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Chapter

Epileptic EEG Classification by
Using Advanced Signal
Decomposition Methods
Ozlem Karabiber Cura and Aydin Akan

Abstract

Electroencephalography (EEG) signals are frequently used for the detection of
epileptic seizures. In this chapter, advanced signal analysis methods such as Empir-
ical Mode Decomposition (EMD), Ensembe (EMD), Dynamic mode decomposition
(DMD), and Synchrosqueezing Transform (SST) are utilized to classify epileptic
EEG signals. EMD and its derivative, EEMD are recently developed methods used to
decompose nonstationary and nonlinear signals such as EEG into a finite number of
oscillations called intrinsic mode functions (IMFs). In this study multichannel EEG
signals collected from epilepsy patients are decomposed into IMFs, and then essen-
tial IMFs are selected. Finally, time- and spectral-domain, and nonlinear features
are extracted from selected IMFs and classified. DMD is a new matrix decomposi-
tion method proposed as an iterative solution to problems in fluid flow analysis. We
present single-channel, and multi-channel EEG based DMD approaches for the
analysis of epileptic EEG signals. As a third method, we use the SST representations
of seizure and pre-seizure EEG data. Various features are calculated and classified
by Support Vector Machine (SVM), k-Nearest Neighbor (kNN), Naive Bayes (NB),
Logistic Regression (LR), Boosted Trees (BT), and Subspace kNN (S-kNN) to
detect pre-seizure and seizure signals. Simulation results demonstrate that the
proposed approaches achieve outstanding validation accuracy rates.

Keywords: epileptic EEG classification, empirical mode decomposition (EMD),
dynamic mode decomposition (DMD), synchrosqueezing transform (SST),
machine learning

1. Introduction

Epilepsy, affecting approximately 4 and 10 per 1000 people of the world’s
population, is one of the most common acute neurological diseases. EEG is the most
frequently used technique for the diagnosis of epilepsy, prediction, detection, and
classification of epileptic seizures owing to cost, safety, and easy applicability [1, 2].
In order to detect or monitor epilepsy patients, long-term electroencephalogram
(EEG) signals, which are records of the electrical activity generated by the brain,
should be inspected visually by expert neurologists. However, this examination
method is very time-consuming, bothersome, not efficient, and subjective process.
Therefore, utilizing signal processing, machine learning, and artificial intelligence
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methods for automatic seizure prediction and detection from epileptic EEG signals
has become an active research field [2–5].

In the literature, seizure prediction and detection studies have been carried out
using successful signal processing approaches in which many spectral, temporal,
nonlinear, and statistical properties are calculated.

Automatic seizure detection and prediction studies have been conducted based
on time-domain features such as energy, mean value, skewness, and kurtosis values
[6–8], exponential energy [6] and, and frequency domain features such as Power
spectral density features [9].

Also, entropy-based features such as fuzzy entropy (FuzzyEn), and sample
entropy (SampEn) [10], sigmoid entropy [11], approximate entropy (ApEn) [12],
weighted Permutation Entropy (WPE) [13], have also been commonly utilized to
detect and predict epileptic seizures.

Additionally, in several epileptic seizure detections and prediction study, non-
linear features such as cross-bispectrum [4], fractal dimension, detrended fluctua-
tion analysis (DFA), Hurst’s exponent [3, 12] have been utilized and promising
results have been provided.

On the other hand, various Time-Frequency (FT) analysis approaches have been
also performed for epileptic seizure distinguish. The wavelet transform and its
derivative [5, 14], Discrete WT (DWT) and Wavelet Packed Decomposition
(WPD) [7] based approaches were successfully utilized in the seizure classification
studies. Another TF analysis approaches such as The Hilbert Vibration Decomposi-
tion (HVD) [15], Variational Mode Decomposition (VMD), Hilbert transforms
(HT) [16], the smoothed pseudo-Wigner-Ville distribution (SPWVD) [17], Hil-
bert–Huang transform (HHT) [18], short-time Fourier transform (STFT) [14, 19],
the analytic time-frequency flexible wavelet transform (ATFFWT) [20], The Wig-
ner–Ville distribution (WVD) [21] have been frequently used in seizure detection
and prediction studies.

EMD [7, 8, 22] and its derivative approaches such as bivariate empirical mode
decomposition (BEMD) [23], multivariate empirical Mode Decomposition
(MEMD) [24], ensemble Empirical Mode Decomposition (EEMD) [25] that
decompose a given signal into a limited number of zero-mean oscillations called
Intrinsic Mode Functions (IMFs) have been developed for the analysis of nonlinear
and non-stationary signals and have been successfully used in many seizure detec-
tion or prediction studies.

Generally, traditional Fourier-based methods such as CWT or STFT are not very
effective in the TF analysis of non-stationary biosignals like EEG [26–28]. Success-
ful seizure classification studies have been carried out using the Synchrosqueezing
Transform (SST) method [28], which has been developed based on CWT and STFT
[26–29], in order to achieve better TF representations (TFRs) in recent years.

The dynamic mode decomposition (DMD) and derivative approaches, a new
matrix decomposition method, that introduced as a solution to problems encoun-
tered in fluid flow analysis by Schmidt [30], has recently been used to analyze
epileptic EEG signals [31, 32].

In this chapter, three different advanced signal analysis methods are utilized for
the classification of seizure and seizure-free EEG signals. The pre-seizure and sei-
zure EEG segments were investigated using (i) EMD and its derivative EEMD
methods, (ii) DMD method, and finally, (iii) SST and traditional STFT methods to
achieve high classification performances. The rest of this chapter is organized as
follows. In Section 2, EEG data set used in this study and employed signal analysis
methods are described. Computer simulation results and discussion on the results of
three different approaches are presented in Section 3. Conclusions of the study are
drawn in Section 4.
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2. Classification of epileptic EEG signals

In this study, three different approaches are presented to distinguish seizure and
seizure-free EEG segments. In the first method, various temporal, spectral, and
non-linear features are extracted from the IMFs obtained using EMD and EEMD
approaches. In the second method we present, epileptic EEG segments are analyzed
using a simple matrix decomposition method, namely the DMD approach. Finally,
in the third approach the SST method with high TF resolution is utilized to extract
features and achieve high classification performance in distinguishing seizure and
seizure-free EEG segments. The results of these three approaches are compared in
line with the classification performances of various machine learning algorithms
used in our study.

2.1 Data set (IKCU EEG data set)

In our study, EEG data recorded using the Neurofax EEG device from 16 differ-
ent epilepsy patients (5 Female; 11 Male, the average age is 37.3∓7) in the Depart-
ment of Neurology, Faculty of Medicine, İzmir Katip Celebi University are used.
These EEG recordings are collected with a sampling frequency of 100 Hz using
surface electrodes from 18 different EEG channels (Fp1-F7, F7-T1, T1-T3, T3-T5,
T5-O1, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F8, F8-T2, T2-T4, T4-T6, T6-O2, Fp2-
F4 F4-C4, C4-P4, P4-O2). It was informed by expert neurologists that the attacks in
the used EEG data set are Frontal and Temporal lobes focused. Hence, 10 EEG
channels (Fp1-F7, F7-T1, T1-T3, T3-T5, Fp1-F3, Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2-
F4) with a predominance of temporal and frontal lobes are used in our study. These
EEG data are used in our study by obtaining the Ethical Approval of İzmir Katip
Çelebi University Non-Invasive Clinical Research Ethics Committee dated
08.08.2019 and numbered 296.

2.2 Empirical mode decomposition and its variant

EMD approach in which signals decomposed into Intrinsic Mode Functions
(IMF) with zero-mean oscillations, is the adaptive time-frequency analysis method
for the non-linear and non-stationary processes. The sum of these obtained IMFs
must be equal to the original signal [22, 24].

x n½ � ¼
X

L

l¼1

IMFl n½ �

 !

þ RL n½ � (1)

where x n½ � is the original analyzed signal, L denotes the number of IMFs and
RL n½ � indicates the residue.

Despite the successful results of the traditional EMD approach to analyze the
non-stationary process, the problem named “mode mixing” is encountered where
similar oscillations occur in different modes or different oscillations are observed in
the same mode. In the EEMD method, by adding Gaussian white noise to the
analyzed signal, the continuity of the signal in different frequency regions is
ensured, and the mode mixing problem has been tried to be overcome. Then, the
noisy signals obtained by adding white noises with different statistical properties
were decomposed into IMFs by the EMD method. As a result of the EEMD method,
the average IMFs value is obtained by taking the average of the IMFs group
obtained as much as the number of white noise added [25].
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xi n½ � ¼ x n½ � þ gi n½ �, i ¼ 1, 2, … ,K: (2)

Here, ensemble number is denoted by K value, gi n½ � is indicates the added
Gaussian noise at ith iteration.

By using EMD approach, IMFs (IMFi
j n½ �, j ¼ 1, … , Ji) of noisy signal xi n½ � is

obtained for the ith iteration. IMFs are calculated for the EEMD approach by taking
the average of the IMFs obtained after the number of ensembles (K) iterations.

IMF j n½ � ¼
1
K

X

K

i¼1

IMFi
j n½ � (3)

The first 3 IMFs obtained for an example pre-seizure and seizure EEG segments
using EMD and EEMD methods are shown in Figure 1.

In our proposed EMD and EEMD based approach, IMFs of pre-seizure and
seizure EEG segments are obtained. Following, the IMF selection process is
performed using energy-based, correlation-based, power spectral density-distance
based and statistical p-value based metrics, as described in [8]. Time (Energy, Mean
value, Skewness, and Kurtosis values) [6, 7], spectral (Total power, Spectral
Entropy, 1st, 2nd, and 3rd spectral moments) [9], and non-linear (Hurst Exponent
and Higuchi Fractal Dimension) [3, 12] features are calculated using 3 highly voted

Figure 1.
Pre-seizure EEG signal and it’s first three IMF obtained using (a) EMD, and (c) EEMD approaches; seizure
EEG signal and it’s first three IMF obtained using (b) EMD and (d) EEMD approaches.
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IMFs (IMF1, IMF3, and IMF2) determined in the IMF selection process [8]. Thus, 4
time domain, 5 spectral, and 2 non-linear features are calculated for each pre-
seizure and seizure EEG segment. For comparison, the same features are calculated
from the EEG segment itself, without using the EMD or EEMDmethod. In addition,
the same features are calculated from the sub-bands of the DWT approach, which is
a conventional analysis method and compared with the results of the EMD and
EEMD approach. In our experiments, Daubechies4 (db4) mother wavelet and 3
level subband decomposition are used [7, 33].

2.3 Dynamic mode decomposition

In fluid flow analysis studies, generally, computationally expensive Global sta-
bility analysis method where classical approaches are used, is performed. Proper
Orthogonal Decomposition (POD) method based on snapshots of flow and achiev-
ing the most active modes is used in these methods. DMD approach based on matrix
decomposition has been proffered as a solution to computationally cost of these
previous approaches. Systems are analyzed in space using the DMD method in
which temporal orthogonality is used. However, using the POD method utilizing
spatial orthogonality, systems could be analyzed in time [30]. The behavior of non-
linear and dynamic systems such as biological signals cannot be completely revealed
by classical time-frequency analysis methods. By evaluating the measurements
collected over a certain period of time with the DMD method, both the system can
be expressed with a function, and information about the future behavior of the
system can be predicted. The basic idea of the DMD method is to obtain the
dynamic modes that best represent the system by achieving the eigenvalues and
eigenvectors of the system that linearized with the Least-Squares Approximation
(LSA) method [31, 34].

In literature, previously, K � T� sized multi-channel EEG signals are evaluated
using the DMD approach. Here, T is the sample size of a single EEG channel, and N
is the number of channels. Using this data matrix, K � L� sized X data matrices in
which L denotes the time samples named “snapshot” is obtained, and the DMD
algorithm is applied to this obtained data matrices [31]. In our study, both the
multi-channel DMD approach used in the literature is performed and the single-
channel DMD approach is proposed, unlike the literature, and K � L� sized X data
matrices are constructed using this two different approaches.

In the single-channel DMD approach (SC-DMD), the single-channel EEG
signals with T� samples long are divided into non-overlapping, L samples long EEG
segments. The K � Lð Þ EEG data matrices are constructed using K of these obtained
segments. For our epileptic seizure classification experiment, L ¼ 140 and K ¼ 5 are
chosen.

Additionally, in the multi-channel DMD approach (MC-DMD), K � Lð Þ EEG
data matrices with no overlap are generated using L ¼ 140 samples of K ¼ 5
different EEG channels. In our experiment, these data matrices are obtained using
the K ¼ 5�EEG channel in the left hemisphere (Fp1-F7, F7-T1, T1-T3, T3-T5, Fp1-
F3) and the K ¼ 5�EEG channel in the right hemisphere (Fp2-F8, F8-T2, T2-T4,
T4-T6, Fp2-F4). Also 10� 120ð Þ EEG data matrices are constructed using the K ¼
10�EEG channel with L ¼ 120 sample long in both hemispheres.

In order to achieve a sufficient number of modes to demonstrate the dynamics
of neurological activity efficiently, the number of Kð Þ measurements must be at
least twice the number of L time points named snapshots [16]. Therefore, the data
augmentation process is applied to the data matrix X based on the Hankel matrix
creation principle as detailed in [34] and the N �M, N ≥ 2Mð Þ dimensional aug-
mented data matrix Xa is obtained.
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Xa ¼

⋮ ⋮ … ⋮

x1 x2 … xM�1

⋮ ⋮ … ⋮

2

6

4

3

7

5
X0

a ¼

⋮ ⋮ … ⋮

x2 x3 … xM
⋮ ⋮ … ⋮

2

6

4

3

7

5
(4)

X0
a ¼ AXa (5)

Transition matrix A that denoted in Eq. (5) should be obtained to achieve
relation based on the high-dimensional linear regression between Xa matrix and its
time-shifted version X0

a matrix (given in Eq. (4)). This transition matrix can be
calculated using the pseudo-inverse of the Xa matrix A ¼ X0

aX
þ
a

� �

, but for higher-
dimensional data such as biosignal, this can cause computational complexity. Using
the DMD algorithm;

Singular value decomposition (SVD) of augmented data matrix Xa ¼ UΣV ∗ is
calculated, and formulation of transition matrix rewrite again using the Left singu-
lar vectors U, the inverse of the singular values Σ�1, and the Right singular vectors
V A ¼ X0

aX
þ
a ¼ X0

aVΣ
�1U ∗ . The low-rank approximation value ~A of the transition

matrix A can be obtained using Eq. (6)

~A ¼ U ∗X0
aVΣ

�1 (6)

The Eigen decomposition of ~A matrix is calculated (~AW ¼ WΩ) and the matrix
of eigenvectorsW, the diagonal matrix Ω of eigenvalues are achieved. Finally, DMD
modes of augmented data matrix Xa are calculated using Eq. (7) where each column
of ϕ includes the DMD mode ϕm related to eigenvalues λm [31, 34].

ϕ ¼ X0
aVΣ

�1W (7)

In our DMD based epileptic seizure classification experiment, using the DMD
spectrum, various features based on DMD subband powers and Higher-order DMD
spectral moments (DMD-HOS) are calculated and classification performances of
approaches are compared.

The real part, of DMDmodes associated with the complex eigenvalues λm, indi-
cates the decay frequency of the dynamic modes, while the imaginary part of these
modes shows the oscillation frequencies of the dynamic modes. To obtain the DMD
spectrum of pre-seizure and seizure EEG segments, oscillation frequencies, and pow-
ers, of the dynamic modes, should be calculated. The oscillation frequencies fm (Hz)
are calculated usingΔt ¼ 0:01s time difference between sequential snapshots, and the

complex eigenvalues λm of DMDmodes; fm ¼ ∣imag ωm
2π

� �

∣, ωm ¼ log λmð Þ
Δt (the imagi-

nary part of a complex number is calculated using imag :ð Þ operation). The frequency
set FDMD ¼ fm

� �

is obtained by aligning the oscillation frequencies containing

different mode frequencies. Additionally, power Pm ¼ ϕmk k2 of these modes are
calculated using the Euclidian norm [34]. The total DMDmode power fm

� �

∈FDMD

(given in Eq. (8)) for the fm frequency is calculated by summing the power value of
Lk DMDmodes at the fm frequency. This process is repeated for all frequencies in the
FDMD set and a single DMD power corresponding to each frequency is calculated. In
order to obtain the DMD spectrum, the obtained DMD power set PDMD,
∀ PDMD fm

� �� �

∈PDMD is plotted according to the oscillation frequency set FDMD.

PDMD fm
� �

¼
X

Lk

i¼1

Pi
m fm
� �

∀ fm
� �

∈ FDMD: (8)
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To reveal the advantages of the DMD approach, the traditional Power Spectral
Density is estimated using the Welch method [5, 35] where the Hamming window
and 50% overlapping are chosen, for each seizure, and pre-seizure EEG segments
(140 samples long = 1.4 sec). Examples of the proposed Single-Channel EEG based
DMD spectra and traditional Welch PSD estimates for pre-seizure and seizure
epileptic EEG data are demonstrated in Figure 2. The similarity between the aver-
age PSD values of the 5 EEG segments (shown with bold black lines in Figure 2(c)
and (f)) whose PSDs are calculated separately by the Welch method and the DMD
spectrum, given in Figure 2(b) and (e), is remarkable.

In DMD based epileptic seizure detection approach, sub-band powers based and
DMD-HOS moments based features are introduced using the DMD spectrum. In
computer-aided epileptic seizure detection and prediction studies, EEG subband
powers of different frequency bands like delta (0–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (12–30 Hz), and gamma (30–60 Hz), and DMD-HOS moments are
calculated using conventional Power Spectral Density [17, 40]. Using the estimated
DMD spectrum, similar to the classical PSD approach, Delta (Pδ), Theta (Pθ), Alpha
(Pα), Beta (Pβ), and Gamma (Pγ)) subband powers are calculated as

Psb ¼
X

fm ∈ f sb

PDMD fm
� �

, sb ¼ δ, θ, α, β, γf g PT ¼
X

fm

PDMD fm
� �

(9)

We propose another set of features called DMD-HOS moments

M j
DMD, j ¼ 1, 2, 3,⋯ defined by

M j
DMD ¼

X

fm ∈FDMD

fm
� � jPDMD fm

� �

, j ¼ 1, 2, 3,⋯ (10)

In Eqs. (9) and (10), f sb is a subset of oscillation frequencies in FDMD ¼ fm
� �

of

extracted DMD modes corresponding to sub-band frequencies f δ, f θ, f α, f β, f γ
n o

Figure 2.
First 5 DMD modes of 5 pre-seizure EEG segments (a) and its DMD spectrum (b) obtained using Single
Channel EEG based dynamic mode decomposition, PSD of these 5 pre-seizure EEG segments together (c); first 5
DMD modes of 5 seizure EEG segments (d) and its DMD spectrum (e) obtained using Single Channel EEG
based dynamic mode decomposition, PSD of these 5 seizure EEG segments together (f). Bold black lines denote
the average of 5 PSD in (c) and (f).
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of EEG, PT denotes the total power of DMD spectrum, and M j
DMD indicates the jth

order DMD spectral moment. In our computations, we extract 6 DMD subband
power-based features, and 3 DMD-HOS moments features for each seizure and
pre-seizure EEG segment.

2.4 Synchrosqueezing transform

Synchrosqueezing Transform is a member of TF reassignment methods (RM)
family which developed to improve the localization properties of TFRs. In RM
methods, using the reassignment process, TF coefficients X t,ωð Þ that computed
utilizing classical TF analysis method, are reassigned into the instantaneous fre-
quency (IF) trajectory close to the ideal TFR which have high frequency and time
resolution t,ωð Þ↦ τ0 t,ωð Þ,ω0 t,ωð Þð Þ. On the other hand, using the squeezing pro-
cess, this TF coefficients X t,ωð Þ are squeezed into the IF trajectory close to the ideal
TFR which have high-resolution in only frequency t,ωð Þ↦ t,ω0 t,ωð Þð Þ. Although
lower TF resolution is achieved using the SST method, signal reconstruction may be
performed [29, 36].

SST method based on STFT or CWT can be performed to obtain high-resolution
TFRs of signals. Hence, the TF coefficients of the studied signals are obtained by
STFT or CWT, and by using these coefficients with the SST approach,
high-resolution TFR is obtained.

In the STFT method, the signal is divided into short-time, and usually
overlapping segments and the Fourier transforms of these short-term segments are
calculated. In our computations, STFT of 1-second EEG segment x tð Þ, are calculated
as, X t,ωð Þ ¼

Ð

∞

�∞x τð Þw τ � tð Þe�jωτdτ where w tð Þ denotes the used window function.
Using the Fourier transforms of analyzed segment X ωð Þ and used window function
W ωð Þ, STFT may be rewritten again as given in Eq. (11).

X t,ωð Þ ¼
1
2π

ð

∞

�∞

X ξð ÞW ω� ξð Þejξtdξ: (11)

In the SST approach, computing the derivative of STFT X t,ωð Þ according to
time, the instantaneous frequency ω0 t,ωð Þ ¼ �j ∂tX t,ωð Þ

X t,ωð Þ is obtained. By using

synchrosqueezing operator
Ð

∞

�∞δ η� ω0 t� ωð Þð Þdω of SST and IF ω0(t, ω), SST
T t, ηð Þ with high-resolution is obtained by collecting the STFT coefficients which
have the same frequency where they should appear.

T t, ηð Þ ¼

ð

∞

�∞

X t,ωð Þδ η� ω0 t� ωð Þð Þdω (12)

An example TF representations of 1-sec pre-seizure and seizure EEG segments
achieved utilizing SST and STFT approaches are shown in Figure 3. We observe in
Figures 3(b), (c), (e) and (f) that the SST approach is able to represent pre-seizure
and seizure EEG segments better in the TF plane than the STFT method. Although
the window size, which is the most important parameter of STFT [19], is chosen to
give the best time and frequency resolution, the SST approach provided better TF
resolution.

In our SST based epileptic seizure detection study, high-resolution joint TF
distributions of pre-seizure and seizure EEG segments are calculated. Two different
feature extraction approaches are presented to achieve efficient features from the
magnitude square of the SST matrix S n,ωkð Þ:
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a. Log-normalized higher-order joint TF (HOJ-TF) moments,

< ni ω j
k > ; i, j ¼ 1, 2, … [37],

< ni ω j
k > ¼ log

PN�1
n¼0

PN�1
k¼0 n

iω
j
kS n,ωkð Þ

i!j!

 !

, i, j ¼ 1, … (13)

where N is the length of the EEG segments, and ωk ¼
2π
N k, k ¼ 0, … ,N � 1.

b. TFR obtained by SST is used as image and Gray Level Co-occurrence
Matrix (GLCM) texture descriptors are obtained from this TFR image.

GLCM is a prediction of the joint probability distribution of two neighboring
gray-level image pixel pairs with a certain position that consists of distance (d)
and direction (θ) information. The GLCM of this image can be expressed as given
in Eq. (14) using image pixel pair position information (Δ ¼ θ, dð Þ).

GΔ i, jð Þ i, j ¼ 0, 1, … ,Ng � 1
� �

(14)

where, i and j indicate the intensity values of two pixels, and Ng is the number of
gray levels in the image [28, 38]. Second-order statistical features such as contrast,
correlation, energy, and homogeneity [39] are calculated as features from the
GLCM matrix of TF images corresponding to pre-seizure and seizure EEG seg-
ments. In order to evaluate the performance of the SST approach, same features are
calculated using the magnitude square of STFT, i.e., the spectrogram X t,ωð Þj j2,
which is a classical TF approach and is also used in the SST algorithm [19]. In our
experiments, 3 HOJ-TF moments based features, and 4 GLCM based features are
calculated for each pre-seizure and seizure EEG segment using both SST and STFT
approaches.

Figure 3.
(a) 1-sec pre-seizure EEG segment, its (b) magnitude SST, and (c) magnitude STFT; (d) 1-sec seizure EEG
segment, its (e) magnitude SST, and (f) magnitude STFT.
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2.4.1. Classification and performance evaluation

In the proposed study, features extracted utilizing the three different approaches
are classified using six different classifiers such as SVM, kNN, NB to distinguish
seizure and pre-seizure EEG segments.

In SVM, one of the well-known supervised learning algorithms, decision
boundaries, called hyper-planes’, is determined to categorize data. While there are
many possible hyper-planes that may be constructed, it is essential to determine the
hyper-plane where the best classification performance is obtained. The optimal
hyper-plane is achieved by maximizing the margin, which is the distance between
different classes’support vectors. Once the optimum hyper-plane is determined, the
data falling on different sides of the hyper-plane are assigned as elements of differ-
ent classes. While this process used for the only linearly separable datasets, using
the kernel functions SVM is performed to distinguish linearly non-separable
datasets. In our proposed study, linear kernel function is performed [10, 13].

The basic and efficient machine learning method kNN is one of the most widely
used supervised learning approaches. The distance between each sample x0 to be
classified in the test data and the training data is calculated for all data set which is
randomly divided into tests and trains. By determining the k neighbors that have
the minimum distance, the most common class among these k neighbors is assigned
as the class of this sample. Although there are various distance calculation metrics
such as Euclidean, Manhattan, Minkowski, and Hamming, the Euclidean distance
metric, which is the most commonly used in the literature, is used in our study. In
addition, the value of k is chosen as 10 for the proposed study [39, 40].

The NB classifier is one of the probabilistic classifiers in which the classification
is performed according to Bayes’ theorem. Membership probabilities P Mi=x0ð Þ
(Mi indicates the class, c denotes the number of class) to “c” classes of sample x0 to
be classified are calculated, separately. This sample is assigned as a member of
the class in which the highest probability of membership among the “c” class is
calculated [39, 40].

To achieve a stable classification accuracy, 10–fold cross-validation is employed
in our experiment. Using Accuracy (ACC), and F1-score metrics, performance
evaluation of proposed methods and utilized classifiers are investigated.

ACC ¼
TPþ TN

TPþ FN þ FPþ TN
, FScore ¼ 2 ∗

PRE ∗REC
PREþ REC

(15)

where true-positive (TP) is the number of samples of class_1 classified in the
same class, and true-negative (TN) denotes the number of samples of class_0
classified in class_0. While false-positive (FP) is the number of samples not in
class_1 but classified in class_1, false-negative (FN) indicates the number of samples
in class_1 but classified in class_0. Recall and Precision metrics are formulated
respectively as, REC ¼ TP

TPþFN, and PRE ¼ TN
FPþTN [18].

3. Experiments and results

In the following, we give the performance evaluation of seizure and pre-seizure
EEG classification by using three different advanced signal representation methods
presented in Section 2. The classification process is performed using SVM, kNN,
and NB classifiers and compared the performance of each approach and classifier.
In the Tables 1-5, highest classification performances are indicated with boldface
numbers for each approach and component.
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3.1 Results of EMD methods

In EMD and EEMD based seizure detection approaches, various features in the
time-domain, spectral-domain, and non-linear are calculated to separate the seizure
and pre-seizure EEG segments. To compare the performances of EMD based
approaches, DWT approach is implemented to the pre-seizure and seizure EEG

SVM kNN NB

Approach Components ACC F-Score ACC F-Score ACC F-Score

EMD IMF1 94.31 94.16 94.38 94.31 94.31 94.03

IMF2 94.12 93.85 92.62 92.48 93.13 92.79

IMF3 93.38 93.36 94.63 94.45 95.63 95.48

IMF1-IMF2 94.56 94.40 93.81 93.70 94.56 94.33

IMF1-IMF3 92.06 92.38 95.63 95.53 96.88 96.77

IMF2-IMF3 94.50 94.35 94.81 94.66 95.88 95.74

IMF1-3 90 90.99 94.88 94.81 96.19 96.07

EEMD IMF1 96.06 96.04 94.44 94.43 93.75 93.60

IMF2 92.44 92.19 91.81 91.69 93.50 93.12

IMF3 94.50 94.42 94.06 94.02 95.44 95.27

IMF1-IMF2 94.94 94.86 94.81 94.76 94.12 93.91

IMF1-IMF3 81.69 80.29 95.94 95.90 97 96.91

IMF2-IMF3 94.44 94.32 94.25 94.21 95.38 95.18

IMF1-3 94.19 94.39 97 96.97 95.75 95.62

DWT AC + DC1-3 80.81 76.83 93.44 93.38 94.56 94.43

EEG all EEG 59.75 66.33 93.25 93.35 78.94 74.41

Table 1.
Performance results (%) of EMD and EEMD based seizure detection approach.

SVM kNN NB

Approach Components ACC F-Score ACC F-Score ACC F-Score

SC-DMD Right Hems. 90.3 91.9 90.8 92.9 89.4 91.2

Left Hems. 93.7 95.1 94.1 95.5 93.4 94.6

Two Hems. 91.7 93.4 92.3 93.9 91.3 92.8

MC-DMD Right Hems. 90.6 91.9 89.3 90.9 89.5 91.7

Left Hems. 92.9 94.8 93.9 95.5 92.7 93.8

Two Hems. 94.7 95.9 94.5 95.9 93.5 94.4

PSD Right Hems. 86.1 88.7 87.2 89.9 86.7 86.2

Left Hems. 92.1 93.4 92.2 93.9 91.3 93.4

Two Hems. 89.1 91.3 89.5 91.5 88.3 90.7

Table 2.
Performance results (%) for seizure detection using the subband power based feature set of DMD based
approach.
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segments, and same features are calculated from the Approximation Coefficient
(AC) and 3 Detail Coefficients (DC) of DWT. Additionally, without using any
signal processing approach the same features are extracted from the EEG signals
itself.

SVM kNN NB

Approach Components ACC F-Score ACC F-Score ACC F-Score

SST Right Hems. 88.6 91.2 88.4 91 88.1 90.6

Left Hems. 92.5 94.1 92.6 94.2 92.2 93.9

Two Hems. 90.4 92.4 90 92.2 90.1 92.2

STFT Right Hems. 85.4 88.6 85 88.2 83.8 87.3

Left Hems. 90.3 92.4 90.4 92.4 88.7 91.1

Two Hems. 87.5 90.2 87.4 90 86.2 89.1

Table 5.
Performance results (%) for seizure detection using the GLCM based feature set of SST and STFT based
approaches.

SVM kNN NB

Approach Components ACC F-Score ACC F-Score ACC F-Score

SC-DMD Right Hems. 87.3 89.4 88.4 90.5 83.1 85.8

Left Hems. 92.2 93.9 91.2 93.9 90.1 92.9

Two Hems. 89.7 92.4 90.2 92.5 87 89.3

MC-DMD Right Hems. 88.9 90.9 85.9 89.4 81.2 84.4

Left Hems. 92.9 93.4 92 93.9 87.6 89.7

Two Hems. 92.8 94.4 92.2 93.5 88.8 90.4

PSD Right Hems. 85.6 87.6 88.1 90.9 86.8 88.2

Left Hems. 92.5 93.9 91.6 93.5 92.5 93.9

Two Hems. 88.6 90.3 89.4 91.5 89.2 91.3

Table 3.
Performance results (%) for seizure detection using the DMD-HOS moment based feature set of DMD based
approach.

SVM kNN NB

Approach Components ACC F-Score ACC F-Score ACC F-Score

SST Right Hems. 88.4 91.1 88.5 91.1 83.6 86.2

Left Hems. 93.1 94.6 92.5 94.2 92.1 93.7

Two Hems. 90.5 92.6 90.1 92.3 88 90.2

STFT Right Hems. 87.2 90.1 86.6 89.5 79.1 81.7

Left Hems. 92.1 93.8 91.6 93.5 85.3 87.7

Two Hems. 89.5 91.7 89.1 91.4 82.2 84.8

Table 4.
Performance results (%) for seizure detection using the HOJ-TF moment based feature set of SST and STFT
based approaches.

12

Epilepsy



The performance evaluation results for different IMF combinations are demon-
strated in Table 1. In all tables, we indicate the highest classification performance
with boldface numbers for each case. In Table 1, the components column shows
that the features for classifications are calculated by using the corresponding com-
ponent. For example, the classification results of the features calculated using IMF1
are given in the first row, and the classification results of the features calculated
from the EEG signal itself are given in the last row. NB classifier provides the
highest classification successes for both EMD (96.88% ACC, 96.77% F1-score) and
EEMD (97% ACC, 96.91% F1-score) approaches by using features calculated from
IMF1-IMF3 (the first two IMFs decided by the IMF selection process) of the
corresponding approach. While, the maximum (94.56% ACC, 94.43% F1-score)
classification successes are achieved using the NB classifier for the DWT approach;
using the kNN classifier and EEG signals itself, maximum (93.25% ACC, 93.35% F1-
score) values are obtained.

3.2 Results of DMD methods

Performance evaluation results of SC-DMD and MC-DMD based and PSD based
epileptic seizure detection approaches are summarized in Tables 2-3. For the SC-
DMD and PSD approaches, the classification results of the feature set created by
combining the features obtained from the Left Hemisphere (Fp1-F7, F7-T1, T1-T3,
T3-T5, Fp1-F3), Right hemisphere (Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2-F4), and
both hemisphere (Fp1-F7, F7-T1, T1-T3, T3-T5, Fp1-F3, Fp2-F8, F8-T2, T2-T4, T4-
T6, Fp2-F4) channels separately are denoted with “Left Hems“, “Right Hems “and
“Two Hems“, while the same components show the classification results of DMD
features obtained from the EEG data matrix created using the respective hemi-
sphere channels in the MC-DMD approach.

For all three approaches, the highest classification performance for both the
subband based feature set and the moment based feature set is obtained from the
Left Hems. While the kNN classifier is yield to highest classification accuracy 94.1%
and F1-score 95.5% for subband power-based feature set obtained from the Left
Hems of SC-DMD approach, the maximum 92.2% ACC and 93.9% F1-score values
are achieved with the SVM classifier using the moment-based feature set of the SC-
DMD approach. On the other hand, in the MC-DMD approach, the classification
performances of subband power-based (kNN: 93.9% ACC, 95.5% F1-score) and
moment-based (SVM: 92.9% ACC, 93.4% F1-score) feature sets are close to each
other for Left Hems and Two Hems. Additionally, using the PSD approach, a
maximum of 92.2%, and 92.5% classification accuracies are achieved using the kNN
and SVM classifiers for the subband power-based and moment-based feature sets of
Left Hems, respectively. The results show that both SC-DMD and MC-DMD
approaches are more successful than the classical PSD approach.

3.3 Results of SST and STFT methods

Performance evaluation results of the SST based approach are given inTables 4, 5.
Analyzes for SST and STFT approaches are carried out separately for each channel.
The classification result of the feature set created by combining the features obtained
from the left hemisphere channels is given with the “Left Hems” component. Simi-
larly, while the classification result of the feature set obtained for the right hemi-
sphere is given with “Right Hems”, the classification result of the feature set created
by combining the features obtained from all channels is given with the “Two Hems”
component.

Classification performance of HOJ-TF based feature set is higher than that of
GLCM based feature set for each component of SST and STFT approaches. In both
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approaches, the classification success of both the HOJ-TF moment based feature set
and the GLCM based feature set is higher in Left Hems than in Right Hems. While
the highest 93.1% ACC and 94.6% F1-score are provided with SVM classifier by
using the HOJ-TF moment-based feature set for Left Hems of SST, the maximum
92.6% ACC and 94.2% F1-score are obtained with the kNN classifier using the
GLCM based feature set. On the other hand, in the STFT approach, 92.1% ACC and
93.8% F1-score values are achieved with the SVM using the HOJ-TF moment-based
feature set, while the classification performance of GLCM based feature set is
90.4% ACC, and 92.4% F1-score for kNN classifier.

F1-scores obtained by the proposed methods, and by the classical approaches are
calculated for comparison and given in Figure 4. The F1-scores of the proposed
EMD and EEMD-based approaches, in Figure 4a, are higher than those of DWT
and EEG-based approaches, except for the kNN classifier. In the DMD-based sei-
zure detection approach, higher F1-score values are obtained in all classifiers than
that of the traditional PSD approach for the subband power-based feature set, while
the DMD approach provided higher F1-score values in the moment-based feature
set, except for the NB classifier, shown in Figure 4b. Finally, in the SST-based
epileptic seizure detection approach, higher F1-score values are obtained for each
feature set and classifier compared to the STFT approach as shown in Figure 4c.

Channel-based classification performances of the proposed SC-DMD, SST,
EMD, and EEMD approaches are given with a topographic maps in Figure 5. The
topographic map is created by averaging the ACC values obtained with all classifiers
for each method. It was stated by the expert neurologists that epileptic attacks in the
used data set are left hemisphere-focused. It is noteworthy that the channel-based
classification success of the EEG-based seizure detection approach (shown in
Figure 5a) is very low, while is very high for the EEMD-based seizure detection
approach (given in Figure 5c). It is also remarkable that in all proposed methods,
the channels in the left hemisphere yielded successful results of seizure detection
(given in Figure 5b-5e).

Figure 4.
Changing of F1-score values of (a) EMD and EEMD based, (b) DMD based, and (c) SST and STFT based
epileptic seizure detection approaches.
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4. Conclusions

In our study, epileptic seizure detection is performed using EMD and derivative
approaches, the DMD approach, which is a matrix decomposition method, and the
SST approach, a new TF method. Pre-seizure and seizure EEG segments are
decomposed into IMFs using the EMD and EEMD method, and time, spectral and
non-linear features are calculated using the first 3 IMFs (IMF1, IMF3, IMF2) after
the IMF selection process which detailed in our previous study [18]. In order to
compare the success of EMD and EEMD methods, the same features are obtained
using the approximation and detail coefficient of the DWT approach and directly
from the EEG signal itself. While the EEMD method gives more successful results
than the EMD approach for all conditions and classifiers, the most unsuccessful
classification results are obtained by using features calculated from the EEG signal
itself.

DMD spectra are obtained for pre-seizure and seizure EEG segments using the
DMD approach, which is a simple matrix decomposition method. Although the
DMD spectrum has been defined in the literature [31, 34], different features other
than DMD powers have not been calculated using this spectrum. In our study, it is
proposed to calculate DMD subband powers and DMD-HOS moments as features.
In addition, although the multi-channel DMD approach has been used in the litera-
ture, the single-channel DMD approach has been proposed in our study. The suc-
cess of the DMD approach is compared with the classical PSD obtained using the
Welch method. The classification performance of both MC-DMD and SC-DMD
approaches is higher than that of the PSD approach. In addition, the proposed
SC-DMD based approach has been at least as successful as the MC-DMD based
approach.

Another seizure detection study is carried out using the high TF resolution SST
approach which proposed to overcome the disadvantages of classical TF
approaches. HOJ-TF moment-based and GLCM-based features are calculated as
features using the magnitude square of SST. The same features are computed using

Figure 5.
Topographic map of channel based classification accuracies of (a) EEG based (b) EMD based (c) EEMD based
(d) SC-DMD based, and (e) SST based approaches.
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the STFT method that is the classical TF analysis method to compare the success of
SST. The SST approach provided higher classification accuracy than STFT for each
condition and classifier.

EMD and EEMD approaches with high computational complexity [18], yielded
more successful results than the other two approaches. As a result of these evalua-
tions, it may be concluded that the suggested DMD and SST-based approaches that
have lower computational complexity [28, 41] can successfully be used in the
detection of epileptic EEG signals.
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