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Chapter

Abiotic Stress Responses in Plants: 
Current Knowledge and Future 
Prospects
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Abstract

Exposure to abiotic stresses has become a major threatening factor that hurdles 
the sustainable growth in agriculture for fulfilling the growing food demand world-
wide. A significant decrease in the production of major food crops including wheat, 
rice, and maize is predicted in the near future due to the combined effect of abiotic 
stresses and climate change that will hamper global food security. Thus, desperate 
efforts are necessary to develop abiotic stress-resilient crops with improved agro-
nomic traits. For this, detailed knowledge of the underlying mechanisms respon-
sible for abiotic stress adaptation in plants is must required. Plants being sessile 
organisms respond to different stresses through complex and diverse responses that 
are integrated on various whole plants, cellular, and molecular levels. The advanced 
genetic and molecular tools have uncovered these complex stress adaptive processes 
and have provided critical inputs on their regulation. The present chapter focuses 
on understanding the different responses of the plants involved in abiotic stress 
adaptation and strategies employed to date for achieving stress resistance in plants.

Keywords: plants, abiotic stress, photosynthesis, reactive oxygen species, ion 
transport, osmoregulation

1. Introduction

Plants often experience unfavorable environmental conditions such as high 
salinity, drought, cold, heat, depletion of soil nutrients, and excess of toxic ions, etc. 
that hamper the plant growth and development [1–3]. These stresses not only play 
a major role in determining the crop yield and productivity but they also contribute 
to the differential distribution of plant species across different parts of the earth [4]. 
About 90% of the arable lands around the globe are susceptible to one or more of 
the above stresses causing up to 70% annual yield loss of major food crops [5]. The 
changing climate is further aggravating the impact of abiotic stress factors on the 
overall growth and development of various crops [6]. It is believed that exposure to 
salt stress in irrigated lands has been increased by 37% during the last 20 years [7]. 
Moreover, the occurrence of drought is increased due to alteration in the evapo-
transpiration and pattern of precipitation caused by global warming [8]. As per a 
recent meta-analysis study, a further increase of 2.0 to 4.9°C in the average earth 
temperature by 2100 is speculated which will further impose a huge challenge for 
sustainable agriculture in the future [9].
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Plants respond to different environmental constraints through complex intri-
cate mechanisms [1]. The ability of plants to adjust to different environmental 
conditions is directly or indirectly related to two major plant strategies - plant 
stress avoidance and plant stress tolerance. Plant’s stress avoidance is a physiologi-
cally non- active phase like mature seeds, while stress tolerance is an active revers-
ible adjustment which is generally referred to as acclimation [10]. Acclimation 
to stress is particularly mediated through profound changes at the level of gene 
expression which results in changes or modifications in the composition of plant 
transcriptome, proteome as well as metabolome [11]. During the last few decades, 
researchers have focused on recognizing and elucidating the different compo-
nents and molecular partners underlying abiotic stress responses in plants [12]. 
Several attempts have been made to produce crops/species with improved abiotic 
stress adaptive traits including drought and salinity. However, one of the massive 
challenges in modern sustainable agriculture is the development of abiotic stress-
resilient crops with new and desired agronomical traits using different approaches. 
For this purpose, understanding the mechanisms by which plants perceive stress 
signals and further transmit them to cellular machinery for activating adaptive 
responses is of huge importance [13–16]. In this context, marrying the various 
physiological, biochemical, and gene regulatory network knowledge is essential that 
will aid up in the development of stress-tolerant high-yielding food crop cultivars 
[17, 18]. Therefore, a holistic understanding of the different responses associ-
ated with abiotic stress adaptation by taking advantage of various available high 
throughput tools like proteomics, metabolomics, and transcriptomics is critical. 
Hence, the present chapter deals with the various responses associated with abiotic 
stress stimuli in plants and the current status, and future prospects of different 
approaches used to date for developing stress-resilient crops.

2. Plant’s responses to abiotic stresses

Plants face several types of variations in their physical environment that 
hampers their growth and development. They respond to these oscillating environ-
mental conditions through a series of external and internal changes [19, 20]. These 
stress-specific responses are associated with an array of molecular players that 
modulates the morphology, anatomy, and physiology of plants [12, 13].

2.1 Responses at the level of cellular membranes

Plant cells can sense changing environmental signals leading to significant 
changes in their physiology, metabolism, and gene expression [12, 13]. The stress 
stimuli are first perceived at the level of cellular membranes that initiates a cascade 
of events to transmit the signal to various organelles thus activating the appropriate 
molecular network [21]. In plants, the primary cell wall is composed of cellulose 
fibrils connected by hemicellulose tethers embedded in a pectin gel providing 
mechanical strength for load-bearing. It also contains several structural proteins, 
phenolics, and calcium [22]. These components are often modified when plants 
are exposed to abiotic stresses. The overall architecture of the cell wall is affected 
by exposure to abiotic stress depending upon the species, the stress intensity, plant 
phenotype, plant genotype as well as the age of plant. It appears to result in both 
loosening and tightening of the cell wall [23].

The viscoelastic properties of the primary cell wall are improved by elevating 
the levels of cell wall remodeling and biosynthetic enzymes, and by modulating the 
other cell wall loosening agents such as pectin, thus contributing to higher hydration 
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status of the plant which aids up in maintaining turgor pressure necessary for growth 
[23]. The viscoelastic properties are also modulated by reinforcement of the secondary 
wall with the accumulation of cellulose and non-cellulosic components. In response to 
abiotic stress stimuli, the biosynthesis of xyloglucan (the most abundant non-cellulosic 
components of type I primary walls), and cellulose is induced [24, 25]. It is associated 
with an up-regulation of EXP (expansin), XTH (xyloglucan endo-β-transglucosylases/
hydrolases) and Ces A (Cellulose Synthase) encoding genes [25] Moreover, the 
comparative analysis of changes in the cell wall of two- different drought-resistant 
varieties of wheat under stress showed an increase in pectin polymers RGI and RGII 
(rhamnogalacturonan I and II) side chains that probably leads to hydrogel formation 
of pectin, limiting the damage to the cells [26]. Also, methyl esterification of homo-
galacturonan (HG) levels regulated by PME (pectin methylesterase) reduces upon 
exposure to stress stimuli [27]. Such modifications in the cell wall architecture lead 
to relative maintenance of cell wall extensibility required to cope up with particular 
abiotic stress. Moreover, the genes encoding for cell wall proteins including arabino-
galactan protein (AGP), glycine-rich protein (GRP), and proline-rich protein (PRP) 
are also induced in response to abiotic stress that could contribute to the cell wall 
strengthening [23].

One of the alternative responses against abiotic stress stimuli is to decrease 
the cell wall expansion and cell extensibility that can thus limit the water loss and 
prevent cell collapse due to dehydration stress [23, 28]. A decrease in cell wall exten-
sibility or turgor pressure is often associated with the rigidification of the secondary 
cell wall by lignin deposition. As monolignols are the building blocks of lignin, 
they are synthesized from phenylalanine through the general phenylpropanoid and 
monolignol-specific pathways in the cytosol. The monolignols are then transported 
to the cell wall where they are polymerized by apoplastic peroxidase (PRX) and 
laccases into lignin [23].

A large number of integral plasma membrane proteins are also known to 
participate in stress perceptions which are the members of different receptor-like 
kinases RLKs (receptor-like kinases) [29]. Abiotic stresses are often responsible for 
alterations in wall-associated kinases (WAK) that are required for cell elongation 
and development [22]. In plants exposed to abiotic stresses, the expression of genes 
encoding for WAK proteins is up-regulated hinting towards the perception of stress 
at the cell wall or plasma membrane interface through the detection of released 
plant cell wall fragments [24, 30]. Thus, it can be concluded that modulation of the 
cell wall architecture is often a direct response that plays a vital role in the sensitiza-
tion of the plant against abiotic stress stimuli. However, critical information on 
understanding this response comes from transcriptomics rather than biochemical 
analysis [26]. Therefore, a multidisciplinary approach is required for gaining an 
in-depth knowledge of this complex mechanism in the future.

2.2 Modulation of photosynthetic apparatus and gaseous parameters

Plants suffer numerous physiological reactions on exposure to environmental 
stress. These responses include alterations in photosynthetic rates, assimilate 
translocation, nutrient uptake and translocation, changes in water uptake, and 
evapotranspiration [31]. Among these, photosynthesis is one of the most critical 
plant processes affected by various abiotic stresses [31, 32]. These stresses nega-
tively influence the photosystems (PS I and PS II) thus reducing the photosynthetic 
activity along with reduced chlorophyll biosynthesis, and photosynthetic electron 
transport. They also lead to impaired RuBp (ribulose 1,5-bisphosphate) regenera-
tion that substantially affects the Rubisco activity. Generally, the stress-derived 
inhibitory effects on photosynthesis in plants may occur due to limitations in CO2 
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diffusion factors and/or metabolic factors. Some reports provide evidence that 
stomatal closure is the key event under stress conditions resulting in a decrease in 
the sub-stomatal as well as chloroplast CO2 concentration (Ci and Cc, respectively) 
thus producing a decline in CO2 assimilation [32–36].

Under moderate drought stress, decreased stomatal conductance (gs) is considered 
as the primary cause of photosynthetic inhibition from reduced supply of CO2 to the 
intercellular space. In general, atmospheric CO2 diffuses to the intercellular space 
(i.e. stomatal limitation) through stomata and then across the mesophyll (mesophyll 
limitations) at the carboxylation site [31]. Thus, mesophyll conductance (gm) and bio-
chemical limitation (bL) (often termed as non-stomatal limitations to photosynthesis 
mainly under high water stress) have gained importance in the recent years, however, 
their relative importance to photosynthesis limitation has been a subject of debate 
[31, 36, 37]. Although, the function of non-stomatal limitations to photosynthesis is 
evident, however, controversies still exist because of the error and assumptions in the 
estimation of gm and bL under stress conditions [38].

2.3 Ion stress signaling and homeostasis

Abiotic stresses particularly salt and heavy metal stress are majorly responsible 
for an imbalance in ionic composition inside the plant cells [10]. For a normal meta-
bolic function of plants, cells need to maintain high K+ and low Na+ levels. Thus, 
systematic exclusion of excess Na+ ions from the cytoplasm or their accumulation 
within the vacuoles are the main adaptive mechanisms against ionic stress in plants 
[21]. This occurs through a highly sophisticated mechanism of ion homeostasis 
which involves the interplay of different molecular players. Ion homeostasis is 
maintained by ion pumps like symporters, antiporters, and carrier proteins located 
on the cell membranes [39]. At the plasma membrane of the cell, the stress signal is 
perceived by a sensor or a receptor which is generally regulated by the coordination 
of various ion pumps [40]. Exclusion of ions is typically carried out by transmem-
brane transport proteins excluding Na+ from the cytosol, however, compartmental-
ization is carried out by H+- pyrophosphatase proteins and vacuolar membrane H+ 
-ATPase [12].

Salt Overly Sensitive also known as SOS pathway is an excellent example of 
intracellular ion management or homeostasis which is turned ‘on’ after the activa-
tion of the receptor in response to stress and transcriptional induction of genes 
by signaling intermediate compounds along with certain downstream interacting 
partners which result in the efflux of excess ions [41]. SOS1, SOS2, and SOS3 are 
the three genes encoding for SOS proteins, which work in a synchronized manner 
and aids in the transportation of Na+ ions from the cytoplasm by effluxing excess 
of Na+ ions using a plasma membrane Na+/H+ antiporter. This pathway is trig-
gered by the high concentrations of Na+ ions perceived by the intracellular calcium 
(Ca2+) ion signals. The high concentration of sodium chloride (NaCl) disturbs the 
intracellular levels of Ca2+ via hypothetical plasma membrane sensors. This Ca2+ 
signal is then recognized and interpreted by the SOS3 protein which belongs to the 
calcineurin B-like protein (CBLs) family which in association with SOS2 activates 
the SOS1 [42]. SOS1 encodes for a Na+/H+ antiporter and various studies have con-
firmed the functional role of SOS1 in maintaining the homeostatic balance of ions 
during salt stress adaptation [43]. The vacuolar Na+/H+ and H+/Ca2+ antiporters are 
also known to be differentially regulated by SOS2, thus contributing to enhanced 
Na+ ions sequestration in vacuole imparting salinity tolerance. Furthermore, the 
SOS2/SOS3 kinase complex is responsible for the down-regulation of the activity of 
Na+ ion transporters, mediating the entry of these ions into the cells of root tissue 
during salinity. Apart from the well-established function of ion homeostasis, SOS 
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proteins have also been known to play novel functions during stress acclimatization 
including regulation of cell cytoskeleton dynamics, development of lateral roots 
via modulation of auxin gradients as well as maxima in roots under moderate salt 
stress [43].

In plants, potassium (K+) is one of the most abundant inorganic cations involved 
in various aspects of plant growth and development including abiotic stress manage-
ment [44]. Thus, the maintenance of K+ homeostasis through K+ ion transporters 
and channels across the plasma membrane is necessary for the survival of plants, 
especially during stress conditions [45]. Plants have developed a unique transport 
system for K+ acquisition and release using the high-affinity K+ uptake transporters 
(HKTs) [46]. There are two sub-groups of these transporters (class I and class II) 
which have been identified to play a critical role in selective Na+ ion transport and 
cationic co-transport of Na+/K+, respectively [12]. They also play a significant role in 
the maintenance and distribution of Na+ ions between plant shoots and roots [47]. 
In Arabidopsis thaliana (Arabidopsis) knockout mutations in the AtHKT1 gene along 
with AtSOS1 gene {induced either by T-DNA insertion or ethyl methane sulphonate 
(EMS) treatment} lead to over-deposition of Na+ ions in leaves due to the decreased 
amount of Na+ ions in roots under salt stress [48].

Cl− is a plant micronutrient which regulates turgor pressure, leaf osmotic 
potential, and stimulates growth in plants by acting as a critical messenger in plant 
developmental processes [49]. Cl− ion signaling and transporters also regulate 
different pathways conferring abiotic stress tolerance in plants [50]. For instance, as 
an early salt stress response, the Cl− ion signal in the soil with elevated salt concen-
tration has been connected to stomatal closure in an ABA dependent manner [21]. 
However, increased deposition of these ions during ionic stress is detrimental to 
plant growth and development [51]. Thus, plants tend to decrease the net levels of 
Cl− ions during stress through reduced net Cl− uptake by roots, decreased intracel-
lular compartmentation, reduced net xylem loading of Cl−, and phloem recircula-
tion and translocation [52]. Also, inside the cytosol, threshold levels of Cl− ions are 
maintained primarily through its sequestration with the help of ion transporters 
and voltage-gated ion channels inside the vacuole [53]. A voltage gradient is main-
tained between the vacuole and the cytoplasm because of a slightly positive charged 
vacuole and a negatively charged cytoplasm. Hence, a large number of the Cl− ions 
are sequestered through voltage-gated anion channels of the CLC family which are 
present on the tonoplast. Different CLC proteins function as anion/H+ exchangers 
or anion-selective channels. In reports, AtCLCa has been characterized as a two-
anion/H+ exchanger which drives the active uptake of anions inside the vacuoles of 
Arabidopsis guard cells and mesophyll with higher selectivity for NO3

− ions over 
Cl− ions [54]. Besides, CLCs play a vital role in loading anions in the vacuole of 
guard cells for stomatal opening in response to light and later releasing them during 
ABA-induced stomatal closure [55].

2.4 Intracellular osmotic adjustment and osmoprotectants

The intracellular water loss from the cell due to drought and salinity stress results 
in cellular dehydration thus imposing osmotic stress in plants [56]. To counteract 
the effects of osmotic stress, plants and bacteria accumulate certain organic solutes 
like quaternary ammonium compounds, polyamines, fructose, sucrose, sugar 
alcohols, trehalose, fructans, oxalate, malate, and many others. These metabolites 
are referred as osmoprotectants or compatible solutes and may accumulate in large 
quantities without disturbing the intracellular biochemistry [57]. Among these 
osmoprotectants, quaternary ammonium compounds including proline and glycine 
betaine (GB) abundantly accumulate in response to abiotic stresses. The imino acid 
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proline is known to be deposited in considerable amounts in plant cells under the 
influence of drought, salinity, and other stresses [58]. It is synthesized inside the 
cytoplasm and plastids while it is degraded to glutamate (Glu) in the mitochondria. 
In addition to its role in osmotic adjustment, proline contributes in the stabiliza-
tion of the cellular membranes and vital proteins by making clusters with water 
molecules that later get attached to membranes and proteins, thus, inhibiting their 
denaturation [59, 60]. Proline also scavenges free radicals to maintain or buffer the 
redox potential inside the cell under stressful conditions. It alleviates the cyto-
plasmic acidosis and sustains NADP+/NADPH ratios at required levels for cellular 
metabolism, hence, supporting redox cycling [60, 61]. Researchers have observed a 
positive correlation between proline deposition and tolerance against various abiotic 
stresses in plants [58]. Furthermore, the exogenous application of proline has been 
used as an effective approach to improve stress tolerance in plants [62].

GB is another critical compound that plays an important role in osmoprotection, 
stroma adjustment as well as protection of thylakoid membranes for maintain-
ing the photosynthetic activity during stress conditions [63, 64]. It protects the 
photosystem II (PS-II) complex from the impact of abiotic stresses [65]. GB also 
possesses a protective role for Rubisco against heat-induced destabilization [65]. 
The increased accumulation of GB provides abiotic stress resistance in several agro-
nomically important crops including tobacco, potato, tomato, barley, and maize 
[11, 66, 67]. Moreover, the Arabidopsis thaliana, Nicotiana tabacum, and Brassica 
napus plants transformed with bacterial choline oxidase cDNA were found to show 
5 to 10% increased levels of GB than the naturally found levels of GB in them that 
moderately improved their tolerance against different abiotic stresses [68].

The content of soluble carbohydrates also varies in response to abiotic stresses in 
plants. Simple and complex carbohydrates such as sugars, starch, and sugar alcohols 
accumulate under stress conditions in plants [68]. The major roles of these biomol-
ecules are osmotic adjustment, carbon storage, and free radical scavenging. Their 
pattern of accumulation in response to stress varies under short- and long-term 
reactions. In short-term water stress conditions, decreased content of sucrose and 
starch were observed in the case of Setaria sphacelata, which is a naturally adapted 
C4 grass whereas an increased amount of soluble sugars and decreased amount 
of starch were reported under long term stress imposition [69]. Trehalose is a rare 
non-reducing sugar that occurs in some desiccation-tolerant higher plants along 
with various bacterial and fungal species [70]. It shows significant accumulation 
in plants in response to various environmental stimuli and acts as an osmolyte thus 
protecting the plant cells. It also protects the protein functioning by reducing the 
aggregation of denatured proteins and safeguards the biological molecules from the 
changing environmental stresses through its reversible water-absorption capacity 
[68, 71]. The sugar alcohols also show considerable accumulation in response to abi-
otic stress in plants and help in osmotic adjustment [72]. Mannitol, a sugar alcohol, 
accumulates upon salt and water stress conditions in plants. Wheat transgenics, 
expressing the mtlD gene (mannitol-1-phosphate dehydrogenase) of Escherichia coli 
showed significantly more tolerance towards salt as well as water stress. Upon 
analysis, increased plant height, biomass, and the number of secondary stems were 
observed in transgenic wheat [72].

Polyamines are small organic molecules ubiquitously present in all living organ-
isms which play a vital role in diverse cellular processes. They are positively charged 
at physiological pH and are regarded as growth substances [73, 74, 75]. Under stress 
conditions, different plant species respond differently to polyamines levels. Some of 
the plants might increase the content of polyamines under stress conditions whereas 
others decrease their levels of endogenous polyamines when exposed to severe envi-
ronmental conditions [73]. Exogenous application of polyamine and/or inhibitors 
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of enzymes which are involved in polyamine biosynthesis also hints towards a pos-
sible role of such compounds in plant adaptation or defense process in response to 
environmental stresses [76]. Moreover, studies involving either transgenic overex-
pression or loss of function mutants support the protective, adaptive, or defensive 
role of polyamines in plant’s response to various abiotic stresses [76, 77].

2.5 Reactive oxygen species (ROS) regulation during stress acclimation

Many evidences suggest that various environmental stresses lead to the genera-
tion of ROS in plants. Actually, in plants, each cellular compartment is equipped 
with its own ROS homeostasis control [78–80]. The ROS signaling is changed 
depending upon the cell type, developmental stage, and level of stress [81]. Under 
optimal growth conditions, ROS inside the cell is mainly produced at a low level in 
organelles like chloroplast, mitochondria, and peroxisomes [82]. It has been esti-
mated that 1–2% of the O2 consumed by plant tissues, leads to the ROS formation 
that mainly involves 1O2, H2O2, O

•−
2, and OH• [83, 84]. At this low concentration, 

ROS acts as a signaling molecule that triggers signal transduction pathways involved 
in growth and development [21, 85]. However, in response to various abiotic 
stresses, the generation of increased levels of ROS causes irreversible damage to 
cells through their strong oxidative properties [86]. They possess lethal properties 
and cause extensive damage to DNA, proteins, and lipids thereby affecting normal 
cellular functioning [82]. Plants have developed an elaborate and efficient network 
of ROS generating and scavenging mechanisms to overcome this ROS toxicity. 
The two systems interplay with each other for maintaining a steady state in plants 
during stress acclimation [87, 88]. The delicate balance between the generation of 
ROS and its scavenging is responsible for duality in its function in plants which is 
orchestrated by a giant network of genes known as ‘ROS gene network’ [84].

Plant NADPH oxidases also referred as respiratory burst oxidase homologs 
(RBOHs) are the most studied enzymatic source of ROS in plants [88]. These 
are superoxide-producing enzymes that are widely involved in various processes 
including abiotic stress responses in plants [89]. The superoxide radical is a short-
lived ROS molecule that is characterized by moderate reactivity and can trigger a 
series of reactions to produce other ROS species. It is produced inside mitochondria, 
chloroplasts, endoplasmic reticulum, and peroxisomes as a result of their normal 
metabolism [90]. The activity of plant NADPH oxidase is regulated by some key 
regulatory components like Ca2+, calcium-dependent protein kinases (CDPKs), 
Ca2+/CaM-dependent protein kinase, some small GTPases, and others. The pro-
duction of ROS through NADPH oxidase may result in regulating the acclimation 
to abiotic stresses in plants. For instance, in barley, NADPH oxidase-mediated 
apoplastic ROS generation (acting upstream of xylem Na+ loading) that is linked to 
ROS-inducible Ca2+ uptake systems in the xylem parenchyma tissue is considered 
as a critical factor contributing to salt stress tolerance in plants [91]. In Arabidopsis, 
the double mutants of AtRbohD and AtRbohF genes with significantly inhibited 
ROS generation exhibited less growth and relatively higher cellular Na+ to K+ ratios 
than the wild-type (WT) as well as a single null mutant ATrbohd and ATrbohf plants 
under salt stress [92].

Superoxide ions generated by NADPH oxidase are converted to hydrogen peroxide 
(H2O2), catalyzed by the different isoforms of superoxide dismutase (SOD) enzyme 
[93]. H2O2 production in plant cells not only occurs under normal conditions but 
also by oxidative stress which is caused by different abiotic factors. The major 
sources of H2O2 production in plant cells comprises of the electron transport chain 
in the chloroplast, endoplasmic reticulum (ER), mitochondria, cell membrane, 
β-oxidation of fatty acid, and photorespiration along with various other sources 
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including reactions comprising photo-oxidation by NADPH oxidase. The rates of 
H2O2 accumulation in peroxisomes, as well as chloroplasts, may be 30–100 times 
higher as compared with H2O2 generated in the mitochondria. It acts as a systemic 
signal that alerts various plant tissues to respond and adapt in response to the upcom-
ing stress stimuli [94, 95]. H2O2 confer acclamatory stress tolerance by regulating 
osmotic adjustment, photosynthesis, ROS detoxification, and phytohormones 
signaling [95]. Studies have suggested that seeds pre-treated with H2O2, or together 
with the application of H2O2 and abiotic stress, induce an inductive pulse which 
aids up in protecting plants under abiotic stresses by the restoration of redox-
homeostasis and mitigation of oxidative damage to membranes, lipids, and proteins 
by modulating the stress signaling pathways [95].

The stress-induced ROS activating responses occur rapidly with the appearance 
of the stress and it should decay immediately to protect the plants against their toxic 
effects. For this, plants are equipped with an array of ROS detoxifying proteins that 
mitigate the toxic effects of ROS generated as a result of different types of stresses 
[96]. In plants, the redox homeostasis during stressful conditions is maintained by 
the two arms of the antioxidant machinery—the enzymatic components consisting 
of the superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate per-
oxidase (APX), catalase (CAT), glutathione-S-transferase (GST), and the non-
enzymatic molecular compounds like reduced glutathione (GSH), ascorbic acid 
(AA), α-tocopherol, phenolics, carotenoids, flavonoids, and proline. These antioxi-
dant enzymes are situated in different sites of the plant cells and work together to 
detoxify ROS. The omnipresent behavior of both arms of the antioxidant machinery 
explains the basic necessity of detoxification of ROS for cell survival [97].

3. Strategies to combat abiotic stresses in plants

Various strategies have been undertaken by the researchers from time to time 
to improve the abiotic stress tolerance in plants, particularly crop plants [98]. Plant 
breeding is the most traditional and widely used method for achieving the desired 
trait in given plants including stress adaptation [99]. However, the success of crop-
breeding programs greatly depends on the availability of natural genetic variations 
among the germplasm resources and tedious selection procedures that are too slow 
and equally expensive [100]. Moreover, the various environmental factors such 
as plant developmental stage along with the logistical constraints of physiological 
screening of large breeding populations on a field-scale can affect the differential 
selection of a particular stress tolerant plant. Thus, plant breeding is almost always 
limited by the genetic complexity of the underpinning mechanisms along with 
the potential interaction among genetic determinants [101]. In this regard, the 
identification and recognition of discrete chromosomal regions having a major 
effect on the specific tolerance trait via quantitative trait loci (QTL) mapping and 
marker-assisted selection remain a valuable option for the success of many breeding 
programs [102]. Although, QTL mapping holds great promise, but still it remains 
complicated as the introgression of QTL regions in elite lines is tedious due to link-
age drag that may introduce non-target regions. As an alternative, the cellular-based 
mutant introduction and subsequent selection under controlled in vitro conditions 
offer a method to quickly screen large populations with homogeneous backgrounds 
for novel fortuitous changes related to tolerance. Subsequent field screening then 
ensures the adequate performance of the tolerance trait under the external poten-
tially mitigating factors [103].

In the past few decades, the genetic engineering approach has attracted the 
interest of the research community for producing stress-tolerant elite crops [104]. 
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Genetic transformation with stress-inducible genes has been employed by the 
researchers to gain an understanding of their functional role in stress tolerance and 
ultimately to improve the traits in the target genotype [105]. The genetic manipu-
lation techniques including insertional mutagenesis have largely contributed to 
deciphering the function of genes and thereby identifying the suitable candidates 
for crop improvement [106]. However, though success has been achieved in intro-
ducing desired tolerance traits into various crop varieties from wild relatives like 
barley and tomato, a restricted success has been reported in achieving abiotic stress 
tolerance with elite germplasm [107]. Moreover, the integration of transgenes into 
the host genome is sometimes non-specific and unstable [108]. Recently, the use of 
targeted genome editing using clustered regularly interspaced short palindromic 
repeats (CRISPR) and CRISPR-associated protein9 nuclease (Cas9) (CRISPR/Cas) 
has generated a lot of interest in various fields of plant biology including abiotic 
stress management [109]. CRISPR/Cas has been adopted in the field of plant 
developmental biology for characterizing genes as well as to underpin the molecular 
mechanisms behind various plant traits [110]. It has been used in the model plants 
such as Arabidopsis and tobacco earlier and likewise, now it is being utilized effec-
tively for crop plants like sorghum, rice, wheat, maize, soybean as well as woody 
plants. Researchers have worked on the potential use of the CRISPR/Cas9 technique 
for the production of abiotic stress-tolerant crops by targeting the key sensitivity 
(S genes and cis-regulatory sequences) and tolerance (T genes) players. In general, 
T genes are deployed to achieve stress tolerance in plants; however, the S genes 
negatively regulates the biological function of the T genes. Therefore, the silencing 
of S genes to disturb their functioning can help plants to adjust their physiologi-
cal and biochemical pathways for providing tolerance in response to abiotic stress 
[111]. Like S genes, various cis-regulatory sequences have also been identified that 
negatively regulates abiotic stress tolerance mechanisms. These sequences are 
highly conserved and help in the regulation of gene expression by interacting with 
specific transcription factors [111]. Thus, editing such cis-regulatory sequences can 
also serve as a potential strategy for improving stress tolerance in plants. However, 
one major limitation of genome editing is the off-target mutations that are caused 
by Cas9 in transgenic plants. This limitation has been overcome to a considerable 
extent by the advent of stress-inducible CRISPR/Cas9 technique which reduces the 
rate of off-target mutations to negligible levels [112]. Thus, we can consider stress-
inducible CRISPR/Cas as a promising tool for precise and efficient genome editing 
in crop plants for numerous traits, including abiotic stress tolerance.

4. Conclusion

In the last few decades, significant progress has been made in our understanding 
of the complex mechanisms governing abiotic stress tolerance in plants. However, 
still we are far from pinning the exact battery of gene activation mechanisms 
responsible for providing tolerance to various abiotic stresses. Our struggle to under-
stand the complex mechanisms is ongoing and recent development of new tools for 
high-throughput phenotyping and genotyping gives us a new ray of hope. A com-
plete understanding of the physiological, biochemical and molecular mechanisms 
especially the signaling cascades in response to abiotic stresses in tolerant plants will 
help to manipulate susceptible crop plants and increase agricultural productivity 
in the near future. Moreover, advances in genomics strategies including genetic 
engineering and genome editing have provided new opportunities for crop improve-
ment by employing precise genome engineering for targeted traits in crop plants. 
However, the selection of the key genes is critical for the success of these approaches.
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