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ABSTRACT 

Under pressure for low carbon emissions and environmental protection, large scale 

wind farms are constructed and integrated into power systems to meet energy 

demands. On the other hand, the long distance transmission for large scale wind 

power and conventional power plants is another technical issue in modern power 

systems. These two challenges stimulate the research and development of wind 

energy and the fractional frequency transmission system (FFTS). With wide 

utilisation of wind energy and the FFTS, the dynamics of power systems will 

inevitably be influenced. Thus, the research of this thesis focuses on the small signal 

stability of power systems with wind generation and the FFTS. 

The research of this thesis can be divided into the following three parts: 

Firstly, the influence of wind farms on the subsynchronous resonance (SSR) of 

conventional power systems is systematically examined. Both eigenvalue analysis and 

time domain simulations are conducted to examine the influence of wind farms from 

torsional interaction (TI) and the induction generator effect (IGE).  

Secondly, the FFTS is proposed to deliver the energy from large scale offshore wind 

farms. The small signal stability of the FFTS with wind farms is studied. To improve 

the damping performance of such a system, a proper controller for the FFTS is 

proposed. 



 

Thirdly, the FFTS is also proposed to be applied in grid interconnections. The 

application of the FFTS can improve the damping of inter-area oscillations in a 

multi-area system. Furthermore, the power flow between different areas can also be 

controlled through the FFTS.  
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

1.1.1 Development of Wind Energy 

The progress and development of human society boosted the increasing demand for 

energy. Between 1971 and 2003, the primary energy demand around the world almost 

doubled, and it is expected to increase by another 40% by 2020 [1]. Currently, most 

energy consumption is extracted from fossil fuels, which causes air pollution and 

climate change. In particular, the global warming problem has become one of the 

greatest issues of concern for governments and civilians in recent years, and the 

reduction of carbon dioxide emissions has gained broad consensus around the world. 

Renewable energy, which is environmentally clean and safe, has become a necessary 

choice for substituting the fossil-based energy. In 2008, the European Union promotion 

proposed to improve energy efficiency by 20%, reduce greenhouse gas emissions by 

20%, and had a target of 20% of energy consumption from renewable energy sources 

by 2020 [2]. Hence, renewable energy will play an irreplaceable role in energy supply 

around the world in the future.  

In 2012 and 2013, renewable energy contributed 22% of global electricity generation 

and 19% of overall energy consumption [3]. The sources of renewable energy include 
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hydropower, solar, biomass, geothermal and wind, etc. The utilisation of hydro power 

has a long history and currently accounts for the largest share of electricity generation 

among all the renewable resources. Wave power and tidal power are two relatively 

new forms of hydropower, and they have not been widely utilised commercially. 

Solar is another important renewable energy resource, which is abundant and widely 

distributed around the world. Biomass is derived from living organisms and can be 

used to provide heat or be converted into other forms of bio-fuel. The geothermal 

energy is cost effective and clean, but its application is usually limited by geographic 

locations. 

Currently, wind is one of the most popular renewable energy sources around the 

world. Wind energy is clean and environmentally safe, and more importantly, it can 

be used easily. With the maturity of wind technology, the world’s wind energy 

capacity has experienced a rapid increase in the last decades. From 1990 to 2005, the 

wind energy capacity doubled approximately every three years, and 83 countries had 

applied wind energy on a commercial basis around the world by 2011 [4]. In June 

2014, the wind energy capacity around the world had grown rapidly to 336 GW, and 

it accounts for about 4% of the overall world electricity usage [5]. In the EU, the 

installed capacity of wind energy reached 128.8 GW, and the electricity produced by 

installed wind power capacity was enough to cover 10.2% of the electricity 

consumption [6]. In 2012, the UK ranked as the 6th largest wind producer around the 
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world [7]. By mid-July 2015, wind power in the UK consisted of 6,536 wind turbines 

with a total installed capacity of over 13 GW [8]. From the above statistics, it can be 

anticipated that more and more wind energy will be integrated into the power grids, 

and thus the dynamics of the existing conventional power systems will inevitably by 

affected by wind generation.  

Due to the low cost and easy installation, wind farms were constructed on land in the 

early stages. However, better wind energy resources are often located offshore. The 

sharply increasing consumption of energy and the pressure for low carbon emissions 

promotes the development of offshore wind farms. Although the construction and 

maintenance costs of offshore wind farms are considerable higher than those of onshore 

wind farms, the great potential encourages the further development of offshore wind 

farms. In many EU countries, the power produced by offshore wind farms comprises a 

large share of the total power generated by wind energy. In 2008, the UK overtook 

Denmark to become the world leader of offshore wind energy [9]. The largest offshore 

wind farm, which consists of 175 wind turbines, is located off the Kent coast in the UK 

[9].  It is also estimated that the UK has over a third of the offshore wind resources in 

Europe, and this promises a better future for the utilisation of offshore wind energy in 

the UK [11]. 

The wind turbine generators (WTGs) are used to convert the kinetic energy from wind 

into electricity. At present, there are mainly three popular WTGs: the squirrel cage of 
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induction generator (SCIG), the doubly-fed induction generator (DFIG), and the 

direct-driven permanent magnet generator (DDPMG). The above three WTGs can be 

divided into two categories: the fixed speed WTG and the variable speed WTG. The 

SCIG belongs to the fixed speed WTG, and the DFIG and the DDPMG are the variable 

speed WTGs.  

Initially, the SCIG was the dominant WTG. In a SCIG, the stator of the induction 

machine is directly connected to the power grid. As the SCIG is designed to operate at a 

fixed speed, the maximisation of wind energy capture cannot be achieved. When the 

SCIG is subjected to a gust of wind, the rotor speed of the induction machine can only 

change slightly. The range for the rotor speed variation is 1% ~ 2% of the nominal 

speed. However, the SCIG can be operated at two different rotor speeds if the number 

of stator pole pairs is changed. Furthermore, SCIG naturally consumes a large amount 

of reactive power, and additional capacitor banks are needed to maintain the voltage 

level of the grid. 

With the introduction of power electronic controls into the WTG, the speed range of 

the wind turbine can be extended significantly. The DDPMG is a wide-range variable 

speed wind turbine and is based on a synchronous generator. To achieve wide-range 

variable speed operation, the synchronous generator is connected to the grid via a 

full-scale PWM converter directly. The PWM converter completely decouples the 

synchronous generator from the grid. Compared with other types of WTGs, the 
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DDPMG can eliminate the gearbox if the generator applies the multi-pole 

synchronous machine designed for low speed. Without the gearbox and slip ring, the 

DDPMG has the advantage of lower power loss, lower maintenance costs and high 

reliability. Hence, the DDPMG has the potential to be widely installed in the future.  

Due to the advantages of high capacity, low cost and flexible control, the DFIG is very 

popular among all the other types of wind generation [12]. In North America, most 

large wind farms employ the DFIG-base wind turbines [13]. The generator of DFIG is 

also the induction machine. The stator of the induction generator is directly connected 

to the power grid, and its rotor is linked to the grid through a back-to-back PWM 

converter. The PWM converter consists of the rotor side converter and the grid side 

converter connected by a DC-link capacitor. Through the PWM converter, the active 

and reactive power of DFIG can be controlled separately. The capacity size of the 

PWM converter is normally designed to be 20% ~ 30% of the rated capacity of DFIG. 

This means a certain amount of power can flow in or out from the rotor through this 

converter. There are two modes of operation for a DFIG: the super-synchronous mode 

and the sub-synchronous mode. These two modes depend entirely on the rotational 

speed of the induction generator. If the DFIG operates in the super-synchronous mode, 

the power will be transmitted from the rotor to the grid through the PWM converter. If 

the DFIG works under the sub-synchronous mode, the rotor of the induction generator 

will absorb power from the grid through the PWM converter. 
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Since the DFIG is the dominant type of WTG installed around the world, the wind 

farms in this thesis are proposed to be composed of DFIGs. The model and dynamic 

performance of DFIG will be further discussed in detail below.  

1.1.2 Development of FFTS 

Better wind energy resources are often located offshore, and this means that more 

productive wind farms need to be constructed away from the land. The next generation 

of offshore wind farms are expected to be installed 300 km away from the shore, and 

the individual capacity of each wind farm is likely to reach the gigawatt range [14]. 

Under such circumstances, the long distance delivery for offshore wind energy 

becomes a challenge.   

To increase the transmission distance and capacity is always challenging in the power 

industry. Historically, in the AC transmission system, raising the voltage level is an 

approach to increase transmission distance and capacity. However, the voltage level of 

the AC transmission line has its limitations, and further up-grading will encounter 

material and environmental issues. Currently, the high voltage alternating current 

(HVAC) is still an option for the delivery system of offshore wind farms. From the 

economical perspective, the HVAC is suitable for short distance submarine cables (less 

than 50km). If the distance exceeds 50km, the capacitive charging current and power 

losses of AC submarine cables makes HVAC on longer cost effective.  
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The high voltage direct current (HVDC) system is another choice for increasing the 

transmission capacity. It can break through the bottleneck of the transmission distance 

and has no stability limit problems. Initially, the line-commutated HVDC was proposed 

to deliver offshore wind energy for its reliability and mature technology. Then, 

VSC-HVDC, which can perform independent control of active and reactive power, 

becomes another feasible solution. The converters at the two ends of HVDC are very 

expensive and difficult to maintain, especially for offshore wind farms [15]. In addition, 

the multi-terminal operation of the HVDC is still difficult today.  

As an alternative approach to HVAC and HVDC, a relatively new electricity 

transmission system, the fractional frequency transmission system (FFTS), is proposed. 

It multiplies the transmission capacity through the reduction of the transmission 

frequency. Initially, the FFTS was proposed to transmit the hydro power from the west 

region to the east region in China where the delivery distance ranges from 1000 to 

2500km [16]. This novel transmission system is also very suitable to transmit power 

from remote offshore wind farms. Firstly, because the speed of the wind generation 

remains in the range from 12Hz-18Hz [17] [18], wind turbines are able to generate 

power directly at this frequency without a gearbox [17]. Secondly, compared with 

HVAC and HVDC, the FFTS costs less considering the investment, maintenance and 

losses. The Power Systems Engineering Research Centre (PSERC) [19] performed a 

comprehensive evaluation between FFTS, HVAC and HVDC, and their final report can 
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support the above facts. Thirdly, the FFTS can easily form a network as the 

conventional AC system. Finally, the implementation of FFTS faces no special 

technical difficulty. The key power electronic equipment-cycloconverter, which acts as 

the frequency changer, is mature [20]. Comprehensive knowledge is available from the 

development of the single phase FFTS railway grid in Austria, Switzerland and etc. 

[18].  

1.2 Research Focus and Contributions 

The low carbon emissions and efficient energy transmission are two major challenges 

for modern power systems. These challenges stimulate the development and research in 

wind energy and the fractional frequency transmission system (FFTS). The wide 

utilisation of wind energy and the FFTS will bring changes to the dynamics of power 

systems. So, the aim of this thesis is to study the damping performance of power 

systems under the utilisation of wind power generation and the fractional frequency 

transmission system. The research objectives and contributions of this thesis can be 

summarised as follows,   

1) When traditional power plants are gradually replaced by wind power generation, 

the dynamics of power systems will inevitably be influenced. One research objective 

of this thesis is to systematically investigate the impacts of the increased DFIG-based 

wind farm on the SSR of T-G units from the perspectives of torsional interaction (TI) 
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and the induction generator effect (IGE). Both eigenvalue analysis and dynamic 

simulations are conducted to demonstrate the influences of DFIG-based wind farms on 

the SSR of power systems and how the control parameters of wind farms can affect the 

SSR. 

2) The fractional frequency transmission system (FFTS) is a relatively new technology 

to deliver power from remote offshore wind farms. However, the dynamics of the 

FFTS with wind farms may be different from that of the standard AC transmission 

system with wind farms. So, one research objective of this thesis is to study the 

damping performance of the FFTS with wind farms. The mathematical models for the 

FFTS with wind farms and the key component (cycloconverter) are established. The 

small signal stability of the FFTS with wind farms is evaluated through eigenvalue 

analysis and time domain simulations. Furthermore, this thesis also proposes a 

solution to improve the damping of the FFTS with wind farms through the frequency 

changer-cycloconverter. 

3) The FFTS is proposed to interconnect power systems in different areas. The 

objective of this research is to study the dynamic performance of the FFTS in system 

interconnections. The mathematical model of the FFTS in the two-area system is 

established. Both eigenvalue analysis and dynamic simulations are carried out to 

investigate the damping performance of the FFTS in system interconnections. Finally, 
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a power flow controller for the FFTS is proposed, and its effectiveness is verified 

through time domain simulation. 

The main contributions of this thesis are provided in Chapter 4, 5 and 6. Chapter 4 

investigates the SSR of power systems with wind energy integration. Chapter 5 and 

Chapter 6 study the applications of FFTS. Chapter 5 proposes to deliver offshore wind 

energy through FFTS and studies the damping performance of this system. The 

application of FFTS in system interconnections is presented in Chapter 6. 

1.3 Thesis Outline 

The utilisation of wind energy and the FFTS will inevitably influence the dynamics of 

power systems. So, this thesis studies the damping performance of power systems 

with wind generation and FFTS. The contents of each chapter are summarised as 

follows, 

Chapter 2: A literature review is presented. Previous researches on dynamics of wind 

farms and power systems are reviewed in detail. The research progress of the FFTS is 

also introduced.   

Chapter 3: The SSR and small signal models for the major electrical components in 

this thesis are presented. These models include the DFIG-based wind turbine, the 
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conventional T-G unit and the transmission network. The procedures to form overall 

state space model and conduct eigenvalue analysis are also introduced. 

Chapter 4: This chapter systematically investigate the influence of the increased wind 

energy on the subsychronous resonance (SSR) of the T-G units. A new test system for 

research scenario is proposed, and its detailed mathematical model is also presented. 

The eigenvalue analysis and time domain simulation are carried out to evaluate the 

impacts of DFIG-based wind farms from torsional interaction (TI) and induction 

generator effect (IGE).   

Chapter 5: The fractional frequency transmission system is chosen to deliver the power 

from offshore DFIG-based wind farms. The small signal stability model of the studied 

system is represented. The eigenvalue analysis and time domain simulation are 

conducted to evaluate the damping performance of the FFTS with wind farms. The 

damping performance of the FFTS is also compared with that of the standard AC 

system. In addition, a feedback control loop is proposed to improve the damping 

performance of the FFTS. 

Chapter 6: The FFTS is applied in system interconnections. Both eigenvalue analysis 

and time domain simulations are conducted to demonstrate that the FFTS can improve 

the damping of inter-area oscillations. Furthermore, the power flow control through 

the FFTS is also proposed. 
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Chapter 7: The conclusion of this thesis is summarised, and future research topics are 

discussed. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Dynamics of Power systems and Wind Farms 

2.1.1 Stability Analysis of Power Systems 

Power system stability has been an important and complex problem that has challenged 

power system operation since the 1920s [21]. Severe damages caused by power system 

instability illustrated the importance of this problem. Although the definition of power 

system stability has a long history, its definition is continuous evolving with the 

development of power systems from theory to practical engineering. In 2004, the 

IEEE/CIGRE Joint Task Force on Stability Terms and Definitions proposed a precise 

understanding. In their report, power system stability was defined as the ability to 

regain operating equilibrium after a physical disturbance [21]. Power system stability is 

not a single problem, and the instability of power systems may happened in different 

forms and be caused by a wide range of factors. Consequently, it is necessary to classify 

the stability into several appropriate types for further study. In general, power system 

stability can be divided into three main categories: 

1) Rotor angle stability: this kind of stability includes the study of electromechanical 

oscillations in power systems. It refers to the ability of synchronous machines in an 

interconnected power system to maintain synchronism when being subjected to a 

disturbance.  
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2) Frequency stability: it can be defined as the ability of a power system to regain the 

steady frequency with minimum loss of loads after a significant imbalance between the 

generations and loads. The instability of frequency may lead to continuous frequency 

swing and finally cause the tripping of generator units or loads.  

3) Voltage stability: it refers to the capacity of a power system, under normal operating 

conditions, to maintain steady voltages at all buses after a disturbance. If the voltage of 

a power system is unstable, this may lead to the loss of loads in an area or tripping of the 

transmission lines and other elements in this system.  

The rotor angle stability of a power system can be further classified into the following 

two subcategories:  

1) Transient stability: it is the ability of a power system to keep synchronism after being 

subjected to a severe or large disturbance. This phenomenon is a nonlinear dynamics 

and involves large excursion of the states in power systems. It mainly depends on the 

initial conditions of power systems and the severity of disturbances.  

2) Small signal stability: it is related with the steady state of the power system, and it 

can be defined as the ability to maintain synchronism when subjected to small 

disturbances [21]. The analysis of small signal stability can provide useful information 

about the dynamics of power systems and assist system designs.  
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The dynamics of power system discussed in this thesis mainly focus on the small signal 

stability. So, the following introduction will emphasise on the mathematical theories 

and methods in the analysis of small signal stability.  

The small signal stability of a power system is affected by several factors including the 

initial system operating conditions, the strength of electrical connections between 

power components and different control devices [23]. Since power systems are 

inevitable to experience small disturbances, any power system in operation should be 

stable in the term of small signal stability. In practice, the small signal stability of 

power systems is mainly a problem of insufficient damping of oscillation. In the 

process of small signal stability analysis, it is critical to determine the 

electromechanical oscillation modes of power systems. The categories of 

electromechanical oscillation can be summarised as follows, 

1) Local modes, also named machine modes, are related with the swing of generating 

units in one station against the rest of the overall power system. This kind of oscillation 

exists locally at one station or a small portion of a power system. Typically, the 

oscillation frequency of local mode ranges from 0.7 Hz to 2 Hz [23]. 

2) Inter-area modes are associated with the swing of machines in one area of the power 

system with respect to the machines in other areas. They are normally caused by several 

groups of closely coupled machines being linked by weak tie lines [106].  
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3) Torsional modes involve the shaft system of the turbine-generator unit. The 

oscillation frequency is usually from 10-50 Hz [23]. It is an oscillation mainly being 

discussed in subsychronous resonance (SSR) analysis. More details about torsional 

oscillation will be introduced and discussed later in this thesis. 

4) Control modes are associated with the speed governors, exciters, HVDC converters 

and other control devices and components. 

In the small signal stability, a power system is subjected to small disturbances. These 

disturbances are supposed to be sufficiently small for the linearization of system 

models. So, small signal stability is suitable to be carried out on the system’s nonlinear 

equations linearizing around a chosen operating point. 

At present, eigenvalue analysis and frequency domain analysis are the two main 

methods to analyse the small signal stability of power systems. Eigenvalue analysis has 

been recognised as most widely used method. It is based on the linear system theory 

and Lyapunov stability theory [23]. In this method, the complex power systems are 

initially modelled by nonlinear differential equations, and then these nonlinear models 

are linearized around a chosen stable operating point. The procedure of eigenvalue 

analysis is summarised as the following.  

The nonlinear model of the power system is often described as [22], 
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 ( )fx x,u   (2.1) 

 ( )gy x,u  (2.2) 

where x is the vector of system states, u is the vector of system inputs, y is the vector of 

system outputs, ()f  and ()g  are the nonlinear functions. 

Then, the above nonlinear equations are linearized around an equilibrium point. The 

equilibrium point is an operating point where the derivative of state vector x is 

simultaneous zero. If x0 is the equilibrium point of state vector x, the following is 

obtained,  

 
0 0 0( , ) 0f x x u   (2.3) 

 
0 0 0( , )gy x u   (2.4) 

If the system is perturbed from the above state, the following is obtained, 

 
0 x x x   (2.5) 

 
0 y y y   (2.6) 

 
0 u u u   (2.7) 

where denotes a small deviation from the equilibrium point. 

Based on equation (2.1) and (2.2), the nonlinear system can be linearized as 

 A B    x x u   (2.8) 

 C D    y x u   (2.9) 
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where A is the state matrix, B is the input matrix, C is the output matrix and D is the 

forwarding matrix which describes the direct connection between the input and output 

of the system. 

According to the Lyapunov’s first method, the stability of system can be analysed by 

calculating the eigenvalue of the state matrix A. The locations of all the eigenvalues of 

the system determine the dynamic responses under small disturbance, and the law is 

expressed as follows, 

1) When the real parts of all the eigenvalues are negative, the system is asymptotically 

stable. 

2) When the eigenvalues (at least one) have positive real parts, the system is unstable 

3) When the eigenvalues have real parts equal to zero, the stability of system can be 

decided by this method. 

Each eigenvalue of the state matrix A can be expressed as 

 j      (2.10) 

The real part of the eigenvalue determines the damping of oscillation, and the damping 

ratio is given by, 

 2 2        (2.11) 
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The imaginary part of a eigenvalue gives the frequency of oscillation. When =0 , the 

corresponding mode has non-oscillatory response. When 0  , the corresponding 

mode has a oscillatory response. The frequency of mode oscillation in Hz is expressed 

by, 

 
2

f



   (2.12) 

From the above eigenvalue analysis, the left and right eigenvector can also be 

calculated. Based on the left and right eigenvector, the participation factor, which 

identifies the contribution of each state variable to a particular eigenvalue, can also be 

determined.  

2.1.2 Stability Analysis of Wind Farm 

Wind energy, among all the renewable energy resources, is one of the most widely 

utilized worldwide. As the share of wind power increases to a certain amount, the 

dynamics of power systems may be affected by wind farms. In general, the 

characteristics of wind farms are different from conventional power plants. Therefore, 

the influences of wind energy on existing power systems need further study. 

The first step to evaluate the influence of wind farms is to establish the models for 

various wind farms. Currently, most wind farms are composed of three popular wind 

turbine generators: the squirrel cage of induction generator (SCIG), the doubly-fed 
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induction generator (DFIG), and the direct-driven permanent magnet generator 

(DDPMG). 

The SCIG is a fixed-speed wind turbine. The simple model [24] of fixed speed wind 

turbine was developed to investigate the dynamics of wind farm, and this model was 

compared with the high-order model. Reference [25] discussed the dynamic modelling 

of fixed speed induction generator wind turbine in large (MW) capacity. The 

reduced-order model of SCIG was proposed for transient stability simulation [26].  

The DDPMG is a variable speed wind turbine. The small signal model of the DDPMG 

was presented in [27], and the influences of DDPMG on the stability of power systems 

were also studied. Reference [28] proposed the reduced order model, which could 

reduce the simulation time and the complexity of model. 

DFIG is also a variable speed wind turbine, and it is widely applied in most large wind 

farms worldwide. The research on the model of DFIG has been conducted for many 

years. Initially, [29] described the engineering and design model of DFIG using 

back-to-back PWM converter. Reference [30] derived the dynamic model of DFIGs 

and their associated control and protection circuits, and this model was very suitable for 

transient stability analysis of DFIGs. A simple wind turbine model was developed to 

facilitate the integration in power system simulation [31]. Reference [32] proposed a 

reduced model of the DFIG and its converter for stability studies. The small signal 
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stability model of the DFIG and the corresponding controllers were analysed in [33] 

and [35], and the optimization methods for the control parameters of DFIG was 

proposed and verified through eigenvalue analysis and dynamic simulations.  

After extensive studies on the modelling of wind turbines, research focus began to 

concentrate on the impact of increased large scale wind power on the dynamics of 

existed power systems. In 2003, [37] initiated the study on the influence of wind 

turbines, including constant speed and variable speed wind turbines, on the small signal 

stability of power systems. It was concluded that the impacts of wind farms depended 

on the types of wind turbines and the penetration level, and the constant speed wind 

turbines can provide better damping for power systems than the variable speed wind 

turbines. Reference [38] investigated the influence of wind power integration on the 

damping of inter-area oscillation in the Nordic grid, and various types of wind turbines 

were also tested. The results showed that the SCIG improved the damping of inter-area 

oscillation, while the DFIG and DDPMG decreased the damping. Through using the 

sensitivity of the eigenvalues, the transient and small signal stability of DFIG were 

investigated in [41]. Both beneficial and detrimental impacts of increased penetration 

of DFIG were found. Under the circumstances of a weak area of the grid, [39] found 

that the DFIG wind turbines can provide a good damping performance. 

In general, based on different types of wind turbines, the impact of the large scale wind 

farm can be summarised as Table 2.1. The SCIG has a positive impact on power 
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systems due to its asynchronous nature. The DFIG and DDPMG have both positive and 

negative impacts on the damping performance of power systems according to different 

types of oscillations, the capacity of wind farms and the location of connecting points 

[42]. 

Table 2.1 Influences of different WTGs on damping performance [42] 

 Positive Negative 

SCIG √  

DFIG √ √ 

DDPMG √ √ 

 

2.2 SSR of Power System and Wind Farm 

2.2.1 SSR of Conventional T-G Unit 

Series capacitive compensation is a common means to increase the capacity of 

transmission lines and improve transient stability. However, series capacitors in the 

transmission lines may expose power systems to the potential risk of subsynchronous 
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resonance (SSR), which can cause turbine-generator (T-G) shaft failure or electrical 

instability at subsynchronous frequency [43]. Therefore, the mechanism of SSR needs 

to be fully understood when power systems are designed and operated with series 

capacitors.  

Early in the 1930s, the “self-excitation” phenomenon was found in the synchronous 

generators with the capacitive load or series capacitive compensated transmission line 

under certain circumstances [44]. This “self-excitation” oscillation was treated as a 

purely electrical phenomenon until the 1970s. In 1970 and 1971, the Mohave 

generating station in Southern Nevada experienced two shaft failures, and the failures 

happened in the shaft section between the generator and the exciter [45]. The analysis 

of these failures indicated that the “self-excitation” caused by series compensated 

transmission line can not only excite the electrical oscillation but also a novel 

interaction between the transmission line and the shaft of T-G unit. This lead to the 

further research and development of the theory of the interaction between the series 

compensated transmission line and the mechanical system of the T-G unit. The 

oscillation frequency of this kind of interaction was much higher than that of the 

well-known “low frequency oscillation” of power systems, and it was lower than 

synchronous frequency. Hence, this interaction was defined as subsynchonous 

resonance (SSR).  



24 

 

After the two shaft failures at Mohave, the severe damage caused by SSR attracted the 

attention both from the academia and power industry. The discussion and research on 

SSR become a hot topic. Much work has been done on the analysis and suppression 

method of SSR [46]-[48]. In 1973, the IEEE established the Subsynchronous 

Resonance Working Group to organise and coordinate the research in this field. This 

working group recommended two benchmark models for SSR analysis [49][50] and 

also dedicated to provide the terminologies and definitions of SSR [51]-[54]. 

According to the IEEE’s definition, SSR is an abnormal operating condition of electric 

power system. Under this condition, significant energy exchanges between the electric 

network and a turbine generator at one or more of the natural frequencies of the 

combined system below the synchronous frequency of the system [53]. It encompasses 

the oscillatory attributes of electrical and mechanical variables associated with 

turbine-generators when coupled to a series capacitor compensated transmission 

system where the oscillatory energy interchange is lightly damped, undamped, or even 

negatively damped and growing [51]. 

If the transmission line is uncompensated, disturbances and faults in the system will 

result in DC offset components in the stator winding of generator. In a series 

compensated transmission line, the result under faults or disturbances is quite different. 

Fig. 2.1 shows a simple radial system to explain the basic theory of SSR. The natural 

electrical frequency fn of this radical system can be written by [55] 
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where f0 is the synchronous frequency; X” is the subtransient reactance of the 

synchronous machine; XT and XE are the reactance of the transmission line; Xc is the 

reactance of the series compensated capacitor. In Fig. 2.1, RE is the resistance of the 

transmission line; E
’’
 is the voltage before the subtransient reactance of the 

synchronous machine; EB is the voltage of the infinite bus. 

RE XE

EB

XTX” XC

E”

 

Fig. 2.1. A simple radial series compensated system 

Any disturbances or faults in such a system will cause offset alternating current, and the 

frequency of the alternating current is fn. The offset alternating current will flow into 

the stator of generator and induce the rotor currents of slip frequency f0-fn. The rotor 

currents at the slip frequency may excite the system or interact with one of the natural 

torsional modes of the turbine-generator shaft.  

Typically, the SSR interaction is divided into three categories: torsional interaction (TI), 

induction generator effect (IGE) and torsional amplification (TA) [56].  
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1) Torsional interaction (TI) is an unstable state that the mechanical system of a 

turbine-generator (T-G) unit interacts with the series capacitor-compensated network.  

This phenomenon happens when the frequency of the induced torque in the generator is 

close or coincides with one of the torsional frequencies of the T-G shaft system [22]. 

2) Induction Generator Effect (IGE) is a purely electrical phenomenon and not involved 

with the mechanical system of T-G unit [57]. It is mainly caused by self-excitation of 

the electrical part of power systems. The rotor resistance to the subsynchronous 

currents is negative when viewed from the armature terminals. If the negative 

resistance of generator surpasses the positive resistance of the network at the 

subsynchronous frequency, the electrical system will become self-excited. 

3) Torsional Amplification (TA) is caused by significant system disturbances. In a 

series capacitor-compensated transmission system, if the complement of the natural 

oscillatory frequency of the network is close with one of the torsional frequencies, 

torques in the shaft system may be induced [55]. The shaft response not only includes a 

single frequency component, but contains all the torsional modes.  

The TI and IGE are related with steady state of power systems [58], and they are 

supposed to be considered in the small disturbance conditions. Hence, the TI and IGE 

can be analysed through linear models. The TA is a nonlinear transient dynamics, and 
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the analysis is complex and can be done through simulations. In this thesis, the research 

focuses on the TI and IGE, and the TA will not be discussed in details. 

To systematically analyse the problem of SSR, several methods are proposed as 

follows, 

1) Eigenvalue analysis [59]-[61]: this method can provide the dynamic information of 

the entire power system in a single calculation. The general procedures are the same as 

the described in the small signal stability analysis. The generators and networks are 

modelled by linear equations. However, the stator circuits of the generator and the 

network in SSR study cannot be treated as steady-state algebraic equations in the small 

signal stability analysis. Besides, the mechanical dynamics of shaft system need to be 

modelled in the TI analysis. Consequently, the system model for the SSR study is of 

high order and contains more information compared with the model in the small signal 

stability analysis.  

2) Frequency scanning [62]: this method has been widely used for a preliminary 

analysis of SSR analysis in North America [56], and it is particularly suitable for the 

study of IGE. The frequency scanning technique calculates the equivalent resistance 

and inductance, as a function of frequency, viewed from the stator winding of a 

particular generator looking into the network. If the resistance is negative and the 
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inductance is zero at a certain frequency, there is potential risk of IGE. The frequency 

scanning methods can also be used to obtain the information about possible TI and TA.  

3) Time domain simulation [63] [64]: the electromagnetic transient program (EMTP) is 

widely utilized in the SSR analysis to compute the transient responses. Unlike the 

transient stability program, the three-phase detailed models are used. Furthermore, the 

EMTP can model the nonlinearity of complex power system components, and is 

particularly suitable to analyse the transient torque of SSR problem. 

When the potential risk of SSR problem is identified, the appropriate protection need to 

be selected and implemented to avoid the severe damage caused by SSR [65]. 

Depending on the problem and protection level, the cost of some countermeasures for 

SSR may be very high. So, the selection process for countermeasures should consider 

the probability of SSR events and the amount of expected damage. One method to 

prevent SSR is to avoid the series compensation levels that may induce the SSR. 

However, this method usually needs to decrease the transmission capacity, and thus it is 

not cost effective. Another option is to trip the relevant unit. This choice is suitable for 

the occurrence of SSR at low probability. The various countermeasures can be 

classified into the following categories: modifications of generator and system, tripping 

of generator and system, protective relaying and filtering, etc [66]-[72]. 
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2.2.2 SSR of Wind Farm 

The SSR problem of the T-G units interconnected with a series compensated 

transmission line has been long recognized and extensively studied [56]. With the rapid 

development of wind energy, it provides a substantial amount of the electricity demand 

at present. As the increasing scale of wind farms, the energy generated by wind farm 

also needs the series compensated transmission line for long-distance delivery. Under 

this circumstance, the wind farms are exposed to the potential risk of SSR.  

As mentioned previous, there are three popular types of wind turbines. Due to their 

different structures and dynamic performances, the SSR problem of each wind turbine 

may happen under different conditions and be caused by different factors. In the 

following, the SSR of each wind turbine will be introduced briefly. 

Early work of the SSR analysis of fixed speed wind generations was done in [73]. The 

results demonstrated that the SSR phenomenon of this kind of wind turbine is primarily 

attributed to IGE. The SSR conditions of fixed speed wind generation connected with 

series compensated transmission line was investigated in [74], and the time domain 

simulations were carried out to demonstrate the TI and IGE. This paper concluded that 

greater power from the fixed-speed wind generations leads to the less damping of the 

system. Reference [74] and [75] also proposed to mitigate the potential TI and IGE of 

fixed speed wind generation by FACTS devices. 
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The DDPMG is connected to the grid through the back-to-back converter, which 

isolates the wind turbines from the grid. So, the DDPMG is immune to SSR [77]. 

Reference [77] studied the SSR condition of synchronous machine connected to the 

grid through HVDC, which is similar to the DDPMG. It pointed out that there was no 

risk of SSR if the grid-side converter operated as an inverter.  

Due to the popularity of DFIG, extensive studies have been done on the SSR analysis of 

DFIG. Reference [79] modelled the DFIG based wind farm with a series compensated 

transmission line. The controller for converters, the flux observer and phase-locked 

loop were included in this detailed mathematical model. The developed model was also 

validated through simulation in both Matlab/Simulink and PSCAD/EMTDC. 

Reference [58] also established the SSR model for DFIG-based wind farm, and it 

further differentiated the SSR phenomenon from IGE and TI. In [80], impedance-based 

Nyquist criterion was used to analyse the SSR of DFIG-based wind farm, and it 

concluded that the interaction between the controller of the DFIG converters and the 

electric network was the main cause for SSR. Reference [81] presented a 

comprehensive analysis of SSR in wind integrated systems and proposed procedures to 

study and mitigate the SSR problem. 

However, the above publications have not studied the impacts of the DFIG-based 

wind farm on the SSR of conventional T-G units. Thus, one research objective of this 
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thesis is to investigate the influences of the DFIG-based wind farm on the SSR of T-G 

units. 

2.3 FFTS 

To increase power transmission capacity is always a technical challenge in power 

industry. In the AC power system, the power transmission capacity is related with two 

basic parameters: voltage and frequency. Due to the invention of transformer, different 

voltage levels can be tuned flexibly in power systems. So, raising voltage level is the 

most utilized method to increase the transmission capacity. However, this method 

inevitably faces the limitations of material and environmental issues. 

The fractional frequency transmission system (FFTS), or named low frequency 

transmission system, changes the transmission frequency to increase the capacity of the 

transmission line. Fractional frequency means the frequency of power is lower than the 

standard frequency (60/50 Hz). This kind of AC transmission system usually uses 1/3 

of the nominal frequency, which 20/16.66 Hz for 60/50Hz systems respectively [82]. 

The power frequency of the FFTS is limited by the harmonics caused by cycloconverter, 

and the output frequency is better to be no more than 1/3 of the standard frequency 

[124]. However, lower frequency means a slower time response for a system. So, 1/3 of 

the standard frequency is an appropriate frequency for the FFTS. 

The basic principle of the FFTS will be introduced in the following. 
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The active power transmitted via the AC transmission line is [22]: 

 sinS RV V
P

X
  (2.14) 

where P is the positive power; VS and VR are the sending and receiving end voltage, 

respectively; δ is the transmitting angle; X is the transmission line reactance and it is 

proportional to the transmission frequency f, 

 2X fL  (2.15) 

where L is the total inductance of the transmission line. 

According to equation (2.14) and (2.15), voltage level and transmission frequency are 

the two fundamental factors that affect the transmission capacity. Either the increase of 

voltage level or the reduction of transmission frequency could achieve the objective of 

multiplying the transmission capacity.  

In the FFTS, the transmission frequency is usually chosen to be 1/3 of the standard 

frequency, and the reactance of the transmission line also correspondingly reduces to 

1/3 of the original one. Consequently, the capacity of active power delivered through 

the AC transmission line will increase three times. Besides, the voltage drop of the 

transmission line can be decreased to 1/3 of voltage drop in the standard AC 

transmission line. The voltage drop of a transmission line can be obtained by, 
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where Q is the reactive power of the transmission line. According to the above equation, 

the voltage drop of the transmission line is proportional to the reactance of the 

transmission line. Reducing the transmission frequency will obviously improve the 

voltage drop. 

During the late 19
th

 and early 20
th

 century, the electricity transmission system used 

many frequencies, such as 50/3, 25, 50, 60 and 133 Hz. In 1896, the transmission line 

between Niagara and Buffalo chose the 25 Hz transmission frequency [83]. The choice 

of frequency in an AC system should consider several factors, including motors, 

lighting, generators, transformers and transmission lines. These factors interact with 

each other, and thus the selection of a suitable power frequency is a compromise 

between these contradictory factors [129].  Finally, the 50/60 Hz frequency was 

accepted as the standard power frequency worldwide. After the standardization of 

transmission frequency, changing the transmission frequency was rarely considered. 

This was mainly attributed to that transforming frequency is more difficult than 

changing the voltage level.  

However, low power frequency and high power frequency have been utilised in some 

specific system until now. In railway traction power networks, Germany, Switzerland, 

Austria, Sweden and Norway use 50/3 or 16.7 Hz single-phase AC power [132], and 
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the United States chooses 25 Hz for its traction power system [133]. High power 

frequency is usually used in spacecraft, telecommunication, electric vehicle and 

computer device, etc. [134] [136].  

With the development of new materials and power electronic techniques, the change of 

power frequency is much easier today. Low transmission frequency regains the 

attention in the application of long distance transmission. In 1994, the Fractional 

Frequency Transmission System (FFTS) was proposed to cope with the long distance 

transmission of Hydro power in China [84]. The FFTS applied 50/3 Hz frequency to 

decrease the electrical length of the AC transmission line and thus remarkably multiply 

the transmission capacity and improve the operating performance. Then, the feasibility 

of FFTS was analysed in details, and a mathematical model and computer simulation 

were also developed for the purpose of evaluation [16]. The results indicated that the 

FFTS was a promising novel transmission system. Reference [20] introduced the 

establishment of the experimental FFTS. In this experimental platform, the AC 

synchronous generator directly produced 50/3 Hz electric power, and then the power 

was delivered through a simulated 1200 km 50 kV transmission line. The power was 

feed into the main grid through a phase-controlled cycloconverter, which can step up 

the frequency to the standard 50 Hz. The results of this experiment showed that the 

FFTS was rather smooth during the grid synchronization process, and the transmission 

capacity could be increased 2.5 times compared with that of the standard AC 
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transmission system. From engineering practice, the FFTS faced no essential technique 

difficulties and had great potential for practical implementation in future [18]. 

Reference [85] emphasised the economic advantage of the FFTS compared 

conventional AC transmission system when it was used to transmit hydro and wind 

power. 

The key component in the FFTS is the frequency changer, which is responsible for 

stepping up the power from the low frequency to the nominal frequency. Basically, 

there are three options for the frequency changer: saturable transformer [16], 

AC-DC-AC converter [90] and cycloconverter [20]. The saturable transformer has 

simpler structure, lower cost and more reliable operation. Power electronic type is 

superior in higher efficiency and more flexible in installation. Until now, the 

cycloconverter is most widely applied in the FFTS. Conventionally, it is used to drive 

motors in high power application. Reference [20] proposed to operate cycloconverter 

in its inversion mode in the FFTS for the first time. Then, the most common fault of 

cycloconverter, non-condition of bridge arms, was analysed, and some suggestions 

were proposed for the fault identification [92]. Reference [93] simulated the 

cycloconverter in PSCAD/EMTDC and investigated the dynamic response of 

cycloconverter under three-phase short-circuit fault on the low frequency bus. The 

advanced time domain model of a three-phase cycloconverter in the FFTS was 
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presented in [94]. The proposed model was accurate and reliable, and it was expected to 

be applied in transient stability and harmonic studies. 

Wind power, especially those located in remote or offshore areas, is also very suitable 

to apply FFTS for long distance transmission. In 2009, [15] investigated the feasibility 

of integrating large offshore wind farms through FFTS. It concluded that the 

competitive transmission distance for the FFTS was about 30-150 km. [17] and [95] 

conducted the FFTS experiment for wind power integration and verified the practical 

feasibility. The advanced time domain model for FFTS with wind farms was 

established in [96], and the performance of such system was also presented. [18] 

provided the preliminary basic design of FFTS with offshore wind farms, and discussed 

the pros and cons from technical feasibility and operational respects. From the aspect of 

reliability and cost, [19] conducted a comprehensive evaluation of integrating wind 

energy through FFTS. Reference [85] applied a case study to emphasize the advantages 

of integrating wind power through the FFTS, and it can be summarised as: 1) The 

gearbox of wind turbine can be simplified; 2) Compared with traditional AC system, 

the investment for transmission line can be reduced; 3) Compared with HVDC, 

investment and maintenance cost for converters was greatly reduced; 4) voltage 

fluctuation of transmission line may be reduced, etc.  

Since the FFTS is proposed again in the application of long distance transmission in 

recent years, the above research works have been done from several aspects, including 
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feasibility study, preliminary design, economic evaluation and simulations, etc. 

However, the dynamics of the FFTS has rarely discussed. With vast utilization of the 

FFTS, the dynamics of FFTS, especially the damping performance, needs further 

research. So, this thesis will study the damping of the FFTS in the application of wind 

power integration and system interconnections.   

2.4 Summary 

This chapter has reviewed previous research related to the topic of this thesis. With the 

rapid development of wind technology, wind energy becomes an indispensable source 

for the world’s energy supply. The increased penetration level of wind energy will 

influence the dynamics of power systems. So, this chapter first reviewed the basic 

concept and research in the field of stability analysis of power systems and wind farms, 

especially the small signal stability analysis. Then, the theory of subsynchronous 

resonance (SSR) was introduced, and the recent research progress in the SSR study of 

the conventional power systems and wind farms was presented.  

On the other hand, the long distance transmission for large scale offshore wind farms 

also becomes a challenge. The FFTS provides another solution to cope with this 

problem. The history and development of the FFTS were introduced, and the recent 

research was reviewed in this field. Furthermore, the advantages of the FFTS for 

offshore wind energy delivery were compared with the HVDC and HVAC. 
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Based on previous research in wind power and the FFTS, this thesis will conduct 

further studies on the dynamics of power systems with utilization of wind generation 

and the FFTS. In the following, each research result will be introduced chapter by 

chapter.  
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CHAPTER 3 MODELLING OF WIND 

FARM AND CONVENTIONAL POWER 

SYSTEM 

3.1 Introduction 

In general, the research on power system dynamics, including small-signal stability and 

subsynchronous resonance (SSR), starts with understanding the dynamic 

characteristics of each electrical component. Based on the principle and dynamic 

performance, the mathematical model of each electrical component can be established 

through differential and algebraic equations. Then, the mathematical model of each part 

is connected together to represent the dynamic performance of the overall power 

system.  

One single electrical component in a power system needs at least one or several 

differential equations to describe its dynamics. A large scale power system includes 

tens of thousands of electrical components, and the mathematical model for such a 

system is very complex. Regardless of how complex the power system is, it can 

ultimately be demonstrated through a certain number of differential equations. 

According to different types of stability analysis, the mathematical model for an 

electrical component can be very different. The appropriate model for a power system 
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should include the important components and closely related information, and it is 

better to exclude some irrelevant components and information. 

In this thesis, the research focuses on the small signal stability and subsynchronous 

resonance (SSR). In the small signal stability analysis, low frequency oscillation is the 

main research objective, and the oscillation frequency range is between 0.1~2 Hz. So, 

the stator transients of the synchronous machines and the fast electromagnetic 

transients of the transmission lines and transformers have been ignored. The SSR is an 

interaction between the mechanical and electrical system, and the oscillation of this 

interaction lies in the range between 10~50 Hz. In the SSR model, the stator transients 

of the synchronous machines and the fast electromagnetic transients of the transmission 

lines and transformers should all be included. Besides, the shaft system of the 

turbine-generator unit also needs to be modelled in detail.  

The main electrical components in this thesis include the DFIG-based wind turbine, the 

turbine-generator (T-G) unit and the transmission line. The mathematical model of 

each component will be introduced in the following section. Then, the linearisation and 

integration of the mathematical models are carried out to form the state-space 

representation. Based on the state-space equation of a system, the small signal stability 

and SSR can be analysed further. 
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The structure of this chapter is constructed as follows. Section 3.2 divided the 

DFIG-based wind turbine into several parts, and the mathematical model of each part 

will be introduced in detail. This model for the DFIG-based wind turbine is suitable for 

both the small signal stability and the SSR analysis. Section 3.3 introduces both the 

small signal stability and SSR models of the conventional T-G unit, and the differences 

between both models are indicated. In section 3.4, the small signal stability and SSR 

model for the network are presented, and their differences are compared.  

3.2 Model of DFIG-based Wind Turbine 

Due to its high capacity, low cost and flexible control, the DFIG-based wind turbine is 

the most employed wind turbine. In this thesis, wind farms are supposed to be 

composed of DFIG-based wind turbines. So, the mathematical model for this type of 

wind turbine needs an in-depth study. The typical configuration of a DFIG-based wind 

turbine is shown as Fig. 3.1. It includes a drive train, an induction machine, a DC-link 

capacitor, a rotor-side converter (RSC) and a grid-side converter (GSC). The induction 

machine is a wound rotor induction generator with slip rings. The variable speed 

operation is achieved through controlling current into or out of the slip rings. The stator 

winding of the induction machine is directly connected to the grid. The RSC is 

connected to the slip ring of the induction machine, and it imposes a voltage on the slip 

ring which allows the machine to operate over a large speed range. The GSC is 

connected to the grid and responsible to maintain a constant voltage of the DC 
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capacitor. The RSC, GSC and DC-link capacitor constitute an AC-DC-AC converter, 

which allows the power to flow directly from the slip ring of induction machine to the 

grid.  

IG

RSC GSC

is

ig

ir

 

Fig. 3.1 Configuration of DFIG-based wind turbine 

In a DFIG-based wind turbine, the power can be delivered to the grid through both 

stator and rotor. The rotor can generate or absorb power, and this depends on the 

rotational speed of induction generator. When the rotational speed of generator is above 

the synchronous speed, power will be transmitted from rotor to the grid through the 

AC-DC-AC converter. When the rotational speed is under the synchronous speed, the 

power will be delivered from the grid to the rotor. The maximum power delivered 

through converter is 20% ~ 30 % of the nominal rating of the generator  [1].  
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Under the steady state, the relationship of the stator electrical power, the rotor electrical 

power and the mechanical power in a DFIG-based wind turbine is shown as Fig. 3.2. 

This power relationship ignores the power losses of the stator and rotor. 

Pm
Mechanical

input

Pr

Ps

Stator

 power

Rotor

power
 

Fig. 3.2 Power relationship of DFIG 

The relationship of the stator power Ps, the mechanical power Pm and the rotor power Pr 

can be expressed as 

 s m rP P P   (3.1) 

Equation (3.1) can be rewritten in the terms of the generator torque T as 

 s r rT T P    (3.2) 

where ωs is the synchronous speed and ωr is the rotor speed. 

Based on (3.2), the rotor power can be obtained as 
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 ( )r s r sP T sP       (3.3) 

where s is the slip and ( ) /s r ss     . 

According to the above equations, the mechanical power can be expressed as 

 (1 )m s r sP P P s P     (3.4) 

When the losses of the stator and rotor are both neglected, the power delivered to the 

grid is expressed by 

 g s rP P P   (3.5) 

In the following, each part of the DFIG-based wind turbine will be introduced 

separately.  

3.2.1 The Drive Train 

The drive train has been modelled as six-mass, three-mass, two-mass and lumped-mass 

system in [86]. To study the dynamics of DFIG, the drive train is usually represented by 

a two-mass model, including wind turbine, gearbox, shafts and other mechanical 

components [33]. The two-mass model of the drive train can be written as (3.5)-(3.8) 

 2 t
t m sh

d
H T T

dt


   (3.5) 

  tw
b t r

d

dt


     (3.6) 

 2 r
g sh e r

d
H T T B

dt


    (3.7) 
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 ( )sh sh tw sh b t rT K D       (3.8) 

where Ht is the inertia constant of the wind turbine; ωt is the angle speed of the wind 

turbine; Tm is the torque of the wind turbine; Tsh is the shaft torque; θtwis the shaft twist 

angle; Hg is the inertia constant of the generator; B is the friction coefficient of the 

generator; Te is the electromagnetic torque; Ksh is the shaft stiffness coefficient of the 

wind turbine; Dsh is the damping coefficient of the wind turbine. 

Te and Tm are demonstrated as 

 s
e

s

P
T


  (3.9)

  

 

2 30.5 p w

m

r

R C V
T




  (3.10) 

where Ps is the active power of stator; ρ is the air density; ωs is the synchronous angle 

speed; R is the blade radius of the wind turbine; Cp is the power coefficient; Vw is the 

wind speed; ωr is the rotor angle speed. 

When the wind speed is lower than the rated speed, the power coefficient Cp maintain at 

an optimal constant to extract the maximum power. When the wind speed is higher than 

the rated speed, Cp is adapted to limit the over-speed of the induction generator. 
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3.2.2 Induction Generator 

The generator of DFIG is a wound rotor induction machine. In this type of induction 

machine, the stator windings are connected to the grid, and the rotor windings are 

connected with outside circuits through the slip ring. In the d-q reference frame, the 

stator voltage equations of an induction machine are written as follows, 

 

ds
ds s qs s ds

d
v R i

dt


    (3.11) 

 

qs

qs s ds s qs

d
v R i

dt


    (3.12) 

where vds and vqs are the d and q axis stator voltages, respectively; ψds and ψqs are the d 

and q axis stator flux linkage, respectively; ids and iqs are the d and q axis stator currents, 

respectively; Rs is the stator resistance. 

The rotor voltage equations in the d-q reference frame is as follows 

 

dr
dr r s qr r dr

d
v s R i

dt


    (3.13) 

 

qr

qr r s dr r qr

d
v s R i

dt


    (3.14) 

where vdr and vqr are the d and q axis rotor voltages, respectively; ψdr and ψqr are the d 

and q axis rotor flux linkage, respectively; idr and iqr are the d and q axis rotor currents, 

respectively; Rr is the rotor resistance. 

The flux linkage equations of the stator and the rotor is given by 

 ds ss ds m drL i L i    (3.15) 
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 qs ss qs m qrL i L i    (3.16) 

 dr rr dr m dsL i L i    (3.17)

 qr rr qr m qsL i L i    (3.18) 

where Lss is the stator self-inductance; Lrr is the rotor self-inductance; Lm is the mutual 

inductance. 

According to (3.17) and (3.18), the rotor current can be written as, 

 

dr m ds
dr

rr

L i
i

L

 
  (3.19) 

 

qr m qs

qr

rr

L i
i

L

 
  (3.20) 

Substituting (3.19) and (3.20) into (3.13) and (3.14), the rotor voltage equations is 

transformed as, 

 0

1
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 (3.21) 
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where s m
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   . 

Similarly, substituting (3.15) and (3.16) into (3.11) and (3.12), the stator voltage 

equations can be obtained as, 
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 (3.24) 

The (3.21)-(3.24) form the fourth-order model of the DFIG generator, and it can be 

simplified as, 

 ( , , )fx x z u  (3.25) 

where x=[ids, iqs, E’d, E’q]
T
, z=[vdr, vqr]

T
, u=[vds,vqs]

T
. 

3.2.3 DC-link Capacitor 

As shown in Fig. 3.1, the DC-link capacitor connects the rotor side converter (RSC) and 

the grid side converter (GSC). The active power is fed back from the stator to the rotor 

through the DC-link capacitor. The energy is balanced in this capacitor, and the power 

balance equation can be written as 

 r g DCP P P   (3.26) 

where Pr is the active power at the AC side of RSC; Pg is the active power at the AC 

side of GSC; PDC is the active power of the DC-link capacitor. These can be obtained 

as, 



49 

 

 r dr dr qr qrP v i v i   (3.27) 

 g dg dg qg qgP v i v i   (3.28) 

 

DC
DC DC

dv
P Cv

dt
   (3.29) 

where vdg and vqg are the d and q axis voltages of the grid-side converter; idg and iqg are 

the d and q axis currents of the grid-side converter; vdr and vqr are the d and q axis rotor 

voltages; idr and iqr are the d and q axis rotor currents; vDC is the DC capacitor voltage; C 

is the capacitance of the DC capacitor.  

Based on the above equations, the following equation can be derived as, 

 ( )DC
DC dg dg qg qg dr dr qr qr

dv
Cv v i v i v i v i

dt
     (3.30) 

3.2.4 Rotor-side Converter 

The RSC adopts the decoupling control strategy. Its objective is to control the 

electromagnetic torque and the reactive power of DFIG in this thesis. The DFIG-based 

wind turbine is a nonlinear and complex system and very difficult to control in the static 

reference frame. However, if it is controlled in the stator-flux oriented reference frame 

with the d-axis oriented along the vector position of the stator-flux ψs, the active and 

reactive component of the rotor current can be decoupled. Then, the decoupled control 

for the electromagnetic torque and reactive power of the DFIG can be achieved through 

regulating the active and reactive component of rotor current.  
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When the wind speed is less than the rated speed, the reference for the electromagnetic 

torque is obtained through the maximum power tracking point (MPT). Above the rated 

wind speed, the reference torque is a constant value. According to different 

requirements, the reference for the reactive power is set to a constant value or to be zero. 

The control block diagram of the rotor-side converter is shown as Fig. 3.3. Under the 

stator-flux oriented reference frame, the electromagnetic torque is proportional to iqr 

and can be controlled through vqr. The reactive power is proportional to idr and can be 

regulated through vdr. The controller for the RSC applies the cascade control. The inner 

control loops apply the PI control to regulate the rotor currents idr and iqr, and the outer 

control loops also use the PI control to manipulate the electromagnetic torque and 

reactive power, respectively.   
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Fig. 3.3 Control block diagram of rotor-side converter 

According to the control block diagram, the control equations are demonstrated as, 
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 (3.36) 

where Qs and Qs
*
are the actual and reference reactive power, respectively; Te and Te

*
 

are the actual and reference electromagnetic torque; x1, x2, x3 and x4 are the intermediate 

variables; idr
*
 and iqr

*
 are the control reference for the d and q axis current of the 

rotor-side converter, respectively; Kp1 and Ki1 are the proportional and integrating gains 

of the reactive power regulator, respectively; Kp2 and Ki2 are the proportional and 

integrating gains of the current regulator of the rotor-side converter, respectively; Kp3 

and Ki3 are the proportional and integrating gains of the electromagnetic torque 

regulator, respectively. 

3.2.5 Grid-Side Converter 

The GSC is controlled in the grid-voltage oriented reference frame with d-axis oriented 

along the grid-voltage vector position. It is supposed to maintain the DC link voltage 
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and control the reactive power of the terminal.  The reference for idg is usually set to 

zero, which means that the reactive power for the grid-side converter is set to zero. The 

reference for the DC-link voltage depends on the modulation factor and the size of the 

back-to-back converter.  

The control block diagram of the grid-side converter is shown as Fig. 5. Under the 

grid-voltage oriented reference frame, the DC-link voltage can be regulated via idg. The 

reactive power of GSC is proportional to iqg and can be controlled through vqg. The 

controller for GSC also adopts the cascade control. The inner control loops regulate idg 

and iqg through the PI controller, and the outer control loop maintains the DC-link 

voltage through the PI controller. 

The control equations of the grid side converter are given by, 
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where vDC
*
 is the control reference of the DC-link voltage; idg

*
 and iqg

*
 are the control 

reference for the d and q axis current of the grid-side converter, respectively; x5, x6 and 

x7 are the intermediate variables; Kp4 and Ki4 are the proportional and integrating gains 

of the DC bus voltage regulator, respectively; Kp5 and Ki5 are the proportional and 

integrating gains of the grid-side converter current regulator. 
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Fig. 3.4 Control block diagram of grid-side converter 

The dynamic model of the grid-side converter is given by, 

 
dg

g ds g dg s g qg dg

di
L v R i L i v
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     (3.42) 

 
qg

g qs g qg s g dg qg

di
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     (3.43) 

where Lg is the inductance of the grid-side transformer; Rg is the resistance of the 

grid-side transformer. 
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3.3 Model of Turbine-Generator Unit 

The turbine-generator (T-G) unit is composed of a synchronous machine and a shaft 

system. Synchronous machine is the major source for electric energy in power systems. 

The power system stability problems are related with synchronism of interconnected 

synchronous machines. Therefore, understanding the dynamics and mathematical 

model of synchronous machine is the fundamental basis to study the stability of power 

systems. 

The synchronous machine is a nonlinear and strong coupling system, and the modelling 

of it has always been a challenge since the 1920s [22]. After the proposal of Park’s 

transformation [22], the mathematical model of synchronous machine can be 

decoupled under d-q frame reference and widely applied in the analysis of power 

system stability. According to different usage of model, the synchronous machine can 

be modelled with varying degree of complexity. In this section, the mathematical 

models of the synchronous machine for small signal stability and SSR analysis will be 

introduced respectively. 

The shaft system represents the mechanical dynamics of the T-G unit. The model 

complexity of this system is quite different for small signal stability and SSR analysis. 

This section will introduce the mathematical models for both analysis and compare 

their difference in modelling.  
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3.3.1 Model of Synchronous Machine 

The model for the synchronous machine is established in the d-q reference frame. The 

direct (d) axis is oriented along the centre of north pole of the rotor. The quadrature (q) 

axis is ahead of the d-axis with 90 electrical degrees. The direction of d-q axis can be 

arbitrary, and the above selection is based on the IEEE standard definition [22].  

To derive the mathematical model of synchronous machine, the following ideal 

assumptions are made [22] [56]. 

(1) The stator windings have a sinusoidal distribution with 120 electrical degrees apart. 

(2) Magnetic hysteresis is ignored. 

(3) Magnetic saturation effect is also neglected for the convenience in stability analysis.  

The model of synchronous machine includes the stator windings and the rotor circuits. 

The stator windings carry alternating currents. The rotor circuits consist of a field 

winding and several damper windings. The field winding is connected to a direct 

current source. The damper windings have different forms and may not physically exist. 

In this thesis, the damper windings are represented by the equivalent damper circuits in 

the d and q axis: 1d on the d-axis, 1q and 2q on the q-axis. The equivalent circuits of SM 

are shown in Fig. 3.5, and the voltage equations are as follows. 
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Fig. 3.5 Equivalent circuits of the synchronous machine (above: d-axis circuit; below: 

q-axis circuit) 

The voltage equations of a synchronous machine in the d-axis are given by 
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The voltage equations of a synchronous machine in the q-axis are demonstrated as 
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where vd and vq are the d and q axis voltages of the stator, respectively; ψd and ψq are the 

d and q axis flux linkages of the stator, respectively; id and iq are the d and q axis 

currents of the stator, respectively; Ra is the stator resistance; vfd is the voltage of the 

field winding; ψfd is the linkage of the field winding; ifd is the current of the field 

winding; Rfd is the resistance of the field winding; ψ1d and ψ1q are the flux linkages of 

the 1st d and q axis amortisseur, respectively; i1d and i1q are the currents of the 1st d and 

q axis amortisseur, respectively; R1d and R1q are the resistances of the 1st d and q axis 

amortisseur, respectively; ψ2q is the flux linkage of the 2nd q axis amortisseur; i2q is the 

current of the 2nd q axis amortisseur; R2q is the resistance of the 2nd q axis amortisseur; 

ωrs is the rotor angle speed. 

(1) The model for SSR analysis 

In the SSR analysis, the high frequency components of the dynamic response influence 

the SSR of the T-G unit greatly. Therefore, the stator transients of the synchronous 

machine cannot be neglected in the model. Equation (3.44)-(3.49) can fully represent 

the mathematical model of synchronous machine for SSR analysis. 

(2) The model for small signal stability analysis 

In the small signal stability analysis, the transients of the transmission line mainly 

contain high frequency components and decay rapidly. For the sake of simplicity, the 

transients of transmission line can be neglected. Due to the mathematical limitation, if 
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the transients of transmission line need to be ignored, the transients of the machine 

stator should also be neglected. Only both these transients are neglected, the various 

electrical components can be interconnected to represent the overall power system. 

When the stator transients are ignored, (3.44) and (3.47) can be rewritten as,  

 d q rs a dv R i   
 

(3.50) 

 q d rs a qv R i    (3.51) 

Then, the small signal stability model of synchronous machine can be represented by 

the algebraic equation (3.50) (3.51) and differential equation (3.45) (3.46) (3.48) 

(3.49).  

The above mathematical model is usually written in another form [87] as the following. 

The four differential equations of the synchronous machine: 
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where dsE and qsE are the d and q axis induced transient electromagnetic force, 

respectively; 1d and 2q are the subtransient induced electromagnetic force; dX , 

dX   and 
dX   are the d-axis synchronous, transient and subtransient reactance, 

respectively; 
qX , 

qX   and qX   are the q-axis synchronous, transient and subtransient 

reactance, respectively; 
0dT   and

0dT   are the d-axis transient and subtransient time 

constant, respectively; 0qT   and 0qT   are the q-axis transient and subtransient time 

constant, respectively; LX is the armature leakage reactance. 

The two algebraic equations of the stator voltage: 
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3.3.2 Shaft System 

The shaft system of a T-G unit is a complex mechanical system. According to different 

purpose of studies, the shaft system may be divided into several segments. In the small 

signal stability analysis, the mechanical dynamics of the shaft system is not the focus of 

study. The shafts and their coupling are assumed to be very stiff, and the overall shaft 

system can be regarded as a rigid body. Therefore, the shaft system is usually modelled 
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as a lumped mass. In practice, the couplings between shaft segments have finite 

stiffness, and each segment is slightly displaced to its adjacent segments. Especially, in 

the SSR analysis, the lumped mass model of the shaft system does not include all the 

necessary information. The SSR of power systems involve both electrical and 

mechanical interaction, so the shaft system should be modelled in detail.  

(1) Shaft model for SSR analysis 

As shown in Fig. 3.6, the overall shaft system of the T-G unit is modelled as a number 

of torsional masses connected together by springs. When the mechanical damping is 

assumed to be zero, the motion equations of the shaft system are as follows, 

 i
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        (3.59) 

where i=1,2, …,6; δi is the angular position of mass i; Δωi is the speed deviation of 

mass i; Ki-1,i  and Ki,i+1 are the shaft stiffness; Ti is the mechanical torques of each 

turbine section; Hi is the inertia constant of each turbine section; ωb is the base speed 

(377 rad/s).  
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Fig. 3.6 Shaft system of the T-G unit 

(2) Shaft model for small signal stability analysis 

The shaft model for small signal stability analysis is much simpler than that for SSR. 

The shaft system can be modelled as a lumped mass. The motion equations of such 

shaft system are given by, 
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where δ is the angular position of the entire rotor; Δω is the speed deviation of the 

entire rotor; Tm is the mechanical torque of the entire rotor; H is the inertia constant of 

the entire rotor. 
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3.4 Model of Networks 

In small signal stability analysis, the low frequency electromagnetic oscillations of 

power system are of concern [23]. However, the network transients mainly contain 

comparatively high frequency oscillations. So, the ignorance of network transients will 

not affect the analysis results of small signal stability. On the other hand, in the SSR 

analysis, the oscillation frequencies usually range from 5 to 55 Hz. The network 

transients should be considered in the model for SSR analysis.  

In this thesis, the model of network is simplified as a lumped RLC circuit, as shown in 

Fig. 3.7. In Fig. 3.7, v1 and v2 are the terminal voltage of buses; XL is the reactance of 

the inductance; XC is the reactance of the inductance; RN is the combined resistance of 

the transmission line. The simplified network model for small signal stability and SSR 

analysis will be introduced in the following. 

RN XC 
v1 v2

XL

 

Fig. 3.7 Configuration of the network 

(1) Network model for small signal stability analysis 
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In small signal stability analysis, the transients of the inductance and capacitor in the 

network are neglected. The mathematical model of network can be demonstrated by 

algebraic equations. 

In the d-q reference frame, the voltage equation of network is given by 

 1 2d d N dL LC dLv v R i X i  
 

(3.62) 

 1 2q q N qL LC qLv v R i X i  
 

(3.63) 

where v1d and v1q are the d and q axis voltage of v1, respectively; v2d and v2q are the d and 

q axis voltage of v2, respectively; idL and iqL are the d and q axis current of network; XLC 

is the combined reactance of the inductance and capacitor; RN is the combined 

resistance of the transmission line. 

(2) Network model for SSR analysis 

The model of network should include the transients of inductance and capacitor in the 

SSR analysis. So, the dynamics of network is represented by differential equations. In 

the d-q axis reference frame, the mathematical model of the network can be described 

by, 

 
1 cd

s cq C dL

b

dv
v X i

dt



   (3.64) 
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   (3.65) 
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N dL L qL cd d d

b

diX
R i X i v v v
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      (3.66) 

 1 2

qLL
N qL L dL cq q q

b

diX
R i X i v v v

dt
      (3.67) 

where vcd and vcq are the d and q axis voltages across the capacitor; Xc is the reactance of 

the compensation capacitor; XL is the reactance of the inductance. 

3.5 State Space Model and Eigenvalue Analysis 

The small signal stability and SSR of power systems are supposed to be evaluated 

under the condition that power systems are subjected to small disturbances. Under such 

assumption, the nonlinear model of every electrical component in a power system can 

be linearized at an operating point, and then the linearized models are interconnected 

together to form the state space model of the overall power system. Based on the state 

space model, the steady-state dynamics of a power system can be analysed by 

eigenvalue analysis.  

3.5.1 State Space Model 

In previous section, the mathematical models are represented by differential equations 

and algebraic equations. These models are nonlinear and need to be linearized to 

conduct further analysis. In general, the original mathematical model of an electrical 

component (excluding the network) can be written as the following, 
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  ,i i i ifx x u  (3.68) 

where xi is the state vector of an electrical component; ui is the input vector of an 

electrical component.  

If xi0 is the initial state vector and ui0 is the initial input vector at an equilibrium point, 

we have 

  0 0 0, 0i i i if x x u
 

(3.69) 

As the disturbances of the electrical component is small, the linearized model at this 

equilibrium can be obtained as, 

 i i i i iA B    x x u
 

(3.70) 

where Ai is the state matrix; Bi is the input matrix; the prefix  denotes a small 

deviation. 

The input vector ui usually contains the terminal voltages of an electrical component. 

The mathematical model of each electrical component in a power system is represented 

in its own d-q reference frame. For the purpose of system interconnection, all the 

terminal voltages must be expressed in a common reference frame. The common 

reference frame is usually defined as R-I reference frame, which rotating at the 

synchronous speed [22]. The relationship of the terminal voltages in its own d-q axis 

and common R-I reference frame is expressed by 
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 sin cosdi Ri Iiv v v  

 

(3.71)

 

 

cos sinqi Ri Iiv v v  

 

(3.72) 

where vdi and vqi are the d and q axis terminal voltages, respectively; vRi and vIi are the R 

and I axis terminal voltages, respectively; δ is the angle difference between the its own 

d-q axis and R-I axis reference frame. 

In the common R-I reference frame, the state space equations including all the electrical 

devices can be obtained as, 

 c c c c cA B    x x u
 

(3.73) 

The electrical components in a power system are interconnected via networks. To form 

the overall state space model of a power system, the nonlinear model of networks also 

need to be linearized at the operating point first and then connect all the existed 

electrical components. As all the transients of networks are neglected in small signal 

stability analysis, the model of networks is represented via algebraic equations. 

However, the model of networks in the SSR analysis should include all the transients 

and can only be demonstrated by differential equations. Therefore, the procedures of 

forming the overall state-space model in small signal stability and SSR analysis are 

quite different, and these procedures will be introduced briefly in the following. 

(1) State space model in small signal stability analysis 
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The model of network in small signal stability analysis ignores the transients of 

inductances and capacitors, and its linearized model may be expressed as the following 

form, 

 
c N cY  x u

 
(3.74) 

where YN is the transfer matrix. 

Based on (3.73) and (3.74), the state-space model of the overall power system can be 

written as, 

  1

c c c N cA B Y    x x
 

(3.75) 

(2) State space model in SSR analysis 

The model of network in the SSR analysis contains the all the transients of inductances 

and capacitors. So, the linearized model of network may be written in the general form 

as, 

 N N N N cC D    x x x
 

(3.76) 

 c N c N N N cE F G      x x x u
 

(3.77) 

where xN is the states of the network; CN is the state matrix of the network; DN, EN, FN 

and GN are the transfer matrices. 
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According to (3.73), (3.76) and (3.77), the state space model of the overall power 

system can be obtained as, 

 
     

1 1

c cc c c N N c c c N N

N NN N

x xA B B G E A B B G F

x xD C

         
     

        
(3.78) 

In conclusion, the state space model of the overall power system in small signal 

stability and SSR analysis can be written in the general form as 

 A  x x
 

(3.79) 

3.5.2 Eigenvalue analysis 

If the state space model of a power system is obtained, the steady state dynamics of this 

system can be analysed by eigenvalue analysis. 

The general form of state space model is as (3.79), and A is the state matrix, which 

includes the dynamic information of all the related states in a power system. The 

objective of eigenvalue analysis is to calculate the eigenvalues of state matrix A and 

finally obtain the dynamic information of power systems. The eigenvalue of state 

matrix A is defined as the following.  

For a scalar parameter λ , if the equation  

 A v λv
 

(3.80) 
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has non-trivial solutions, λ is the eigenvalues of matrix A. v is the right eigenvector of 

matrix A.  

To calculate the eigenvalues, equation (3.81) can be transformed in the following form,  

   0A λI v
 

(3.81) 

Then, the eigenvalues of matrix A can be obtained by the following, 

  det 0A λI
 

(3.82) 

The eigenvalues of matrix A may be real or complex, and the complex eigenvalues 

always appear in conjugate pairs. The steady state dynamics of a power system is 

determined by the eigenvalues. The real eigenvalue represents a non-oscillatory mode. 

If the real eigenvalue is negative, its corresponding mode will decay without oscillation 

after small disturbances. The positive real eigenvalue represents the aperiodic 

instability of this mode. A pair of complex eigenvalues corresponds to an oscillatory 

mode. The real part of the complex eigenvalue indicates the damping of the 

corresponding oscillatory mode, and the imaginary part gives the oscillation frequency. 

A negative real part means a damped oscillation, and a positive real part indicates 

oscillation with increasing amplitude. A pair of complex eigenvalues can be written as, 

 i i ij   
 

(3.83) 

Based on (3.83), the frequency of oscillation is expressed as 
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(3.84) 

The damping ratio determines the decaying rate of the oscillation amplitude, and it can 

be given by,  

 
2 2

i
i

i i




 




  
(3.85) 

The relationship of the modes and the states in a power system is also of concern in 

eigenvalue analysis. The participation matrix is a solution to determine the 

relationships, and it is obtained by combining right and left eigenvectors of matrix A. 

The element in the participation matrix is termed as participation factor. It measures the 

relative participation of state variables in a certain mode. Through the participation 

factor, the dominate states in a mode can be distinguished, and further analysis of the 

system dynamics can be done.   

3.6 Summary 

This chapter has described the modelling of major electrical components in this thesis. 

These models were represented by the differential equations or algebraic equations. 

According to the different purposes of study, the mathematical model for the same 

electrical component can differ. In this thesis, the dynamic performance of power 

systems focused on the small signal stability and subsynchronous resonance (SSR). 



71 

 

Consequently, the mathematical models for both small signal stability and 

subsynchronous resonance analysis were demonstrated in this chapter. 

The mathematical models in this chapter included the DFIG-based wind turbine, the 

conventional T-G units and the networks. The model for the DFIG-based wind turbine 

was divided into five parts: the drive train, the induction generator, the DC-link 

capacitor, the rotor side converter and the grid side converter. This model was suitable 

for both small signal stability and subsynchronous resonance analysis. The T-G unit 

consisted of the shaft system and the synchronous machine. The model of T-G units 

was quite different in the small signal and subsynchronous resonance analysis. Both 

models were presented in this chapter, and their differences were compared. Regarding 

the networks, the small signal stability model was demonstrated by algebraic equations, 

and the SSR model was given by differential equations.  

The state space equation of each electrical component can be obtained through 

linearizing the above models at an operating point. Then, the state space model of each 

electrical component can be integrated together to represent an overall power system. 

The procedures for the integration of the overall state space model were introduced in 

this chapter. Based on the state space model of the overall power system, the small 

signal stability and SSR analysis can be conducted through eigenvalue analysis. The 

basic concept and principle of eigenvalue analysis were also introduced in this chapter. 
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CHAPTER 4 IMPACT OF INCREASED 

WIND ENERGY ON THE SSR OF 

TURBINE-GENERATOR UNIT 

4.1 Introduction 

When increased wind power generations are integrated into power grids to replace the 

conventional Turbine-Generator (T-G) units, the dynamics of power systems will be 

affected. Previous researches have studied the influences of wind power on the small 

signal stability of power systems [37][38][39][41][42]. However, the influences of 

wind power on the subsynchronous resonance (SSR) of power systems also need 

further study. This chapter will analyse the influences of DFIG-based wind farm on the 

SSR of the T-G unit from the torsional interaction (TI) and the induction generator 

effect (IGE). Both eigenvalue analysis and time domain simulations will be conducted 

to investigate the SSR influences on the T-G unit and how the control parameters of 

wind farms can affect the SSR. 

This chapter is organized as follows. In Section 4.2, the IEEE first benchmark model 

for SSR analysis is introduced, and then the modified test system is proposed to 

evaluate the impact of wind power on the SSR of the T-G unit.  The model of the 

modified test system, which includes two groups of T-G units, the DFIG-based wind 
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farm and the series compensated transmission lines, are established in Section 4.3. 

Section 4.4 describes the eigenvalue analysis and time domain simulations of the 

modified test system. The results of torsional interaction (TI) and induction generation 

effect (IGE) are demonstrated through eigenvalue analysis and time domain 

simulations in Section 4.5 and 4.6. Section 4.7 summarises this chapter. 

4.2 Research Scenario 

4.2.1 IEEE First Benchmark Model 

The IEEE First Benchmark Model (FBM) was prepared by the IEEE Subsynchronous 

Resonance Task Force in 1977 to facilitate the comparison of calculations and 

simulations [49]. It was simplified from the Navajo Project and consisted of an 892.4 

MW turbine-generator and 500 kV series compensated transmission line. With proper 

tuning, it can reproduce both transient and self-excitation problems as in the analysis of 

the actual system. 

As shown in Fig. 4.1, the IEEE first benchmark model is a simple radial RLC circuit. It 

consists of a synchronous generator being connected to a large power system through a 

series capacitor-compensated transmission line. In this benchmark, only one interaction 

exists in this system, and this interaction happens between the synchronous machine 

and the transmission line.  
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Fig. 4.1 IEEE first benchmark model for SSR analysis 

In the original IEEE FBM, the value of the capacitive reactance is 0.371 per unit. So, 

the total impedance of this radical power system can by written by, 

 

( )

0.02 0.70 0.371 0.02 0.329 p.u.

L sys T L sys CZ R R j X X X jX

j j j

     

    
 

Since the inductive reactance XL of the transmission line is 0.5 p.u., the 0.371 p.u. 

capacitive reactance means the 74.2% compensation level [55]. In practice, this 

compensation level is almost the upper limit for long transmission line with series 

compensation.  

In the dynamic analysis of power systems, the rotor of a T-G unit is usually assumed to 

be a single lumped mass. Such a model can only represent the oscillation of the entire 

rotor of the T-G unit against other generators. However, in reality, the rotor of T-G unit 

is a very complex mechanical system, which is composed of several predominant 

masses. In the IEEE FBM, the shaft system of the T-G unit consists of six torsional 

masses: a high-pressure turbine section (HP), an intermediate-pressure turbine section 

(IP), two low-pressure turbine section (LPA and LPB), a rotor of generator (GEN) and 
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a rotating exciter (EXC). Since six masses are considered in the shaft system, there are 

corresponding six modes of oscillation, which is usually named from Mode 0 to Mode 5. 

The Mode 0 represents the oscillation of the entire six masses against the power system, 

and it is often considered in system stability studies [22]. The other five modes are the 

torsional oscillation modes, and their mode shapes can be found in [49]. 

4.2.2 Modified Test Benchmark 

To evaluate the influence of wind power generations on the SSR of the T-G unit, a 

modified test system, which is shown as Fig. 4.2, is derived from the IEEE first 

benchmark model (FBM). The IEEE FBM is widely accepted as a standard test case to 

study the SSR phenomenon of the T-G unit, and it can produce SSR as severe as any 

observed in the actual system. The IEEE FBM also provides flexible extension for new 

test cases and the models are sufficiently detailed for further studies in the SSR 

problems.  

On the other hand, this chapter studies the interaction between the DFIG-based wind 

farm and the traditional AC system, especially from the SSR perspective. Although the 

modified test system has a simple system topology, which is a simple radial RLC 

circuit, it can demonstrate the basic influence of wind farm on the SSR of power 

systems. This research based on the new test system can give a preliminary insight into 

the influence of wind farms on the SSR of traditional power systems. 
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The modified test system includes GEN 1, GEN 2, a DFIG-based wind farm, and two 

series capacitive compensated transmission lines. GEN 1 only contains one T-G unit, 

and it is the same as T-G unit in the IEEE FBM. The power factor and the output 

power (803.16MW) of the synchronous machine in GEN 1 are also kept unchanged. 

GEN 2 consists of ten 75 MW T-G units. The capacities of these T-G units are 

comparatively small, and they are supposed to be exempt of the SSR phenomenon. The 

DFIG-based wind farm is composed of a certain number of 1.5-MW, 0.69-kV 

DFIG-based wind turbines. Due to the increased transmission capacity in modified 

test system, the single series capacitive compensated transmission line in the IEEE 

FBM is doubled to meet the transmission capacity. GEN 1, GEN 2 and the DFIG-based 

wind farm are connected to an infinite bus through these series compensated 

transmission lines. 

In the modified test system, the per-unit base values and the parameters for two series 

compensated transmission lines are all the same as those in the IEEE FBM. GEN 1 is 

also the same as the T-G unit in the IEEE FBM, which means the shaft system in 

GEN 1 also consists of six torsional masses. Thus, the torsional oscillation modes and 

shapes of the six masses in GEN1 also remain the same. The parameters for GEN2 

and DFIG-based wind farm are obtained from available cases, which can be referred 

to Appendix A.1.  
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Although two series compensated transmission lines exist in the new test system, the 

compensation level for each transmission line is never changed. So, the same torsional 

mode (Mode 2) as in the IEEE FBM will be excited when the modified test system 

experiences disturbances. The natural frequency of Mode 2 is 21.21 Hz [49]. 

According to the mode shapes, Mode 2 includes two polarity reversals, and these two 

polarity reversal happen between the LPA-LPB section and GEN-EXC section, 

respectively. In the time domain simulation, when Mode 2 is excited, it can be 

observed through the torsional response of LPA-LPB and GEN-EXC. In GEN 2, the 

shaft systems of T-G units are treated as a lumped mass.  
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Fig. 4.2 Diagram of the new test benchmark system 

In the following study, the DFIG-based wind farm is supposed to replace the 

conventional T-G units in GEN 2 gradually. This means the number of wind turbines 

in the DFIG-based wind farm will increase, and the number of the T-G units in GEN 
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2 will decrease accordingly. However, the total output power from GEN 2 and the 

DFIG-based wind farm is supposed to remain at 750 MW. Based on the above 

scenario, the influence of wind farm on the SSR phenomenon of GEN 1 will be 

systematically investigated in the following research. 

4.3 Modelling of Test Benchmark 

In previous section, the structure of modified test system has been introduced. For 

further analysis, the mathematical model for the modified test system needs to be 

established. The modified test system can be divided into T-G units in GEN 1 and 

GEN 2, the DFIG-based wind farm and two series capacitive compensated 

transmission lines. The DFIG-based wind farm is aggregated by a single DFIG-based 

wind turbine. So, the model of the wind farm can also be represented by the model of 

a DFIG-based wind turbine. In this section, each electrical component in the test 

benchmark will be modelled separately. Based on the following model, the eigenvalue 

analysis can be conducted. 

4.3.1 Turbine-Generator Units 

There are two types of T-G units in the proposed test benchmark system. In GEN 1, 

the shaft system of the T-G unit modelled as six torsional masses. Each T-G unit in 

GEN 2 only has a lumped shaft system. The synchronous machine in GEN 1 and 

GEN 2 has the same model. 
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1) Shaft System  

The shaft system of the T-G unit in GEN 1 consists of six torsional masses.  The 

general model of the shaft system has been introduced in Section 3.3, Chapter 3. 

Specifically, the model of the shaft system in GEN 1 can be demonstrated as, 
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LPA section: 
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LPB section: 
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GEN section: 
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EXC section: 
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where δ1, δ2, δ3, δ4 and δ5 are the angular positions of the HP, IP, LPA, LPB, GEN and 

EXC section, respectively; Δω1, Δω2, Δω3, Δω4 and Δω5 are the speed deviations of the 

HP, IP, LPA, LPB, GEN and EXC section, respectively; H1, H2, H3, H4 and H5 are the 

inertia constants of the HP, IP, LPA, LPB, GEN and EXC section, respectively;  THP, 

TIP, TLPA, TLPB, TEXC are the mechanical torques of the HP, IP, LPA, LPB and EXC 

section, respectively; Te is the electromagnetic torque of generator; K12 is the shaft 

stiffness between HP and IP section; K23 is the shaft stiffness between IP and LPA 

section; K34 is the shaft stiffness between LPA and LPB section; K45 is the shaft 

stiffness between LPB and GEN section; K56 is the shaft stiffness between GEN and 

EXC section; ωb is the base speed (377 rad/s).  
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2) Synchronous Machine 

The models for the synchronous machines in GEN 1 and GEN 2 are the same. These 

models are established in the d-q reference frame. The direct (d) axis is centred 

magnetically in the centre of the north pole, and the quadrature (q) axis is 90 electrical 

degree ahead of the d-axis. For a single synchronous machine, the model for SSR 

analysis includes two rotor circuits in the d and q axis, respectively [3], and the rotor 

consists of a field winding and the damper windings.  

The detailed model of a synchronous machine for SSR study has been introduced in 

previous chapter, and it will not be further discussed here. The detailed model can be 

also written in a compact form as follows,  

 ( , , )sm sm sm sm smfx x z u  (4.13) 

where  xsm=[ψd, ψfd, ψ1d, ψq, ψ1q, ψ2q]
T
 zsm=[ω5]

T
, usm=[vd, vq]

T
; vd  and vq are the d and 

q axis voltages of the stator, respectively; ψd and ψq are the d and q axis linkages of the 

stator, respectively; ψfd is the linkage of the field winding; ψ1d and ψ1q are the linkages 

of the 1st d and q axis amortisseur, respectively; ψ2q is the linkage of the 2nd q axis  

amortisseur; ω5 is the rotor angle speed. 
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4.3.2 Model of DFIG-based Wind Farm 

The DFIG-based wind farm is composed of a certain number of DFIG-based wind 

turbines. So, the model of wind farm can be represented by aggregating several wind 

turbines into a single DFIG-based wind turbine.  

A single DFIG-based wind turbine includes a drive train, an induction machine, a 

DC-link capacitor, a rotor side and a grid side converter. The mathematical model for 

each part of the DFIG-based wind turbine has been discussed in previous chapter. The 

overall mathematical model of a DFIG-based wind turbine can be summarised as the 

following, 

 ( , , )wt wt wt wt wtfx x z u  (4.14) 

 ( , )wt wt wt wtgz x u  (4.15) 

where  xwt=[ωt, θtw, ωr, ids, iqs, E’d, E’q, x1, x2, x3, x4, vDC, x5, x6, x7, idg, iqg,]
T
, zwt=[ vdr, vqr, 

vdg, vqg]
T
, uwt=[ vds, vqs]

T
; ωt is the angle speed of the wind turbine; θtw is the shaft twist 

angle; ωr is the angle speed of induction machine, and ωr=ω5 ; ids and iqs are the d and q 

axis stator currents, respectively; E’d and E’q are the d and q axis voltages behind the 

transient reactance, respectively; x1, x2, x3 and x4 are the intermediate variables of the 

controller for rotor side converter; vDC is the DC capacitor voltage; x5, x6 and x7 are the 

intermediate variables of the controller for grid side converter; idg and iqg are the d and q 

axis currents of the grid-side converter, respectively; vdr and vqr are the d and q axis 
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rotor voltages, respectively; vdg and vqg are the d and q axis voltages of the grid-side 

converter, respectively; vds and vqs are the d and q axis stator voltages, respectively. 

4.3.3 Model of Series Compensated Transmission Line 

In the modified test system, two transmission lines include two series capacitors 

respectively. For SSR analysis, the transients of the capacitors and inductances of the 

transmission lines cannot be neglected. The general SSR model for the series 

compensated transmission line has been presented in Section 3.4, Chapter 3. The 

specific model of the transmission line in the proposed test benchmark system can be 

written in the d-q axis reference frame as follows, 
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      (4.19) 

where vcd and vcq are the d and q axis voltages across the compensation capacitor; v1d 

and v1q are the d and q axis voltages of the infinite bus; idL and iqL are the d and q axis 

currents through the transmission line; Xc is the reactance of the compensation 
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capacitor; XTL is the combined reactance of the transmission line; RTLthe combined 

resistance of the transmission line. 

4.4 Eigenvalue Analysis and Time Domain Simulation 

In this section, the eigenvalue analysis and time domain simulation are conducted to 

evaluate the impact of increased DFIG-based wind farm on the SSR of the T-G units. 

The eigenvalue analysis is based on the state-space model of the proposed test 

benchmark system. The simulation platform for the modified test system is established 

in PSCAD/EMTDC, and the time domain simulations are conducted on this platform. 

For comparison, the eigenvalue analysis and time domain simulations are divided into 

the following two cases. 

Case 1:  The DFIG-based wind farm is not included in this case. The configuration of 

this case is as Fig. 4.1 without the wind farm. There are 10 T-G units in GEN 2, and the 

output power of each T-G unit is 75 MW.  

Case 2: The configuration of this case is the same as the proposed test benchmark. The 

T-G units in GEN 2 are gradually replaced by the DFIG-based wind farm with 

equivalent capacity. The total output power of the DFIG-based wind farm and GEN 2 

remain 750 MW during the above replacement. 
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4.4.1 Eigenvalue Analysis 

The mathematical model of each electrical component in the test benchmark system has 

been introduced in section 4.3. These models are nonlinear, and they should be 

linearized to form the overall state space model of the test benchmark system. Based on 

equation (4.1)-(4.15), the linearized differential equations of GEN 1, GEN 2 and the 

DFIG-based wind farm can be derived at an operating point. These linearized equations, 

which include GEN 1, GEN 2 and DFIG-based wind farm, can be written in the 

following state space form as, 

 1 1 1 1X A X B U      (4.20) 

where ΔX1=[ΔXGEN1, ΔXGEN2, ΔXwt]
T
. ΔXGEN1 represents the state variables of GEN1. 

These state variables includes the 6 rotating speeds of torsional masses, 6 relative 

angles between the torsional masses and 6 flux linkages of the synchronous machine in 

GEN1. ΔXGEN2 represents the state variables of GEN 2. The GEN 2 includes several 

T-G units, and these T-G units are modelled by an aggregated synchronous machine. So, 

state variables of ΔXGEN2 consists of the rotating speed of the lumped mass, the rotor 

angle and 6 flux linkages of the aggregated synchronous machine in GEN 2 . The ΔXwt 

represents the state variables in the DFIG-based wind farm, and it contains 3 states of 

the drive train, 4 states of the induction generator in the DFIG-based wind turbine, 4 

intermediate states of the rotor-side controller, the voltage of the DC-link capacitor, 3 
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intermediate states of the grid-side converter, and 2 current states for the grid-side 

converter. The ΔU is the input of the state space model, and it includes the d and q axis 

voltages of bus A. 

The mathematical model for the series compensated transmission line in the test 

benchmark system can be demonstrated by (4.16)-(4.19). Then, the above 

mathematical model is linearized at an operating point, and the state space model of the 

series compensated transmission line can be demonstrated by 

 
1 1net net netX A X C X      (4.21) 

 
2 1 3 1 1netU C X C X D X        (4.22) 

The state variable vector ΔXnet includes the d and q axis voltages of compensated 

capacitor. 

The state space model of the GEN1, GEN 2, DFIG-based wind farm and the series 

compensated transmission lines have been derived previously. The overall state space 

of the proposed test benchmark system can be obtained by eliminating the inputs in 

(4.20). Based on (4.20)-(4.22), the state space model of the proposed test benchmark 

system can be represented by the following eqaution, 

 X A X    (4.23) 

where ΔX=[ΔX1, ΔXnet]
T
. 
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According to (4.23), the eigenvalues of Case 2 can be calculated based on the system 

parameters (as shown in Appendix) and the operating point. In Case 1, the DFIG-based 

wind farm is not included in the system. The eigenvalues of Case 1 can be obtained 

through removing the state variables of DFIG-based wind farm in ΔX1.  

4.4.2 Time Domain Simulation 

Time domain simulations are conducted to verify the results of the eigenvalue analysis. 

The time domain simulation platform is established in PSCAD/EMTDC. For both Case 

1 and Case 2, dynamics of the excitation and governor systems in GEN 1 and GEN 2 

are not included in this simulation. The compensation level of the series compensated 

transmission lines is 74.2%. Under this compensation level, the second torsional mode 

is excited.  In the following simulations, a three-phase fault is applied at bus B, and the 

duration of this fault is 0.075s, which is four and a half cycles at 60 Hz [13]. According 

to the torsional mode shape, the second torsional mode happens between the LPA-LPB 

section and GEN-EXC section. When the torsional oscillation of Mode 2 is excited in 

the time domain simulation, it can be observed through the responses of LPA-LPB and 

GEN-EXC. Fig. 4.3 (a) shows the torsional responses of LPA-LPB and GEN-EXC in 

Case 1. When the fault happens at Bus B, the Mode 2 torsional oscillation is excited in 

Case 1. From dynamic responses of LPA-LPB and GEN-EXC, the torsional oscillation 

of Mode 2 exhibits slightly instability after the three phase fault. 
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4.5 Impact on Torsional Interaction 

In this section, the study focuses on the torsional interaction of GEN1. In the following, 

the DFIG-based wind farm will gradually replace several T-G units in GEN 2 with 

equivalent capacity. The influence of the above replacement on GEN 1 will be 

investigated from the aspect of torsional interaction (TI). 

In the proposed test benchmark system, torsional oscillations of the T-G units in GEN 1 

mainly depend on the dynamics of the DFIG-based wind farm and the compensation 

level of the series compensated transmission lines. In this section, the compensation 

level remains the same to excite the same mode of torsional oscillation.  As for the 

dynamics of the DFIG-based wind farm, it is attributed to three major factors: the scale 

of the DFIG-based wind farm, the control parameters of converters and the operating 

point of the DFIG-based wind turbines. In the following, these three factors of the 

DFIG-based wind farm will change respectively, and their impacts on the torsional 

interaction of the GEN 1 will be investigated in detail.   

4.5.1 Impact of Wind Farm Scale 

The TI of the T-G unit in GEN 1 may be affected by the scale of DFIG-based wind farm. 

When some T-G units in GEN 2 are substituted by the increased DFIG-based wind 

farm, the torsional mode of GEN 1 will change accordingly. In the following study, 

initially, the wind farm is assumed to contain 100 DFIG-based wind turbines, and the  



89 

 

 

(a) 0 MW 

 

(b) 150 MW 

 

(c) 225 MW 

 

(d) 300 MW 

Fig. 4.3 Torsional response of Mode 2 with (a) 0 MW, (b) 150 MW, (c) 225 MW and 

(d) 300 MW wind farm 
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output power of each DFIG-based wind turbine is 1.5 MW. Consequently, two 75 MW 

conventional T-G units in GEN 2 is replaced by the 150 MW DFIG-based wind farm. 

Then, as the number of wind turbines in the DFIG-based wind farm increases from 100 

to 200, the number of T-G units in GEN 2 decreases from 8 to 6. 

Fig. 4.3 (a) demonstrates the torsional oscillation of Mode 2 in Case 1 after the three 

phase fault. Fig. 4.3 (b) - (d) shows the torsional responses of LPA-LPB and GEN-EXC 

in Case 2 with increased wind farm scale. According to torsional responses of Mode 2 

in Case 1 and Case 2, it is found that the replacement of conventional T-G units by 

DFIG-based wind farm will have a negative influence on the damping of TI. As the 

scale of DFIG-based wind farm increase gradually, more conventional T-G units in 

GEN2 are substituted. Meanwhile, the torsional responses of LPA-LPB and GEN-EXC 

become more severe, which means the damping of TI in GEN1 is even worse. 

Table 4.1 Torsinal Mode 2 under increased wind farm scale 

Wind Farm Scale 

(MW) 

Eigenvalue 

(Mode 2) 
Damping 

Frequency 

(Hz) 

0 0.29±127.95i -0.227% 20.364 

150 0.56±127.84i -0.438% 20.351 

225 0.71± 127.17i -0.558% 20.240 

300 0.78 ±127.19i -0.613% 20.243 

375 0.82 ±127.21i -0.645% 20.246 

450 0.85 ±127.23i -0.668% 20.249 

525 0.87 ±127.25i -0.684% 20.252 

600 0.89 ±127.26i -0.699% 20.254 
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To confirm the results of time domain simulation, the eigenvalues of Mode 2 under 

different wind farm scales are listed in Table 4.1. From this table, all the eigenvalues of 

Mode 2 have positive real parts, which indicate that the SSR of the T-G unit is excited 

under different wind farm scale. As the scale of the DFIG-based wind farm increased 

from 0 MW to 600 MW, the real part of the eigenvalue for Mode 2 becomes larger, and 

the oscillation frequency changes slightly. This means the increased wind farm scale 

has a negative effect on the damping of Mode 2, which verifies the results of time 

domain simulation. Meanwhile, the change rate of damping ratio slows down with 

increased wind farm scale. This phenomenon attributes to that the damping provided 

by the wind farm changes nonlinearly with the wind farm scale. 

4.5.2 Impact of DFIG Converter Control 

A single DFIG-based wind turbine includes a rotor-side converter and a grid-side 

converter, and both converters have their corresponding controllers.  The parameters 

of these controllers have a significant influence on the dynamics of wind turbines, and 

they may also affect the TI of the conventional T-G unit. In this part, the impact of the 

DFIG converter control on the TI of conventional T-G unit will be studied. During the 

following study, the number of wind turbines in the DFIG-based wind farm is fixed at 

100. Each wind turbine generates 1.5 MW output power, and the total output power 

from the DFIG-based wind farm is 150 MW. 
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The controllers for both rotor-side and grid-side converter adopt cascade control. From 

the time domain simulation, it is found that the inner control loop of rotor-side 

controller has a significant influence on the TI of GEN 1. The control configuration of 

the rotor-side controller has been demonstrated in Fig. 3.3. According to Fig. 3.3, Kp2 is 

the proportional gain of PI controller for the inner current control loop. 

To evaluate the impact of proportional gain Kp2 (as shown in Fig. 3.3), the eigenvalues 

of Mode 2 under different Kp2 are listed in Table 4.2. From Table 4.2, all the 

eigenvalues have positive real parts, which mean Mode 2 is unstable under different 

control parameters of DFIG. Meanwhile, as the proportional gain Kp2 decreases, the 

damping of Mode 2 will increase correspondingly. The result of eigenvalue analysis 

can also be confirmed by the time domain simulations under different Kp2 as shown in 

Fig. 4.4. 

Table 4.2 Torsional Mode 2 under different control parameters 

Control 

Parameter 

Kp2 

Eigenvalue 

(Mode 2) Damping 

Frequency 

(Hz) 

0.025 0.56±127.84i -0.438% 20.346 

0.015 0.51 ± 127.79i -0.399% 20.338 

0.005 0.45 ±127.77i -0.352% 20.335 

0.0025 0.41 ±127.76i -0.321% 20.334 

0.001 0.39 ±127.76i -0.305% 20.334 
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(a) Kp2= 0.025 

 

(b) Kp2= 0.005 

 

(c) Kp2= 0.001 

Fig. 4.4 Torsional response of Mode 2 under different Kp2 
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4.5.3 Impact of Operating Points 

The DFIG-based wind turbines will work at various operating points when they are 

under different wind speeds. The generator in a DFIG-based wind turbine is an 

induction machine, and the slip range of this machine may reach 30% to achieve the 

variable wind speed operation. Due to the large slip range of induction machine in 

DFIG, the dynamics of the DFIG-based wind farm is largely dependent on the 

operating point, and the operating point may also influence the TI of GEN 1. Table 4.3 

demonstrates the relationship between the active power produced by a DFIG-based 

wind turbine and the wind speed. The data in Table 4.3 are obtained and calculated 

from the Appendix A.1. When the wind speed is comparatively low, the DFIG-based 

wind turbine operates in the range of sub-synchronous speed. Higher wind speed will 

make the DFIG-based wind turbine operate in the range of super-synchronous speed. 

To exclude the influence of wind farm scale, the total number of DFIG-based wind 

turbines in the wind farm remains 100. Consequently, two T-G units in GEN 2 will be 

replaced. In the following study, the output power of each DFIG-based wind turbines 

increases from 0.75 MW to 1.5MW. Fig. 4.5 shows the dynamic responses of 

LPA-LPB and GEN-EXC when the DFIG-based wind turbines operate at different 

operating points. The time domain simulation indicates that the TI of the T-G unit in 

GEN1 has worse damping as the DFIG-based wind turbines operate from the 
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sub-synchronous speed range to the super-synchronous speed range. The eigenvalue 

analysis (Table 4.4) also confirms the trend. 

All the eigenvalues in Table 4.4 have positive real parts, and this means that Mode 2 

is excited under different operating points. As the output power of each DFIG-based 

increased from 0.75 MW to 1.5 MW, the damping ratio of Mode 2 decreases, and the 

oscillation frequency of Mode 2 changes slightly. The trend of the eigenvalues for 

Mode 2 under different operating points confirms the results of time domain 

simulation. Meanwhile, the change rate of damping ratio is nonlinear with the 

increase of operating point of the DFIG. This phenomenon attributes to that the 

damping provided by the DFIG changes nonlinearly with operating point of itself. 

Table 4.3 Operating point of a DFIG-Based wind turbine 

Operation Point 

Sub-synchronous 

Speed 

Super-synchronous 

Speed 

Wind Speed (m/s) 8.654 9.525 10.260 10.903 

Output Power (MW) 0.75 1 1.25 1.5 
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(a) 0.75 MW 

 

(b) 1 MW 

 

(c) 1.25 MW 

 

(d) 1.5 MW 

Fig. 4.5 Torsional response of Mode 2 under different operating point 
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Table 4.4 Torsional Mode 2 at different operating point 

Operating 

Point 

Eigenvalue 

(Mode 2) 
Damping 

Frequency 

(Hz) 

0.75 MW 0.42±127.46i -0.330% 20.286 

1 MW 0.46±126.59i -0.363% 20.147 

1.25 MW 0.50±127.72i -0.391% 20.327 

1.5 MW 0.56±127.84i -0.438% 20.346 

4.6 Results of Induction Generator Effect 

In this section, the induction machine effect (IGE) of the proposed test benchmark 

system is analysed when some T-G units in GEN 2 are replaced by a DFIG-based wind 

farm. To exclude the effect of TI and focus on the IGE, the torsional dynamics of 

conventional T-G unit in GEN 1 are ignored in the following eigenvalue analysis and 

time domain simulation. To excite the IGE in the test benchmark system, the resistance 

of the transmission line RTL is reduced to 0.00645 pu. The per-unit base values for this 

data can be referred to Appendix A.1 in this thesis. The IGE is an oscillation of 

network, and it can be examined by the eigenvalues of the network mode [2]. In the 

time domain simulation, the IGE can be observed through the dynamic response of the 

voltage of the series capacitor in the transmission. In the following study, the condition 

of system fault is the same as that in the research of TI. Initially, the compensation level 

of the series capacitive compensated transmission line is 74.2%, which is the same as in 

the IEEE FBM.  
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4.6.1 Impact of compensation level 

The IGE of the test benchmark system is a purely electrical interaction. The dynamics 

of IGE is largely dependent on the compensation level of the series compensated 

transmission line. Under different compensation level, the impact of the DFIG-based 

wind farm on the IGE may be different.  

In this part, the influence of the compensation level on the IGE of the test benchmark 

system is evaluated. During the following study, the compensation level of the series 

compensated transmission line decreases from 74.2% to 10% in both Case 1 and Case 2. 

In Case 2, two 75-MW T-G units in GEN 2 are replaced by a 150 MW DFIG-based 

wind farm, and the output power of each wind turbines in the DFIG-based wind farm is 

1.5 MW. The control parameter Kp2 in the DFIG-based wind turbine is set to 0.05. This 

control parameter is a feasible parameter obtained from theoretical calculations 

[29][35]. Fig. 4.6 demonstrates dynamic responses of the capacitor voltage after the 

system fault for both Case 1 and Cass 2 with different compensation level of the 

transmission line.  

In the time domain simulations, the dynamic responses of the voltage of the series 

capacitor indicate that the DFIG-based wind farm makes the IGE of test benchmark 

system even worse when the compensation level of the transmission line is 

comparatively high. However, as the compensation level of the transmission line 
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(a) 72.4% 

 

(b) 70% 

 

(c) 30% 

 

(d) 10% 

Fig. 4.6 Dynamic response of the voltage of series capacitor in Case 1 and Case 2 (Kp2= 

0.005) 
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(a) 72.4% 

 

(b) 70% 

 

(c) 30% 

 

(d) 10% 

Fig. 4.7 Dynamic response of the voltage of series capacitor in Case 2 under different 

control parameters 
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decreases, the DFIG-based wind farm manifests a positive impact on the IGE of the test 

benchmark system. In summary, the compensation level of the transmission line 

determines whether the DFIG-based wind farm will have a negative or positive effect 

on the IGE of test benchmark system. 

Then, the control parameter Kp2 in the DFIG-based wind turbine is reduced from 0.05 to 

0.001. Fig. 4.6 and Fig. 4.7 show the dynamic responses of the voltage of the series 

capacitor under different control parameter. From these time domain simulations, it can 

be concluded that dynamic responses of the capacitor voltage improve with the 

decreasing control parameter Kp2. However, no matter how small the control parameter 

Kp2 is, the trend of the influence of compensation level will not change. The eigenvalue 

analysis is also conducted for the above cases and confirms the conclusion of time 

domain simulation. Fig. 4.8 summarises the trend of the eigenvalues for both Case 1 

and Case 2 under different compensation level with different control parameters. 
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Fig. 4.8 Eigenvalue of network mode under different compensation level for Case 1 and 

Case 2 with various control parameters  

4.6.2 Impact of Wind Farm Scale 

This part will investigate the influence of wind farm scale on the IGE of test benchmark 

system. In the following study, the DFIG-based wind farm in Case 2 includes 100 wind 

turbines at the beginning, and the output power of each DFIG-based wind turbine is 

fixed at 1.5 MW. Then, the number of DFIG-based wind turbines gradually increases  
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(a) 72.4% 

 

(b) 70% 

 

(d) 30% 

 

(e) 10% 

Fig. 4.9 Dynamic response of series capacitor voltage in Case 2 (225 MW) and Case 2 

(300 MW) 
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from 100 to 200, and the number of replaced T-G units in GEN 2 increases from 2 to 4 

accordingly. The control parameter Kp2 of the DFIG-based wind turbine is fixed at 

0.0025 during the following study. 

 

Fig. 4.10 Network resonance mode under different compensation level for Case 2 with 

increased wind farm scale 

Fig. 4.7 and Fig. 4.9 show the dynamic responses of the voltage of the series capacitor 

when the scale of wind farm increase from 150 MW to 300 MW. From the time domain 
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simulation, the steady-state dynamics of the capacitor voltage become worse with 

increased wind farm scale at all compensation level. This indicates that the damping of 

IGE in the test benchmark system will be worse when more conventional T-G units are 

replaced by the DFIG-based wind farm. The result of the eigenvalues analysis also 

supports the time domain simulation, as shown in Fig. 4.10.  

4.7 Summary 

With vast utilisation of wind energy, the dynamics of wind farms will affect the 

conventional T-G unit in power systems. This chapter has examined the influence of 

the DFIG-based wind farm on the SSR of the conventional T-G units. The DFIG-based 

wind farm is proposed to replace several conventional T-G units with equivalent 

capacity. The influences of the wind farm on the SSR of conventional T-G units have 

been evaluated from the aspects of the TI and IGE. Based on the IEEE FBM, a new test 

benchmark system has been proposed for the evaluation. Then, the mathematical model 

of the proposed test benchmark system was presented, and the eigenvalue analysis was 

conducted based on this detailed model. The time domain simulations were also 

conducted in the PSCAD/EMTDC to verify the results of the eigenvalue analysis. The 

conclusions are presented from the TI and IGE as follows. 

The replacement of conventional T-G units by a DFIG-based wind farm has a negative 

impact on the TI, and the influence can be summarised as follows, 
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(1) The damping of torsional oscillation becomes worse with increased wind farm 

scale. 

(2) The inner PI controller of rotor-side converter has a significant influence on the 

TI. The smaller proportional gain of inner PI controller will improve the damping of 

torsional oscillation. 

(3) The higher the operating point of the DFIG-based wind turbine, the less damping 

for the torsional oscillation of the conventional T-G unit. 

On the other hand, the influence of the replacement on the IGE of T-G units mainly 

depends on the compensation level of the series compensated transmission line. At the 

high compensation level, when the system is excited to cause the IGE, the DFIG-based 

wind farm will make the IGE even worse. At the comparative low compensation level, 

if the system can maintain the stability against the fault, the DFIG-based wind farm can 

enhance the damping of oscillation. Meanwhile, the IGE of a system will become worse 

if more conventional T-G units are replaced by the DFIG-based wind farms. 
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CHAPTER 5 SMALL SIGNAL STABILITY 

OF WIND FARMS INTEGRATED VIA 

FFTS 

5.1 Introduction 

With the increased scale of offshore wind farms, the long distance transmission for 

wind power becomes a challenge. The fractional frequency transmission system (FFTS) 

provides a relatively new solution to increase the transmission capacity for offshore 

wind farms. The FFTS can achieve higher transmission capacity through the decrease 

of transmission frequency. However, when the offshore wind farms are integrated via 

the FFTS, the dynamic performance of such a system will be different from that of wind 

farms with a traditional AC transmission system.  

In this chapter, the research focuses on the damping performance of wind farms with 

the FFTS. The wind farms consist of the doubly fed induction generators (DFIG), and 

they are proposed to be connected to the main grid via the FFTS. To analyse the 

damping performance, the mathematical model of wind farms with the FFTS is 

established, and then the eigenvalue analysis is carried out to evaluate the small signal 

stability of such a system. To confirm the results of eigenvalue analysis, the time 

domain simulations are carried out in both the single machine infinite bus (SMIB) and 
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the multi-machine system. Besides, the power electronic device, the cycloconverter, 

provides the potential for the FFTS to improve the damping of power systems. So, 

this chapter also proposes a feedback control loop on the cycloconverter to improve the 

damping performance of the FFTS with wind farms. The effectiveness of the proposed 

controller is also verified through the time domain simulations. 

This chapter is organized as follows. In Section 5.2, the basic principle of the FFTS 

and the configuration of the studied systems are introduced. The detailed dynamic 

models of the studied systems are depicted in Section 5.3. Section 5.4 conducts the 

eigenvalue analysis for the studied systems. Section 5.4 proposes a feedback control 

loop on the cycloconverter to improve the damping performance of wind farms with 

the FFTS. The time domain simulations are demonstrated in Section 5.5 to verify the 

results of the eigenvalue analysis and the performance of the proposed feedback 

controller. Section 5.6 summarises the content of this chapter and provide the 

conclusion of this research. 

5.2 Research Scenario 

In this chapter, the offshore wind farm is supposed to include 100 2-MW, 0.69-kV 

DFIG-based wind turbines. The standard frequency is 60 Hz instead of UK standard 50 

Hz. The reason is that most available cases for DFIG-based wind turbine use the 60 Hz 

(USA standard frequency).  
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Traditionally, the power generated by the offshore wind farm is delivered through the 

conventional AC transmission system. The transmission frequency is the nominal 

frequency (60 Hz). The configuration of such a system is shown as Fig. 5.1 (a). 

In this chapter, the FFTS is proposed to transmit the power from offshore wind farms. 

The offshore wind farm directly produces 20 Hz (1/3 of 60 Hz) AC power, and the 

power is delivered through the 20 Hz transmission system. The cycloconverter acts as 

the interface between the FFTS (20 Hz) and the nominal power grid (60 Hz). It can 

increase the power frequency from 20 Hz to 60 Hz. The configuration of the wind farm 

with the FFTS is shown as Fig. 5.1 (b). 

For comparison, the following studies are conducted in two cases as presented: 

Case 1: the offshore wind farm is connected with the main grid through a conventional 

AC transmission system. The length of the transmission line is 100 km, and the nominal 

voltage is 230 kV. The frequency of the whole system is 60 Hz. 

Case 2: the offshore wind farm directly generates AC power at 20 Hz, and it is linked 

with the low frequency side of cycloconverter through a 100 km 230 kV transmission 

line. The high frequency side of the cycloconverters is connected with the main grid 

with standard frequency (60 Hz). 
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(a) Wind farm with standard AC system (Case 1) 
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(b) Wind farm with FFTS (Case 2) 

Fig. 5.1 Configuration of the studied systems 

5.3 Modelling of the Studied Systems 

In Case 1 and Case 2, the major electrical components include the DFIG-based offshore 

wind farms, the cycloconverter and the transmission line. In the following, the models 

of each electrical component will be introduced. 

5.3.1 Modelling of DFIG-based Wind Farm 

The offshore wind farm consists of 100 DFIG-based wind turbines, and its model is 

obtained by aggregating 100 wind turbines into a single DFIG-based wind turbine. The 

parameters of each wind turbines is summarised in Appendix. In chapter 3, the structure 
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and mathematical model of the DFIG-based wind turbine have been introduced in 

detail, so they will not be discussed here further. 

In general, the overall mathematical model of a DFIG-based wind turbine can be 

summarised by, 

 ( , , )wt wt wt wt wtfx x z u  (5.1) 

 ( , )wt wt wt wtgz x u  (5.2) 

where  xwt=[ωt, θtw, ωr, ids, iqs, E’d, E’q, x1, x2, x3, x4, vDC, x5, x6, x7, idg, iqg,]
T
, zwt=[ vdr, vqr, 

vdg, vqg]
T
, uwt=[ vds, vqs]

T
; ωt is the angle speed of the wind turbine; θtw is the shaft twist 

angle; ωr is the angle speed of induction machine, and ωr=ω5 ; ids and iqs are the d and q 

axis stator currents, respectively; E’d and E’q are the d and q axis voltages behind the 

transient reactance, respectively; x1, x2, x3 and x4 are the intermediate variables of the 

controller for rotor side converter; vDC is the DC capacitor voltage; x5, x6 and x7 are the 

intermediate variables of the controller for grid side converter; idg and iqg are the d and q 

axis currents of the grid-side converter, respectively; vdr and vqr are the d and q axis 

rotor voltages, respectively; vdg and vqg are the d and q axis voltages of the grid-side 

converter, respectively; vds and vqs are the d and q axis stator voltages, respectively. 

Although the general model of the DFIG is almost the same in Case 1 and Case 2, the 

base frequency in each case is different. In Case 1, the DFIGs generate power at the 
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standard frequency (60 Hz). However, the DFIGs in Case 2 produce AC power directly 

at 20 Hz. The reduced frequency in Case 2 may lead to the changes of parameters in the 

DFIG-based wind turbine. 

The inertia constant of the drive train is affected significantly by the reduced 

transmission frequency. In this thesis, the drive train of the DFIG-based wind turbine 

is modeled as a two-mass system as shown in Fig. 5.2.  
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Fig. 5.2 Two-mass model of drive train 

So, the total moment of inertia of the drive train can be obtained by [86], 
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   (5.3) 

where J is the total moment of inertia of the drive train; Jt is the moment of inertia of 

the wind turbine; Jg is the moment of inertia of the generator; NGB is the gearbox ratio. 

Based on (5.3), the total inertia constant of the drive train can be obtained as, 
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     (5.4) 

where ωb is the angular velocity of the base frequency; H is the total inertia constant 

of drive train; Ht is the inertia constant of the wind turbine; Hg is the inertia constant 

of the generator; S is the nominal apparent power of the generator. 

In Case 2, the DFIG-based wind turbines generate power at 20 Hz, which is 1/3 of the 

standard frequency. Consequently, the base frequency and the gearbox ratio in Case 2 

both decrease to 1/3 of those in Case 1. According to (5.4), although the inertia 

constant of wind turbine Ht is the same in both Case 1 and Case 2, the inertia constant 

of generator Hg decrease greatly in Case 2. So, the total inertia constant of the drive 

train in Case 2 is reduced. 

5.3.2 Modelling of Cycloconverter 

The cycloconverter is the core electrical component in the FFTS. It is a static frequency 

changer, which can convert AC power at one frequency to power at another frequency. 

It can also provide bidirectional power flow. Normally, it is used to step down the 

frequency of power to drive induction and synchronous motors in high power 

applications. However, in the FFTS, the cycloconverter will step up the frequency of 

power from the low frequency side to the nominal frequency of the grid. This requires 
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the cycloconverter to operate in its inversion mode, and this kind of application was 

first proposed in [20]. 

A three phase cycloconverter is formed by an array of 36 thyristor switches as shown in 

Fig. 5.3. In each phase, two three phase six-pulse converters, named P-Group and 

N-Group (also referred to as Positive-Group and Negative-Group), are connected 

back-to-back. 

Phase A

Phase B

Phase C

Low Frequency Side

High Frequency Side

A

B

C

Vh

Vl

P-Group N-Group

 

Fig. 5.3 Structure of a three phase cycloconverter 

Basically, cycloconverters has two operation modes: circulating current mode and 

circulating current-free mode. To avoid the short circuit, the circulating current mode 
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for a cycloconverter needs an intergroup reactor (IGR), and the IGR increases the size 

and cost of the cycloconverter. Although the circulating current-free mode may cause 

the zero distortion, it has the advantages of less power losses and higher efficiency.  In 

the FFTS, the cycloconverter applies the circulating current-free mode. In summary, 

we have the following assumptions for the cycloconverter in the FFTS: 

(1) The cycloconverter is operated in the non-circulating current mode, or blocking 

mode 

(2) Control algorithm for the cycloconverter is assumed to be the cosine-wave crossing 

method 

Ideally, the mathematical model of a 6-pulse cycloconverter can be represented by 

[119], 

 
3 2

cosl hV V 


  (5.5) 

 l hP P  (5.6) 

 cos 0.843cos cosh l    (5.7) 

where α is the firing angle; Vl is the rms value of the line-to-neutral voltage at the low 

frequency side; Vh is the rms value of the line-to-line voltage at the standard frequency 

side; θh and θl are the power factor angle at the standard frequency side and the low 

frequency side, respectively. 
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Dynamically, the cycloconverter can be treated as a time-delay element, and the 

time-delay is caused by the uncontrolled time of the thyristors [120].  It is obvious that 

the delayed time is random, and its average value can be demonstrated as, 

 
1

1

2
sT

mf


 

(5.8)

 

where f1 is the frequency of the standard power, and m is pulse number of a 

commutation cycle. 

The equation (5.5) can be rewritten as 

 
3 2

cos 1( )l h sV V t T


    (5.9) 

where the black spot in the above equation means multiply. 

The Laplace transform of equation (5.9) can be obtained as, 

 
3 2

( ) cossT s

l hV s V e 



  (5.10) 

The time delay element can also be represented by 

 2 2 3 31 1
1

2! 3!
sT s

s s se T s T s T s      (5.11) 

Ignoring the high order terms in equation (5.11), equation (5.10) can be approximated 

as, 
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Then, the equation (5.12) in the time domain can be transformed as, 

 
3 2

cosl l
h

s s

dV V
V

dt T T



    (5.13) 

5.3.3 Transmission Line 

The voltage equation of the transmission line is given by 

 1 2 ( )( )s l TL TL s gV V jX R       I I  (5.14) 

where 1sV   is the terminal voltage of the stator; 2lV   is the terminal voltage at 

the low frequency side of the cycloconverter; XTL is the combined reactance of the 

transmission line and the transformer; RTL is the combined resistance of the 

transmission line and the transformer. 

In the stator oriented d-q reference frame, the above equation can be transformed as 

 
1 2

1 2

cos( )

sin( )

ds ds dgTL TL

l

qs qs qgTL TL

v i iR X
V

v i iX R

 

 

          
                       

 (5.15) 

5.4 Eigenvalue Analysis and Time Domain Simulation 

In the following eigenvalue analysis, the main grid in Case 1 and Case 2 are supposed 

to be an infinite bus for the sake of simplicity. The linearised dynamic equations of the 
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DFIG-based wind farm are derived from the mathematical model at a steady state 

operating point. These linearized equations can be written in state space form as, 

 
wt wt wt wt wtA B    x x u  (5.16) 

The above model includes 17 state variables and 2 inputs. The state variables consist of 

3 drive train states, 4 states of the induction generator, 4 controller states of the 

rotor-side controller, the voltage of the DC-link capacitor, 3 controller states of the 

grid-side converter and 2 states for the currents of the grid-side controller. The 2 inputs 

are the d and q axis voltage of the stator. 

Based on equation (5.13), the linearized equation of cycloconverter can be derived as 

 cyc cyc cycA  x x  (5.17) 

The linearized equation of the transmission line can be obtained by equation (5.15) as 

 1 2wt wt cycC C    u x x  (5.18) 

Based on (5.18), the inputs in (5.16) can be eliminated. Then, the completed state space 

model for Case 2 can be represented by, 

 A  x x  (5.19) 

where Δx=[Δxwt, Δxcyc]
T
. 
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The mathematical model for Case 1 can also be obtained if the state of cycloconverter is 

removed from equation (5.19). 

In the following, the eigenvalue analyses are carried out for both Case 1 and Case 2. 

The wind speed for both cases is 12 m/s, and the output power of each DFIG-based 

wind turbine is 2 MW. The wind farm is obtained by aggregating 100 2-MW 

DFIG-based wind turbines into an equivalent one. The parameters of a single 

DFIG-based wind turbine are given in Appendices. 

Table 5.1 demonstrates the eigenvalues for Case 1 and Case 2. From Table 5.1, all 

eigenvalues in both cases have negative real parts indicating a stable operating 

condition of the DFIG-based wind farm in both cases. The damping ratios of dominant 

states in Case 2 decrease compared with those in Case 1. This means the damping 

performance of the FFTS with wind farms is worse than that of the conventional AC 

system with wind farms.  

Table 5.1 Eigenvalues of DFIG-based wind farm with FFTS and standard AC system 

Dominant 

States 

Case 1 

(60 Hz) 
Damping 

Case 2 

(20 Hz) 
Damping 

ids ,iqs -79.54± 383.67i 20.30% -26.50 ± 193.22i 13.60% 

idg , iqg -1.35 ± 377.30i 0.04% -0.03 ± 128.16i 0.02% 

Ed
’
 ,Eq

’
 -4.56 ± 17.66i 25.00% -0.70 ± 13.11i 5.33% 

ωr -6.05 ± 18.58i 31.00% -2.41 ± 13.58i 17.10% 

vDC -1.09 ± 7.49i 14.40% -0.16 ± 4.40i 3.63% 
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The reason for less damping of the FFTS with wind farm is that the inertia constant of 

the drive train in DFIG is reduced significantly. According to the previous model 

analysis, the transmission frequency for the DFIG model in Case 1 and Case 2 is 

different. According to (5.4), if the transmission frequency is 1/3 of the standard 

frequency in the FFTS, the total inertia constant of the drive train in DFIG is reduced 

significantly. The reduced inertia constant decreases the damping of the FFTS with 

wind farms. 

5.5 Dynamic Damping Improvements for FFTS 

From previous eigenvalue analysis, it is concluded that the FFTS decreases the 

damping of DFIG-based wind farm significantly. To improve the damping 

performance, the better control design [33] for DFIG and the DFIG damping controller 

[88] are two established methods. However, both two approaches are based on a single 

or a single aggregated DFIG model. In practice, the DFIG-based wind turbines in a 

wind farm often operate under different conditions. So, the general effectiveness of 

these two approaches in multiple DFIG system needs further discussion. 

This chapter proposes to add additional control loop on the cycloconverter to improve 

the damping of FFTS. The cycloconverter is a thyristor phase–controlled converter, and 

it is possible to apply a feedback controller on it to improve the damping performance 

of the FFTS. The feedback controller on the cycloconverter can manipulate the overall 
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dynamic performance of the DFIG-based wind farm, no matter with conditions of 

individual DFIG. In the following simulations, the general effectiveness of this 

controller will be confirmed through the simulations in both the single DFIG system 

and the multiple DFIG system. 

Transmission 
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Cycloconverter

Main 

Grid

C

Vl

60 Hz

PI

Controller

Pulse-Generating
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Measured Vl
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*

+
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Fig. 5.4 Feedback control loop for cycloconverter 

As mentioned before in this chapter, the cycloconverter applies cosine-wave crossing 

method, which is an open-loop control originally. To improve the damping 

performance, a feedback controller for the cycloconverter is implemented as Fig. 5.4. 

The feedback signal chooses the RMS voltage of the low frequency side of 

cycloconverter Vl, and the proposed feedback controller is adopted to track the control 

reference. Due to the fast transient of cycloconverter, the proposed controller chooses 

the proportional-integral (PI) strategy. The PI controller has the advantages of simple 

structure and fast response, and it is very suitable to control the power electronic 

devices. To verify the effectiveness, the proposed feedback controller is tested in both 

SMIB and multi-machine system through time domain simulations. 
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5.6 Dynamic Simulations 

The time domain simulations are conducted in PSCAD/EMTDC to verify the results of 

eigenvalue analysis and the proposed controller on the cylcoconverter. The 

DFIG-based wind farm in the following simulations is obtained by aggregating serveral 

2-MW DFIGs into an equivalent DFIG. Dynamic simulations are carried out in a single 

machine infinite bus (SMIB) and a multi-machine system, respectively. The dynamic 

responses of the systems are compared between Case 1 and Case 2. 

5.6.1 Simulations on SMIB System 

In this part, the dynamic simulations are carried out in SMIB to observe the dynamic 

responses in the following three cases:  

Case 1 and Case 2: as described in Section 5.2. The main grid is replaced by an infinite 

bus. 

Case 3: a feedback control loop is added to cycloconverter in Case 2. 

1) Dynamic Responses against Disturbances 

To study the dynamic performance of Case 1 and Case 2, a three-phase ground fault is 

applied to excite the dynamic responses. The reason to apply three-phase ground fault 

is that it will lead to a large fault current, and the damage caused by it is usually more 

severe. So, the three phase ground fault is usually chosen as a large disturbance to 
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verify the stability of a power system when small signal stability is studied [33] [118]. 

On the other hand, the purpose of three ground fault in this thesis is to excite the 

oscillations of power systems, and then the damping performance can be compared 

between different systems. Other types of fault are no more necessary. 

In the following simulations, the three-phase ground fault happens at Bus B in both 

cases as shown in Fig. 5.1, and the duration for this fault is 0.025 s.  

Fig. 5.5 shows the dynamic responses of the active power, reactive power, rotor speed, 

DC-link voltage, the active power of grid side converter and the reactive power of the 

grid side converter against the fault in Case 1 and Case 2. The state responses of the 

DFIG-based wind farm with the FFTS (Case 1) and the standard AC system (Case 2) 

demonstrate that both systems can restore to the steady state after the fault with the 

support of the stiff grid. It also can be seen that the damping of the DFIG-base wind 

farm with the FFTS decrease significantly. 
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 (a) 

 

(b) 
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(c) 
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(e)  

 

(f) 

Fig. 5.5 Dynamic responses for Case 1, 2 and 3 in SMIB under fault 
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It also can be observed from Fig. 5.5 that the simulation results for the FFTS with 

wind farms (Case 2) contain 20 Hz frequency noises. These high frequency noises are 

attributed to the nature of the FFTS. Due to the reduced transmission frequency of the 

FFTS, the response time of the FFTS increases under the same conditions compared 

with that of the conventional AC system.  

However, these high frequency noises cannot be removed in the above case studies 

due to the reason of comparison. The damping performance of the DFIG is very 

sensitive to the control parameters [33][35]. For comparison, the control parameters for 

DFIGs in both conventional AC system and FFTS should remain the same to exclude 

their influence on the damping performance. 

Furthermore, these noises will not affect the study of small signal stability between 

the FFTS and conventional AC systems. This chapter focuses on the small signal 

stability of FFTS, which mainly concerns the low frequency oscillations (0.1~2 Hz) 

[23]. So, some high frequency noises in the FFTS will not affect the evaluation of 

damping performance between the FFTS and conventional AC system. 
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Fig. 5.6 Voltage dynamics at Bus B for Case 1, 2 and 3 under fault 

Fig. 5.6 demonstrates the voltage responses at Bus B in Case 1 and 2 after the fault. The 

voltage fluctuation at Bus B in the FFTS is improved compared with that in the 

traditional AC system. The improved voltage dynamics is attributed to the reduced 

reactance of the transmission line in the FFTS. 

2) Damping Improvement for FFTS 

From previous time domain simulations, it is found that the FFTS reduces the damping 

of wind farms significantly compared with the standard AC system. To improve the 

damping performance, an additional feedback controller on cycloconverter is proposed 

as Fig. 5.4, and its effectiveness is also confirmed through the dynamic simulations in 

the SMIB. In Case 3, the applied fault is the same as that in Case 1 and Case 2. 
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Fig. 5.5 compares the dynamic responses of the active power, reactive power, rotor 

speed, DC-link voltage, the active power of grid side converter and the reactive power 

of the grid side converter in Case 3 with those in Case 1 and Case 2. With the feedback 

controller on cycloconverter, the damping performance of the wind farm with FFTS is 

improved significantly, and it is even better than the wind farm with standard AC 

system. The simulation results indicate the feedback controller on the cycloconverter 

can overcome the problem of less damping in the FFTS.  

Fig. 5.6 shows the voltage profile at Bus B in Case 3 with those in Case 1 and 2. The 

voltage dynamics can be further improved with the proposed feedback controller on the 

cycloconverter. 

5.6.2 Simulations in Multi-Machine System 

For further study, the four-machine system is used to verify the results of small signal 

stability analysis and the proposed controller. The four-machine system as shown in Fig. 

5.7 is symmetric, and it is composed of two identical areas connected by a 

comparatively weak tie. Each area includes two machine units with equal power output. 

The details of this four-machine system can be found in [22]. 

Furthermore, the DFIG-based wind farm in previous section is divided into two 

separate wind farms: WF1 and WF2. Each wind farm includes 50 DFIG, but the wind 

speed is different for each wind farm. The wind speed is 10.903 m/s for WF1, and the 
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output power for each DFIG-based wind turbine is 1.5MW. The WF2 is under 12 m/s 

wind speed, and the output power for each DFIG is 2MW. 
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Fig. 5.7 Configuration of the simulations in four-machine system 

For comparison, the dynamic simulations are carried out in three cases as the following: 

Case 4:  WF1 and WF2 are connected to Bus B6 (as in Fig. 5.7) through a 100 km 230 

kV standard AC transmission line. 

Case 5: the power generated by WF1 and WF2 is delivered to the four-machine system 

through a 100 km 230 kV low frequency transmission line. The low frequency side of 

the cycloconverter is connected to Bus B12, and the high frequency side is linked with 

B6 in the four-machine system. 

Case 6: based on Case 5, the proposed feedback controller for the cycloconverter is 

implemented as shown in Fig. 5.4.  
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In Case 4, 5 and 6, the total output power of WF1 and WF2 is 175 MW. Consequently, 

the output of G1 is reduced by 175 MW to guarantee the overall output from G1 and 

wind farms remain at 900 MW.  

1) Dynamic Responses against Disturbances 

The three-phase ground fault is applied at Bus B8 as shown in Fig. 5.7. The reason to 

choose the three-phase ground fault has been explained in Section 5.6.1. The fault 

starts at 6.0 s in Case 4, 5 and 6, and the duration of this fault is 0.1 s.  

Fig. 5.8 shows the dynamic responses of the active power, reactive power of the WF1 

and WF2 against the fault in Case 4 and Case 5. The simulation results in the 

four-machine system also  demonstrate that the damping of the DFIG-based wind 

farms with the FFTS decrease obviously compared with that of wind farm integrated 

through traditional AC system. The simulation result in the four-machine system is the 

same as that in SMIB. 

The 20 Hz frequency noises in the FFTS can also be observed in Fig. 5.8. The 

technical justification for these noises has been provided in Section 5.6.1. 
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(a)  

 

(b) 
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 (c) 

 

(d)  

Fig. 5.8 Dynamic responses for Case 4, 5 and 6 in the four-machine system 
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Fig. 5.9 demonstrates the voltage responses at Bus B12 in Case 4 and Case 5, and it also 

shows that the voltage response is improved in the FFTS. 

 

Fig. 5.9 Voltage responses at Bus B12 for Case 4, 5 and 6 under fault 

2) Damping Improvement for FFTS 

The general effectiveness of the proposed feedback controller on the cycloconverter is 

also demonstrated in the four-machine system. 

Fig. 5.8 shows the dynamic responses of the active power, reactive power in WF1 and 

WF2 against the fault in Case 6. The dynamic responses in Case 6 demonstrate that the 

feedback controller on the cycloconverter can greatly improve the damping of the wind 

farm with FFTS. Meanwhile, with the support from the cycloconverter, the damping 
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performance of the wind farms with FFTS can perform even better than that of the wind 

farms with traditional AC transmission system.  

5.7 Summary 

This chapter has applied the FFTS to transmit the power from the DFIG-based offshore 

wind farms to the main grid. The small signal stability model of the FFTS with 

DFIG-based wind farms has been presented in detail. Based on the above model, 

eigenvalue analysis has been carried out to study the damping performance of the 

DFIG-based wind farm with the FFTS. To verify the results of the eigenvalue analysis, 

dynamic simulations have also been conducted in the SMIB and four-machine system. 

Both eigenvalue analysis and dynamic simulations have indicated that the damping of 

the DFIG-based wind farms is significantly decreased by applying the FFTS in 

comparison to the wind farms with the traditional AC transmission system. However, 

this chapter has proposed to add a feedback control loop on the cycloconverter to 

overcome this problem. With the help of this feedback controller, the damping of the 

DFIG-based wind farms with the FFTS can be performed even better than that of wind 

farms with the traditional AC system. 
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CHAPTER 6 GRID INTERCONNECTION 

VIA THE FRACTIONAL FREQUENCY 

TRANSMISSION SYSTEM 

6.1 Introduction 

The fractional frequency transmission system (FFTS) can significantly increase the 

transmission distance and capacity through the reduced transmission frequency. Due 

to the above advantages, the FFTS is not only suitable for integrating large scale 

offshore wind energy, but also has the potential to be applied in inter-area grid 

interconnection. 

The inter-area oscillations between interconnected synchronous generators are 

inherent phenomena in power systems. In a large interconnected system, different 

areas in this system are often connected together by tie lines. Previous research [106] 

has found that the decrease of tie line impedance can improve the damping 

performance of the inter-area oscillations. So, for the purpose of damping 

improvement, it is better to find a method to reduce the impedance of the tie lines. 

The FFTS is a choice to cope with this problem. If the tie lines apply the FFTS 

technique, the impedance of the tie lines can be reduced through lowering the 

transmission frequency. 



137 

 

Although previous research also proposed to apply HVDC to interconnect power 

systems, the operation of the multi-terminal HVDC system is still in early 

development [20]. The FFTS does not face this challenge. It can easily form a 

network as the conventional AC system. Consequently, this chapter proposes to use 

the FFTS as a substitute for the conventional AC tie lines. The eigenvalue analysis 

and time domain simulations demonstrate that the application of FFTS as the tie lines 

improves the damping of the inter-area oscillations. Furthermore, the FFTS can also 

achieve power flow control through the frequency changer-cycloconverter. 

This chapter is organized as follows. In Section 6.2, the configuration of the studied 

systems is introduced. The mathematical models for the major electrical components 

in the studied systems are presented in Section 6.3. Section 6.4 conducts the 

eigenvalue analysis and time domain simulation to demonstrate the influence of the 

FFTS on inter-area oscillations of power systems. Section 6.5 proposes a power flow 

controller for the FFTS, and its effectiveness is also verified through time domain 

simulations. The conclusion is summarised in Section 6.6. 

6.2 The Studied Systems 

6.2.1 Two-area System 

The inter-area oscillations are very complex in large interconnected power systems. To 

concentrate the study of inter-area oscillations, the two-area system was proposed as 
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the standard benchmark system [106]. Although the size of this two-area system is 

small, it can imitate the inter-area oscillations in the actual power system. The 

configuration of the two-area system is shown as Fig. 6.2. It is a symmetric system and 

consists of two identical areas. The two areas are interconnected by a comparatively 

weak tie. Each area includes two T-G units with equal power output. The parameters 

for this two-area system can be found in [22]. 

This two-area system is operating under the condition that 400 MW power is 

transferred from Area 1 to Area 2 through two tie lines. In this system, there are three 

electro-mechanical modes of oscillation: two inter-machine modes for each area and 

one inter-area mode. When the inter-area mode is excited, the synchronous generators 

in Area 1 will swing against the synchronous generators in Area 2.  

6.2.2 Two-area System with FFTS 

This chapter proposes to apply the FFTS to interconnect power systems. The 

conventional AC tie lines between different areas are replaced by the FFTS. The 

general configuration of the FFTS in system interconnections is shown as Fig. 6.1.  

In Fig. 6.1, Area 1 is interconnected with Area 2 through the FFTS. The FFTS 

includes two cycloconverters (C1 and C2) located at two terminals. The C1 and C2 

are linked by a low frequency transmission line, in which the transmission frequency 

is 20 Hz. C1 is responsible for converting the 60 Hz AC power to the 20 Hz AC 
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power. C2 increases the transmission frequency of the AC power from 20 Hz to 60 Hz. 

The power flow through the FFTS can also be reversed. In this chapter, the reason to 

choose 60 Hz instead of UK standard 50 Hz is that the two-area system [22] [116] in 

the following research adopts the 60 Hz as its base frequency. So, this chapter chooses 

60 Hz standard frequency. 

Through the FFTS interconnection, the electrical length between the Area 1 and Area 

2 is significantly reduced. Thus, the inter-area oscillation between these two utility 

grids can be improved. 

Transmission 

Line

Cycloconverter

C1

20 Hz 60 Hz

Cycloconverter

C2

60 Hz

Area 1 Area 2

 

Fig. 6.1 Structure of the FFTS in system interconnections 

For further study, the FFTS is adopted as the tie lines in the two-area system. The 

following three cases are established for comparison. 

Case 1: The original two-area system is shown as Fig. 6.2. 

Case 2: One of the tie lines between Area 1 and Area 2 is substituted by the FFTS (as 

shown in Fig. 6.3) 
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Case 3: Both of the two tie lines between Area 1 and Area 2 are replaced by the FFTS 

(as shown in Fig. 6.4 ) 
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Fig. 6.2 Two-area system (Case 1) 

 

 

Fig. 6.3 Configuration of Case 2 

 

 

 Fig. 6.4 Configuration of Case 3 
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6.3 Modelling of Studied Systems 

In this section, the mathematical models of major electrical components in the 

two-area system with FFTS will be presented.  

6.3.1 Synchronous Machine 

The generators in the two-area system are the synchronous machines. The small 

signal stability model for the synchronous machine has been introduced in Chapter 3. 

This model is a 6th order dynamic model with six differential equations and two 

algebraic equations. The compact form of the model for a single synchronous 

machine is given by, 

 ( , , )gi g gi gi gifx x i u
 

(6.1) 

  ,gi g gi gihi x v
 

(6.2) 

where  i=1, 2, …,4; xgi=[δi, Δωi, qsiE , dsiE , 1di , 2qi ]
T
, igi=[ idi, iqi]

T
, ugi=[ Tmi, vfdi]

T
; 

vgi=[θi, Vi]
T
 ; δi is the angular position of rotor; Δωi is the speed deviation of rotor; dsE

and qsE are the d and q axis induced transient electromagnetic force, respectively; 1d

and 2q are the subtransient induced electromagnetic force; idi and iqi are the d and q 

axis stator currents, respectively; Tmi is the mechanical torque, vfdi is the field voltage; θi 

is the angle of terminal voltage of synchronous machine; Vi is the magnitude of terminal 

voltage of synchronous machine. 
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6.3.2 Excitation System 

Each synchronous machine in the two-area system includes an excitation system. The 

dynamics of the excitation system will influence the small signal stability of the 

overall system, and thus its dynamics should be considered in the modelling process. 

The excitation system is a thyristor exciter with high transient gain. The mathematical 

model of the excitation system is given by [135], 

  fdi Ai
fdi refi i

Ai Ai

v K
v V V

T T
   

 

(6.3) 

where TAi is the time constant of regulator; KAi is the transient gain of regulator; Vrefi is 

the voltage reference of excitation system. 

6.3.3 Cycloconverter 

In previous chapter, the model of cyclconverter considers the delay element. Under 

ideal condition, the cycloconverter can be modelled as an amplifier with linear gain 

characteristics. For the sake of simplicity, the cycloconverter in this chapter is 

demonstrated by an algebraic equation as (5.5). 

6.3.4 Networks 

In the small signal stability analysis, the transients of the networks are not considered. 

For a lumped radial network, the mathematical model can be represented by equation 
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(3.62) and (3.63) in Chapter 3. In the two-area system, the networks can be modelled 

by the node equations as, 

 
NETYi V

 
(6.4) 

where i is the vector of currents injection into the networks; V is the vector of bus 

voltages in the networks; YNET is the admittance matrix of the networks. 

6.4 Eigenvalue Analysis and Time Domain Simulation 

6.4.1 Eigenvalue Analysis 

The first step to conduct eigenvalue analysis is to obtain the state-space model of the 

overall system. The overall state-space model of the studied systems can be derived by 

combining the linearized dynamic equations of all the electrical components. 

The linearized dynamic equations for a single synchronous machine with excitation 

system can be obtained the mathematical model at a steady operating point. The 

linearized model can be written in state-space form as, 

 1 1 1i i i i gi i giA B C      x x i v  (6.5) 

 1 2 3 0i i i gi i giD D D     x i v  (6.6) 

where ,
T

i gi fdiv   x x . 
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Then, the model of four synchronous machines with excitation systems can be 

represented in the state-space form as 

 1 1 1g gA B C      x x i v  (6.7) 

 1 2 3 0g gD D D     x i v  (6.8) 

where  1 4, ,
T

    x x x , 
1 4, ,

T

g g g
      i i i , 

1 4, ,
T

g g g
      v v v . 

The linearized equation of the interconnected networks transmission line can be 

demonstrated as 

 g NET gY  i v  (6.9) 

Based on equation (6.7), (6.8) and (6.9), the overall state-space model for two area 

system is represented by, 

 A  x x  (6.10) 

In this chapter, the cycloconverter is modelled by an algebraic equation. So, the 

mathematical model of the two-area system with the FFTS (Case 2 and 3) can also be 

represented by equation (6.10).  

For comparison, the eigenvalue analyses are carried out for Case 1, 2 and 3. There are 

three operating points for Case 1, 2 and 3, shown as Table 6.1. Table 6.2 shows the 

eigenvalue for the inter-area oscillation in Case 1, 2 and 3. From the eigenvalues in 
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Table 6.2, the damping ratio and frequency of the inter-area mode increases as more 

conventional AC tie lines are replaced by the FFTS under the same operating point. 

Furthermore, when the power flow of the tie lines increases from 200 MW to 600 

MW in the same case, the damping ratio of the inter-area mode reduces and the 

frequency of inter-area mode changes slightly. The above results indicate that the 

damping performance of the inter-area mode can be improved when the FFTS is 

utilised as AC tie line in multi-area system. 

Table 6.1 Operating points for Case 1, 2 and 3 

Operating 

Points 

Active power from Area 

1 to Area 2 (MW) 

1 200 

2 400 

3 600 

Table 6.2 Eigenvalues of inter-area oscillations in Case 1, 2 and 3 under different 

operating points 

Studied Case 
Inter-area 

Mode 

Frequency 

( Hz ) 

Damping 

Ratio 

Case 1 (200 MW) -0.33 ± 3.66i 0.58 0.089 

Case 2 (200 MW) -0.49 ± 4.44i 0.71 0.112 

Case 3 (200 MW) -0.59 ± 4.79i 0.76 0.121 

Case 1 (400 MW) -0.30 ± 3.65i 0.58 0.082 

Case 2 (400 MW) -0.44 ± 4.44i 0.71 0.099 

Case 3 (400 MW) -0.51 ± 4.85i 0.78 0.105 

Case 1 (600 MW) -0.17 ± 3.52i 0.56 0.048 

Case 2 (600 MW) -0.24 ± 4.34i 0.69 0.056 

Case 3 (600 MW) -0.31 ± 4.80i 0.76 0.064 
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6.4.2 Time Domain Simulation 

To verify the result of eigenvalue analysis, the time domain simulations are conducted 

in PSCAD/EMTDC. The simulation platform for Case 1, 2 and 3 are established. To 

excite the inter-area oscillations, a three-phase ground fault happens at Bus B8 in the 

above three cases. The fault starts at 6.0s, and its duration time is 0.1s. 

Fig. 6.5 (a), Fig. 6.6 (b) and Fig. 6.7 (c) demonstrate the active power transferred from 

Area 1 to Area 2 in Case 1, 2 and 3 under different operating points. The dynamic 

responses of the active power also indicate that the damping performance of inter-area 

oscillations can be improved if the conventional AC tie line is replaced by the FFTS. 

The results of this dynamic simulation can confirm the eigenvalue analysis. 

Fig. 6.5 (a), Fig. 6.6 (b) and Fig. 6.7 (c) shows the voltage profiles at Bus B7 in Case 1, 

2 and 3 under different operating points. The dynamic responses of voltage indicate 

that the FFTS can improve the voltage fluctuation. This improvement is also 

attributed to the reduced impedance of the transmission line in the FFTS. 
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(a) Active power from Area 1 to Area 2 

 

(b) Voltage profile at Bus B7 

Fig. 6.5 Dynamic responses in Case 1, 2 and 3 (Operating point 1) 
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(a) Active power from Area 1 to Area 2 

 

(b) Voltage profile at Bus B7 

Fig. 6.6 Dynamic responses in Case 1, 2 and 3 (Operating point 2) 
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(a) Active power from Area 1 to Area 2 

 

(b) Voltage profile at Bus B7 

Fig. 6.7 Dynamic responses in Case 1, 2 and 3 (Operating point 1) 
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6.5 Power Flow Control via Cycloconverter 

In the FFTS, the cycloconverters originally operate as the static frequency changer. 

Under this circumstance, the cycloconverter cannot control the power flow through 

the FFTS. In this section, the additional controller is proposed to be implemented on 

the cycloconverter to achieve power flow control.  

The structure of FFTS for system interconnections is shown as Fig. 6.1. There are two 

cycloconverters at each terminal of the FFTS. The cycloconverter is a thyristor 

phase–controlled converter, and it is possible to design a feedback controller on it to 

achieve power flow control. For the sake of simplicity, only one cycloconverter is 

controlled, and the other cycloconverter remains as the static frequency changer. 

Cycloconverter

C1

Pl

60 Hz

PI
Pulse-Generating

Unit

20 Hz

Measured Pl

Pl
*+

-

Cycloconverter

C2

60 Hz

 

Fig. 6.8 Power flow controller for FFTS 
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The power flow controller on the cycloconverter is implemented as Fig. 6.8. The active 

power through the FFTS is chosen, and the proportional-integral (PI) controller is 

applied to track the control reference.  

To verify the effectiveness of power flow controller, Case 4 is established as follows, 

Case 4: the proposed power flow controller (as Fig. 6.8) is implemented in Case 2.  

For comparison, time domain simulations for Case 2 and Case 4 are both conducted. 

In the following simulations, Case 2 and Case 4 are at the Operating point 2, which 

means 400 MW power is transferred from Area 1 to Area 2. Since there is no power 

flow controller, the power transferred through the FFTS and the conventional AC tie 

line is distributed according to the impedance of transmission lines. Consequently, the 

power flows through the FFTS is 300 MW, and the power flows through the 

conventional AC tie lines is 100 MW. 

After the implementation of power flow controller on one cycloconverter in the FFTS, 

the power transferred through the FFTS can be regulated. If the total power 

transmitted from Area 1 and Area 2 remain the same, the power flows through the 

conventional AC tie line will change accordingly. In the following simulation, the 

control reference for the power transferred through the FFTS is set to 250 MW 

initially. Then, the control reference is changed to 350 MW at 6 s during the 

simulation. 
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Fig. 6.9 Active power via FFTS in Case 2 and Case 4 

Fig. 6.9 shows the active power transmitted through the FFTS in Case 2 and 4. The 

simulation result indicates that the power flow controller on the cycloconverter can 

successfully regulated the power flow through the FFTS. In Case 4, the power flow 

controller maintains the active power through the FFTS at 250 MW before 6 s. After 

the change of control reference, the power flow controller demonstrates its ability to 

track the new control reference. 

Fig. 6.10 demonstrates active power transmitted through the conventional AC tie line 

in Case 2 and 4. In Case 4, since the total power from Area 1 and Area 2 remains the 

same, the power through the conventional AC tie line is changed accordingly during 

the simulation. Before 6 s, the active power through the conventional AC tie line is 

150 MW, and the active power changes to 50 MW after 6 s.  
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Fig. 6.10 Active power via conventional AC tie line in Case 2 and Case 4  

6.6 Summary 

This chapter has proposed to apply the FFTS in system interconnection. Through the 

FFTS, the electrical length between different areas can be reduced significantly, and 

thus the damping of the inter-area oscillations can also be improved. To study the 

benefits of the FFTS, it has been utilised to replace the conventional AC tie lines in 

the two-area system. The dynamic model of the two-area system with the FFTS was 

presented. Based on the model, the eigenvalue analysis has been conducted to 

investigate the influence of the FFTS on the inter-area oscillations. Then, the result of 

the eigenvalue analysis was confirmed through the time domain simulation. Both the 

eigenvalue analysis and the time domain simulations demonstrated that the damping of 
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the inter-area oscillation can be improved through utilisation of the FFTS. Furthermore, 

with additional control on the cycloconverter, the FFTS achieved the power flow 

control in the two-area system. 
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CHAPTER 7 CONCLUSION AND 

FUTURE RESEARCH WORK 

7.1 Conclusion 

The low carbon economy has become one of the most discussed issues around the 

world. The utilisation of renewable energy is a solution to reduce carbon emissions. 

Among all renewable energies, wind energy is the most widely utilised at present. 

With the rapid development of wind energy, large scale wind farms are integrated into 

power grids and provide power to meet the energy demands. Under certain 

circumstances, large scale wind farms are even considered to replace some 

conventional T-G units. Although the replacement of T-G units can reduce air 

pollution and protect the environment, the dynamics of the conventional power 

systems may be affected by the inclusion of wind energy. Previous research focused 

on the impact of wind energy on the small signal stability of conventional power 

systems. In this thesis, the influence of wind energy on conventional power systems is 

evaluated from the subsynchronous resonance (SSR) perspective.  

On the other hand, the long distance transmission of wind energy also becomes a 

technical issue. In the early days, wind farms were often constructed onshore. As many 
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wind energy resources are located offshore, more offshore wind farms are developed to 

obtain energy. To cope with the long-distance delivery, the fractional frequency 

transmission system (FFTS) is proposed as a new solution to transmit the energy from 

offshore wind farms. Through reducing the transmission frequency, the capacity of the 

transmission line can be increased several fold. The FFTS is also very suitable to 

deliver offshore wind energy. The gearbox of wind turbines can be reduced in the FFTS, 

and the investment and maintenance costs are lower compared with the HVDC. In this 

thesis, a DFIG-based wind farm is proposed to be integrated in the main grid via FFTS. 

The dynamic performance, especially the small signal stability, of the FFTS with wind 

farms is the focus of this research. The damping performance of FFTS is compared with 

that of the conventional AC transmission system with wind farms. The method to 

improve the damping of FFTS is also discussed. 

The FFTS can also be used in system interconnections. Through the reduced 

transmission frequency, the electrical length between areas is greatly decreased. 

Another benefit of the FFTS in grid interconnections is that it can easily form a 

network as the conventional AC system. Furthermore, the FFTS has the potential to 

control the power flow.  

The main conclusions of this thesis can be summarised as follows,  
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1. The influence of DFIG-based wind farms on the subsynchronous resonance (SSR) 

of conventional power systems was systematically examined. To evaluate the impact, 

a new test system was modified from the IEEE first benchmark model (FBM). The SSR 

model of the modified test system was also presented. Based on the SSR model, the 

eigenvalue analysis was conducted, and the simulation platform for the test system was 

established in PSCAD/EMTDC. The impacts of the wind farms on the SSR of the 

conventional T-G unit were evaluated from the torsional interaction (TI) and induction 

generator effect (IGE), and the conclusions can be summarized as follows: 

1) When the conventional power plants were replaced by an equivalent DFIG-based 

wind farm, the TI of the remaining T-G unit will become worse. The TI of the T-G unit 

was also found to be affected by three factors related to the wind farm: the scale of the 

wind farm, the rotor side controller and the operating point of the DFIG-based wind 

turbine. The conclusion can be expressed as follows, 

 The larger the scale of wind farm, the less damping for the TI of the T-G unit. 

 The inner current PI controller for the rotor side converter (RSC) in the 

DFIG-based wind turbine has a significant influence on the TI of the 

conventional T-G unit. It was found that the smaller proportional gain of the PI 

controller, the torsional dynamics of the T-G unit will have better damping 

performance. 
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 Under different wind speeds, the operating point of a DFIG-based wind 

turbine was different. The higher the rotating speed of a DFIG led to more 

severe torsional oscillation of the T-G unit. 

2) The impact of wind energy on the IGE mainly depends on the compensation level of 

the series compensated transmission line. When the compensation level was high 

enough to excite the IGE of the test benchmark, the DFIG-based wind farm made the 

instability even worse. When the compensation level is low and the system can 

maintain the stability after the fault, the damping of IGE was improved by the 

DFIG-based wind farm. In addition, the IGE was also influenced by the scale of the 

wind farm. As more conventional power plants are substituted by DFIG-based wind 

farms, the damping of IGE will become worse. 

2. A novel transmission system, the fractional frequency transmission system, was 

proposed to deliver the electricity from offshore wind farms. With the vast 

development of offshore wind farms, the long distance transmission of the wind energy 

has become a technical issue. In particular, when the transmission distance exceeded 50 

km, the charging reactive current in the submarine cable reduces the amount of active 

current over the distance until it becomes technically impossible or economically not 

reasonable. The FFTS provided another technical option to solve this problem. 

Through the reduced transmission frequency, the FFTS can significantly increase the 

transmission capacity. In this thesis, a DFIG-based wind farm was integrated to the 
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main grid through FFTS. The wind farm directly generated electricity at 1/3 of the 

standard transmission frequency, and then the electricity was transmitted through the 

low frequency transmission line to the main grid. To analyse the dynamics, the small 

signal stability model of the FFTS with the DFIG-based wind farm was presented. 

Then the eigenvalue analysis is carried out to evaluate the damping performance of 

such a system. To confirm the results of the eigenvalue analysis, the time domain 

simulations were carried out in both the single machine infinite bus (SMIB) and the 

multi-machine system. The damping performance of the FFTS with wind farms can be 

concluded as follows, 

1) Both the eigenvalue analysis and time domain simulations indicated that the FFTS 

with the wind farm had a worse damping performance than the traditional AC 

transmission system with the wind farm.  

2) To improve the damping performance of the FFTS with wind farms, a feedback 

controller was proposed for the FFTS. This controller was implemented on the 

cycloconverter. With the support of this controller, the damping of wind farms with the 

FFTS was greatly improved and is even better than that of the wind farms with the 

traditional AC transmission system. 

3. The FFTS was also proposed to be utilised in system interconnections. The FFTS can 

effectively reduce the impedance of tie lines between different areas. The model for the 
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FFTS in the two-area system was presented. The dynamics of such a system was 

studied, and the conclusions can be summarised as follows, 

1) The damping performance of the inter-area oscillations in the multi-area system can 

be improved through the FFTS. The eigenvalue analysis and dynamic simulations were 

both carried out in the two-area system, and their results confirmed the above 

conclusion. 

2) The power flow between different areas can also be controlled through the FFTS. In 

the FFTS, the cycloconverter originally operated as a static frequency changer. 

However, it is a thyristor phase–controlled converter and has the potential to control the 

power flow through the FFTS. This thesis proposed a power flow controller for the 

FFTS, and this controller was verified through the dynamic simulation on 

PSCAD/EMTDC. 

7.2 Future Research Work 

Based on the research work presented in this thesis, future studies can be continued in 

the following aspects: 

1. In the SSR study, the DFIG-based wind farm is often represented by an aggregated 

single DFIG-based wind turbine. However, the wind turbines in a wind farm are 

operating under different conditions, and the aggregated model of wind farm will not 
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reflect the dynamic effects of distributed generation sources. Future research can be 

conducted to investigate the SSR of DFIG-based wind turbines under unequal 

conditions.  

2. This thesis proposed to deliver the power from offshore wind farm through the 

FFTS, and the small signal stability analysis has been conducted for the above system. 

However, the transient stability and frequency stability of the FFTS with wind farms 

need further investigation. Furthermore, the harmonics introduced by the 

cycloconverters also need detailed analysis. 

3. In Chapter 6, the power flow controller for the FFTS in system interconnections has 

been proposed. This was a preliminary design for power control, and the power flow 

controller was only implemented on one cycloconverter of the FFTS. Further 

coordinated control for both cycloconverters in the FFTS can be designed to achieve 

better performance.    
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APPENDIX 

A.1 Parameters for the New Test Benchmark System in 

Chapter 4 

A.1.1 Parameters of the IEEE First Benchmark System 

1)  Per-unit base values 

Pb=892.4 MVA, Vb=539 kV, ωb=376.99 rad/s 

2)  Multi-mass of turbine-generator unit 

Inertia constant (s): 

H1=0.092897, H2=0.155589, H3=0.858670, H4=0.884215, H5=0.868495 

Spring constants (pu torque/rad): 

K12=19.303, K23=34.929, K34=52.038, K45=70.858, K56=2.822 

3)  Generator parameters 

Generator power output: Po=0.9 pu 

Generator power factor: pf=0.9 (lagging) 

Stator armature resistance: Ra=0   
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d-axis (pu): 

Xl=0.13, Xad=1.66, Xfd=0.04, X1d=0.00573, Rfd=0.00105, R1d=0.003713  

q-axis (pu): 

Xl=0.13, Xaq=1.58, X1q=0.1045,  X2q=0.2449, R1q=0.005257, R2q=0.01819 

4)  Series compensated transmission line 

RTL= 0.0187 pu, XTL= 0.7 pu, Xc=0.371 pu 

A.1.2 Parameters of a T-G Unit in GEN 2 

Rated power: 89.24 MVA, Rated voltage: 15.01 kV 

Stator armature resistance: 0   

d-axis (pu): 

Xl=0.13, Xad=1.66, Xfd=0.04, X1d=0.00573, Rfd=0.00105, R1d=0.003713  

q-axis (pu): 

Xl=0.13, Xaq=1.58, X1q=0.1045,  X2q=0.2449, R1q=0.005257, R2q=0.01819 

A.1.3 Parameters of a DFIG-based Wind Turbine 

1)  Per unit system 

Sb= 2.2 MW, Vb= 0.69 kV 

2)  Wind turbine 
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Vw=10.903 m/s, Cp=0.4382, R= 37.049 m, ρ=1.225 kg/m
3
, Ht= 1 s 

3)  The induction machine of DFIG: 

Stator resistance : Rs=0.00462 pu  

Mutual inductance : Lm= 4.348 pu 

Stator self-inductance : Lss= 4.450 pu,  

Rotor self-inductance : Lrr= 4.459 pu,  

Rotor resistance : Rr= 0.006007 pu, 

Inertia constant : Hg=0.5 s 

4)  AC-DC-AC converter: 

C= 0.11 F, vDC=1.5 kV, Lg= 0.3 pu, Rg= 0.003 pu 

5)  Control parameter: 

Kp1=0.5, Ti1=2, Kp2=0.0025, Ti2=0.005, Kp3=0.5, Ti3=2, Kp4=1.5, Ti4=0.075, Kp5=1, 

Ti5=0.02 
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A.2 Parameters for the Case study in Chapter 5 

A.2.1 Parameters of a DFIG-Based Wind Turbine 

1)  Per unit system: 

Sb= 2.2 MW, Vb= 0.69 kV 

2) Wind Turbine: 

Vw=12 m/s, Cp=0.4382, R= 37.049 m, ρ=1.225 kg/m
3
, Ht= 1 s 

3) The induction machine of DFIG: 

Rs=0.00462 pu, Lm= 4.348 pu, Lss= 4.450 pu, Lrr= 4.459 pu, Rr= 0.006007 pu, Hg=0.5 s 

4) AC-DC-AC Converter:    

C= 0.11 F, vDC=1.5 kV, Lg= 0.3 pu, Rg= 0.003 pu 

5) Control parameter: 

Kp1=0.5, Ti1=0.4, Kp2=0.025, Ti2=0.075, Kp3=0.5, Ti3=0.4, Kp4=1, Ti4=0.05, Kp5=0.8, 

Ti5=0.032 

A.2.2 Parameters of the transmission line 

Length of the transmission line: 100 km 
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Line-to-line RMS voltage: 230 kV 

Combined resistance of the transformer and transmission line: RTL= 5 Ω 

Combined inductance of the transformer and transmission line: LTL= 0.13 H 
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