problems, in partic-
ular PDE constrained problems and topology optimization problems, that could not be solved
by existing software. All these problems are of big practical importance. The first approach
is the multigrid method for bound constrained convex optimimztion problems. Example of
these are elliptic variational inequalities discretized by the finite element method, which have
been proved extremely useful for mathematical description of a wide rang of material science,
electrodynamics, continuum mechanics and many others (we refer to [48] for the literature).
In addition to that, a large number of applications are covered even for the special case of
obstacles problems, such as contact problems in continuum mechanics and option pricing in

computational finance [92].

The project further investigates the use of multigrid techniques in topology optimization. Topol-
ogy optimization is a very practical and efficient tool for the design of lightweight structures
and has many applications, among others in automotive and aircraft industry. The discipline of
topology optimization offers challenging problems to researchers working in large scale numer-
ical optimization. The results are essentially colors of pixels in a 2d or 3d “pictures”. Hence, in
order to obtain high-quality results, i.e., fine pictures capturing all details, a very large number
of variables is essential. Therefore, the project studies the employment of multigrid methods
in the solution of very large linear systems with sparse symmetric positive definite matrices

arising in interior point methods where, traditionally, direct techniques are used.



CHAPTER 2

PRELIMINARIES

2.1 Matrix analysis

In this section, we present a number of results from the field of matrix analysis, primarily related
to the classification of positive (semi-) definite matrices. As will be shown such matrices are
required in order to provide asserts of convergence. We first present the notion of the gradient
and Hessian of a real valued function in the following manner.

Definition 2.1. (Gradient and Hessian)

Let f : R”"— R be twice continuously differentiable. The gradient of f at a point x € R” is

defined as:
of of \"
= = ..., = 2.1
and the Hessian matrix is a symmetric n X n matrix of second derivatives, defined as:
82
H(x):VQf(x) = <%), ,7=1,2,...,n. (2.2)

The notion of positive (semi-) definiteness can be described as follows.

Definition 2.2. (Positive and Negative (Semi-) Definite Matrices)

10



Let A € R™ be a symmetric matrix and let z € R”. If 27 Az > 0 (27 Az > 0) is satisfied for
all x € R", x # 0, then A is called positive definite (positive semi-definite). We will use the
notation A > 0 and A> 0 to denote positive definiteness and positive semi definiteness of A,

respectively.

A negative (semi-) definite matrix amounts to a matrix whereby the respective inequalities
presented above are reversed. In other words, a matrix A is negative (semi-) definite if —A
is positive definite or positive(semi-) definite. Finally, a matrix A € S is called indefinite if
2T Az gives both positive and negative values for some z € R".

Lemma 2.1 (Cholesky decomposition). A matrix A is positive definite if and only if there
is a nonsingular lower triangular matrix L. € S™ with positive diagonal elements such that
A=LL".

Theorem 2.1. (Schur Complement) Let A € S™ be partitioned as

A Ay
AT A,

where both A; and A3 are square matrices. Then A is positive definite if and only if A; is

positive definite and Az > AT A A,.

2.2 Solution methods of linear systems Az = b

The study of solution methods of the linear system of equations is a wide topic in itself which
arise particularly in solving partial differential equations. However, we have not chosen to go
in details here and just give an overview of methods that have been used in this work. Consider

a linear system of the form

Ax

Il
o

(2.3)

11



where A € R™", x,b € R". Numerical methods for solving the system (2.3) can be classed
as either direct methods or iterative methods, with combinations of the two (termed hybrid

methods) also possible.

Direct solution methods work by considering a factorization of A into a product of matrices
BC, where both of B and C are of a certain structure that can be exploited. In the case
of Gaussian elimination, B and C' amount to lower and upper triangular matrices L and U
respectively. A finite number of operations is required to obtain a solution to (2.3). However, if
A is dense, this can still be prohibitive for large n. For instance, such problems are encountered
in systems arising from the discretization of partial differential equations. Whilst efficient
direct methods have been developed that are able to exploit sparsity potions within A [31],
recent approaches of research have focused on iterative methods. These approaches seek to
determine a suitable approximate solution to (2.3) by constructing a sequence of iterations that
leads to the solution to (2.3). In particular, preconditioned conjugate gradient like methods are
particularly popular within the field of numerical analysis, and we will provide further details

in due course.

An iterative method can generally be classed as either relaxation iterative method (also known
as stationary iterative method) or Krylov subspace method. Examples of relaxation iterative
methods include the Gauss-Seidel method, Jacobi method and the Successive over-relaxation
method (SOR). For clarity, we describe the relaxation iterative methods in a general context.
They consist of constructing the following fixed point iteration to solve linear systems of the
form (2.3):

2" = BaF + ¢,

based on a specific definition of B and ¢, where neither the matrix B nor the vector ¢ depend
on the iteration count k. Consider a more useful illustration of this general construction, the
Jacobi method. The matrix A is divided into two parts, diagonal matrix D whose diagonal
elements identical to those of A and whose off-diagonal elements are zero; and the matrix F,

whose diagonal elements are zero, and whose off-diagonal elements are identical to those of A.

12



Thus, A = D + E. The method is derived as

Az =0

Dx=—FEz+b (2.4)
t=—-D1Ex+ Db (2.5)
z=Bxr+c¢, where B=—D"'E, ¢=D""b. (2.6)

It is easy to invert the diagonal matrix D. However, for discretized boundary value problems,
one may obtain a slow convergence rate. For a more rigorous explanation regarding these

methods including convergence analysis, we refer to [119].

However, the Krylov subspace methods examples include conjugate gradients method, these

methods are based on generating a basis of the so-called Krylov subspace

span{v, Av, A%v, ..., A" v}, m € N,m < n, 2.7

as before, these methods seek an approximate solution to (2.3) from this subspace in which iter-
ates involve projecting the residual onto lower dimensional Krylov subspaces. Krylov subspace
methods have been applied successfully for solving eiginvalue problems and for solving linear
systems. For further study about Krylov subspace solvers we suggest recent books [54,97] as

well as the overview paper [96].

2.2.1 Krylov subspace methods for solving linear systems

0

We recall again the linear system Ax = b with an initial guess z°. In general, projection

methods seek an approximate solution ™ from an affine subspace 2° 4 K, of dimension m

satisfying the orthogonality

b—Ax™ L L, (2.8)

13



where L,, is a certain subspace of dimension m which is specified in this section. In reference

to a Krylov subspace method, the subspace K, denotes the Krylov subspace such that

K (A, 7% = span{r®, Ar®, A%r0 . A™ 10}, (2.9)

in which 7 = b — Az°. We give a short description about two particular choices of L,, which

will be of interest in this work.

The first choice is corresponding to L,, = K,,. In the case where the matrix A is symmetric
positive definite, an appropriate inner product can be defined allowing optimality properties to
be considered in relation to the norm of the error, namely ||e™|| 4 := ||z* —2™]| 4. Such methods
are termed error projection methods, with the Conjugate Gradient (CG) method [61] the most
widely used. Other examples include, the Orthogonal Residual (ORTHORES) method [120]
and also the Full Orthogonalization Method (FOM) [95].

The second case corresponds to the choice L,, = AK,,. Here, the approximate solution z™
will minimize the residual norm ||b — Ax||, over the affine space 2" + K, (as it shown, for ex-
ample, in [98]). Unlike the previous choice, a number of methods have been developed in this
case for non-symmetric matrices, as described, for instance, in [4,33]. Two particular meth-
ods which are widely used are the Minimum Residual Method MINRES, pioneered by Paige
and Saunders [87] for symmetric indefinite matrices, and the generalized Minimum Residual

Method GMRES presented by Saad and Schultz [99] for non-symmetric indefinite matrices.

2.2.2 The conjugate gradient method

Conjugate gradient CG is theoretically a finite method. It gets exact solution in n steps. Round-
off error cause loss of orthogonality, making it iterative. Here, we provide a brief introduction to
the conjugate gradient method. For a more detailed presentations the interested reader should
consult [118, Chapter 1]. Hestenes and Stiefel [61] proposed the linear conjugate gradient

method as an iterative method for solving linear systems of the form (2.3) in the case when

14



the matrix A is symmetric positive definite. It is well suited for solving large problems as
an iterative alternative to Gaussian elimination. Fletcher and Reeves [38] were the first to
introduce a nonlinear conjugate gradient method for solving large scale nonlinear optimization

problems, for a historical overview we suggest [5, p.451] and references therein.

Conjugate gradient methods, in general, were introduced to accelerate the convergence rate
of steepest descent. They are based on the aim to determine the solution to the following

unconstrained quadratic problem
1
min f(r) = —a’ Av — bz, (2.10)

where A is a symmetric positive definite matrix and b € R" is a given vector. A being sym-
metric positive definite, the problem (2.10) is convex so we can grantee existence of a unique
global minimizer. As we consider an iterative approach, we denote by r(z*) the residuum at a

point 2* we get

r(z®) = r¥ = b — Aa". (2.11)

For the quadratic definition (2.10), residuum is equal to the negative gradient of f, —V f(z).
Which is in turn represents a direction of the steepest descent procedure in which f decreases
quickly. The key feature of the conjugate gradient method is its ability to construct A-conjugate

directions of nonzero vectors dy, ..., d with respect to the symmetric positive definite matrix A
d} Ad; = 0, foralli # j. (2.12)
The line search method

2 = 2F 4+ agd,, (2.13)

15



with an initial point z° € R" and a set of conjugate directions dg, dy, ..., d,,_1 represents the
search direction algorithm. In case of linear systems, the step length oy for the quadratic
problem f(z) along z* + aydj, can be written explicitly as

o — ngk
A Ad

(2.14)

See [101, p. 23] for the derivation of the step length . Convergence of the algorithm is assured
via the following theorem.

Theorem 2.2. For 2° € R™, the conjugate direction algorithm (2.13), (2.14) with dj, satisfying
(2.12) generates the sequence {z*} which converges to the solution z* of the linear system

Az = b in at most n iterations.

Proof. The proof is given in [118, pp.103-104]. U

There are a number of ways to choose the set of conjugate directions, with one example cor-
responding to the eigenvectors of the matrix in question. However, for large scale problems,
a substantial amount of computation maybe needed in order to compute the complete set of
eigenvectors. Alternatively, modified Gram-Schmidt orthogonalization process [13, Chapter 1]
can present an approach to generate a set of conjugate (A-orthogonal) directions instead of a
set of orthogonal directions. The latter approach, however, is also expensive as it is necessary

to store all previously computed directions.

In the conjugate direction method each direction dy, is selected as a linear combination of the
steepest descent directions calculated at the previous points z°, ..., z* for the function f. Based

on r* defined in by (2.11), we use definition of previous direction dj_; to write

dy = r* + Brdy_1, (2.15)

where the scalar (3 is determined depending on the necessity of orthogonality of dj and dj_

with respect to A. Then, multiplying (2.15) by di ;A and applying the conjugacy condition

16



d}_,Ady = 0, yields
(Tk)TAdk_l

P = e )T Ad

The first search direction d is the steepest descent direction at the initial point z°. Thus the

preliminary version of the conjugate gradient is expressed formally as follows.

Algorithm 2.1. Select z° as an initial point;
Setr? =b— Az° dy =" and k = 0;

Do while r* # 0

()" d,

Qg = ;
diAdy,

oM = 2F - agdy;

PRl = — Axhtt

5 L (T]H_l)TAdk_
k+1 — dzAdk )

_ k41 .
dir1 =7 + Braady;

k=k+1,;

end(while)

(2.16)
(2.17)
(2.18)
(2.19)

(2.20)

(2.21)

This algorithm is a useful version for studying basic properties of the conjugate gradient, how-

ever a more efficient version is presented later. Based on the description provided above, we

present the following theorem

Theorem 2.3. Assume that the £-th iterate produced by the conjugate gradient Algorithm 2.1 is

17



such that ||z* — x*||; > ¢ for suitably small € > 0. Then following four properties are satisfied

rir; =0, fori=0,1,....k — 1, (2.22)

span{r® r' ... r*} = span{r®, Ar°, ..., AFr0}, (2.23)
span{dy, dy, ..., dy} = span{r®, Ar° .. A*O}, (2.24)
df Ad; =0 fori=0,1,....k — 1, (2.25)

Consequently, the sequence converges to the solution x* in at most 7 iterations.

The proof is given by induction and relies on the fact that the first direction d is the steepest
descent direction r° which is distinct from other choices of dj, as shown in [118, pp.109-111].
The specifics of the theorem indicate some useful properties. In particular, since the residuals 7
are mutually orthogonal, each of residuals 7* and associated search directions d, are included
in the Krylov subspace K, (A, r°). Furthermore, the fact that the Algorithm generates a set of

conjugate search directions dy, dy, ..., d;_1 guarantees convergence in at most in n steps.

A practical form of the conjugate gradient method is derived based on Theorem 2.3 using the
fact that the current residual r* is orthogonal to all previous search directions (as presented

in [118, Theorem 5.2]), namely that

rid; =0, fori=0,1,....k—1, (2.26)

Therefore the step length presented in (2.16) maybe reformulated by using (2.20) to yield

(PFY Tk
dpAdy,

ap =

We now substitute our definition of the residual 7* into the search direction (2.17) so that

P =k o Ad,.

18



k+1

Under the expressions for both d;, and 7“7, we are able to write

(rk—l-l)Trk-‘rl

Brt1 = (r’f)—TT’f’

which we now use in order to present the standard form of the conjugate gradient for linear

systems as follows.

Algorithm 2.2. Select 2 as an initial point;
Setr’ =b— Az° dy =r°and k = 0;

Do while r* # 0

(Tk)TTk
Qp = )
d Ady,
Zlfk+1 = ZEk + Oékdk;

rEHl =k — o Ady;
B (Tk+1)TTk+1 ‘

okl .
dir1 =17 4 Brg1di;

k=Fk+1;

end(while)

(2.27)
(2.28)
(2.29)
(2.30)

2.31)

(2.32)

The purpose behind the reformulated algorithm results is that it is no longer necessary to retain

the vectors z, r and d for any more than two previous iterations, meaning reduced storage costs

when compared to Algorithm 2.1.

In terms of the rate of convergence, Theorem 2.2 guarantees that the algorithm will terminate in

at most n steps. However, convergence is also dependent on the distribution of the eigenvalues

of A, as stated in the following Theorem.

Theorem 2.4. If A has m distinct positive eigenvalues, then the conjugate gradient method will

terminate in at most m iterations.

19



Proof. Omitted, please see [118]. O]

Notice that these are theoretical results relying on exact arithmetics. In computer implemen-
tation, we calculate with finite precision arithmetics resulting in round-off errors and loss of

orthogonality of dj, 7* generated by Algorithm 2.1.

Therefore, a useful characterization of the behavior of the conjugate gradient method is given
through the following estimate, initially derived by Luenberger [75].
Theorem 2.5. If A has eigenvalues \; < Ay < ... < )\, then the following inequality is

satisfied

)\n—k’ - )\1

k+1 * |2
x —x <[ ——

) [E (2.33)

where ||z]|% = 2T Ax.

2.2.3 Preconditioning

Preconditioning of a linear system Az = b is a technique that is typically related to reducing
the condition number of a matrix A, x(A) or to reducing the number of distinct clusters of

eigenvalues. That is by solving alternatively the following scaled system
M Az = M0, (2.34)

assuming that M is a symmetric, positive-definite matrix that approximates A, but it is easier to
be inverted. It is expected that, the iterative methods can solve the system (2.34) more quickly
than the original problem if (M 'A) < k(A) or if the eigenvalues of (M~ A) are better
clustered than those of A, see [101]. However, M ! A is not generally symmetric nor definite,
even if the matrices M and A are. The remedy of this is the use of the fact that, for every
symmetric, positive-definite M there is a matrix £ (not necessarily unique) that satisfies the

property EET = M. For instance, the matrix E can be obtained by Cholesky factorization.

20



Furthermore the eigenvalues of the matrices M ~*A and E~'AE~T are equal according to the
fact that if v is an eigenvector of M ~!A with eigenvalue ), then E7v is an eigenvector of

E-'AE-T with eigenvalue \

(E'AET)(E™) = E"(ETE Y Av = E"M ' Av = AETv.

Therefore, we can transform the problem Ax = b as follows

M~'Az = M1,

by substituting M = EET and multiplying both sides by ET, we get the following scaled
system

Bz =¢; suchthat B:= E'AE"T z:= ETz, and ¢ := E~'b.

We can solve this system first for z, then for x, that is by the use of steepest descent or conjugate
gradient method as £~'AE~T is symmetric and positive definite. The process of using CG
to solve this scaled system is referred to as transformed preconditioned conjugate gradient

method, see [101]. The procedure is as follows

define B: = E'AE™T 2 .= ETz, ¢:= E'. (2.35)
dy =7y =c— Bz, (2.36)

ap = %’Z %{ , (2.37)
= R agdy, (2.38)

Pos1 = T — By, (2.39)

Br+1 = % (2.40)

dis1 = i1 + Brsrdy. (2.41)

21



The necessity of computing £ in this procedure represents undesirable characteristic of the
method. However, one can eliminate £ by setting the following variable substitutions instead;
7. = E~'ry and dy := E~Tdj, with using the identities z; := ETx; and ETE~1 = M1,

Then we derive the untransformed preconditioned conjugate gradient method

o = b— Al’o, (242)
do = M1, (2.43)
Trr—1
Tk M Tk
= = 2.44
Qg d{Adk 3 ( )
oF T = 2% + agd,, (2.45)
Tk4r1 =Tk — CkkAdk, (246)
T -1
Tt M ™ T
= _fr - M- 247
A1 = M "rigr + Brgads. (2.48)

It is clear that only the matrix M ~! is used in these equations rather than the matrix £. More-
over, we do not need to compute the matrix M ! explicitly, as we only need its product with a

vector. Similarly, one can derive a preconditioned steepest descent method that does not use E.

The effectiveness of a preconditioner M can be determined either by computing the condition
number of M ~!A or by the clustering of its eigenvalues. However, improving the convergence
of the method depends mainly on finding a preconditioner that approximates A well enough.
Accordingly, there is rich supply of possibilities. Examples of these, first, the preconditioner
M = A considers a perfect preconditioner in which the condition number of M 1A is one,
whereas, we need to solve the system Mz = b at the preconditioning step. So this precon-
ditioner is not quite useful. The second simplest preconditioner is a diagonal matrix whose
diagonal entries are identical to those of A, which is called diagonal preconditioning or Jacobi
preconditioning. One more example is the incomplete Cholesky preconditioning, the matrix A

is factorized into the form LL", where L is a lower triangular matrix. Many other precondition-

22



ers have been developed [5], but we will consider preconditioning conjugate gradient method,

in Chapter 7, by one step of multigrid V'-cycle.

2.3 Functional analysis

In this section, we present definitions and theory from the field of functional analysis that un-
derpins the derivation of partial differential equations encountered in this thesis for real valued
functions. For more details regarding this section, the interested reader can consult [91].
Definition 2.3. (Lipschitz continuous functions)

A function f on a domain {2 in R" is called Lipschitz continuous if there is a constant L > 0
such that

[f(z) = f(y)l < Ll —y[ forall 2,y € Q.
Every Lipschitz continuous function is uniformly continuous, but the converse is not true.

Multi-index notation. In many of the following definitions it is required to introduce the
multi-index notation for partial derivatives. Suppose that Z" is the set of all ordered n-tuples

of nonnegative integers. An element of Z; is usually indicated by « or 3, for example
a = (ag,ag, .., qp),
where each component «; is a nonnegative integer. The sum is denoted by |«| and defined as
la| = a1+ ag + ... + ay,

allowing for the partial derivative D“u to be written as

olely

D%y = .
0z{' 05?...0x8n

Definition 2.4. (Space C*(Q))

23



The space C*(€2) of continuous functions f is defined as a set of functions f : {2 — R, which

posses at least k continuous derivatives, where ) C R%, d = 1,2, 3,
C*(Q) :={f: D*f continuous ,0 < |a| < k}.

For instance, C° and C'! denote the spaces of continuous and continuously differentiable func-
tions, respectively. Furthermore, we can denote the space of functions that are continuous with
continuous derivatives of all orders by C*°(€2). Using the definition provided above we have

the following inclusions
Ce(Q) C...cCvQ)c Q) c..c ) =0(Q)

Definition 2.5. (LP Spaces)
The space LP(£2) defines the space of all measurable functions u defined on (2 such that the

integral of the power p of the absolute value of a function u(z) is finite

/Q lu(z)[Pda.

Therefore we have

LP(Q) == {u QR /Q lu(z)Pda < oo} . pell,o0). (2.49)

In particular, when p = 2, we can obtain the space of square integrable functions L*(2).
Definition 2.6. (The Space L>°(£2))
The space L>°(€2) is defined as the set of all measurable functions on €2 which are bounded

almost everywhere in {2:
L>(Q) = {u: |u(z)] < k a.e. on 2 for some k € R}, (2.50)

Using [91, Theorem 2(b), p.74], for any function u € L>°({2) defined on a bounded domain 2,

24



the following inequality holds

/|u(x)|pdx < / kPdx < oo.
Q Q

Consequently, L>°(£2) represents a subset of LP(2) for all p > 1.
Definition 2.7. (Inner Product Spaces)
A vector space X is called an inner product space if it is combined with the inner product

operation (-, -) for which the following axioms hold (for u,v,w € X and o, f € R),
(@) (u,v) € R (inclusion);

(b) (v,u) = (u,v) ( symmetry);

(©) (au+ pv,w) = a(u,w) + f(v, w) (linearity);

(d) (u,u) > 0and (u,u) = 0if and only if u = 0 (positive definiteness).
Example 2.1. Assume that X = R?. Then, we define the Euclidean scalar product for u,v € X
as follows

(u,v) = ugvy + ugvy + u3vs.

Definition 2.8. (Normed Spaces)
A vector space X endowed with a norm operation || - || is called norm space, if for vectors

u,v € X and a € R the norm satisfies the following axioms:

@ [Jull € R;

(b) ||u|| = 0 and ||u|| = 0 if and only if u = 0 (positive definiteness);
©) |lu|| = |a|||ul| (positive homogeneity);

d) |Ju+ o] < ||u|| + |v|| (triangle inequality).

Example 2.2. Firstly, consider X = R", then the Euclidean norm for a vector v € R" is

25



defined as
o] = (W +v2 + ... + )2 (2.51)

The operator || - ||, actually represents a whole family of norms for 1 < p < oo, defined for
v € R" as

ol = (ol + ozl + .. + oa ).

This family can include the norm corresponding to the case p = oo, which is defined as

[0]loc = max |vi].
1<i<n

The usual norm for any v € LP({2) is defined as

folae = [ [ topas) v

Finally, the space L>°(2) (2.6) is a normed space, where the norm is defined by
|lu|| L = inf{k : |u(z)| < k a.e. on Q}.

Definition 2.9. (Cauchy Sequence)
Letn € N, a sequence {u, } is called a Cauchy sequence if

lim ||y, —un| =0,
m,n—o00

where {u,, } belongs to a subset Y of a normed space X.

Definition 2.10. (Complete Space)

A subset Y of a normed space X is called a complete space if every Cauchy sequence of Y
converges to an element of Y.

Definition 2.11. (Banach and Hilbert Spaces)

26



A Banach space is a complete normed space; a Hilbert space is a complete inner product space.
Every Hilbert space represents a Banach space because every inner product induces a norm.
Definition 2.12. (Sobolev Spaces W*?(Q))

For 0 < p < oo and for k = 0, 1, ..., the Sobolev space W*?(Q) is defined as

WkP(Q) :={u € LP(Q) | D*u € LP(Q),|a| <k},  pe[l, ] (2.52)

In other words, this represents the space of functions that, along with all their weak derivatives

up to order k [91], belong to LP(£2). When equipped with the norm

1/p
fullwes =l = | 3 [ 1D"upan) . .59
NE
this space is a Banach space.
Definition 2.13. (Sobolev Spaces H*(2))
For the special case of p = 2, we define
H*(Q) == {u € L*(Q)|Du € L*(Q),]a| <k}, pe[l, o] (2.54)

As such, H*(€) is an inner product space when equipped with the inner product (., .) ;= define

as

(1, 0) e = /Q S (D) (D)9 for u,v € HMQ). 2.55)

lal<k

This in turn induces the Sobolev norm ||.|| z+ as follows

lullFe = (w,w) e = /Q Z (D%u)?dx.

la|<k

27



From this definition, it is clear that H°(Q) = L?(2). Furthermore, we can write (u, v) ; as the

sum of the L?-inner products of D*u and D®v over all o, |a| < k, as follows

(u,v)gr = Z (D%, D) 2.

|a|<k

The Sobolev norm can then be written as

lullfe = D 1D%ulZa.

|lal<k

The defined Sobolev space H*()) together with the inner product (2.55) represents a Hilbert
space [91, p.230].

We are interested in the problem of how to define the function u on the boundary I" when u
belongs belongs to L?(€2) or, more generally, to one of the Sobolev space H*(£2). We can note
that the functions in the space H*((2) are defined on the domain €2 and not on €2 because I is
a set of measure zero. Further, members of the space H*(2) are in fact equivalence classes of
functions, two functions being equivalent if they differ on a set of measure zero. Therefore, we
need to introduce the following theorem.

Theorem 2.6. There exists a linear continuous operator 7, : H'(Q) — L*(I") such that

Yov = | forallv € C'(Q)

The function ~yyv is called trace of v (often it is denoted by tr(v)). The meaning of the theorem
is the following: if we have two close functions u,v € H 1 (€2) then, due to continuity, also their
traces are close. (Note that two functions from H'(2) which are equal in and differ on I" have
the same H'(2) norm), see [86]. We can now introduce the definition of the space H} (1) as

follows.

Definition 2.14. (The space H;(Q2))

28



The space H}((2), is a subspace of H'((2) (the Sobolev space H*(Q2) with k = 1) to include

homogeneous Dirichlet boundary conditions as follows

Hy(Q) = {ue H(Q)| vou=0 on I'}. (2.56)

Definition 2.15. (Bilinear Forms)
Let X and Y denote two vector spaces. An operator a(.,.) : X X Y — R with the following

properties is called a bilinear form:

a(ou + fw,v) = aalu,v) + fa(w,v), foru,w € X,v € Y, (associativity/ commutativity)
2.57)

a(u, av + fw) = aa(u,v) + Ba(u,w), foru € X,v,w €Y, (reflexivity)

where o and 5 € R.

Furthermore, a is called a continuous bilinear form if X and Y represent normed linear spaces

and a positive number c exists that satisfies the following inequality:

la(u,v)| < c||ul|x|jv]ly Yue X,veY. (2.58)

Definition 2.16. (/{-Elliptic Bilinear Forms)

Let a bilinear form a : H x H — R be given with H be a Hilbert space. If for a constant o > 0

the form a satisfies the following inequality

a(v,v) > allvlf Vv e H,

then a is called H-elliptic form.
Theorem 2.7. (Lax-Milgram theorem)

Assume that the operator a(.,.) : H x H — R is continuous and H-elliptic for a Hilbert space

29



H. Then, for any continuous linear functional [ on H there exists a unique element u € H such
that:

a(u,v) = (l,v)
forallv € H.

The proof of the theorem is given in [pp. 167-169] [91].

30



CHAPTER 3

MULTIGRID METHODS

3.1 Introduction

The purpose of this chapter is to present basic concepts of multigrid methods. Such methods
were originally developed for the solution of large systems of linear algebraic equations arising
from the discretization of partial differential equations. The notable feature of such approaches
is that the convergence speed does not deteriorate during the mesh refining process unlike a
number of classical iterative methods such as Jacobi and Gauss-Seidel schemes which become

slower with increasing dimension [20].

In 1961, Fedorenko [34] introduced the first two-grid method for the Poisson equation, while
Fedorenko [35] contains the first multi-grid method. Bakhvalov [7] followed that by the first
more general convergence analysis. The method, however, only gained huge popularity fol-
lowing the seminal paper by Brandt [16] (1973) who demonstrated the tremendous computa-
tional potential of these methods. Since then a vast literature about multi-grid methods has
been published and introduced, we do not try to present this literature. Instead we refer to the
monographs [57], [115] which are particularly devoted to problems of fluid dynamics. For the
interested reader, many interesting classical texts in multigrid methods are introduced compris-

ing Hackbusch and Trottenberg’s Multigrid methods [60], Brandt’s guide to multigrid meth-

31



ods [18], the introductory tutorial by Briggs et al., [20] and the comprehensive textbook by
Trottenberg et al. [108]. The material presented in this chapter is in line with presentations pro-
vided in a number of classical references, including [16, 20,57, 108]; for the interested reader,

an extensive overview of multigrid methods may also be found in [114].

Generally, the multigrid procedure involves communication between a hierarchy of grids in
finite difference or finite element discretization of an underlying partial differential equation
PDE. For instance, the low-frequency components at the finer level i can be restricted to the
coarser level 2h, in order to reduce the error effectively by a coarse grid correction technique.
Once this coarser problem is solved, the solution interpolates back to the fine grid to correct
the approximation for its low-frequency errors. This approach is called geometric multigrid
method and is considered within the scope of our work. Moreover, there is another approach of
multigrid methods called algebraic multigrid which is a purely matrix-based approach. It can
be directly applied to solve various types of elliptic partial differential equations without any
geometric background and discretized on unstructured meshes in both two and three dimen-
sions [105]. Alternatively it can be used whenever geometric multigrid can not be used or is
difficult to apply, for instance if the discretization does not provide hierarchy of finite element
meshes or the coarsest grid remains too large to be computed efficiently by a direct or classical

iterative solver.

However, geometric multigrid methods are more general and can also be applied to nonlinear
boundary value problems. The motivation for the chapter is to introduce fundamental algo-
rithms of linear and nonlinear multigrid for system of equations and the mechanics behind
multigrid including interpolation and restriction operators. Furthermore, the basic analysis of a

one dimensional model problem will be presented to illustrate multigrid process in practice.

32



3.2 Ingredients of multigrid method

This section is devoted to presentation of the most prominent ingredients of multigrid methods
which are commonly used in algorithms associated with multigrid methods. These will be

demonstrated first by considering a linear system of equations
Au = f, 3.1

where u, f € R™ and A € R"*" is a symmetric positive definite.

3.2.1 Hierarchy of Linear Systems

The solution of a linear system (3.1) requires a hierarchy h; > ... > hy_; > hy of mesh sizes
which correspond to the discretized domains 21, ..., £2,_1, {2y, respectively. We denote by h,

the smallest mesh size of the finest level /.

The linear system corresponding to the level k£ (mesh size hj) can be written as
ARk = f* for k=¢,0—1,...,1 (3.2)

We first assume that there are two discretization levels to introduce two-grid method, fine h
and coarse 2h, resulting linear systems A"u = f" and A?"u*" = f?" for the same discretized

problem but on different levels.
3.2.1.1 Relaxation Iteration

In order to solve, (3.1), multigrid method should be combined with other iterative methods,
called relaxation (smoothing) iteration, which have the smoothing property. Namely, these
methods such as Jacobi or Gauss-Seidel iteration are slow but serve well to “’smoothen’’ the

error, i.e., to eliminate high-frequency components of the error, see pre-smoothing in Figure

33



3.1. However, these methods leave the low frequencies error which can be treated successfully
by solving a “’correction’’ problem on the coarse mesh see post-smoothing in Figure 3.1, hence

two-grid method.

Therefore, we denote by v = RELAX(A, f;v), an iterative (relaxation) method to solve

Au = f, where v is an initial approximation of the solution.

initial error after pre—smoothing
after coarse grid correction after post—smoothing

Figure 3.1: Pre and post-smoothing

3.2.1.2 Prolongation

By Hj., we denote the space of vectors u* and f*. The prolongation I} , is a linear transfer

from the space of vectors Hj_; at the coarser level k£ — 1 to the space at the finer Hy,

If | : Hy_, — H, linear. (3.3)

3.2.1.3 Restriction

The restriction [ ,’j_l is the opposite direction of a linear transfer of prolongation,

I Hy — Hy,_y linear. (3.4)

34



3.3 Finite Element Introductory Model Problem

The analysis of multigrid methods was originally carried out on simple boundary value prob-
lems related to physical applications. Therefore, for simplicity we consider the following Pois-

son equation with homogeneous Dirichlet boundary conditions
Au = —Ugy — Uy, = fin

3.5
uw=0on/I"

Here 2 C R? denotes a bounded domain and I” its boundary. We assume that u belongs to the
space H := H;()), namely the Sobolev space given in (2.14). We call A formal differential
operator, as it only presents a certain formal writing; it is not clear if the derivatives in (3.5)

exist.

Formally, solving the differential equation Au = f and minimizing the functional

Flu) = %(Au, w) — (f,u) over H C L2() (3.6)
min F(v), (3.7)

are equivalent provided that the operator A is H-elliptic [20].
It is concluded that if Au = f, then u minimizes F' over H, or F'(u) < F(u + v) for all
v € H. Conversely, if « minimizes F' over H, then (Au — f,v) = 0 for all v € H, which,

using [20, p.178], is equivalent to

(Au,v) = (f,v) forallv € H (3.8)

This condition describes another way of enforcing equality between Au and f, which we will

now exploit in order to describe a discretization of the problem using finite elements. This

35



approach is based on replacing the infinite dimensional space H by a finite dimensional space
Hy, such that H, C H with Hy, consisting of piecewise bilinear functions w;. Each function
uy, 18 continuous on €2, zero on the boundary /" and bilinear within each element. Therefore, on

each element u” has the form uy,(x,y) = axy + bx + cy + d with a, b, c and d € R constants.

Q

J+1

i—1 i i1
Figure 3.2: A domain {2 showing the four elements surrounding grid point (i, j) [20].

We suppose that the domain is a unit square, namely 2 = (0,1) x (0,1), and is subject to
a uniform discretization into (n + 1) x (n + 1) elements with mesh size h = + to yield a
discretization ". By denoting (z;, ;) the grid point with coordinates (ih, jh) (Figure 3.2); it
can seen that under a mesh discretized into rectangles, the finite element method focuses on the
four elements surrounding each grid point as opposed to the actual grid point itself. The sets
of four elements associated to neighboring grid points interfere in one or two elements (Figure

3.2). The discrete minimization problem (3.7) at level h can be presented as follows

min F(v"), (3.9)

UhGHh

The equivalence described between (3.7) and (3.8) transfers over to the discrete formulation,

36



meaning that (3.9) is equivalent to determining u" € H), such that

(Au” v") = (f,v") for all v" € H, (3.10)

In practice, the solution of (3.10) needs further consideration. First, it is important to select
suitable piecewise bilinear functions in H. For an interior point (z;,y;) denote ¢; ;(x,y),
defined such that they take on the value 1 at (x;, y;) and zero at all other grid points. Then we

can expand u" in the form of the continuous piecewise linear function

n—1

ul(z,y) = Z u?’jgzﬁi,j(x, y), where ufj = u"(zi, ;). (3.11)
ij=1

This is referred to as a nodal basis expansion, as the nodal value u?j gives the value of u” at
(xi,y;). The next step is to substitute (3.11) into (3.8), but direct implementation is not possible.
The reason essentially lies in the fact that A is a second order operator, whereas " as defined
is a linear function in both x and y and so is not sufficiently smooth. More precisely, the first
partial derivatives of u” are piecewise smooth and square integrable. However, their second
derivatives are not square integrable due to their discontinuity at the element boundaries. To
overcome these difficulties (3.8) is reformulated in order to include fewer derivatives. This
is obtained by using the fact that v and v vanish on the boundary I'. Applying the Gauss

divergence theorem to (Au, v), we find that

(Au,v) = /(—um — Uy, )vdS)
Q
= [ (s + o) (3.12)
Q

= (Vu, Vv).

Substituting this into (3.8) leads to a weak form

(Vu", Vo) = (f,0") for all v" € H", (3.13)

37



which is more general or weaker than (3.8), as the formulation is free from being twice differ-

entiable.

Now with this weak form we can substitute the expansion (3.11) into (3.13), choosing the so

called trial functions v" to be the basis functions ¢y, ;. The result of this is a linear system whose

h

variables are the nodal values u/';. The inner product (V¢ Vy.,) represents the matrix

coefficients in this system and (f, gbz’l) the right hand values. For the chosen bilinear basis
functions, the overlapping only occurs at neighboring basis functions; thus the inner product
(ngﬁfj, ngZJ) equals zero unless k = ¢ ori+ 1 and [ = j or j 4 1. Associating with the patch

(1, 7), the sixteen inner products result in a local stiffness matrix defined by the stencil

4 -1 -2 -1
1l -1 4 -1 —2

Ab = . (3.14)
6l 2 —1 4 -1
-1 -2 -1 4

Namely, this can be obtained by using standard quadrilateral bilinear finite elements discretiza-

tion on a unit square in which the bases are defined as follows

611 =7(1-2)(1-y)

1
P11 = 1(1 +z)(1 —y),

1 (3.15)
b= (1 +2)(1 +y),
1
P11 = 1(1 —z)(1+y).
The right hand inner product includes the integrals
A Titl Yi+1 N
b= [ [ retaduay (3.16)
Ti—1 Yi—1

which are commonly approximated numerically. Replacing the function f by its value f(x;,y;)

38



is the simplest numerical integration scheme such that

Yit+1

(f.60) ~ f(aw) / T g dwdy,

Ti—1 Yi—1
h2

= % f o) (317)

Therefore, assembling all local stiffness matrices (3.14) for all elements and associated right

hand side can be written as the matrix vector system.
Ay = 1, (3.18)
here, the solution vector u" and the source vector are given by (u");; = (uf;) € Q" and

Z7J
(f")ij = (%Qf(xi,yj)), respectively.

Under previous observations, we note that the solution u" to (3.18) maybe equivalently obtained

by solving the quadratic optimization problem

min F"(v"), (3.19)

vheQh

where

F'(u") = Z (A" ") — (" 0).

N | —

3.3.1 Correction Scheme

The multigrid scheme can be developed by considering the functions " that solve (3.9) and
(3.10) instead of their nodal values u" defined in (3.18) (simplicity, we use the same notation
for the function and the associated vector). The first step is to consider relaxation, for example

Jacobi method, which can provide an inexpensive techniques for damping oscillatory errors in

39



the approximation, v". This can be done by applying local changes of the form

" — ol — aqﬁ?’j, (3.20)
foreach 7,7 = 1,2,...,n — 1 where a € R is a suitably selected step size. The best way of
choosing « in terms of the minimization principle is to minimize the functional over all possible
choices. This leads to the following relaxation algorithm.

Algorithm 3.1. foreachi, j = 1,2, ...,n— 1, compute a = arg min,eg F'(v" — s¢};), and then

apply the replacement v" < v" — a .

Now we can follow this by formulating the coarse grid correction. The coarse grid space H?" C
H" defines the set of piecewise bilinear functions connected with the standard coarse grid 22"
corresponding to the even numbered lines of Q. The target is to correct the approximation v"
by a function v?" € H?", in order to approximate the presumably smooth error, the form of
this correction is v" < v" + v?"; the best way of choosing v?" in terms of the minimization

principle is to minimize F' over H2". The statement mathematically is

v = arg min  F(u" +w?"). (3.21)

thGHQh
The coarse grid correction scheme is simply stated as follows
 Compute v?" = arg min,zne g2 F/(v" 4+ w?") and then set v" « v" + v?,

The core of multigrid method constitutes of recursive combination of this correction scheme
and the coordinate relaxation scheme defined above. The correction scheme can then be repre-
sented as follows in more general algorithm by using the residual equation.

Algorithm 3.2. - Use a few steps of a relaxation iterative method to solve Au = f on Q" to

generate an approximation v".

- Compute the residuum r = f — Av".

40



- Solve the residual equation Ae = r (by a relaxation method) on 9" to generate an approxi-

mation to the error 2",

- Correct the approximation obtained on the fine grid 2" by adding the error estimate generated

on the coarse grid O2"; v" « V" 4 2"

We now discuss the transfer mechanism which relies on previously presented spaces and bases

as follows.

3.3.2 Interpolation and restriction operators

As described previously, we require the addition of a function from the coarse grid Q%" to
a function from the fine grid " which then provides a complete to the relaxation scheme.
We consider only the case where the coarse grid has double of the grid spacing of the next
finest grid, this is the most common used in practice. As such, it is necessary to describe an

appropriate mapping from the nodal representation of a function in 2", namely

3

2h2h
- 3 o)

1,j=1

to Q" nodal representation,

U2h(x’y) = Z Uz}fjgb?,g(xuy)

ij=1

In other words, we look to obtain coefficients U that enable v2" to be written as a function in

H", using the fact that H** C H". We denote such a mapping by 12 : Q%" — Q" such that
b, (3.22)

This technique is referred to as a prolongation operator /?". The components of v" can be
obtained by defining a linear interpolation from the coarse grid Q2% to the next finer grid Q",

Fig. 3.3 which is illustrated as follows.

41



j42 : 2j+4 b—t—t
2543
41 2542
25+1
J 27

— (a\| — AN <A

-+ +++ +

S S S B )

AN NNN N

Figure 3.3: A domain Q2" with a coarse grid spacing 2/ (left) and the associated fine grid Q"
with grid space h (right).

Consider the grid Q" node with indices (7, j) which is located at the point (i(2h), j(2h)). Itis
clear that this point is also the grid Q" node ((2i)h, (27)h) with indices (2i,25), Fig. 3.3. The

coefficients in each case define the nodal function values at the nodes such that

Vgi; = v ((20)h, (2))R) = v*(i(2h), j(2h)) = v}

17]’

so that

h _ 2h
V2i25 = Vi

Nodes on the fine grid with coordinates which have subsequent indices should be defined in an
appropriate manner ensuring that v?" is linear between subsequent points on the coarse grid.

To enforce this at coordinates ((2i 4+ 1)h, (25)h) and ((27)h, (25 + 1)h), we require
h Loon  on
Ugit1,2j = 5(%’,3' + Uit )

and
h o l( 2h_|_ 2h )
Y2i2j+1 = 5\WVij T Vij41)s

respectively. Both of theses relations imply that at a point on the fine grid with purely odd

42



indices ((2i + 1)h, (2j + 1)h), we must have that

1
h _ o%h | . 2h 2 2
V91,2541 = Z(Ui,j + Ui, Vi U )

Thus the operator I, can be based on the nine-point interpolation scheme defined by the stencil

111
4 2 4
1 1
;1 3
111
4 2 4

We now look to describe a counterpart to the discrete operator A” on the coarse grid, which we
will denote by A%". By using the minimization principle presented in (3.19), the coarse grid
correction (3.21) is equivalent to

v = arg min  F"(u" + I} w*), (3.23)

w2heQ2h

Using the properties of inner products, we then use this formulation in order to write down the

following,

Fh(vh + Igbhw%)
1
:g(Ah(Uh + w4+ I w™) — (ff 0" + I w?)
1

=F" (") + S (1) A" L™, w?) — ((Iz)" (f" = A™"), w™)

We can notice from the first bracket that the matrix which operates on a coarse grid vector w?"
is represented by (12 )T A"}, . Therefore, the coarse grid counterpart to A" can be given by
(I3,)T A" I3, . The second bracket shows that a fine grid vector is transfered into a coarse grid

vector by the operator (17, )7 which plays the role of a restriction operator. Therefore, it makes

43



sense to represent them as

A (1 )T AME,

and

1= ()T

This restriction operation operation is called full weighting; see, e.g., [60]. Which can be

written in more genral way as

"= c(ly)", ceR.

However, the most obvious restriction operator is injection that is defined by [2*v" = v?",
where
2

_
Ui = vy;.

Namely, the coarse grid vector picks its values directly from the corresponding fine grid point.
Now the relevant operators have been defined, we are in position to provide a precise definition
of the multigrid algorithm. To illustrate this effectively, we first present the following two grid

correction scheme.

So far we developed multigid scheme using the minimization principle relied on finite element
discretization because it is our applied discretization method in this thesis. However, we have
the option of developing multigrid solvers directly from the differential equation without adhere
to optimality, as it is presented in many literatures [20, 57], but it is based on the finite differ-
ences method. To simplify things, we present in the next section the ingredient of multigrid

method in a way that makes the practical concepts to be more obvious.

44



3.4 Multigrid method algorithms

3.4.1 Two-grid method

The two-grid iteration includes only two levels, a fine grid / and a coarse grid 2h. Whilst not
of practical interest for reasons to be described shortly, the resulting algorithm represents an
important building block in the description of a generalized multigrid iteration. The two grid
iteration may be described as follows.

Algorithm 3.3. Two-grid algorithm for solving Au = f

(a) Pre-smoothing step: Apply v steps of a relaxation method, v = RELAX, (A", f* v") on

H,,, with initial estimate v".
(b) Calculate the fine grid residuum 7" = f* — A",
¢) Restrict the fine grid residuum 7" to the coarse grid by 2" = [2yh,
(© g g y h

(d) Compute e*" = RELAX,(A?",r?";0) on the coarse level Ho;, to machine precision.

(e) Interpolate the coarse grid error to the fine grid by e = I} e,

(f) Correct the fine grid approximation by v" « v 4 e”.

(g) Post-smoothing step: Apply v steps of a relaxation method, u" = RELAX, (A", ;")

on H}, with updated initial estimate LS

Here v denotes the number of smoothing iterations. For the converge details regarding the
two-grid iteration in the one-dimensional case, we refer the interest reader to [58]. As an
iteration process, the two-grid method will be relatively fast in practice [58]. Nevertheless, it
is impractical in the more interesting case of multi-dimensional boundary value problems due
to the need to determine the exact solution to A?*e?" = r?" in (d) of Algorithm 3.3 in order to

compute an update on the fine grid in the last step. However, since the error ¢/ on the fine grid

45



h

is only an approximation, there is no explicit need to determine e*" exactly. Instead, one can

consider an iterative approximation to

A2h€2h — 7,2h

Y

it is clear that this formulation is the same as the original problem A"u" = f" with only the
difference in the grids, 2/ instead of /. We can therefore apply the coarse grid algorithm to the
residual equation with grids{2h, 4h} instead of {h, 2h}, so that the relaxation is considered on
2" with associated coarse grid corresponding to Q*'. Assuming that a suitably fine mesh is
considered in the first instance, this process can be repeated until it is computationally feasible
to obtain a direct solution to the associated residual equation. One more point needs to be
mentioned. Due to the fact that there is no information available regarding the solution on
the coarse grid, u*", the initial guess to ¢ on Q2" is simply chosen to be zero, e?* = 0, for
simplicity the approximation to e2* will be denoted by v?*. We can now generalize the two-grid

algorithm to multigrid algorithm for levels k = ¢,/ — 1, ..., 1, as follows.

Algorithm MG (V-cycle correction scheme multigrid)
Set ¢, &. Initialize v©.
fort = 1: niter
u® == mgm(L,v®, )
test convergence
end
function u* = mgm(k,v*, f¥)
ifk=0

uk = (AY)71f! (coarsest grid solution)

46



else

v* .= RELAX,, (A* f*;0%) (pre-smoothing)
rr_1 = I (fF — ARgR) (restricted residuum)
=1 — mgm,(k —1,0,, ,,Tk—1) (coarse grid correction)
k) =k I,’j_lv(k_l) (solution update)
uk = RELAXVQ(A’f, f* U’f) (post-smoothing)

end

where 11 and 1, denote the number of relaxation iterations at the pre- and post-smoothing steps,
respectively. The resulting algorithm with « = 1 represents one call of multigrid algorithm and
takes the letter V' pattern (Fig. 3.4) which descends down to the coarsest grid then sets its way
back to the finest grid. So it is called the V' —cycle. One can apply two call ( ¢ = 2) of multigrid

scheme called the w-cycle [58].

s\ R P R p

S
S
S\R, p S\R p/ \R p
E E

E

Figure 3.4: One V' — cycle, and one W — cycle for [ = 2. R: restriction of the residual; P:
correction u* + u* — I | u*~1, S: smoothing step; E: exact solution at level the coarsest level

3.5 Nonlinear multigrid methods

When using multigrid, there are two different approaches used in order to deal with nonlinear
problems, the first approach is referred to as a full approximation scheme (FAS) by directly

adapting the construction of the smoothing and coarse grid iterations to the nonlinear case.

47



The second of these approaches is a combination of Newton’s method and multigrid which is
called Newton-multigrid method. The second method does not treat the nonlinearity directly
by multigrid ideas but it consists of Newton’s method as the outer iteration and multigrid as an
inner iteration applied to arising linear system from use of Newton method, see [20] for more

details.

3.5.1 Full approximation scheme

To fully describe this approach, we consider

A(u) = f, (3.24)

to be a system of nonlinear algebraic equations, whereby u, f € R". Let v be an approximate
solution of u, so that the error ¢ = u — v with r = f — A(v) denoting the residuum. We obtain

the system

A(u) — A(v) =, (3.25)

after subtracting the equation A(u) = f from the residual. Generally, in the nonlinear case one
cannot deduce that A(u) — A(v) = A(e), as illustrated in [20]. Thus, the system (3.25) must
be solved rather than the error system. The full approximation scheme (FAS) is named so as it
solves the coarse grid problem for the full approximation u = I% v*" + e" rather than error e".
The procedure can be viewed as a generalization of the two grid correction scheme presented
in Algorithm 3.3 to nonlinear problems since the procedure reduces to the two grid correction

scheme in the case where A(.) is a linear operator. Thus, FAS similar to its linear counterpart,

can also be implemented as a V-cycle or W-cycle scheme.

It is also useful to observe that the coarse grid equation of FAS can be written as

AQh(UZh) — f2h 4 5}%h7

48



where the delta correction is given by

o = A1y — IR AR (1),

The consequence of this relationship is that the resulting solution of the coarse grid FAS equa-
tion is not the same as the solution of the original coarse grid equation because in general
52" # 0. We now describe the complete version of this approach for nonlinear system of equa-
tions A(u) = f. W assume that nRELAX is a descent convergent algorithm for the solution

of (3.24), € denotes the required precision and v is the maximum number of iterations allowed.

Algorithm FAS (Full Approximation Scheme Algorithm for Solving A*(u*) = f*)
Set ¢. Initialize v(®.
fori =1 : niter
u® = mgm(L,v®, f)
test convergence

end

function u* = mgm(k,v*, f¥)

ifk=0
uf :=nRELAX,, (A*, f*; o) (coarsest grid solution to high precision ¢)
else
v* = nRELAX,, (A, f; ") (pre-smoothing)
vF=1 = [F1h (solution restriction)
A= I (AR (IE 1R — I AR (R)) (correction r.h.s.)

49



cor® =Y = mgm, (k — 1,0%1, fk=1) (coarse grid correction)

20 =k 4 I (cortt — plETY) (solution update)

uf := RELAX,,(A¥, f*; 2%) (post-smoothing)
end

where 1y and 1, denote the number of relaxation iterations at the pre- and post-smoothing steps,
respectively. The resulting algorithm with ¢« = 1 represents one call of multigrid algorithm and

leads to V' —cycle, as it described in the previous section.

3.5.2 Full multigrid method

The concept of multigrid method can also be applied to a problem by considering a nested
iteration. This strategy is based on using coarser grids in order to obtain improved initial
guesses, namely that relaxing of the system Au = f on the coarser level is considered in order
to generate an initial guess for the next (finer) grid. This relaxation is repeated across the
number of levels considered until the finest level is reached. It is depended on the definition of
the original problem on the coarser grids in order to allow the improved results to be transferred

to the finer grid.

We will now describe the so-called full multigrid method (FMG). In general, the solution pro-
cess starts from the coarsest level, where the discretized problem can be solved in a straightfor-
ward manner. The obtained result is then interpolated to the next finer level and then used as an
initial guess within FAS or MG procedure. The process repeats until the finest level is reached,
with £ used to denote the level and [ the finest level.

Algorithm 3.4. Full Multigrid Algorithm

Full multigrid method for solving Alu! = f'.

 Compute u* on the working level k;

50



» If £ < [ then FMG, interpolate the solution to the next finer working level

uk+1 — ],f“uk'

I

 Apply FAS (or MG) scheme to A¥* 1y ! = fF*1 with initial guess u**!;
e Ifk+1<lsetk=Fk+1goto (3.4).

The idea principally can be combined with any iterative process to provide a good starting
guess as we mentioned earlier. The method is not used in our practical methods because the
solution is approachable when the initial point is set in all experiments to a zero vector (even if

this was infeasible), however, an interested reader is recommended to consult [58].

51



CHAPTER 4

OPTIMIZATION

This section introduces the fundamental concepts of optimization required in this thesis. The
main reference for this section is [85], moreover both [66] and [15] can be used for information
regarding nonlinear optimization in general, as well as iterative solution methods used to solve

resulting problems.

4.1 Basic definitions and theorems

Definition 4.1. (Convexity)

Aset Q C RY, d=1,2,3,is called convex if for every x,y € Q it holds that:
ar+(1—a)yeQ  VYael0,1].
A function f : R"— R which for all z, y € R" satisfies the inequality
fle+ (1 -a)y) <af(r)+ (1 -a)f(y) Vael01],

is called a convex function. Furthermore, f is called concave if — f is convex.
Definition 4.2. (Optimization Problems)

Let f,c;, ¢; : R™ — R be continuous functions, i = 1,...,n;, j = 1,...,ng. The constrained
) ) ~) ) ’ .7 ) )

52



optimization problem (CP) is defined as

min f(x) (@.1)
subject to ¢;(z) > 0, el 4.2)

¢i(z) =0, e l. 4.3)

Here © = (x4,...,x,) defines a vector of unknowns, f in (4.1) is the objective function and
(4.2) and (4.3) are the constraints with index sets, specified by Z and £. The defined problem
turns into an unconstrained optimization problem (UP) when the union of the sets £ and 7 is
empty, in which case, the problem reduces to

min f(x). (4.4)

zeR™

Depending on the character of the functions f, ¢;, ¢;, the optimization problem can be classified
as either linear or nonlinear, convex or nonconvex, and smooth or nonsmooth.

Definition 4.3. (Local and Global Solution)

A point x* € () is called a local minimizer of an unconstrained problem (UP) if there exists a
neighborhood of z*, which is denoted by U (z*) , such that f(x) > f(z*) forallz € QNU (z*).

A point z* is called a global minimizer if f(x) > f(z*) for all z € Q.

We first state necessary and sufficient conditions for a point to be a local minimizer of (UP),
where we see the importance of positive definiteness. For the proof of the next three theorems,
see [85, pp. 15-16].

Theorem 4.1. (First-Order Necessary Condition for UP)

If 2* is a local minimizer and f is continuously differentiable in an open neighborhood of z*,
then V f(z*) = 0.

Theorem 4.2. (Second-Order Necessary Conditions for UP)

Assume that f : R — R is a twice differentiable function in an open neighborhood of z*. If

53



x* is a local minimizer of f, then 7 f(z*) = 0 and /2 f(z*) is a positive semidefinite matrix.
Theorem 4.3. (Second-Order Sufficient Conditions for UP)
If 7f(2z*) = 0 and s/?f(z*) is continuous in an open neighborhood of z* and is positive

definite, then there exists an o > 0, such that f(x) > f(2*) + a||x — «*|| for all z near z*.

We now turn our attention to constrained optimization problems.
Definition 4.4. (Lagrangian Function)

The function £ : R" x RI¢l x RZl — R defined as

Lz, A\ p) = f(x)— Z Aici(z) — Z,u,-ci(x) 4.5)

1€L i€E

is called the Lagrangian function of CP (4.1-4.3). Here both of \; and y; are called Lagrange
multipliers. For clarity, we call a vector of Lagrange multipliers by only .
Definition 4.5. (Active Set)

A set of active constraints can be defined as
Alx) =EU{i € Z|¢(z)=0}. (4.6)

Definition 4.6. (Linear Independence Constraint Qualification-L/C(Q))
We say that the linear Independence constraint qualification (LIC(Q) holds at x € € if the

gradients of the active constraints {V¢;(z) |,i € A(x)} are linearly independent.

We are now in a position to introduce theorems regarding optimality conditions for constrained
problems as described in (4.1)-(4.3).

Theorem 4.4. (First Order Necessary Conditions for CP)

Suppose that the functions f, ¢; defined in (4.1)-(4.3) are continuously differentiable and (LI C'Q))
holds at z*, where z* is a local minimizer of the constrained problem (4.1)-(4.3). Then there

exists a Lagrange multiplier vector \*, with components A}, ¢ € £ UZ, such that the following

54



conditions are satisfied at (z*, \*):

Vie&
Viel

Viel

Viel.

4.7)
(4.8)
4.9)
(4.10)

(4.11)

These are the well-known Karush-Kuhn-Tucker (KKT) Conditions and the theorem is known

as a KKT Theorem. The equations (4.11) are known as the complementary conditions. In

particular, the Lagrange multipliers A} corresponding to inactive inequality constraints are zero.

The proof of the KKT theorem can be found, for instance in [85, p.323].

The following definition is required to introduce the second order conditions.

Definition 4.7. Suppose that z* is a solution of the problem (4.1-4.3) and the KKT conditions

are satisfied. Then, an inequality constraint ¢; is called strongly active or binding if i € A(x*)

and A7 > 0 for some Lagrange multipliers \* satisfying KKT conditions. However, an inequal-

ity constraint ¢; is called weakly active if i € A(z*) and \} = 0 for all \} satisfying KKT

conditions.

Definition 4.8. (Linearized Feasible Set of Directions)

The set of linearized feasible directions at a feasible point z is defined as

Fz)={d|d"Vei(z) =0, Vie & d'Ve(z) >0, Vie Alz)NT,},

where A(x) represents the active set (4.6).

The KKT conditions describe the relation between the derivative of the objective function and

the active constraints at a feasible point z*. When these conditions hold, the approximation

of the objective function will be dependent on the movement along d € F(z*), either by

55



increasing it (d7V f(z*) > 0), or by keeping it unchanged (d*V f(2*) = 0). In other words, an
increase or a decrease of the objective function cannot be indicated by the first order conditions
alone. We therefore need to take into account higher order derivatives in order to be able to
trade the curvature of the Lagrangian function in the direction d € F(z*). In particular, we look
to present optimality conditions to encompass second order derivatives; for this, we require the
notion of the critical cone.

Definition 4.9. (Critical Cone)

Consider the pair (z*, \*) satisfying the KKT conditions. Then the critical cone is given as
Clz*, \) ={d € F(z*) | vei(a*)Td =0, Vie A(z*) NI, A\ >0},

where A(z*) is the active set and F (z*) the linearized feasible directions set at a feasible point

T*.

For the proof of the following two theorems, see [85, pp. 332-333].
Theorem 4.5. (Second Order Necessary Conditions for CP)
Assume that x* is a local minimizer of (CP) (4.1-4.3) and \* is the Lagrange multipliers vector

such that they satisfy the KKT conditions and the LIC'() conditions hold at z*. Then
d' <72, L(x*,\)d >0, VdeC(z*,\).

Theorem 4.6. (Second Order Sufficient Conditions for CP)

Assume that the pair (z*, \*) satisfies the KKT conditions. If
d" 72, L(z",X)d >0, Vde O N\), d#0,

then x* is a strict local minimizer for the (CP).

56



4.2 Line search methods

Let first consider the unconstrained optimization problem

min f(x),

where the objective function f : R® — R, we assume f € C! with the Lipschitz continu-
ous derivatives. In practice it is rather unusual to be able to compute or provide an explicit
minimizer, despite knowing how to characterize local minimizers of the optimization problem.
The consequence expect is to fall back on a suitable iterative process. An iteration is simply a

procedure that generates sequence of points

(o}, k=1,2,...

starts from some initial guess x°, with the overall aim of ensuring that any limit generated

satisfies first-order or, even better, second-order necessary optimality conditions.

In general, it is not guaranteed that an iteration converges to a global minimizer nor even to a lo-
cal minimizer unless, respectively, f obeys very strong conditions. However, the general target
is to ensure that, the iteration is globally convergent. From any initial point 2°, a subsequence
of iterates {V f(2*)} converges to zero. And with the hope that the convergence is reasonably
fast. The heart of computational optimization is located on these two preoccupations. The con-
cept of line search is based on a principal that it finds a direction of movement from an initial
start point, according to a fixed rule; and then proceeds in that direction towards a minimum of
the objective function on that line. At the new point it determines a new direction and repeats
the process [75]. We come to introduce the line search method in a more formal way, which
consists of computing a search direction dj, in each iteration that is required to be a descent
direction, i.e.,

diV f () <0 if Vf(xi) # 0,

57



and calculating a step length along this direction ay;, > 0 such that

[y + ardy) < fag).

The iteration concludes, with given search direction and step length, by setting

Tyl = T + Oékdk. (412)

An effective choices of both the direction dj, and the step length oy, assure the success of a line

search method. Moreover, the search direction often takes the form

dy = — B, 'V fi, (4.13)

where By, is a symmetric non singular matrix. Variant choices of By, lead to different line search
methods. Namely, the steepest descent method, where By, is the identity matrix, and Newton‘s
method, where Bj, is the exact Hessian V2 f(x},). Further, if By, represents an approximation
of the Hessian, then the line search method belongs to the class of so-called quasi-Newton
methods. The primary differences between them depend on the selected directions dy. In this
chapter we focus mainly on study the steepest descent method as it is the main algorithm in
Chapter 5. We preface with discussing how to choose «y, and dj, to raise convergence from

distant starting point.

4.2.1 Step Length

Computing the step length « is not an easy task. Selecting the step size ay, should be based on
producing a substantial reduction of f in a computationally efficient manner, as we discussed

in the previous section. The ideal choice of oy corresponds to the global minimizer of the

58



following univariate function

pla) = f(2* + apdy), ax > 0. (4.14)

However, identifying this value is generally too expensive. Typically too many evaluations of
the objective function f and the associated gradient V f are required in order to determine a
local minimizer of ¢ to moderate precision, and this approach known as an exact linesearch
which is rarely used nowadays. Alternatively, many practical approaches prefer an inexact line
search to determine a step length that attains sufficient reduction in f at minimal cost, which
are assured to pick steps that are neither too short nor too long. The so-called Armijo-Wolf and
backtracking-Armijo types are represented as the main contenders amongst the many possible

inexact line searches, [47].

A first and a simple condition that can be imposed on «y, is that

This condition is not sufficient to achieve convergence to local solution z* as it illustrated
in [118, p.32]. This can be avoided by enforcing a sufficient decrease condition, such as the

‘Wolf condition,

floy + ardy) < f(ar) + aranV [ dy, (4.15)

for some ¢; € (0, 1), assuring that a4, should give sufficient decrease in the objective function
f. Further, the decrease in f will be proportional to both the directional derivative V f/ d;, and

the step length . The condition (4.15) is also referred to as Armijo condition.

The Figure 4.1 illustrates the sufficient decrease condition. Where /() denotes the right-hand

59



side of the condition (4.15), which is a linear function and has a negative slope c¢;V f,;f d;. But,
as ¢; € (0,1), it prolongates above the graph of ¢ for small positive values of a.. The sufficient
decrease condition stipulates that if ¢(a) < [(«) then « is acceptable. Therefore, as it is

illustrated in the Figure 4.1, this condition satisfies at the acceptable intervals.

o) = f(a" + apdy)

acceptable acceptable

Figure 4.1: Sufficient decrease condition

However, the sufficient decrease condition by itself is not enough to guarantee the reasonable
progress of the algorithm because a sufficient small values of « can satisfy that. For this, a
second condition is introduced to exclude unacceptably short steps, called curvature condition,
which needs oy, to satisfy

Vf(xg + ardy) pr = eV i dy,

for some constant ¢, € (cq, 1), where ¢; is the same constant in (4.15). Moreover, it guaran-
tees that the slope of ¢ at «, is greater than the initial slope ¢’(0) times c5. That is reasonable,
because if ¢(«) is strongly negative, we can predict that f can be reduced significantly by mov-
ing further along the chosen direction. Now we can introduce and restate the Wolfe conditions,
which are a combination of the sufficient decrease and curvature conditions, as illustrated in

the Figure 4.2

60



[ + awdy) < far) + aaV fldy, (4.16)

Vf(xk + Ofkdk)Tdk 2 CQVfgdk, (417)

with 0 < ¢] < ¢g < 1.

It can happen that a new step is not be particularly close to the minimizer of ¢ but may still
satisfy the Wolfe conditions [118]. In order to overcome this issue, the curvature condition
is modified to enforce o to lie within a broad neighborhood of a stationary point or local

minimizer of ¢.

[y + awdi) < f(ap) + aaV fildy, (4.18)

IVf(SL’k + Oékdk)Tdk’ < _CQ‘ka,Tdk‘, (4.19)

with 0 < ¢; < ¢ < 1. We refer to these conditions the strong Wolfe conditions as they exclude
points that are far from stationary points, effectively enforcing a restriction on how positive the
function ¢/’ () can be. It is concluded that for every function f which is smooth and bounded

below there exist step lengths that satisfy the strong Wolf condition f; see [118, pp.35-36].

d(a) = f(z"® + ardy)

line of sufficient decrease

tangent.

acceptable acceptable

Figure 4.2: Sufficient decrease condition

61



Although we have mentioned that the sufficient decrease condition (4.16) by itself is not enough
to guarantee that the algorithm produces sensible progress along the given direction, it can ac-
tually be applied without curvature condition (4.17). This is used in the so-called Backtracking-
Armijo line search.

Algorithm 4.1. Given o > 0, for example oy = 1 and let [ = 0.

Until f(zy + audy) < f(zr) + oy V fldy,

set a1 = Ty, where 7 € (0, 1),

set! =10+ 1, and o, = oy;.

As oy, will gradually become small enough to satisfy the sufficient decrease condition, then after
a finite number of trials an acceptable step length will be found. The backtracking procedure
guarantees that either that the chosen step length o is some fixed value, or else that it is short

enough to hold the sufficient decrease condition but not too short.

4.2.2 Convergence of generic line search method

In order to connect all of the previous together, we first need to introduce the generic line search
method and then the general convergence result [47].

Algorithm 4.2. Given an initial guess z°, let k = 0.

Until convergence, repeat

Compute a descent direction d, at z*.

Find a step length «y; using a backtracking-Armijo line search along d.

Update 21 by 2% + ay.dy., and set k = k + 1.

Theorem 4.7. Assume that the objective function f € C! and that the gradient V f is Lipschitz

continuous on R™. Then, the iterates obtained by the generic line search method, either

V,f =0 forsomel >0

62



or

k—00

or

lim min (|(dk, Vi)l —|(dk’ ka)’) = 0.

In other words, the first condition corresponding to finding a first-order stationary point in
a finite number of iterations, a sequence of iterates are encountered for which the objective
function is unbounded from below, or a normalized slope along the search direction approaches
zero. The first two conditions are direct and acceptable consequence, the latter may not. The
reason for that, as we can see the convergence of the gradient to zero has not be mentioned, the
iterates may not ultimately be first-order critical as it may happen if the search direction and
gradient tend to be mutually orthogonal. Thus requiring that dj, to be a descent direction is not
included. However, the success of the generic line search method is coupled with the descent
direction of the line search, that is occur when d,V f;, < 0, it guarantees the search directions
are never too close to orthogonality with the gradient. This is in turn satisfied if dj, = —V f(2%).
Which considers the archetypical globally convergent algorithm, the so-called steepest descent

method.

4.2.3 Steepest descent method

The method is one of the oldest methods and presents not only the key point for a theoret-
ical analysis but also the standard of reference against which other advanced algorithms are

measured. The method is defined by the line search methods (4.12) as
"t = gF — 0, Vf(2F), (4.20)

where oy, is a nonnegative scalar minimizing f(x* — o,V f(2%)) and V f(2*) is the gradient

of the objective function f. In a short, the global convergence is obtained directly from the

63



following theorem, we eliminate the proof which is clarified in [118, Chapter 3].
Theorem 4.8. Assume that the objective function f € C! and that the gradient V f is Lipschitz
continuous on R". Then, for the iterates obtained by the generic line search method using

steepest descent direction, either

Vif =0 forsomel >0

or
k—00

or
lim ka = 0.
k—o00

The theorem suggests the globally convergent of the steepest descent method [47]. Although
the approach is the standard globally convergent and comparably inexpensive algorithm, is
quite slow in practice. Our aim is to incorporate the multigrid approach with the steepest
descent features to obtain a method which guarantees a good global convergence and a rapid

rate of convergence for variational inequality problems discretized by finite element methods.

4.2.4 Newton’s methods

Newton’s methods takes multiple forms throughout optimization. First, in the case of solving
the nonlinear of equations F'(z) = 0 (z € R™), the Jacobian matrix of F' is denoted by J(z).

Then, the Newton step d. at the current point 2;, is the solution of the linear system

J(2M)d, = —F (25, 4.21)

provided that .J(2*) is non singular. So that dj, is the direction from the point z* to a zero of the

local affine Taylor-series model of F'.

64



However, the Newton step dj for unconstrained minimization of f(x) is constructed to mini-
mize f(z*) + V f(z*)"d 4+ 3d" H(2*)d, a local Taylor series quadratic model of f(z* + d).

Then, dy, is a solution of the linear system
H(2%)d = -V f(z"), (4.22)

Furthermore, for the case when the objective function f(z) subjects to m linear equality con-
straints Ax = b. Then the Newton step d should be a minimization of the local Taylor-series
quadratic model of f with satisfying the constraints A(z* + d),) = b, namely, dj, solves the
following quadratic program

1
min ~d” Hyd + V f'd subjectto Ad =b— Ax", (4.23)

deRrn 2

where Hy, = H(z*) and Vf;, = Vf(2*). Let y**! denote an estimate of the Lagrange multi-
pliers for the equality constraints, then dj and y; solve the following n + m linear equations

H, AT dy, ~V fi
= , 4.24)

A 0 —ykHl b— Ax¥

provided that the matrix is nonsingular, this can be satisfied if the reduced Hessian N H; N4
is positive definite and A has full rank, where /N4 is a basis for the null space of A. Further, if
Ax* = b, then the second equation in the system becomes Ad;, = 0 which means that d;, must

belong to the null space of A, see for example [117].

A pure Newton method for zero-finding is defined as 2**! = z* + d;,, with d;, defined by one of
(4.21), (4.22) or (4.24) which generates a sequence of Newton iterates {zk} starts with an initial
point 2°. The convergence of the method to a solution is quadratic under various conditions
that can be quite restrictive, such as starting with an initial point close enough to a solution.
However, the convergence from a general starting point can be ensured by performing either

the line search approach or the trust region strategy. In the first approach the new iterate is

65



defined by 25! = 2% + q.dy,, where the positive scalar « is selected to reduce a merit function
that measures progress. In unconstrained optimization, the objective function is simply the
merit function. While the second approach is based on defining the current iterate within a
region which the local model can be trusted, we eliminate the detailed discussion but refer

to [118] instead.

In addition, any method uses Newton direction can be called second order methods, the follow-
ing theorem shows that the generic line search method with the use of Newton direction will
usually converge very rapidly.

Theorem 4.9. Assume that the objective function f is twice differentiable and the Hessian
V2f(x) is Lipschitz continuous in a neighborhood of a solution z* such that the sufficient
conditions are satisfied (4.1). Then, the iterates obtained by the generic line search method,
with using the Newton direction in which the Hessian V2 f(x) is positive definite and a = 1.

Then
(a) ap = 1 for all sufficiently large &,
(b) the sequence {z*} convergence entirely to the solution z*, and

(c) the rate of convergence is ()—quadratic, i.e., there is a constant £ > 0 such that

k+1

[l — ¥l

lim — = < k.
dm T SF

The proof of the theorem is given precisely by Wright and Nocedal [118].

As we mentioned that a descent direction of the Newton method depends mainly on the positive
definiteness of the Hessian matrix, however, there is a remedy for this, that is by considering
the so-called modified Newton methods. This can be obtained in a number of approaches, the
precaution is not to replace the matrix By, in the search direction d, = —B, 'V f(2®) by the

Hessian matrix V2 f(z*) but by B, which is (or is close to) V2 f(x*) under some assumptions

66



[118, pp.48-56]. Further, if Bj represents an approximation to the Hessian matrix then we
obtain the so-called Quasi-Newton method. We exclude introducing the details instead one can

discover them in a wide range of references.

Finally, we preview the different class of search directions which is generated by nonlinear

conjugate gradient methods, they take the form
d, = =V f(2") + Brdi_1,

where [ is a scalar that guarantees that dj, and d;_; are conjugate, as we now discuss.

4.2.5 Nonlinear conjugate gradient method

Algorithm 2.2 describes a minimization algorithm for the convex quadratic function (2.10).
This approach has been successfully adapted by Fletcher and Reeves [38] to minimize general

convex functions, or even general nonlinear functions f.

We now describe the adaption to Algorithm 2.2 to handle nonlinear functions. First, the step
length v (2.27), which is the one-dimensional minimizer of the quadratic function (2.10), is
replaced by a suitable line search. In the case that the objective function f is nonlinear, the
residual r simply represents the gradient of f. Finally, the scalar (3, is modified, as necessary,
to guarantee that dj, is a descent direction at the point z*. There are two principally known

definitions of the scalar [y, firstly, the Fletcher and Reeves formula

FR __ Vfg+1ka+1

= , (4.25)
k+1 kaTka
and secondly the Polak and Ribére formula

e IV fill? ’

67



These adaptations give rise to the following algorithm for nonlinear optimization.

Algorithm 4.3. Select 2° as an initial point;

Compute fy = f(z°), Vfo = Vf(2");

Setdy = —V f(2°) and k = 0;

Do while V f(z°) # 0

Evaluate o, (as described below) and set 2"+ = 2% + . dy.;
Compute V fii1;

Select a formula for S 1; (4.25) or (4.26);

dir1 = =V fror1 + Brrrdy;

k=k+1,;

end(while)

4.27)

(4.28)

In the above, we note that, the computation of 55, at each iteration of the algorithm requires

only the evaluation of the objective function and its gradient, neither of which are matrix opera-

tions, a relatively small number of vectors storage are required. Therefore, the Algorithm 4.3 a

practical iterative method for large nonlinear optimization problems. To complete this concern,

we require the step length to satisfy the strong Wolfe conditions presented in (4.18) and (4.19).

In conclusion, any line procedure with a step length adhering to the strong Wolfe conditions

will guarantee that the resulting direction d;, is a descent direction for the function f. For the

interested reader, further details are provided in [38, pp.121-122].

68



4.3 Minimization of constrained problems

In this section we outline approaches are involved in this work for solving constrained op-
timization problem. First, we describe a certain class of methods used for constrained opti-
mization problems, typically referred to in the literature as projected gradient methods. They
are known as primal methods, in that they work directly on the original problem by searching
for the optimal solution inside of the feasible region. They are particularly efficient when ap-
plied to linearly constrained problems due to their (generally) simple applicability as well as
the competitive rates of convergence when directly compared to other methods. Nevertheless,
convergence can not be guaranteed for certain problems, particularly problems involving non-
linear constraints. As well as requiring a certain procedure to obtain an initial feasible point,
computational difficulties may arise during later iterations due to the necessity to stay within

the feasible region.

For purely linearly constrained problems, one can consider application of projected gradient
methods coupled with an active set strategy, as suggested by Luenberger [75, p.367-371], by

only considering active inequality constraints.

We also consider examples of the second order methods which use the Hessian matrix such
as interior-points and the penalty barrier multipliers methods. Although these methods are
expensive because of evaluating the dense Hessian matrix especially for the large scale prob-
lems, they represent more general and effective methods for solving constrained optimization

problem in which the first order difficulties can be avoided.

4.3.1 Projection gradient methods

The gradient projection method represents a modified ordinary steepest descent method for
unconstrained problems. Therefore these methods solve constrained optimization problems

by projecting the negative gradient onto the working space in order to define the direction of

69



movement. The implementation of the projected gradient method is quite simple and it is very
effective for large scale problem. Originally proposed by Goldstein [44] and Levitin [72]. Let

introduce the general form of constrained optimization problems

min{ f(z) : x € Q}. (4.29)

f is a continuously differentiable function f : H — R and () is a nonempty closed convex
subset of a Hilbert space H, assuming that H = R"™. The projection into (2 is the mapping

P :R" — Q, see [21], defined by

Po(z) = argmin ||z — z|| : z € Q, (4.30)

where ||.|| is an inner product, the dependence of P on (2 is clear so we use P(z) instead. Given

the projection P into €2, the method of projection gradient is given by the iteration

" = P(a¥ — aVf(2¥) k=0,1,.., 4.31)

where o, > 0 denotes the step size and V f(z*) the gradient of f at the point z*.

4.3.2 Optimality conditions and step lengths

We first consider the main necessary and sufficient optimality conditions for constrained prob-
lems in its primal formulation. A feasible vector of the problem is a vector that satisfies the
constraints, denoted by the domain (2, of a given problem. A local minimum of f over the set

() is a vector x* if, there exists a ¢ > 0 such that

f(z") < f(x) Ve Qwith |z — 2% <e.

70



A global minimum of f amounts to a part that no worse than all other feasible vectors, namely

f@®) < flx) Veeh

If the above inequalities are strict for = # z* then the corresponding local or global minimum
x* is said to be strict. In the case when the function f is convex, the optimality conditions
amounts to the following proposition,

Proposition 4.10. Optimality Condition

(a) If z* is a local minimum of f over {2, then

Vi) (z —2*) > 0,Vr € Q. (4.32)

(b) The condition of part (a) is sufficient to minimize a convex function f over a convex set ).

The proof is given in [13]. A vector x* is also called a stationary point if it satisfies the opti-

mality condition (4.32).

With reference to the step size «y in this case, it can be selected in several ways, in order to
guarantee that the first order optimality conditions are satisfied for any limit point z* of {x*}.
For the interested readers, different choices of step length are proposed in [21]. A first practical
procedure to determine the step oy, was proposed by Bertsekas [12], commonly referred to as

the Armijo procedure. Given (3 and p in (0, 1) and v > 0, the procedure is defined as

g = ", (4.33)

where my, is the smallest nonnegative integer such that

@) < f(@) + u(Vf(@F), 25 = 2F), (4.34)

71



where f is assumed to be continuously differentiable and 2 a convex set.

Here, we focus mainly on the case where the objective function is nonlinear and the set €2 is
structured by equations and inequalities, convex set. However, the projected methods can be
implemented for a number of different representations of the domain €2, but with different tools.
Examples of these, projection on affine subspaces [21] and projection on a feasible box, used
in [28] for the solution of quadratic programming problems subject to box constraints with the

so-called Barzilai- Borwein steplengths.

4.3.3 Projection on a convex set

We introduce the main idea of the Calamai procedure [21] for identifying the movement to-
wards the local minimum for linearly constrained problems. His approach generalizes the
Armijo procedure (4.33, 4.34) without requiring the bound on the step lengths. Assume that
the mapping f : R® — R is continuously differentiable and €2 is a nonempty closed convex set.

An iterate xy is given in €2 by searching the following path,

zi(a) = Pz — oV f(zy)),

where o > 0 denotes a step size and P the projection into {2. The next step is defined by

Tpy1 = xk(ay), with the step size ay, chosen such that

(i) < fae) + (Vi (@), oo — 2n), (4.35)

and

Q= Y1 OF Qg = Va0, > 0 (4.36)

72



where @, > 0 satisfies

flx@i)) > f(zr) + p2(Vf(2n), (ar) — ). (4.37)

for constants fuq, o € (0,1) and 71,72 > 0. A sufficient decrease of the function is forced
by condition (4.35) while condition (4.36) guarantees that the step ay not too small. This is
because Dunn [32] shows that if z;, is not a stationary point then (4.37) is not satisfied for all
oy > 0 sufficiently small. As a result of this, there exists an ay, > 0 which satisfies (4.35) and

(4.36) provided p; < po. This procedure corresponds to the Armijo conditions ((4.33), (4.34))

withyy =7,7 = fand g = po = pu .

We now consider general algorithm by Calamai [21] for linearly constrained problems. By
defining A(.) to be the active set (4.6), we typically look to obtain z**! by selecting a descent
direction dj, orthogonal to the constraints in A(z*) coupled with an appropriate line search
along d,. We then compute the update z**1 = 2% + a;d;, and set A(xy,,) = A(x;) whenever
a sufficient reduction is obtained by the line search algorithm for some oy, € (0, o), where
o}, is defined the distance along dj, to the nearest constraint not in A(zy). Otherwise, we set
Tpy1 = Tk + opdy and A(xry1) C A(xg). As a consequence of these considerations, the
following algorithm is given.

Algorithm 4.4 (Gradient Projection Algorithm). Suppose that € is a closed convex set and the

initial point xy € €2 is given. For k£ > 0 choose either (a) or (b) to compute xj 1.
(a) Let 1 = P(xr — o,V f(2x)) where y, satisfies (4.35), (4.36) and (4.37).
(b) Find 2111 € Q such that f(z1) < f(xy) and A(zgs1) C Axg).

For more detail about convergence analysis, we refer to [21], where the author also provides
proof that the projected gradient method forces the sequence of projected gradient to zero.
As a consequence, the active and binding constraints (4.7) are identified in a finite number of

iterations if the projected gradient method convergences to nondegenerate point of a linearly

73



constrained problem.

4.4 Interior point methods

The invention of interior point approach is credited to Narendra Karmarkar through the work
[65] published in 1984. This is as a number of controversial copyright patents introduced in
1988 in pursuit of protecting a code that had been developed at that time. However, a fair
amount of research into this area had already been examined by a number of authors prior to
this date. In particular, the idea of accessory of the objective function with a penalty term to
penalise movements close to the boundary was initially presented in 1955 by Frisch [40]. Later
in 1961, a slightly different penalty approach was defined by Carrol in [22], however much of
the credit for the theoretical and computational development of the interior point method can
be appointed to both Fiacco and McCormick [36,37], with particular note made to the 1968
monograph [36]. Over the years, a great number of theoretical results relating to interior point
approaches have been produced, these include describing the convergence properties as well as
suggestions for numerical implementation. For the interested reader, a more detailed account on
the history and development of interior point methods is discussed by Shanno in [100, pp.55-
64 ], and a condensed look at classical and recent research about interior point methods is

presented by Wright in [117].

The interior point approaches operate by transforming inequality constrained problems into pa-
rameterized unconstrained problems via barrier or penalty term. They can be used to determine
iteratively the solution to either linear or nonlinear constrained optimization problems. The ob-
jective function and constraint functions are denoted by f and g, respectively. Furthermore, we
denote by V f the gradient of the function f and by V2 f the Hessian. We consider the convex

mathematical program

74



min f(x) (4.38)

z€R™

subject to
ci(z) >0, 1€, (4.39)
ci(x)=0, i €&, (4.40)

with Z, £ are used to denote two finite sets of indices for the inequality and equality constraints,

respectively.

4.4.1 Primal barrier methods for constrained optimization

Barrier approaches became popular during the 1960s with particular mention to [36] presented
by Fiacco and McCormick . Whilst, such approaches can be viewed as so-called primal interior
point methods, they fell out of favour with the introduction of sequential quadratic program-
ming methods. Furthermore as we will describe shortly, these approaches experience draw-

backs when compared to so-called primal-dual interior point methods.

The main drawback is that the sequence of points {z,} becomes more and more difficult to
approach the solution x* as ;1 become close to zero because of the nonlinearity of the function

B(x; ), detailed below.

We now provide a mathematical description of Barrier approaches for inequality constrained

problems of the form

m]%n f(z) subjectto ¢;(x) >0,ie€Z (4.41)
zeR?

with x € R" used to denote primal variables. A barrier approach consists of introducing a
nonnegative and continuous function B(z) over the domain {z | ¢;(x) > 0} such that B(x)

approaches infinity as the boundary of this region is approached from the interior. The barrier

75



function can be defined in a number of ways, however, for this work we consider the so-called

logarithmic barrier function as follows

B(xz,u) = — Zln ci(x), (4.42)
i=1

where 4 is a positive scalar referred to as the barrier parameter. Therefore, we look to deter-
mine the solution to the constrained minimization problem (4.38) to (4.40) by considering the

following unconstrained minimization problem

min B(z, i), (4.43)

reR”

where B(x,u) = f(z) — ,uZlnc,-(x),

The idea behind the method is to start with a fixed parameter i, say ¢ = 1, and to solve the
unconstrained auxiliary problem. Then the parameter y is decreased under predefined rule and
the auxiliary problem is solved again, and so on. Due to convexity, the unconstrained auxiliary
problem (4.43) has a unique solution x,,, so that as ;+ — 0 a smooth curve defined by the set of
optimal solutions {z, } is generated, commonly referred to as the central path.

Then, for a given x* satisfying the sufficient optimality conditions (Theorem 4.3), the sequence
{x,} satisfies

limz, = 2" (4.44)

pn—0 ’

with first order Lagrange multiplier estimate (denoted \*), the Lagrange barrier functions given

as follows

Ay = —H Lim A, = A (4.45)

cj(y) T 0 !

The auxiliary problems are usually solved by Newton’s method. However, the freedom in

the choice of the penalty function in the classical approaches leads to serious computational

76



difficulties. Firstly, the barrier term ensures that the central path stay away from the region
of quadratic convergence, meaning that use of Newton’s method may result in extremely short
steps. Secondly, the Newton method becomes inefficient and may even leave the feasible region
when longer steps are taken to a rapid reduction in the value of p. Finally, the idea of staying
on the central path and solving the auxiliary problems is too restrictive, as discussed in [10].

Advances have since been developed in order to overcome these issues. In particular, these
include imposing restrictions on the choice of penalty parameter to a certain class of functions
and also relaxing the requirement to remain on the central path. Furthermore, the development
of so-called primal-dual interior point methods (to be presented shortly) have been formulated
in advances such approaches in recent years, with one such approach (penalty barrier multiplier

method) used to good effect in the field of topology optimization [64].

4.4.2 Interior-point for nonlinear programming

Nowadays, interior point methods are considered among the most robust algorithms for large-
scale nonlinear programming. Although the main ideas, such as primal-dual steps, are taken
directly from linear programming, there are still a number of important challenges to resolve,
depending on the problem at hand. Examples of these include the treatment of of nonconvexity,
the mechanism for updating the barrier parameter in the presence of nonlinearities and the need

to guarantee convergence toward the solution [118].

We consider the following modified formulation of (4.38)-(4.40) for the related analysis of this

section

minf (z) (4.46)
subject to

cr(x) —s=0, s=0, (4.47)

ce(x) =0, (4.48)

77



where ¢z denote a vector of scalar functions ¢;(z), ¢ € Z, and similarly for cc. The vector
s denotes slack variables which are used to transform the inequality vector ¢z into equality.
Interior-point method can be derived based on continuation methods or barrier methods. We
start with the derivation associated with the continuation approach. The KKT conditions (4.4)

for the nonlinear problem (4.46)-(4.48) can be written as

Vi) — Aty — ALz =0 (4.49)
SZ —pe=20 (4.50)
cz(z) —s=0, (4.51)
ce(x) =0,, (4.52)
with o = 0, together with
s20, z20. (4.53)

In the above, we denote by Ag () and Az(z) the respective Jacobian matrices for the functions
ce and cz, with y and z corresponding to the associated Lagrange multipliers. Furthermore,
e = (1,1,...,1)T and the matrices S and Z used to denote diagonal matrices with entries
corresponding to the vectors s and z, respectively.

The second interpolating of interior-point methods is based on barrier methods to the problem.

Based on the presentation in Section 4.4.1, we consider the following formulation

ng
minf(z) — u Z log s; (4.54)
* i=1
subject to
cz(z) —s=0, s>0, (4.55)
ce(x) =0, (4.56)

78



where p is a positive parameter and log(.) represents the natural logarithm function. This
approach involves finding an approximate solution of the problem (4.54)-(4.56) for a sequence
of positive barrier parameters i, that reduce to provide an effective approximation to zero for

sufficiently large k. By writing down the KKT conditions for the problem (4.54)-(4.56)

Vf(z)— Afy — ATz =0 (4.57)
—uS e+ 72 =0 (4.58)

cr(z) —s =0, (4.59)

ce(z) =0, (4.60)

the similarity between the KKT conditions for the formulation (4.38)-(4.40) are evident. The
main difference is in the second equation, which becomes quite nonlinear close to a KKT point
as s approaches zero. To aid Newton’s method, the rational equation (4.58) can be multiplied
on both sides by S to yield a quadratic equation. Such a move is possible due to the structure
of S (positive diagonal matrix) and will not result in a different solution. When compared to
early barrier methods [37], the main advantage gained from the reformulation (4.46)-(4.48)
advanced through the introduction of such variables s > 0 is that the resulting method can be
started with any initial point 2°. Furthermore, the approach will remain interior (hence the term

interior point) with respect to the constraints s > 0, z > 0, .

79



4.4.3 Basic interior-point algorithm

We can apply Newton’s method to the nonlinear system (4.57)-(4.60) in the variables x, s, y, z

to obtain
VL 0 —Af(x) —Af(x) | | do Vf(z) — Af(2)y — AZ(2)2
0 Z 0 S ds Sz — pe
Ag(xz) 0 0 0 dy, ce(e)
Az(x) —I 0 0 d, cr(x) —s
(4.61)
Where L denotes the Lagrangian for (6.13)-(6.15)
L(.Z',S,y, Z) :f(.’E) —yTCg<l') _ZT(CI(‘T) _8>' (462)

The system (4.61) represents the so-called primal-dual system with solution (or step) d =

(dg,ds, dy, d,). This step is then used to compute the new iterate (z*, s™,y*, 27) as follows

ﬂf+ =x+ Oérsnaxdxa 3+ =S5+ a?axds’
(4.63)
y+ =Y+ Oéglaxdya zF=z+ O‘fznaxdz’
where,
o = max{a € (0,1] : s+ ad, > (1 - 7)s},
(4.64)

ay®™ =max{a € (0,1} : 2+ ad, > (1 — 1)z},

z

with 7 € (0,1). The straightforward iteration (4.63) represents the basis of modern interior-
point methods, with different adoptions developed to handle nonconvexities and nonlinearities.
The other major component involves the selecting of the so-called barrier parameters {i}

at each iteration. This can be approached in one of two ways. The first is to fix the barrier

80



parameters for a series number of iterations until the KKT conditions (4.57)-(4.60) are satisfied
to a prescribed accuracy, as investigated by Fiacco and McCormick [37]. The second approach
involves updating the barrier parameter at each iteration. For the interested reader, Nocedal and
Wright [118, pp.572-574] provide further details for both approaches as well mechanisms for

dealing with issues such as non-convexity and singularity.

The notable observation that can be read for the system(4.61) is that if x* is a solution satisfying
strict complementarity, then for each index ¢ either s; or z; maintains strictly positive as the
iterates approach z*. This ensures that the primal-dual matrix in (4.61) remains nonsingular,
allowing for a fast rate of convergence to be established, as discussed in [118]. The KKT
conditions for the perturbed system (4.57)-(4.60) can be used to define an appropriate error

function

Er(w,s,y, 2 p) = max{||[Vf(z) — Ae(z)"y — Az2||, ISz — pell, e (@)1, lez(2) — ]I},
(4.65)

for some vector norm ||.||, allowing for the presentation of a primal-dual iteration point algo-
rithm as follows

Algorithm 4.5. Select initial values for 2° and s° > 0, and compute initial values of the
multipliers y° and z° > 0 from (4.57-4.60). Choose an initial barrier parameter 1, > 0 and

parameters 0,7 € (0,1). Set k = 0.

repeat until satisfying a stopping test for the nonlinear program (6.13)-(6.15),
repeat until Er(x, s,y, z; 1) < fig,
solve (4.61) to get the search direction d = (d,, ds, d,, d);
Evaluate o***, aJ'** using (4.64);

S b

Evaluate (z*1, sFT1 ¢y*+1 2k+1) using (4.63)

81



Set 41 = pr and k = k + 1;
end
Choose ji, € (0, 0ptp41)

end

4.4.4 Algorithm development

Algorithm (4.5) has been updated and extended in order to handle nonconvex nonlinear prob-

lems which can be started from any initial estimate. Then, the primal-dual system (4.61) is

rewritten in the following symmetric form

Vi.L 0 Af(x) Af(x)
0 > 0 -1
Ag(z) 0 0 0
Az(x) =1 0 0
where

=517

Vf(z) — Af(x)y — AL(x)2

z—puSte
ce(x)
cr(x) — s

, (4.66)

(4.67)

Using this formulation reduces the computational work of each iteration because of permitting

the use of a symmetric linear equations solver.

The formulation (4.66) with the defined > produces also the primal-dual system. However,

the primal system can also be obtained by applying Newton’ method directly to the optimality

conditions (4.57)-(4.60) of the barrier problem and then summarizing the iteration matrix. This

82



also leads to the system (4.66) but with > defined by

Y= puS2 (4.68)

4.4.5 Solving the primal-dual system

In spite of the evaluating cost of the problem functions and their derivatives, the solution of
the primal-dual system (4.66) and (4.67) dominates the work of the interior-point iteration. An
efficient linear solver is therefore essential in order practically solve large-scale problems. This
includes using either iterative techniques or sparse factorization. We will consider iterative
approaches preconditioned by multigrid iteration in scope of topology optimization problems,
such as a multigrid conjugate gradient method, see Chapter 7.

We first note that, the system can be simplified using fairly standard techniques. In particular,
the size of the system may be reduced by eliminating d; using the second equation in (4.61),

resulting in

Viel Af(z) Az(z) d; Vf(x) — Ag()y — AZ(x)2
Ag(x) 0 0 —d, | =~ ce(c) , (469
Az (z) 0 3! —d, cr(x) — puZte

This in turn can be reduced further by using the last equation to eliminate d, which results in
the condensed coefficient matrix written as

V2, L+ AT Ar Al(x
1Az Ae () , (4.70)

Ag (.I' ) 0
which is much smaller than the coefficient matrix (4.66) when the number of inequality con-
straints is large. For all the symmetric forms (4.66), (4.69) and (4.70), the primal-dual system is
ill conditioned, since by (4.67) certain elements of > converge to zero whilst the others diverge

to oo as u approaches zero. However, the Newton direction can be computed accurately by a

83



stable direct factorization method, because of the special form in which this ill conditioning
arises. Nevertheless, approximation of the slacks s or multipliers z too close to zero (or when
the Hessian V2 L or the Jacobian matrix Ag is almost rank deficient) results in damaging er-
rors. Consequently, approaches based in a direct factorizing are commonly used for computing

steps for interior point methods.

Iterative solution methods for linear systems can also be used for the computation of the primal-
dual step. Here ill conditioning is a serious concern, requiring the use of suitable preconditioner
that cluster the eigenvalues of Y. Furthermore, constructing such a preconditioner is not a dif-
ficult task. For instance, one can apply the change of variables d, = S~'d, in the system
(4.66) and multiply the second equation by S which transfers the term ¥ into STYS. Conse-
quently, the eigenvalues of ST¥.S will cluster around p/ as ;1 — 0 due to (4.67) (along with

the associated KKT conditions).

An iterative methods such as GMRES, QMR or LSQR (see [45]) can be applied to one of the
symmetric indefinite systems (4.66), (4.69) or (4.70). The conjugate gradient method cannot be
applied directly to solve these systems as it is designed for positive definite systems. However,
if the dimension of the constraint space is small one can consider a null space approach with the

conjugate gradient method applied to the resulting system with positive definite system matrix.

4.4.6 Updating the barrier parameter

As shown in Algorithm 4.5, the sequence of barrier parameters are required to tend to zero as
the sequence of iterates {x,} approaches the solution of the nonlinear programming problem
(4.54)-(4.56). whilst a number of approaches have been developed, it is important to damp the
barrier parameter appropriately at each iteration in order to avoid well known issues. Further
to reduce the barrier parameter sufficiently will lead to a large number of iterations to advance
convergence, whereas the slacks s or multipliers z may converge zero prematurely if reduced

too quickly, slowing progress of the solution method.

84



A popular technique, is the so-called FiaccoMcCormick approach, which proceeds by fixing the
barrier parameter until the perturbed KKT conditions (4.57)-(4.60) are satisfied to prescribed

tolerance, upon which the parameter is damped as follows
Mk+1 = Oklk, with o}, € (O, 1) “4.71)

The parameter o, can be set as a constant for all iterations. However, it is preferable to let oy,
alternate between two different values (for instance, 0.2 and 0.1), starting with the larger value
and alternating to the smaller value when significantly progress is made by the latest iteration
towards the solution. Furthermore, using [118] superlinear of convergence can be obtained if o
is allowed to tend to zero close to the solution with the parameter 7 in (4.64) set to converge to 1.
Whilst, the FiaccoMcCormick approach is straightforward to implement and apply, difficulties
may arise with regard to the scaling of the problem as well as the choice of initial point and
initial 9. Alternatively, adapting strategies may be considered that aim to be more robust when
faced with such difficulties. . In contrast to the Fiacco-McCormick approach, barrier parameter
is altered at each iteration based on the progress of the algorithm. Typically, a complementarity
condition will be imposed of the form

STZ
[th1 = O ‘“n’“, (4.72)

with n denotes the size of the problem. One choice of oy, is defined as

min,[s*];[2*];
(sk) T2k /n

1—¢ .\’
or = 0.1min (0.05—7 2) , where £ =

4.73
€ (4.73)

This is based on the deviation of the smallest complementarity product [s*];[2*]; from the av-
erage, where [s*]; denotes the respective ith component of the iterate s* , and for [2*];. For the

interested reader, further approaches may be found in [118, p.573].

85



CHAPTER 5

A FIRST-ORDER MULTIGRID METHOD
FOR BOUND-CONSTRAINED CONVEX

OPTIMIZATION

5.1 Introduction

The aim of this chapter is to design an efficient multigrid method for constrained convex op-
timization problems arising from discretization of some underlying infinite dimensional prob-
lems. Due to problem dependency of this approach, we only consider bound constraints with
(possibly) a single equality constraint. As our aim is to target large-scale problems, we want to
avoid computation of second derivatives of the objective function, thus excluding Newton like
methods. We propose a smoothing operator that only uses first-order information and study the

computational efficiency of the resulting method.

Multigrid methods were originally developed for the solution of large systems of linear al-
gebraic equations arising from discretization of partial differential equations. Their practical
utility and efficiency were demonstrated by Achi Brandt in his pioneering papers [16, 17]. It

has been well-known since the dark ages of multigrid that the methods may loose their superior

86



efficiency when used for slightly different type of problems, namely the linear complementar-
ily problems (LCP) [19,59,78]. This is caused by the presence of unilateral obstacles (or box
constraints in the optimization formulation of the problem). The fact that the sets of active
constraints may vary for different discretization levels, and that the constraints may not even
be recognized on very coarse meshes, may lead to poor quality of the coarse level corrections
and, in effect, to significant deterioration or even loss of convergence of the method. Various
remedies have been proposed by different authors [19, 59,62, 63, 78]; these usually resulted in
“conservative” methods that were often significantly slower than standard methods for linear
systems. Finally Kornhuber [69] proposed a truncated monotone multigrid method for LCP
problems. This method has the property that as soon as the set of active constraints is correctly

identified, the method converges with the same speed as without the presence of the constraints.

Not many attempts have been done to generalize the multigrid technique to the solution of
optimization problems. From the successful ones, most focused on unconstrained problems
[39,51,53,73,82]. In this case, the problem can be often identified with a discretized nonlinear
PDE and thus techniques of nonlinear multigrid can be used. These techniques use almost
exclusively a variant of the Newton method or the Newton-Gauss-Seidel method as a smoother.
Hence they require computation and storage of the Hessian of the underlying optimization
problem at each iteration. This may be very costly or even prohibitive for some large-scale
problems. Moreover, one step of the Newton-Gauss-Seidel method has high computational
complexity and cannot be directly parallelized. Therefore, our goal is to use a smoother that
only relies on first-order information of the optimization problem. Used only on the finest level,
it may be very inefficient, as compared to the Newton method, but this is where the coarse grid

correction will help, just as in the linear case.

Treating general (equality or inequality) constraints by multigrid may be difficult, if not im-
possible, as we may not be able to find the corresponding restriction operators. If the number
of constraints is directly proportional to the number of variables (such as for the bound con-

straints), the restriction operator for these constraints may be based on that for the variables. On

87



the other hand, if the number of constraints is independent of the discretization (e.g., a single
equality constraint) then the prolongation/restriction is simply the identity. All other situations
are difficult, in our opinion. For this reason, all articles on multigrid for constrained prob-
lems either treat the bound-constrained problems or problems with a single equality constraint

(e.g., [51,52,110]) or assume that a restriction operator for the constraints exists ( [83]).

The first, straightforward goal of this Chapter is to extend Kornhuber’s technique [69] to non-
linear convex optimization problems with bound constraints. The author is not aware of this
generalization in the existing literature. The second goal is to propose a smoothing operator
that would only use first-order information, and study the efficiency of the resulting method.
Finally, we extend the developed algorithm to problems with an additional equality constraints.

We study the behaviour of the proposed algorithms on a number of numerical examples.

The chapter is structured as follows. In Section 2 we introduce three multigrid algorithms
for bound-constrained convex optimization problems; first Kornhuber’s truncated correction
scheme multigrid for bound-constrained quadratic problems [69], then its generalization to
convex problems using the full approximation scheme and finally a version of the latter al-
gorithm without truncation. This version is a new though minor modification of an existing
method. Section 3 shows that the third algorithm can be easily extended to problems with an
additional linear equality constraint that includes all variables. In Section 4 we introduce the
first-order smoother—the gradient projection method with a gradient-based line search—and
analyse its smoothing properties. Section 5 is devoted to numerical experiments: we, in partic-
ular, focus on the dependence of the convergence rate on the number of refinement levels and

the number of the smoothing steps.

88



5.2 Multigrid for bound-constrained optimization

5.2.1 The problem

We consider the bound-constrained nonlinear optimization problem

min f(x) .1

z€R™

subject to

where f is a convex continuously differentiable nonlinear function and ; < ; for all i. To
guarantee existence of a solution, we assume that either the function f is coercive (i.e., f(x) —

oo as ||z|| — oo) or that the feasible set
F={reR"|p; <a; <, 1=1,...,n}

is bounded.

In order to define and use a multigrid method, we assume that there is a nested sequence of

optimization problems arising from finite element discretizations of some underlying problem:

min fi (") (5.2)

(k) cR"k

subject to

oM <2 <™ ey,

1

where £ = 0,1,...,7. Here 7 is the finest discretization level corresponding to the original
problem (5.1) and O is the coarsest level. The set Z; contains indices of n; finite element

vertices on discretization level k£ and f;, are the discretizations of the same infinite dimensional

89



nonlinear function.

The communication between two consecutive levels £ — 1 and & is maintained by the prolon-
gation and restriction operators I} | : R™-1 — R"™ and [ ,’j_l : R™ — R™-1 respectively,

whereas I} ! = ¢(If_,). For the specific choice of these operators, see the last section.

For a feasible vector 2(*) we introduce the sets of active indices:

AR (™)

fien1a - )

AL (2P = {Z S a:l(k) = 1/)1(@} :

We will always assume that

AL (D) 0 AL () = 0.

Finally, we denote the set of free variables by

AL =T\ (AL (2®)) U AP (2®)).

Let us now introduce a modified problem

min  f,(x®) — ol z® (5.3)

subject to

o™ <2 <y® ieT,

1

where v, € R"*, together with the operator

x(k) = Opt(fk‘7 w(k)a ,¢(k)7 Vk; x(k)7 g, V)

new

that will play a role of the smoother for (5.3). The input are the problem data and the initial point

2®), the required precision ¢ and the maximum number of iterations allowed v. We assume

90



that opt is a descent convergent algorithm for the solution of problem (5.3). In Section 5.4 we

will discuss the choice of opt in detail.

At the end of this section, let us briefly recall the main idea of multigrid methods. For simplicity,

k. .
) ie.,

we restrict ourselves to quadratic objective functions fi,(z®) = 1(2™)TQz® — ¢l 2!
equivalently, to systems of linear equations Q,z*) = ;. We start at the finest level k = j
and apply some steps of the smoother opt to get an update 2(*). We then compute the residuum
T = Qkx(k) —q, for the current iteration. If we now solved the correction equation le('“) =y,
we would obtain the exact solution in one step as :pgk) — z(®) — ¢(®) This would, however, be
as costly as the solution of the original problem. So instead we solve the correction equation on

k=1 = gy with oy = 1 ,’j_lrk, either exactly or approximately by

the coarser level, Qj_;e'
repeating the same procedure on this level. The correction is then interpolated back to level k
and a new iteration is computed as v*) := x(®) — 1% ¢(*=1)_Finally, we again apply a few steps
of the smoother. This is the so-called Correction Scheme (CS) multigrid algorithm. It splits the
approximation error into two components, smooth and coarse (relative to the current level); the

smooth component is reduced by the smoothing operator, while the coarse component by the

coarse grid correction.

5.2.2 Truncation

We now recall the idea of truncation introduced by Kornhuber [69]; see also [48]. Consider the
sequence of problems (5.2) obtained by standard finite element discretization of some infinite
dimensional problem. Denote by )\Z(-k) the finite element basis function associated with the i-th

node on discretization level k.

Let 2) be an approximate solution of (5.2) on the finest discretization level and A; = (AY (zUNU

A}b(x(j ))) the corresponding set of active constraints. We will truncate the basis functions )\Z(] )

by putting them equal to zero at the active nodes a € A;:

)\(j)(x((j))zo if aeA; foralli.

(3

91



The idea is to perform the coarse grid correction in next iteration of the multigrid method
with the truncated basic functions, instead of the original ones. The basis functions for coarse
levels are derived from the truncated basis functions on the finest level. Roughly speaking, we
consider the active nodes on the finest level to be fixed by homogeneous Dirichlet boundary
condition for the next coarse grid correction. After that, we perform the smoothing with the
original basis functions; this may change the set of active nodes, so we update the truncated
basis and repeat the procedure. Clearly, once the exact active set is detected, the truncated basis
does not change any more and the “truncated” problem reduces to an unconstrained problem,

just as in the classic active set strategy.

The way how to implement the truncation depends on the function f;. For instance, if f; is a
quadratic function f;(z1)) = §(21))7Q;20)) 4 ¢F (z1))T then the truncation of the “stiffness”
matrix (); amounts to putting all rows and columns with indices from .A; equal to zero, and
analogously for g;. If f; can still be expressed as a function of (); and g;, such as problems in
Examples 5.5.2 and 5.5.4, the truncation is analogous. If f; is a function defined by means of
local stiffness matrices (A;);, as in the minimal surface problem in Example 5.5.4, the trunca-
tion is performed for all these matrices (again by putting respective rows and columns equal to

zero), and the function is evaluated using these truncated matrices.

Let us stress out that the truncation is performed explicitly only on the highest discretization
level; on coarser grids it is inherited by means of prolongation/restriction operators. This pro-
cess is again problem dependent. If f; is defined by means of the global stiffness matrix )y,
then Q_1 = ],f_leI,’jfl, k=1,...,j. If fi is defined using local stiffness matrices (4;);,

then (A1), = I} ' (Ap)dF |, k=1,...,7, forall 4, etc.

In the following, we denote the truncation operator by trun and will use notation such as

trun ); and trun f;.

92



5.2.3 Correction scheme truncated multigrid for quadratic problems

In this section we recall the Correction Scheme (CS) version of the truncated monotone multi-
grid algorithm introduced by Kornhuber [48, 69]; see also [71,77,78]. The analysis of the
convergence rate of the monotone multigrid is established by Badea [6]. We assume that the

objective function f is quadratic, so that

1
fe(@®) = 5 (@®) Q2™ + g2 (5.4)

where () are positive definite matrices of size ny and g € R™. Accordingly, in this section

we use the following notation for the smoother:

xr(llzlv = Opt(Qk7 qk, Sp(k)a l/)(k), Vk; x(k)a g, V) .

We introduce two additional restriction operators for the bound constraints:

R?: (Rfy);=min{y, | j € Ty nintsupp AV}, i e T, (5.5)

RY: (RYy); =max{y; | j € T, Nintsupp \" '}, i€ Ty, (5.6)

here int supp )\Ekfl) denotes the interior of the support of the (coarse) basis function )\Ekfl) and

those includes fine-level nodes “close” to the coarse-level node 7.

The following is a reformulation of Algorithm 5.10 from [48] in our notation.

Algorithm 5.1. (truncated CS, V-cycle for quadratic problems)
Set ¢, . Initialize ().
fori =1 : niter

29 = mgm(j, 29, ;, o9, )

93



test convergence
end

function %) = mgm(k, 2® 1y, ®) 1))

ifk=0
o) = opt(Qr, qi, o, v ®) 0: 2" g0, 1) (coarsest grid solution)
else
2 ®) = opt(Qr, qi, o™, Y ® 0; 2®) 2 1) (pre-smoothing)
i = q — Qrz® (residuum)
itk =
Qr = trun Qg (matrix truncation)
r = trunry (residuum truncation)
end
Qu1=1 ,’j_lel 1571 (coarse grid matrix definition)
Tt = Iy (residuum restriction)
P*=D = RE(p®) — () (coarse grid bounds)
P*=1) = RY (—p®) 4 2 () (coarse grid bounds)
v* Y = mgm(k —1,0,, 71, %D kD) (coarse grid corr.)
g®) = g ®) 4 [k kD) (solution update)
o) = opt(Qr, qr, o, v ® 0; 2P g 1) (post-smoothing)

94



end

It is shown in [48] that the above algorithm converges for any initial iterate.

5.2.4 Full approximation scheme truncated multigrid for general prob-

lems

In the above CS algorithm, the coarse grid correction is used to correct the error in the current
solution. That is, the solution on the coarse level is just a correction of the fine-level error, not
an approximate solution of the original problem. For nonlinear problem, it is useful to solve on
every level an approximation of the original problem. This is readily obtained by replacing the
restricted residuum / ,’j_l(qk — Q™) in Algorithm 5.1 by the “true” coarse-level right-hand
side corrected by the approximation error, i.e., by qx—1 + (Qk_ll,f_lx(k) — I,]j_lex(k)). The
solution update is then changed accordingly. This gives rise to the so-called Full Approximation
Scheme (FAS) algorithm. The FAS version of Algorithm 5.1 for general nonlinear problems of
type (5.2) is given below.

Algorithm 5.2. (truncated FAS, V-cycle for nonlinear problems)
Set ¢, . Initialize 20,
fori =1 : niter
v; = 0,51
2 = mgm(f;, 29, v;, oW, )
test convergence
end
function *) = mgm(fi, 2™, vy, *), p*)

ifk=0

95



else

end

) = opt(fi, o®, p®) v 2®) g0, 1) (coarsest grid solution)

) = opt(fi, o™, p®) vy 2® 2 1) (pre-smoothing)
gk=1) = [ty k) (solution restriction)

gr = V fr(z®)

if k=
fr = trun fy (function truncation)
gk = trun g (gradient truncation)
end
Ve = I o + (Ve (aFD) — [F71g,) (correction r.h.s.)
fioi=1 ,’j_l fil 15_1 (symbolic coarse grid function definition)
e*=D = RE(p®) — x®) 4 [k (k-1 (coarse grid bounds)
Pl = R;f(@/)(k) —g®) 4k k1) (coarse grid bounds)
v*D = mgm(feoy, 25V vy, @D qpk=1) (coarse grid corr.)
a®) = g®) 4 1k (o=l — kD) (solution update)
x®) = opt(fr, o®) PE) v 2®) e vy) (post-smoothing)

Note that the coarse grid function definition f;_; = [, ,’j_l fxIf | is only symbolic. As explained

in the previous section, it must be defined specifically for each function f. Also, the restriction

96



of the solution using operator / ,’j_l may not always lead to the best results and one may prefer,

for instance, L projection; see, e.g., [55].

It has been observed in [48, Ex. 7.3.1] that the truncated multigrid algorithm may, in the first
iterations, be slower than other algorithms (see also Section 5.5.5). This difference may be
significant if we are only interested in a low-accuracy solution of the problem. Therefore, in
the next section we propose a “non-truncated” FAS algorithm for nonlinear problems of type
(5.2). This algorithm is a minor generalization of the method proposed in the pioneering paper

by Hackbusch and Mittelmann [59].

5.2.5 Full approximation scheme multigrid without truncation

We now present a Full Approximation Scheme (FAS) version of Algorithm 5.2 without trunca-
tion of the finite element basis. In order to guarantee convergence of the algorithm, we need to
modify the definition of coarse grid constraints. As mentioned above, a similar algorithm has
been introduced by Hackbusch and Mittelmann [59]. The difference is in the treatment of the
constraints on the coarse levels; while Hackbusch and Mittelmann used active sets, we use the

restriction operators defined below.

Let us modify the restriction operators R?, R} introduced in the previous section. The motiva-
tion for this is two-fold: the exact solution of the initial problem should be a fixed point of the
algorithm and a feasible point should remain feasible after the correction step. For given z(*),

©, ¥ and some y € R™ and 7 € Z;,_; the operators are defined as follows

~ (L1 ®); if max{(p; — 2{") | j € Zy Nintsupp A"V} = 0
(Rfy)i = (5.7)
min{y; | j € Zy N intsupp )\gk*l)} otherwise

(15712 ®y, if min{(y; — 27) | j € T nintsupp AV} =0

max{y; | j € Z, Nintsupp AE’H)} otherwise .

97



Figure 5.1 illustrates how operator (Rfy)Z works. It depicts a segment of a one-dimensional

£
&
4

1 2 3 5 6 7

Figure 5.1: A segment of an obstacle and an approximate solution.

mesh with three coarse nodes (circles indexed 2, 4,6) and seven fine nodes (crosses indexed
1,...,7). The constraints are active at nodes 3,4. For the coarse nodes 2 and 4, the first
condition applies, as at least one of its neighbours is active. Hence (}N%fy)g = (IF )y,
(R?y)s = (IF'2®),. For node 6 the second condition in the definition of (R7y); applies, so
(éfy)ﬁ = min{ys, ¥, y7 }. Notice that the operators will not be applied directly to functions

©, 1, rather to their modifications; see the details of the FAS algorithm below.

This strategy of handling the coarse-level constraints is a combination of that of Kornhuber
(as in Algorithm 5.1) and the active-set strategy by Hackbush and Mittelmann [59]. We are,
however, slightly less conservative than [59]. In their algorithm, both nodes 2 and 4 would be
considered active in the coarse-level problem and the corresponding value of x would not be
allowed to change, unlike in the FAS algorithm below.

Algorithm 5.3. (FAS, V-cycle for nonlinear problems)
Set ¢, . Initialize 20,
fori =1 : niter
¢ = On;x1
2 = mgm(j, 29, q;, oW, p0))
test convergence

end

98



function x*) = mgm/(k, ﬁc(k), dk, Sﬂ(k)7 ¢(k))
ifk=0

) = opt(fi, o, ™ qr; 2% g4, 1)

else
k) .— opt( f, gp(k)’ ¢(’€)7 G xF) e, )
k1) = Rl
g1 = I g — Vr(z®)) + Vi1 (kD)
D) = BE(oh) — z®) 4 b k-1
PE=D = ﬁ}f(w(k) —g®) 4 [k g (kD)
o ®=D = mgm(k — 1, 20D gy, k=D yk-D)
2®) = g8 4 [E (p=D) _ k1)
2 ® = opt(fr, o, W, qr; 2¥) £, 1)
end

5.3 Equality constraints

(pre-smoothing)

(coarse grid bounds)

(coarse grid bounds)

(post-smoothing)

As explained in the introduction, treating general (equality or inequality) constraints by multi-

grid may be difficult, if not impossible, as we may not be able to find the corresponding restric-

tion operators. This, however, becomes easy in case of a single equality constraint involving

all variables, such as

Zl‘z‘ =7
i=1

99

(5.9)



Clearly, this constraint will be present in all discretization levels. We only have to guarantee
that, having a feasible point with respect to (5.9) before the coarse-grid correction step, it will
stay feasible after the correction. Let y; = -y and assume that we are in the discretization level

k > 0 and that

T
>l =, (5.10)
=1

where n;, is the number of variables on the k-th level. Then we define the coarser right-hand

side for (5.9) as

Nk—1

V-1 = Z(f;f_lx(k))i :

i=1
If v*~1 is a solution of the (k — 1)-level problem, then after the correction step z(*) := (%) +

IF  (v*=D — 15~ 12(k)) ' we obviously get again the equality (5.10).

Notice, however, that when we want to combine the equality constraint with the box constraints,
we will have to use Algorithm 5.3 with the untruncated restriction operators (E,fy)z and (E}fy)Z
The truncated multigrid in Algorithm 5.2 is not compatible with the equality constraint handled

as above.

5.4 Smoothing by the steepest descent method

The choice of the smoothing method is vitally important for any multigrid algorithm. As our
main aim is to avoid second derivatives of the function to be minimized, we have to resort to
a first-order optimization method. Moreover, our choice of constrained convex minimization
further narrows the choice of available algorithms. We have opted for the gradient projection

method. Let us try to justify this choice in the next paragraphs.

100



5.4.1 Steepest descent smoother for unconstrained quadratic problems

Let us start with an unconstrained convex quadratic problem

min %xTQx —q'x (5.11)

or, in other words, with a linear system

Qxr=q (5.12)

and the classic V-cycle multigrid algorithm. If things wouldn’t work here, we can hardly expect
them to work in the more general setting. One of the most popular smoothers in this case is
the Gauss-Seidel (GS) iterative method. Rightly so, its very definition shows that it solves the
equations locally, one by one, performing thus the local smoothing of the approximate solution

of (5.12).

Looking at the optimization formulation (5.11) of the problem, we can also consider the “most
basic” optimization algorithm, the steepest descent (SD) method with line search. Can this
be a good smoother? This question was analyzed, e.g., by McCormick [79] who showed that
the steepest descent method with exact or “slightly inexact” line search has indeed smoothing
properties, as required for the convergence of the standard V-cycle. In case of exact line search,
McCormick also gives an explicit bound on the convergence of the V-cycle using the steepest
descent method as a smoother. This bound is, however, as many such theoretical bounds,
overly pessimistic and far away from the real behaviour of the method (giving estimates of

convergence speed such as 0.9995).

We have therefore performed a small experiment with the goal of testing the smoothing property
of the steepest descent method and comparing it to the Gauss-Seidel method. Let us introduce
some notation. Denote the exact solution on level A by (2*)". Consider two discretizations of

the underlying differential equation, one on the fine level parameterized by A and one on the

101



coarse level 2h. Let P be a prolongation operator from the coarse to the fine level. It is well

known that the ()-orthogonal projector on the range of P can be written as
Sh — P(PTQhP)fIPTQ

while

T =1 — Sh

is the projector onto the ()-orthogonal complement of the range of P. With these two projectors,

h

the energy norm of the error e = (2*)"* — 2" of an approximate solution 2" to (5.12) satisfies

le™ G = 118" €™ 1Gn + 1" " 15

whereas S"e" and T"e" are the “low-frequency” and the “high-frequency” components of the
error. It is the goal of the smoother to reduce T"e" quickly in a few initial (possibly just 1-2)

iterations.

In our experiment, the underlying problem was the Poisson problem on a unit square discretized

by standard quadrilateral bilinear finite elements. We consider a 32 by 32 fine grid and 16 by

16 coarse grid; the condition number of the fine-grid matrix was 400. The restriction operator

is the standard full weighting operator, see, e.g., [20]. We consider the steepest descent method

ah g = af — s (Q x} — ¢") with exact step length s, and a method with inexact line search, the

details of which are given in the next section. We start the process with a randomly generated
h

vector z; using the Matlab function randn. Assuming that the right-hand side, and thus the

solution, is smooth, we will get significant components in both S"elt and T"e}.

We first performed 10 iterations of SD and monitored the energy norm of both components of
the error, ||S"e"(|2,, and || T"¢"||2,.. In Figure 5.2, these are depicted by the full line, the low
frequency [|S"e"[|Z,. in blue and the high-frequency ||7"¢"||?,,. in red. Both values are given

in logarithmic scale. The left-hand figure is for SD with exact line search while the right-hand

102



side one is for the inexact line search. Also in Figure 5.2, we plot these values for the Gauss-

Seidel method; these are denoted by the dashed lines. We can clearly see the smoothing effect

25 T T T T T T T T T 25

2 2

15 15

1h

0.5

ol

-0.5

-1.5

-2

25 i i i i i i i i i 24 i i i i i i i i i
[¢] 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 5.2: First 10 iterations of SD (full line) and GS (dashed line) methods. Blue line depicts
low frequency error ||S"e"||%,, red line the high frequency error ||7"¢"||%,. SD with exact line
search is on the left, with inexact line search on the right.

of both methods in the first iterations when the red lines quickly drop by orders of magnitude.
Although the steepest descent method is not as an efficient smoother as Gauss-Seidel, it still
does a good job. After the initial iterations, the smoothing effect slows down and both errors
descent proportionally. This can be better seen in Figure 5.3 where we show the error after
100 and after 1000 iterations of both methods. In this figure, we can clearly see the typical
zig-zagging of the SD method with exact line search present in the high frequency error. We
can also see that inexact line search with its random element breaks this regular zig-zagging

and, in effect, makes the method significantly faster.

We could certainly consider other first-order method, for instance the nonlinear conjugate gra-
dients. However, as we will see in the next section and later in the numerical experiments, only
a very few (1-5) iterations of the steepest descent method suffice to guarantee a good behaviour
of the multigrid algorithm, and there is thus no need for any more sophisticated first-order al-

gorithms.

103



-3 i i i i i i i i i -3 i i i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Figure 5.3: First 100 (top) and 1000 (bottom) iterations of SD (full line) and GS (dashed line)
methods. Blue line depicts low frequency error |S"e"||?,, red line the high frequency error
| T"e"||%,. SD with exact line search is on the left, with inexact line search on the right.

5.4.2 Line search

We have seen in the previous section that exact line search does not bring any significant benefit
to the steepest descent method. Moreover, our ultimate goal is to use the projected gradient

version of the method for bound-constrained nonlinear convex problems.

A popular—and efficient—choice of the step length is the Barzilai-Borwain method [28]. This,
however, leads to a possibly non-monotonous progress of the error. Since we would like to
use a very small fixed number of SD steps, this method is not suitable. Moreover, its projected

gradient version is not fully understood and may lead to a standard Armijo step [28].

Because our problem is convex, the line search can be based solely on the gradient information.

104



For an unconstrained problem
min f(x)
T

with f smooth and convex, we have opted for the following simplified version of Wolfe’s
method.
Algorithm 5.4. (Steepest descent method with gradient-based line search)

Given an approximate solution z, do until convergence:

Tnew = T — sV f(x) with s computed by Algorithm 5.5.
Algorithm 5.5. (Gradient-based line search for unconstrained problems)

Given an approximate solution x. Choose s > 0 and ¢ > 1.
Ly=—(Vf(@)" Vf(x-sVf(z))
2.ify <0
2.1dountily* >0
21.1s:=cs
21.2. 9" = —(Vf(x)T Vf(z - sVf(z))
22.5:= %s
else
2.3. dountil y* < 0
23.1. s:= %s
232. 97 = —(Vf(x)T Vf(z —sVf(z))
end

3. return current s

105



Clearly, «y (or v7) is the directional derivative of f in the steepest descent direction —V f(x) at
the trial point x — sV f(z).
Lemma 5.4.1. Algorithm 5.5 is well-defined and finishes in a finite number of steps. At the new

point, we have f(Tyew) < f(x) and ™ < —(V f(2))T V f(2pew) < 0.

Proof. The claim follows immediately from the convexity of f. The algorithm stops with the
value of s for which 4 < 0 and such that for the step length cs, the derivative would change
sign to v* > 0. The loop in 2.1 stops when we encounter a positive 7+, so we have to return

one step back in 2.2. [J

Let us now move to a generalization of Algorithm 5.4 for convex bound-constrained problem

(5.1). For a given feasible z, let us recall the definition of the set of active indices by
A(x) ={i|z; = @ orz; =;} .
For this z, we further introduce an operator | -] 4(,) : R" — R"™ defined component-wise by

0ifi € A(x)
([P]a@)i = <

h; otherwise.

Finally, let | - |, denotes the (in this case trivial) projection on the feasible set.
Algorithm 5.6. (Gradient projection method with gradient-based line search)

Given a feasible approximate solution x € €2, do until convergence

Tyew = [T — sV f(x)]q with s computed by Algorithm 5.7.
Algorithm 5.7. (Gradient-based line search for constrained problems)

Given a feasible approximate solution x € 2. Choose s > 0 and ¢ > 1.

Lat=[z—sVf(@)a v=—(V (@) [V ()]aw

2.ify < 0

106



2.1 dountily* >0
21.1s:=cs
2.12. % = [z — sV f(2)]a
213. 9% = —~(Vf(@)" V(@) aw
22.5:= %5
else
2.3. dountil vt < 0
23.1. 5:= %s
232 0" =[x — sV f(2)la
233.9" = —(Vf(@)" [Vf(@)]aw
end

3. return current s
Lemma 5.4.2. Algorithm 5.7 is well-defined and finishes in a finite number of steps. At the new

point, we have f(Tyew) < f(x) and vT < —(V f(2))T V f(2pew) < 0.

Proof. For simplicity, we assume that v < 0, so we are in the 2.1.—2.2. branch of the algorithm.
The other case would be handled analogously. Assume first that no constraints are active at the
initial point z, i.e., A(z) = (. Once we computed a new point " and found the active set

A(x™), we can split the search direction —V f () into two vectors:

—Vf(z) = ga(z) + gn(z)

107



where
0 ifie A(z")

(9a(x))i = <
—(Vf(x)); otherwise

and complementary for gx(x). Both g4(x) and g (z) are still descent directions, in particular

~(Vf(2))"galz) <0.

Let
T:=x—5sVf(x)

with 5 chosen such that A(Z7) = A(x™) (see Figure 5.4, left). If —(V f(Z))Tga(x) < 0 then
the function is still descending at Z in direction g4 (x) and we do a line search in this direction,
i.e., along the manifold defined by active indices. Due to convexity of f, we either have to
reach a (finite) point at which the directional derivative changes its sign or when we hit a new
constraint and the active set changes; in the latter case we repeat the above argument with the
new active set. If —(V f(Z))Tga(z) > 0 then we know that we went too far, the algorithm

stops and returns the previous trial point. The rest follows from Lemma 5.4.1.

Now if A(z) # 0 then either A(z") = A(zx) and the above argument applies or some con-
straints from A(x) are released at 1 (Figure 5.4, right). But this would mean that the search

direction goes away from these constraints, they can be ignored and, again, the above arguments

apply.

In the (unlikely) case A(z") = {1,2,...,n} when all components of the trial point x* are

active, we have v = 0 and the algorithm stops and returns the previous trial point. [J

Our preferred choice of the parameters is ¢ = 2 and s = 1 in the first iteration. In the following
iterations of the multigrid V-cycle, the parameter s is chosen as the final one from the previous

call of gradient Algorithms 5.5 or 5.7.

108



Figure 5.4: Gradient-based line search.

5.5 Numerical experiments

In this section we presents results of our numerical experiments using examples collected from
the literature. We will start with a quadratic problem, in order to see the influence of non-

linearity on the behaviour of the multigrid method.

For each example we will present the computed asymptotic rate of convergence for different
numbers of the smoothing steps, namely for 2,4,6,8,10 smoothing steps (half of them in the
pre-smoothing phase, half in the post-smoothing). In the same table, we will give the number
of function and gradient calls on the finest level. We will also present a comparison (in the
function/gradient calls) with one of the most efficient codes for these problems, the L-BFGS-B

by Morales and Nocedal [81].

All examples are defined on the square 2 = (0,1)? in the infinite dimensional setting. We
then use regular meshes of square finite elements with bilinear basis functions for their dis-
cretization. The initial coarsest mesh (refinement level 0) consists of four elements. We apply
7 = 8 uniform refinement steps to get 9 embedded finite element meshes. That means that, on

refinement level k, k = 0,1, 2, .. ., we have 4**! finite elements and (27! — 1)? interior nodes,

109



with the finest mesh having 262 144 finite elements and 261 121 interior nodes. The prolon-

gation operators [, are based on the nine-point interpolation scheme defined by the stencil

1 1 1
12 1
11 L|. We use the full weighting restriction operators defined by I;" = §(I%,)"; see,
11 1
12 1

e.g., [60]. The initial point in all experiments was set to a zero vector, even if this was infea-
sible. The problems on the coarsest level were solved by the same iterative method used as a
smoother, however, with high accuracy. In particular, the parameters ¢y and 14y in Algorithms
5.1-5.3 were set to ; = 1072 and vy = 10000. Recall that £, controls the norm of the scaled
gradient or the KKT conditions for constrained problems and 1/ is a bound on the number of
iterations; because our coarsest problems have very low dimensions, this iteration bound was

never reached.

1

’

The approximate asymptotic convergence rate is computed as (Z—k> o , where ej, = [|z* —xy,
2
x}, s the last iteration before the algorithm stops and x* is the “exact” solution as computed ei-
ther by L-BFGS-B or by the gradient projection method with high accuracy. Every norm in the
examples is the Euclidean norm. As a measure of efficiency of the algorithms we will present
the number of function and gradient evaluations on the finest level. Of course the work on the
lower levels is not free, even though the fine level is dominant, in particular for the nonlinear
problems. For instance, in our implementation of the minimum surface problem (which can
certainly be improved), the function and gradient evaluation on a fine level was 16 times more
expensive than on the coarser level. In most examples, the number of function/gradient evalua-
tions on a a single coarser level is about the same as on the finest level. In the most favourable
case when the computational complexity of one function and gradient evaluation is linear in the
number of variables, we would expect the effort to compute the function on the coarser level

would be about one-quarter the effort on the finer level. This claim is confirmed by a remark

concluding Example 5.5.2 presenting exact timings on all levels.

All algorithms were implemented in Matlab. The interface to the L-BFGS-B code was provided

110



by Stephen Becker!. For all experiments we used a laptop with Intel Core i7-3570 CPU M 620
at 2.67GHz with 4GB RAM, and MATLAB version 8.0.0 (2012b) running in 64 bit Windows
7.

5.5.1 Example: quadratic obstacle problem

Let us start with the “Spiral problem” from [48]. This is a quadratic optimization problem
resulting from the Laplace equation in 2 C R?:
. 1 2
min J(u) == [ [|[Vul|de — [ Fudx
ueH;(Q) 2 Jo Q
subject to

p<u<y, ae infl,
with F' € L*(€2). We will use the spiral obstacle, as proposed in [48, §7.1.1]:

o(x(r,¢)) =sin(2rw/r + /2 — ¢) +

1
@—&M.ﬁ, r#0,

-2
and ©(0) = 3.6 with polar coordinates x(r,¢) = re’®. The upper bound function v is set
to infinity and the right-hand side function F' to zero. The obstacle function is illustrated in

Figure 5.5 (left), together with the solution of the problem for 9 refinement levels.

500

Figure 5.5: Example 5.5.1, nine refinement levels, obstacle (left) and solution (right).

Thttp://www.mathworks.co.uk/matlabcentral/fileexchange/35104-1bfgsb—1-bfgs-b—mex-wrapper

111



Table 5.1 presents the results of the numerical experiments. It shows the asymptotic rate of
convergence (an average from the last 3-5 iterations) and the number of evaluations of the
objective function and its gradient on the finest level only. The results are presented for 4—8
discretization levels and refer to Algorithm 5.1 with n pre-smoothing and n post-smoothing
steps (GP-n). For comparison, we also show the convergence rate for the algorithm with the
projected Gauss-Seidel (GSP) smoother (one pre- and one post-smoothing step). The last row
of the table presents the numbers of function evaluations when we solved the finest level prob-
lem directly by the gradient projection method. The Gauss-Seidel smoother is clearly superior
to GP-1 but its convergence rate can be easily reached by several GP smoothing steps. This
increased number of GP steps is size-dependent, as indicated by the examples. However, the
results also suggest that the increased number of GP steps is not needed, as the smallest number
of function/gradient evaluations is obtained with 1 or 2 smoothing steps. Notice also that one
GSP step is much more CPU expensive than one GP step, at least in Matlab implementation
which allows for the vectorization of the GP step. The reason for this is that in GSP the projec-
tion must be performed for each variable separately, after its update by the Gauss-Seidel inner
iteration, while in the GP the whole vector is projected at once.

Table 5.1: Example 5.5.1, asymptotic rate of convergence and number of top-level function
evaluations for 4-8 refinement levels. GSP stands for the (1,1) V-cycle with Gauss-Seidel

method with projection; GP-n for a (n, n) V-cycle with the GP smoother; “GP only” for gradi-
ent projection method solving the full problem on the finest level.

level (vars) | 4(961) 5(3969)  6(16129)  7(65025) 8(261121)

smoother ‘rate feval rate feval rate feval rate feval rate feval

GSP | 0.07 | 0.14 | 0.22 | 0.32 | 0.37

GP-1 018  71[033 107 [050 180|080 410|086 711
GP-2 007 93|04 111026 206|057 384|070 677
GP-3 003  92/008 142|017 239|035 387 |0.55 806
GP-4 002 122|005 176 |0.12 285|031 459 | 0.53 887
GP-5 001 160 |0.03 211 |0.08 306|023 483|034 912
GP only 685 2361 9320 34133 127289

The numbers from Table 5.1 are graphically presented in Figure 5.6: it shows the rate of con-

112



0.9

; s

. -
4
0.6 / - = GSP -

-
-
05 / e GP-1 3 ==

0:4 / / —_—GP3 /
~ - 2

0.3 e GP-5

DAZ ,/ /
- -

e GP-1
— GP-3
e GP-5

= = GPonly

' - == :
0.1 -

Figure 5.6: Example 5.5.1, rate of convergence (left) and function evaluations (right) for vari-

ous smoothers as a function of the number of levels.

vergence for the different smoothing steps, as it increases with the number of levels (left-hand

figure). The right-hand figure presents the logarithm of function evaluations as a function of the

number of levels. We can observe a rapid increase for the “pure” gradient projection method

and a much smaller increase for the multigrid algorithm, almost independent of the number of

smoothing steps.

5.5.2 Example: non-quadratic obstacle problem

Consider the following optimization problem in 2 C R
n )= [ Vel = (e~ ") do— [ Pud
min u) == ul||* — (ue" —e") do — u dx
uweHL(Q) 2 Jo Q
subject to

p<u<®yY, ae in(,
with
o(1,22) = —8(z1 — 7/16)* — (2 — 7/16)* + 0.2, ¥ =05

and

F(z1,22) = (971_2 + e(mf—z?)sin(&rzz)(x% — x?) + 62 — 2) sin(37z;) .

The unconstrained version of the problem is a nonlinear PDE studied in [20, p.105]. Figure 5.7

shows the solution of the unconstrained (top) and the constrained problem (bottom), both in

113




two different views.

Figure 5.7: Example 5.5.2, solution of the unconstrained problem (top) and the constrained
problem (bottom).

Just as in Example 5.5.1, Table 5.2 together with Figure 5.8 present the results of the numerical
experiments using Algorithm 5.2. We do not show a comparison of the GP smoother with the
projected nonlinear Gauss-Seidel smoother, used, e.g., in [59]. This is because the nonlinear
GS algorithm needs the Hessian of the objective function and turns the algorithm into a second-
order method. We can use a finite difference approximation of the Hessian but then the resulting
code is extremely slow.

We do, however, compare the multigrid algorithm with one of the most efficient codes for
bound-constrained nonlinear optimization, the L-BFGS-B code by Morales and Nocedal [81].
We can see that, with increasing size of the problem, the number of function evaluations grows
faster in L-BFGS-B (though we should keep in mind that additional work needs to be done
on coarse levels of the multigrid algorithm; see the beginning of this section). And we should
keep in mind that, unlike in the multigrid algorithm, the function and gradient evaluation is not
the only computationally extensive part of the L-BFGS-B code. We do not compare the CPU

times, as L-BFGS-B is coded in Fortran.

114



Table 5.2: Example 5.5.2, asymptotic rate of convergence and number of top-level function
evaluations for 4-8 refinement levels. GP-n stands for a (n,n) V-cycle; “GP only” and “L-
BFGS-B” for gradient projection method and the L-BFGS-B method, respectively, solving the
full problem on the finest level.

level (vars) ‘ 4(961) 5(3969) 6(16129) 7(65025) 8(261121)

smoother ‘rate feval rate feval rate feval rate feval rate feval

GP-1 017  62[027 81[035 93[052 127]0.55 166
GP-2 0.12 131021 193|029 192|042 282|050 321
GP-3 005 127 [0.08 159|011 175|014 179|022 258
GP-4 005 171 [0.07 205 |0.09 249 |0.14 284|029 384
GP-5 003 178 {0.04 192]0.08 259|0.08 288 |0.15 360
GPonly | 485 | 656 | 2128 | 5746 | 12197
L-BFGS-B | 59 | 101 | 151 | 257 | 405
/ 4 ”——

0.5 -
/ 35 -
-
0.4 3 - GP-1
/ —GP-1 2.5 —— - —_ GP-3
0.3 - =
/ —GP-3 2 —M GP5

- —GP-5 15 = = GPonly

0.2 — .
1 === L-BFGS
0.1

0.5

4 5 6 7 8 4 5 6 7 8

Figure 5.8: Example 5.5.2, rate of convergence (left) and function evaluations (right) for vari-
ous smoothers as a function of the number of levels.

Remark 5.5.1. To have a better idea about the amount of work required on the coarser levels we
present CPU times for the largest problem (¢ = 9) with GP-1. Using MATLAB’s tic-toc com-
mands, we measured the cumulative times spent in the iterative method (the smoother) on every
level; the times are given in seconds. The time spent on the finest mesh was 6.240, while the
time spent on all other meshes was 1.824. The latter number is a sum of (0.231, 0.036, 0.029, 0.031, 0.043, 0.10
corresponding to the coarsest up to the second finest mesh, respectively. Recall that the problem

on the coarsest mesh is solved to high accuracy.

115



5.5.3 Example: minimal surface problem

Our next example is the minimal surface problem

min 7 (u) := / V14| Vu|? dz
Q

ueH(Q)
subject to
u(xy, 2) = up(zy, x2) for (z1,x9) € O

p<u<LYy, ae. inf),
with the boundary function (see [51])
ur(z1,0) = w, ur(l,z2) = —w, ur(zy,1) = —w, ur(0,z3) = w, w = —sin(27¢)
and the parabolic lower bound
o(x1, 1) = —8(2; — 0.5)% — 8(xy — 0.5)% +0.55.

The upper bound function v is set to infinity. The solution is shown in two different views in

Figure 5.9.

1

08

06

04

02

0

-0.2

04

-06

-0.8

50 El

i i H ! H
0 50 100 150 200 250

Figure 5.9: Example 5.5.3, solution.

116



As before, Table 5.3 together with Figure 5.10 present the results of the numerical experiments
using Algorithm 5.2. Notice that the function and gradient evaluation for this problem is much
more expensive than in the other examples and we were not able to obtain the exact solution to
the finest problems in a reasonable time by L-BFGS-B. That is why we only present results for

levels 3-7.

Table 5.3: Example 5.5.3, asymptotic rate of convergence and number of top-level function
evaluations for 2-6 refinement levels. GP-n stands for a (n,n) V-cycle; “GP only” and “L-
BFGS-B” for gradient projection method and the L-BFGS-B method, respectively, solving the
full problem on the finest level.

level (vars) \ 2(81) 3(289) 4(1089) 5(4225) 6(16641)
smoother \ rate feval rate feval rate feval rate feval rate feval
GP-1 0.118 46 | 0.115 47 1 0.22 62 | 0.21 721 0.60 141
GP-2 0.079 125]0.055 157 |0.13 176 |0.18 111|043 171
GP-3 0.029 234 | 0.028 188 | 0.07 234 ]0.14 223 1]0.21 249
GP-4 0.011 156 10.021 205]0.05 165|006 170]0.19 276
GP-5 0.004 223 | 0.010 241 |0.04 332|10.09 284 |0.13 374
GPonly | 75 | 216 | 685 | 2361 | 9320
L-BFGS-B | 14 | 30 | 126 | 156 | 242

0:5 // 3

5§ / == | —

0.2 / —eRs 15 — — GPonly

o / / 1 -== LBFGS

) / o,z

Figure 5.10: Example 5.5.3, rate of convergence (left) and function evaluations (right) for
various smoothers as a function of the number of levels.

117



5.5.4 Example: obstacle problem with an equality constraint

Finally, let us consider an example with an obstacle and an additional equality constraint. The

problem stems from the nonlinear PDE

~Au—u?=f(z) inQ

u=20 on 0f)

and can be formulated as the following optimization problem

1 1
i == Vu|?> — v’ | d —/F d
uérfr}ilr(lﬂ)j(u) 2/Q<H uH 3u> ! Q e

subject to

p<u ae.inf)

<
/udaszl,
Q

with F' = 0 and
(w1, 19) = —32(x; — 0.5)* — 32(25 — 0.5)2 +2.5.

Figure 5.11 (left) shows the solution and a comparison with the solution of the same problem
without the equality constraint (right). In the unconstrained case, the optimal solution gives
fQ u dxr = 0.62. So, in order to satisfy the equality constraint, the unconstrained solution has

been inflated.

Table 5.4 together with Figure 5.12 present the results of the numerical experiments using Algo-
rithm 5.3 with the additional handling of the equality constraint (Section 5.3). The explanation

is the same as in the previous examples.

Remark. Notice that, in the presence of the equality constraint, we can no longer use Al-

gorithm 5.5 as a smoother, as the gradient-based line search would not lead to a convergent

118



Figure 5.11: Example 5.5.4, solution with (left) and without (right) the equality constraint.

Table 5.4: Example 5.5.4, asymptotic rate of convergence and number of top-level function
evaluations for 4-8 refinement levels. GP-n stands for a (n,n) V-cycle; and “GP only” for
gradient projection method, solving the full problem on the finest level.

evel (vars
level (vars) 4(961) 5(3969) 6(16129) 7(65025) 8(261121)

smoother ‘rate feval rate feval rate feval rate feval rate feval

GP-1 032  93/033 113|044 163|059 244|061 350
GP-2 0.11 8025 120|029 129|051 183|054 182
GP-3 0.09 107 | 0.14 148|025 147 | 04 178|044 176
GP-4 007 153 [0.14 182|023 186|036 224|044 191
GP-5 006 137 [0.11 185|0.19 202|033 204|036 223
GPonly | 388 | 1586 | 5907 | 21372 | 75258

algorithm. Instead, we use a standard projected gradient method with backtracking Armijo line
search. To find the projection on the feasible set, we now have to solve a convex quadratic
programming problem. Moreover, this problem has to be solved to a high precision, because
we need to identify the active constraints in (5.7)—(5.8). In our implementation, we have used

the Gurobi solver to this purpose [56].

5.5.5 To truncate or not to truncate

The tables in [48] (and partly in the previous section) show the clear advantage of truncation:
the higher asymptotic rate of convergence as compared to Algorithm 5.3 without truncation.
However, a typical user may not be interested in asymptotic rate but in fast convergence in the

first iterations. And here Algorithm 5.3 can be the winner. Figure 5.13 presents the convergence

119



0.7 6

0.6

0.5 -

- — (5 P-1
0.4 —GP-1 -
- — GP-3

—GP-3 -

03 —aP5
——GP-5 5 ]

0.2 = = GPonly

4 5 6 7 8 4 5 6 7 8

Figure 5.12: Example 5.5.4, rate of convergence (left) and function evaluations (right) for
various smoothers as a function of the number of levels.

curves for Example 5.5.1 with 8 refinement levels and v = 5. The dashed line is for Algorithm
5.3 (no truncation) while the full line for Algorithm 5.2 (truncation). We can see a typical
behaviour of the truncated algorithm: it starts slowly, tries to find the exact active set and, once
this is found, the algorithm speeds up (for more details, see [48]). However, the total amount
of work (represented in this case by the integral of the convergence curve) to reach the required

accuracy is actually higher for the asymptotically slower algorithm without truncation.

Figure 5.13: Example 5.5.1, nine refinement levels. Convergence curves (iterations vs log-
arithm of the error) for Algorithm 5.2 with truncation (full line) and Algorithm 5.3 without
truncation (dashed line).

5.6 Conclusions

We have presented a version of the multigrid method for convex optimization problems with

bound constraints and a possible single linear equality constraint. The method only needs

120



gradient information, unlike similar published algorithms. We have shown that the projected
gradient method can serve well as a smoother and that only a very small number of pre- and
post-smoothing iterations is needed to obtain an efficient algorithm. The main advantage of the

proposed method is thus in its low computational complexity and low memory requirements.

As an interesting by-product for unconstrained problems, we obtained a first-order method
able to solve large scale problems efficiently and to high accuracy, which is rather untypical in
today’s realm of first-order methods designed to solve very large scale convex problems though

only to some 2-3 digits of accuracy.

The natural question arises about more general constraints. The author devoted significant
effort to the generalization of this method to the topology optimization problem (6.35), a convex
problem with bound constraints and a single linear equality constraint; however, with two kinds
of variables that need to discretized and prolong/restrict on different discretization levels leads
to major technical difficulties ( explained in more details in the section 7.2). So at the time
of writing this approach, we think that more complex constraints could be better handled by
traditional optimization methods (SQP or interior point) and multigrid could then be used for

the solution of resulting linear systems.

Nevertheless, the class of unconstrained and bound-constrained convex optimization problems
is very large and we believe that the presented method, whenever applicable, is one of the most

efficient approaches to their solution.

121



CHAPTER 6

STRUCTURAL OPTIMIZATION PROBLEM

6.1 Linear elasticity

As we will describe in the next section, the goal of topology optimization is to determine the
optimal layout of material in a given domain subject to prescribed loading conditions along
with constraints on the amount of available material. Therefore, an understanding of elastic
bodies subject to deformation and stress is essential in order to provide a suitable description
of the problems that we look to solve. This section provides a number of definitions and theory
from the field of linear elasticity, describing a linear relationship between stress and strain as a
result of applied loads. We begin with describing a number of standard concepts as follows.
Definition 6.1. (Lipschitz Domain)

Assume 2 C R? is an open connected domain. A Lipschitz domain is a domain 2 with a
Lipschitz boundary I'. We say that {2 has a Lipschitz boundary [ if there exist nonnegative
real numbers o, 5 > 0, such that for each point 2° on the boundary I, the Cartesian coordinate
system can be rotated and translated to z°, provided that the following statement is satisfied.
Let

K, 1={zeR"|z;| <a for i=1,2,...,n—1},

so that K, _; represents an (n — 1)-dimensional open cube. Then for each (zy,...,z,) € I

122



there exists a function a(xy, ..., x,_1) € K,_1 such that

a<x1a s 7xn—1) = Tnp,

is Lipschitz continuous. Furthermore, all points * = (z1,...,Z,-1,%,) = (&, x,) where
& € K,y and a(f) < x, < a(z)+ [ are assumed to lie inside €2, and all the points = = (£, ,,),
where # € K,,_; and a(%) — 3 < x,, < a(), are assumed to lie outside Q@ = QU I".
Definition 6.2. (Unit Outer Normal)

Let (2 a Lipschitz domain and let us use the same notations as in Def. 6.1. The vector v =

(v1,...,Vn_1,v,) Wwhose components are given by
1 Oa
Vi = — = 17 , L — 17
pOz;
1
Up = ——,
p
where

9,0\ 2 1/2
(5 6))
is called the unit outer normal to the boundary I'.
Theorem 6.1. (Green Theorem)

Suppose that v; are the components of the unit outer normal to the Lipschitz boundary I of a

domain €, then for u € C*(Q) we have

ou /
= [ wy;dS.
o 0z r

For the proof, we refer the interested reader to [84].

Definition 6.3. (Body Force f)
A body force f represents a force acting throughout the body. By writing f := (fi,..., f4),
d = 3, with each f; : {2 — R corresponding to the body force in each coordinate, f amounts to

the density of forces acting on each volume element of the domain 2. Examples of body force

123



include the effects of gravitational pull, internal force and also magnetic force.

6.1.1 Stress tensor

Suppose that Qo C €2 such that Qy := Qg U I}, where I, represents Lipschitz boundary of
. The stress vector defines the density of the internal forces in the body affecting from the
portion 2 — € of the body on the portion ) at the point z, Fig.6.1. Furthermore, suppose that
v is the unit outer normal to /| at a point z € [. Then the stress vector depends on the point
x and also the direction of the normal v, which is denoted by #(x, v) and represented in terms

of the stress tensor 7 and the normal vector v.
3
ti(z,v) =Y vmi(r), i=1,2,3, 6.1)
j=1

where 7;;(x) denotes a second order tensor at a point z. Therefore, the stress tensor relates
the normal vector v to the stress vector ¢. In other words, it defines the state of stress at a
point inside a material in the deformed placement or configuration. Furthermore, the tensor 7

is symmetric, i.e. 7;; = 7;; for ¢, j = 1,2, 3, as shown in [84, p. 24].

Figure 6.1: Illustration of stress vector

We proceed now to introduce another classical concept of elasticity known as the strain tensor.

6.1.2 Strain tensor

Informally, a local characterization of the displacement field is needed in order to gain insight

into the resulting deformation inside the body as a result of prescribed loading conditions.

124



This can be obtained mathematically by computing the Jacobian matrix of the displacements.
However, for engineering purposes, the deformation in the body is measured by the so called
strain tensor and defined by

B + 2 =1,2 2
‘=g (8xj 8%) ’ B 23, 62)

which is referred as small strain tensor. The elements of e;; represent the derivative of the
displacements u. For the interested reader, the derivation of (6.2) can be found in [84, p.29-
30], where it is shown that the strain tensor amounts to the linear part of the matrix ¢ with

entries defined as follows

oug, 8uk Ou; Ou; o
.j=1,2,3.
[Z Ox; Ox; <8xj ox; 41
This matrix is known as finite strain tensor.

We can follow the strain tensor definition by the generalized Hooke’s law, also sometimes
referred to as the elasticity law. This states that the stress is related to certain derivatives of
displacements, where these derivatives are included in the strain tensor e.

Definition 6.4. (Generalized Hooke’s Law) Hooke’s Law is defined as a linear relation between
the strain tensor e and the stress tensor 7 at a point x € 2. It expresses a mutually proportional

relationship between e and 7 and is written mathematically as
T(u) = E : e(u),

or

T’Lj E E’L]klelj

k=1

This relation does not contain a constant term due to the assumption that the stress tensor

disappears when the strain tensor is equal to zero. The symmetry of the tensors 7;; and e;; leads

125



to the following conditions

Eijri = Ejirt, Eijr = Eijig,

and

Eiji = Eyj.

If the constants Ejj;,; are independent of the choice of the coordinate system, the material is
said to be isotropic, otherwise the term anisotropic is used. For this thesis we only consider
the farmer case, namely isotropic methods for which we present the following theorem. In this
case

Eijki = N0 + p(0irdjs + 6adjn), 1< 4,5,k 1 < 3.

As before, 0;; represents the Kronecker delta and A, u > 0 are the Lamé elasticity coefficients.

Theorem 6.2. For isotropic material the generalized Hooke’s law is represented as

Tij(@) = A(@)di;0(x) + 2u(@)ey; (), (6.3)
where
3
I(x) = ea(x).
i=1
Proof. For the proof, see [84, p. 44]. [l

In engineering, instead of Lamé coefficients A and p, Young’s modulus Y and Poisson’s ratio

o are more commonly used. They are derived in [84, pp.49-50] as

Yo Y

(1+0)(1-20) 2(1+0)

126



6.1.3 Equations of equilibrium

Linear elasticity under the conditions of equilibrium reads
div(t) + f=0 in Q,

in which the total forces must sum to zero over the whole domain. Namely, the conditions of
equilibrium for the applied forces f;, ¢+ = 1,2, 3 on the sphere B; C () of radius & centered at

a point 2° € Q gives

fidx+/ti(x,v(w))dF:0, (6.4)
r

By,

where " := 0B}, (Lipschitz boundary of the sphere B),) and we substitute for ¢;(x, v(x)) from

(6.1). By applying Green’s theorem (Theorem 6.1), we obtain that

faz+ [ Dy — / (fi + ai) dz = 0. (6.5)
By 0

B B, 0%; z;

The equation (6.5) is divided by the volume of the sphere B; and takes the limit as h — 0. On
account of the continuity of the integrand, for any z° € (), this yields the so-called equations

of equilibrium as follows:

87']'1'

0 0y _ _
8a:j(x>+fl($) 0, 1=1,2,3. (6.6)

Equivalently,

div(r) = —f in Q. (6.7)

127



6.1.4 Lamé equations

We can obtain the Lamé equations directly from the equations of equilibrium (6.6), with f; €
C1(Q), after substituting the generalized Hooke’s law (6.3) for isotropic material and the strain
tensor (6.2). Mathematically speaking, for A € C'(Q), p € C*(Q) and the displacements
u; € C%(Q), we obtain the following equations

9 o [ (0u o -
3_%()\19%) i dz; {M (a%' i &Uz)] a0

or

9 - —1.2.3. .
)+ 5 <uaxj) o (u a) =0, i=1,2.3 ©.5)

Equations (6.8) are known as the general Lamé equations. Moreover, if we assume that \ and

(4 are constants, then (6.8) maybe presented as

(A + p) 09 +plug+ f; =0, i=1,2,3, (6.9)

al‘i

52w, Ou; . 50 3 0%u, .
where Au; = ot U= 5t = div(u), and 5~ = >0 Db, — vdiv(u).

The equations (6.9) hold for an isotropic material and are referred to as the Lamé equations.

Equivalently, equation (6.9) can be written as follows

(A + p)(wdiv(u)" + pAu=—f in Q. (6.10)

128



6.1.5 The classic formulation of basic boundary value problems of elas-

ticity

Consider the domain € with a continuously differentiable boundary I', with u, A\ € C*(Q)

and u; € C?(Q). We can take the general Lamé equations (6.8) into account and find the

displacement u that solves these equations with boundary conditions. There are three types of

boundary value problem as follows:

(a)

(b)

First Basic Boundary Value Problem
Let the boundary I” be subjected to the boundary forces ¢ := (t1,t9,t3), t; € C(I'), i =

1,2, 3. Thus, we bring about the stress vector (6.1),

7ij(2)vj(z) = ti(z), v €T

Using Definition (6.4), we use Hooke ‘s law for isotropic material in order to yield the first

basic boundary equation

ANv; + 2uev; =t v €T, (6.11)

which includes both the general Lamé equations (6.8) and also the boundary condition
(6.11). Consequently, we look for u; € C*(Q)NC?(Q), i = 1,2, 3, in which the equations
(6.8) and (6.11) are satisfied.

Second Basic Boundary Value Problem
In this case, if the prescribed displacements are located on the boundary I, then the bound-

ary condition is written as follows:

uw(z) =g(x), x €' and g; € C(I). (6.12)

Then, the aim is to find u; € C1(Q) N C?(), i = 1,2, 3, that satisfy (6.8) and (6.12).

129



(c) Mixed Basic Boundary Value Problem
Let the boundary ' consist of two parts /' (Dirichlet boundary) and /'y (Neumann bound-
ary), or

I'=TpUTly.

That is to obtain u; € CY(QU I'p) N C(QU I'y) N C?%*(Q),7 = 1,2,3, which are on the
Neumann boundary to satisfy (6.11) (Neumann condition), and on the Dirichlet boundary

to satisfy (6.12) (Dirichlet condition), where t; € C'(I'y),g; € C(Ip),i = 1,2, 3.

Now we can introduce the classic formulation of the basic boundary value problem of elasticity
(CFE)
Find v € C'(Q)¢ such that

div(t) = —f in £, equilibrium equation (6.13)
Tv=tx), zely Neumann boundary condition (6.14)
u(z) =g(z), v€Ilp and g; € C(I") Dirichlet boundary condition (6.15)
T=F:e(u) Hook’s law. (6.16)

We can substitute Hook’s law in (6.13) and (6.14) to obtain a formulation in displacements only

(CFE): Find a displacement field u € C'(Q)¢ such that,
div(E : e(u)) = —fin )
(6.17)
(E:e(u)).v=tx) xell,

u(z) = g(x), =€ Ip.

130



6.1.6 Korn‘s Inequality

Korn‘s inequality is of fundamental importance when analyzing both linear and nonlinear elas-

ticity problems, [84].

Rigid Body movement: Inanon deformed body, in which e;; = 0, a displacement represents
a rigid body rotation and translation. This statement is clarified in the next theorem.
Theorem 6.3. Let u € [H'(Q2)]?,Q C R®. Then e;;(u) = 0;4,5 = 1,2 if and only if u =

a + B x x. Here a € R? and B represents a rotation matrix.

Denote by
P={ve[H(Q)] |v=a+ B xz}, (6.18)

a finite dimensional and closed subset in [H!(9*)], 2* C 2. Now, we can introduce the Korn‘s
Inequality definition.

Theorem 6.4. Let ) define a closed subspace of [H'(2)]3 such that [H}(Q)]* € V C [HY(Q)]3.
Let P, = PNV and let @)y, represent the orthogonal complement of P, in V. Then for any

v € @y the following Korn’s inequality holds

/Q 5 (v)es; (0)d2 > o>

The proof is given in [84, p.79].

6.1.7 Variational formulation of the elasticity problem

A standard approach used when attempting to determine solutions to (6.17) is to consider dis-
cretization method based on an appropriately defined weak formulation. The linear forms
within the resulting variational problem (as equation) require suitable function spaces in or-

der to describe results with regard to existence and uniqueness of solutions. One of the most

131



benefits of following this approach is that existence theorems for weak solutions will typically
be valid under more realistic assumptions than associated theory related to the classical formu-
lation. The suitable function spaces that we require weak solutions to belong to are Sobolev
spaces H*(§2) as presented in Definition (2.14). we define solution and test spaces based on

prescribed data for the Dirichlet boundary as follows

Vi={uec(HQ)Yu=g on Ip}, d=1,23, (6.19)

Voi={ve (H () |v=0 on I'p}, d=1,2,3, (6.20)

Definition 6.5. A function u € V is defined as a weak solution [84, pp.87] of the model

problem (6.17) of elasticity if

u—g €V (6.21)

/[e(u) B e(v)]dx = / fivida:+/ tyv;dl for all v €V, (6.22)
Q Q I'y

where g represents boundary data.

We shall explain the means of obtaining the weak solution of the boundary value problem of
elasticity. Clearly, the condition (6.21) means that u = g € I'p. By multiplying both sides of

the equilibrium equation (6.13) by v € V), and integrating over () we have

/(diV(T))Ud(L': —/ fudz. (6.23)
Q Q

By applying Green’s first formula on the left hand side of (6.23) we arrive at

/Q(diV(T))vd;E = —/QT ce(v)dr + /(T.V)UdS. (6.24)

r

132



By substituting (6.24) in (6.23) we obtain:

—/QT : e(v)dm+/F(T.V)UdS: —/vada:. (6.25)

If we are given homogeneous Dirichlet boundary conditions, i.e. ¢ = 0 on Ip, we are led to

the weak formulation of elasticity (WFE)

/[e(u) (B e(v)]de :/ tvdS+/ fodx for all v €. (6.26)
Q Iy Q

We bring this into the generic form of a weak formulation, a variational formulation of the
elasticity problem can be written in the following form:

Find a function © € V), such that
ap(u,v) = ({,v) forall v € Vy, (6.27)

here ag(u,v) is the energy bilinear form ag(u,v) : Vo X Vy — R for an arbitrary virtual

displacement v defined as

ap(u,v) = /Qe(u) : B e(v)dr,

with (6.28)

l(u) :== /FN tudS#—/qudx,

defining the load linear form.

6.1.8 Existence and uniqueness of solutions to variational formulation of

the elasticity problem

One can show the existence and uniqueness of the weak solution to the variational formulation

VEE of the elasticity problem. That is, under some assumptions, first on the material tensor

133



E; i.e. at each point E is positive semi definite and in L°°. Next on continuous dependence of
the solution on the given data (u, F, f) such that v = 0 on the boundary I" = 0€). Then the
following Theorem can be stated as

Theorem 6.5. Under the assumption we mentioned earlier, the VFE always has a solution

u € V. Furthermore, this solution is unique.

Proof. See [84, p.91], Theorem 7.2.3. O]

6.2 Structural Optimization Problem

The aim of structural optimization is to provide a mathematical framework for engineering
design problems, resulting in an optimal structure satisfying a number of given constraints.
The focus of optimization for such problems involves minimization of so-called compliance,
or (equivalently) maximization of stiffness. Depending on the focus of optimization, the design
variables may represent material properties which, in certain cases, leads to areas of void within
(2 (as is the case for topology optimization). The discipline of topology optimization offers
challenging problems to researchers working in large scale numerical optimization. The results
are essentially colors of pixels in a 2d or 3d “pictures”. Hence, in order to obtain high-quality
results, i.e., fine pictures capturing all details, a very large number of variables is essential.
For a general overview on the field of structural topology optimization, we refer to the survey

article by Rozvany et al. [94], and the monograph by Bendsge and Sigmund [9].

We begin by considering a bounded elastic domain © € R? where d € {2, 3} with a Lipschitz
boundary /. Recalling related principles from elasticity theory presented earlier in this Chapter,
we denote by e, 7 and F the small strain (6.2), the stress (6.4) and elasticity tensor, respectively.

Using these notations, we consider a general formulation of the structural optimization problem

134



to introduce various aspects of structural design problem, which reads as

1
inf sup ——/ ple(u) : E : e(u)dx +/ t.udz, (6.29)
Q(a) I'n

P yey 2
where I'y C I"and [H} (Q)]¢ C V C [HY(Q)]4

We can obtain the so-called shape optimization problem for differing « and fixed remaining
parameters p, 2, and p. However, for fixed «, the structural optimization leads to different

classes of topology optimization problems for selective choices of p, E and d.

* By setting p > 1 and letting £’ denote an elasticity tensor of isotropic material, we arrive
at the so-called solid Isotropic Material with penalization (SIMP) [10], which nowadays

is widely popular among engineers.

In this problem, the parameter p plays the role of artificial density. With increasing
p, the optimal density tend to either the upper bound (full material £) or to the lower
bound (void). Thus, one can use this approach when trying to avoid areas of intermediate

density, as well as the presence of anisotropic materials in the optimal structure.

» The variable thickness sheet (VTS) [10,88] arises in the case where p = 1, I/ denotes an
isotropic elasticity tensor, and d = 2, which can be viewed as a particular case of SIMP
formulation presented above where, p corresponds to thickness of a two dimensional

isotropic elastic body.

* The free material optimization (FMO) problem [10, 121] is obtained by by setting p = 1
and E(z) € ST, wher ST denotes the space of symmetric positive definite matrices of
proper dimesion. The design variable is the elastic stiffness tensor £ which is a function
of the space variable x,for example see [11]. Originally the design variables in FMO are
all elements of the elasticity tensor. The optimal £ can be reconstructed from the optimal

p and u.

135



Furthermore, there are two more approaches that do not fit into the above formulation. These

are the topological derivative [103] and the level-set method [112].

In this work the concentration will be on the variable thickness sheet problem which, under the

parameters as described, results in the following saddle point problem.

1
a(u, p) := inf sup ——/pe(u) : Ee(u)dx +/ t.udz,
pEH u€Vy 2 0 r

H={pe1™@0<p<pte) <p<oo, o<y 630
Q

Vo:={ve (H'(Q)*v=0 on I'y}

6.2.1 Existence and Uniqueness of Variable Thickness Sheet

Proof of existence of solutions to the VTS problem was presented in 1970 by Céa and Malanowski
[23]. In their work a(u, p) corresponded to an elastic membrane with strictly positive lower
thickness p > 0. This is inferred from the property that the admissible thickness function p
belongs to a bounded, closed and weak* compact set in L°>°(€2) and also the property that the
compliance is a lower weak*-semi-continuous function, as it is a function of p given through

the equilibrium equations [10, p.272].

We can illustrate existence of solutions to the formulation (6.30) by using the following theorem

Theorem 6.6. Problem (6.30) has an optimal solution (p*, u*) € L>*(Q2) x V,

Proof. Any saddle point of (6.30) corresponds to a solution of (6.30). Such a saddle point

exists according to [24] if we can guarantee that
1. The set H is convex and weak™ compact.
2. a(p,.) is convex and continuous on V), for all p € #,

3. a(.,v) is concave and continuous on L>°(£2)-weak* for all v € V.

136



4. a(p,v) is coercive on V, for p € L>(9).

The first condition follows from the fact that the admissible thickness function p belongs to a
closed and bounded and thus weak* compact set in L>° therefore satisfying (1). Conditions (2)
and (3) hold trivially due to the fact that a(p, .) is continuous and quadratic in terms of v, and
a(.,v) is linear in p if v is constant, respectively. Finally, the proof of (4) is based on Korn‘s

inequality (6.4), with the proof given in [84, p.85]. [

It can be noticed that, for p > 0 almost everywhere in €2, the minimum compliance problem

has a unique solution u € V. However, for p € H there might be several solutions or none.

6.2.2 Discretization of Variable Thickness Sheet Problem

We now give a brief introduction to the discretization of the problem. Assume that ) consists
of m disjoint simplices. By m we denote the number of finite elements and by n the number
of nodes (vertices of the elements). The function p(x) is assumed to be constant in each el-
ement and thus can be characterized by a vector p = (p, ..., pm) Of its element values. We
approximate the displacement vector u(x) by a continuous function which is bi-linear (linear
in each coordinate) on every element. Such a function is given as u, = Y., ¢;u; where u;
and ¢; denote the respective values of u € R%™ and ¢ at the i-th node. For the interested reader,
further details maybe found in [26].

With the basis functions ¢;, j = 1, ..., ny, we define (3 x 2) matrices corresponding to the linear

strain tensor in R?, namely

Jy;/0x 0
Bi==| 0  9p;/dy |, JEDs (6.31)

10p;/0y Lp;/0x

where D; denotes an index set of nodes belonging to the ¢-th finite element. By n, we define the

number of Gauss integration points in each element. We denote by B, ;, the block matrix that

137



is composed of (3 x 2) blocks Ej at the j-th position j € D; (computed at the k-th integration

point) and zero elsewhere. Consequently, the full dimension of B, is (3 x 2n).

The global stiffness matrix K is a linear combination of element stiffness matrices K; defined

as,
K(p) =Y piKi, K;=Y Bl EBj.
=1 k=1

Based on this definition, the discretization of the problem (6.29) can be presented as

1
inf sup II(p,u) == —= ZPz(Kzua u) + (f, u)
_  u€R 24
0<pi <P, (6.32)
i pi <V
The minimum compliance problem can also be formulated from the above problem as
Loy
el
subject to
0<p<p, 1=1,...m (6.33)
Z pi <V
i=1
K(p)u=f

This problem depends on the so called variational principle as presented in [67]. For a given
p, the displacement w satisfying the equilibrium equation K (p)u = f corresponds to a mini-
mizer of II(p,u). The compliance f7u is finite if and only if TI(p, .) is bounded above,when
fTu = max, [I(p, u).

In the next section, we introduce theory asserting weak convergence for finite element solu-
tions. We omit the presentation of the convergence analysis for the associated finite element

discretization of variable thickness sheet problem since this is discussed and analyzed by Pe-

138



tersson in [89].

6.2.3 Weak Convergence Result

Following [42], the rather weak and general assumptions for the displacement approximation

are stated as follows

(i) For any sequence {uy,} such that u;, € V} and uj, — u weakly in H'(2), it satisfies that

u € V.

(i) Let a set x C V), exists such that Y = V), Y is the H'(2) closure of , and there exists
an interpolation operator 7, : Y — Vo, such that ,u — u strongly in H*(Q2) as h — 0T

Yu € .

The assumptions (i) and (ii) are satisfied for almost all classic appropriate finite element inter-
polations [89]. Therefore it is expected that the finite element solutions hold for any element
type, which has conformed in the displacement analysis problem, when it is integrated with
constant thickness approximation for an element [89].

Theorem 6.7. Let (u}, p;) € Vél x H" as h — 0 and suppose that (i) and (ii) are satisfied.
Then there exists a subsequence, indicated again by (u}, p;;) with elements (u*, p*) € Vo x H
such that

uf — u*, weakly in H'(€2),

and

Py — p*, weakly™ in L>(2).

If piow > 0 and any such limit pair belongs to V, x H, then the convergence of the whole

sequence {u} } holds strongly in H'(?) to the unique u* € V.

139



Furthermore, the weak* convergence of p; to p* in L>°(€2) means that

/ fon — / fo,vf e LY (%), (6.34)

and the result of this could be a sequence of discrete thickness solutions that may exploit oscil-
latory behavior with an increasingly refined FE mesh , even when there is a unique and smooth
exact optimal thickness. However, useful information can still be extracted from this result.
In particular, if p;,, > 0 then the rapid oscillations are restricted to appear only in the region

where the optimality condition is active.

In [89], Petersson showed the existence of solutions of the discretized variable thickness sheet
problem and extended the mathematical analysis of mixed FEM of Stokes flow problem to
prove strong FE-convergence, existence and the convergence of the variable thickness sheet
problem. Furthermore, with reference to [102], one can expect solutions to be mesh indepen-
dent, without the necessity of introducing restriction methods (such as a perimeter control), in

more general step SIMP setting of p > 1.

6.2.4 Minmax formulation of the variable thickness sheet problem

The minimum compliance problem presented in (6.33) is not only nonconvex in variables (u, p)
due to the equilibrium equations presented in the third constraint but is also inherently large
scale. Both of these concerns can be addressed by considering two approaches, both of which

result in equivalent convex programming problems.

The first approach involves using the equilibrium equation to eliminate u by writing u =

A~Y(p)f. Here we need to assume that p > 0 to ensure that the stiffness matrix is nonsin-

140



gular, which results in the following convex formulation in the variable p only

min  fTA™(p) f

p

subjectto: Y " pi < 1, (6.35)
=1
0<p<pi<p.

The convexity is a consequence of the positive definiteness of the matrix A~!(p) and the set of
constraints for a suitable choice of lower bound p is nonempty, convex and compact, see [10,

pp.272-274].

The second approach involves deriving the dual formulation of (6.35) in terms of the variable
u only. This result in an unconstrained problem and includes the minimization of a nondif-
ferentiable function F(u,.). This function is defined based on a summation of terms, with
each term determined based on the maximum of two convex quadratic functions. The resulting
formulation reads as follows

N
min {F(u, A=AV — fTu+ Z max {(%UTAEU —A)p, (%UTAQU - )\)ﬁ}} . (6.36)
e=1

u€ER” AER

which can be viewed in a similar manner to the solution of truss topology design problem [8].
Here, we note that the objective function F'(u, \) is a nonsmooth convex function, with the
relationship between the original problem (6.33) and (6.36), denoted respectively by (P) and

(D), is given in the latter theorem [8].

In the case where only a zero lower bound is imposed on the densities (i.e. free upper bound),

the resulting problem (denoted (D)) is simplified to
- Voo T
min max {Eu Aju— frul, (6.37)

ueR™ 1=1,....,m

where each term u” A;u corresponds the energy of the element number i.

141



Thus we can write (6.37) as the following quadratically constrained minimization problem:

min o — flu
aER UER™

subject to (6.38)
V

EUTAZ'U —fTu>0i=1,..,m,

Theorem 6.8. The solution of the minimization problem () equals the minimization of (D)
multiplied by —1, or
min(P) = —min(D).

The proof is omitted, but can be found in [8].

142



CHAPTER 7

PRIMAL-DUAL INTERIOR-POINT
MULTIGRID METHOD FOR TOPOLOGY

OPTIMIZATION

7.1 Introduction

In this chapter, an interior point method for the structural topology optimization is proposed.
The linear systems arising in the method are solved by the conjugate gradient method precon-
ditioned by geometric multigrid. The resulting method is then compared with the so-called
optimality condition method, an established technique in topology optimization. This method
is also equipped with the multigrid preconditioned conjugate gradient algorithm. We conclude
that, for large scale problems, the interior point method with an inexact iterative linear solver

is superior to any other variant studied in the Chapter.

In this chapter we only consider the discretized, finite dimensional topology optimization prob-
lem as it given in the previous chapter. For its derivation and for general introduction to topol-

ogy optimization, see, e.g., [10].

143



We will consider the basic problem of topology optimization (6.33): minimization of compli-
ance under equilibrium equation constraints and the most basic linear constraints on the design

variables:

Lop
i — 1
pERr’Inl,lq?eR” 2f Y 7.1
subject to
K(p)u=f

Zpi =V
i=1

p120, izl,...,m

pisp, 1=1,....m

where K(p) = > piK;, K; € R™™ and f € R™. We assume that K; are symmetric and
positive semidefinite and that ).~ | K is sparse and positive definite. We also assume that the
data V' € R and p € R is chosen such that the problem is strictly feasible. For further reference,

we will call the design variable p the density.

The most established and commonly used optimization methods to solve this problem are the
Optimality Conditions (OC) method ( [10, p.308]) and the Method of Moving Asymptotes
(MMA) by Svanberg [106]. In both methods, the computational bottleneck consists of the
solution of a large scale linear system with a sparse symmetric positive definite matrix (the
equilibrium equation). This is traditionally used by a direct solver, such as the Cholesky de-
composition. Recently, several authors proposed the use of iterative solvers, mostly precon-
ditioned Krylov subspace solvers, such as Conjugate Gradients (CG), MINRES or GMRES.
These have one big advantage which is specific for their use within optimization algorithms:
in the early (or even not-so-early) stages of the optimization method, only a very low accuracy
of the linear solver is needed. They also have one big disadvantage: in the late stages of the
optimization method, the linear solvers become very ill-conditioned and thus a vanilla iterative

method can come into extreme difficulties.

144



It is therefore essential to use a good preconditioner for the Krylov subspace method. The
difficulty lies in the fact that as we approach the optimal solution of the topology optimization
problem, the condition number of the stiffness matrices increases significantly. In fact, it is only
controlled by an artificial lower bound on the variable—if this bound was zero, the stiffness ma-
trix would be singular. Wang et al. [113] studied the dependence of the condition number on the
variables and concluded that it is a combination of the ratio of maximum and minimum density
and the conditioning of a corresponding problem with constant density. Consequently, they pro-
posed a rescaling of the stiffness matrix combined with incomplete Cholesky preconditioner.
The rescaling results in constant order of condition number during the optimization iterations.
For large scale example still hundreds of MINRES iterations are needed and hence the authors
use recycling of certain Krylov subspaces from previous iterations of the optimization method.
Recently, Amir et al. [3] proposed a multigrid preconditioner for the systems resulting from OC
or MMA methods and demonstrated that the resulting linear system solver keeps its efficiency

also for rapidly varying coefficient of the underlying PDE, i.e., rapidly varying p in (7.1).

While OC and MMA methods are the most popular methods in topology optimization, they
may not be the most efficient. The basic problem (7.1) is convex (more exactly, it is equivalent
to a convex problem) and we may thus expect interior point methods to be highly efficient (see,
e.g., [118]). Indeed, Jarre et al. [64] proposed an interior point method for the truss topology
optimization problem that is equivalent to the discretized problem (7.1), with the exception
that the stiffness matrix may be dense. They reported high efficiency of the method and ability
to solve large scale problems; they also proved convergence of the proposed method. Maar
and Schulz [76] studied interior point methods for problem (7.1) with sparse stiffness matrices
and proposed to use a multigrid preconditioner for the GMRES method to solve the arising

indefinite linear systems.

A new comprehensive numerical study of optimization methods for topology optimization can
be found in [93]. The authors compare the efficiency of different methods, including general

purpose optimization solvers such as SNOPT [41].

145



In this chapter we follow the path outlined by Jarre et al. [64] and by Maar and Schulz [76].
We use the same interior point method as in [64] and, unlike in [76], reduce the linear systems
to obtain positive definite matrices. This allows us to use standard conjugate gradient method
preconditioned by standard V-cycle multigrid. We further use the same linear solver in the OC
method (in the same way suggested in [3]) to get a comparison with our interior point method.
We will see that in both cases the inexact multigrid preconditioned CG method leads to a very
efficient optimization solver. Most notably, in case of the interior point method we obtain an
approximately constant number of CG iterations needed to solve the full problem which is
independent of the size of the problem. In case of the OC method, the total number of OC
iterations is increasing with the problem size; however, for a given problem size, the number
of CG steps per one linear systems remains almost constant, and very low, in all OC iterations,

notwithstanding the condition number of the stiffness matrix.

7.2 Can direct multigrid from Chapter 5 be used for topol-

ogy optimization problem?

The natural question arises about using direct multigrid from Chapter 5 for more general prob-
lems, in particular, for the solution of the problem (7.1). The author devoted significant effort
to the generalization of this method to handle this problem by reformulating the problem anal-
ogously to those problems solved in Chapter 5. As a convex problem in p only with a single

equality constraint and bound constraints on p;, see equation (6.35).

However, with two kinds of variables p and « that need to be discretized and prolonged/restricted
on different discretization levels with two different prolongation/restriction operators this seems
to be not an easy task. Namely, the variables u and p are defined, respectively, as node-based
and element-based and it turns out that the interplay of these two kinds of discretization brings
major technical difficulties, in particular, with upper and lower bounds on the thicknesses of

elements. For instance, how to treat bounds on p, p < p; < p ? If we have part of the fine

146



mesh Figure 7.1, which contains variable on upper bound p, on lower bound p and in between
pi» after restriction, we can take the average but then the prolonged correction will again be
the average. But, it needed to keep the variables which are on the upper bounds (active con-
straints) to stay on these bounds after the correction step. The question is how to define the
restriction/prolongation operator in this case? As it is, the correction would have to be zero.
We tried to avoid this by applying slope constraints on the thickness variables, that is by en-
forcing pointwise bounds on the density slopes, for more details see Petersson et al. [90]. But
then theses difficulties are just postponed to coarser meshes. Perhaps the remedy is to have the
p variables associated with nodes not with elements and use linear basis functions for p and
quadratic for displacements u. Then the restriction/prolongation operator will be defined for

linear and quadratic elements.

>
2. Pi l‘z pi

P i 1T 1T

Figure 7.1: Prolongation (P) and restriction (R) for a part of a fine mesh

Further effort was made to generalize the proposed method to the nonsmooth unconstrained
formulation of topology optimization. This can be obtained by deriving the dual formulation

of (7.1) in terms of the variable u only, the resulting formulation reads as follows

N
min {F(u, A) = AV — fTu+ Z max {(%uTAiu —A)p, (%UTAiu - )\)ﬁ}} , (71.2)
i=1

uER™ AER

and this analogous to the formulation of truss topology design problem [8]. For example, in
the case where only a zero lower bound is imposed on the densities (i.e. free upper bound), the

resulting problem is simplified to (see [8])

min max {guTAiu — ffu}, (7.3)

u€eR™ 1=1,...,m

where each term u” A;u corresponds the energy of the element number 1.

147



In literature, there are multigrid methods for nonsmooth unconstrained optimization problems
(NSO), [49,50]. However all these methods assume that the nonsmooth function is separable,
in particular, a sum of one-dimensional nonsmooth functions (such as > |x;|). This is not our

case, as the function z A,z in (7.3) is multivariate.

In these approaches, one needs to find a neighborhood of the given point in which the function

is smooth (Figure 7.2), then the function can be transfered to smooth problem with bounds

Figure 7.2: Finding bounds on = on a smooth branch of the function.

(z, ), however, this can be done efficiently for one dimensional functions. For the function
(7.3) is as costly as solution of the full problem. Also, it seems that more general constraints

may increase the complexity of the formulas for constraint restriction.

7.3 Newton systems for KKT conditions

Let p € R", A € R, ¢ € R™ and ¢ € R™ denote the respective Lagrangian multipliers

for constraints in (7.1). The Karusch-Kuhn-Tucker (KKT) first order optimality conditions for

148



(7.1) can be written as

—ResW == K(p)u — f = (7.4)

—Res® = zm:pi -V = (7.5)
i=1

—Res® = — %UTKZ-U A=+ =0, i=1,....m (7.6)
wipi =0, 1=1,....m (7.7)
Yi(p—pi) =0, i=1,...,m (7.8)
piz0, p—p;i=20, ¢©; 20, v=>20 (7.9)

We will perturb the complementarity constraints (7.7) and (7.8) by barrier parameters s;, so >

0:

—Res® :=g;p; —s1 =0, i=1,...,m (7.10)

—Res® = (p—p;) —s2=0, i=1,...,m (7.11)

and apply Newton’s method to the system of nonlinear equations (7.4), (7.5), (7.6), (7.10),

(7.11). In every step of the Newton method, we have to solve the linear system

K(z) 0 B(u) 0 0 dy Res
0 0 € 0 0] |dy Res?
Buw)” e 0 I —I||d,|=|Res®|. (7.12)
0 0 @& X 0] |d, Res™®

0 0 -V 0 X| |dy Res® |

Here B(u) = (Kyu, Ksu, ..., K,u), e is a vector of all ones and

X =diag(p), X =diag(p—p), @ =diag(p), ¥ =diag(y)

149



are diagonal matrices with the corresponding vectors on the diagonal.

Because the last two equations only involve diagonal matrices, we can eliminate d, and d:

d, = X '(Res — @d,) (7.13)

dy = X' (Res® — Wd,) . (7.14)

This will reduce the system (7.12) to

K(z) 0 B(u) d, Res"
0 0 el dy| = |Res® (7.15)
B ¢ —(X'o+ X0 4] |Res

with

— (3 ~
Res( ) = Res® — X 'Res® + X 'Res® .

We can now follow two strategies. Firstly, we can solve the system (7.15) as it is, i.e., an
indefinite system of dimension m + n + 1. To simplify things, we can still eliminate the

multipliers ¢ and ¢ as

901'251//01', %:82/@—[31‘), t=1,....,m

to get
K(z) 0 B(u) d, ResV
0 0 el dy| = |Res? | . (7.16)
Bw)" e —(s:X2+5X2)| |d, Res'

Remark. System (7.16) could be obtained directly as a Newton system for optimality condi-

150



tions of the following “penalized” problem with penalty parameters s; and ss:

! = i _
min 5 {7+ 51 log i+ 2’3 log(p — )

i=1 i=1
st. K(p)u=f, Zpi:V;
i=1

see, e.g., [118, Ch.19.1].

Secondly, we can further reduce the Newton system (7.15). As the (3,3)-block matrix in (7.15)

is diagonal, we will compute the Schur complement to the leading block to get

dy,
Z = Res'?) (7.17)
dy
with
K(z) 0 B(u) ~
Z = + (X'o4+ X 'o)! [B(U)T e] (7.18)
0 0 el
and
Res™ B(u ~ (
Res(?) — PN ey 2w R (7.19)
Res® el

The remaining part of the solution, d,, is then computed by

d, = (X"'® 4+ X ') (ﬁéé(S) ~ B"Res® — eRes® ) (7.20)

7.4 Interior point method

Once we have derived the Newton systems, the interior point algorithm is straightforward (see,
e.g., [118, Ch.19]). The details of the single steps of the algorithm will be given in subsequent

paragraphs.

151



7.4.1 The algorithm

Denote z = (u, \, p, o, )7 Setp; =V/m, i=1,.... mu=K(p) ' f,A=1, p=c¢, ¢ =

e.Sets; =1, so =1, 04,05, € (0,1). Do until convergence:

1. Solve either system (7.15) or (7.17) and compute the remaining components of vector d

from (7.12).
2. Find the step length a.

3. Update the solution

z=z+ad.

4. If the stopping criterium for the Newton method is satisfied, update the barrier parameters

81 = 0 * S1, S9 = O0gy * S2..

Otherwise, keep current values of s; and ss.

Return to Step 1.

7.4.2 Barrier parameter update

We use a fixed update of both parameters s; and s, with

05, = 05, = 0.2

This update leads to long steps and, consequently, small number of interior point iterations. The
value of the update parameter is a result of testing and leads, in average, to the smallest overall
number of Newton steps. A more sophisticated version of the algorithm, with an adaptive

choice of the barrier parameters s; and s, can be found in [64].

152



7.4.3 Step length

We cannot take the full Newton step

Znew = 2+ d

because some variables could become infeasible with respect to the inequality constraints (7.9).
We thus need to shorten the step in order to stay strictly feasible with some “buffer” to the
boundary of the feasible domain. A simple step-length procedure is described below (see also

[118, Ch.19.2]).

Find o; such that p; 4+ (d,); > 0 fori € {j : (d,); < 0} and o, such that p; + (d,); < p for

i€{j:(d,); > 0} using the following formulas:

. Pi . p— pi
a=09- mn {——7, a,=0.9- min )
: i+(dp)i <0 { (dp)i} #(dp)i>0 { (d,); }

The constant 0.9 guarantees the shortening of the step in the interior of the feasible domain.

Now take the smaller of these numbers and, in applicable, reduce it to 1:
a = min{oy, a,, 1} .

A more sophisticated (and complicated) line-search procedure is described in [64].

It is worth noticing that for a properly chosen initial barrier parameter and its update, the step-
length reduction is almost never needed; this was, at least, the case of our numerical examples

and our choice of the parameters.

153



7.4.4 Stopping rules

Following [64], we terminate the Newton method whenever

— 3

[Res| | [Res”|
< Tawr-
T Tl ol = ™

The full interior point method is stopped as soon as both parameters s; and s, are smaller than
a prescribed tolerance:

max{sy, $2} < Tp (7.21)

In our numerical experiments, we have used the values Tywr = 107! and 7 = 1078,
Remark 7.4.1. A more established criterium for terminating the interior point algorithm would

be to stop whenever all (scaled) residua are below some tolerance, i.e.,

—(3) _
|ResV[|  ||Res || oo WT(p—p)
+ <7—1P~
/1] el + el Nellllell — Nellllel

This criterium, however, leads to almost the same results as (7.21), hence we opted for the
simpler and more predictable one.
Remark 7.4.2. The parameter 7y is kept constant in our implementation, unlike in classic

path-following methods. We will return to this point later in Section 7.10.1.

7.5 Optimality Conditions method

One of the goals of this chapter is to compare the interior point method with the established
and commonly used Optimality Condition (OC) method. We will therefore briefly introduce
the basic algorithm and its new variant. For more details about its derivation and for general
introduction to OC, see [109, pp.57-61]. However, for an overview, we refer to ( [10, p.308])

and the references therein.

154



7.5.1 OC algorithm

Assume for the moment that the bound constraints in (7.1) are not present. Then the KKT

condition (7.6) would read as

—u'Kau+XA=0, i=1,...,m.

(For conveenience, we multiplied A from (7.6) by —%.) Multiplying both sides by p;, we get

pi)\:piuTKiu, 1=1,...,m

which leads to the following iterative scheme:

NEW __ 1

Pi —XpiuTKiu, 1=1,....,m.

The new value of p is then projected on the feasible set given by the bound constraints. The
value of A should be chosen such that > | pN*W = 1/ and is obtained by a simple bisection

algorithm. Hence we obtain the following algorithm called the OC method:

Algorithm OC Let p € R™ be given such that >\ p;, = V, p > 0. Repeat until conver-

gence:
Lou=(K(p)'f
2. A = 10000, A =0
3. While A — A > 7,

@ A= (A+1)/2

TK-
(b) mNEW:min{mu = ,ﬁ} L i=1,....m

155



(©) p=p"W
(d) if > p; > Vthenset A = A;elseif > ;" p; < V then set A = \
The value of the bisection stopping criterium 7, has been set to 1071,

Notice that, due to positive semidefiniteness of K;, the update in step 3(b) is always non-
negative and thus the lower-bound constraint in the original problem (7.1) is automatically

satisfied.

The basic version of the OC method converges (there are no known counter examples) but
is extremely slow. The reason for this is that, from the very first iterations, the method is
zig-zagging between two clusters of points. However, the following two modifications lead
to a substantial improvement. To the best of our knowledge, the second modification called

Averaged OC is new.

7.5.2 Damped OC

Algorithm DOC Let p € R™ be given such that ) | p; =V, p > 0. Repeat:

Here ¢ is called the damping parameter; the typical choice is ¢ = 1/2. This version of the

method is widely used among the structural engineers.

7.5.3 Averaged OC

Let us define an operator OC'(+) as a result of one step of the standard OC algorithm.

156



Algorithm AOC Let p € R™ be given such that > p; =V, p > 0. Repeat:
1. p = 0C(p)
2. p» =00 (pW)
3. p=3(p"M +p?)

Numerical experiments suggest that Algorithm AOC is slightly faster than Algorithm DOC.

This modification seems to be new, at least we did not find it in the existing literature.

7.6 Numerical experiments

7.6.1 Example shapel (Figure 7.6)

Consider an example with 200 finite elements (size of the vector p) and 440 degrees of freedom
(size of the vectors f and w). The exact solution (computed to a high precision by an interior
point method) is denoted by p*, the exact objective value by ¢* := fTu. Below we will show

the behaviour of Algorithms OC, DOC and AOC.

The stopping criterion for all algorithms is based on the error in the objective function (com-

l“—ckl —~ 1¢ — 9 or when the number of iterations

|e*]

pliance), the algorithms are stopped when

llo* —pl

exceeds 1000. The other error that is computed is o

The tables below show the iteration history. Here r. = |¢* — ¢x|/|c¢* — ¢x—1| and k, = ||p* —

oell/|lp* — pr—1]|| are the “rates of convergence”. In the following tables we use t := p.

7.6.1.1 Algorithm OC

Iteration Compliance lcx — c_k| kappa_c ||t* — t_k|| kappa_t
1 253.47217433
2 233.24746587 2.46e-001 0.6945 4.52e-001 0.9925

157



10

19

20

21

99

100

101

199

200

201

499

500

501

998

999

1000

As we can see, the method is very slow even for this small example. The zig-zagging is nicely

230.

228.

228.

227

226.

225.

225.

224.

221.

221

221.

210.

210.

210.

204.

204.

204.

197.

197.

197.

193.

193.

193.

52437432

91736820

02518620

.20043213

56896077

95733738

43710253

94610469

75671967

.50875407

22309611

47702091

40499587

30553582

52162766

48849378

44055943

86982900

86053782

84281336

14548314

13679828

13208387

.31e-001

.22e-001

.18e-001

.13e-001

.10e-001

.07e-001

.04e-001

.0le-001

.84e-001

.83e-001

.81e-001

.24e-001

.24e-001

.23e-001

.22e-002

.20e-002

.17e-002

.67e-002

.66e-002

.65e-002

.14e-002

.14e-002

.14e-002

158

.9408

.9629

.9786

.9798

.9842

.9844

.9866

.9871

L9912

.9928

.9917

. 9957

.9969

.9957

.9972

.9981

.9972

.9983

.9991

.9983

.9992

.9985

.9992

.64e-001

.10e-001

.62e-001

.05e-001

.56e-001

.02e-001

.51e-001

.00e-001

.30e-001

.86e-001

.27e-001

.45e-001

.20e-001

.43e-001

.91e-001

.76e-001

.90e-001

.31e-001

.09e-001

.30e-001

.47e-001

.83e-002

.47e-001

.8055

.1265

.8831

.1188

.8789

.1301

.8717

.1395

.8492

.1699

.8458

.7614

.3086

.7597

.6924

.4407

.691

.6241

.5998

.6241

.4917

.6697

.4911



seen on the norm ||t* — ¢;||. Moreover, although the method is monotone in the objective

function, it is not monotone in the error of the variables.

7.6.1.2 Algorithm DOC

Iteration Compliance lcx — c_k| kappa_c ||ltx — t_kI|| kappa_t
1 218.72897274

2 201.87454284 .80e-002 0.4644 .04e-001 0.7230

3 194.34554447 .78e-002 0.4848 .80e-001 0.6942

4 190.76755024 .87e-002 0.4950 .90e-001 0.6790

5 189.07387760 .68e-003 0.5171 .31le-001 0.6902

6 188.27402055 .41e-003 0.5589 .46e-002 0.7194

7 187.87401806 .28e-003 0.6054 .10e-002 0.7505

8 187.65628900 .11e-003 0.6452 .51e-002 0.7767

9 187.52944308 .44e-003 0.6796 .40e-002 0.7987

10 187.45201932 .02e-003 0.7122 .60e-002 0.8184

20 187.29101325 .64e-004 0.8859 .06e-002 0.9133

40 187.26488433 .40e-005 0.9167 .25e-003 0.9290

60 187.26120697 .39%e-006 0.9195 .06e-004 0.9270

80 187.26053907 .27e-007 0.9201 .08e-004 0.9245

100 187.26041363 .57e-007 0.9203 .20e-005 0.9229

120 187.26038985 .98e-008 0.9204 .37e-006 0.9219

140 187.26038532 .67e-009 0.9203 .54e-007 0.9213

160 187.26038446 .08e-009 0.9201 .65e-007 0.9210

161 187.26038445 .90e-010 0.9201 .52e-007 0.9210

A signifigant change, the dampened version of the method converges to a very high accuracy

solution in just 161 iterations. Monotonic behaviour of both errors.

159



7.6.1.3 Algorithm AOC

Iteration Compliance lcx — c_k| kappa_c ||tx — t_k|| kappa_t
1 198.81943433
2 188.24949007 .88e-002 0.0856 .29e-001 0.2798
3 187.48380356 .25e-003 0.2259 .82e-002 0.4286
4 187.35659827 .83e-003 0.4306 .83e-002 0.5942
5 187.31813681 .10e-003 0.6003 .13e-002 0.7083
6 187.29973325 .48e-004 0.6813 .14e-002 0.7600
7 187.28861782 .36e-004 0.7175 .45e-002 0.7819
8 187.28119974 .96e-004 0.7373 .95e-002 0.7928
9 187.27598748 .96e-004 0.7496 .55e-002 0.7989
10 187.27220953 .25e-004 0.7579 .25e-002 0.8021
20 187.26129840 .74e-005 0.7796 .37e-003 0.7974
30 187.26046171 .47e-006 0.7820 .33e-004 0.7889
40 187.26039090 .26e-007 0.7823 .21e-005 0.7851
50 187.26038483 .08e-008 0.7822 .06e-006 0.7835
60 187.26038431 .18e-010 0.7797 .22e-008 0.7832

Even faster convergence of the Averaged OC method (we should keep in mind that one AOC
iteration involves two basic OC steps, so 161 iterations of DOC should be compared to 110 OC

steps in AOC).

7.6.2 Example shape2 (Figure 7.6)

Consider an example with 3200 finite elements (size of the vector ¢) and 6560 degrees of

freedom (size of the vectors f and u).

Below we use the same notation as in the previous example.

160



7.6.2.1 Algorithm OC

Iteration

10

19

20

21

99

100

101

199

200

201

499

500

501

Compliance

76.

68.

67.

66.

65.

65.

65.

64.

64.

64.

63.

63.

63.

62.

62.

62.

61.

61.

61.

60.

60.

60.

31086103

80078947

44530725

20329382

79580256

33836762

12840538

86298014

72435435

54082056

80510518

74749223

70923353

44074286

43255097

42162194

66464903

65937020

65169202

21293724

20985774

20541185

lcx — c_k|

.07e-001
.82e-001
.58e-001
.50e-001
.42e-001
.38e-001
.32e-001
.30e-001

.26e-001

.12e-001
.11e-001

.11e-001

.86e-001
.86e-001

.86e-001

.72e-001
.72e-001

.71e-001

.44e-001
.44e-001

.44e-001

161

kappa_c

.6829
.9162
.9162
.9700
.9653
.9835
.9788
.9887

.9848

.9961
.9948

.9966

.9989
.9992

.9989

.9991
.9994

.9991

.9994
.9996

.9994

Fltx — t k||

.27e-001
.64e-001
.10e-001
.90e-001
.43e-001
.47e-001
.99%e-001
.15e-001

.67e-001

.64e-001
.94e-001

.63e-001

.45e-001
.75e-001

.44e-001

.29%9e-001
.63e-001

.29%9e-001

.96e-001
.34e-001

.96e-001

kappa_t

.9298
L7751
.0815
.8032
.1090
.8234
.1156
.8325

.1232

.9091
.0804

.9228

.9189
.0876

.9184

.9049
.1044

.9047

.8856
.1286

.8855



162

998 58.76061052 1.17e-001 0.9997 2.99%9e-001 1.1643
999 58.75793470 1.16e-001 0.9996 2.57e-001 0.8584
1000 58.75603704 1.16e-001 0.9997 2.99%9e-001 1.1645
Even slower convergence than for the small example, the same bad behaviour.
7.6.2.2 Algorithm DOC
Iteration Compliance lcx — c_k| kappa_c ||ltx — t_k|| kappa_t
1 65.68832914
2 60.22364871 .44e-001 0.5816 7.70e-001 0.9231
3 57.57783205 .41e-002 0.6517 7.09e-001 0.9211
4 56.09489206 .59e-002 0.7004 6.52e-001 0.9195
5 55.18398385 .86e-002 0.7373 6.00e-001 0.9200
6 54.58807732 .73e-002 0.7669 5.54e-001 0.9230
7 54.18045408 .95e-002 0.7921 5.14e-001 0.9280
8 53.89218199 .40e-002 0.8144 4.80e-001 0.9337
9 53.68246117 .00e-002 0.8342 4.51e-001 0.9389
10 53.52553338 .71e-002 0.8512 4.25e-001 0.9430
20 52.92452056 .64e-003 0.9123 2.52e-001 0.9499
30 52.75383695 .40e-003 0.9203 1.50e-001 0.9494
40 52.68275031 .05e-003 0.9207 9.09%e-002 0.9531
50 52.65255899 .74e-004 0.9277 5.93e-002 0.9629
100 52.63009636 .69e-005 0.9668 2.08e-002 0.9847
200 52.62775371 .43e-006 0.9744 5.14e-003 0.9873
300 52.62763961 .65e-007 0.9815 1.65e-003 0.9901
400 52.62762841 .25e-008 0.9856 6.91e-004 0.9924
500 52.62762634 .33e-008 0.9867 3.44e-004 0.9935
600 52.62762583 .53e-009 0.9868 1.82e-004 0.9938



695 52.62762570 9.92e-010 0.9863 1.01e-004 0.9939

Again, a much better behaviour. However, the rate of convergence apparently grows with the
number of variables. Note, however, that DOC gets in just three iterations a better solution than

OC in 1000 iterations. Furthermore, a useful solution is obtained in just about 50 iterations.

7.6.2.3 Algorithm AOC

Iteration Compliance lcx — c_k| kappa_c |ltx — t_k|| kappa_t
1 59.02479757

2 54.60065521 3.75e-002 0.3084 5.51e-001 0.7629

3 53.64328387 1.93e-002 0.5148 4.44e-001 0.8047

4 53.27418237 1.23e-002 0.6366 3.74e-001 0.8421

5 53.08421638 8.68e-003 0.7062 3.19e-001 0.8537

6 52.96575399 6.42e-003 0.7406 2.73e-001 0.8558

7 52.88421044 4.88e-003 0.7588 2.34e-001 0.8556

8 52.82502057 3.75e-003 0.7693 2.00e-001 0.8548

9 52.78064600 2.91e-003 0.7752 1.71e-001 0.8543

10 52.74665132 2.26e-003 0.7778 1.46e-001 0.8543

20 52.63940359 2.24e-004 0.8324 4.15e-002 0.9204

30 52.63085101 6.13e-005 0.8985 2.34e-002 0.9527

40 52.62881436 2.26e-005 0.9087 1.48e-002 0.9565

50 52.62809980 9.01le-006 0.9150 9.61e-003 0.9589

100 52.62763912 2.56e-007 0.9466 1.60e-003 0.9710

200 52.62762583 3.55e-009 0.9612 1.82e-004 0.9815

232 52.62762570 9.82e-010 0.9600 1.01e-004 0.9817

163



Again, this is the fastest method.

7.7 Multigrid conjugate gradient method

In both optimization algorithms introduced above, we repeatedly need to solve systems of linear
equations. In this section, we will introduce an efficient iterative method that seems to be most
suitable for these problems. Throughout this section, we assume that we want to solve the
problem

Az =0 (7.22)

where b € R"™ and A is a n X n symmetric positive definite matrix.

7.7.1 Multigrid method for linear systems

Recall first the Correction Scheme (CS) version of the multigrid algorithm (see, e.g., [57]). Let

opt denote a convergent iterative algorithm for (7.22):
Znew = Opt(Aa bu Z,8, V) )

where, on input, z is the initial approximation of the solution, ¢ is the required precision and
v the maximum number of iterations allowed. This will be called the smoother. A typical

example is the Gauss-Seidel iterative method.

Assume that there exist ¢ linear operators I,'j_l R™ — R™-1 k=2 ... f,withn :=n, >
ng_y > -+ > ng > ny and let If_ | = (I;™")T. These are either constructed from finite
element or finite difference refinements of some original coarse grid (geometric multigrid) or

from the matrix A (algebraic multigrid); see [20] for details.

164



Define the “coarse level” problems

Akzk:bk, ]{3:1,...76—1

with
Apr = YA, ey =L k), k=2,...,0.
Algorithm MG (V-cycle correction scheme multigrid)
Set ¢, g. Initialize 2(©.
fori =1 : niter
20 = mgm(¢, 29, by)
test convergence
end

function z(*) = mgm(k, Z(k)> Tk)

ifk=0
20) = opt(Ay, by; 2% g9, 10) (coarsest grid solution)
else
20) = opt( Ay, br; 2 g, 1) (pre-smoothing)
Tk—1 = [;]jfl(?“k — Akz(k)) (restricted residuum)
v* Y = mgm(k —1,0,,_,,7k_1) (coarse grid correction)
20 = 28) [k (k1) (solution update)

165



20) = opt( Ay, br; 2 g, 1) (post-smoothing)

end

7.7.2 Multigrid preconditioned conjugate gradient method

Although the multigrid method described above is very efficient, an even more efficient tool
for solving (7.22) may be the preconditioned conjugate gradient (CG) method, whereas the
preconditioner consist of one step of the V-cycle multigrid method. The algorithm is described

below (see, e.g., [45]).

Algorithm PCG
Given initial z, setr := Az — b
y = mgm({,0,,r)
Setp:=—y

fore =1 : niter

rTy
o=
pTAp
z:=z+ap
T:=r+aAp

_y
/6'_ TTy
p:=—y+Pp
ri=T,Y:=1

166



test conver gence

end

7.8 Multigrid conjugate gradients for IP and OC methods

The main goal of this section (and of the whole chapter) is to study the effect of the multigrid
preconditioned CG method in the IP and OC algorithms. We will also compare them to their

counterparts, IP and OC with direct solvers.

The details on discretization and the choice of prolongation and restriction operators will be

given in Section 7.9.

7.8.1 Multigrid conjugate gradients for IP

Our goal is to solve the linear systems arising in the Newton method, by the conjugate gradient
method preconditioned by one V-type multigrid step. We can choose one of the three equivalent
systems to solve, namely the full system (7.12), the reduced saddle-point system (7.15) and the

so-called augmented system (7.17). We prefer the last one for the following reasons.

* The matrix Z in (7.17) is positive definite and we can thus readily apply the standard
conjugate gradient method together with the standard V-cycle as a preconditioner. We
could, of course, use GMRES or MINRES for the indefinite systems in (7.12) and (7.15),
however, the multigrid preconditioner, in particular the smoother, would become more
complicated in this case; see [76], who used so-called transforming smoothers introduced

by Wittum [116].

* In order to use the multigrid preconditioner, we have to define prolongation/restriction
operators for the involved variables. This can be easily done in case of the system (7.17)

that only involves the displacement variable © € R™ plus one additional variable A, the

167



Lagrangian multiplier associated with the volume constraint; see the next Section 7.9 for

details.

If, on the other hand, we decided to solve (7.12) or (7.15), we would have to select an
additional restriction operator for the variables associated with the finite elements; this
operator should then be “compatible” with the nodal-based restriction operator. This is a

rather non-trivial task and can be simply avoided by choosing system (7.17).

The matrix Z from (7.17) is positive definite, sparse and typically has an arrow-type sparsity
structure: it is banded apart from the last full row and column; see Figure 7.3-left. The band-
width grows, approximately, with the square root of the problem size. At the same time, the

number of non-zeros in each row is always the same, notwithstanding the problem size.

T
of

201

401

50

60 -

80

100+ 4 100

120

140

150 L+ I I I I I I I I I I
0 50 100 150 0 20 40 60 80 100 120 140

Figure 7.3: Typical sparsity structure of matrix Z from the augmented system (7.17) (left) and
of the stiffness matrix K (right)

Stopping rule It is a big advantage of iterative methods, over direct solvers, that they allow
us to control the precision of the approximate solution and stop whenever even a low required

precision is reached. In our implementation, the PCG method is stopped whenever

]| |lb]] < 1072 (7.23)

168



where r is residuum and b the right-hand side of the linear system, respectively. In this way
we only compute an approximate Newton direction; it is shown, e.g., in [29] that the resulting
method converges once the approximate Newton direction is “close enough” (though not in-
finitesimally close in the limit) to the exact solution of the Newton system. Furthermore, for
convex quadratic programming problems, Gondzio [46] has shown that when the PCG method
is stopped as soon as ||7|| < 0.05s (s being the barrier parameter), the theoretical complex-
ity of the interior point method is the same as with the exact linear solver. Inexact iterative
solvers in the context of other optimization problems and algorithms were further studied, e.g.,

in [27, 68,80, 107].

In our case, the value of 1072 proved to be a good compromise between the overall number
of Newton steps and the overall number of PCG iterations within the IP method. With this
stopping criterium, the IP methods requires, typically, 2—4 PCG iterations in the initial and in
many subsequent IP steps. Only when we get close to the required accuracy, in the last 2-3 IP
steps, the conditioning of the matrix Z increases significantly and so does the number of PCG

steps, typically to 10-30; see the next section for detailed numerical results.

7.8.2 Multigrid conjugate gradients for OC

Within the OC algorithm, the multigrid CG method will be used to solve the discretized equi-
librium equation Ku = f. Recall that K is assumed to be a positive definite matrix. Moreover
K is very sparse and, if a reasonably good numbering of the nodes is used, banded. A typical
non-zero structure of K is shown in Figure 7.3-right: it is exactly the same as for the matrix in
(7.17) in the IP method, apart from the additional last column and row in the augmented matrix

in (7.17).

The only degrees of freedom in the resulting algorithm are the stopping criteria for the OC

method and for the multigrid CG method.

169



The overall stopping criterium As the dual information is not readily available, so far the
only practical (and widely used) stopping criterium for the OC method is the difference in the
objective function value in two subsequent iterations. Needless to say that, unless we have an
estimate for the rate of convergence, this criterium can be misleading and may terminate the
iteration process long before some expected approximation of the optimum has been reached.
Nevertheless, many numerical experiments suggest that this criterium is not as bad as it seems

and serves its purpose for the OC method.

Hence the OC method is typically stopped as soon as

| Tue — fTup 1| < Toc (7.24)

where k is the iteration index. In our numerical experiments we have used 7, = 107°; this
value has been chosen such that the OC results are comparable to the IP results, in the number
of valid digits both in the objective function and in the variables; see Section 7.10 for more

details.

Stopping criterium for the multigrid CG method As already mentioned above, one of the
advantages of an iterative method is the fact that an exact solution to the linear system is not
always needed. In such a case, we can stop the iterative method after reaching a relatively low
accuracy solution. The required accuracy of these solutions (such that the overall convergence
is maintained) is well documented and theoretically supported in case of the IP method; it is,
however an unknown in case of the OC method; see [3] for detailed discussion. Clearly, if the
linear systems in the OC method are solved too inaccurately, the whole method may diverge or

just oscillate around a point away from the solution.

We have opted for the following heuristics that guarantees the (assumed) overall convergence
of the OC method. Notice that the OC method is a feasible descent algorithm. That means that
every iteration is feasible and the objective function value in the k-th iteration is smaller than

that in the (k — 1)-st iteration. Hence

170



o we start with 7 = 1074 ;
o if fTu, > fTup_y, we update 7 := 0.17.

In our numerical tests, the update had to be done only in few cases and the smallest value of 7
needed was 7 = 1075, Recall that this is due to our relatively mild overall stopping criterium
(7.24). In the next section, we will see that this heuristics serves its purpose, as the number of
OC iterations is almost always the same, whether we use an iterative or a direct solver for the

linear systems.

7.9 Numerical experiments

This section contains detailed results of three numerical examples. All codes were written
entirely in MATLAB. Notice, however, that when we refer to a direct solver for the solution of
linear system, we mean the backslash operation in MATLAB which, for our symmetric positive
definite systems, calls the CHOLMOD implementation of the Cholesky method [25]. This
implementation is highly tuned, very efficient and written in the C language. So whenever we
compare CPU times of the iterative solver with the direct solver, we should keep this in mind.
These comparisons are given solely to show the tendency in the CPU time when increasing the
problem size. All problems were solved on an Intel Core 15-3570 CPU at 3.4GHz with 8GB

RAM, using MATLAB version 8.0.0 (2012b) running in 64 bit Windows 7.

In all examples, we use square finite elements with bilinear basis functions for the displacement
variable v and constant basis functions for the thickness variable p, as it is standard in topology

optimization. The prolongation operators [} | for the variable u are based on the nine-point

11 1
4 2 4
interpolation scheme defined by the stencil % 1 % ; see, e.g., [57]. When solving the
1 1 1
4 2 1

linear system (7.17) in the interior point method, we also need to prolong and restrict the single

additional variable \; here we simply use the identity.

171



The examples are solved with isotropic material with Young’s modulus equal to 1 and Poisson’s
ratio 0.3. The physical dimensions of the computational domain are given by the coarsest mesh,
whereas the coarse level element has dimension 1 x 1. The value of the force is always equal

to (0,-1). The upper bound on the variable p is set to p = 2.
The meaning of the captions in the following tables:

problem. . . the first two numbers describe the dimension of the computational domain, the

last number is the number of mesh refinements
variables. . . number of variables in the linear systems
feval. .. total number of function evaluations (equal to the number of linear systems solved)
total CG iters. .. total number of CG iterations in the optimization process
solver CPU time. . .total CPU time spent in the solution of linear systems

average CG iters. ..average number of CG iterations per one linear system

7.9.1 Example 1

We consider a square computational domain with the coarsest mesh consisting of 2x 2 elements.
All nodes on the left-hand side are fixed, the right-hand middle node is subject to a vertical
force; see Figure 7.4. We use up to nine refinements levels with the finest mesh having 262 144

elements and 525 312 nodal variables (after elimination of the fixed nodes).

Table 7.1 presents the results of the interior point method. We can see that, with increasing
size of the problem, the total number of CG iterations is actually decreasing. This is due to our
specific stopping criterium explained in the previous section. We also observe that the average
number of CG iterations per linear system is very low and, in particular, is not increasing with

the problem size, the result of the multigrid preconditioner.

172



FHFFHHHO OO FH R R
i Sy Sy Sy Sy Sy iy Sy Sy Sy Hy By Sy Wiy Hiy My By )

Figure 7.4: Example 1, initial setting with coarsest mesh and optimal solution.

Table 7.1: Example 1, interior point method with iterative solver

total solver average

problem variables feval CGiters CPU time CG iters
223 145 31 253 0.18 8.16
224 545 30 281 0.44 9.37
225 2113 29 197 0.91 6.79
226 8321 28 139 2.79 4.96
227 33025 27 119 12.7 441
228 131585 25 104 45.8 4.16
229 525313 27 85 156.0 3.15

Let us now compare these results with those for the OC method where the linear system is
just the equilibrium equation; see Table 7.2. As expected, the number of OC iterations (and
thus the number of linear systems and the total number of CG iterations) grows with the size
of the problem. Also in this case the average number of CG iterations is almost constant,

notwithstanding the size of the problem.

The comparison of the interior point method with the OC method is graphically presented in
Figure 7.5 (left). Here we can see, in the log-log scale, the total CPU time spent in the linear
solver, growing with the size of the problem. While initially worse than the OC method, the
interior point method grows slower and soon catches up and overtakes the OC method. For
both methods, the growth is almost linear for the larger problems, so that we can estimate the

growth in the CPU time as a polynomial function cn? of the problem dimension n. For the

173



Table 7.2: Example 1, OC method with iterative solver

total solver average

problem variables feval CGiters CPU time CG iters
223 144 19 56 0.04 2.95
224 544 33 100 0.14 3.03
225 2112 55 164 0.65 2.98
226 8320 85 254 4.84 2.99
227 33024 111 332 30.8 2.99
228 131584 119 362 133.0 3.04
229 525312 123 368 636.0 2.99

interior point method, the degree d = 0.907 while for the OC method d = 1.09. This means
that the overall computational complexity of the IP method with inexact Newton and inexact
multigrid CG methods is slightly sublinear. For the OC method, it is just a bit worse than

linear.

Interior point vs OC method Interior point: iterative vs direct solver

3.00 1.00

1.00

0.00 =~ |P-iter
P 4 s & —m-0Citer

-1.00

-3.00

0.00

|
=3
S

—o—iterative

~@-direct

Total CPU time

~
°
8

CPU time per one linear system

w
=)
S]

&
5
8

Problem size Problem size

Figure 7.5: Example 1, left: total CPU time spent in the iterative linear solver for the interior
point and the OC method; right: interior point method, total CPU time spent in the iterative
linear solver and in the direct solver.

In Figure 7.5 (right) we compare the iterative solver used in the interior point method with a
direct Cholesky solver (see the warning at beginning of this section!). We can clearly see that
the time for the (C coded) direct solver grows quicker than for the (MATLAB coded) iterative

solver.

174



7.9.2 Example 2

The next example is similar to the previous one, only the computational domain is “longer” in
the horizontal direction; the coarsest mesh consists of 4 x 2 elements. It is well known that the
conditioning of this kind of examples grows with the slenderness of the domain. As before, all
nodes on the left-hand side are fixed, the right-hand middle node is subject to a vertical force;
see Figure 7.6. Again, we use up to nine refinements levels with the finest mesh having 524 288

elements and 1 050 624 nodal variables (after elimination of the fixed nodes).

R R
Sy By By By By By By By Sy Sy By By By By By By By Sy 5

Figure 7.6: Example 2, initial setting with coarsest mesh and optimal solution.

We first show the results of the interior point method in Table 7.3. Just as in the previous
example, the total number of CG iterations is decreasing with the increasing size of the problem.
Again, the average number of CG iterations per linear system is very low and not increasing.

Compare this with the OC solver results in Table 7.4. In this case, we only consider eight

Table 7.3: Example 2, IP method with iterative solver

total solver average

problem variables feval CGiters CPU time CG iters
423 288 33 265 0.24 8.03
424 1088 32 342 0.87 10.69
425 4224 31 207 1.89 6.68
426 16640 30 160 7.77 5.33
427 66048 29 139 31.1 4.79
428 263168 27 123 119.0 4.56
429 1050624 27 101 385.0 3.74

refinement levels, as the largest problem would take too much time on our computer. Contrary

175



to the previous example, the average number of CG iterations is slightly increasing due to the

worse conditioning.

Table 7.4: Example 2, OC method with iterative solver

total solver average

problem variables feval CGiters CPU time CG iters
423 288 39 117 0.13 3.00
424 1088 45 144 0.34 3.20
425 4224 77 262 2.10 3.40
426 16640 123 423 16.2 3.44
427 66048 157 542 97.1 3.45
428 263168 165 739 552 4.48

Figure 7.7 (left) gives the comparison of the interior point with the OC method. We can see
even more clearly than in the previous example the faster growth of the OC method. When we
calculate the degree of the assumed polynomial function cn? of the problem dimension n from
the larger examples, we will obtain d = 0.944 for the interior point method (so a linear growth)

and d = 1.28 for the OC method.

Interior point vs OC method Interior point: iterative vs direct solver

4.00
3.00

2.00

6

1.00 —o—|P-iter ~o—iterative

~#-OC-iter ~@-direct

Total CPU time

0.00

CPU time per one linear system

-1.00

-2.00 -4.00 -
Problem size Problem size

Figure 7.7: Example 2, left: total CPU time spent in the iterative linear solver for the interior
point and the OC method; right: interior point method, total CPU time spent in the iterative
linear solver and in the direct solver.

Figure 7.7 (right) compares the iterative solver used in the interior point method with the
Cholesky solver (see the beginning of this section), giving the same picture as in the previ-

ous example.

Finally in Figure 7.8 we compare the average number of CG steps per linear system in the

176



interior point and the OC solver. We can see that while the graph is decreasing for the IP
method, it is slowly increasing in case of the OC method. The reason for that is that, in this
example, we had to decrease the stopping criterium for the CG solver in the OC method, in

order to guarantee its convergence (see Section 7.8.2 for explanation).

CG iterations per system: IP vs OC
11.00

=
o
o
1<)

o
o
o

i
o
S

N
=3
<]

—o—I|P
—-0C

Average CG iterations per linear system
w s~ o
o o (=] o
g8 8 8 8

g
=]
S

2 3 4 5 6
Problem size

Figure 7.8: Example 2, average number of CG iterations per linear system for the interior point
and the OC method.

7.9.3 Example 3

The computational domain for our final example is a rectangle, initially discretized by 8 x 2
finite elements. The two corner points on the lower edge are fixed and a vertical force is applied
in the middle point of this edge; see Figure 7.9. We use up to eight refinement levels with the
finest mesh having 262 144 elements and 568 850 nodal variables (after elimination of the fixed

nodes).

The results of the interior point method are shown in Table 7.5. Yet again, the total number
of CG iterations is decreasing with the increasing size of the problem and the average number
of CG iterations per linear system is very low and not increasing. The negative complexity
factor is caused by the exceptional difficulties of the CG method in the last interior point step

in problem 823.

Table 7.3 presents the results of the OC method. As in Example 2, the average number of CG

iterations is increasing due to the worse conditioning.

177



Table 7.5: Example 3, IP method with iterative solver

total solver average

problem variables feval CGiters CPU time CG iters
822 170 33 284 0.21 8.61
823 594 31 383 0.78 12.35
824 2210 32 121 0.60 3.78
825 8514 31 166 341 5.35
826 33410 26 140 14.8 5.38
827 132354 26 133 78.8 5.12
828 526850 25 121 217.0 4.84

Table 7.6: Example 3, OC method with iterative solver

total solver average

problem variables feval CGiters CPU time CG iters
822 170 23 69 0.04 3.00
823 594 37 147 0.21 3.97
824 2210 57 267 1.16 4.68
825 8514 75 374 7.40 4.99
826 33410 99 495 51.8 5.00
827 132354 111 665 290.0 5.99

828 526850 113 677 1250.0 5.99

178



Figure 7.9: Example 3, initial setting with coarsest mesh and optimal solution.

Figure 7.10 (left) compares of the interior point with the OC method. Yet again, the interior
point method is a clear winner, both in the absolute timing as in the growth tendency. Calcu-
lating the degree of the assumed polynomial function cn? of the problem dimension n from
the larger examples, we get d = 1.09 for the interior point method and d = 1.24 for the OC

method.

Interior point vs OC method Interior point: iterative vs direct solver

3.00

1.00 B .
—o—|P-iter —o—iterative

~-0C-iter ~@-direct

Total CPU time

0.00

-1.00

CPU time per one linear system

Problem size Problem size

Figure 7.10: Example 3, left: total CPU time spent in the iterative linear solver for the interior
point and the OC method; right: interior point method, total CPU time spent in the iterative
linear solver and in the direct solver.

In Figure 7.10 (right) we compare the iterative solver used in the interior point method with
the Cholesky solver (see the beginning of this section). Finally in Figure 7.11 we compare the

average number of CG steps per linear system in the interior point and the OC solver. We can

179



see that while the graph for the IP method has a decreasing tendency, it is increasing in case of
the OC method. As before, the reason for that is that we had to decrease the stopping criterium

for the CG solver, in order to guarantee its convergence (see Section 7.8.2).

CG iterations per system: IP vs OC

2
/\

-
g
o
S

-
=
=3
S

i
o
=3
S

o
=3
S

i
o
o

A
o
IS}

o
=3
S

»
o
o

w
o
S

Average CG iterations per linear system
~N
o
o

Problem size

Figure 7.11: Example 3, average number of CG iterations per linear system for the interior
point and the OC method.

7.10 How exact is ‘exact’?

7.10.1 Interior point method

In this approach we are using slightly nonstandard stopping criteria within the interior point
method. In particular, with the decreasing barrier parameters s, s, we do not decrease the
stopping tolerances Tywr and 7 for the Newton method and for the conjugate gradients, re-
spectively, although both is required for the theoretical convergence proof. In Figure 7.12 we try
to give a schematic explanation. Here we depict the feasible region and three points p1, p2, p3
on the central path, corresponding to three values of the barrier parameter r; > ro > r3. The
exact solution lies in the corner of the feasible region. The circle around each of these points
depict the region of stopping tolerance of the Newton method, once we get within, the Newton
method will stop. The radius of these circles is decreasing, even though 7y is kept constant.
The idea is now obvious: it is “better” to stay within the tolerance circle of ps rather than to get

very close to ps.

180



Figure 7.12:

In the lemma below, p* is a point on the central path corresponding to a barrier parameter s;

and p an approximation of p* resulting from inexact Newton method. We will show that, even

with a fixed stopping criterium for the Newton method, p must converge to p* with s going to

zero. For simplicity of notation, we will just verify it for the lower bound complementarity part
——3)

of Res .

Lemma 7.10.1. Let p* > 0 satisfies the perturbed scaled complementary condition

Yip; — S1
Pi

=0, i=1,...,m (7.25)

and let p > 0 be an approximation of p* satisfying

_ PYiPi — S1
Pi

Izl <7, 2 (7.26)

with some T > 0. Then there is an ¢ > 0 depending on s, and T such that ||p* — p|| < e.

Moreover, if s, tends to zero then also ¢ tends to zero.

Proof. From (7.25) we have that ¢; = ;—1 and thus (7.26) can be written as
(a2 <
Pi

i1 \Fi

181



which is, in particular, means that

51 S1 .
<T7 1217 y T
Pi Pi
1.e.,
*
\p; — pil .
— <57, i=1,...,m.
PiPi

Clearly, when s; tends to zero, p must tend to p*. [

How good solution can we get when replacing the (“exact”) direct solver by an inexact iterative
method for the solution of the Newton systems? We may expect that, with the ever decreasing
barrier parameter, the inexact version will get into numerical difficulties sooner than the exact
one. Table 7.7 answers this question. In topology optimization, the important variable is p, the
“density”. With lower bound equal to zero, the quality of the solution may be characterized
by the closeness of components of p to this lower bound (that is, in examples where the lower
bound is expected to be reached, such as in Example 1 with sufficiently fine discretization).
In Table 7.7 we display the smallest component of p, denoted by p,;, for Example 1 with 6
refinements levels, i.e., example 226 from Table 7.2. The meaning of other columns in Table 7.7

is the following:

barrier. . . the smallest value of the barrier parameters s, s, before the interior point algorithm

was terminated;

IPNWT,CG. .. the total number of iterations of the interior point method, the Newton method

and conjugate gradients, respectively;

Cholesky. . . the linear system was solved by the CHOLMOD implementation of the Cholesky

method;

CG tol fixed... the linear system was solved by the multigrid preconditioned conjugate

gradient method with a fixed stopping criterium ||| |b]] < 1072; see (7.23);

182



CG tol decreasing. .. as above but with a variable stopping criterium ||7|| |b]| < Tcq, where
Tec is initially equal to 1072 and is then multiplied by 0.5 after each major iteration of

the interior point method.

Table 7.7: Number of iterations and error in the IP solution for different values of 7
and three different linear solvers.
| Cholesky | CG tol fixed | CG tol decreasing

7w IP|NWT  puw  |[NWT  CG  pun |NWT  CG  pu

1078 12 28 1.6-107° 28 139 1.8-107° 28 587 1.6-107°
10719 15 34 1.0-1077 35 291 2.7-1077 34 4285 1.0-1077
10712 18 40 1.0-107° 72 2832 24-107° 40 10042 1.5-107°
107 21 46 6.4-107'2 296 63674 1.9-107! 53 23042 1.9-107H
10716 24 52 6.2-1074 489 88684 1.4-10713 82 52042 1.4-10713

We can see that all three algorithms were able to solve the problem to very high accuracy.
However, both versions of the CG method had problems with very low values of the barrier
parameter. The “CG tol fixed” version needed very high number of the Newton steps, while the
“CG tol decreasing” version needed very high number of the CG steps to reach the increased
accuracy. (Notice that the maximum number of CG iterations for one system was limited to
1000.) On the other hand, for barrier parameter equal to 10~® (our choice in the numerical
examples above), both inexact solvers were on par with the exact one and, due to the lower
accuracy required and thus lower number of CG steps, the “CG tol fixed” version is the method

of choice.

7.10.2 OC method

In the OC method, we have to solve the equilibrium problem with the stiffness matrix K (p);
that means, K (p) must not be singular. A common way how to approach this is to assume
that p is strictly positive, though very small. Typically, one would modify the lower bound
constraint to 0 < P < i 1 =1,...,m with p= 1075, for instance. Once the OC method is
terminated, all values of p with p; = p are set to zero. This is usually considered a weakness of

the OC method, because we do not exactly solve the original problem, only its approximation

183



(see [1]). Somewhat surprisingly, in the examples we solved using our MATLAB code, the
value of p could be actually very low, such as p = 107°. The stiffness matrix K (p) will,
consequently, become extremely ill-conditioned (in the above case the condition number will
be of order 10%°), nevertheless, CHOLMOD does not seem to have a problem with that and the

OC method converges in about the same number of iterations as if we set p = 107,

The main question is how does the quality of the solution depends on the heuristic stopping
criterium (7.24). Our next Table 7.8 sheds some light on this. We solve the example 226
from Table 7.2 for various values of the stopping criterium 7, and two different values of
the lower bound 2 We then compute, pair-wise, the norm of the difference of these solution.
Notice that the stopping criterium 7o = 107°° and, in this case, the OC method has been
terminated after 5000 iterations (i.e., 10000 solutions of the linear system). For instance, the
maximum norm of the difference between the solutions with 7o = 107° and 7o = 107 is
| p—5— p—s0/|lec = 0.126, while ||p_g—p_s0|lc = 0.016. Notice that the norm is not scaled, e.g.,
by the dimension of p, hence the numbers are relatively large. Also, to get a clearer picture, we
used a direct linear system solver.

Table 7.8: The norm of difference of two OC solutions p for various values of the stopping

criterium 75 = 107°,1077,1079,107°°, and for two values of the lower bound p = 10~" and
p = 1077, Upper triangle shows the 2-norm, lower triangle the infinity norm.

lower bound ‘ 1077 ‘ 10717
| Toc | -5 -7 9 50| -5 -7 9 50
-5 0 1.09 119 126| 2-6 110 1.18 126
107 -7 10.114 0 0.116 0.281| 1.09 0.013 0.110 0.281
-9 10.123  0.01 0 0.190| 1.19 0.103 0.009 0.190
50 [ 0.126  0.025 0.016 0| 1.26 0271 0.198 4e-6

-5 | 2e-7 0.114 0.123 0.126 0 1.10 1.19 1.26
-7 10.116 0.001 0.009 0.024 | 0.116 0 0.094 0.271
-9 10.123 0.009 8e-4 0.017 | 0.123 0.008 0 0.198
-50 | 0.126  0.025 0.016 3e-7 | 0.126 0.024 0.017 0

10—17

184



7.10.3 Interior point versus OC method

We again solve example 226 from Table 7.2, this time by the interior point method with an exact
linear solver and various stopping parameters 7;». In Table 7.9, these solutions are compared (in
two different norms), to the ‘exact’ solution obtained in the previous section by 5000 iterations
of the OC method with p = 10~'7. Comparing these numbers to those in Table 7.8, we can see
that the IP method delivers very good solution already for our standard value 7, = 1.00.1078;
this is comparable to OC solution with 7, = 1.00.10~". Moreover, decrease of 73, leads to a
rapid decrease of the error, unlike in the OC method.

Table 7.9: Two different norms of the error of the IP method in variable p for different values

of the stopping parameter 7. As an ‘exact’ solution p* we take the OC solution after 5000
iterations with lower bound p = 10717,

Tip le—=r*ll2 llp—rlls

1.00.107%  2.47.107% 2.49.1072
1.00.1071% 9.60.107* 1.50.1073
1.00.107'2 2.07.107* 4.95.107°
1.00.107* 1.70.107® 4.66.1077

Finally, we compare the quality of the solution by evaluating the optimal objective value. No-
tice first that all solutions generated by both the OC and the IP method are feasible, hence when
comparing the objective values it holds “the lower the better”. In Table 7.10 we give the objec-
tive values computed by two versions of the IP algorithm and by the OC method, all with two

different stopping criteria. In particular,

IP-Chol-n stands for the IP method with Cholesky factorization and with 7, = 107",

IP-mgm-n stands for the IP method with the multigrid preconditioned CG method and with

Tip = 1077'1.

OC-n stands for the OC method with Cholesky factorization and with 7, = 107".

We solved problems 223-229; the row IP-Chol-14 shows the “exact” solution where the last

185



displayed digit would not change if we increased the precision (the value of 7, = 1071* was
found experimentally). The remaining rows show the computed objective values with incorrect
digits in boldface and underlined (an approximation z to z has p correct significant digits if Z
and z round to the same number to p significant digits). Looking at the table, we can make

several conclusions:

* The number of correct significant digits is decreasing with the increasing size of the
problem. This holds for all tested algorithms. This is despite the fact that the stopping
criterion in the IP method — the satisfaction of the KKT conditions — takes into account

the problem size.

* [P-Chol is always better than IP-mgm with the same stopping criterion. This is due to

the inexact solution of the linear system. This fact is more obvious for smaller problems.

* The IP method (in particular IP-Chol) is very predictable—by decreasing 7, by two

orders, we typically gain two more correct significant digits.

Table 7.10: Objective function (compliance) values on different levels computed by the IP and
OC methods for Example 1.
problem ‘ 223 224 225 226 227 228 229
IP-Chol-14 ‘ 5.99863328 6.20894142 6.42788583 6.64721163 6.86709911 7.08741189 7.30790336

IP-mgm-8 | 5.99863745 6.20899584 6.42804879 6.64732131 6.86745856 7.08821162 7.31305766
IP-Chol-8 | 5.99863355 6.20894390 6.42790129 6.64729076 6.86745909 7.08833561 7.31171044
IP-mgm-10 | 5.99863257 6.20896690 6.42799051 6.64734688 6.86717581 7.08755905 7.30812138
IP-Chol-10 | 5.99863329 6.20894144 6.42788594 6.64721220 6.86710169 7.08741881 7.30793294
OC-5 5.99863664 6.20896326 6.42791540 6.64729898 6.86728948 7.08771830 7.30826717
OC-7 5.99863336 6.20894181 6.42788669 6.64721318 6.86710229 7.08742640 7.30797924

7.11 Conclusions

Based on the results of our numerical experiments, we make the following conclusions.

* The interior point method clearly outperforms the OC method on large-scale problems.
The larger the problem, the bigger the difference. This is independent of the fact whether

direct or iterative solver is used for the linear system.

186



* The inexact multigrid preconditioned CG method outperforms even a very sophisticated
direct solver, at least for large to very-large scale problems. This holds for both, the
interior point and the OC method. Especially if the method is coded in C because the most
time is spent in smoother symmetric Gauss Seidel (SGS). Namely, SGS needs computing
triu and tril (upper and lower triangle, respectively) which are MATLAB commands. It

would be much faster if these commands are implemented in C.

* Very large problem can be implemented by using the current idea of the inexact multigrid
preconditioned CG method on parallel computers. However, neither SGS nor Cholesky
can not be easily parallelized; then the real benefit of the parallel approach might be to
have a smoother can be easily parallelized. The question is, what is a good parallelized
smoother? There is a nice paper by Adam et. al. [2] says that the best smoother which
easily parallelizable and comparable to SGS is the polynomial smoother, in particular,
Chybeshev with cubic polynomials. This idea has not implemented in the current thesis
because we implemented everything on series computers not on parallel computers, then

the difference can not been seen but one can rely on the literature from standard multigrid.

* Also in the OC method, the multigrid preconditioned CG algorithm is predictable and
very stable, both with respect to the size of the problem and of the OC iteration (and thus
of the condition number of the stiffness matrix). Perhaps rather surprisingly, not more
than 10 CG iterations are needed, even when high precision of the OC method is required.
This is the effect of the multigrid preconditioner: notice that in [113] the authors report
about 100-200 CG steps needed (with a different preconditioner) and thus propose to
use so-called recycling of the Krylov subspaces, in order to accelerate CG convergence

speed. This is just not needed here, given the very low number of CG steps.

* The behaviour of the interior point method is very predictable. More surprisingly, also
the behaviour of the chosen iterative method, the multigrid preconditioned conjugate

gradients, is also very predictable and independent on the size of the problem.

187



* The OC method has one noticeable advantage to the interior point method. It can quickly
identify the “very strongly” active constraints, those with large Lagrangian multiplier.
Due to the projection of variables on the feasible set, the active variables are then exactly
equal to the bounds. Contrary to that, the interior point method only approaches the
boundary. This may be particularly significant in case of lower bounds, when the user
has to decide which values are cut off and considered zero (and thus interpreted as void).
Clearly, the lower bound for the OC method has to be positive but it can be set very low

(e.g., 10717) and is then exactly reached.

From the above, it seems to be obvious to recommend the interior point method with multi-
grid preconditioned CG solver as the method of choice for large scale topology optimization
problem. However, we should keep in mind that the use of multigrid is rather restricted by
the assumed existence of regularly refined finite element meshes. This is easily accomplished
when using “academic” examples with regular computational domains such as squares, rect-
angles, prisms and unions of these. For geometrically complex domains appearing in practical
examples, multigrid may not be so suitable or may even be unusable. In these cases, we can
resort to domain decomposition preconditioners. In [70] it was shown that, in connection with
the interior point method, they also lead to very efficient techniques for topology optimization

problems.

188



CHAPTER 8

CONCLUSION AND FUTURE WORK

This dissertation has investigated the use of multigrid methods in certain classes of optimization
problems, with emphasis on structural, namely topology, optimization. In the first part, we have
investigated the solution bound constrained optimization problems arising in discretization by
the finite element method, such as elliptic variational inequalities. For these problems we have
proposed a “direct” multigrid approach which is a generalization of existing multigrid methods
for variational inequalities. We have proposed a nonlinear first order method as a smoother
that reduces memory requirements and improves the efficiency of the resulting algorithm, as

documented on several numerical examples.

In the second part of the thesis, we intended to apply the same direct multigrid approach to
the solution of the topology optimization problem. It turns out that this problem is not suitable
for the direct approach, due to the presence of two different types of variables. Instead, we
have proposed to use an interior point method as an “outer” solver of the discretized optimiza-
tion problem. The large scale systems of linear equations (the Newton equations) arising in
the interior point method are then solved by standard linear multigrid techniques, adopted for
the Newton equations. More precisely, we use the multigrid preconditioned conjugate gradient
method. The resulting algorithm turns out to be very efficient and clearly outperforms the inte-
rior point method using a state-of-the art direct solver. Moreover, the behaviour of the multigrid

conjugate gradient method within the interior point algorithm is very stable, predictable and,

189



most of all, independent of the problem size.

In the future work, we would like to address the question of finding a larger class of optimiza-
tion problems approachable by the first order direct multigrid method introduced in the first
part of the thesis. However, on of the results of our study is the fact that the direct approach
is limited to problems with relatively simple constraints. For more complicated optimization
problems, we propose to use a linear multigrid method within a standard optimization solver
such as the interior point method employed in this thesis. Furthermore, to attack even more
general problems for which geometric multigrid cannot be used and which, perhaps, do not
arise from the discretization of infinite dimensional problems, the use of algebraic multigrid
within a standard optimization solver should be investigated. The main benefit would again be

the independence of the solver efficiency on the size of the problem.

190



REFERENCES

[1] W. Achtziger. Local stability of trusses in the context of topology optimization part I:
exact modelling. Structural Optimization, 17(4):235-246, 1999.

[2] M. Adams, M. Brezina, J. Hu, and R. Tuminaro. Parallel multigrid smoothing: polyno-
mial versus gauss—seidel. Journal of Computational Physics, 188(2):593-610, 2003.

[3] O. Amir, N. Aage, and S. Lazarov. On multigrid-cg for efficient topology optimization.
Structural and Multidisciplinary Optimization, 49(5):815-829, 2014.

[4] O. Axelsson. A generalized conjugate gradient, least square method. Numerische Math-
ematik, 51(2):209-227, 1987.

[5] O. Axelsson. Iterative solution methods. Cambridge university press, 1996.

[6] L. Badea. Global convergence rate of a standard multigrid method for variational in-
equalities. IMA Journal of Numerical Analysis, page drs054, 2013.

[7] N. S. Bakhvalov. On the convergence of a relaxation method with natural constraints
on the elliptic operator. USSR Computational Mathematics and Mathematical Physics,
6(5):101-135, 1966.

[8] A. Ben-Tal and M. Bendsge. A new method for optimal truss topology design. SIAM
Journal on Optimization, 3(2):322-358, 1993.

[9] M. Bendsge. Optimization of structural topology, shape, and material. Berlin: Springer-
Verlag, 1995.

191



[10] M. Bendsge and O. Sigmund. Topology Optimization. Theory, Methods and Applica-
tions. Springer-Verlag, Heidelberg, 2003.

[11] Martin P Bendsoe, JM Guedes, Robert B Haber, P Pedersen, and JE Taylor. An analytical
model to predict optimal material properties in the context of optimal structural design.
Journal of Applied Mechanics, 61(4):930-937, 1994.

[12] D. Bertsekas. On the goldstein-levitin-polyak gradient projection method. Automatic
Control, IEEE Transactions on, 21(2):174-184, 1976.

[13] D. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[14] A. Borzi and V. Schulz. Multigrid methods for pde optimization. SIAM review,
51(2):361-395, 20009.

[15] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, New
York, 2004.

[16] A. Brandt. Multi-level adaptive technique (mlat) for fast numerical solution to boundary
value problems. In Proceedings of the Third International Conference on Numerical
Methods in Fluid Mechanics, pages 82—89. Springer, 1973.

[17] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation, 31(138):333-390, 1977.

[18] A. Brandt. Multigrid techniques: 1984 guide with applications to fluid dynamics.
Gesellschaft fiir Mathematik und Datenverarbeitung, 1984.

[19] A. Brandt and C. W. Cryer. Multigrid algorithms for the solution of linear complemen-
tarity problems arising from free boundary problems. SIAM journal on scientific and
statistical computing, 4(4):655-684, 1983.

[20] W. L. Briggs, S. F. McCormick, et al. A multigrid tutorial, volume 72. Society for
Industrial and Applied Mathematics, 2000.

[21] H. Calamai and J. Moré. Projected gradient methods for linearly constrained problems.
Math. Programming, 39(1):93-116, 1987.

192



[22] W. Carroll. The created response surface technique for optimizing nonlinear, restrained
systems. Operations Research, 9(2):169-184, 1961.

[23] J. Céa and K. Malanowski. An example of a max-min problem in partial differential
equations. SIAM Journal on Control, 8(3):305-316, 1970.

[24] J. Cea and V. Murthy. Optimization: Theory and algorithms. Springer-Verlag Berlin,
Germany, 1978.

[25] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on
Mathematical Software (TOMS), 35(3):22, 2008.

[26] Ph. G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in
Applied Mathematics. Society for Industrial and Applied Mathematics SIAM, Philadel-
phia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174
(58 #25001)].

[27] A.R.Conn, N. I. M. Gould, and Ph. L. Toint. Trust region methods. Society for Industrial
and Applied Mathematics STAM, 2000.

[28] Y. Dai and R. Fletcher. Projected barzilai-borwein methods for large-scale box-
constrained quadratic programming. Numerische Mathematik, 100(1):21-47, 2005.

[29] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM journal
on Numerical Analysis, 9:400-408, 1982.

[30] T. Dreyer, B. Maar, and V. Schulz. Multigrid optimization in applications. Journal of
Computational and Applied Mathematics, 120(1):67-84, 2000.

[31] L. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Clarendon
press Oxford, 1986.

[32] J. C. Dunn. Global and asymptotic convergence rate estimates for a class of projected
gradient processes. SIAM Journal on Control and Optimization, 19(3):368-400, 1981.

193



[33] H. C. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equa-
tions. PhD thesis, Yale University New Haven, Conn, 1982.

[34] R. P. Fedorenko. A relaxation method for solving elliptic difference equations. Zhurnal
Vychislitel 'noi Matematiki i Matematicheskoi Fiziki, 1(5):922-927, 1961.

[35] R. P. Fedorenko. The speed of convergence of one iterative process. Zhurnal Vychisli-
tel’noi Matematiki i Matematicheskoi Fiziki, 4(3):559-564, 1964.

[36] A. V. Fiacco and G. P. McCormick. Nonlinear programming: Sequential unconstrained
minimization techniques. John Wiley and Sons, Inc., New York-London-Sydney, 1968.

[37] A. V. Fiacco and G. P. McCormick. Nonlinear programming: sequential unconstrained
minimization techniques, volume 4. Society for Industrial and Applied Mathematics,
1990.

[38] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The
computer journal, 7(2):149-154, 1964.

[39] E. Frandi and A. Papini. Coordinate search algorithms in multilevel optimization. Opti-
mization Methods and Software, 29(5):1020-1041, 2014.

[40] KR Frisch. The logarithmic potential method of convex programming. Memorandum,
University Institute of Economics, Oslo, 5(6), 1955.

[41] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM journal on optimization, 12(4):979-1006, 2002.

[42] R. Glowinski. Numerical methods for nonlinear variational problems, volume 4.
Springer, 1984.

[43] D. Goldfarb and Z. Wen. A line search multigrid method for large-scale convex opti-
mization, 2007.

[44] A. Goldstein. Convex programming in Hilbert space. Bull. Amer. Math. Soc., 70:709—
710, 1964.

194



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

G. H. Golub and Ch. F. Van Loan. Matrix computations. JHU Press, 2012.

J. Gondzio. Interior point method for convex quadratic programming. SIAM journal on
Optimization, 23(3):1510-1527, 2013.

N. Gould. An introduction to algorithms for continuous optimization, 2006.

C. Griser and R. Kornhuber. Multigrid methods for obstacle problems. J. Comput.
Math., 27(1):1-44, 2009.

C. Griaser and R. Kornhuber. Nonsmooth newton methods for set-valued saddle point
problems. SIAM Journal on Numerical Analysis, 47(2):1251-1273, 2009.

C. Griser, U. Sack, and O. Sander. Truncated nonsmooth newton multigrid methods

for convex minimization problems. In Domain Decomposition Methods in Science and
Engineering XVIII, pages 129-136. Springer, 2009.

S. Gratton, M. Mouffe, A. Sartenaer, P. L. Toint, and D. Tomanos. Numerical expe-
rience with a recursive trust-region method for multilevel nonlinear bound-constrained
optimization. Optimization Methods & Software, 25(3):359-386, 2010.

S. Gratton, M. Moulffe, P. L. Toint, and M. Weber-Mendonca. A recursive-trust-region
method for bound-constrained nonlinear optimization. IMA Journal of Numerical Anal-
ysis, 28(4):827-861, 2008.

S. Gratton, A. Sartenaer, and P. L. Toint. Recursive trust-region methods for multiscale
nonlinear optimization. Society for Industrial and Applied Mathematics Journal on Op-
timization, 19(1):414-444, 2008.

A. Greenbaum. [Iterative methods for solving linear systems, volume 17. Society for
Industrial and Applied Mathematics SIAM, 1997.

Ch. Gross and R. Krause. On the convergence of recursive trust-region methods for mul-
tiscale nonlinear optimization and applications to nonlinear mechanics. SIAM Journal
on Numerical Analysis, 47(4):3044-3069, 2009.

Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2014.

195



[57] W. Hackbusch. Multi-grid methods and applications, volume 4. Springer-Verlag Berlin,
1985.

[58] W. Hackbusch. Multigrid methods for fem and bem applications. Encyclopedia of Com-
putational Mechanics, 2003.

[59] W. Hackbusch and H. D. Mittelmann. On multi-grid methods for variational inequalities.
Numerische Mathematik, 42:65-76, 1983.

[60] W. Hackbusch and U. Trottenberg. Multigrid methods: proceedings of the conference,
held at koeln-porz, november 23-27, 1981. Lecture Notes in Mathematics, (960), 1986.

[61] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
1952.

[62] R. H. W. Hoppe. Multigrid algorithms for variational inequalities. SIAM Journal on
Numerical Analysis, 24(5):1046—-1065, 1987.

[63] R. H. W. Hoppe. Two-sided approximations for unilateral variational inequalities by
multi-grid methods. Optimization, 18(6):867-881, 1987.

[64] F.Jarre, M. Kocvara, and J. Zowe. Optimal truss design by interior-point methods. SIAM
Journal on Optimization, 8(4):1084—-1107, 1998.

[65] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceed-
ings of the sixteenth annual ACM symposium on Theory of computing, pages 302-311.
ACM, 1984.

[66] C. T. Kelley. Iterative methods for optimization, volume 18. Society for Industrial and
Applied Mathematics, 1987.

[67] M. Kocvara and M. Stingl. Solving nonconvex sdp problems of structural optimization
with stability control. Optimization Methods and Software, 19(5):595-609, 2004.

[68] M. Koc¢vara and M. Stingl. On the solution of large-scale SDP problems by the modified
barrier method using iterative solvers. Mathematical Programming, 109(2-3):413-444,
2007.

196



[69] R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities I. Nu-
merische Mathematik, 69:167-184, 1994.

[70] M. Kocvara, D. Loghin, and J. Turner. Constraint interface preconditioning for topology
optimization problems. SIAM journal on Scientific Computing, 2015. Sumitted.

[71] R. H. Krause. Monotone multigrid methods for Signorini’s problem with friction. PhD
thesis, Freie Universitit Berlin, Universititsbibliothek, 2001.

[72] E.S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational
mathematics and mathematical physics, 6(5):1-50, 1966.

[73] R. M. Lewis and S. G. Nash. A multigrid approach to the optimization of systems
governed by differential equations. AIAA paper, 4890:2000, 2000.

[74] R. M. Lewis and S. G. Nash. Model problems for the multigrid optimization of systems
governed by differential equations. SIAM Journal on Scientific Computing, 26(6):1811-
1837, 2005.

[75] D. G. Luenberger and Y. Ye. Linear and nonlinear programming, volume 116. Springer,
2008.

[76] B. Maar and V. Schulz. Interior point multigrid methods for topology optimization.
Structural and Multidisciplinary Optimization, 19(3):214-224, 2000.

[77] J. Mandel. Etude algébrique d’une méthode multigrille pour quelques problemes de
frontiere libre. Comptes rendus des séances de I’Académie des sciences. Série 1,
Mathématique, 298(18):469-472, 1984.

[78] J. Mandel. A multilevel iterative method for symmetric, positive definite linear comple-
mentarity problems. Applied Mathematics and Optimization, 11(1):77-95, 1984.

[79] S. F. McCormick. Multigrid methods for variational problems: general theory for the
V-cycle. SIAM Journal on Numerical Analysis, 22(4):634-643, 1985.

197



[80] S. Mizuno and F. Jarre. Global and polynomial-time convergence of an infeasible-
interior-point algorithm using inexact computation. Mathematical Programming,
84(1):105-122, 1999.

[81] J. L. Morales and J. Nocedal. Remark on Algorithm 778: L-BFGS-B: Fortran subrou-
tines for large-scale bound constrained optimization. ACM Transactions on Mathemati-
cal Software (TOMS), 38(1):7, 2011.

[82] S. G. Nash. A multigrid approach to discretized optimization problems. Optimization
Methods and Software, 14(1-2):99-116, 2000.

[83] S. G. Nash. Convergence and descent properties for a class of multilevel optimization
algorithms. Technical report, Tech. Rep., Department of Systems Engineering and Op-
erations Research, George Mason University, Fairfax, VA, 2010.

[84] J. Necas and I.Hlavacek. Mathematical theory of elastic and elastico-plastic bodies: An
introduction. J. Necas and I.Hlavacek, Elsevier Amsterdam, 1981.

[85] J. Nocedal and S. J. Wright. Numerical optimization. Springer Science+ Business Media,
2006.

[86] J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth approach to optimization problems
with equilibrium constraints: theory, applications and numerical results, volume 28.
Springer Science & Business Media, 2013.

[87] Ch. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equa-
tions. SIAM Journal on Numerical Analysis, 12(4):617-629, 1975.

[88] J. Petersson. On stiffness maximization of variable thickness sheet with unilateral con-
tact. Quarterly of applied mathematics, 54(3):541-550, 1996.

[89] J. Petersson. A finite element analysis of optimal variable thickness sheets. SIAM Jour-
nal on Numerical Analysis, 36(6):1759—-1778, 1999.

[90] J. Petersson and O. Sigmund. Slope constrained topology optimization. International
Journal for Numerical Methods in Engineering, 41(8):1417-1434, 1998.

198



[91] B. D. Reddy. Introductory functional analysis: with applications to boundary value
problems and finite elements. New York, 1998.

[92] J-F Rodrigues. Obstacle problems in mathematical physics. Elsevier, 1987.

[93] S. Rojas-Labanda and M. Stolpe. Benchmarking optimization solvers for structural
topology optimization. Structural and Multidisciplinary Optimization, pages 1-21,
2015. DOI 10.1007/s00158-015-1250-z.

[94] G.I. N. Rozvany. Aims, scope, methods, history and unified terminology of computer-
aided topology optimization in structural mechanics. Structural and Multidisciplinary
Optimization, 21(2):90-108, 2001.

[95] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems. Math-
ematics of computation, 37(155):105-126, 1981.

[96] Y. Saad. Overview of krylov subspace methods with applications to control problems.
1989.

[97] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, 2003.

[98] Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving nonsymmetric
linear systems. Mathematics of Computation, 44(170):417-424, 1985.

[99] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on scientific and statistical computing,
7(3):856-869, 1986.

[100] D. Shanno. Who invented the interior-point method?

[101] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain, 1994.

[102] O. Sigmund and J. Petersson. Numerical instabilities in topology optimization: a sur-
vey on procedures dealing with checkerboards, mesh-dependencies and local minima.
Structural optimization, 16(1):68-75, 1998.

199



[103] J. Sokolowski and A. Zochowski. Topological derivative in shape optimization topologi-
cal derivative in shape optimization. In Encyclopedia of Optimization, pages 3908-3918.
Springer, 2009.

[104] R. Stainko. An adaptive multilevel approach to the minimal compliance problem
in topology optimization. Communications in Numerical Methods in Engineering,

22(2):109-118, 2006.

[105] K. Stiiben. A review of algebraic multigrid. Journal of Computational and Applied
Mathematics, 128(1):281-309, 2001.

[106] K. Svanberg. The method of moving asymptotes- a new method for structural optimiza-
tion. International journal for numerical methods in engineering, 24(2):359-373, 1987.

[107] K.C. Toh. Solving large scale semidefinite programs via an iterative solver on the aug-
mented systems. SIAM Journal on Optimization, 14(3):670—698, 2004.

[108] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2000.

[109] J. A. Turner. Application of domain decomposition methods to problems in topology
optimisation. PhD thesis, University of Birmingham, 2015.

[110] M. Vallejos. MGOPT with gradient projection method for solving bilinear elliptic opti-
mal control problems. Computing, 87(1-2):21-33, 2010.

[111] M. Vallejos and A. Borzi. Multigrid optimization methods for linear and bilinear elliptic
optimal control problems. Computing, 82(1):31-52, 2008.

[112] M. Y. Wang, X. Wang, and D. Guo. A level set method for structural topology opti-
mization. Computer methods in applied mechanics and engineering, 192(1):227-246,
2003.

[113] S. Wang, E. De Sturler, and G. H. Paulino. Large-scale topology optimization using
preconditioned krylov subspace methods with recycling. International Journal for Nu-
merical Methods in Engineering, 69:2441-2468, 2007.

200



[114] P. Wesseling. An introduction to multigrid methods. Pure and Applied Mathematics
(New York). John Wiley & Sons, Ltd., Chichester, 1992.

[115] P. Wesseling. Introduction to multigrid methods. Technical report, DTIC Document,
1995.

[116] G. Wittum. On the convergence of multi-grid methods with transforming smoothers.
Numerische Mathematik, 57(1):15-38, 1990.

[117] M. Wright. The interior-point revolution in optimization: history, recent developments,
and lasting consequences. Bulletin of the American mathematical society, 42(1):39-56,
2005.

[118] S.J. Wright and J. Nocedal. Numerical optimization, volume 2. Springer New York,
1999.

[119] D. M. Young. Iterative solution of large linear systems. Elsevier, 2014.

[120] D. M. Young and K. C. Jea. Generalized conjugate-gradient acceleration of nonsym-
metrizable iterative methods. Linear Algebra and its applications, 34:159-194, 1980.

[121] J. Zowe, M. Kocévara, and M. P. Bendsge. Free material optimization via mathematical
programming. Mathematical Programming, 79(1-3):445-466, 1997.

201





