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Chapter

Analysis of Optimal Steady-State
Operation of Power Systems with
Embedded FACTS Devices: A
Matlab-Based Flexible Approach
Jose Miguel García-Guzman, Néstor González-Cabrera,

Luis Alberto Contreras-Aguilar, Jose Merced Lozano-García

and Alejandro Pizano-Martinez

Abstract

This book chapter presents a flexible approach to incorporate mathematical
models of FACTS devices into the Power Flow (PF) and the Optimal Power Flow
(OPF) analysis tools, as well as into the standard OPF Market-Clearing (OPF-MC)
procedure. The proposed approach uses the Matlab Optimization Toolbox because it
allows to easily: (a) implement a given optimization model, (b) include different
objective functions using distinct equality and inequality constraints and (c) modify
and reuse an optimization model that has been previously implemented. The con-
ventional OPF model is the main core of the proposed approach, which is easily
implemented and adapted to include the mathematical models of FACTS devices. The
resulting implementation of the OPF model featuring FACTS devices can be easily
modified and adjusted to obtain the implementation of both the PF and the OPF-MC
models which includes such devices. It should be mentioned that with the flexible
approach proposed here, the complexity as well as the implementation time of opti-
mized models featuring embedded FACTS devices is significantly reduced, since it is
not necessary to define the expressions associated with the hessian matrix and the
gradient vector. The flexibility and reliability of the proposed approach are demon-
strated by means of several study cases using test as well as real power systems.

Keywords: FACTS devices, Matlab-based flexible approach, optimal power flow
(OPF), steady-state operation, power systems

1. Introduction

The efficient operation and economics of electric power systems have always
occupied an important place in the electric power industry [1]. Here, it is worth
mentioning that highly desirable operative conditions cannot be successfully
achieved by means of using the old electromechanically controlled devices, such as
the mechanical phase shifter. These old devices execute control actions through
mechanical actuators, and thus provide a poor high-speed control. Some of the
consequences of this lack of speed and reliable control are associated with stability
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problems. Also, the power flow deviates through secondary transmission lines that
are not the intended ones. In addition to the above mentioned issues, there are
instability issues when the transmission resources are closely used to their thermal
and economic limits. Not to mention, the high or low voltages resulting from such a
poor high-speed control, in addition to many other issues [2]. Those poor operating
conditions have given place for the need to develop faster controllers and a more
efficient power system management. Fortunately, the fast development of power
electronics based on new and powerful semiconductor devices has given rise to
novel technologies such as FACTS controllers that greatly improve the operating
conditions of power systems [3].

From a steady-state operation perspective, the control capabilities of FACTS
devices allow to adjust the active and reactive power flows at their output terminals,
as well as to achieve the local control of reactive power and voltages at the
connected nodes [4]. In order to investigate the effectiveness of these control
capabilities for alleviating a large variety of problems associated with the steady-
state performance of power systems, the existing tools for the steady-state condi-
tion assessment have been upgraded to incorporate steady-state models of FACTS
controllers. The Power Flow, the Optimal Power Flow and the OPFMarket-Clearing
procedures are the common tools used to assess the steady-state operation and
market-clearing conditions of power systems. Accordingly, the upgrade of those
three tools has received great attention. For instance, references [4–12, 4, 13–19,
20–24] are representative samples of the several publications where models of
FACTS controllers are incorporated into the Power Flow, the Optimal Power Flow
and the market-clearing procedures, respectively.

Certainly, the evolution of FACTS controllers is going to be progressive as
function of time [2]. With the further development of technologies based on power
electronics, the economic viability of these controllers will improve in such a way
that more and more FACTS devices are expected to be designed and used in future
applications [13]. In this sense, it is expected that modern power systems are
going to be electronically controlled rather than mechanically controlled [2].
Consequently, to study the usefulness of new FACTS devices for improving the
steady-state performance of power systems as well as to speed up research efforts, it
would be needed the upgrade of the existing steady-state analysis tools in order to
incorporate the corresponding mathematical models of such devices.

Bearing in mind the aforementioned prospective on FACTS controllers, in this
book chapter is proposed a Matlab-based flexible approach that incorporates math-
ematical models of FACTS devices into: the power flow and the optimal power flow
analysis tools; as well as into the standard OPF market-clearing procedure [25]. The
flexibility of the proposed approach is achieved by taking advantage of both: (a) the
tractability of the nonlinear continuous optimization theory to consider different
objective functions that can be properly constrained and (b) the simplicity of the
Matlab Optimization Toolbox to implement and solve an optimization model, as
well as its ability to modify and reuse an optimization model that has already been
implemented [26]. In order to show the flexibility of the proposed approach, first
consider that the OPF model is the main core of this proposal, then the strategy to
code the objective function, the equality and inequality constraints of the conven-
tional OPF model are given in detail. Second, the implemented conventional OPF
model is enlarged to include the steady-state models of FACTS controllers. Lastly,
the resulting OPF implementation is modified and reused, to straightforwardly
obtain the computational implementation of both the Power Flow and the standard
OPF market-clearing models that use embedded FACTS controllers.

In this way, the proposed book chapter can reduce the computational imple-
mentation load of the FACTS model devices into one of the three previously
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mentioned procedures. Therefore, this proposal facilitates carrying out research in
order to assess the effectiveness of FACTS devices for improving the steady-state
performance of power systems. Arguably, the use of high-level programming lan-
guages and optimization toolboxes such as the ones provided by Matlab could
reduce the computational efficiency of any approach that is implemented using
such tools. However, for research purposes, the computational efficiency of the
proposed approach is quite reasonable, since the solution of the distinct optimiza-
tion models related to medium scale power systems is commonly obtained in a time
lapse that varies from a few seconds to a maximum of 10 minutes. In addition, when
the main objective is to investigate the effectiveness of FACTS devices for improv-
ing the steady-state performance of power systems, the computational efficiency
requirement can be further relaxed.

This book chapter is organized as follows. Since the conventional OPF model is
the core of this approach, its formulation is given in Section 2, as well as the steady-
state models of the traditional power system components. These models are then
considered in Section 3 to assemble the conventional OPF model. The Section 4
shows the incorporation of the FACTS models into the conventional OPF model.
This last model can be straightforwardly extended in order to obtain the computa-
tional implementation of the PF and, the standard OPF market-clearing models in
Sections 5 and 6, respectively. The applicability of the proposed approach for the
steady-state operation of power systems using embedded FACTS devices is assessed
by means of numerical examples in Section 7. Last but not least, the conclusions of
this chapter book are stated in Section 8.

2. The optimal power flow general-formulation

The optimal power flow formulation is a non-linear optimization problem which
consists in minimizing an objective function subject to a finite set of equality and
inequality constraints. Mathematically, the OPF model is given by

Minimize f yð Þ (1)

Subject to h yð Þ ¼ 0 (2)

g yð Þ≤0 (3)

ymin ≤ y≤ ymax (4)

where f (y) is the objective function to be minimized, h(y) and g(y) are a finite
set of functions corresponding to the equality and inequality constraints, respec-
tively. Whilst y, represents the full set of variables of the power system with a lower
limit ymin and an upper limit ymax. It must be mentioned that the set y contains of
both the state variables as well as the control variables.

The OPF formulation is given in polar coordinates taking in consideration the
model of each power system component. The most common components of a
power system are: generators, loads, fixed shunt compensation elements, transmis-
sion lines and transformers; whose steady-state models are given in [4]. These
models are adopted in the flexible approach proposed in the present book chapter.

3. Flexible approach to implement the OPF model

This section describes the flexible approach to implement the conventional OPF
model as a computer program, which is developed based on structured programming
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along with the use of the fmincon optimization function ofMatlab [26]. This proposal
allows to obtain a computational implementation of the OPF model with the follow-
ing remarkable features: (a) It considerably simplifies the computational complexity
of the implementation of a conventional OPF, (b) it is very flexible when considering
diverse physical laws and operating conditions, (c) it allows for the integration of
FACTS models and (d) it has the tractability of easily being adapted to study electric
power systems by means of different steady-state analyses. For example, it can be
straightforwardly adapted to solve the conventional power flow problem and to carry
out the analysis of electric power markets. In this way, steady-state analyses of
distinct power systems featuring different electric components can be carried out by
doing very few changes to the composition of the set of steady-state variables as well
as the set of constraints and the objective function of the proposed implementation of
the OPFmodel. The aforementioned features are further exploited in Sections 5, 6 and
7 in order to take into consideration: FACTS devices, the conventional power flow
problem and the standard OPF market-clearing procedure, respectively.

3.1 The fmincon function of the Matlab optimization toolbox

The fmincon function of the Matlab Optimization Toolbox is used to solve the
general OPF model which is a constrained nonlinear optimization or programming
problem. That Matlab function attempts to find out the constrained minimum of a
scalar objective function of several variables, starting with an initial estimation of the
constrained minimal point. Here it is worth mentioning that the fmincon function is
designed to solve problems where the objective and constraint functions are both
continuous as well as their first derivatives. In order to obtain the optimal solution of
the optimization problem at hand, the fmincon users can choose one of the following
optimization options: the trust-region-reflective method, the active-set method, the
interior-point method and the sequential quadratic programming approach [26].
Figure 1 shows a schematic representation of the main input and output arguments of
this function. It must be pointed out that, depending on to the requirements of the
specific optimization problem, some empty input arguments must be provided.

Figure 1.
Schematic representation of the main input and output arguments of fmincon function.
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The next command line syntax of the fmincon function, including input and
output arguments, is shown below [26]. Observe that the first line of code corresponds
to the input arguments, whilst the second one corresponds to the output arguments.

x = fmincon(fun,x0,A,b,Aeq,beq,lb.,ub,nonlcon,options)

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(___)

In Figure 1 and the syntax, the input argument fun is the handle of theM-function
file containing the objective function to be optimized. X0 represents the initial condi-
tions of the state vector X of the optimization model, which is given by (5). For the
purpose of this work, this state vector (X0) stores the initial conditions of the steady-
state variables of the power system. By the way, the lower and upper bounds ofX0 are
assigned to the arguments lb and up, respectively. The size of lb and upmust be equal
to the size of the vectorX0. Next, the nonlcon input argument is the handle of the M-
function file containing the nonlinear inequality as well as the equality constraints. In
the same venue, the argument options is a structure where the user can define
optional parameters for the optimization process, such as: the optimization algorithm,
the convergence tolerance, the maximum amount of iterations, the tolerance on the
constraint violation and the termination tolerance on the function value, amongmany
other parameters. It is worth mentioning that the options structure has the parameter
LargeScale that allows for a choice on which algorithm to use. If that parameter is set
to on, then the gradient of the objective function as well as the constraints must be
provided by the user. It must be highlighted, however, that in this work, the
LargeScale parameter is set to off with the aim of simplifying and making more
flexible the proposed computational implementation. Last but not least, the input
arguments A, b, Aeq and beq are associated with the coefficients of the linear
inequality and equality constraints. In this proposal, however, the OPF model only
considers nonlinear equality and inequality constraints and, therefore, the above
mentioned input arguments are considered as empty arrays.

Next, the output arguments are briefly described to provide more clarity on the
approach proposed here. First, X* stores the optimal value of the optimization
model variables as they are assessed by the fmincon function. Second, the fval
output returns the value of the objective function given by the optimal solution X*.
Third, the output argument is a structure that contains information about the
results of the optimization. Forth, lambda is an argument storing the value of the
Lagrange multipliers atX*. Fifth, the arguments hessian and grad store the value of
the Hessian matrix and the gradient vector of the objective function at X*, respec-
tively. Last but not least, exitflag is an integer identifying the termination condition
of the optimization algorithm; that is, if (a) exitflag > 0: the algorithm reached the
optimal solution X*, if (b) exitflag = 0: either the maximum amount of function
evaluations or iterations specified by the user was exceeded, thus the optimal
solution has not been reached and if (c) exitflag < 0: the algorithm did not reach the
optimal solution, therefore, there is an unfeasible solution.

A detailed way to define the set of steady-state variables, the objective function
and the constraints sets of the OPF model is given below. Also, the explicit OPF
formulation is given in polar coordinates in accordance to the model of each power
system component, as it is described in the following subsections.

3.2 Flexible implementation of the OPF model

3.2.1 Steady-state variables

Within the proposed implementation, the set of the steady-state variables of the
OPF model is treated as a vector containing such variables in the order shown in (5).
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That vector is called the vector of steady-state variables, denoted by X. Note that T
denotes the transpose of the vector X.

X ¼ θ1 … θnb V1 …Vnb Pg1 …Pgng

� �T
(5)

In (5), the number of nodes and generators of the power system are represented
by nb and ng, respectively. θi and Vi represent the angle (grades) and magnitude
(pu) of the phasor voltage in each node i of the power system, and Pgi is the power
of the generator i. Note that the size of the steady-state vector is (2nb + ng, 1). It
should be mentioned that in the implementation, the vector X also corresponds to
the vector of the initial conditions of the state variables X0, which is also called by
the fmincon function during the optimization process. That function returns the
optimal value of the steady-state variables, which is stored in the vector X, that is,
the result is rewritten in X. In this way, when the optimization process is finished, X
is then the vector of the optimal solution represented by X*.

The vector X0, which represents the initial conditions of the state variables of
the power system in the OPF model, is defined as follows: the magnitude and angle
of the voltage in each node of the power system are initialized at 0 grades and 1.0
pu, respectively, whilst Pg0 is the initial condition of active power at the generation
nodes. It is worth mentioning that Pg0 is set to the values of the active power
obtained from the analysis of the Optimal Generation Dispatch (OGD), which in
turn, neglects the losses in the transmission elements. Last but not least, observe
that the initial conditions of the active power generation help to reduce the number
of iterations associated with the OPF optimization process. The syntax of the vector
X containing the state variables is the following:

X(1:nb,1)= V_angle; %Phase angle of nodal voltage in radians

X(nb+1:2*nb,1)=V_mag; %Magnitude of nodal voltage in pu

X(2*nb+1:2*nb+ng,1)=Pg; %Active power generation

3.2.2 Objective function

The objective function considered in the OPF model corresponds to the total
generation cost of active power, which is a nonlinear function given by

f yð Þ ¼
X

ng

i¼1

ai þ bi Pgi

� �

þ ci Pgi

� �2
(6)

where the cost curve coefficients of each generator i are represented by ai, bi and
ci. ng is the number of generation nodes including the slack node. Pgi is the individ-
ual generation power level. Observe that the objective function in (6) is coded into
an M-function file with the name objfun_OPF. This last file is also called by the
fmincon function through the input argument fun, using the syntax @(X)
objfun_OPF(X). The general Matlab syntax for the objective function given by
Eq. (6) is the following:

function f = objfun_OPF(___)

f=0;

for k=1:ng

f=f+ai(k,1)+bi(k,1)*Pgi(k,1)+ci(k,1)*Pgi(k,1)^2;

end

It is worth mentioning that in the above M-function file is possible to: include,
modify, define or write the objective function as it is desired. Therefore, the
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objective function (6) can be modified or even changed by a new function. This
characteristic provides great flexibility to the proposal, including the possibility for
handling several objective functions at the same time.

3.2.3 Equality constraints

The equality constraints of the OPF analysis are given by the balance energy
equations for the power system. These restrictions must be unconditionally met
because they establish the active and reactive power balance under steady-state
conditions for all the nodes of the power system. If at least one constraint is not
satisfied, then the solution of the OPF problem is not feasible. That set of equality
constraints is given by

h yð Þ ¼

Pgi � Pli �
P

nb

j∈ i
P
inj,j
i ¼ 0

Qgk �Q lk �
P

nb

j∈ k

Q
inj,j
k ¼ 0

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

i ¼ 1, 2, … , nb

k ¼ 1, 2, … , nb ∣ k ∉ ng
(7)

where i and k are the nodes in which the energy balance is satisfied. Pi
inj,j and

Qk
inj,j represent the active and reactive injected-power at node i and k, respectively.

Note that the injection point is the j-th network element. Also note that the active-
power and reactive-power (denoted by Pgj and Qgj, respectively) are provided by
the controllable complex power sources located at the j-th generation node (j = i, k).
Last but not least, the complex power consumption is due to the active-power load
Plj and the reactive-power load Qlk.

In the proposed flexible implementation, the set of equality constraints is writ-
ten in an M-function file with the name constraints_OPF. This set of constrains is
given by (8).

Ce1
⋮

Cenb

Cenbþ1

⋮

Ce2nb

Ce2nbþ1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

Pg,1

⋮

Pg,nb

Qg,1

⋮

Qg,nb

Xsn

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

�

Pl,1

⋮

Pl,nb

Q l,1

⋮

Q l,nb

θsn

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

�

Pinj,1

⋮

Pinj,nb

Q inj,1

⋮

Q inj,nb

0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(8)

In the above expression, sn is the subscript associated with the slack node, whilst
Xsn stores the value of phase of the slack node in the corresponding component of
the state vector X. Note that θsn is the value of the phase at which the angle of the
slack node is fixed. It must be pointed out that in (7) and (8), the value of the
reactive power Qgi must always be zero for the i-th generation node. This is because
the level of reactive power generation depends on the state variables of the power
system. Henceforth, Qgi lacks a scheduled value in the optimization model OPF.
Furthermore, the constraint of reactive power balance is satisfied only at non-
generation nodes. Then such constraint should be handled as a functional inequality
constraint for generation nodes in order to establish the reactive power balance in
such nodes, as it is explained below. Note that the way in which the vector of
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equality constraints (Ce) is written, provides the flexibility to add more constraints
of this type. This in turn allows extending the OPF model to other similar models
for the steady-state operation assessment of power systems. The general command
line syntax for the vector of equality constraints, Ce, is the following:

function [ci,ce] = constraints_OPF(___)

% Nodal active power balance equality constraints (Pg-Pd_Pinj=0)

%i=1,2,...,nb

Ce(1:nb,1) = Pg_i(___) - Pl_i(___) - Pinj_i(___);

% Nodal reactive power balance equality constraints (Qg-Qd_Qinj=0)

%k=1,2,...,nb-ngen

Ce(nb+1:2*nb,1) = Qg_k(___) - Ql_k(___)- Qinj_k(___);

%Set fix the slack node angle

Ce(2*nb+1,1) = VP(sn) - V(sn,2);

It is important to note that in the above syntax, Pg_i, Pl_i and Pinj_i are
implemented as M-function files. The same is valid for the code line that
corresponds to the reactive power.

3.2.4 Inequality constraints

The physical and operational limits are mathematically modeled as inequality
constraints. This is because these limits help to constrain the range of the practical
steady-state operation of the power-system components. For a better handling of
the inequality constraints, these are classified into two types: inequality constraints
on variables and functional inequality constraints. The limits on the magnitude of
the substation-voltage and the generation of active-power are represented by the
inequality constraints given by (9).

Y ¼

θn
min ≤ θn ≤ θn

max

Pgi
min ≤Pgi ≤Pgi

max

Vn
min ≤Vn ≤Vn

max

8

>

>

<

>

>

:

9

>

>

=

>

>

;

i ¼ 1, 2, … , ng

n ¼ 1, 2, … , nb
(9)

In (9), the superscripts min and max represent the lower and upper bounds of
the respective variable. As mentioned before, the lower bound is assigned to the
input argument lb, and the upper bound is assigned to the input argument up; both
arguments are called by fmincon function during the optimization process. The
assignment of such limits to the respective previously mentioned input-arguments
is shown in (10). The superscript T, on lb and up indicates the transposition of the
respective vector.

lb ¼ θmin
1 … θmin

nb Vmin
1 …Vmin

nb Pmin
g1 …Pmin

gng

h iT
(10)

up ¼ θmax
1 … θmax

nb Vmax
1 …Vmax

nb Pmax
g1 …Pmax

gng

h iT
(11)

Clearly, the size of the vectors lb and up is equal to the size of the vector of the
steady-state variables, X. As mentioned before, storing the inequality constraint-
vectors into an M-file enables the convenient modification of such vectors by
adding or removing constraints that are associated with other models of steady-
state operation of power systems. This is shown in subsequent sections.
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The level of reactive power generation is not a scheduled value because it is a
function of the system variables. Therefore, the limits of the power (Qgi) are
modeled in the OPF problem as a functional inequality constraint as follows:

g y
� �

¼ Q gi
min ≤Q gi ≤Qgi

max
n o

i ¼ 1, 2, … , ng (12)

The reactive power generation level Qgi in (12) is given by the following
function:

Q gi ¼ Q li þ
X

j∈ i

� V2
i Bii þ V iV j GijSin θi � θ j

� �

� BijCos θi � θ j

� �� �

(13)

In accordance with (13), the balance of reactive power at the i-th generation
node is achieved only when the level of that power is inside its own bounds. If the
level of the reactive power generation of a given generator is out of its upper or
lower limit, then the corresponding inequality constraint (9) must be added to the
active set in (12), becoming an equality constraint that helps in resetting the
reactive power Qgi at the violated limit Qg,v.

Qgi �Q g,v ¼ 0 (14)

It should be noted that in the OPF model, the above expression avoids the
violation of the limits of the reactive power generation. Also it allows to maintain
the balance of reactive power at the generation nodes. Next observe that the func-
tional inequality constraints are written in the same file of the equality constraints,
as it is shown below.

Ci1
⋮

Cing

Cingþ1

⋮

Ci2ng

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

�Qg,1

⋮

�Q g,ng

Q g,1

⋮

Q g,ng

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

þ

Qmin
g,1

⋮

Qmin
g,ng

�Qmax
g,1

⋮

�Qmax
g,ng

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(15)

The general Matlab syntax for the inequality constraints given by Eq. (15) is the
following:

function [ci,ce] = constraints_OPF(___)

%Reactive power generation limits in generation nodes

ci(1:ngen,1) = -Qgi + Qgi_min; %-Qg+Qlow<=0

ci(ngen+1:2*ngen,1) = Qgi - Qg_max; % Qg-Qsup<=0

As mentioned above, the input argument nonlcon is the handle of the M-
function file containing both the nonlinear equality and the functional inequality
constraints. Therefore, the two sets of constraints are written in an M-function file
whose name is constraints_OPF. The fmincon function calls this M-function file
through the input argument nonlcon, using the syntax @(X)Constraints_OPF(X).

In addition to the M-functions: objfun_OPF and constraints OPF; the fmincon
function also calls the vectors: lb and, ub; which contain the lower and upper limits
of the state variables. The general syntax for the above is the following:
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function [VP,fval,output,exitflag,lambda,grad]=OPF(___).

[X,fval,exitflag,output,lambda,grad,hessian] = fmincon(___);

[X] = fmincon(@(X) objfun_OPF(__), X, [], [], [], [], lb, ub,... @(X)

constraints_OPF(__),options);

The way in which the above M-files are written in Matlab facilitates the modifi-
cation of the constraints, the objective function and the vector of state variables,
providing flexibility to the proposed implementation. Furthermore, the develop-
ment of this proposed methodology is based on structured programming, which
increases its flexibility by allowing the inclusion of other electrical devices and/or
different steady-state models for operational assessment of distinct power systems
with minor code modifications.

3.3 Structured programming of the OPF model

The proposed flexible approach is developed using structured programming
because in this way it is possible to develop computer programs that can be easily
understood. Also this kind of programming is very useful when it is necessary to
modify or extend an existing program. This is the case of the proposal presented
here, where the OPF model is extended to consider several optimization applica-
tions of power systems with embedded FACTS controllers.

In that figure, it can be observed that the structure of the proposed implementa-
tion contains a main program. This one starts reading the M-file of the power system
data, which includes a convergence tolerance, the MVA-base and the data of the most
common components of a power system in accordance to Section 3 of this book
chapter. After reading the M-file, in the main program, the power system data are
converted to pu in order to work in the same units all entire system components, but
also to avoid optimization scaling problems. Next, the program calls the respective
functions for calculating the conductance and the susceptance of the transmission
lines, the transformers and the shunt compensators. Observe that these quantities are
used for calculating the injections of active and reactive power. This calculation
involves the equality constraints associated with the power balance at each node of
the power system. After that, the OGDM-function file is executed to obtain the
solution of the Optimal Generation Dispatch. It must be pointed out that in the OGD
M-function file, the fmincon function calls the objective function and, the OGD
constraints through the argument nonlcon using a similar syntax to the one men-
tioned in the previous subsection. Then, the main program runs the OPF M-function
file to solve the Optimal Power Flow model, where the fmincon function calls the M-
function files containing the objective function and the constraints of the OPF model.
Last but not least, the program computes the power flows in the network and prints
results of the OPF steady-state solution. The output yielded by the proposed flexible
approach include: (a) generators rating and the OPF dispatch, (b) the operating point
computed by the OPF, (c) the power flow and power losses in transmission lines,
transformers, and loads connected in shunt, (d) the total losses of the active and
reactive power and (e) the CPU time of the optimization process.

4. Including FACTS models into the proposed flexible approach

Models of FACTS devices are easily integrated into the proposed flexible imple-
mentation by considering the following issues: the state variables and their limits; the
injection of active and reactive power at the node where the controller is connected
and the control equations or control modes of each FACTS device. Below, it is
described in detail how the FACTS devices are integrated into the flexible approach.
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4.1 State variables of the FACTS devices

The models of FACTS devices add one or more state variables to the OPF formu-
lation; therefore, it is necessary to consider such variables in the proposed imple-
mentation. The state variables of FACTS devices are included in the set of steady-
state variables (5), denoted by the state vector X. It is convenient to write these
variables in the next position from Pgi, that is, in the position (2nb + ng + 1,1) of the
vector X, in accordance to the structure of the proposed approach. When the model
of a FACTS device is incorporated, it should be noted that the size of the vector X is
increased from (2nb + ng, 1) to (2nb + ng + nvar, 1), where nvar is the number of
state variables of each FACTS device. Similarly, the initial conditions of the state
variables of FACTS devices are included in the vector X0 in a position following the
initial condition of Pgi. The operating limits of FACTS devices are handled as inequal-
ity constraints on the respective sate variables. Therefore, the lower and upper
bounds of the state variables for these devices are written in the position (2nb + ng + 1,
1) of the vector lb and up, respectively. Note that, when considering the model of any
FACTS device, the size of these last vectors is extended to equal the size of the state
vector X. The syntax of the vector X which contains both the power system state
variables and the state variables added by FACTS devices is the following:

%Set of state variables added by i-th FACTS device

VP(2*nb+ngen+1:2*nb+ngen+nvar,1)=FACTS_i;

4.2 Power flow injections and the control equations of FACTS devices

The power balance in all nodes of a power system must be unconditionally
satisfied. Therefore, the incorporation of the model of a FACTS device into the
optimization model implies to consider the injection of active and reactive power
provided by such device. Thus, the set of equality constraints (7) is extended to
include the power flow injections provided by FACTS devices as follows:

h yð Þ ¼

Pgi � Pli �
P

nb

j∈ i
P
inj,j
i �

P

nb

FACTS∈ i

P
inj,FACTS
i ¼ 0

Qgk �Q lk �
P

nb

j∈ k

Q
inj,j
k �

P

nb

FACTS∈ i

Q
inj,FACTS
i ¼ 0

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

(16)

where the terms Pi
inj,FACTS and Qi

inj,FACTS represent the active and reactive
power flow injections provided by FACTS devices. In the structure of the proposed
flexible approach, shown in Figure 2, the power-flow injections are included in an
M-function file whose name is P_injected. This last file is called by the M-function
file Constraints_OPF, according to (8). Note that the size as well as the syntax of
the vector, Ce, are not modified by the inclusion of the active and reactive power-
flow injections corresponding to the FACTS devices.

In addition to the extended power-balance equality constraints set, given by
(16), the inclusion of FACTS devices into the optimization model implies to include
their respective control equations as elements of the following set of additional
equality constraints given by

hctrl yð Þ ¼ Fi � Fspec

� �

(17)

where F is the parameter to be controlled by the i-th FACTS controller with the
specified target value Fspec. Observe that such control parameter can either be the
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active/reactive power flow through the transmission line or the magnitude of the
voltage at a specific node of the power system in accordance to the type of the FACTS
device connected to the network at such node. It is noteworthy that when a device is
connected to the network, its corresponding constraint is activated in the set given by
(17) in order to enable the respective control action of such device during the process
of solving the optimization model. Otherwise, that is, when no FACTS devices are
involved, the equality constraints of the control modes remain inactive.

Thus, in the proposed flexible implementation, the vector Ce of equality con-
straints is extended to include the additional set of equality constraints. Mathemat-
ically, (8) is augmented to contain the equation given by (18)

Ce2nbþ1þnF½ � ¼ Fi½ � � Fspec

� �

(18)

Adding control equations increases the size of the vector Ce, given by (8), to
(2nb + 1 + nF,1), where nF equals the number of control modes of FACTS devices in
the optimization model. It is noteworthy that when the model of the FACTS device
has operation equations such as in the case of the VSC-HVDC system; these equa-
tions must be considered as equality constraints associated with the corresponding
device operation. Also note that such constraints are included in the optimization
model given by (17), in the same way as the control constraints were included in
that model. Last but not least, the vector Ce must be extended to include the above
equality constraints. The control modes of the FACTS devices are implemented in
M-function files in order to facilitate their handling and to provide flexibility to the
proposed implementation. The general syntax for including the additional set of
equality constraints associated with the control equations corresponding to the
FACTS devices is the following:

ce(2*nb+2:2*nb+1+nF,1)=Control_FACTS(___); %nF control modes

The previously mentioned procedure can be applied to integrate easily the model
of any FACTS device into the proposed flexible approach. The proposed

Figure 2.
Schematic representation of structured programming of the proposed flexible approach.
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implementation has been structured to connect and disconnect any FACTS device
belonging to the power system. This is achieved by writing a 0 or 1 in the data file of
the corresponding FACTS controller, where 0 is for disconnecting and 1 is for
connecting.

5. Solution of the conventional power flow problem

The conventional Power Flow analysis is aimed to determine the steady-state
operation of an electric power system. This consists on computing the magnitude
and angle of each voltage at all the nodes of the system. This is carried out in
addition to determining the active and reactive power flow in the transmission
elements of the power system. In this analysis, four quantities are associated with
each node of the system which are the magnitude of the voltage, the angle of the
phase and the active and reactive power-flow. Furthermore, the system nodes can
be classified as: slack nodes, regulated or PV nodes and load or PQ nodes. The
complex node voltage given in phase and magnitude can be specified at any slack
node. Note that in the regulated nodes, the magnitude of the voltage and active
power are known. Whilst the value of the active and reactive power is defined in
any load node.

The power flow analysis is based on the power balance equations at each node of
the power system which are given by the set of equality constraints in (7). The
proposed approach in this chapter book allows obtaining the solution to conven-
tional Power Flow problems by performing small changes in the OPF formulation.
This can be achieved by converting the OPF model into a conventional PF model. In
the OPF analysis is not important to identify the node types, as it is in the case of a
PF analysis. However, both analyzes are based on the power balance equations for
all nodes of the power system. Thus, it is possible to include the PV nodes in the
OPF model by setting the magnitude of the voltage as well as the active power to a
given value, only at the nodes where a generator is connected. Similarly, the slack
node can be included by setting the magnitude of the voltage and the angle of the
phase to a given value. In this way, the solution of the conventional PF analysis is
obtained from the OPF model. The aforementioned procedure is accomplished by
including an additional set of equality constraints in the optimization model. This
allows for the setting of the magnitude of the voltage as well as the active power to
certain values at the generation nodes. It also allows for the setting of the magnitude
of the voltage and the angle of the phase to the stablished values at the slack nodes.
This additional set of equality constraints that aims to obtain the solution of the PF
problem is given by (19).

hOPF�PF yð Þ ¼

V sn � Vspec
sn ¼ 0

θsn � θspecsn ¼ 0

Pgi � P
spec
gi ¼ 0

Vgk � V
spec
gk ¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

i ¼ 1, 2, … , ng ∣ i ∉ sn

k ¼ 1, 2, … , ng
(19)

In this way, the conventional Power Flow analysis is modeled as a problem of a
constrained nonlinear optimization which is formulated using the OPF model.
Therefore, the general model of the conventional power flow analysis considered in
this work is given as follows:

Minimize f yð Þ (20)
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Subject to h yð Þ ¼ 0 (21)

g yð Þ≤0 (22)

ymin ≤ y≤ ymax (23)

hOPF�PF yð Þ ¼ 0 (24)

where the hOPF-PF is the set of equality constraints given by (19). This allows the
inclusion of the node types in order to convert the OPF model into a conventional
PF model.

Therefore in accordance to the conventional PF model given by (20)–(24), the
proposed flexible approach solution to the Power Flow problem can be obtained by
considering the full of the power flow model given by (6), (7), (9), (12), and (19). It
is important to note that by including the above equality constraints, the resulting
OPF implementation is modified and reused to straightforwardly obtain the com-
putational implementation of the Power Flow analysis that considers embedded
FACTS controllers. In this case, it must be considered the extended optimization
model with FACTS devices given by (6), (9), (12), (16), (17) and (19).

In order to maintain the structure of the proposed implementation, the last set of
equality constraints is written in the vector Ce of the M-function file named
Constraints_OPF as follows:

Ce2nbþnFþ2

Ce2nbþnFþ3

Ce2nbþnFþ4

⋮

Ce2nbþnFþ ng�1ð Þ

Ce2nbþnFþng

⋮

Ce2nbþnFþ2 ng�1ð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

V sn

θsn

Vg1

⋮

Vgk

Pg1

⋮

Pgi

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

�

V spec
sn

θspecsn

V
spec
g1

⋮

V
spec
gk

P
spec
g1

⋮

P
spec
gi

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(25)

The syntax to include the constraints given by (19), which allows to obtain the
solution of the Power Flow problem is the following:

Ce(2*nb+nF+2:2*nb+nF+2,1)=Vsn-Vsn_spec; %Slack node.

Ce(2*nb+nF+3:2*nb+nF+3,1)=Angle_sn-Angle_sn_spec; %Slack node.

Ce(2*nb+nF+4:2*nb+nF+ng-1,1)=Vgk-Vgk_spec; %PV node.

Ce(2*nb+nF+ng:2*nb+nF+2*ng-2,1)=Pgi-Pgi_spec; %PV node.

It should be noted that in the conventional PF model given by (20)–(24), the PQ
nodes are considered in the same manner as in the OPF model; whereby it is not
necessary to include equality constraints to set any variables in such nodes.

6. Solution of the OPF market clearing

The OPF market-clearing model to be solved for the Operator System Market is
a non-linear constrained optimization problem, whose general formulation is given
as follows [25]:

Maximize f pð Þ (26)

Subject to g y, pð Þ ¼ 0 (27)
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hmin ≤ h y, pð Þ (28)

h y, pð Þ≤ hmax (29)

pmin ≤ p (30)

p≤ pmax (31)

where the dependent variables, such as the nodal voltage, are represented by y.
Whilst the control variables, for example, the supply bids PS and power demand PD,
are denoted by p. The functions f, g and h are defined below.

6.1 Objective function

The objective function of the OPF market-clearing model represents the social
welfare associated with the power system. That function is given by the difference
between: the sum of the accepted demand bids PDi times their corresponding bid
prices CDi (in $/MWhr) and the sum of the accepted production bids PSj times their
corresponding bids prices CSj (in $/MWhr). Mathematically, this objective function
is given by

f ¼
X

nl

i¼1

CDi PDið Þ �
X

ng

j¼1

CSj PSj

� �

(32)

In (32), the first and second term is also identified as fD and fS, respectively; nl
represents the total demand bids, and ng is the total production bids.

6.2 Equality constraints

The set of equality constraints (33) represents the standard power flow
equations

g y, pð Þ ¼ g θ,V, kG,PS,PDð Þ ¼ 0 (33)

where the set y = (θ, V, kG) and p = (PS, PD). The variables θ and V are the
complex-voltage phases and magnitudes at nodes of the power system, respectively.
Whilst kG is a scalar variable used to account for the system losses by means of
either a unique or a distributed slack node. It is important to note that y represents
the set of dependent variables to be optimized. The generator and load powers are
defined as follows:

PG ¼ PG0 þ PS (34)

PL ¼ PL0 þ PD (35)

where PG0 and PL0 stand for the generator and load parameters that are not part
of the market trading, that is, these parameters represent the negotiation of energy
between particulars in a specific big industry and/or Generation Companies
(GENCOS). Whilst PS and PD are the amounts of energy that can be traded in the
electricity market by GENCOS and Energy Services Company (ESCOS). Finally, the
reactive loads are assumed to have constant power factors which are computed by
using the following expression:

QL ¼ PL tan ϕLð Þ (36)
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6.3 Inequality constraints

In this formulation, the set of inequality constraints is practically the same as in
the OPF model, except by the addition of a new constraint on the state variables,
which represents the limits on the demand bids (PDi).

Pmin
Di ≤PDi ≤Pmax

Di (37)

where PDi
min and PDi

max are the lower and upper limits of the state variable that
represents the demand bids.

The demand bids PDi is a steady-state variable in the OPF market-clearing
model; thereby, in order to solve this model by using the proposed flexible
approach is necessary to include PDi in the vector of steady-state variables X. It is
convenient to write the variable PDi in the next component of vector X, just after
the vector-entries that represent the state variables of the FACTS devices. This
corresponds to the position (2nb + ng + nvar+nl,1) of the vector X. This is done in
this way in order to maintain the original structure of the proposed approach. The
limits of the demand bids are handled as inequality constraints on the state vari-
ables. Therefore, the lower and upper bounds of the state variable PDi, are written in
the position (2nb + ng + nvar+nl, 1) of the vector lb and up, respectively.

The objective function given by (32) is coded into the M-function file:
objfun_OPF. It is worth mentioning that (32) is used instead of (6). Also it is very
important to point out that in order to maximize the objective function, it is
necessary to write such function in a negative form. This is because the fmincon
function achieves a minimization by default. Note that PL and QL equations are
coded in the M-function files: P_Load and Q_Load, respectively. These files are
called by M-function file Constraints_OPF, as it is shown in Figure 2. In this way,
they are considered within the set of equality constraints that establishes the active
and reactive power balance under steady-state conditions for all the nodes of the
power system.

According to the aforementioned discussion, a simple command line is
presented below, which allows for modifying the conventional OPF model in order
to obtain the implementation of the OPF-MC model.

%%%%%%%%%% Vector of the state variables of the OPF-MC model %%%

%%%%%

X(2*nb+ng+1:2*nb+ng+nl,1)=Pload; %Demand bids

%%%%%%%%%% Definition of tan(phi), MVAb=100 MVA %%%%%%%%%%

Pmax=Pmax/MVAb; % Pmax in pu

Qmax=Qmax/MVAb; % Qmax in pu

tan_phi=Qmax./Pmax; % Tan(phi)

%%%%%%%%%% Obtaining QL = PL*tan(phi) (Eq. 36) %%%%%%%%%%

function [QL]=Qload(__)

PLoad=X(2*nb+ng+1:2*nb+ng+nl,1);

QL=zeros(nb,1);

for k=1:nl % nl: total demand bids

send=node(k,1); %Node where is connected the load

QL(send,1)=QL(send,1)+PLoad(k,1)*tan_phi(k,1);

end

%%%%%%%%%% Objetive function of the OPF Market-Clearing %%%%%%

%%%%.

function f = objfun_OPF(___)
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PLoad=X(2*nb+ng+1:2*nb+ng+nl,1);

f=0;

fd=0;

for k=1:PDi

fd=fd+di(k,1)+ei(k,1)*PLoad(k,1)+fi(k,1)*PLoad(k,1)^2; %CDi(PDi)

end

fs=0;

for k=1:ng

fs=fs+ai(k,1)+bi(k,1)*Pgi(k,1)+ci(k,1)*Pgi(k,1)^2; %CSj(PSGj)

end

f=fs-fd;

7. Numerical examples

Two numerical examples are tested (with the six-node power system and, an
equivalent model of the Mexican Interconnected Power System - MIS.), to numer-
ically illustrate the effectiveness and easy implementation of the proposed flexible
approach to carry out the analysis of the OPF market-clearing, as well as the OPF
and the conventional PF procedures. The numerical examples presented in this
section were carried out in Matlab-R2018a, using a personal computer with a pro-
cessor Intel Core i5-3210M CPU running at 2.50 GHz with a 6 GB of RAM.

In that way, the solution for the standard OPF market-clearing is obtained, in
addition to solve both the OPF and the PF models. For both power systems, the
numerical examples are designed as follows. First, the solution of standard OPF
market-clearing model is obtained. Next from that solution, the value of the sum of
the inelastic and the elastic loads is assigned to the corresponding load nodes in
order to solve the OPF model. In other words, the Optimal Power Flow analysis is
carried out by considering the value of the load obtained by OPF market-clearing
study as an active load. Finally, the conventional PF analysis is executed by setting
both the magnitude of the voltage and the active power generated at the PV nodes,
to their corresponding values found by the OPF analysis. Similarly, within this last
algorithm step, the voltage phases and magnitudes in the slack node are set to their
corresponding values found by the OPF analysis. Here, it is worth mentioning that
the value of the active load obtained in the market-clearing analysis is considered as
a load. Also observe that the objective functions are the same in the three models
mentioned above.

7.1 Testing the six nodes power system

The test case of the six node power system reported in [25] is reproduced in this
section in order to take the corresponding results as a reference to determine the
solution of the OPF and conventional PF models. The test power system consists of
three GENCOS and ESCOS, respectively, which are interconnected through 11
transmission lines, as shown in Figure 3. The complete simulation data set for this
system is given in [23, 25]. For the test cases belonging to this test power system, the
convergence tolerance is set to 1 � 10�9.

The steady-state solutions achieved by the proposal to: the standard OPF
market-clearing, the OPF and the PF models are presented in Table 1. Here, it is
worth mentioning that such solutions correspond to the case of not using FACTS
devices.

As expected, Table 1 shows that the solution of the three procedures is practi-
cally the same. This is because the numerical examples were designed to obtain
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those results. The active and reactive loads computed by the OPF market-clearing
procedure for ESCO 1, 2 and 3 are: 115 MW-60 MVar, 110 MW-70 MVar and
99.767 MW-54.418 MVar, respectively. The CPU time for the case of the OPF
market-clearing model is 2.3 s. Whilst for the case of the OPF and the PF models,
such a time measure yields 2.1 and 1.5 s, respectively. Subsequently, the six nodes
power system is modified to simultaneously include the TCSC and SVC controllers.
The TCSC is commissioned to maintain the active power flow within the range of
5.62–7.0 MW across the transmission line connecting nodes 4 and 5. The first
terminal of the TCSC controller is connected to node 4, whilst the second terminal
is connected to a new substation called 6a. Note that the SVC is placed at node 5 to
keep the magnitude of the voltage of this node at 1.02 pu. For the numerical

Figure 3.
Six nodes power system.

Parameter Steady-state solution without FACTS

OPF market-clearing Optimal power flow Power flow

V1 (pu-deg) 1.100∟0.0° 1.100∟0.0° 1.100∟0.0°

V2 (pu-deg) 1.100∟-0.7° 1.100∟-0.7° 1.100∟-0.7°

V3 (pu-deg) 1.100∟-2.0° 1.100∟-2.0° 1.100∟-2.0°

V4 (pu-deg) 1.028∟-3.8° 1.028∟-3.8° 1.028∟-3.8°

V5 (pu-deg) 1.017∟-5.0° 1.017∟-5.0° 1.017∟-5.0°

V6 (pu-deg) 1.049∟-4.9° 1.049∟-4.9° 1.049∟-4.9°

Pg1 (MW) 90.0a 0.0a 90.0 90.0

Pg2 (MW) 140.0a 25.0a 165.0 165.0

Pg3 (MW) 60.0a 20.0a 80.0 80.0

Qgtotal (MVar) 188.58 188.58 188.58

Objective f ($/MWhr) fD fS fS fS

3482.8 2885.0 2885.0 2885.0

aData of left column correspond to PG0 and data of right column are PBID, both in MW.

Table 1.
Steady-state solutions of: the OPF market-clearing, the OPF and the PF procedures without FACTS devices.
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examples, the state variables representing the thyristor’s firing angle of the TCSC
and the SVC devices. These angles are both initialized at 155° with a lower and an
upper limit of 90 and 180°, respectively. The fixed values of the capacitive and
inductive reactances of the controllers are XC = 0.9375% and XL = 0.1625%, respec-
tively. These values are referred to a voltage base of 400 kV and a power base of 100
MVA. Table 2 shows the corresponding steady-state solutions given by the three
analyses for the case of a steady state operation using embedded FACTS devices.

Clearly, the value of the objective function is increased, due to the TCSC sets the
active power flow through a transmission line at higher value than in the base case.
This control action causes a redistribution of power flow in the system, increasing
the active power losses and the accepted demand bids. Regarding the control
performed by the SVC, there is a decrease in the generation of reactive power as it is
shown in Table 2. This is due to the reactive power losses are keep to a minimum
limit in the power system by the SVC controller. This controller supplies reactive
power in order to control the magnitude of the voltage at the substations. Therefore,
such controller serves as a source of reactive power into the power grid. Although
the integration of these FACTS devices into the power system increases the power
generation cost and decreases the value of the social welfare net, it is very important
to install them in the power system. This is because such devices can improve the
steady-state operation of the power system, which by the way can be evaluated
using the proposal presented here.

When the FACTS devices are embedded in the power system, the CPU time
required for obtaining the solution of the OPF market-clearing model is 2.3 s. Whilst
for the OPF and the PF models, the steady-state solution is determined in 2.2 and
1.6 s, respectively.

Parameter Steady-state solution with FACTS devices

OPF market-clearing Optimal power flow Power flow

V1 (pu-deg) 1.070∟0.0° 1.071∟0.0° 1.071∟0.0°

V2 (pu-deg) 1.065∟-0.6° 1.065∟-0.6° 1.065∟-0.6°

V3 (pu-deg) 1.065∟-1.9° 1.064∟-1.9° 1.064∟-1.9°

V4 (pu-deg) 0.997∟-4.1° 0.997∟-4.1° 0.997∟-4.1°

V5 (pu-deg) 1.020∟-5.7° 1.020∟-5.7° 1.020∟-5.7°

V6 (pu-deg) 1.019∟-5.0° 1.019∟-5.0° 1.019∟-5.0°

V6a (pu-deg) 0.996∟-4.0° 0.996∟-4.0° 0.996∟-4.0°

Pg1 (MW) 90.0a 0.0a 90 90

Pg2 (MW) 140.0a 25.0a 165 165

Pg3 (MW) 60.0a 20.0a 80 80

Qgtotal (MVar) 128.85 128.82 128.82

Objective f ($/MWhr) fD fS fS fS

3,491.0 2,885.0 2,885.0 2,885.0

aData of left column correspond to PG0 and data of right column are PBID, both in MW.

Table 2.
Steady-state solutions of the OPF market-clearing, the OPF and the PF procedures with embedded FACTS
devices.
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7.2 The Mexican interconnected power system (MIS)

The system considered in this numerical example is a reduced model of the
Mexican Interconnected System. The MIS is represented by an equivalent model
composed of: 190 nodes, 46 generators, 90 loads, and 265 transmission lines oper-
ating at voltage levels ranging from 115 to 400 kV [27].

The limits for the magnitude of the voltage for all nodes are set to 0.94 ≤Vi≤ 1.07
pu. Whilst the active and reactive power limits for all generators are set to:
200 ≤ Pgi ≤ 1000 MW and � 250 ≤ Qgi ≤ 350 MVar, respectively. The cost functions
of all generators are considered linear with a value of the linear coefficient between
0.0019 and 0.0020 $/MWhr. The MIS consists of two areas identified as Area A and
Area B, interconnected through a relatively weak double-circuit tie line, as it is
shown in Figure 4. For the numerical examples with the Mexican Interconnected
System, the convergence tolerance is set to 1 � 10�6.

The solution of the OPF market-clearing model for the base case, without
FACTS controllers, gives: an accepted demand bid (fD) of 197,788.409 $/MWhr; an
accepted production bid (fS) of 35,584.143 $/MWhr; the total active losses are
164.817 MW and a transferred active power from Area B to Area A of 195.34 MW.
Whilst the solution of the Optimal Power Flow and the conventional Power Flow
without FACTS devices gives: a generation cost of 35,632.303 $/MWhr; the total
active losses are 194.26 MW and a transferred active power between the two
referred areas of 208.66 MW. First, the MIS is modified to integrate a PtP VSC-
HVDC system. The first voltage source of PtP VSC-HVDC is connected to node 182,
whilst the second voltage source is connected to a new substation called 182a. The
PtP VSC-HVDC system is commissioned to increase the active power flow through
the inter-area link to 300 MW and to set the magnitude of the voltages at nodes 182
and 182a at 1 pu. The controller coupling transformer impedances are set at
0.001 + j0.01 pu. The lower and upper limits of the magnitude of both voltage
sources are 0.95 ≤ VC1 ≤ 1.1 pu. The amplitude modulation index bounds and their
initial conditions are: 0.5 ≤ MCi ≤ 1.0 and 0.9, respectively. The magnitude of DC-
voltage bounds corresponding to both converters are: 2.0 ≤ VDC ≤ 4.5, where the

Figure 4.
Representative diagram of the Mexican interconnected system.
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DC voltage is fixed at 3.0 pu. Whilst the DC link resistance is set to 0.0034 pu. The
summary results of the OPF market-clearing, the Optimal Power Flow and, the
conventional Power Flow, all of them including the PtP VSC-HVDC system
embedded within the MIS system, are presented in Table 3.

Observe that instead of the VSC-HVDC, the Phase-Shifting Transformer (PST)
is used to maintain the active power flow through the inter-area link at the same
level in MW as in the above case. Also note that the primary and secondary winding
impedances of the PST exhibit zero resistance. Then the primary and secondary
inductive reactances are set to 0.0 and 0.05 pu, respectively. Next, the complex tap
ratios are Tv = Uv = 1.0∠0°. Note that the control of the active power flow is carried
out by means of a primary phase angle control. For implementing such control, the
limits of the phase-shifter angle are set to �10°. Last but not least, the summary
results of the three steady-state cases previously considered in this book chapter are
shown in Table 3, where a PST controller has been included.

The above table shows that when the FACTS controllers are integrated into the
power system, the value of the objective function increases in the case of the OPF
and the PF studies, but it decreases in the OPF market-clearing case. This is caused
by the variations of the active power losses in the transmission elements, which in
turn are due to the control of the active power flow performed by the VSC-HVDC
and PST devices through the inter-area link. In the cases of the market-clearing
studies using: (i) the PST and (ii) the VSC-HVDC; 20 and, 22 generators hit their
limits of Pg, respectively. Whereas for the OPF and the PF studies using: (i) the PST
and (ii) the VSC-HVDC; 13 and, 10 generators hit their limits of Pg, respectively.

Regarding the magnitudes of the nodal-voltages, 17 of them at power-
substations hit their limits when the analysis of the market-clearing is performed
using the PST and VSC-HVDC. Whereas in the OPF and the PF analysis featuring
both FACTS devices, a total of four magnitudes of the substation-voltages hit their
limits. It should be mentioned that the variables that violated their limits were
either fixed at their upper or lower limits in a proper manner by the flexible
approach proposed here. The CPU times required to obtain the solution of the
market VSC-HVDC, the market PST, the OPF VSC-HVDC, the OPF PST, the PF
VSC-HVDC and the PF PST are: 1503, 978, 66, 64, 34 and 33 s, respectively. From
the results of the numerical examples presented in this section, it can be inferred
that the proposed implementation reliably carries out the steady-state operation
assessment of power systems using embedded FACTS devices.

Study Pgtotal (MW) Qgtotal (MVar) Plosses (MW) Objective f ($/MWhr)

Market VSC-HVDC 9200.00a 1620.46 147.63 35,555.72b

9305.64a 197,788.41b

OPF VSC-HVDC 18,580.60 2400.29 222.59 35,681.16

PF VSC-HVDC 18,580.59 2400.05 222.60 35,681.13

Market PST 9200.00a 1441.07 141.72 35,544.95b

9299.72a 197,788.41b

OPF PST 18,599.21 2411.97 241.21 35,707.37

PF PST 18,599.19 2411.56 241.21 35,707.33

aIn both market studies, 9200 MW is PG0 and the value of MW in the lower row is PBID.
bThe value of the upper row corresponds to fS and the lower row is fD.

Table 3.
Summary results of the steady-state studies with the VSC-HVDC and PST devices.
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8. Conclusions

A Matlab-based flexible approach to carry out the analysis of the steady-state
operation of power systems using embedded FACTS controllers has been presented
in this book chapter. The flexibility and reliability of this proposal has been dem-
onstrated by means of several numerical examples. The referred numerical exam-
ples show that by using the proposed approach, it is possible to simulate the optimal
operation of power systems in a simple way, because it avoids the implementation
of complex programming algorithms typical of the majority of the optimization
models that corresponds to power systems. For example, this is the case for the
complexity related to the program code lines related to the hessian matrix as well as
the gradient vector.

In this regard, it is also important to mention that the proposed flexible approach
is easy to implement as a computer program in order to carry out the analysis of the
optimal steady-state operation conditions corresponding to power systems featur-
ing FACTS devices. This is because the proposed flexible approach greatly reduces
the complexity as well as the implementation time of such optimization models.

Besides that, the flexibility of the proposed approach provides the possibility to
modify and/or consider different objective functions as well as equality and
inequality constraints. Therefore, in addition to solving the optimization models
considered in this work, the steady-state model of any other FACTS device could
also have been used. Not to mention that a large variety of steady-state optimization
applications for power systems could also been readily implemented by using the
flexible approach proposed here.

Last but not least, the computational efficiency of the proposal is quite reason-
able at least for research and academic purposes, since most of the solutions to the
optimization models related to medium scale power systems can be usually
obtained within a few seconds to about 10–15 minutes. Furthermore, it is possible to
infer that this proposed approach may lay a solid basis for researchers, teachers and
students who seek to develop their own computational tool, whether it is for
research, training or educational purposes.
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