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Chapter

Salivary Protein-Tannin 
Interaction: The Binding behind 
Astringency
Alessandra Rinaldi and Luigi Moio

Abstract

Interactions between salivary proteins and tannins are at the basis of one of the 
main mechanisms involved in the perception of astringency. Astringency is a tactile 
sensation evoked in the mouth by plant polyphenol-derived products, such as red 
wine. It is generally recognised that tannins can provoke negative sensations such as 
shrinking, drawing, or puckering of the epithelium. On the other hand, the astrin-
gency of some red wines can be felt as pleasant mouth feelings of richness, fullness, 
mouth-coating, and velvet in the mouth. In this chapter, an overview of the research 
concerned with molecular and sensory mechanisms of astringency was updated. 
Because of many variables influence the perception of astringency, several methods 
have been developed to measure the intensity of the sensation. In this context, 
different indirect assessments were critically evaluated considering the pros and 
contras and correlated with sensory analysis. We focused the attention on the saliva 
precipitation index (SPI), based on the binding and precipitation of human saliva 
with grape and wine tannins, because it has been widely used for many applications 
in winemaking. A current great challenge is to have an in vitro measurement of 
astringency able to provide information on the fate of wine, from grape to bottle.

Keywords: astringency, salivary proteins, polyphenols, precipitation, methods

1. Introduction

The interaction between plant tannins and macromolecules such as proteins is 
at the basis of many processes involved in the industry, ecological and agricultural 
systems [1–3], and food and beverage sensory characteristics. The common factor 
is the binding between macromolecules and tannins that lead to: (i) the conver-
sion of an animal hide into the leather (tanning or tannage); (ii) the plant defence 
strategies against pathogens [1, 4]; (iii) reduced palatability of high tannin feed-
ings to both terrestrial and marine herbivores and then a reduced interference in 
the process of digestion [2, 5]; (iv) the perception of astringency in tannin-rich 
food and beverage [6].

In the tanning process, the tannins bind to the hide’s matrix, which is composed 
primarily of the protein collagen ordered in microcrystalline helical units. The pur-
pose of tannage is primarily to increase the hydrothermal stability of the structure 
of collagen, secondarily to increase biological inertness, and finally, to improve the 
utility of the hide’s physical properties [7].
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In higher plants, tannins are primarily reserved as a chemical defence against 
pathogens. The complex with macromolecules such as cellulose and pectin, send 
out the exo-enzymes capable of utilising cellulose or pectin, either as a carbon 
source or for branching cell wall barriers to more nutrient-cytoplasm, depriving 
of the substrate or binding sites to these substrates. Another important function of 
tannin complexes is to impede the decomposition of plant litter, also when the leaf 
is fallen. This provides the delay in decomposition, which allows a constant input or 
seasonally demanding input of nutrients to the soil [1].

In the other processes, proteins of animal or human saliva interact with tannins 
of the unripe fruit, forages, or vegetable-derivates such as red wine, tea, and choco-
late. Tannin molecules can bind proteins or enzymes at the level of specific amino 
acids, and modify the folding, the molecular weight, and the core binding site, to 
form soluble complexes or precipitates, which can alter protein function or inhibit 
enzyme activity [8]. This binding is at the basis of the astringent sensation expe-
rienced when tannins precipitate salivary proteins, and as a result, they lose their 
ability to lubricate the epithelial membranes of the mouth [6]. This sensation in 
mouth discourages the animal from feeding the unripe fruit or high-tannin forages 
and determines the unpleasantness of consumers for some tannin-rich products. 
These are the reason why, in the last decades, the interest in astringency has been 
constantly increased in different research areas.

2. Perception of astringency

The term astringency derives from the Latin verb, ad-stringere that means tightly 
bind, strongly join. It refers to the propensity of vegetable tannins to complex with 
macromolecules, such as proteins and polysaccharides, and alkaloids. Bate-Smith 
[9] first speculated that astringent sensations were caused by the increase in friction 
between the mucosal surfaces, which resulted from a reduction in lubrication in the 
oral cavity as astringent compounds bound salivary proteins. The binding between 
polyphenols/salivary proteins forms soluble complexes and/or precipitates that 
can cause the rupture of the salivary pellicle [10], interact with oral cells [11], and 
stimulate and activate mechanoreceptors (MRs) hold in the mouth [12]. MRs are 
nerve endings that function like those of the skin, except that they have smaller 
receptive fields and lower activation thresholds [13]. They are selectively sensitive 
to different stimulus properties, such as particle size and/or mouth movements, 
and project such information to the central nervous system [14]. Besides, the 
activation of G-coupled proteins also seems to be involved in the perception of 
astringency, activating signal transduction pattern as that of taste recognition [15]. 
Some brain regions (hippocampus and anterior cingulate cortex) that have been 
shown to respond to basic tastes were activated by the intensity and pleasantness 
of astringency [16]. In particular, the right ventral anterior insula that responded 
to astringent stimuli contributed to the ability to recognise the qualitative features 
of astringency. The activation of the trigeminal nerve, chorda tympani, and brain 
regions involved in memory and emotions could explain astringency as a multi 
perceptual phenomenon.

Whilst the chemical definition of astringency is related to the ability of tannins to 
bind proteins, in sensory terms, it is described as different and concomitant feelings 
of drying, puckering, and roughing [17, 18]. Astringency can be defined as a tactile 
sensation, because: (i) it is perceived on non-gustatory surfaces such as on the soft 
palate, gingiva, lips [12], (ii) does not show adaptation but also (iii) increases upon 
repeated ingestion [19], leading to carry-over effects during the tasting. However, 
side tastes as bitterness, sourness, and sweetness can highly modulate the overall 
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astringency [20]. The sensitivity of MRs to astringents as well as basic tastes may 
elucidate the complexity of red wine astringency, which has been described by 33 
different subqualities [21]. Amongst these “hard,” “green,” and “rich” have been 
associated with bitterness, acidity, and high flavour concentration, respectively [22], 
“harsh,” “abrasive,” and “drying” have been found to define astringency as a negative 
sensation, whilst the “complex” and “mouth-coat” subqualities have been associated 
to a positive impact during tasting [21]. These subqualities were also associated with 
touch standards when utilised to describe the tactile astringent sensations in the 
mouth elicited by red wines [23, 24]. The qualitative traits of astringency as “soft”, 
“mouth-coat”, and “rich” represented the drivers of liking for Sangiovese wine [25]. 
Similarly, for Tannat [26], and Côtes du Rhône and Rioja appellations wines [27], the 
attribute “mouth-coat” contributed to the quality of the wine.

It is also true that the perception of astringency is mediated by psychological 
factors [28], but salivary protein composition [29] and tannin’s structure and com-
position [30, 31] represent the principal factors. In this regard, numerous reviews 
have been produced during the past years [32–38].

3. Salivary proteins

Saliva is a biological fluid primarily produced by the three pairs of “major” sali-
vary glands (parotid, submandibular, and sublingual glands) in mouth and by the 
minor ones by 10% [39]. In the whole, saliva are presently more than 2000 different 
proteins and peptides [40, 41], which are the result of protein post-translational 
modifications before being secreted in the mouth [42]. Although saliva is predomi-
nantly a watery fluid (99.5%) with a complex mixture of proteins (0.3%; 1–2 mg/mL),  
ions and other organic compounds (0.2%) are also present. The whole saliva 
continuously baths the oral cavity and having a pH ranging from 6.2 to 7.4 acts as 
a buffering system. The saliva is continuously secreted (0.3–7 mL/min) and plays 
a role in protecting the tooth and mucosal integrity, in antibacterial and antiviral 
activity, digestion of food, speech, lubrication, taste, and represents a biomarker 
tool for some diseases [41, 43]. The main families of proteins include enzymes 
(amylase, carbohydrase, lipase), lactoferrin, high (M1), and low (M2) molecular-
weight glycoproteins (mucins), peptides as agglutinins, immunoglobulins, proline-
rich proteins (PRPs), cystatins, histatins and statherins [44].

There is evidence that saliva may affect the way we perceive the taste and mouth-
feel of foods in various ways [45–47]. During the wine tasting, saliva transports and 
dissolves the stimuli substances [48]. Saliva constituents are of great importance for 
establishing protein-tannin interactions. In particular, the PRPs, histatins, mucin, 
amylase are the main salivary proteins involved in the binding with polyphenols 
eliciting astringency [49]. The differences between the binding of the same polyphe-
nol to different proteins result from differences in the amino acid sequences [50].

The PRPs account for approximately 70% of the total secretory protein and are 
subdivided into acidic, basic, and glycosylated PRPs. They are characterised by 
an abundance of proline, glutamic acid/glutamine, and glycine [51]. The presence 
of these four amino acids, especially proline, which are the so-called alpha-helix 
breakers, enables the protein to form secondary structures, which assumes a 
random coils conformation in solution [10, 52]. This feature may allow PRPs to uni-
versally bind various types of polyphenols, mainly tannins with different sizes and 
structures. Some species, such as humans, rats, and mice, produce PRPs contain-
ing about 40% proline [53, 54]. However, some species produce salivary proteins, 
which are rich in proline but do not show a high affinity to tannins due to extensive 
glycosylation [54].
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Parotid and submandibular secretions also contain several low molecular-weight 
histidine-rich peptides [55, 56]. Amongst 12 forms, the histatin 1, 3, and 5 are 
predominant and vary in size from 7 to 38 residues. These peptides show a high 
content of basic residues, such as lysine, arginine, and histidine [57]. They tightly 
bind tannins, even if some peptides are devoid of proline [58]. Conversely, others 
observed high tannin precipitation by histatins thanks to the interactions formed by 
basic residues and proline [59].

Amongst the low molecular weight salivary proteins, there is a selectivity in 
binding polyphenols (as PGG, procyanidin trimer, epicatechin, malvidin-3-gluco-
side): the acidic PRPs considerably form soluble and insoluble complexes with PGG 
and trimer but not with epicatechin; basic PRPs and glycosylated PRPs seem to not 
interact with trimer, whilst basic PRPs show a high affinity for epicatechin, malvi-
din-3-glucoside, and a mixture of both; the statherin shows no selectivity [60, 61].

Mucins are the major constituents of the viscous layer coating hard and soft tis-
sues in the oral cavity. Mucins are generally composed of a peptide core (apomucin) 
enriched in serine, threonine, and proline residues and carbohydrate side chains 
(oligosaccharides) that are linked O-glycosidically to threonine or serine. M1 is a 
polymeric mucin due to the formation of disulfide linkages between cysteine resi-
dues in non-glycosylated domains, whilst M2 is a monomer [62]. Average proline 
content of 10% seems to be responsible for protein-phenol interactions [63].

Amylase is secreted mainly by the parotid gland in both glycosylated and non-
glycosylated isoforms [64]. It is an enzyme capable of hydrolysing bonds within 
amylose and amylopectin and is composed mainly of amino acids like aspartic acid 
> glutamic acid > arginine [65]. However, amino acids as tyrosine and tryptophan 
seem to be crucial for interaction with polyphenols [66]. The non-glycosylated 
form of amylase contains 22 proline and 16 tryptophan amino acid residues in its 
sequence that enable the binding with polyphenols [50].

4. Tannins

Astringent wines are commonly defined as “tannic” because tannins are the 
main polyphenolic compounds involved in the sensation of astringency. Swain 
and Bate-Smith [67] provided the first useful phytochemical definition of tan-
nin, being “water-soluble phenolic compounds, having molecular weights lying 
between 500 and 3000, which have the ability to precipitate alkaloids, gelatin, and 
other proteins”. Tannins can be classified in condensed tannins, phlorotannins, and 
hydrolysable tannins. Condensed tannins are large macromolecules that consist of 
two or more monomeric (+)-catechin or (−)-epicatechin units called procyanidins, 
whilst prodelphinidins consist of (+)-gallocatechin or (−)-epigallocatechin units. 
In plants, condensed tannins are found as oligomers (2–10 monomer units) or 
polymers (>10 monomer units). The number of monomer units in a polymer may 
be as high as 83 units [68]. The subunit composition varies amongst tannins from 
grape skins, seeds, and stems [69–71]. The phlorotannins are present in marine 
brown algae as polymers of phloroglucinol (1,3,5 trihydroxy-benzene) in different 
ranges of molecular sizes (126 Da–650 kDa). They are analogous to the terrestrial 
condensed tannins since they do not contain a carbohydrate core [72]. Hydrolysable 
tannins, structurally perhaps the most complex tannins, comprise three subclasses 
such as simple gallic acid, poly-galloyl esters of glucose (gallotannins), and esters 
of ellagic acid (ellagitannins). Derivatives of gallic acid contain one to five galloyl 
groups that can be esterified to either glucose (e.g., pentagalloyl glucose) or quinic 
acid (e.g., monogalloyl quinic acid). Gallotannis can contain six or more galloyl 
groups and can be characterised by having one or more digalloyl groups  
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(e.g., hetpagalloyl glucose). Complex gallotannins have a higher capacity for 
precipitating proteins than simple galloyl glucoses [73].

Ellagitannins may be divided into six subgroups: hexahydroxydiphenoyl esters, 
dehydro-hexahydroxydiphenoyl esters and their modifications, nonahydroxytri-
phenoyl esters (e.g., vescalagin), flavonoellagitannins (e.g., acutissimin A), and 
oligomers with different degrees of oligomerisation and types of linkages [74].

Tannins are the main responsible for the qualitative aspects of astringency as 
well for the intensity of the sensation. Grape seed and skin tannins are felt astrin-
gent as the mean degree of polymerisation (mDP), and galloylation increased [75]. 
Their ability to precipitate proteins also increases with mDP up to a given degree of 
polymerisation [34, 76]. However, monomeric and dimeric flavan-3-ols can induce 
astringent and bitter sensations [77]. Galloylation of monomers/oligomers and poly-
mers enhances protein precipitation, and its extent depends on the grape variety [78]. 
The presence of high galloylation seems to be responsible for the coarse perception 
[75], which in turn can be decreased by a high content of epigallocatechin units on 
the tannin molecule. On the contrary, it seems that the hydroxylation of B-ring seems 
to decrease velvety astringency and increase the perception of puckering and drying 
astringency of wine fractions [79]. Salivary proteins seem to have a higher affinity for 
condensed tannins than for hydrolysable tannins because of different structural flex-
ibility, size, polarity, affinity constants, and presence of free galloyl groups [80–84]. 
Oakwood tannins were mainly associated with smooth and mouth-drying sensations 
at low concentrations [85]. Astringency subqualities such as mouth-coat, full-body, 
persistent were mainly associated with oak-derived tannin, whilst the velvet, soft, 
and satin terms were associated with the exotic wood-derived tannin [25].

4.1 Other stimuli

Compounds able to elicit sensations as tastes and mouth feelings are called 
stimuli. Chemically diverse astringents such as complex salts such as aluminium sul-
fate (alum), acids, and other phenolics, have also been shown to evoke astringency 
[17, 86]. Five organic acids and one inorganic elicited astringency and astringent 
subqualities [87], and dryness has also been reported [86, 88]. The addition of malic 
and lactic acid in red wine at the same pH did not differ significantly in astringency 
despite the difference in titratable acidity [89]. However, these acids were defined 
astringent in addition to their sour taste [90]. Wines more abundant in malic acid 
showed higher reactivity towards saliva proteins and then higher potential astrin-
gency than tartaric acid-rich wines at the same pH, probably due to different buffer 
capacities [91]. The astringency of acids is attributed either to the direct contribu-
tion of H+ ions or to the hydrogen bonding capabilities of the hydroxyl groups on 
the anion or un-dissociated acid [17]. Denaturation of proteins in the saliva could 
also affect the binding and dissociation of phenolic compounds and their precipita-
tion. The intensity of astringency linearly increases as a function of pH reduction 
[19], implying significant precipitation of salivary proteins [92].

Anthocyanins, composed of a sugar bound to the anthocyanidin moiety 
(cyanidin, peonidin, delphinidin, petunidin, and malvidin), impart colour to the 
grapes and red wine and can be modified by different enological practices [93]. 
Controversial is the studies of the influence of anthocyanins on astringency. An 
anthocyanin fraction added in model wine solution was felt as “rough and chalk,” 
and slightly contributed to the overall astringency probably for contamination of 
the fraction with unknown phenolic compounds [94]. Successively, the isolated 
fractions of anthocyanidin–glucosides and anthocyanin coumarates did not influ-
ence astringency of wine solutions either the “coarse,” “chalk,” or “dry” astringent 
subqualities [95]. However, anthocyanins were able to interact with human salivary 
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proteins forming soluble aggregates [96], and even precipitates, being the cin-
namoylated the most reactive fraction (precipitation between 6.5 and 17.5%), also 
influencing the astringency perception [97]. Pyranoanthocyanins, anthocyanin-
derived pigments that can form during red wine ageing, seems to be involved in 
astringency, since they are able to interact with salivary proteins by phenol, catechol 
or even flavanols structures, similarly to procyanidins [98].

Flavonols (kaempferol, quercetin, and myricetin) are present in grapes and wine as 
glycosides (sugar attached). In the plant, they act as a natural sunscreen in the skin of 
grape berries. In wine, they can be hydrolysed and act as cofactors for colour enhance-
ment. Flavonol glycosides, such as 3-O-glucosides and 3-O-galactosides of quercetin, 
syringetin, and isorhamnetin, have been reported to be astringent at low detection 
threshold levels and characterised by a velvety astringency [99]. The addition of 
quercetin 3-O-glucoside (2 g/L) to wine increased astringency, leading to the forma-
tion of complexes with saliva at 200 μM [100]. However, such concentrations are not 
naturally present in red wine, in which quercetin 3-O-glucoside can range from 2 up to 
34 mg/L, depending on the cultivar [101].

Many sensory active non-volatile compounds comprising hydroxybenzoic acids, 
hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamno-
sides were identified as the key inducers of the astringent mouthfeel of red wines 
using a molecular sensory approach [99]. The phenolic acids in wines, especially 
hydroxycinnamic and benzoic acid derivatives, have been reported to be more 
puckering astringent. These compounds have also been correlated with astringency 
in free-run and pressed wine [102]. The trans-p-coumaric, cis-aconitic, and trans-
caftaric acids seem to participate in the astringency of Spanish wines [103].

5. Polyphenol-protein interactions

Given that the carbonyl function of salivary proteins is a very effective hydrogen 
bond acceptor [104], it would appear that it would play a significant role in bonding 
to polyphenols hydroxyls [10, 105]. Nowadays, the interaction between proteins and 
proanthocyanidins is widely recognised to be a combination of hydrogen bonding 
and hydrophobic effects in the acidic wine matrix. However, covalent bonding is 
also possible between proteins and polyphenols during oxidation [106] and nucleo-
philic addition processes [107]. In this chapter, we focused on the non-covalent 
binding involved in the astringent sensation.

Physico-chemical quantities (binding constants, stoichiometry, and atomic 
structure of complexes, driving forces for the association) have been utilised to 
understand the multifaceted sensation of astringency. Many techniques including 
circular dichroism (CD) [108], isothermal titration microcalorimetry (ITC) [109], 
fluorescence spectroscopy [50], dynamic light scattering (DLS) [110], and nuclear 
magnetic resonance (NMR) [111] have been employed to understand the formation 
mechanism of protein/polyphenol aggregates in solution. Generally, these studies 
focused on interactions between protein segment from human saliva PRPs proteins 
family and selected procyanidins, because it represents the easiest way to simulate 
such a complex phenomenon. They can reveal the hydrophobic interactions formed 
between the phenolic rings of the procyanidins and proline residues, and the hydro-
gen bonding between the hydroxyl groups on the phenolic B-ring and hydrogen 
acceptor sites of the peptide bond [52, 112]. The aggregation of procyanidin with 
peptide seems to be firstly mediated by hydrophobic forces, and then hydrogen 
bonding has been postulated to provide directional and robust bonding that stabi-
lises the complex. The peptide is coated by polyphenols, which provides a crosslink 
between two or more peptides up to a critical point, after which precipitation begins. 
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The stability of these complexes depends on the tannin dimension and number of 
free phenolic groups, as well as the nature of the protein involved [81, 109].

The driving factors that determine the binding between tannins and salivary 
proteins were identified to be the critical micelle concentration value (CMC), 
tannin structure preferences, and tannin colloidal state [113]. Below the values 
observed in wine (from 1.5 to 2.9 mM), procyanidins specifically interacted with 
peptide through hydrophilic recognition. A network of interactions can be formed 
depending on tannin conformation, and precipitation of the complex can occur, or 
if an intramolecular staking Π-Π of phenolic groups is preferred, the precipitation 
is not observed. Above these values, tannins spontaneously tend to form aggregates 
that, at first through specific interactions bind proteins, and then surrounded by 
the hydrophobic residues, stabilise the complex by hydrophobic bonding. To sum-
marise, both hydrophilic and hydrophobic interactions contribute to form a com-
plex network, which determines the precipitation of salivary proteins with tannins.

6. Assessments of astringency

A method for measuring astringency remains one of the great analytical chal-
lenges in wine chemistry and oenology. The interest in investigating the mechanisms 
and interactions between polyphenols and proteins can allow us to find the optimal 
way to simulate and evaluate what happens during the red wine tasting. Quite often, 
sophisticated techniques rely on the purification of both tannin and protein fractions, 
the extrusion from the wine content, and the omission of matrix components during 
reactions, and all contribute to send away astringency from the reality that is: wine 
polyphenols interacting with salivary proteins in mouth, causing drying sensations.

Several procedures have been carried out during the last decades for measuring 
tannins. Additionally, analyses of soluble (turbidimetric analysis) and insoluble 
(precipitation protein assays) protein-polyphenols complex have been developed 
for assessing astringency. The sensory analysis represents the human response as an 
analytical tool to evaluate wine perception. Many training and tasting sections are 
necessary over a long period involving a high number of tasters to form a reliable 
panel. In the case of astringency, it is complicated to discern amongst tastes and 
brings on fatigue. A method capable of estimating tannin palatability has to be the 
most objective as possible and must correlate with sensory data in order to reflect 
the real phenomenon of wine tasting.

6.1 Stimuli analysis: pros and contras

Amongst stimuli able to elicit astringency, tannins are the main compounds 
responsible for this sensation. Tannins are intrinsically amphiphilic molecules with 
high reactivity, have a diverse range of structures, and are often found in matrices 
with other phenolic molecules containing similar functional groups. Besides using 
sophisticated equipment and analytical techniques, there is also a great interest in a 
relatively simple method.

In the past, many colourimetric techniques were developed to analyse phe-
nolics compounds spectrophotometrically. The first one used the Folin-Denis 
reagent [114], which was successively modified [115, 116], and lastly into the 
Folin-Ciocalteau assay [117]. However, they were not specific for tannins but 
detected any phenolic compound. More specific colour reactions were used to 
measure condensed tannins and their precursors. Depolymerisation in HCl and 
n-butanol of proanthocyanidins yield anthocyanidins that can be quantified spec-
trophotometrically [118, 119]. Others used vanillin reagent for flavanols [6, 120], 
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or p-dimethylaminocinnamaldehyde for a more specificity and colour stability 
[121, 122]. Only the flavonoid-based condensed tannins can be detected with these 
reagents. As tannins can inhibit the catalytic activity of enzymes [6], many methods 
used the interaction with proteins in solution to measure the inhibition of different 
enzymes spectrophotometrically [123].

Other methods, based on the acid-catalysed condensation reactions with benzyl 
mercaptan (thiolysis) and phloroglucinol (phloroglucinolysis), can determine both 
the chain length (mDP) and composition by HPLC [124, 125]. Most of our current 
knowledge about the general composition and structure of grape and wine tannins 
have been obtained by depolymerisation [126]. Poor yields due to reaction product 
instability, reactions with non-proanthocyanidin compounds, and side reactions 
also contribute negatively to the utility of thiolytic methods [124]. The problem 
with phloroglucinolysis, on the other hand, is that it produces low yields, and only 
a fraction of the tannin is converted to known flavan-3-ol products [127]. Normal-
phase HPLC (NP-HPLC) method has also been developed to quantify the proan-
thocyanidins into low and high molecular-weight polymers [128]. A simple method 
based on Fourier transform mid-infrared (FT-MIR) spectroscopy combined with 
multivariate data analysis, was successfully used to measure the tannin concentra-
tion of 86 red wines, previously purified by solid-phase extraction (SPE) [129].

6.2 Precipitation assays: pros and contras

Protein precipitation assays are of particular interest because the interaction of 
proteins with tannins can be used to model astringency perception [130]. The ability 
of gelatin to precipitate phenols, including tannins, has been observed since 1934 
[131]. The same phenomenon was observed when hide powder or polyvinylpyrrol-
idone were used in high concentrations [132]. Bate-Smith [130] noted that protein of 
skin differed from proteins of saliva, which caused the “puckery” sensation induced 
by tannin. For measuring the relative astringency of tannins, a spectrophotometric 
technique based on the precipitation of the haemoglobin with tannin was then 
introduced [130]. Similarly, another spectrophotometric technique measured the 
inhibition of β-glucosidase after the precipitation with tannic acid and condensed 
tannins [133]. Alternatively, Hagerman and Butler [134] used bovine serum albumin 
(BSA) as a precipitant agent, which was successively taken by Harbertson et al. 
[135] for wine analysis. Glories [136] proposed the gelatin index, in which tan-
nins were precipitated by gelatin protein. This procedure required the measure of 
proanthocyanidin concentration before and after precipitation with an excess of 
gelatin. Besides, gelatin is a heterogeneous mixture of proteins, and its composi-
tion may change amongst the different commercial products, leading to a source 
of variability and imprecision of data. For this, some researchers replaced gelatin 
with ovalbumin [137]. Another tannin assay used the methylcellulose to precipitate 
tannin (MCP) [138, 139]. The MCP tannin assay is based on the formation of an 
insoluble polymer-tannin complex, which can be separated by centrifugation. The 
total phenolic content (absorbance at 280 nm) is measured in control and treated 
samples. However, if the assays utilise synthetic agent or protein different from 
saliva, the binding reaction seems not to reproduce the physiological conditions dur-
ing the wine tasting, because the binding affinity of the protein is not comparable 
to that of salivary protein. In the case of bovine serum albumin, it has been shown 
that the salivary protein has a higher affinity for tannin than BSA. In fact, in the 
presence of an excess of BSA, the tannin preferentially bound the salivary protein. 
Other proteins, including dietary proteins, may not complex any tannin in the 
presence of the salivary tannin-binding protein [8]. The use of salivary proteins has 
been proposed to represent the model system for astringency better. In precipitation 



9

Salivary Protein-Tannin Interaction: The Binding behind Astringency
DOI: http://dx.doi.org/10.5772/intechopen.93611

assays, fractionated [8, 140] or whole [141, 142] human saliva has been used. Mixing 
whole saliva and grape polyphenols give rise to a “soft cloudy” precipitate, which 
gathered after centrifugation on the bottom of the tube so that the supernatant was 
easily recovered without disturbing this pellet. The binding reaction was performed 
at 25°C, and the complex formed was successively precipitated by centrifugation at 
4°C in order to stop further reactions. The induced precipitation allowed to separate 
the proteins bound to polyphenols from whose remained in the solution that not 
reacted with them. Both the nature of condensed tannin [141] and salivary proteins 
[142] involved in the precipitation were analysed. In both works, the sodium dodecyl 
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of human saliva was 
carried out, Sarni-Manchado et al. [141], analysed the tannins in the supernatant 
and pellet. In contrast, Gambuti et al. [142], analysing the supernatant, revealed the 
proteins mainly reactive with polyphenols by comparison with the control saliva. 
Evidence of the qualitative and quantitative changes in salivary protein profile after 
tasting tannin solutions and wines was also made by HPLC [143]. Interactions and 
precipitation of low molecular weight salivary proteins with procyanidins con-
firmed the involvement of different families of salivary proteins in the development 
of astringency [144]. The use of salivary proteins involves the collection of human 
saliva from different healthy volunteers according to a specific protocol, and it must 
take into account the salivary flow to limit the effect of individual differences in 
astringency perception due to subjects’ saliva characteristics [145].

6.3 Nephelometry: pros and contras

Nephelometry is a method that allows a direct estimation of the amount of 
protein/tannin complexes by measuring the scattered light in the solution that results 
from the gradual formation of a cloudy precipitate corresponding to the soluble 
aggregate. Chapon [146] proposed this technique by studying the interactions 
between beer polyphenols and proteins involved in the colloidal instability of beer. 
Similarly, the haze formed between salivary proteins and polyphenols represents the 
first step in the development of astringency and can be measured with a turbidimeter 
[147, 148]. A continuous flow method was also used to study the interactions between 
grape extracts and wine with BSA at different concentrations [149]. Globular pro-
teins and PRPs were used to measure a relative tannin specific activity of procyanidin 
oligomers from grape seeds [30], and PRPs showed the strongest affinity. Human 
salivary proteins have been considered as the most suitable model proteins. For this 
reason, in turbidity measurement, whole human saliva [148] and mucin, a high 
molecular weight salivary protein [150], were used as model proteins for astringency 
assessment. Based on polyphenol/mucin reactivity, a micro-plate assay was also 
developed [151]. Tannic acid [150], grape seed extracts [151], wine extracts [63], 
tannin fractions added to model solutions [152] were analysed by nephelometry. The 
turbidity of the solution, formed by the tannin-protein aggregates, linearly corre-
lated with astringency. However, no direct analysis of wines was carried out. Lastly, 
instead, wine samples were analysed trough nanotechnology such as localised surface 
plasmon resonance (LSPR) combined with surface imprinted polymers, as a measure 
of the interactions of polyphenol with salivary protein and then astringency [153].

6.4 Sensory analysis: pros and contras

The sensory analysis represents the human response to wine tasting. A sensory 
panel can provide information about the sensory properties of a product, but 
significant training is required before the panel becomes a reliable sensory instru-
ment. Astringency is a difficult sensory attribute to evaluate, owing to particular 
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characteristics of the sensation. Generally, it is evaluated by tasting but can suffer 
from individual subjectivity. The feeling can take over 15 seconds to develop fully 
and is known to build in intensity and become increasingly difficult to clear from the 
mouth over repeated exposures [19, 154]. Carry-over effects can occur. When wines 
or tannic solutions are evaluated by a well-trained panel using established sensory 
methodologies, the panel leader can expect to obtain reliable information about the 
intensity in the perceived astringency of the samples. Screening, selection, training, 
and panel maintenance are exercises that help the panel attain proficiency before 
sample evaluation. Classical methodologies widely applied are descriptive and rating 
sensory analyses. The first helps to distinguish between samples by a qualitative 
description of their sensory properties [75] and the second permits to scale samples 
according to the intensity of the perception. However, time-intensity (TI) is a tem-
poral methodology widely used. This method consists of recording one by one the 
intensity evolution of given attributes [155]. However, TI showed some limitations 
because it is time-consuming due to the evaluation of only a few attributes at the 
same time [156]. Furthermore, carry-over effects can overcome when assessing the 
temporal perception of an attribute [157]. To overcome these drawbacks, Pineau et 
al. [156] developed a new method called temporal dominance of sensations (TDS), 
which consists of identifying and rating sensations perceived as dominant until the 
perception ends. Before the development of this method, a similar experimental 
approach was successfully used to describe the temporality of sensations in wines 
[158]. Astringency, a dynamic sensation, takes many seconds to develop after the 
basic tastes, and the duration depends on the wine. Notwithstanding, TDS can be 
difficult when panellists had select the dominant attribute and score its intensity, but 
proper training can overcome this problem [159].

It is also essential to discuss and familiarise with the terms associated with astrin-
gency. A vocabulary of 33 terms has been proposed by a combined panel of experi-
enced tasters and winemakers to describe the mouthfeel characteristics of red wines 
[160]. The check-all-that-apply (CATA) question that consists of a list of subqualities 
from which the panellists have to select all the options they consider appropriate to 
that wine has been utilised for the characterisation of the astringency subqualities of 
Tannat wine [161]. Recently, a sensory method that combines CATA approach and 
training in astringency subqualities with touch-standards resulted very useful for 
investigating the astringency characteristics of red wines [24, 25, 162]. In any case, 
intense training is necessary to distinguish astringency from other tastes, especially 
bitterness, and to reveal the different qualitative attributes. Fatigue and loss of 
stimuli memory may occur, particularly with panellists who are unfamiliar with 
astringency, and when too many samples are presented. Training is also expensive 
and time-consuming. However, it is necessary to investigate the astringency sub-
qualities of red wines. Sensory analysis is of fundamental importance, but in some 
cases, it is not possible to perform, so the replacement with an analytical instrument 
able to measure astringency could help in research as well as in the winery.

6.5 Correlation between sensory and analytical analysis

Because astringency is one of the main attributes for wine quality, winemak-
ers are interested in an analytical and objective method to evaluate it. No method 
can substitute entirely sensory analysis, but a method that results in a reproduc-
ible index has to correlate quite well with it. A statistically significant correlation 
between the sensorial and analytical methods is necessary.

The gelatin index has represented the almost widely analytical method for esti-
mating astringency in red wine [136]. Besides, it furnished only approximate results 
[137]. Successively, a positive correlation (R2 = 0.56) between the gelatin index and 
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time-intensity data was obtained only at a low concentration of polyphenols utilis-
ing 29 wines judged by 10 panellists [163]. A method that used the ovalbumin in 
alternatively to gelatin as a precipitation agent was proposed to determine astrin-
gency [137]. Ten wines were tested by 10 expert enologists evaluating the astrin-
gency on a scale from 1 to 100. The method resulted in more reproducible than the 
gelatin index and was positively correlated (R2 = 0.77) with sensory analysis. This 
method was also used to assess the astringency of Greek wines, and a good correla-
tion was found (R2 = 0.93) [164]. Another predictive model for astringency estima-
tion was based on phenolic compounds and colour analysis of 34 wines by 12 judges 
on a 9-point intensity scale [165]. Multiple regression generated three possible 
models to predict astringency from analytical data, the most simple depended on 
total phenolics and co-pigmented anthocyanins, besides the predicted astringency 
plotted versus observed astringency resulted in low but acceptable correlation from 
a sensory perspective.

Monteleone et al. [150] proposed a predictive model by measuring the 
polyphenol-mucin reactivity in which the capability of polyphenolic extracts to 
induce astringency was estimated on their ability to develop turbidity in the in vitro 
assay. They found a linear relation between astringency perceived by 30 trained 
judges and the mucin index for tannic acid model solutions (R2 = 0.993) grape seed 
extracts (R2 = 0.996), and phenolic extracts (R2 = 0.95) [63].

In a study by Kennedy et al. [166], 40 red wines were evaluated by a panel 
consisting of three winemakers and two enologists for the astringency intensity 
scored from zero to 10. The aim was to correlate astringency and tannin concen-
tration measured by different analytical methods: absorption at 280 nm, phloro-
glucinolysis, gel chromatography, and BSA protein precipitation. The analytical 
method having the strongest correlations with perceived astringency was the 
protein precipitation one (R2 = 0.82). Protein precipitation represents the method 
the most similar to the physiological response to astringent stimuli and can be 
used as an in vitro tool for understanding how tannin can modulate astringency 
perception. Generally, it was assumed that the most suitable proteins for evaluat-
ing astringency are the salivary PRPs. However, other proteins in whole human 
saliva were preferentially precipitated by increasing tannin solutions [142]. 
Successively, the percentage decrease of two salivary proteins after the precipita-
tion with tannins, measured by electrophoresis, represented an indicator of the 
reactivity of tannin. The saliva precipitation index (SPI) was well correlated with 
the sensory evaluation of the astringency of 57 red wines (R2 = 0.97) made by 18 
trained assessors [167].

7. The saliva precipitation index (SPI)

The SPI represents a useful tool to assess the physiological response to astrin-
gents, measuring the astringency of red wine indirectly. This index evaluated the 
precipitation of salivary proteins occurring during the tasting of an astringent 
stimulus. The SPI, analysing the salivary protein pattern by SDS-PAGE electro-
phoresis, has been improved considering the in-mouth temperature (37°C) for the 
binding reaction, the choice of resting saliva, and the ratio saliva:wine. The excess 
of saliva with respect to wine (2:1) in a static environment permits to measure 
the binding capacity of tannins better [167]. Successively, to reduce the time and 
solvents, the chip electrophoresis replaced the SDS-PAGE, providing similar results 
[168]. In the last years, the SPI has been used for different technological practices 
proving useful information for winemakers and enologists to manage the style and 
quality of red wines.
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7.1 Applications of SPI in winemaking

7.1.1 Enological practices

In winemaking, the clarification process is fundamental to stabilise and clarify 
the wine by adding exogenous proteins into wine [169]. Proteins used for fining 
interact with wine tannins by a mechanism similar to that occurring during the 
tasting. The interaction protein-tannin, binding, and precipitation determine a 
decrease in polyphenolic compounds responsible for the sensation of astringency 
[170]. The SPI was used to evaluate the efficacy of the fining of different proteins 
at different concentrations in Aglianico [171], and Sangiovese wines [172]. In 
Aglianico, the gelatin (animal protein) and patatin (plant protein) showed similar 
efficacy in diminishing wine polyphenols reactive towards salivary proteins, and 
then astringency, whilst in Sangiovese it depended on the polyphenolic content 
of the wine. The information provided by SPI was useful to understand that each 
wine, with peculiar polyphenolic composition, should be treated maintaining the 
ratio anthocyanins and tannins such as to assure a modulation of astringency and at 
the same time a correct evolution of the colour during ageing.

A common practice is the utilisation of enological tannins as a substitute for oak 
barrels to improve colour stability and taste and is authorised by the International 
Organisation of the Vine and Wine (OIV) for musts and wines clarification [173]. 
Commercial preparations of tannins of different origins showed different abilities 
in precipitating salivary proteins: condensed tannins resulted in higher SPI and 
astringency than hydrolysable tannins. The addition of tannins in wines modify the 
astringency or not depending on the wine phenolic content. The SPI was useful to 
understand the effect of tannins addition on wine astringency in order not to com-
promise overall wine quality [83]. Similarly, after a moderate oxidation (21 mg/L 
of oxygen equivalent), the addition of 2 g/L of enological tannins did not result in 
an increase in the reactivity of wine tannins towards salivary proteins after 30 days 
of treatment. This effect was also shown in the oxidation process in the presence 
of acetaldehyde [174]. The SPI seems to be sensitive to reaction-products such as 
polymers of flavanols and anthocyanins formed directly or via a molecular bridge 
(e.g., acetaldehyde) [31, 175], and new-formed proanthocyanidins [93, 176]. This 
may explain why during the oxidation of red wines, the SPI followed a different 
trend from BSA reactive tannins [174, 177, 178].

7.1.2 Ageing

The decrease of astringency with time has been shown to depend on the reduced 
concentration of tannins due to precipitation [31, 68], but the trend is not strictly 
related to the age of wine [179]. The astringency of red wine decreases during ageing 
because of the changes in the structure of tannins due to cleavage reactions generat-
ing low molecular weight species [31], polymerisation without the participation of 
anthocyanins and subsequent precipitation [95], direct or indirect condensation 
with anthocyanins [180], and the formation of flavan-3-ol sulfonates by SO2 [181]. 
Wine becomes soft and mellow for the decline of tannin mean degree of polymerisa-
tion [182], velvet and mouth-coating for the formation of the polymeric pigments 
[24], or satin for lower content of flavans and astringent tannins (measured by 
SPI), and higher formation of polymers [183] after ageing. Studies on Sangiovese 
wine revealed that the astringency profile changed from an unripe, dry astringency 
towards rich, full-body, and mouth-coating sensations after about 2 years of ageing 
[184]. However, pucker sensations can appear if the oxidation is excessive  
[24, 25]. Astringency subqualities have been able to discriminate wines of different 
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denominations with a chemical age of 3–5 years, more than other wine parameters 
[25]. Red wine benefits of a moderate oxygenation during ageing favouring changes 
in tannin structures that, affecting their reactivity towards proteins, can modulate 
wine astringency. The SPI was utilised to objectively evaluate changes in astringency 
as a function of oxygen uptake before and after bottling [185]. Although conflicting 
results were reported for astringency after micro-oxygenation of wines, a significant 
variation of wine reactivity towards salivary proteins and, then, in wine astringency 
was observed after 42 months of ageing in bottle only in low pH wines. Moreover, 
oxygen permeating towards closures determined changes in wine phenolics detect-
able only using SPI. It was significantly lower when the bottles were sealed with 
closures at high oxygen transfer rate (OTR). Such differences were not perceived by 
sensory analysis, demonstrating that SPI can be more sensitive in revealing slight 
differences in the reactivity of tannins. Lastly, the effect of ageing on the precipita-
tion of salivary proteins is a function of ageing time, wine pH and phenolic composi-
tion, and oxygen level in red wine. The decisive role of pH on wine astringency has 
been confirmed in a recent work of Forino et al. [92], in which the SPI was used to 
measure wines with different pH levels (3.7–3.2) obtained by adding strong acids 
or bases, which made the wine unsafe to taste. The binding and precipitation of 
wine tannins with saliva proteins was favoured at low pH values, and this effect 
was dominant with respect to the tannins content. Previously, the tartaric acid 
addition in wine, modifying the pH, resulted in high SPI [186], due to the increase 
of tannins in the phenolate form, and therefore to an increase of hydrogen bond-
ing with salivary proteins. It is also likely that at low pH increases the accessibility 
of the binding sites leading to enhanced Van der Waal interactions and hydrogen 
bonding between proteins and polyphenols [187]. However, other parameters, such 
as ethanol, fructose, and mannoproteins have been shown to influence astringency 
and SPI [186]. The effect of mannoproteins on the inhibition of salivary protein 
precipitation was also showed in Aglianico and Sangiovese wines after 12 months 
of ageing. The sensory analysis confirmed a reduction in wine astringency. Some 
mannoproteins interact with tannins forming higher molecular weight structures 
that prevent the binding with salivary proteins, and thus are not able to elicit astrin-
gency [94]. Mannoproteins can also act as steric stabilisers limiting the binding with 
tannins [112]. Wine polysaccharides inhibit tannin-salivary proteins interaction by a 
mechanism that involves the formation of protein-tannin complex firstly, probably 
ruled by hydrophobic interactions and stabilised by hydrogen bonds, and then the 
polysaccharides can act by a ternary mechanism through the encapsulation of this 
complex, increasing its solubility. However, the efficiency depends on the polarity of 
both salivary proteins and tannins [188]. Beyond the molecular mechanism, man-
noproteins can highly influence the qualitative sensory perception of astringency, 
conferring positive subqualities of astringency to red wines [162].

8. Conclusions

Astringency is still a complex phenomenon, and despite the many efforts from 
researchers, it is not fully understood. However, the different in vitro assessments 
have been shown to be useful in evaluating the wine astringency. They could 
replace the sensory evaluation when there is no possibility of tasting wines: for low 
sample availability, when tasting is not permitted (as in the pandemic period due 
to Covid-19) or unsafe, or when too many samples must be tasted. An analytical 
method for astringency may be potentially useful not only in research purposes but 
also in the optimisation of the winemaking process and may help wine producers to 
improve wine quality.
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