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Abstract

We develop a novel technique that allows us to directly probe the thermodynamics of the two

dimensional limit of the nearest neighbour square lattice clock model. It is a process that uses

exact diagonalisation techniques through the use of transfer functions. It is conceptually easy

to understand as an extension of the transfer matrices used to solve the 1-D Ising model and

other similar Hamiltonians. This transfer function technique is applied to a set of 1-D spiral

geometries with increasing radius N . In the limit N → ∞ the spiral becomes the square

lattice and our results are interpreted with respect to this limit. We present convincing

evidence that the two transitions that are exhibited in the p > 4 clock model have singular

behaviour and above a certain temperature between the transitions convergently behave like

the plane rotator model.
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Chapter 1

INTRODUCTION

Before commencing on any investigation of this size a section is required to provide the

context with which the study falls within. This is to act as a starting point for those

unfamiliar with the subject so that the argument that runs through the investigation can

be followed throughout; this includes those without extensive prior knowledge of condensed

matter systems. This requires significant prerequisite knowledge.

The focus of this investigation is on phase transitions within two dimensional magnets and

comes after much important work in the area over a period of fifty years. Extensive research

on the particular models studied here have included analytical results [1]-[12] that originate

from field theoretic [1]-[6] and renormalisation group analysis [10] with numerical results

on finite systems to enforce these conclusions [18]-[22]. There have been complementary

experimental results performed on liquid helium films, thought to exhibit similar behaviour

to the models we study [13]-[16]. These results are to be reviewed in this section, but first

a thorough revision of basic condensed matter and statistical physics results is required.

The beginning of this introduction starts with the notion that accessible condensed mat-

ter systems are those with very high levels of symmetry that originates from the atomic

lattice.

The crux of condensed matter systems which provide the rich range of different phenom-

ena that can be seen experimentally stems from the behaviour of the electrons within the
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lattice. A large section here will be devoted to building up some of these phenomena from the

free electron model. The introduction begins at the hydrogen atom and its orbital structure

which will include the Hund’s rules that arise from crystal fields and a relativistic approach.

Once the focus turns to electrons within the lattice it will be seen that the electrons form a

band structure, this arises from the fact that with no interactions the electron has a lower

energy state through delocalising across the system. This naturally will pass onto the single

site Hubbard model where there exists a simple on-site interaction term between electrons.

Though conceptually easy to understand, this is a nontrivial model which has a whole wealth

of phases and is the nexus towards many complex models. The focus here will be on mag-

netism and there will be a derivation of the antiferromagnetic Heisenberg model in the limit

of a large repulsive interaction. The Hubbard model is an exemplary starting point for any

theoretical model to be built from physical systems, though with any physical example the

model is far more complex with many electrons per site but it begins with considering the

hopping and on-site repulsion energy scales. The section moves to classical magnetism and

some examples of ground state Heisenberg Hamiltonians for simple lattices through exact

diagonalisation, uniting what has been reviewed on both the lattice and magnetism.

After extensive reviews of magnetic ground states the section will move to a discussion

of the effect of temperature on the system. There will be a review of standard statistical

physics derivations that arise from the probabilistic nature of the canonical ensemble, which

will include the physical definitions of some key thermodynamic quantities: free energy,

correlation length, entropy and specific heat. These quantities provide significant singular

behaviour in the region of critical points and after some discussion on them the section will

move to discussing phase transitions.

We first introduce phase transitions through Landau’s formulation, which is a mean

field theory approach. It presents us with qualitative understanding of phase transitions

and symmetries within the system relating to critical exponents. Once we state where it

breaks down, the notion of renormalisation group theory is presented and we give a very

2



simple example of the analysis using the 1-D Ising model. This introduces the concept of

universality and critical points. We move onto the existence of phase transitions in low

dimensions and find that 2-D is critical.

Once normal phase transitions are discussed we move onto transitions influenced by topo-

logical charges, which includes a discussion of superfluid helium. We present the key results

that occur from the Kosterlitz-Thouless transition, one which is based on the unbinding of

vortices. We also review much of the numerical literature on clock model and plane rotator

results.

After extensive background on the physics we discuss the mathematical concept of duality

and apply it to condensed matter systems.

This investigation is split up into three parts. In chapter 1 we review the basic condensed

matter background required to comprehend the further sections. In chapter 2 we present a

derivation of the transfer function technique that we eventually use on the spiral systems

and in chapter 3 we present our results.

1.1 Building the Bravais Lattice

The systems that are dealt with in solid state physics tend to be in environments that

respect the symmetries of different point groups to greater or lesser degrees. There is a

certain amount of translational symmetry which is exploited both experimentally and in

theoretical calculations; within the point group there is a varying degree of rotational and

reflective symmetry. The understanding in this section will begin in the way lattices are

built; starting with the primitive unit cell which are tessellated using lattice vectors. Simple

examples will be given in 2-D before moving onto more physically realistic 3-D examples.

There will be discussion on the reciprocal lattice.
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1.1.1 The Unit Cell

The unit cell and the lattice vectors are the building blocks that create the Bravais lattice.

The unit cell present the basic elements, that when tessellated using the lattice vectors create

the lattice, which spans the space. The simplest example is the linear chain, seen in figure

1.1 . Starting from one unit cell, a lattice vector provides the position of all other unit cells

as integer amounts of the initial vector. In the case of the linear chain, the position of all

other unit cells can be provided as

v = nax̂. (1.1.1)

From this simple definition we can say that there is a large amount of translational symmetry;

each unit cell is equivalent to every other unit cell.

(a)

(b)

Figure 1.1: The linear chain shown in (a) [33] and the square lattice in (b) with different
possible unit cells [32]

In figure 1.1 we provide a 2-D square lattice with many possible unit cells. The number

of lattice vectors required to tessellate the unit cell over the whole lattice is the dimension

of the lattice. With a 3-D lattice all points can be described by the position vector v:

v = n1a1 + n2a2 + n3a3, (1.1.2)

where ni are integers and the lattice vectors ai are not in general orthonormal. In figure 1.2

we illustrate two well known cubic lattices: face centred cubic (fcc) and body centred cubic
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(bcc) with their conventionally used lattice vectors.

(a) Structure of NaCl both
atoms form inter-penetrating
fcc lattices

(b) Structure of CsCl which
forms a bcc lattice

Figure 1.2: Examples of fcc (a) and bcc (b), both taken from [31]

1.1.2 The Reciprocal Lattice

The reciprocal lattice provides a neat analytical treatment of the periodicity inherent in

lattice systems, it provides the building block of investigating the lattice experimentally as

it is the Fourier transform of the real space lattice. Much of what we discuss here is found

in [34].

The reciprocal lattice of a Bravais lattice made of points R is defined as the points k

that satisfy

eik·R = 1 (1.1.3)

for every point within the Bravais lattice, which in turn creates another Bravais lattice and

can be written as a linear combination of three lattice vectors bi:

k = k1b1 + k2b2 + k3b3, (1.1.4)
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where

b1 = 2π
a2 ∧ a3

a1 · (a2 ∧ a3)

b2 = 2π
a3 ∧ a1

a1 · (a2 ∧ a3)

b3 = 2π
a1 ∧ a2

a1 · (a2 ∧ a3)
.

(1.1.5)

The simple cubic lattice has Cartesian vectors as its lattice vectors ai = ax̂i, where a is some

lattice constant, and from (1.1.5) its reciprocal lattice is another square lattice bi = 2π
a

x̂i.

The face centred cubic lattice in figure 1.2a has a body centred cubic lattice as its

reciprocal lattice and likewise the body centred cubic lattice has a face centred cubic lattice

as its reciprocal lattice with lattice constant 4π
a

.

1.2 Magnetism

Magnetism is a vast subject to introduce, with plenty of different manifestations within

condensed matter systems ranging from the quantum regime to the classical. A lot of the

behaviour that is experimentally observable occurs due to the nature of the electrons within

the lattice. After building some groundwork on electrons in a lattice we shall present a

microscopic model for interacting electrons in a lattice, the Hubbard model that can lead

to magnetic phenomena. This model has a whole wealth of physics embedded within it but

we shall be dealing with simply one region of interest.

We start with a single hydrogen atom to present the idea of different orbital states that

occur in the shells of the atom. This will lead naturally to Hund’s rules and the effect of a

symmetric crystal field on the electronic states.

Electrons in a lattice interact with a periodic potential, so it can be assumed that the

actual state it takes can be somewhat periodic. We deal with the tight binding Hamiltonian

which leads to the Fermi gas. We get there through a variational approach and see that the
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lowest energy states are those that are delocalised across the system. This leads us nicely

to band structure analysis, the structure factor and the effect of the lattice on the energy

states of the system.

Up until then only non-interacting electrons are considered and electrons are highly

interacting, and so we introduce a very simple two body interaction. This will be the single

site Hubbard model which has such a wealth of different phenomena associated with it. We

will focus on a single case of a large repulsive term which will lead us, through perturbation

theory, to the Heisenberg model.

We then move to the crux of the investigation which is classical magnetism. We solve

the Heisenberg model for many different systems and discuss the different types of order.

Once we have put ourselves in good stead with a magnetism background and the ground

state of the system we will be able to move onto the effect of temperature on magnetic

systems and will start discussing basic thermodynamics before we move onto the effect of

phase transitions, and how they are observed.

1.2.1 The Hydrogen Atom

The behaviour of electrons guides most of the phenomena experienced in condensed matter

systems. Though the collective behaviour of many electrons within a periodic potential is

the source of solid state physics, it is worth discussing a single electron in a hydrogen atom.

We will see that the energy levels within the hydrogen atom split quite naturally into shells

which fill up and behave as core electrons, and the open shell is what guides the physics.

Once we have introduced the shells within the atom, we discuss Hund’s rules and their

meanings, which brings us naturally onto the effect of the crystal.

There won’t be any complex derivations, rather we will state the answer to a lot of the

mathematics.

We begin with the single particle Hamiltonian of the hydrogen atom.
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[

− ~
2

2m
∇2 − e2

|r| − E

]

ψ (r) = 0, (1.2.1)

where m and e are the mass and the charge of the electron respectively. The solution to this

Hamiltonian naturally separates into radial and angular wave functions. The radial part

describes the energy of the electron and the angular part describe the angular momentum,

providing three quantum numbers. The two quantum numbers that are associated with the

angular momentum describes the total angular momentum and the amount in one direction.

No more can be known as the angular momentum operators in different directions do not

commute

[Li,Lj] = i~ǫijkLk, (1.2.2)

yet the total angular momentum operator commutes with all directions

[L,Li] = 0, (1.2.3)

where L = L · L. The final wave function is of the form

ψ (r) = Rnl (r)Ylm (θ, φ) , (1.2.4)

where the quantum number n refers to the energy, l refers to the total angular momentum

and follows the rule that l < n. Both of these numbers make up the electron shell, which

are filled with electrons of different values of m that correspond to the amount of angular

momentum in an arbitrary direction which follows that −l < m < l. Each configuration

of n,m, l corresponds to a possible electron state and considering that there is also a spin

degree of freedom, it allows two electrons per state.

The energy of each electron state is
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E ∼ − 1

n2
, (1.2.5)

which depends only on the principal quantum number n. The radial part of the wave

function in turn depends on the n and l. It is of the form

Rnl (r) ∼ rle− r
nL2l+1

n−l−1 (r) , (1.2.6)

where L2l+1
n−l−1 are Laguerre polynomials. It should be noted that the exponential tail as seen

in figure 1.3 is less aggressive in higher shells, noting that the electron cloud is more likely

to be found further away from the atom in higher shells. This makes sense as it is higher in

energy and so further away from the positive nucleus. As this is in polar coordinates, the

radial probability is

Pnl (r) = r2|Rnl (r) |2, (1.2.7)

and some sample wave functions in different shells with their probabilities are:

R10 ∼e−r

R20 ∼ (2 − r) e− r
2

R30 ∼
(

27 − 18r + 2r2
)

e− r
3 ,

(1.2.8)

and those within the same shell

R30 ∼
(

27 − 18r + 2r2
)

e− r
3

R31 ∼ (6 − r) re− r
3

R32 ∼r2e− r
3 .

(1.2.9)
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(a) The radial probabilities of the 1s, 2s and 3s shells

(b) The radial probabilities of the 3s, 3p and 3d shell

Figure 1.3: Radial probabilities of some sample wave functions

It can be seen that between shells, there is a huge difference in the position of the electron.

The lower the shell, the more localised is the electron and nearer the nucleus. Within the

shell, it can be seen that those with lower total angular momentum are further away from

the nucleus. The angular momentum states l = 0, · · · , 3 are labeled s, p, d, f respectively

and are usually prefixed with their principal quantum number n.

The angular part to the wave function Ylm are spherical harmonics

Ylm ∼ eimφPlm (cos (θ)) , (1.2.10)
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where Plm are Legendre Polynomials. Some sample wave functions are

Y00 ∼ 1

Y11 ∼ eiφ sin (θ)

Y10 ∼ − cos (θ)

Y22 ∼ e2iφ sin2 (θ)

Y21 ∼ eiφ sin (θ) cos (θ)

Y20 ∼
(

3 cos2 (θ) − 1
)

.

(1.2.11)

(a) (b)
(c)

Figure 1.4: The angular probabilities Y21, Y22 and Y20 in (a), (b) and (c) respectively of the
3d shell.

The shells with higher energy have more states as larger values of orbital angular mo-

mentum are available.

At the moment all states that have the same principal quantum number n are degenerate

and so we must answer the question: what happens with elements that have more than one

electron. It can be assumed that the states are very similar, despite the fact that electrons
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interact with each other, the dominant energy is the attraction of the nucleus. The full

answer lies with Hund’s rules.

Hund’s Rules and Crystal Field Effects.

Hund’s rules describe a set of atomic interactions that lift the degeneracy that is apparent

within the atom but it also competes with interactions within the lattice, one of them being

the crystal field.

The first rule states that in an open shell, the total spin is maximal. This is due to the

fact that the electron-electron interaction is minimal with an antisymmetric spatial wave

function, which leads to a symmetric spin wave function.

The second rule states that the orbital angular momentum is maximised, subject to the

Pauli exclusion principle. Depending on the system, this tends to be in direct competition

with effects of the lattice, and much work is needed to understand which is the dominant

energy scale.

The third rule originates from spin-orbit coupling, which states that for the first half

of an open shell the spin must be anti-parallel to the orbital angular momentum and in

the second half the spin is parallel. This leads to spin and angular momentum no longer

being good quantum numbers, rather j is used which is the total angular momentum which

corresponds to the operator J = L + S such that for the first half of the shell j = |l − s|

and the second half j = |l + s|. This observable still acts very much like orbital angular

momentum, it splits into states that are varying degrees parallel to a direction labelled by

jz such that |jz| ≤ j.

These are all interactions that occur in free atoms, which are in a spherically symmetric

environment. In lattices the environment is vastly different, we tend to deal with cubic

symmetric environments, a potential that originates from the Pauli exclusion of the electron

cloud that surrounds the atom. If we construct cubic symmetric wave functions from the

spherically symmetric wave functions, then the orbital angular momentum quantum num-
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ber m is not an appropriate quantum number and there is mixing between states. The

states that we form break into irreducible representations that map onto each other under

transformations of the point group. We give examples for p and d shells:

1√
2

(Y11 + Y11̄) ∼ x

r

1√
2

(Y11 − Y11̄) ∼ y

r

Y10 ∼ z

r
.

(1.2.12)

For the d-shell there are two irreducible representations that map onto each other under the

cubic symmetry transformations, the first is the t2g shell

1√
2

(Y21 + Y21̄) ∼ zx

r2

1√
2

(Y21 − Y21̄) ∼ yz

r2

1√
2

(Y22 − Y22̄) ∼ xy

r2
,

(1.2.13)

and the second is the eg

1√
2

(Y22 + Y22̄) ∼ x2 − y2

r2

Y20 ∼ 3z2 − 1

r2
.

(1.2.14)

In a cubic lattice if the crystal field is dominant over the second Hund’s rule, these are

the states that are occupied. The degeneracy between the two representations is lifted when

considering the effect of the electron states around the atom. Notice that the eg states in

a cubic lattice will point towards the sites that surround it and the t2g points towards the

unoccupied space. This splits the energies of the two shells depending on whether the states

it points to are holes or electrons.
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1.2.2 Chemical Bonding and Hopping

Here we shall begin dealing with the lattice, where we introduce a periodic 1
r

potential to

the Hamiltonian which will give us a kinetic energy term, hopping electrons between nearest

neighbours. With no interaction between electrons this leads to delocalised states across the

system, which amounts to an ideal Fermi gas. We see that the lattice is very important to

the energy states and we start dealing with the structure factor which gives us the band

structure of the system.

In a lattice electrons interact with more than just the one potential as we have been

considering so far, they interact with a lattice of periodic potentials

H =
p2

2m
− e2

∑

i

1

|r −Rnuc
i | , (1.2.15)

where Rnuc
i are the positions of the lattice sites.

We deal first simply with a linear chain of hydrogen atoms and we assume that the states

of the system will form some linear combination of the single potential states on each atom

ψ =
∑

i

uiψi, (1.2.16)

where ψi ∼ e−|r−Rnuc
i

|. As these are non orthogonal states we must solve [66]

Hijuj = EOijuj, (1.2.17)

where Hij = 〈ψ†
i |H|ψj〉 and Oij = 〈ψi|ψj〉. We shall first solve this for the linear chain but

we make the critical assumption that only wave functions that are associated with nearest

neighbour sites have a non zero overlap:

Oij = δij + αδ〈ij〉, (1.2.18)

and similarly for the Hamiltonian
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Hij = ǫδij − tδ〈ij〉, (1.2.19)

where ǫ is the on-site energy and t is the nearest neighbour hopping term.

It is easier to deal with states that are both local to each atom and orthogonal to each

other, so we create Wannier States that satisfy

cic
†
j|0〉 = δij|0〉, (1.2.20)

where c†
i creates a Wannier State on site i. We can now write this Hamiltonian in second

quantised form

ǫ
∑

i

c
†
ici − t

∑

〈ij〉
c

†
icj, (1.2.21)

where we have renormalised ǫ and t according to the Wannier States.

This Hamiltonian is trivially solved using a Bloch Wave, and our first example will be a

linear chain of N atoms:

c
†
k =

1√
N

∑

j

eikjc
†
j, (1.2.22)

where k ∈ 2πn
N

, which diagonalises the Hamiltonian

H =
∑

k

[ǫ− t cos (k)] c†
kck, (1.2.23)

and the cosine term originates from the structure factor

γk =
1

Z

∑

〈0n〉
eikn. (1.2.24)

The eigenstates of this Hamiltonian are delocalised across the system with a certain

phase on each site. Therefore in a lattice it can be assumed that the electron lowers its

energy by delocalising whenever possible. Notice that in this case the lowest energy state is

15



the k = 0 state where the phase is the same across every site.

This is the standard case for all lattices with this model, that the diagonalised Hamilto-

nian is of the form

H =
∑

k

γkc
†
kck, (1.2.25)

where ǫ = 0 is a standard simplification. We will list the structure factor for some well

known lattices:

square lattice

γk =
1

2
(cos kx + cos ky) , (1.2.26)

triangular lattice

γk =
1

3

[

cos (kx) + cos

(

kx +
√

3ky
2

)

+ cos

(

kx −
√

3ky
2

)]

, (1.2.27)

body centred cubic lattice

γk = cos kx cos ky cos kz, (1.2.28)

and face centred cubic

γk =
1

3
[cos kx cos ky + cos ky cos kz + cos kz cos kx] . (1.2.29)

Thus far we have only discussed non interacting fermions. Electrons of course repel each

other with a 1
r

potential which if included would be a long range many-body interaction

and would be very non-trivial to solve. The next section discusses the inclusion of this

interaction in its simplest form which will lead to the Hubbard model.
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1.2.3 The Hubbard Model

Thus far we have discussed only non-interacting electrons within a lattice, which leads

simply to delocalised electrons across the whole system, best described using Bloch states.

In most situations this is not a physical result and it is the many-body interactions that

exist between electrons that give rise to magnetism and other interesting phenomena. This

was first shown by Heisenberg [56]. We shall state the Hubbard model as a very simple

many-body Hamiltonian between electrons and focus on the region that is of most interest

to us: a dominant repulsive energy term. This will lead to the Heisenberg model. We shall

then move onto the classical regime which is the crux of this investigation.

The easiest way to include a many-body term in the Hamiltonian with hydrogen atoms is

to include an on-site repulsive term. We assume this to be the dominant interaction between

two electrons as the potential behaves as 1
r
. With the kinetic energy term the Hamiltonian

is

H = −t
∑

σ〈ij〉
c

†
iσcjσ + U

∑

i

c
†
i↑ci↑c

†
i↓ci↓. (1.2.30)

We are still dealing with one electron level per site, but we have included a spin label

and note that the interaction term is only between two electrons on the same site that are

anti-parallel due to Pauli exclusion. This is the single-band Hubbard model, which is easily

extendable to many bands and other interactions. This is solvable using the Bethe Ansatz

but it is far beyond the capabilities of this investigation and we shall focus simply on the

trivial region 0 < t ≪ U .

In the case that U = ∞ the electrons are completely localised on a single atom with one

atom per site and there is a large spin degeneracy. We take the case that U ≫ t and using

perturbative approaches we reach the Heisenberg interaction.

Consider the Hamiltonian
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H1 = U
∑

σi

c
†
i↑ci↑c

†
i↓ci↓, (1.2.31)

with N sites and N electrons. The ground state has a high spin degeneracy with one electron

per site. We consider the perturbation

H =H1 + H2

H2 =
t

2

∑

〈ij〉σ
c

†
iσcjσ + c

†
jσciσ.

(1.2.32)

From perturbation theory it is known that the second order correction maps degenerate

states onto each other, and the resulting matrix must be diagonalised

En1n2 = −
∑

n′ 6=n

〈n1|H2|n′〉〈n′|H2|n2〉
En′ − En

, (1.2.33)

where n1 and n2 are states within the degenerate subspace which have energy En. This is the

highest order that lifts the spin degeneracy. The only states that contribute to this energy

are those that are one hop away from any ground state, which have a single doubly-occupied

state across the whole system. Between any two ground states

E = − t2

U

∑

〈ij〉

∑

{|1〉}

∑

σ,σ′

〈σiσj|
(

c
†
iσcjσ + c

†
jσciσ

)

|1〉〈1|
(

c
†
iσ′cjσ′ + c

†
jσ′ciσ′

)

|σ′
iσ

′
j〉, (1.2.34)

where the state |1〉 is a state that is one hop away. This leads to an effective Hamiltonian

that acts on the ground state sub-space:

Heff = − t2

U

∑

〈jj′〉σ

∑

〈ii′〉σ′

c
†
jσcj′σc

†
iσ′ci′σ′δij′δi′j. (1.2.35)

This leads eventually to Hamiltonian
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Heff = J
∑

〈ij〉

[

Ŝi · Ŝj − 1

4

]

, (1.2.36)

where Ŝ are the spin operators, which in spin-half space amounts to the Pauli operators,

and J = 4t2

U
. This is the Heisenberg Hamiltonian. The spin operators satisfy an angular

momentum style commutator

[

Ŝα, Ŝβ
]

= iǫαβγŜγ, (1.2.37)

where again the total spin commutes with the spin component in any arbitrary direction,

but as they do not commute with each other, just like the angular momentum operators

only the total spin and the component in one direction is known. Each state is labelled as

|M,m〉 such that

Ŝ · Ŝ|M,m〉 = M |M,m〉

Ŝz|M,m〉 = m|M,m〉,
(1.2.38)

where M = S (S + 1) and |m| ≤ S, where S is an integer or half-integer. By convention we

label the M state by S. For an electron that is spin half there are two states |1
2
, 1

2
〉, |1

2
, 1̄

2
〉.

With many spins, they can be added in different ways but in the cases that we deal

with which are in the atom we already know from Hund’s first rule that spins must add

maximally.

The operators and their observables are of order S and so we normalise them S̃ = 1
S

Ŝ

and rewriting the commutator

[

S̃α, S̃β
]

=
1

S
iǫS̃γ, (1.2.39)

which implies that in the limit of S → ∞ the commutator between different components of
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the spin go to zero. This is the classical regime, where it is possible to know the direction

of the spin. The spins becomes a vector of fixed length. The magnetic state is thus found

through minimisation of

H =
J

2

∑

〈ij〉
Si · Sj, (1.2.40)

subject to the constraint Si · Si = S2. The normal procedure for solving this is to use the

Fourier transform

Sk =
1√
N

∑

j

eik·Rj Sj

S−k =
1√
N

∑

j

e−ik·Rj Sj,

(1.2.41)

which diagonalises the Hamiltonian

H =
JZ

2

∑

k

γkSk · S−k. (1.2.42)

This complicates the spin constraint to

∑

kG

Sk · Sq−k+G = NS2
∑

G

δqG, (1.2.43)

where G are the lattice Bragg points that we explored earlier in the section on the reciprocal

lattice. This very much limits the number of non zero Sk points.

In this magnetism section we have discussed the different important interactions that

can lead to a magnetic interaction. We started with the hydrogen atom, first in free space

considering the different states, then in a lattice where we notice that the electron is kinetic

particle that delocalises across the whole system if it is allowed to. Then we notice that

electrons interact and that we must at least include an on site repulsive term, leading to

the single-band Hubbard model. We pick a certain regime of a dominant repulsive term
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and note that at half filling we are able to get a model for the magnetism that is seen: the

Heisenberg Hamiltonian. The minimisation in the classical regime is quite similar to the

hopping Hamiltonian that we saw earlier.

1.3 Statistical Physics

Thus far we have dealt solely with ground state physics. Our investigation here discusses

finite temperature phase transitions and so it is paramount that there exists an understand-

ing of how a system reacts at a finite temperature. This requires a review of statistical

physics starting from the microscopic interactions to macroscopic quantities; dealing with

the approach of ensembles to find the equilibrium state and the role of the free energy within

the system.

1.3.1 Thermodynamic equilibrium

Throughout the previous section a lot of the work was done at a microscopic level. In this

section we deal with macroscopic quantities which occur through the average of microscopic

states. In thermodynamic systems there are of order 1023 particles and it is naive to attempt

to follow the motion of each particle and explore each possible state individually. Statis-

tical physics is a means of understanding the macroscopic quantities and gain meaningful

observables of a large interacting system without the need of understanding the motion of

individual particles, and it does so through averaging over ensembles.

In the pursuit of these observables some clarity must be made on the terminology. A

macrostate is described by experimentally accessible observables without any specific knowl-

edge of the behaviour of individual particles. In contrast a microstate is the knowledge of the

behaviour of individual particles. An ensemble is the set of possible microstates and their

probabilities that make up a given macrostate. We shall discuss different types of ensembles

that are appropriate to use at different times.
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Our idea is to find the observables that occur at thermal equilibrium which we will see

is closely linked to the statistical weight and the probabilities that are assigned to each

microstate. It is assumed that all microstates that have the same energy are equally likely.

Once we discuss the partition function and ensemble averages we shall move onto the

thermodynamic quantities that arise from the partition function and discuss their physical

relevance.

1.3.2 The Gibbs Canonical Ensemble

The Gibbs canonical ensemble is the ensemble that we use throughout our investigation and

so we shall discuss it in depth here.

Consider a system connected to a heat bath which is at a fixed temperature. Only heat

is transferred between the connected systems, and so the system we consider has constant

volume and particle number but the energy may fluctuate. We create an ensemble which lists

all the possible microstates with their probabilities and group them with their associated

macrostates labelled by parameters {λ}. We assume that degenerate microstates are equally

probable, and assign a Boltzmann probability distribution to each microstate:

P (Ei) =
e−βEi

Z

Z =
∑

i

e−βEi ,

(1.3.1)

here β = 1
T

, Z is the partition function which is the sum over all possible microstates, and i

labels the state which has energy Ei. We shall see that the partition function is an important

quantity as it provides a lot of the thermodynamic quantities of the system.

If we know the probabilities of the system we are able to calculate macroscopic quantities

of the system:
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〈O〉 =

∑

iOie
−βEi

Z
, (1.3.2)

where O is some observable and Oi is its value in state i. One example of this is the mean

energy

〈E〉 =

∑

iEie
−βEi

Z

= − 1

Z

∂Z

∂β
,

(1.3.3)

and its variance

〈E2〉 − 〈E〉2 =
1

Z

∂2Z

∂β2
−
(

1

Z

∂Z

∂β

)2

=
∂

∂β

(

1

Z

∂Z

∂β

)

= − ∂

∂β
〈E〉,

(1.3.4)

which is proportional to the specific heat at constant volume. The specific heat is an

experimentally accessible quantity which measures the amount of energy required to change

the temperature of the system, and here we have related the response of a system from

an external parameter to fluctuations about some mean value. The specific heat is a key

quantity in investigating phase transitions which we will see in later sections, and it is

important as it has singular behaviour in critical regions.

An important quantity that we deal a lot with is the correlation length, which in magnetic

systems arise from the correlation function

〈S0 · Sn〉 =

∑

i S0 · Sne
−βEi

Z
, (1.3.5)

where Sn is the spin at site n. The correlation length ζ is defined in the large n → ∞ limit
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〈S0 · Sn〉 ∼ e
− n

ζ , (1.3.6)

which indicates how far correlations extend within the system, and is thus a quantity that

can help determine the order of the system.

Another key quantity to discuss here is the Helmholtz free energy which is defined both

statistically and using macroscopic quantities:

F =U − TS

= − log Z

β
,

(1.3.7)

this is an important quantity because it is minimal at equilibrium if the system holds a con-

stant volume and is at a constant temperature. This illustrates the non-trivial relationship

between temperature and amount of disorder in a system. At low temperature the energy

term dominates and so the equilibrium state is one with minimal energy. This tends to be

an ordered state, which has very low entropy. As the temperature rises, the free energy is

minimised by raising the entropy of the system. In increasing the entropy of the system, this

will tend to increase the energy, and so there is a balance between the two. This is illustra-

tive of the fact that a state at high temperature is disordered and a state at low temperature

is ordered. This plays an important role later when we discuss phase transitions.

1.4 Phase Transitions

The statistical physics that has been covered was with the idea that all thermodynamic

quantities were smooth, well defined functions, with no singular behaviour. Realistically,

physical systems exist in the thermodynamic limit where the number of statistical particles

diverges and it is possible for a system to undergo singularities in its macroscopic quantities.

This is the study of phase transitions which exist between two states of different symmetries.
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In this section we introduce the notion of phase transitions through Landau formulation,

which is a mean-field approach. We find critical points and relate them to the divergences in

thermodynamic quantities. We show that there is a degree of universality between systems

that respect the same sort of symmetries and introduce the concept of critical exponents.

We move onto renormalisation group theory which uses the idea that critical fluctuations

are key to a transition. We start with the method of decimation on the 1-D Ising chain to

present an example of the analysis. From here we discuss flow diagrams and the existence

of critical points, moving onto universality between models.

Once general information about phase transitions is presented we discuss their existence

in systems with low dimensionality. Once an argument is given about the lack of phase

transitions in 1-D, then we discuss the argument given be Mermin and Wagner about phase

transitions in 2-D. This then leads us onto the Kosterlitz Thouless transition.

We present some experimental evidence of phase transitions in superfluid helium, relating

that model onto the plane rotator model. Then we present some brief arguments about the

existence of vortices and a phase transition that is topological in nature.

After these physical introductions we briefly introduce the mathematical concept of du-

ality and its application to condensed matter systems.

1.4.1 Landau formulation

The theory and quantitative nature of phase transitions is very hard to calculate exactly.

Landau theory [54] is a conceptually easy-to-understand process which qualitatively de-

scribes the behaviour of phase transitions using broken symmetry ideas to expand the free

energy about the critical point. It is a mean-field approach which deals only with macro-

scopic quantities; there are inaccuracies associated with it but it is a very useful approach.

We shall introduce a power law expansion based on the order parameter of a system

within the context of the spin systems that we have been dealing with. From there we

follow the natural progression to phase transitions and the behaviour about the critical
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point. We shall also show where the theory is invalid. We follow arguments provided by

[55].

Generally as a system passes through a phase transition from a disordered state to

an ordered state it reduces in the number of symmetries it respects. This tends to be

characterised by an order parameter M , which behaves singularly at the critical point,

taking a non-zero value below the transition and a zero value above. The order parameter

is a macroscopic quantity and the mean-field assumption is that the fluctuations about the

mean of this order parameter are negligible, implying that the free energy can be expressed

around the critical region as a power law expansion in this order parameter

f (M,T ) = f0 + A (T )M2 + b (T )M3 + c (T )M4 + · · · − hM, (1.4.1)

where A,B,C, h are functions of temperature.

Through knowledge of certain symmetries of the Hamiltonian we can eliminate some

powers. We deal with spin systems, so our order parameter is the expectation value of the

spin M = 〈S〉. Let us consider the Ising Hamiltonian with no magnetic field, which has the

symmetry s → −s, which implies that to preserve this symmetry there can only be even

powers of the order parameter within the system:

f (M,T ) = f0 + A (T )M2 + c (T )M4 + · · · , (1.4.2)

which we now minimise with respect to the only parameter under our control, M . Above a

phase transition the minimum must occur at M = 0, implying A (T ) > 0. Below a phase

transition the minimum occurs at M 6= 0, which requires A (T ) < 0. It must be that A = 0

at the transition temperature, and assuming it is linear to first approximation in temperature

A (T ) = a (T − Tc). We can see from figure 1.5 that decreasing the temperature through

Tc continuously changes the global minimum of the free energy and so the order parameter

moves from zero to a non zero value.
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Figure 1.5: A mean-field approximation to a continuous phase transition.

M =







0 : T > Tc

±
√

a
|T−Tc|

2c
: T < Tc

(1.4.3)

This is a second order transition as the order parameter increases smoothly from zero. The

specific heat contains a discontinuity at the phase transition

C =







T ∂2f0

∂T 2 : T > Tc

T ∂2f0

∂T 2 + 2a2T
c

: T < Tc

(1.4.4)

Most second order phase transitions contain singularities in the specific heat at the critical

region, implying that theory requires the fluctuations that it ignores, but qualitatively this

discontinuity is also seen.

One is also able to describe first-order phase transitions using Landau theory, where

the order parameter jumps discontinuously, which can be seen in solid to liquid transitions,

where the order parameter is the density. Consider the possibility that the fourth-order term

is negative, then we must include a positive sixth-order term so that the global minimum of

the free energy does not occur at a divergent value of the order parameter:

f (M,T ) = f0 + a (T − T0)M
2 + bM4 + cM6, (1.4.5)
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which has minima at

M =







0 : T > Tc

±
√

−4b±
√

16b2−48ac
12c

: T < Tc

(1.4.6)

Figure 1.6: A mean-field approximation to a first order phase transition

This discontinuity can be seen in figure 1.6 where the global minima jumps. The tran-

sition temperature occurs at Tc = T0 + 3b2

16ac
, and the latent heat released at the transition

temperature is ∆C = −3abTc

8c
.

Landau’s theory of phase transitions picks up a lot of the qualitative nature of critical

points, both first and second order transitions provide approximate behaviour of macroscopic

quantities. It should be noted that the Hamiltonian is not directly considered and so we

have a very universal theory that gives the same results for Hamiltonians that share the

same symmetry.

As this is a mean-field approach it does not consider fluctuations about the mean of

the order parameter. This is an overly simple assumption as we shall see when we consider

more sophisticated techniques to phase transitions. In fact at critical points fluctuations are

important at every length scale, and it is known that the upper critical dimension for which

this theory is valid is 4.
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1.4.2 2-D Ising Model Results

There are very few exactly solvable models that exhibit phase transitions. The model that

is most relevant to this investigation is the square-lattice Ising model, where the partition

function was first found exactly by Onsager [42], and the transition temperature was found

exactly by Kramers and Wannier [41]. Separate solutions were found by Yang [44] and Lieb

et al [45].

The Ising model is a restricted nearest-neighbour ferromagnetic model which allows the

spins to point in only two opposite directions, labelled by σi = ±1:

H = −J
∑

〈ij〉
σiσj. (1.4.7)

Exact results include the magnetisation, [42]

M =
(

1 − [sinh 2βJ ]−4
) 1

8
, (1.4.8)

which around the transition temperature provides the critical exponent β = 1
8
. The specific

heat has a logarithmic divergence

Figure 1.7: The magnetisation of the 2-D Ising model taken from [44]
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C ∼ log |T − Tc|, (1.4.9)

which implies that the critical exponent α = 0 and that its first two derivatives behave as

1
|T−Tc| and 1

|T−Tc|2 . The free energy can be expressed exactly [42]

−βf = log 2 +
1

8π2

∫ 2π

0
dθ1dθ2 log

[

cosh2 2βJ − sinh 2βJ (cos θ1 + cos θ2)
]

, (1.4.10)

and we plot the specific heat with our calculated specific heat, along with its first two

derivatives in figures 1.8, 1.9 and 1.10. Note that the derivatives on the exact free energy

have been performed numerically.
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Figure 1.8: The exact specific heat of the 2-D Ising model overlaid with our results of the
J1 − JN model. The black curve is the exact result. The lowest curve is J1 − J2 and each
higher curve is the next value of N up until the highest curve J1 − J21.
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Figure 1.9: The first derivative of the 2-D Ising specific heat overlaid with our results. The
curves correspond to the same models explained in figure 1.8.
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Figure 1.10: The second derivative of the 2-D Ising specific heat overlaid with our results.
The curves correspond to the same models explained in figure 1.9.
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1.4.3 Renormalisation Group

The Landau formulation is a mean-field theory that does not consider fluctuations about

the transition to be key. As it turns out they are important at every length scale at a

critical point. Renormalisation group theory attempts to consider fluctuations at all levels,

and uses the idea that at critical points there is a degree of scale invariance in the spatial

extent of fluctuations. At the outset it is a theory that considers the problem at every

length scale giving an effective temperature and flow diagram; presenting the behaviour of

thermodynamic quantities at critical points.

We very briefly outline an example of renormalisation group theory in the 1-D Ising

chain. This presents the idea of flow diagrams and scale. We then discuss simple scaling

examples and universality.

Coarse Graining and The Ising Model

At critical points the system has a certain scale invariance; the correlation length goes to

infinity and if we do any coarse graining, each scale is statistically equivalent to the initial

one. This we shall illustrate with the flow through parameter space and see that fixed points

illustrate phase transitions. We shall start with coarse graining the Ising model and see that

there are two fixed points, one at T = 0 and one at T = ∞. The arguments that we provide

follow the discussion in [55].

We want to integrate out each length scales one at a time up to macroscopic lengths,

so we do something called coarse graining, where a single spin represents a finite group of

spins, we then require that the Hamiltonian and thus partition function remains invariant

and re-describe these as function of the new spins. This is then repeated and the aim is

to be able to understand how the couplings between spins change at each iteration of this

process. This then provides the flow diagrams in parameter space and shows the critical

regions.

We start with the 1-D Ising model, using a process called decimation
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The Ising Chain

The Ising chain is known to exhibit no phase transitions, and so we shall hope that this

process does not reveal any finite-temperature fixed point. The reduced Hamiltonian is

H = K
∑

i

σiσi+1, (1.4.11)

where σi can take the values of ±1 only. The coupling K = −βJ where J is the nearest

neighbour coupling and we have simply included the temperature. We now coarse grain

this model, by grouping the spins into collections of 2. We then take a single spin as the

representation for that group and re-describe the Hamiltonian in terms of this spin. This

process is illustrated in figure 1.11 and is called decimation. The idea of this process is to

rewrite the partition function in terms of these new spins, and hope that it provides an

easier sum than the initial problem.

Figure 1.11: The decimation procedure on the linear chain. Figure is taken from [35]

Z =
∑

{σ0}
exp

(

K
∑

i

σ0
i σ

0
i+1

)

, (1.4.12)

where σi represents the number of iterations that have been performed. After the decimation

the partition function must remain unchanged.

Z =
∑

{σ1}
exp (H1) , (1.4.13)

where exp(H1) =
∑′
σ0 exp

(

K
∑

i σ
0
i σ

0
i+1

)

, where the primed sum is over only half the spins.

This process is then iterated
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Z =
∑

{σi}
exp (Hi ) , (1.4.14)

where exp(Hi) =
∑′
σi−1 exp (Hi−1).

In general this process can over-complicate the Hamiltonian and require the computation

of very difficult sums, but in this 1-D Ising case it can be shown that the iterated Hamiltonian

has the form

Hn =
∑

i

an (β) + cn (β)σni σ
n
i+1, (1.4.15)

this provides important information about the physics of the system. The quantity cn tells

us the value of the new coupling, which in turn tells us the temperature of the new system.

The idea is to find the flow of this coupling as the process is iterated. In this case the values

of an and cn are

an =
1

2
log (4 cosh 2cn−1)

cn =
1

2
log (cosh 2cn−1) .

(1.4.16)

After each iteration, at finite temperature the new block of spins do not look statistically

similar to the previous as the process provides a new temperature each time. There are two

fixed points at β = 0 and ∞, and we see from the flow diagram in figure 1.12 that β = ∞

is an unstable fixed point, and all temperatures flow towards β = 0. This tells us that even

at very low temperatures the Ising chain is not in an ordered state, apart from the special

case of T = 0. This is a result we will discover again in depth when we discuss finite energy

domains.

The 1-D Ising model is a very special case where the renormalised Hamiltonian has the

same form as the previous one. In general this is not the case and just one iteration can move

into a high dimensional parameter space of couplings that are no longer between nearest
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Figure 1.12: The renormalisation flow for the 1-D Ising model. Taken from [55]

neighbours nor simply quadratic interactions.

The idea of renormalisation group theory is to find points that are fixed within the

parameter space, indicating that there is a degree of scale invariance as each iteration is

statistically similar. These fixed points within parameter space correspond to the system’s

critical points, where it is undergoing a phase transition. Normally the non trivial fixed

points are unstable and the flow on either side tends to either go to T = 0 or T = ∞

indicating vastly different physics on either side.

Within the vicinity of these critical points are regions where certain macroscopic quan-

tities exhibit power law behaviour of the form O ∼
(
T−Tc

Tc

)a
, where Tc is the temperature of

the critical point and a is some positive number called the critical exponent. The remarkable

finding with phase transitions is that between systems that do not appear to share any of

the same properties, they exhibit exactly the same critical exponents around their phase

transitions. This is the idea of universality between systems, which can be explained using

renormalisation group theory. The critical exponents that are of interest to this investigation

are those associated with the specific heat and correlation length

C ∼
(
T − Tc

Tc

)−α

ζ ∼
(
T − Tc

Tc

)−ν
,

(1.4.17)

where for the 2-D Ising model α = 0 and ν = 1. The divergence in the specific heat is known

to be a logarithmic divergence.

Here we have given a very brief overview of the idea of renormalisation group theory

using the Ising model as an example. We have show one process of renormalisation: the
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decimation technique, which works perfectly well in 1-D but becomes overly complicated in

2-D. The idea is to be able to find a process that will not be unusable. From renormalisation

there comes the idea of universality, where many seemingly dissimilar systems exhibit the

same power law expansion about critical points.

Still keeping with phase transitions we shall look into their existence in 1-D and 2-

D systems, following the arguments made by Mermin and Wagner, and its application to

isotropic systems.

1.4.4 Mermin-Wagner Theory and Domain Walls

In this subsection we discuss the existence of phase transitions in low dimensional systems.

We find that in 1-D even models with discrete degrees of freedom, such as the Ising model,

do not exhibit long range order at finite temperature. This is due to the finite energy

of the excited states in the thermodynamic limit. Once we move to 2-D we see that the

Ising model must have a phase transition and using an argument by Peierls we gain an

approximate transition temperature. With isotropic spins the arguments are different and

we must depend on the Mermin Wagner theorem to provide an answer of phase transitions

in 2-D. Then we shall see what was provided to explain the existence of a transition in 2-D.

We again consider the Ising model in 1-D. We know from the renormalisation group

analysis that there is no critical point, but let us discuss this with respect to the physics

involved. A system in thermodynamic equilibrium minimises the free energy

F = E − TS. (1.4.18)

At zero temperature the minimum free energy occurs in the ground state: F = E0. Ex-

citations are domain walls as seen in figure 1.13, one domain wall being the lowest lying

excitation. This costs 2J in energy, and in a periodic system has an entropy logN associ-

ated with it; N are the number of sites in the system. Considering only the lowest excitations
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at low energy the free energy is

Figure 1.13: An example of two domain walls in the ferromagnetic Ising chain. Taken from
[36]

F = E0 + 2J − T logN, (1.4.19)

and in the thermodynamic limit N → ∞ this is a lower free energy at all finite temperatures

than the one associated with the ground state. This is a disordered state as the order

parameter 〈σi〉 = 0. At all finite temperatures the Ising chain is a disordered system,

and any phase transition must occur at zero temperature. This is in agreement with the

renormalisation group flow that was discussed earlier and was an argument initially provided

by Ising [39].

Let us discuss the effect of domains in 2-D, where we follow the arguments provided by

Peierls [40].

Again at zero temperature the minimum free energy occurs in the ground state. The

excitations that will eradicate the long range order are domain walls that extend across the

length of the system. We depict these boundaries in figure 1.14. They have energy E = 2LJ

where L is the length of the domain wall. The argument that Peierls provides over-counts

the number of possible boundary configurations and the entropy associated with such a state

is 2L which means that the change in free energy is

F = E0 + 2LJ − TL log 2. (1.4.20)

Once 2J−T log 2 < 0 then the domain walls are favourable and the system is in a disordered

state, below this temperature, the ordered state is preferable. This gives a temperature

Tc = 2.885J , close to the exact solution found by Kramers and Wannier Tc = 2.269J [41].

Thus far we have dealt with the existence of phase transitions with discrete degrees of
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freedom. This investigation is based on the plane rotator model, an isotropic spin model. The

Mermin-Wagner theory [7] of long range order applies here, and using the Heisenberg model

we see that in any system with fewer than 3 dimensions the order parameter M = 〈S〉 = 0 at

any finite temperature. This is done first by assuming long range order at finite temperature

and calculating the size of the fluctuations. The inconsistency comes about when we note

that the fluctuations diverge, implying that there is no macroscopic moment. This does not

imply a disordered state down to zero temperature, and we shall see when we discuss the

X-Y model that at low temperature the system contains quasi-long range order.

Figure 1.14: Domain wall excitations in the Ising model taken from [40]

The ferromagnetic Heisenberg model can be expressed in terms of the Holstein-Primakoff

bosons [67]; assuming that there is long range order along the ẑ direction, and that the

quartic terms are negligible the Hamiltonian is

40



H = − J
∑

〈ij〉
Si · Sj

Sz =S − b†b

S+ =b
√

2S

S− =b†√2S

Sx =
1

2

(

S+ + S−
)

Sy =
1

2i

(

S+ − S−
)

H = − JS2ZN

2
+
JS

2

∑

ij

(

b
†
i − b

†
j

)

(bi − bj) +O (1) ,

(1.4.21)

where we are using the limit S → ∞ and Z is the coordination number of the lattice. The

aim is to find the order parameter, assuming it is ordered along the ẑ direction

〈Sz〉 = S − 〈b†b〉, (1.4.22)

this thermodynamic average is best understood using the eigenfunctions of the Hamiltonian,

which are the Bloch states.

b
†
k =

∑

Rj

eiRj ·kb†
j. (1.4.23)

These diagonalise the Hamiltonian and provides the energy spectrum

H = −JSZ
∑

k

b
†
kbk (1 − γk) , (1.4.24)

where γk is the structure factor as we saw in section 1.2.2 and we have ignored the constant

term. The order parameter is best understood in terms of the eigenfunctions

〈Sz〉 = S −
∑

k,k′

〈b†
kbk′〉. (1.4.25)
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This simplifies to the Bose function 〈b†
kbk′〉 = δkk′n (Ek),

∑

k

〈b†
kbk〉 ∝ 1

(2π)d

∫
kd−1dk

exp (βJSZ [1 − γk]) − 1
. (1.4.26)

Singular contributions of this integral occur at the k → 0 limit and we see in one dimension

(d = 1) where the structure factor can be approximated as γk = cos k ≈ 1 − k2, that the

integral is

〈b†
kbk〉 ∼

∫
dk

k2
, (1.4.27)

which is divergent at the origin, indicating that the fluctuations at any finite temperature

destroy the long range order. In two dimensions the structure factor at the origin is approx-

imated as γk ≈ 1 − k2
x − k2

y, and the integral is again divergent, though only logarithmically

at the origin

〈b†
kbk〉 ∼

∫
kdk

k2
. (1.4.28)

In three dimensions, it is not divergent, and so it is possible for the model to exhibit long

range order at low temperature. This is the essence of the Mermin-Wagner argument, and

similar discussions can be made with X-Y model; isotropic spins systems do not exhibit long

range order in a system with fewer dimensions than three.

There are very interesting consequences that arise from this theory. One dimension is a

very special case where it is known that there cannot exist any ordered state at any finite

temperature. In two dimensions there must also exist a phase transition, despite there

being clearly no long range order. This was shown by Fröhlich and Spencer [8], [9] who

conclude that at low temperature the plane rotator model exhibits power law correlations

and exponential correlations at high temperature. A resolution to this apparent paradox

has been provided in work by Kosterlitz and Thouless [1],[2] and Berezinskii [3], [4]. Before

we discuss the Kosterlitz-Thouless transition in detail we must formally introduce the clock
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model and an overview of the literature.

1.5 The Clock Model

The investigation here is based on the nearest neighbour two dimensional clock model,

which is very closely related to the plane rotator. We shall discuss the current situation in

the literature, including well known renormalisation results on the model and subsequent

numerical simulations on finite sized systems. We shall then briefly give an overview of how

our results sit with the literature.

The ferromagnetic clock model Hamiltonian on the square lattice between nearest neigh-

bours with one continuous spin degree of freedom φi is

H = −J
∑

〈ij〉
cos (φi − φj) −

∑

i

∑

p

hp cos (pφi) , (1.5.1)

where there is a nearest neighbour ferromagnetic interaction and an on-site crystal field

interaction. This model has been studied extensively in the literature and of particular note

are the well-known renormalisation results [10]. In this investigation we only take the case

where a single crystal field interaction is positive infinite and all other are zero. This greatly

simplifies (1.5.1) to spins with discrete degrees of freedom ni ∈ 0, · · · , p− 1.

H = −
∑

〈ij〉
cos

2π

p
(ni − nj) , (1.5.2)

where we have normalised the interaction coupling to J = 1. We have included in figure

1.15 two examples of spins that have an infinite crystal field interaction in the form of the

on-site term from 1.5.1.

The main analytic results that we will review on the clock model in (1.5.1) come from

the seminal paper by José et al [10], which uses a renormalisation approach to both the

plane rotator and clock model using Migdal techniques on a square lattice [46]-[49], an
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(a) (b)

Figure 1.15: Two examples of spins that are restricted to point only along the clock directions
for p = 4 (a) and p = 6 (b). Taken from [10]

approximate method that uses a decimation procure not unlike that which was introduced

in section 1.4.3. The results here were for p = 1 to 4 and p = 6. We plot the main phase

diagrams found for p = 4, p = 6 model.

(a) (b)

Figure 1.16: The main hp − T phase diagram results for the p = 4 (a) and p = 6 (b) model
from [10]. The asterisk denote critical points/ regions.

We see from the figure that for the p = 6 model there exist two transitions at finite

temperature up to infinitesimal h6. Another key result from this work are the eigenvalues

of the crystal field λp, which determine the relevance of the field in the renormalisation.

In the case λ > 0 it is relevant, λ < 0 irrelevant, and in the long range fluctuation limit

equivalent to the plane rotator model. We plot this result in figure 1.17 and see that at finite

temperature the eigenvalue for the p = 6 model is less than zero, indicating that above this

temperature h6 is irrelevant and can be used to model the plane rotator system.

There is a lot of literature on the clock model that is numerical Monte Carlo simulations
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Figure 1.17: The eigenvalues for the renormalisation theory for the crystal field λp. Notice
that only λ6 < 0. Taken from [10]

on finite sized, periodic systems. There is some discrepancy between results of different

investigations but all agree that there exist two phase transitions in the p > 4 model. It must

be noted that Ortiz et al [50] find a duality mapping much like the Ising model discussed

later in section 1.7 that maps the two transitions in the p > 4 model onto each other,

concluding that both must be a Kosterlitz-Thouless transition, one between a long range

ordered state and a critical region and another between a critical region and a paramagnetic

state.

Monte Carlo work on the plane rotator model by Tobochnik et al [18] determine a

Kosterlitz-Thouless transition at Tc = 0.89 [1] but find a sharp specific heat anomaly sig-

nificantly above the transition temperature at T = 1.02. The Monte Carlo investigation

presented position of vortices in one of the finite sized systems at different temperatures

above and below the transition temperature, as we show in figure 1.18.

Lapilli et al [25] argue that, despite conclusions made by Jose et al, that the clock model

becomes thermodynamically indistinguishable from the plane rotator below the Kosterlitz-
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Figure 1.18: The position of vortices in Monte Carlo data taken from [18]. The system has
3600 spins with empty circles as positive vortices and filled triangles as negative vortices.
Figures (a)-(f) are at temperatures T = 0.8, T = 0.85, T = 0.9, T = 0.95, T = 1.00,
T = 1.05 respectively, where the predicted transition temperature is between (b) and (c)
and the specific heat anomaly occurs between (e) and (f)

Thouless transition temperature only for models p > 7 and that for p < 7 the high tempera-

ture transition is not of Kosterlitz-Thouless type. They conclude that at a temperature Teu

all p > 4 models are indistinguishable from the plane rotator and that for p < 7 this is at a

temperature greater than the transition temperature. We show their main results in figure

1.19.

Other Monte Carlo data exists on different p state clock models which we summarise in

table 1.1.

There also exists a Fisher Zero approach to the p = 6 state clock model [30]. The

numerical investigation exploits an analytic method to predict standard phase transitions

developed by Yang, Lee and Fisher [51]-[53] that we review in section 2.4. The investigators

conclude that the p = 6 state clock model is not of Kosterlitz Thouless type, agreeing with

the results found by Lapilli et al [25]. They conclude that the specific heat peak above the

46



Figure 1.19: The temperature for different p models found by Lapilli et al [25] where there
is thermodynamic convergence between the clock model and plane rotator. The convergence
for p < 6 is higher than its high temperature transition temperature and is thus argued not
to be of Kosterlitz Thouless type.

author p TKT
Okabe et al [26] 6 0.9

8 0.8936
12 0.8937

Challa et al [24] 6 0.92
Yamagata et al [28] 6 0.9
Tobochnik [29] 5 1.1

Table 1.1: Key Monte Carlo investigations for the high temperature transition for different
p state clock models

Kosterlitz Thouless temperature does diverge in the thermodynamic limit

There appears to be much discrepancy within the literature. It appears from Jose et

al results [10] that above p = 6 the crystal field becomes irrelevant and the clock model is

indistinguishable from the plane rotator, and that according to Ortiz et al there is a duality

that maps the two clock transitions onto each other [50]. The numerical simulations present

different results for systems that should have the same Kosterlitz-Thouless transition at high

47



temperature. There are also results suggesting that some clock models do not exhibit the

same type of transition.

In this investigation, which uses exact transfer function techniques and is in the ther-

modynamic limit, we shall argue that for all p > 4 clock models there exist two transitions

that exhibit the same behaviour, and that above the lower temperature transition there

exists power law convergence between the clock models and the plane rotator. We shall

provide an overview of the Kosterlitz-Thouless transition and its experimental realisation in

the superfluid phase of liquid helium, but first we shall show the equivalence between the

Ising model and the p = 4 model.

1.5.1 The p = 4 model

A lot of the Ising model plots that we calculate actually uses the p = 4 model, which is

identical to the Ising, but with a rescaled temperature. We shall very briefly show the

relationship between the Ising model and the p = 4 model.

The p = 4 nearest neighbour Hamiltonian is

H = −
∑

〈ij〉
cos

π

2
(ni − nj) , (1.5.3)

where the spins are able to point along ±x̂ and ±ŷ direction. This can be rewritten as two

Ising variables σ, τ

Si = σi
x̂√
2

+ τi
ŷ√
2
, (1.5.4)

which is the same problem, rotated by π
4
. The Hamiltonian which is the dot product between

nearest neighbours is thus

H =
∑

〈ij〉
σiσj + τiτj, (1.5.5)
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and so the partition function is

Z =
∑

{σ,τ}
exp



β
∑

〈ij〉
σiσj + τiτj



 ,

Z =
∑

{σ}
exp



β
∑

〈ij〉
σiσj




∑

{τ}
exp



β
∑

〈ij〉
τiτj



 ,

Z = (Z Ising)
2
,

(1.5.6)

and so the free energy is

F = −2T log Z Ising, (1.5.7)

where the temperature has scaled from the Ising model by 2. The transition temperature is

thus half that of the p = 2 model.

1.6 The Kosterlitz-Thouless Transition

The Kosterlitz-Thouless transition [1]-[4] provides an answer to this seeming paradox of

isotropic spins that exhibit no long range order but still undergo a phase transition, through

a continuum limit of the plane rotator model. There are plenty of applications to this limit,

one of which is the model for superfluid helium and its superfluid transition. We will very

briefly review the main experiments performed on liquid helium and the model that describes

the Bose-Einstein condensate.

Liquid helium has a unique property that at atmospheric pressure, it does not solidify

and remains a liquid to zero temperature. Instead it passes through a transition in which it

becomes a Bose-Einstein condensate at Tc = 2.18K referred to the lambda transition. The

condensate exhibits superfluidity in which a macroscopic quantity of the liquid sits in the

ground state of the system with zero viscosity. The fluid is incompressible and is described
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using a two fluid model. The density is split into two parts, the superfluid component ρs

and the normal liquid component ρn both of which depend on temperature

ρTot = ρn (T ) + ρs (T ) , (1.6.1)

and it is found that the temperature dependence of the densities satisfy:

lim
T→0

ρs

ρTot
= 1,

lim
T→T−

c

ρs

ρTot
= 0,

(1.6.2)

and above the transition ρs = 0, and so acts as an order parameter for the transition. In

three dimensions the superfluid density exhibits a continuous phase transition, and the bulk

material can be seen to exhibit a transition in the specific heat. In two dimensions the

measurements are much harder as there is no bulk material and standard thermodynamic

quantities are not accessible. Instead the fluid is placed in a porous material either Vycor

or Mylar and resonated. The amount of fluid that vibrates with the substrate changes as a

function of temperature, and so the period of oscillation changes. This is what is measured,

and work by Bishop et al provides archetypal results for the period of oscillation as seen in

figure 1.20 [13].

To explain the link between the superfluid and the plane rotator model we first describe

the condensate as a complex wave function

ψ (x) = ρ
1
2 eiφ(x), (1.6.3)

where ρ is the total density of the fluid, and as helium is an incompressible fluid all the

physics lies within the phase of the wave function.

One takes the Gross-Pitaevskii equation to describe the ground state of identical bosons,

which has a wave function that is a product of many single particle wave functions described
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Figure 1.20: The phase transition seen in the superfluid density of helium-4 in Mylar. Figure
is taken from [13]

by

Ψ (r1, · · · , rN) = ψ (r1) · · ·ψ (rN)

H =
(

∇2 + V (r) + g|ψ (r) |2
)

ψ (r) = µψ (r) ,

(1.6.4)

Substituting the condensate wave function and recognising that ρ is constant implies that

the Hamiltonian is

H =
∫

(∇φ)2
dx. (1.6.5)

and the velocity of the fluid, related to the current operator

j =i (ψ∇ψ∗ − ψ∗∇ψ) ,

v =
j

ρ

∼∇φ,

(1.6.6)

which implies an irrotational velocity field ∇∧v = 0. This is only the case with a simply con-

nected space but if there is a region that is not simply connected, as φ can be discontinuous,
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then it follows that the loop integral about the region can be non zero

∮

dx · v = 2πn, (1.6.7)

where n is some integer.

This model is very much intricately linked to the magnetic plane rotator Hamiltonian

on a discrete lattice

H = −J
∑

〈ij〉
cos (θi − θj) . (1.6.8)

Assuming small variations in θ between sites, which one can make at low temperature, one

can expand the cosine term to its quadratic representative.

H = J
∑

〈ij〉
(θi − θj)

2
, (1.6.9)

and taking the continuum limit

H = J

∫

(∇θ (x))2
dx. (1.6.10)

This is the same model seen in liquid helium, including the angular nature of the field θ (x).

One can solve the thermodynamics of this model, calculating the partition function

Z =
∫

Dθ [x] e−Jβ
∫

(∇θ)2dx, (1.6.11)

which provides critical behaviour all the way up to T = ∞, as can be seen from the corre-

lation function

〈cos (θ0 − θm)〉 ∼
(

1

|m|

)η

, (1.6.12)

where η = 1
2πβJ

. This is critical behaviour and implies a quasi long range ordered state for
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all temperatures. This is an unphysical result. It is known experimentally that liquid helium

exhibits a transition between a superfluid and a normal liquid state, and it is in fact proven

by Fröhlich and Spencer [8], [9] that at low temperature for the discrete lattice system the

plane rotator has power law correlations, whereas at high temperature the correlations are

exponential.

Arguments first provided by Beresinskii [3], [4], then Kosterlitz and Thouless [1], [2] dis-

cuss the existence of vortices in these models and their role in providing a phase transition.

Let us first consider the energy and entropy balance of a single vortex within a square, peri-

odic lattice centred at the origin as shown in figure 1.21. If vortices are thermodynamically

favourable then the system is in a disordered state.

Si =

(

− yi

r2
i

,
xi

r2
i

)

, (1.6.13)

where x, y are the coordinates of the spin which are distance ri from the origin. In the

continuum limit the energy density is (∇θ)2 = 1
r2 , thus the energy:

U =πJ
∫ L

a

rdr

r2

=πJ log
(
L

a

)

,

(1.6.14)

where L is the radius of the system and a is the short length scale cutoff normally defined

by the lattice spacing. There are
(
L2

a2

)

possible vortex configurations, implying that the free

energy of a vortex is

F =U − TS

= (πJ − 2T ) log
(
L

a

)

.

(1.6.15)

A vortex is thermodynamically favourable above a temperature Tc = Jπ
2

. This is the
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Figure 1.21: An isolated vortex in the plane rotator model taken from [1]

qualitative argument given that the plane rotator model has a phase transition associated

with topological charges. The behaviour of vortices and their interaction with each other is

very similar in which Coulombic charges behave in 2-D.

This field θ is not continuous and can have a discontinuity of 2nπ. About a vortex, the

loop integral is

∮

∇θ · dl = 2πn. (1.6.16)

Instead of dealing with θ one deals with u = ∇θ which is well defined everywhere apart from

the vortex core, where it is singular. To agree with equation (1.6.16) it must satisfy

∇ ∧ u = 2π
∑

i

niδ (r − ri) , (1.6.17)

where ri are the position of the vortices and ni is the number of times the angle winds

around the vortex.

We are able to split up the field u into two parts, a background contribution that is

smooth and is not associated with vortices and a second term that is.

u = ∇φ− ∇ ∧ (ẑψ) , (1.6.18)
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where φ is a continuous scalar quantity and ψ must satisfy

∇2ψ = 2π
∑

i

niδ (r − ri) , (1.6.19)

which implies that ψ is the Green’s function for the Laplace equation in 2-D, which is

ψ =
∑

i

ni log (|r − rj|) , (1.6.20)

and so the energy of the configuration is

H =
J

2

∫

d2xu · u

=
J

2

∫

d2x
[

(∇φ)2 − 2∇φ · ∇ ∧ (ẑψ) + (∇ ∧ (ẑψ))2
]

.

(1.6.21)

The second term has a zero contribution if φ → 0 on the boundary and the last term

simplifies to (∇ψ)2, which after integration by parts leads to

H =
J

2

∫

d2x
[

(∇φ)2 + ψ∇2ψ
]

, (1.6.22)

as long as the charge neutrality is conserved
∑

j nj = 0. The first term is the normal spin

wave contribution found earlier, the final term has the contribution to the energy as

Jπ
∑

ij

ninj log (|ri − rj|) , (1.6.23)

which diverges at i = j, and so there must be some core energy

Hvort =
∑

i

Ecore + Jπ
∑

i6=j
ninj log (|ri − rj|) . (1.6.24)

This along with the spin wave contribution from (∇φ)2 is the Hamiltonian that is solved by

Kosterlitz and Thouless [1], [2] where we simply quote the key behaviour of the correlation
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length and the free energy, both of which have essential singularities. This implies that all

derivatives of the free energy and thus the thermodynamic behaviour are not power law

expandable about the critical point and that there is no sharp behaviour, as is standard in

a phase transition:

ζ ∼e
b

(T −Tc)
1
2

F ∼ζ−2.

(1.6.25)

Any inverse plot of a thermodynamic function would go to zero very smoothly at the critical

point along with all its derivatives. This implies that the transition is not one which happens

collectively as is standard, rather it is simply two vortices unbinding.

The order parameter that is used is the superfluid density in liquid helium, or equivalently

the helicity modulus in the plane rotator model, which is equivalent to the leading order

cost in the free energy to place a single spiral across the system. The prediction is that at

the transition temperature, there exists a universal jump in the order parameter, which can

be seen in figure 1.22.

ρs (T−
c )

Tc
= constant. (1.6.26)

Much like the clock model there is plenty of numerical analysis and Monte Carlo data on

the plane rotator model. We have already mentioned the seminal work by Tobochnik and

Chester [18] who find a large specific heat anomaly above the proposed Kosterlitz Thouless

transition temperature. Numerical work performed on finite systems by Van Himbergen and

Chakravarty [22] find the same anomaly and propose that the height of the peak saturates

and does not diverge in the thermodynamic limit, which we show in figure 1.23.
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Figure 1.22: The predicted discontinuity in the superfluid density from field theoretic results.
Taken from [38]

Monte Carlo investigations by Gupta et al find the specific heat anomaly [19], where

they fit to both a second order phase transition and a Kosterlitz Thouless transition where

they acknowledge that the differentiating between the two type of transitions on finite sized

numerical data is difficult. There also exists data at infinite temperature by Ben-Av and

Solomon who restrict large spin flips so that there is zero vorticity within the system and

find that correlations are still power law. Thus they conclude that vorticity is paramount

to the phase transition.
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(a)

(b)

Figure 1.23: The Monte Carlo results of the specific heat as a function of temperature (a),
and the size of the peak as a function of the system size in (b), from [22] who conclude that
the specific heat does not diverge in the thermodynamic limit.

1.7 Duality Transformation

We find in this investigation that with the correlation functions we calculate, their represen-

tation in the Fourier spin space is rather illuminating. We find that the high temperature

limit is best represented using Fourier spin space, and real spin space for the low temper-
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ature limit. It is then worth discussing how high temperature can map exactly onto low

temperature in certain spin models. These use duality transformations. We shall formally

introduce the duality transform through a Fourier series approach and then use the Ising

model as an example.

A lot of this section follows the arguments provided by an appendix in the paper by

Fröhlich and Spencer [8],[9] on the high temperature and low temperature results on the

plane rotator model and the arguments provided by Kadanoff in his textbook on statistical

physics [36].

With duality, one must describe a dual lattice, where there are quantities that exist

on the direct lattice, on the bonds between sites and on the dual lattice. If the direct

lattice is a square lattice and describes quantities with sites (j, k) then its dual is also a

square lattice defined by sites
(

j + 1
2
, k + 1

2

)

and its bonds between sites are
(

j + 1
2
, k
)

and
(

j, k + 1
2

)

. This is illustrated in figure 1.24. We define quantities on the bonds and the sites

ρj+ 1
2
,k = φj+1,k −φj,k and ηj,k+ 1

2
= φj,k+1 − φj,k where ρ has been defined on the x bond and

η on the y bond. We intend that the quantities on the sites φ obey a certain periodicity:

Figure 1.24: The dual lattice of the square lattice. The filled sites are the direct lattice, the
unfilled sites its dual and the triangular sites are the bonds. Taken from [37]

Cj+ 1
2
,k+ 1

2
=ρj+ 1

2
,k − ρj+ 1

2
,k+1 + ηj+1,k+ 1

2
− ηj,k+ 1

2

=0 (mod p) ,

(1.7.1)

so that about a closed loop the quantities must add to 0 (mod p). Notice that the quantity
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Cj+ 1
2
,k+ 1

2
is defined on the dual lattice.

Consider translationally invariant couplings Kx (ρ), Ky (η) that depend on the difference

between the quantities on the site. The partition function of such a coupling is:

Z = Trφ
L∏

j,k=1

exp
{

Kx

[

ρj+ 1
2
,k

]

+Ky

[

ηj,k+ 1
2

]}

. (1.7.2)

To turn the trace over the φ variables into traces over the bond variables one must make

sure the quantity C is conserved, and so we multiply the partition function by the factor

∆j+ 1
2
,k+ 1

2
=

1

p

p
∑

ψ=1

exp

[
2πiψj+ 1

2
,k+ 1

2
Cj+ 1

2
,k+ 1

2

p

]

, (1.7.3)

implying that the partition function is now a trace over the ρ and η variables

Z = TrρTrη
L∏

j,k=1

exp
{

Kx

[

ρj+ 1
2
,k

]

+Ky

[

ηj,k+ 1
2

]}

∆j+ 1
2
,k+ 1

2
. (1.7.4)

The sum over each bond variable can act as a Fourier series

p
∑

ρ

e
Kx

[

ρ
j+ 1

2 ,k

]

exp







2πiρj+ 1
2
,k

[

ψj+ 1
2
,k+ 1

2
− ψj+ 1

2
,k− 1

2

]

p






= exp

{

K̃y

[

ψj+ 1
2
,k+ 1

2
− ψj+ 1

2
,k− 1

2

]}

,

(1.7.5)

and so the x coupling has been mapped onto the y coupling. This implies that the partition

function can be rewritten in terms of the new variables ψ with dual coupling K̃, defined on

the dual lattice

Z = Trψ
L∏

j,k=1

exp
{

K̃y

[

ψj+ 1
2
,k+ 1

2
− ψj+ 1

2
,k− 1

2

]

+ K̃x

[

ψj+ 1
2
,k+ 1

2
− ψj− 1

2
,k+ 1

2

]}

. (1.7.6)

We shall present a translationally invariant example in the Ising model where the reduced
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Hamiltonian is

H =
K

2

∑

〈j,k〉
cos π (φj+1,k − φj,k) + cosπ (φj,k+1 − φj,k) . (1.7.7)

From the Fourier series (1.7.5) we can see that

e−2K̃ = tanhK, (1.7.8)

where K̃ is the dual coupling associated with the dual lattice. We are able to write the

partition function in terms of two different variables that correspond to the direct lattice

and the dual lattice, which have exactly the same coupling form. However, as K → ∞

it corresponds to K̃ → 0 and vice versa, thus we have successfully related the high and

low temperature physics. The point at which K̃ = K at some finite temperature is the

transition temperature between the ferromagnetic phase and paramagnetic phase. This

occurs at Tc ≈ 2.269J where J is the original coupling strength.

In the results that we use, we Fourier transform the spin variable in certain correlation

functions. What we find eventually is that in the clock model there is a subtle relationship

between the high and low temperature.
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Chapter 2

THE TRANSFER FUNCTION APPROACH

The technique that is introduced and presented in this section exploits the idea that regard-

less of system size, the spin models that are investigated are exactly solvable in 1-D. An

infinite spiral geometry can be equated to the models studied in 2-D, its size characterised

by the number of sites in one revolution and in the limit that the size is infinite the geometry

is the 2-D square lattice. Exact thermodynamics are accessible in the 1-D system and con-

clusions are drawn by investigating trends for increasing system size where 2-D behaviour is

then deduced. This 1-D to 2-D crossover technique provides an alternative method of study

to the 2-D limit of inaccessible thermodynamics.

The details of the transfer function technique are provided in this section. The 1-D

Ising chain, an established context of the use of transfer matrices [55] mark this section’s

introduction, where a review of its well known results are presented. Once transfer ma-

trices are introduced it is applied to the clock models that feature predominantly in this

investigation and important thermodynamic quantities such as the free energy, correlation

length and order parameters are calculated. Throughout, there are points of discussion on

the complexities inherent in the technique, including the issue of 1-D observables that must

have a meaningful representation in 2-D.

It is worth noting that the mathematics behind these transfer functions are worth in-

vestigating in their own right, there is an interesting gauge symmetry which has yet to be
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fully exploited and also the eigenvalue structure provides key thermodynamic information,

including points of criticality in the 2-D limit. This is explored here in this section but an

in depth investigation is required for a thorough understanding.

2.1 The 1-D Ising Chain

The Ising chain is an archetypal, fully solved system with which to introduce transfer func-

tions. Here the thermodynamics are obtained analytically, making it easy to review the

concept behind the technique. Once models with higher complexity are introduced, the un-

derstanding developed in this section is easily transferable to the technique used throughout

this investigation. Though there are plenty of quantities that are available in this model,

the two key observables that are relevant to the investigation are exhibited here: the free

energy and the correlation length.

Transfer matrices as a technique presents the normally impossible task of calculating the

partition function of a system in a matrix format and its thermodynamics are fully described

within the eigenvalues of this matrix. The process involves exploiting the local, translation-

ally invariant interactions that the system must have and recognising that the partition

function can be expressed iteratively. It is a powerful technique that can be implemented

on a variety of systems, such as those investigated here.

2.1.1 Free Energy

In this section the free energy, and in subsequent sections, the correlation length of the Ising

chain is calculated to a high level of detail so that the understanding gained here is transfer-

able to the technique developed in later sections for the clock model on the spiral geometry.

It is important to realise that the requirements for transfer matrices to be applicable is

that all interactions must be purely local and contain a translational symmetry. Here the

system is shown to meet these requirements and it is understood that the locality of the
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interactions imply a finite transfer matrix and the translational invariance implies that the

partition function is an iterative application of such a matrix. The Hamiltonian of the 1-D

ferromagnetic Ising model was introduced in section 1.4.3

H = −
∑

i

σiσi+1, (2.1.1)

where the spin variables σ can take the values of ±1 only, which can correspond to a spin

restricted to pointing only up or down. This Hamiltonian is clearly local and translationally

symmetric; all interactions are between nearest neighbours only. The translational symmetry

is exploited once the partition function is introduced and split into natural segments:

z =
∑

{σ}
e−βH , (2.1.2)

split into purely local and translationally invariant parts, it can be seen that there is an

iterative operator application:

z = · · ·
∑

σ2

eβσ2σ3
∑

σ1

eβσ1σ2

fi (σi) =
∑

σi−1

eβσi−1σifi−1 (σi−1) ,

(2.1.3)

where f1 = 1. Here the contribution to the partition function of each spin is calculated one

at a time in one direction, it can also be calculated in the other direction:

f
†
i−1 (σi−1) =

∑

σi

eβσiσi−1f
†
i (σi) , (2.1.4)

where f †
N = 1 and N is the size of the chain. Here the notation for the complex conjugate

of f has been used, rather than a separate function, these two functions eventually become

the left and right eigenvectors of a Hermitian matrix.
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In matrix format

fi = T · fi−1






fi (+1)

fi (−1, )







=







eβ e−β

e−β eβ













fi−1 (+1)

fi−1 (−1)






.

(2.1.5)

The partition function for N particles is the overlap

z = f
†
N · TN · f1, (2.1.6)

which is the trace of the matrix TN

Tr
(

TN
)

= λN+

(

1 +
λN−
λN+

)

, (2.1.7)

where λ± are the eigenvalues of the transfer matrix, such that λ+ > λ−. Simply by exploiting

the locality and translational invariance, the partition function is an eigenvalue problem of

a 2 × 2 matrix.

Physically relevant systems are those that are in the thermodynamic limit, which in this

case is the limit that N → ∞. From (2.1.7) it can be seen that only the largest eigenvalue

is relevant to the thermodynamics

z = lim
N→∞

λN+ , (2.1.8)

and so the free energy per spin is

F

N
= − 1

β
log (λ+) . (2.1.9)

It is now natural to associate the partition function z with λ+ as opposed to λN+ . In the

context of the Ising chain this is
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z = 2 cosh (β) , (2.1.10)

the free energy

F

N
= − 1

β
log (z) , (2.1.11)

and the vectors from (2.1.3) and (2.1.4) must tend to the corresponding left and right

eigenvectors f and f †.

2.1.2 Correlation Length

The application of transfer matrices is not limited to the partition function, this section

shows that attainable quantities are not restricted simply to derivatives of the free energy,

they in fact extend to any thermodynamic observable that can be split into purely local

parts. These examples include certain correlation functions and by extension the correlation

length. Introduced here will be a detailed discussion of calculating such quantities which

will be a basis for the understanding of the same quantities in the spiral geometry.

It is the translational invariance and locality of interactions within the Hamiltonian that

allows the partition function to be split up into purely local parts to be solved using transfer

matrices. If an observable can also be split up in a similar fashion then that too is calculable.

The thermodynamic average of any quantity is

〈G (σn · · ·σm)〉 =

∑

{σ} G (σn · · ·σm) e−βH

∑

{σ} e−βH
. (2.1.12)

If the observable can be split into a product of single-variable functions

G (σn · · ·σm) =
m∏

i=n

Gi (σi) , (2.1.13)

then the numerator of the thermodynamic average can be split in the same way the partition

function is split.
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∑

σm

f † (σm) eβσm+1σmGm (σm) · · ·
∑

σn

Gn (σn) eβσn+1σnf (σn) , (2.1.14)

where we have used the previous definitions for f and f † from section 2.1.1 . In matrix

format

〈G〉 =
f † · Gm · · · Gn · f

zm−n , (2.1.15)

where Gi · f =
∑

σi
Gi (σi) f (σi) e

βσiσi+1 . From these results the observable does not need to

be translationally invariant, though it does make calculation a lot easier and from here only

translationally invariant observables will be used where the local functions Gi = Gj for all

i and j.

Correlation functions are such examples of solvable averages, and one function in partic-

ular is dealt with

〈σ1σm〉 =

∑

{σ} σ1σme
−βH

∑

{σ} e−βH
, (2.1.16)

and in matrix format

〈σ1σm〉 =
f † · T̃ · T · · · T · T̃ · f

zm
, (2.1.17)

where T̃ · f =
∑

σi
σif (σi) e

βσiσi+1 and T · f =
∑

σi
f (σi) e

βσiσi+1 . There are m applications

of T between the matrices T̃.

This correlation function also provides access to the correlation length, which is defined

in the limit m → ∞. This is a significant quantity to the results and plays a pivotal role in

determining the validity of any extrapolation to 2-D in the spiral geometry. Here the details

of the calculation for the 1-D Ising chain will be presented as a preliminary discussion to

the calculations for the clock model on the spiral geometry.
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The correlation length ζ is defined as:

〈σ1σm〉 ∼ lim
m→∞ e

− m
ζ , (2.1.18)

assuming that both σ1 and σm are within the bulk of the system. From this limit, just as

in equations (2.1.7) and (2.1.8) where a repeated application of the transfer matrix tended

to one of its eigenvalues the numerator of the correlation length must tend likewise but to

one which is in a different subspace and to understand this an aside must be made on the

different symmetries within a Hamiltonian.

Symmetries within a Hamiltonian.

Understanding the symmetries of a system provides a natural grouping of its eigenvectors

into non-overlapping subspaces that are differentiated by their behaviour under such trans-

formations. The eigenvectors associated with the partition function and correlation length

are examples of eigenvectors that belong to two different subspaces. This aside shows that

the matrix T̃ projects the eigenvector associated with the partition function onto a vector

within a different subspace, and so repeated application of the Hamiltonian will provide a

different eigenvector.

A matrix H is considered symmetric under a unitary transformation U if their commu-

tator is zero : [U,H ] = 0.

The eigenvectors g of U tend to form degenerate subspaces and it follows that each

eigenvector f of H is represented only by eigenvectors g in the same subspace.

In the context of this system the Hamiltonian, and by extension the transfer matrix,

respect the symmetry {σ} → {−σ}. Any application of the transfer matrix onto a vector

that has an overlap with only one subspace of degenerate eigenvectors of this symmetry

does not change the subspace it overlaps with. From equation (2.1.3) the first vector the

transfer matrix is applied to is f1 = 1, which is indeed invariant under this symmetry and
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any number of applications of the transfer matrix can only project the vector within the

subspace; the final eigenvector associated with the partition function obeys this symmetry.

The operator T̃ from equation (2.1.17) is antisymmetric under the transformation {σ} →

{−σ} and projects any vector away from this subspace onto one which is antisymmetric:

f (σ) = −f (−σ), which has no overlap with the eigenvector associated with the partition

function. Any repeated application of the transfer matrix preserves the antisymmetry of

this vector and so the eigenvalue associated with the correlation length is indeed the largest

eigenvalue within this antisymmetric subspace.

The Ising chain is a simple example and these statements are best illustrated within the

context that this example provides. Using the matrix form presented in equation (2.1.5) the

symmetry transformation that represents {σ} → {−σ} is

U =







0 1

1 0






, (2.1.19)

which does indeed leave the transfer matrix in (2.1.5) unchanged. The two eigenvectors of

this matrix correspond to two different eigenvalues and as such the two subgspaces of degen-

erate eigenvalues are both of size one. In larger systems such as those investigated in later

sections, there are large subspaces of degenerate eigenvectors and so for the consideration of

these larger systems the term subgspace will still be used to refer to the group of degenerate

eigenvectors, despite that degeneracy being one.

The symmetric subgspace has the partition function eigenvalue associated with it: λ+ =

2 cosh (β) and indeed the initial vector for the partition function f (σ) = 1 is in this symmet-

ric subspace; repeated application of the transfer matrix must tend towards the highest eigen-

value within this subspace. The antisymmetric subspace has the eigenvalue λ− = 2 sinh (β)

associated with it and the application of the matrix T̃ which is antisymmetric under the

symmetry transformation:
{

T̃,U
}

= 0 on a symmetric eigenvector projects it onto the an-
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tisymmetric subspace and thus has zero overlap with the symmetric subspace. Any further

application of the transfer matrix does not change the subspace that the vector overlaps

with and so must tend towards the antisymmetric eigenvector.

The correlation length therefore must be associated with the eigenvalue λ− = 2 sinh (β)

and in full is

1

ζ
= log

(

cosh (β)

sinh (β)

)

. (2.1.20)

.

2.1.3 A Summary of the Ising Chain

The intention of this section was to provide an understanding of the use of transfer matrices

to solve a common and completely analytical model as a basis for further understanding

of the models investigated in subsequent sections. Though these models have a higher

complexity, the partition function and correlation length are found in the same simplistic

way; both are the highest eigenvalues of different subspaces of a symmetry transformation,

where the subspaces in these cases are larger than one. Further discussion will focus on

the issues with more complex models and the intention of investigating the 2-D limit. The

concept that is key to this section and further sections is that the thermodynamics of all

the models investigated arise from the eigenvalues of the transfer matrix.

The macroscopic quantities that are deduced from these eigenvalues play an important

role in the classification of phase transitions in the 2-D limit. The partition function provides

access to specific heat quantities, which can provide clear singular behaviour in the vicinity

of a transition. The eigenfunction associated with the partition function provides conditional

probabilities of spin alignment, where the behaviour of different states can be determined.

Once a correlation length that has an analogue in 2-D is found it can provide clear evidence

of 2-D behaviour and an understanding of the universality class of the transitions. These,
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and further results that are exhibited later stem from the mathematics discussed here and

in the subsequent section.

2.2 The Transfer Function Technique on the Spiral Ge-

ometry

The Ising model served as an introductory section to the transfer function approach to ther-

modynamics; through exploiting certain symmetries, important observables are obtained.

The mathematics developed in that section provide the basis of the understanding in this

section; much of it extends to the Hamiltonians investigated and as such the previous sec-

tion will be used as a reference. Much like the Ising model the focus here is on two main

thermodynamic quantities, the partition function and correlation length, and there is also

discussion on the partition function eigenvector and the local spin configuration.

The motivation for this investigation arise from the 2-D plane rotator and 2-D clock

model. Both models are inaccessible thermodynamically and much work in the literature

is based on either analytically or numerically solvable models that are extendable to 2-D.

This section begins with these two models and formally introduces the method to which it

is studied. An example in the form of the J1 − J2 Ising model presents the mathematical

extension of the previous section. Throughout, the issues that arise from these Hamiltonians

are tackled as they are of a higher complexity than the Ising chain.

2.2.1 The Hamiltonian and the Spiral Geometry

The technique that is the focus of this section corresponds to a spiral geometry of a 1-D

clock model. The 2-D limit is a spiral with an infinite radius and though all calculations

are performed with finite radii it will be part of the investigation to explore what 2-D

characteristics are present in these 1-D calculations. The fundamental mathematics has been

presented in the previous section, and so the main discussion arises from the complexity of

71



these Hamiltonians and the implications of choosing this geometry.

The 2-D model that is the motivation of this study is the clock model. It is a 2-D classical

spin model with spins that point only within the plane, which can be defined by a single

angle θ

H = −
∑

〈i,j〉
Si · Sj

= −
∑

〈i,j〉
cos (θj − θi) .

(2.2.1)

The clock model restricts these to discrete spins that are part of the set θ = 2πn
p

where

n ∈ {0 · · · p− 1} and p characterises the number of ticks within the model: p = 2 corresponds

to Ising spins. No attempt is made to solve the thermodynamics of this model directly as

it is beyond the capabilities of this investigation; there are very few exactly solvable 2-D

spin models. Instead, the complexity of the system is lowered to a 1-D model that is easily

extendable to 2-D. Consider the set of clock Hamiltonians:

H =
∑

i

Si · Si+1 + Si · Si+N

=
∑

i

cos (θi+1 − θi) + cos (θi+N − θi).

(2.2.2)

These Hamiltonians correspond to a spiral geometry that is illustrated in figure 2.1. Each

spin shares a bond with four neighbouring spins: i±1 and i±N . As these are the only bonds

that exist in the model we denote it as the J1 −JN model, and in the limit that N → ∞ the

spiral tends to the 2-D square lattice. This limit is investigated through grouping models

with the same clock tick and analysing trends that are universal within the group.

These models are clearly only 1-D in the range of finite N , and as such from section 1.4.4,

there can be no finite temperature phase transition as low energy domain fluctuations are
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Figure 2.1: The spiral geometry for the J1 − JN (ontop) and JN − JN−1 (below) models,
taken from [58]

entropically preferable. Indeed, the focus of this investigation is on traits that imply phase

transitions in the 2-D limit. The range of N is very much dependent on the number of clock

ticks, analytically there is no limit but computationally the matrix to be diagonalised scales

as pN . For Ising spins the largest model that can be computed within a sensible time frame

is the J1 − J26 model. For more clock ticks this corresponds to J1 − J12 for p = 5; J1 − J11

for p = 6; J1 − J10 for p = 7; J1 − J9 for p = 8, 9.

It is possible to reduce the matrix by a factor of p by exploiting the global symmetry
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of the Hamiltonian {θ} → {θ + ζ}, where ζ is an arbitrary clock tick. It implies that the

absolute angle of each spin is irrelevant, only the angle between neighbouring spins affects

the thermodynamics. Mathematically this corresponds to a change of basis: φi = θi+1 − θi,

which transforms the Hamiltonian from the fixed basis of θ to the floating basis of φ which

have the same properties as θ

H = −
∑

i

cos (φi) + cos (φi + · · · + φi+N−1) . (2.2.3)

This Hamiltonian is thermodynamically equivalent to (2.2.2) but the number of spins is

reduced by one, simplifying the calculation. Throughout this section there will only be

reference to the fixed basis θ as it is easier conceptually, but all calculations are performed

using the floating basis φ.

It is useful as a comparison to solve another set of models that correspond to the same

limit

H =
∑

i

Si · Si+N + Si · Si+N+1

=
∑

i

cos (θi+N − θi) + cos (θi+N+1 − θi),

(2.2.4)

which in the N → ∞ limit is the square lattice geometry but rotated by 45◦ as seen in figure

2.1. Again as there are only bonds between site i and sites i ± N , i ± N − 1 we denote

this the JN−1 − JN model. It costs the same amount of computation time to solve J1 − JN

models as it does to solve JN−1 − JN but the radius of the spiral is larger for the JN−1 − JN

models as its circumference is N
√

2 rather than N .

The Transfer Function and Probabilities

The solution of the partition function works in much the same way as the Ising model,

as again the Hamiltonian is purely local and translationally invariant, it is covered briefly

here with another example that uses Ising spins, the J1 − J2 model which shows how the
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matrix application works. There are interesting features of this transfer matrix, that include

the inner product with which it is Hermitian to and the choice that exists for the local

Hamiltonian. These are worth investigating in their own right but are not pursued further

in this study.

The partition function of a system with Hamiltonian H and angles {θ} is

z =
∑

{θ}
e−βH ({θ}), (2.2.5)

and much like the Ising model in equation (2.1.3) the spiral clock model can be split up

fi (θi, · · · , θi+N) =
∑

θi−1

e−βH (θi−1,··· ,θi+N )fi−1 (θi−1, · · · , θi−1+N) ,

f
†
i−1 (θi−1, · · · , θi+N−1) =

∑

θi+N

e−βH (θi−1,··· ,θi+N )f
†
i (θi, · · · , θi+N) ,

(2.2.6)

where

H (θi−1, · · · , θi+N) = − cos (θi+N − θi)

− 1

2
[cos (θi+1 − θi) + cos (θi+N − θi+N−1)] + 2,

(2.2.7)

and f1 = 1. The constant is introduced so that the lowest energy state is zero, which

simplifies forthcoming calculations with the partition function. Once the thermodynamic

limit is taken, where the spiral becomes infinitely long the partition function becomes the

largest eigenvalue of the transfer matrix, which can be found computationally and exactly

as a function of β:

zf (θi, · · · , θi+N) =
∑

θi−1

e−βH (θi−1,··· ,θi+N )f (θi−1, · · · , θi−1+N)

zf † (θi−1, · · · , θi+N−1) =
∑

θi+N

e−βH (θi−1,··· ,θi+N )f † (θi, · · · , θi+N) ,

(2.2.8)
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where f and f † are the right and left eigenvectors of the transfer function respectively. The

same technique used for the Ising model is just as applicable here as the Hamiltonian in

(2.2.2) contains purely local interactions which are translationally invariant.

This at the moment is abstract formulation and it is best understood through example,

the best example for this is the J1 − J2 Ising model.

H = −
∑

σi

σiσi+1 + σiσi+2, (2.2.9)

which amounts to solving

zf (σ2, σ3) =
∑

σ1

eβH (σ1,σ2,σ3)f (σ1, σ2) , (2.2.10)

where H (σ1, σ2, σ3) = −1
2

(σ1σ2 + σ2σ3) − σ1σ3 + 2, and in matrix format:















1 e−3β 0 0

0 0 e−2β e−3β

e−3β e−2β 0 0

0 0 e−3β 1















f(σ1,σ2)
︷ ︸︸ ︷














f (↑, ↑)

f (↓, ↑)

f (↑, ↓)

f (↓, ↓)















= z

f(σ2,σ3)
︷ ︸︸ ︷














f (↑, ↑)

f (↓, ↑)

f (↑, ↓)

f (↓, ↓)















. (2.2.11)

The first thing to notice is that the transfer matrix is not Hermitian under the standard

overlap

(f, g) =
∑

σ1,σ2

f (σ1, σ2) g (σ1, σ2) , (2.2.12)

implying that the eigenvectors need not be orthogonal. It is however, Hermitian with respect

to the overlap

(f, g) =
∑

σ1,σ2

f (σ1, σ2) g (σ2, σ1) , (2.2.13)
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as long as the transfer matrix respects the symmetry (σ1, σ2, σ3) → (σ3, σ2, σ1). This extends

to models for any N , the transfer matrix is Hermitian with respect to the overlap

(f, g) =
∑

{θ}
f (θi, · · · , θi+N) g (θi+N , · · · , θi) , (2.2.14)

if it respects the symmetry {θi, · · · , θi+N} → {θi+N , · · · θi}.

This indeed implies the relationship between the right and left eigenvectors of the transfer

matrix f and f † that

f † (θi, · · · , θi+N) = f (θi+N , · · · , θi) , (2.2.15)

implying that the probability of any spin configuration
(

θ̃i, · · · , θ̃i+N
)

is

P
(

θ̃i, · · · , θ̃i+N
)

= f
(

θ̃i+N , · · · , θ̃i
)

f
(

θ̃i, · · · , θ̃i+N
)

, (2.2.16)

and for spins that are further than N apart

P
(

θ̃i, · · · , θ̃i+N+m

)

= f
(

θ̃i+N+m, · · · , θ̃i+m
)

Ti+m−1 · · ·Tif
(

θ̃i, · · · , θ̃i+N
)

, (2.2.17)

where Ti = e−βH (θ̃i,··· ,θ̃i+N+1), using the previous definition for H (θi, · · · , θi+N) from (2.2.7).

These probabilities are used to probe the behaviour of the state, which is investigated

using conditional probabilities; given that a spin is pointing in a certain direction, the

probabilities of a spin halfway around the spiral pointing along different clock ticks are

found.

Fourier spin space is also used to probe the behaviour of the state and the following is

also calculated:

f̃ (ki, · · · , ki+N−1) =
1

√

pN

∑

{θ}
ei(kiθi+···+ki+N−1θi+N−1)f (θi, · · · , θi+N−1) . (2.2.18)
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As this is a unitary transformation the overlap is preserved

∑

{θ}
f (θi, · · · , θi+N−1) g (θi+N−1, · · · , θi) =

∑

{k}
f̃ (ki, · · · , ki+N−1) g̃ (ki+N−1, · · · , ki) . (2.2.19)

Discussion Points on the Transfer Function

The transfer function approach developed here is a version with higher complexity of the

Ising model developed previously. The principal is much the same but the matrices are much

larger and Hermitian with respect to an unusual overlap.

It should be noted that the local Hamiltonian introduced in (2.2.7) is used because it is

invariant under the transformation (θi, · · · , θi+N) → (θi+N , · · · , θi). This symmetry is not

unique to this local Hamiltonian, there are other ways to split the Hamiltonian into local

parts. Another example is:

H (θi, · · · , θi+N+1) = − 1

N
[cos (θi+1 − θi) + · · · + cos (θi+N+1 − θi+N)]

− cos (θi+N+1 − θi) .

(2.2.20)

This yields a different transfer matrix, but must provide the same partition function as the

choice of the local Hamiltonian cannot affect the thermodynamics. This amounts to a gauge

symmetry and understanding the most natural gauge for this transfer function is beyond

the scope of this investigation but worth studying in its own right.

Another valid discussion point centres on the difference between 1-D and 2-D quantities.

The crossover between 1-D and 2-D requires that any quantity calculated on this spiral

geometry to be relevant must have a meaningful analogue in 2-D. This is the focus of the

next section in the discussion of the correlation length.
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The Correlation length

The basis of calculating the correlation length was introduced in section 2.1.2 in the form of

the Ising chain and with the clock model on the spiral geometry the concept is identical but

with some complexities: It is the highest eigenvalue associated with a different symmetry

subspace of eigenvectors of the transfer matrix to that of the partition function. Once

introduced the complexities are discussed and a simple example is given to show that they

are indeed of a different symmetry subspace. The correlation length that is calculated is

strictly a 1-D observable and has no meaningful representation in 2-D and so some space is

dedicated to finding an observable that does correspond to the 2-D correlation length once

the limit N → ∞ is taken.

The correlation function that is the extension to the function introduced in (2.1.16) is

〈S0 · Si〉 =〈cos (θi − θ0)〉

=ℜ〈ei(θi−θ0)〉.
(2.2.21)

This can be split up in operator form

〈ei(θi−θ0)〉 =
f † · T̃† · T · · · T · T̃ · f

zm
, (2.2.22)

where T̃ · f =
∑

θi
eiθi−βH (θi,··· ,θi+N )f (θi, · · · , θi+N−1).

The Hamiltonian and thus the transfer matrix once again respects the symmetry {σ} →

{−σ} and the eigenvector of the partition function is again in the subspace of eigenvectors

of the transfer matrix that is symmetric under the transformation. The operator T̃ does not

respect this symmetry and so projects the eigenvector onto a different subspace, one which

has a zero overlap with the initial subspace. The eigenvalue associated with the correlation

function is the highest eigenvalue within the second subspace. With the complications of

an unusual overlap and a larger subspace, this is best illustrated via example. The simplest
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example to use is the J1 − J2 Ising model introduced in (2.2.9), where the matrix T̃ is

T̃ =















1 −e−3β 0 0

0 0 e−2β −e−3β

e−3β −e−2β 0 0

0 0 e−3β −1















, (2.2.23)

and the Hamiltonian is invariant under the symmetry transformation

Ũ =















0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0















, (2.2.24)

which amounts to {σ} → {−σ}. It has two subspaces of the same size with eigenvalues

±1. The eigenvector of T̃ f (σ1, σ2) has an overlap only with the subspace associated with

the eigenvalue 1 and so must be of the form (a, b, b, a). The transfer matrix T̃ projects the

eigenvector onto the −1 subspace

T̃ · f =















a− e−3βb

e−2βb− e−3βa

e−3βa− e−2βb

e−3βb− a















, (2.2.25)

which is antisymmetric and thus has no overlap with the eigenvector f (σi, σi+1) and so

the correlation length is the highest eigenvalue of the partition function that is within the

antisymmetric subspace, exactly the same principle as the Ising chain, despite the fact that

it is a system with higher complexity. The same principle extends to the clock model but

there are more eigenvalues associated with the symmetry transformation {θ} → {−θ}.

There exists a more natural representation for the correlation length in the form of its
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representation in Fourier space. The transfer matrix in Fourier space is

T
ki,··· ,ki+N−1

k′

i+1,··· ,k′

i+N
=

1

pN−1

∑

θi,··· ,θi+N

e−i(k′

N
θi+N +···+k′

i+1θi+1)Tθi,··· ,θi+N
ei(kiθi+···+ki+N−1θi+N−1), (2.2.26)

where T{θ} = e−βH ({θ}). The transfer matrix associated with the correlation function

T̃
ki,··· ,ki+N−1

k′

i+1,··· ,k′

i+N
=

∑

θi,··· ,θi+N

eiθie−i(k′

N
θi+N +···+k′

i+1θi+1)Tθi,··· ,θi+N
ei(kiθi+···+ki+N−1θi+N−1)

=T
ki+1,··· ,ki+N−1

k′

i+1,··· ,k′

i+N
.

(2.2.27)

The correlation length calculated here describes the long range decay of the correlation

function 〈S0 · Si〉. It does not consider the site i + N to be nearest neighbours to site i,

and as such describes the decay of correlations along a 1-D chain. It provides no use in the

large N limit, instead the correlation length must describe the decay of correlations radially

outwards from an arbitrary spin in this limit.

A more meaningful correlation length is one associated with the correlation function

〈S0 · SNm〉 which does treat the sites i and i+N as nearest neighbours. This describes the

decay of correlations in the direction of sites i, i+mN . In the limit N → ∞ this direction

is radially outwards from the initial spin and so this becomes the 2-D correlation length.

The 1-D correlation function calculated above has an oscillatory nature at short range

where the correlations are affected by the relative position of spins around the spiral. At

larger distances the amplitude of oscillations decrease as the relative positions have less of

an effect, and at long range, i → ∞, the amplitude of the oscillations tend to zero. At

this range the decay in correlations are a result of only the lateral movement away from

the initial spin, which is the decay that is associated with the 1-D correlation length. The

relationship between the correlation length associated with 〈S0 · Si〉 and 〈S0 · SNi〉 is
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ζ2-D =
ζ1-D

N
, (2.2.28)

there is periodicity in only one direction and if this periodicity does not affect the correla-

tions, then the system is indistinguishable to one that is infinite in both directions. There is

therefore a criterion for when the system is exhibiting 2-D behaviour: 〈S0 · Si〉 = 〈S0 · SNi〉

for i < N
2

. This criterion is expected to be met at high temperature where the system is

disordered.

Final remarks

This section has seen the introduction of the transfer function technique on the spiral ge-

ometry of the clock model. It was developed with reference to the transfer matrix approach

to the 1-D Ising chain and it can be seen that it is indeed an extension of this approach;

all the important thermodynamics are eigenvalues of a transfer matrix that arises from the

locality of interactions in the Hamiltonian and their translational invariance.

There are some hidden complexities within this extension, each of which are worth sep-

arate investigations that go further than the current study. There exists an unusual overlap

that provides an Hermitian transfer matrix and a gauge invariance in the choice of local

Hamiltonian.

The spiral geometry introduced here is used as it provides easier calculations and allows

larger values of N . It is spiral as there is only one site per unit cell, the transfer matrix

moves along one spin at a time rather than a cylindrical geometry which transfers N sites

at a time.

The technique that has been developed corresponds to the clock model only where the

partition function is reduced to an eigenvalue problem. The plane rotator model, where the

spins are isotropic can be reduced similarly but with some extra complexity. This will not be

explored here, rather complementary work developed by Robson et al [58] is referenced where

the partition function is presented in full. It is simply noted here that the plane rotator
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model requires the equivalent analysis on an integral rather than a discrete summation

zf (φi+1, · · ·φi+N) =
1

2π

2π∫

0

dφ e−βHi,i+Nf (φi, · · · , φi+N−1) . (2.2.29)

The next discussion in this section on the partition function and the transfer function

approach is focused on the application of the of the partition function in providing derivatives

of the free energy. Recognising results that originate in the perturbation theory normally

seen in quantum mechanics it is possible to calculate the first derivative of the free energy

exactly, which provides a higher accuracy for higher numerical derivatives.

Thus far there has been discussion about the eigenvalues of the transfer matrix that

provide the main thermodynamics of the system, but it is possible for them to indicate

points of criticality within the system. This is to be the final part of the discussion prior to

introducing the results which extends the Fisher Zero approach to phase transitions.

2.3 Exact First Derivatives

The observables that are useful for this investigation are those that are known to provide

clear behaviour around critical points. These tend to be first or second derivatives of the

free energy with respect to some parameter, for example the energy and specific heat:

Energy: E = −∂ log (z)

∂β
;

Specific Heat:
C

kB
= −β2∂

2 log (z)

∂β2
.

These derivatives can be found numerically, but it shall be seen that from well known

analytic results of perturbation theory that the first derivative can be found exactly. First

the process of calculating the numerical derivative is showed.
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The Taylor’s expansion for a function f (x)

f (x∗ + h) = f (x∗) + h
∂f

∂x

∣
∣
∣
∣
∣
x=x∗

+
h2

2!

∂2f

∂x2

∣
∣
∣
∣
∣
x=x∗

+ · · · , (2.3.1)

and in matrix format for even derivatives:

1

2















f (x∗ + h) + f (x∗ − h) − 2f (x∗)

f (x∗ + 2h) + f (x∗ − 2h) − 2f (x∗)

f (x∗ + 3h) + f (x∗ − 3h) − 2f (x∗)

...















=















1
2!

1
4!

1
6!

. . .

22

2!
24

4!
26

6!
. . .

32

2!
34

4!
36

6!
. . .

...
...

...
. . .





























h2 ∂2f
∂x2

h4 ∂4f
∂x4

h6 ∂6f
∂x6

...















,

and for odd:

1

2















f (x∗ + h) − f (x∗ − h)

f (x∗ + 2h) − f (x∗ − 2h)

f (x∗ + 3h) − f (x∗ − 3h)

...















=















1 1
3!

1
5!

. . .

2 23

3!
25

5!
. . .

3 33

3!
35

5!
. . .

...
...

...
. . .





























h∂f
∂x

h3 ∂3f
∂x3

h5 ∂5f
∂x5

...















,

which is terminated depending on the accuracy required. The standard in this investigation

is eight points around f (x∗) so that the first two derivatives are known to O (h6). In this

case h = 0.01 so the derivatives are known to an accuracy of 10−12

Now consider a perturbation in the transfer matrix with respect to some parameter p

T (p+ δp) = T (p) + δp
∂T

∂p
+

(δp)2

2

∂2T

∂p2
+ . . . , (2.3.2)

where its eigenvalues are equally perturbed

z (p+ δp) = z (p) + δp
∂z

∂p
+

(δp)2

2

∂2z

∂p2
+ . . . . (2.3.3)
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From non-degenerate perturbation theory the eigenvalue must behave as

z (p+ δp) =z (p) + δp〈0|∂T
∂p

|0〉 +
(δp)2

2

∑

n6=0

〈0|∂T
∂p

|n〉〈n|∂T
∂p

|0〉
zn − z0

+
(δp)2

2
〈0|∂

2T

∂p2
|0〉 + . . . ,

(2.3.4)

where |n〉 is the eigenvector associated with eigenvalue zn (p) From this result

∂z

∂p
=〈0|∂T

∂p
|0〉

=f †∂T

∂p
f,

(2.3.5)

which is a simple overlap, therefore the first derivative of the free energy with respect to any

parameter is accessible. In the case of p = β

∂T

∂β
= −H e−βH , (2.3.6)

which provides the energy exactly. The first numerical derivative of this quantity provides

the second derivative of the free energy which can be found to O (10−14)

2.4 Fisher Zeros and Criticality

This section discusses the use of the eigenvalue structure of the transfer matrix in not only

determining the main thermodynamics of the system but also providing information on the

points of criticality and the existence of phase transitions. This method is built on the

method developed by Fisher and provides the backdrop of this section [52], [53].

Fisher’s method treats the temperature as a complex variable and finds the zeros of the

partition function within the complex plane; a phase transition is characterised as a zero

on the real line. The partition function is solved numerically in finite 0-D systems, and

via finite size scaling one attempts to find the position of the zeros in the 2-D limit. This
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technique is appropriate for only 0-D to 2-D; In the spiral technique used here the position

of the zeros in the complex plane are not dependent on the size of the spiral.

In this section an extension to Fisher Zeros is developed which is appropriate for the

1-D to 2-D crossover. It amounts to associating phase transitions not with zeros of the

partition function but with degeneracy of eigenvalues within the transfer function. This is a

novel technique and it is used to illustrate the different states explored when a spin spiral is

introduced into the system. Here there will be a review of Fisher Zeros with a very simple

partition function example, then the extension is introduced but the context in terms of spin

spirals will be covered in the results section of this investigation.

2.4.1 A Toy Partition Function

The methodology of Fisher zeros can be quite mathematically taxing, so this outline will be

as brief and comprehensible as possible. The partition function of even the simplest models

with a phase transition is complex, so a toy partition function is provided which in the

infinite limit has a first order phase transition, though it will have no real physical bearing.

Once introduced it will be seen that it is not applicable to the spiral technique and in the

following section the extension is produced.

The outline given here follows closely with the argument given by M.E Fisher in (reference

lectures on theoretical physics Volume VII C). First it should be recognised that any finite

partition function is a function solely of z = exp (−β), and can be expressed as a polynomial

of z. This polynomial is characterised by its roots.

Z (z) =
∏

i

(z − zi) , (2.4.1)

where zi are the roots. The partition function of a finite system is smooth and positive

definite for all real β, so any roots must be complex. The quantity that has physical
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significance is the free energy, proportional to log Z

log (Z) =
∑

i

log (z − zi) . (2.4.2)

A phase transition is defined as any non analytic point of the free energy for any positive

and real beta. Here we confirm a well known result, a finite system can not undergo a phase

transition as the roots of the partition function are complex; phase transitions can only exist

in the thermodynamic limit.

To illustrate critical points in the thermodynamic limit and the process of Fisher Zeros

we introduce here a toy partition function. Investigations into Fisher Zeros in the literature

tend to be numerical in type and use finite size scaling to predict the infinite limit. Consider

the partition function of a system with N particles

Z = 2eNK(β) cosh
[
1

2
Nǫ (β − βc)

]

, (2.4.3)

which has zeros at

βj = βc ± (2j + 1)π
i

Nǫ
, (2.4.4)

and so the free energy

−βF = K (β) +
1

N

∑

j

log

(

ǫβ − ǫβj − (2j + 1)πi

N

)

, (2.4.5)

and in the thermodynamic limit N → ∞ this becomes the integral

−βF =
1

2π

∞∫

−∞
log [ǫ (β − βc) + iθ] dθ, (2.4.6)

and the energy is

U (β) = −K ′ (β) +
1

2πi

∞∫

−∞

ǫ

θ − iǫ (β − βc)
, (2.4.7)
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where the contribution from the integral changes by ǫ at β = βc, clearly a first order phase

transition.

Turning to the partition function of the systems that are used, it shall be seen that Fisher

Zeros are not applicable; their position in the complex plane are not dependant on the size

of the system, and so do not converge to the real line, even though most of the results here

will indicate the existence of two transitions. To illustrate this the J1 − J2 and J2 − J3 Ising

model is to be used which is known to have a transition temperature in the 2-D limit. This

amounts to finding the position of the root of the highest eigenvalue of the transfer matrix.

The transfer matrix of the J1 −J2 Ising model in the floating basis introduced in section

2.2.1 is

T =







1 x

x x2






, (2.4.8)

where x = exp (−β), which has the characteristic polynomial

ǫ
[

ǫ−
(

x2 + 1
)]

= 0, (2.4.9)

where the highest eigenvalue is zero in the case that x2 + 1 = 0.

For the J2 − J3 model the transfer matrix

T =















1 x3 0 0

0 0 x4 x

x3 x2 0 0

0 0 x x2















. (2.4.10)

The eigenvalue is zero at x4 = 1, providing poles on the unit circle. This is the case for

larger Ising systems, where the Fisher Zeros populate only the unit circle; even though it is

known to have a transition, the root of the partition function does not tend to the transition
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temperature; an extension is required.

2.4.2 Degeneracy in the Transfer matrix

The extension, much like all the important thermodynamics of the spiral system lies within

the eigenvalue structure of the transfer matrix. Here it will be shown that points of criticality

imply a degeneracy in the highest eigenvalue of the transfer matrix. The approach used here

is only on well behaved transfer matrices as only finite spirals are considered but in the limit

that N → ∞ the degeneracy is achieved. The formulation is shown here and its application

to the results is discussed in further sections.

Consider the polynomial

p (z, β) =
∏

i

(z − zi) , (2.4.11)

where zi are the eigenvalues of a transfer matrix, which depend solely on β. The roots of

this polynomial are the places of interest, and the highest root is the partition function. We

explore the behaviour of the system at singular points in thermodynamic quantities in the

context of this polynomial. Differentiating once provides the energy

dp

dβ
− ∂p

∂β
=p′ ∂z

∂β

U =
1

z

∂z

∂β

=
1

p′z

[

dp

dβ
− ∂p

∂β

]

,

(2.4.12)

which must be evaluated at the highest eigenvalue zj, which corresponds to p = 0.

Differentiating a second time

1

2

[

d2p

dβ2
− ∂2p

∂β2

]

= p′ ∂
2z

∂β2
+ p′′

(

∂z

∂β

)2

, (2.4.13)

and so the specific heat is
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C

β2
=
∂U

∂β

= −
(

1

zp′

)2 (
dp

dβ
− ∂p

∂β

)2

+
1

p′z

(

1

2

[

d2p

dβ2
− ∂2p

∂β2

]

− p′′

(p′)2

[

dp

dβ
− ∂p

∂β

])

.

(2.4.14)

We see the effect of Fisher Zeros on the specific heat with both 1
Z

and 1
Z2 contributions.

We also see that it is singular in the case p′ = 0, and with the condition that corresponds

to p = 0, the singular behaviour occurs when p (z) has a multiple root at its highest zero.

This degeneracy in the eigenvalue spectrum is a phase transition.
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Chapter 3

RESULTS

We have established from the chapter 2 that the spiral geometry and the transfer function

approach gives us access to the eigenvalues of the transfer matrix for a model with arbitrary

sized radius. These eigenvalues are obtained through repeated application of the transfer

matrix to an arbitrary starting vector with the desired symmetry. Thus we can calculate

subject to numerical limitations any derivative of the free energy and have access to correla-

tion functions and correlation lengths. This gives us a vast amount of quantities to calculate,

and truly the problem is no longer how to calculate but what to calculate.

We wish to gain as much insight as possible into the 2-D limit of the system and this is

the criterion to the observables we calculate and present. We require quantities with clear

2-D analogues that are well defined in the N → ∞ limit. From the quantities calculated on

our 1-D system we expect them to have echoes of 2-D phenomena and the task at hand is to

spot these. We seek mainly the critical phenomena experienced around phase transitions.

There are limitations to the technique that we have developed and this plays a crucial

role in the finite size scaling of the results. The computation time for a system with p clock

ticks and N system size scales as pN . This exponential wall is the main limiting factor to

calculations. For an Ising p = 2 model results can go as far as N ∼ 26, for p = 5, N ∼ 12

and p = 9, N ∼ 9. Smaller clock ticks may seem an intelligent choice, but the phenomena

that we see in our results are better separated at high clock ticks. There is a clear pay off
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between higher N and clearer phenomena. We tend to settle on the p = 7 model although

we do present results for clock ticks p = 5 . . . 9 in the appendices C-E.

Before we discuss the results in detail we must first properly introduce the aims to the

section with the context of how the results will meet these aims. This will give us a guide

on how the section will be structured and presented. There are other questions that have

been answered along the way and we will address them once the main layout is introduced.

Investigations into systems with inaccessible exact thermodynamics tend only to find

the broad, qualitative properties. This is normally the case with most 2-D systems and

even though we have exact thermodynamics for our 1-D systems we can answer very little

about their 2-D limit. We do have some access to the singular behaviour associated with

phase transitions, but our evidence for these is convincing rather than proof. Once phase

transitions are established we will attempt to classify the different phases and seek out

possible critical exponents of the transitions.

Our results must justify the use of these 1-D systems as representatives of the correct 2-D

limit. Where we can, we compare our results to well known 2-D behaviour, either via exactly

solved 2-D models or seeking 2-D behaviour in our calculated quantities extrapolated to the

N = ∞ limit. The 2-D Ising model has a well known transition temperature and we are

able to compare the p = 2 and p = 4 models in our spiral system to known 2-D Ising model

results; we prefix any clock model p > 4 results with comparisons between our Ising model

calculations and the known results. Where appropriate we present a polynomial extrapo-

lation of our results, showing the N = ∞ limit. We fit results to a Lagrange polynomial

in 1
N

, and use the value of the intercept for the quantity at the 2-D limit. This is not ex-

pected to exhibit singular behaviour but it is able to emphasise 2-D properties qualitatively.

All deductions about the 2-D limit from our calculations rely on this justification and we

emphasise this in the way we structure our results.

We show our most crucial results first, those that present the most convincing evidence of

the existence of phase transitions and those that show that our clock models do not require
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long range effects to describe phase transitions. The correlation length provides both kinds of

evidence and also labels one of the transitions with possible critical exponents. The specific

heat also shows two phase transitions in the form of diverging anomalies. Once convinced

of the existence of phase transitions we present results that investigate the phases between

transitions. The conditional probabilities between two spins give us information about the

direction the spins are pointing relative to one another; it tells us about the magnetic state of

the different phases. The analogue in Fourier spin space is used to emphasise the similarity

between the two transitions and show that at low temperature the spins are best described in

a real space representation and that at high temperature, the reciprocal space. We suggest

order parameters from the helical stiffness, highlighting the difference between the two bonds

with respect to this. The difference gives two quantities for the helical stiffness and we use

these as two possible order parameters for both transitions. After our main set of results we

address other discoveries that provide insight into the systems that we use and more general

thermodynamic behaviour.

These interesting phenomena do not directly contribute to the bulk of the results outlined

above but are interesting within their own right. We discovered these following reviews of

the literature surrounding phase transitions and also complementary work done on the plane

rotator spiral system by Robson et al [58]. There exists a theory detailed by Fisher that

allows determination of phase transitions in the 2-D limit of 0-D systems. This theory

treats temperature as a complex variable and tracks the roots of the partition function with

increasing system size. A phase transition is found if finite sized scaling suggests the existence

of a root on the real line in the 2-D limit. We find a comparable criterion in the 2-D limit of

1-D systems, that degenerate behaviour of the eigenvalues of the partition function indicate

phase transitions. This is explored here with respect to increasing the number of spin spirals

in the system at a fixed temperature. Comparisons between the results found in this piece

and results on the plane rotator suggest a thermodynamic convergence between clock and

plane rotator systems above the low temperature transition; we use a high temperature
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expansion to quantify the convergence and confirm that the high temperature transition is

universal for all p > 4 up to p = ∞. These phenomena provide plenty of areas of further

research once we obtain the basic thermodynamic properties of the system.

It is important to dedicate some space to the way our results are presented. We plot

results with increasing N on top of each other to draw attention to trends. The curves start

with the J1 − J2 model and increase up to the appropriate limit. Where appropriate we

plot with the polynomial extrapolation to deduce any singular behaviour. The Ising model

is consistently used as a check against known results, as outlined above. Most clock model

results will use the p = 7 model, other results can be found in the appendix, but we find

traits which are universal for all clock models.

3.1 Correlation Length

The main validity for using these 1-D systems as representations of the 2-D limit originate

from our correlation length results and it is for this reason amongst others that the correlation

length is one of the most crucial quantities that we calculate. Our results on finite radii

show qualitatively 2-D behaviour giving us reason to believe that there are no infinite range

phenomena that directly affect the physics of 2-D systems. We take temperature derivatives

and see that these give results that indicate possible universality classes. We present these

first due to both the insight it provides and its starkness.

It is established from earlier sections that we have access to the correlation length of the

system exactly (2.1.16) and (2.2.22). The quantity that will correspond to the correlation

length in the 2-D limit was discussed in section 2.2 where we use equation (2.2.28)

The Ising model will be used as the context of our results. Once we establish a useful

correlation length we will find that it provides the correct correlation length for the Ising

model in the 2-D limit, both by finding a good estimate for the transition temperature and

a correct range for the critical exponent ν. This will then serve as a basis of comparison for

94



the clock model which we will see show very similar results.

We plot the correlation length first as an indication that we have 2-D behaviour, then

we plot its derivatives with respect to temperature to pick out the critical exponents.

3.1.1 Correlation length Results

We plot first the inverse correlation length for the Ising model for increasing N in figure 3.1a.

This presents a direct comparison between our method in 1-D to the well known results in

2-D. Our extrapolation presents correct 2-D behaviour as it is finite above the transition

and zero below. It is convincing that our results do have 2-D echoes and that there is no

long range behaviour key to the physics of the system that we have missed in using our 1-D

systems.

We plot the results for the clock model in figure 3.1b and note the similar traits between

the clock and the Ising model. The extrapolation in both cases give believable 2-D behaviour,

remaining zero below a transition temperature. We recognise a pattern for increasing N in

both correlation lengths and predict that any models with higher values of N will have

a correlation length that falls within the white space between what is plotted and the

extrapolation. This again implies that there are no longer range effects that are key to the

transitions.

Note that for both of these systems there is a convergence of the correlation length at

high temperature, and that for increasing N the temperature range of convergence is closer

to the transition temperature.
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Figure 3.1: The inverse correlation length for the p = 4 (a) and p = 7 (b) model. Both
are plotted with the extrapolation (black solid line). The low temperature for the p = 4 is
not shown as at low temperature the difference between eigenvalues is smaller than compu-
tational accuracy. As N increases the curves converge and get closer to the extrapolation.
The J1 − J2 models are the high red curve and they go up to J1 − J11 for p = 4 and J1 − J9

for p = 7.
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3.1.2 Correlation Length Derivatives

We appear to have the correct 2-D behaviour for the clock model and so we turn our attention

to the critical exponent of the correlation length. These exponents are key to determining

the universality class of the phase transition and describe the behaviour of the system within

the vicinity of the critical temperature. The correlation length behaves as:

ζ−1 ∼ (T − Tc)
ν
θ (T − Tc) , (3.1.1)

if the critical exponent lies between n and n+1 then in the (n+ 1)th derivative there should

be a non zero term at the critical point proportional to

(T − Tc)
ν−(n+1)

θ (T − Tc) , (3.1.2)

which will show up as a divergence for a general ν at T = Tc, and any further derivative

will contain a stronger divergence. In the special case where ν is an integer, there will be

a derivative which appears as a step function, and thus the next derivative will appear as

a delta function. This is the case in the Ising model where ν = 1, and our results show

quantities that are diverging in the limit of N → ∞. The derivatives with respect to

temperature present a range for the critical exponent ν

We use the Ising model as an example again as the quantity ν = 1 in 2-D. The first

derivative is seen in figure 3.2a, and the second in figure 3.2b . We see a curve diverging to

a singularity in the second derivative, where we expect a delta function to be and can only

assume that this will be a delta function singularity. Again this picks up the correct 2-D

behaviour.

We plot the first derivative of the clock model in figure 3.3a,and the second in figure 3.3b.

In the second derivative we see a divergence at the transition not unlike the divergence in

figure3.2b. This puts the value of the critical exponent between 0 and 1.

A small decreasing anomaly also appears at low temperature, we will see that this occurs
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at the same temperature of another transition, but in the infinite limit this should go to

zero as the system is ordered at that temperature.
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Figure 3.2: The first two derivatives of the inverse correlation length with respect to tem-
perature of the p = 4 model, plotted with the extrapolation (black solid curve). The curves
get closer to the extrapolation with increasing N , the red lowest red curve is the J1 − J2

model and they go up to J1 − J11.
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Figure 3.3: The first two derivatives of the inverse correlation length with respect to tem-
perature for the p = 7 model. The curves become convergent with increasing N and the
lowest red curve in both graphs is the result for the J1 − J2 model and they go up to the
J1 − J9 model which is the highest green curve.

3.1.3 Concluding Remarks

Some remarks are required here to emphasize the importance of what we have found from

these results. All further results are justified by what is found here; we are able to use this
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system to model the 2-D limit.

The correlation length shows that there is no long range interaction that we cannot pick

up due to finite N , everything that happens in 2-D that is key to the transition happens

to some extent in the smaller system. From the derivatives we find a range for the critical

exponent ν.

We will move onto to other well known thermodynamic quantities and see that the

anomaly at lower temperature in the correlation length derivatives are seemingly associated

with another transition.

3.2 Specific Heat

Anything that exhibits singular behaviour at 2-D should give visible diverging behaviour in

our system. We find that the specific heat has two growing peaks with respect to increasing

N for clock models with p > 4 and its derivatives with respect to temperature show that

they are clear divergences. The low temperature transition appears to be associated with

the number of clock ticks. We are led to believe from the previous section on correlation

length that this is the correct 2-D behaviour.

The partition function established in section 2.2 gives us access to any derivative of the

free energy, from these derivatives we wish to determine the number of phase transitions the

system exhibits. We look for a quantity that gives unambiguous behaviour in the vicinity

of a transition and so we calculate the specific heat as it is singular at critical temperatures.

We expect the 2-D behaviour to manifest itself as smooth peaks that diverge with increasing

N .

We plot the first three derivatives of the entropy with respect to temperature

[

T
∂

∂T

]n

S, (3.2.1)

where the case n = 1 gives the specific heat. We plot higher derivatives so that the divergence
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is emphasised.

The Ising model is used as an example, which is known to have a singularity in the

specific heat. We then move onto the p > 4 clock model.

3.2.1 Ising Model Results

We plot the results for the Ising model in figure 3.4. A clear peak can be seen at the known

transition temperature. It should be seen that though we know that this peak is associated

with the singularity in 2-D, it does not appear to diverge with respect to increasing N . Only

when we see the derivatives of the specific heat can we be sure that there are divergences.

The nature of the logarithmic divergence in the Ising model explains the slow divergence

that we see in the specific heat.
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(a) The specific heat of the p = 4 model.
The lowest red curve is J1 − J2 and they go
up to J1 − J13
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(b) The first derivative with respect to tem-
perature of the specific heat of the p = 4
model. The lowest red curve is J1 − J2 and
they go up to J1 − J11
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(c) The second derivative with respect to
temperature of the specific heat of the p = 4
model. The lowest red curve is J1 − J2 and
they go up to J1 − J11.

Figure 3.4: The specific heat and its first two derivatives with respect to temperature with
the extrapolation (solid black curve).
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3.2.2 Clock Model Results

We plot the clock model specific heat in figure 3.5. We see two peaks that increase in

the same fashion to the Ising model peak. The high temperature peak is associated with

the critical behaviour in the correlation length, indicating that this peak is indeed a phase

transition in the infinite N limit.

Once we plot the derivatives in figures 3.5b and 3.5c , much like the Ising model we can

see that the two peaks are diverging into phase transitions. This is the case for all clock

models, and we see that the temperature of lower transition decreases with more clock ticks

as see in appendix A. This lower transition is clearly associated with the anisotropy of the

system, and from the correlation length results must be a transition between two phases

that have an infinite correlation length.

We plot also the ratio in the specific heat between the p = 7 model and the plane rotator

in figure 3.6, where we can see that the high temperature transition exhibited in the clock

model is also exhibited in the plane rotator. The two models converge rapidly after the low

temperature transition.
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(a) The specific heat of the p = 7 model.
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(b) The first derivative of the specific heat
with respect to temperature of the p = 7
model
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(c) The second derivative of the specific heat
with respect to temperature of the p = 7
model.

Figure 3.5: The specific heat for the p = 7 model with derivatives. The lowest red curve is
the J1 − J2 model and they go up to the J1 − J10 model.
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Figure 3.6: The specific heat ratio between the p = 7 model and the plane rotator for
increasing N with the extrapolation (solid black curve). The lowest red curve is the J1 − J2

model and the curves go up to J1 − J7. Plane rotator data has been taken from [58]
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3.2.3 Concluding Remarks

The clock model results present two clear transitions. Both anomalies behave much like

the Ising model anomaly in our system; they only clearly diverge in the first and second

derivatives with respect to temperature. It is also clear that the high temperature result

is associated with the critical behaviour of the correlation length, indicating that the low

temperature transition is between two phases of different types of order. Results with

different clock ticks show that where the low temperature transition is associated with the

anisotropy, the high temperature transition is not; it is the same transition in the plane

rotator implying that the clock model can be used to probe this system above the lower

transition. We will characterise these phases in further sections.
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3.3 Conditional Probabilities

The previous sections have focused on determining the existence of phase transitions within

the system, we will now turn the focus on characterising the three phases. We find the

probabilities of different relative orientations between two sites in both real space and Fourier

space. The region of most interest is between the two transitions as it poses quite novel

behaviour and the real space and Fourier space result show that the two transitions are

complementary. Further sections on the similarities between the clock model and plane

rotator will present some insight into this phase, but more investigation is warranted.

We can gain an understanding of the state from the eigenvector of the highest eigenvalue

of the transfer matrix by calculating the probability of the relative spin orientations between

two sites. In this section we plot the probability of two spins to be 0, 1, 2 · · · clock ticks away

from each other with respect to temperature at a fixed N and plot the probabilities of two

spins at increasing distance apart. Discussions from the previous section on the correlation

length included emphasis on the effect of boundary conditions on correlation functions; at

temperatures above the high temperature transition, the correlation length is of the order

of the periodicity and the system is not in the 2-D limit in the regions of most interest.

Nevertheless we will gain insight into the different phases that occur.

To put the orientational probabilities in context we show that the correlation function

between two spins can be split up into these probabilities:

〈S0 · Si〉 =
∑

n,m

P0,i (n,m) cos

(

2π (n−m)

p

)

. (3.3.1)

We look specifically at the critical temperatures highlighted by the specific heat to spot any

universal difference in behaviour for all clock ticks. As there is no transition in 1-D it is hard

to pick out any sharp behaviour, especially at the high temperature transition which has a

broad specific heat peak so that the entropy is spread over a large temperature region. The

phase between transitions poses the greater challenge to understanding, both high and low
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temperatures are easy to classify as a disordered and long range ordered phase respectively.

We look to compare the transitions by performing the same calculations in Fourier spin

space, using equation (2.2.18).

The results we show in Fourier space are much like the real spin space representations,

we plot with respect to temperature, the probability of each difference in k-value between

two sites for fixed N . An important relation between the real space and Fourier space is that

localised states in one representation correspond to delocalised states in the other, it should

also be noted that the aligned k value, corresponds to the total probability and remains a

constant at all temperatures.

The curves we plot are on a single model, for the Ising it is the J19 − J20 and for p = 7

it is the J9 − J10. On the Ising model in both real spin space and Fourier spin space the

blue curves represent probabilities between nearest neighbours; the green curves between

second nearest neighbours; the black curves between spins that are diametrically opposite

on the spiral. For the p = 7 model in both spaces the blue curves represent the relative

probabilities between sites i, i+N − 1 and i, i+N − 2 and the green curve between sites i

and i + 1; the black curve again between spins that are diametrically opposite and the red

curves are all sites between i and i+N .

3.3.1 Ising Model Results

Our example calculation to illustrate the concept uses the Ising model. We plot the real spin

space relative orientation probabilities for fixed N = 20 in figure 3.7a and the Fourier space

in figure 3.7b. In the real spin space, the top set of curves is the probability of alignment

and the bottom, anti-alignment. In the Fourier spin space, the only set of curves show the

probability of anti-alignment in k values.

These results show behaviour that is expected of the Ising model. At low temperatures

the system is in a long range ordered state, a finite fraction of the system is aligned. It then

undergoes a second order phase transition into a disordered phase and the spins are equally
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likely to be aligned and anti-aligned. The Fourier space results indicate the duality in the

model. At low temperature (high β) both Fourier components are equally likely, and then

at high temperature (low β) only the aligned k values are probable.
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Figure 3.7: The orientational probabilities for the p = 2, J19 − J20 model in both the real
spin space (a) and Fourier spin space (b).
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3.3.2 Clock Model Results

We plot the orientational probabilities for p = 7, N = 10 in figure 3.8a. To find universal

behaviour we plot many clock ticks which can be found in appendix C, which will indicate

behaviour that is associated with the low temperature transition. The plots in Fourier space

are presented similarly. It should be noted that only about half the clock ticks are plotted as

the probability is an even function of relative orientation. We have seen plenty of evidence

that the system represents the 2-D limit, so there must be indicators in these results to the

qualitative behaviour of each temperature region.

The real space probabilities show some universal behaviour in the three different phases.

Both the low and high temperature phases are easily categorised. Long range order occurs

from discrete models at low temperatures, and we see that at low temperatures there is a

sizeable probability of alignment between spins. The lower critical temperature decreases

with an increase in clock ticks as the energy barrier to the nearest clock tick decreases. High

temperature brings expectations of disorder, and we see that in all models the probability

of each clock tick tends to 1
p
; spins are equally likely to point in any direction. The phase

between the transitions is the most challenging to grasp. We can see that the behaviour that

occurs around the first critical temperature for any model is an increase in the probability

of a difference of one clock tick, which is of the same order to alignment between spins. The

most surprising part of this result is that at temperatures around the critical region, there is

negligible probability of a difference of two clock ticks. This implies that there is a disorder

between just two neighbouring clock ticks. Such a state clearly presents more questions than

it answers, and though we will discuss this, very little further insight will be gained on the

region between transitions.

We turn to the Fourier space probabilities and note the striking similarities between

these results and the real spin space results. At low temperature (high β) every relative k

orientation is equally likely. At around the first transition all relative k orientations drop off

dramatically apart from neighbouring k orientations. After the high temperature transition
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and in the low β phase, the only non zero Fourier component is the aligned orientation that

corresponds to the total probability. The crucial result from the Fourier space calculation is

that in the region between transitions the critical behaviour arises dominantly from nearest

k value but not of the second nearest, much like the real space behaviour between nearest

clock ticks. Clearly the two transitions have very similar traits.

Calculations in both representations present a very novel phase and complementary

transitions. There are points for further investigation into this middle phase: an explanation

on the number of clock ticks selected; the symmetry that is broken at the transition and the

type of order that is exhibited, appear to be the most puzzling topics, but we are unable

to probe questions of such detail. This is simply because that in the systems we use the

problem of what to calculate is significantly harder than how to calculate. We can affirm

that our calculations represent a 2-D phase as we know from previous results that the system

is a good representation of 2-D. The phenomena are also not likely to be due to the finite

size of the system; there is no obvious decrease in behaviour with increasing N . It is clear

that at both extremes in temperature there exist natural representations to the system, low

temperature in real spin space, high temperature in Fourier spin space.

113



0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
O r i e n t a t i o n  p r o b a b i l i t i e s

T e m p e r a t u r e

Pr
ob

ab
il

it
y

(a) The orientational probabilities for the p = 7,
J9 − J10 model in real spin space.
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(b) The orientational probabilities for the p = 7,
J9 − J10 model in Fourier spin space.

Figure 3.8: The orientational probabilities in both real and spin space for the p = 7 model.
The different set of curves are between different relative clock ticks. The blue curves are
relative orientations between i and i+N − 1 and i and i+N − 2; the green curves between
i and i + 1, the black curve between two spins diametrically opposite and the red curves
every site in between i and i+N − 1.
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3.3.3 Concluding Remarks

We have found clear qualitative behaviour of the three different phases of the system. The

two regions that correspond to the two extremes in temperature are well understood as long

range order and disorder; the middle phase is the focus of the results. Above the low critical

temperature, the system forms domains of spins disordered between two nearest neighbour

clock ticks, above the low critical temperature the system forms domains of nearest neighbour

k-points in Fourier spin space and intermediate temperatures must be superpositions of the

two. As both transitions are so similar they are perhaps in the same universality class.

The amount of information that we can gain from this novel phase is limited despite that

we have access to any correlation function we desire. To shed some light on this we will

investigate the similarities between the clock and plane rotator models. Some of the results

found will be required to discuss the section on possible order parameters.

3.4 High Temperature Expansion

We have so far highlighted that the high temperature transition that is apparent in the clock

model is the same transition that is seen in the plane rotator.

Here in this section we shall see the analytic relationship at high temperature between

the clock model and plane rotator. This is done through a high temperature expansion of

the partition function, where we are in the regime of small β. We find the free energy as a

power law expansion of β and find the leading order difference between the clock model and

plane rotator.

We begin with recognising that the partition function can be expanded as a power series:

Z =Tr e−βH

=
∑

m

1

m!
Tr [(−βH )m]

, (3.4.1)
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where the trace can be understood as the sum over all possible configurations.

We are interested in F = −1
β

log (Z) and so shall attempt to obtain a function A such

that

Z =eA

=1 + A+
A2

2!
+ · · ·

, (3.4.2)

where A must depend linearly on the number of atoms in the system N , as it is proportional

to the free energy, but will also be a perturbative expansion in β. We will gain an expansion

of both plane rotator and clock models where we expect

Fclock = FPR + f (β) , (3.4.3)

where f is some homogeneous function of β.

Our only necessary example is the 1-D chain. We find the free energy using diagrammatic

techniques. Consider the Hamiltonian

H = −1

2

∑

i

[

ei(φi+1−φi) + e−i(φi+1−φi)
]

, (3.4.4)

where φi ∈ [0, 2π). The trace in this model is explicitly

Tr O =
(

1

2π

)N π∫

−π
dφ1 · · ·

π∫

−π
dφN O

(

φ
)

. (3.4.5)

The dot product between nearest neighbour spins has been split up so that they can be

represented diagrammatically and to ease the calculation.

i i+ 1 ⇒ ei(φi+1−φi)

i i+ 1 ⇒ e−i(φi+1−φi)
For ease we drop the indices from the diagrams.

The Hamiltonian raised to any power is a taxing sum of complex exponentials. The
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trace tells us that the only contribution to the partition function are those exponentials that

cancel to give unity as

1

2π

π∫

−π
dφ eiφ = 0. (3.4.6)

This is only the case if the diagram of the term forms a closed loop. Our task is simply

to count the loops at each order. Note that the lattice allows only even powers of H to

contribute.

We will lay out each contributing diagram at each order and collate them in powers of

N. From here we will find order by order a power law expansion for A in terms of β

(H )2

1
2!

(
β
2

)2
N2!

(H )4

1
4!

(
β
2

)4
N 4!

2!2!

. . . 1
4!

(
β
2

)4 N(N−1)
2!

4!

(H )6

1
6!

(
β
2

)6
N 6!

3!3!

. . . 1
6!

(
β
2

)6
N (N − 1) 6!

2!2!

. . . . . . 1
6!

(
β
2

)6 N(N−1)(N−2)
3!

6!

(H )8

1
8!

(
β
2

)8
N 8!

4!4!

. . . 1
8!

(
β
2

)8
N (N − 1) 8!

3!3!

. . . 1
8!

(
β
2

)8 N(N−1)
2

8!
2!2!2!2!

. . . . . . 1
8!

(
β
2

)8 N(N−1)(N−2)
2!

8!
2!2!2!

. . . . . . . . . 1
8!

(
β
2

)8 N(N−1)(N−2)(N−3)
4!

8!

[Note the ellipses imply both joined and separate diagrams.]

Now we collate the terms for increasing powers of β and we gain a power series expansion
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for A = log Z which will be linear in N . At order β2

Z =1 +
1

2!
Tr

[

(βH )2
]

Z =1 +N

(

β

2

)2

A

N
=

(

β

2

)2

;

(3.4.7)

at order β4

Z =1 +
1

2!
Tr

[

(βH )2
]

+
1

4!
Tr

[

(βH )4
]

Z =1 +N





(

β

2

)2

− 1

4

(

β

2

)4


+
N2

2!





(

β

2

)4




A

N
=

(

β

2

)2

− 1

4

(

β

2

)4

.

(3.4.8)

Note that the term at O (N2) is equal to the square of the term at O (N) to O (β4). At

order β6

Z =1 +
1

2!
Tr

[

(βH )2
]

+
1

4!
Tr

[

(βH )4
]

+
1

6!
Tr

[

(βH )6
]

Z =1 +N





(

β

2

)2

− 1

4

(

β

2

)4

+
1

9

(

β

2

)6


+
N2

2!





(

β

2

)4

− 1

2

(

β

2

)6




+
N3

3!





(

β

2

)6




A

N
=

(

β

2

)2

− 1

4

(

β

2

)4

+
1

9

(

β

2

)6

.

(3.4.9)

We thus have a perturbative expansion for A in terms of β, and by extension the free energy

F = −A
β

.

The expansion for the clock model behaves almost exactly the same, the difference is

discretisation.

φi ∈ 2πni
p

, s.t. ni ∈ 0, . . . , p− 1, (3.4.10)
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and the trace is no longer an integral

Tr O =
1

pN

p−1
∑

n1=0

. . .
p−1
∑

nN =0

O (n) . (3.4.11)

This trace now implies that the contributing terms to the partition functions satisfy

1

p

p−1
∑

n=0

e
i 2π

p
n =

∞∑

m=−∞
δn,mp, (3.4.12)

which includes, but is not restricted to the m = 0 terms that contribute in the plane rotator

model.

Though this trace is more inclusive than the plane rotator, the expansion is much the

same and the first additional diagrams occur at order βp

· · · 1
p!

(
β
2

)p
N

+

· · · 1
p!

(
β
2

)p
N

which implies that the leading order change in log Z is

Aclock

N
=
APR

N
+

2

p!

(

β

2

)p

, (3.4.13)

and so the change in specific heat to leading order is

Cclock = − ∂2F

∂T∂β
= CPR +

(p− 1) (p− 2)

p!

(

β

2

)p−1

. (3.4.14)

When we move to 2-D, though the loops are more complicated, the principals are exactly

the same and the leading order additional diagrams are

... +
...

the contributions from the extra diagrams are
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∆Z =
2

p!

(

β

2

)p

N +
2

p!

(

β

2

)p

N, (3.4.15)

and the leading order change to the specific heat is given by

Cclock = CPR +
2 (p− 1) (p− 2)

p!

(

β

2

)p−1

. (3.4.16)

3.5 Helical Stiffness

There exists thermodynamic quantities that measure the response of the system to some

external parameter. These parameters change the Hamiltonian that was initially under

investigation, but often the most interesting region is the response to an infinitesimal value

of the parameter. The response is measured as the lowest order change to the free energy;

one well known example is the magnetic susceptibility, which measures the instantaneous

change to the system to a uniform magnetic field, another is the helical stiffness. These

parameters can provide insight into the original Hamiltonian around critical temperatures.

The system has been somewhat characterised by the results on conditional probabilities,

but we have yet to find order parameters for the transitions. We will be seeking quantities

that are non zero only in ordered regions and behave singularly at critical regions in the 2-D

limit. This will be an obstacle to discerning the validity of these order parameters, as our

results will not behave singularly and nor will their extrapolation. In this section we use the

helical stiffness to show that there is a possible order parameter for each of the transitions.

This quantity is generally used as an order parameter in Kosterlitz-Thouless type transitions

[6],[12].

We will first discuss the helical stiffness at some length; the quantity applied both to 1-D

and 2-D with plane rotator and clock models and then its use in the spiral systems. In the

context of our Hamiltonian we note a gauge invariance which is crucial to understanding

the difference to the two order parameters. It will be shown that with this gauge invariance
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and the results on the relationship between clock and plane rotator models that one order

parameter is associated solely with the anisotropy lost at the first transition, and the other

associated with the order of the plane rotator.

3.5.1 Examples in 1-D and 2-D

We examine the effects on the free energy as a function of the external parameter chi in the

Hamiltonian:

H =
∑

〈i,j〉
cos (θj − θi − χ), (3.5.1)

for a finite χ, the spins are encouraged to spiral across the system. The region of most here

interest is in the limit χ → 0

F (χ) − F (0) =
χ2

2!

∂2F

∂χ2

∣
∣
∣
∣
∣
χ=0

+
χ4

4!

∂4F

∂χ4

∣
∣
∣
∣
∣
χ=0

. (3.5.2)

The helical stiffness is the leading order change for an infinitesimal spiral across the system

Y2 = Fχχ (0).

It is important to highlight that the helical stiffness is not associated with the excitations

of the original Hamiltonian. This quantity is best understood through simple examples at

extreme temperatures; at low temperature we calculate ground state energies and at high

temperature we use the diagrammatic technique developed in the previous section.

The first examples that we deal with will be the clock model in 1-D and 2-D. Consider

an infinite 1-D chain of spins with the Hamiltonian

H =
∑

i

cos

(

2π (ni+1 − ni)

p
− χ

)

, (3.5.3)

where ni ∈ Z. At low temperature the most relevant contribution to the free energy is the

ground state energy of the system. The ground state for such a Hamiltonian is dependant
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on the size of the spiralling angle. For 2πn
p
< χ <

2π(n+1)
p

, the ground state is a spin spiral

with a pitch of p
n

and an energy of

F ∼ E = − cos

(

χ− 2πn

p

)

, (3.5.4)

and so the helical stiffness is

Y2 ∼ cos

(

2πn

p

)

. (3.5.5)

This solution also includes the ferromagnetic ground state for n = 0.

At high temperatures, we use the expansion developed in the previous section and re-

represent each diagram as :

H =
1

2

∑

i

exp

[

i

(

2π (ni+1 − ni)

p
− χ

)]

+ exp

[

−i
(

2π (ni+1 − ni)

p
− χ

)]

, (3.5.6)

which implies that the diagrams introduced in the previous section have slightly altered

= exp [i (φi+1 − φi − χ)]
Again the diagrams that contribute to the partition

function are closed loops, those that do not contribute now include the diagrams that dif-

ferentiate the clock model from the plane rotator.

⇒ ∑
exp [ipχ] = 0

the difference between the free energy is already known

from the previous section

∆F =
χ2

2

∂2F

∂F 2
+O

(

χ4
)

∼ 1

T p
.

(3.5.7)

For small χ ∆F is the helical stiffness to leading order.

This example shows that anisotropic models can have a finite response to an infinitesimal

spin spiral at low temperature and at high temperature tends to zero.

Another important example is with the isotropic spin model: the plane rotator. This is
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key as we know that the intermediate phase in the clock model behaves as the low temper-

ature phase of the plane rotator:

H =
∑

n

cos (φn+1 − φn − χ). (3.5.8)

If we change the basis to

φn => φn + nχ, (3.5.9)

then we are left with the original Hamiltonian. This is a gauge transformation of the original

Hamiltonian leaving the thermodynamics unchanged, implying that the helical stiffness is

zero for the infinite plane rotator chain at all temperatures. The result extends to the two

dimensional model.

This quantity appears to be able to pick out behaviour in 1-D that extends to long range

order in 2-D. At a quantitative level it measures the difficulty of inducing a spin spiral. For

models that extend to quasi long range order in 2-D the effect of a spin spiral is not apparent

on the infinite system scale. When we calculate for the systems that we use, we see that

due to the geometry, the helical stiffness is finite for quasi long range ordered regions.

3.5.2 Helical Stiffness in the Spiral Geometry

After simple examples of helical stiffness for both clock and plane rotator models, we shall

calculate the helical stiffness in the two temperature extremes for the spiral system that

we use. It is worth exploring this before presenting the results as there are complexities

associated with the helical stiffness in these models that should be addressed so that the full

implication of the results are understood. We shall see that there are two helical stiffnesses,

one that can be associated with those calculated above, and another which occurs from the

boundary conditions.

We consider first the low temperature results of the Hamiltonian
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H =
∑

i

cos
(

θi+1 − θi − χ‖
)

+ cos (θi+N+1 − θi − χ⊥), (3.5.10)

and calculate its ground state for both the clock and plane rotator models. For both cases,

we only consider small χ, where χ << 2π
p

. In further sections we shall see the ground state

for the clock model for the case 0 < χ < 2π.

In the region of interest of the clock model the ground state is a ferromagnet with no

spin spiral. It has the energy

E‖ = cos
(

χ‖
)

E⊥ = cos (χ⊥) ,

(3.5.11)

where the first is with χ⊥ = 0 and the second with χ‖ = 0. The helical stiffness for both is

Y2 = 1, (3.5.12)

and just as in the above examples, there is a finite result for zero temperature for the clock

model.

The plane rotator model behaves markedly differently to the clock model. In the 2-D

limit we expect the above gauge transformation for the plane rotator, but there is one even

for the 1-D spiral geometry.

We expect from the above example that in the 2-D limit that there is a gauge transfor-

mation that implies a zero helical stiffness, but we note that even in the 1-D spiral system,

with specific boundary conditions, there still is a gauge transformation.

Consider the change of variables φi → φi + iχ‖, which leads to a Hamiltonian

H =
∑

i

cos (φi+1 − φi) + cos
(

φi+N − φi +Nχ‖ − χ⊥
)

. (3.5.13)

124



This gauge invariance does not exist for the clock model

3.5.3 High Temperature Expansion

At high temperature we use the diagrammatic technique to show that the helical stiffness

in both clock and plane rotator models go to zero. We will then plot the difference in free

energy between models with and without the induced spiral and see that each helical stiffness

is associated with the different transitions, providing an order parameter for each.

The leading order difference in the clock model is that the diagram

· · ·
(
β
2

)p
N

does not contribute. Which means that the leading order difference is

4

(

β

2

)p

N. (3.5.14)

In the plane rotator model the leading order diagram that does not contribute is the diagram

that loops around the spiral

...

...

2
(
β
2

)m+1
N

Where in this case we have used m to refer to the size of the spiral. This is again another

power law tail at high temperature.

3.5.4 Results

There are two clearly different helical stiffnesses, one associated with the clock model and

the other with the plane rotator. As they are also possible measures of order in a system,

they are clear choices as possible order parameters. The helical stiffness has been proposed

before as an order parameter, and found experimentally, in the form of the superfluid density

of helium; an analgous quantity [13].We find the helical stiffnesses numerically.
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We plot the helical stiffness associated with χ‖ and χ⊥ in figure 3.9 respectively for

different values of N . There are clear changes in behaviour at critical temperatures; χ⊥

appears to tend to critical behaviour at the upper transition; χ‖ appears to tend to critical

behaviour at the lower transition. This is exactly as we outlined above, that one helical

stiffness is associated with the decrease in the effect of the anisotropy of the clock model

to the thermodynamics, which from results in the previous section we know is at the lower

transition. We also know that the other helical stiffness is the loss of order associated with

the plane rotator model.

We also plot the high temperature expansion in figure 3.10.
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(a) The helical stiffness with χ⊥ = 0
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(b) The helical stiffness with χ‖ = 0

Figure 3.9: The helical stiffness for p = 7 along both directions, plotted with the extrapola-
tion (solid black curve). The red curve furthest away from the extrapolation is J1 − J2 and
they go up to J1 − J10.
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Pure N black, pure P red (blue), n+p green (blue)

3.5.5 Concluding Remarks

The helical stiffness in our system provides two distinct quantities that are each associated

with each phase transition, and provide possible order parameters for the critical regions.

Like all calculations we have performed on the 1-D systems, we cannot draw explicit con-

clusions about the 2-D limit; the helical stiffness can only appear to tend towards critical

behaviour at the transitions.

One of these quantities is associated with the helical stiffness that is often calculated in

the 2-D limit, which behaves accordingly; it highlights long range ordered states, and due to

a gauge transformation is zero for isotropic systems. The second quantity highlights both

long range and quasi long range order that is witnessed in the plane rotator model.

We have seen in the previous section which explicitly shows the relationship between

the clock and plane rotator models, that the clock model becomes the plane rotator after

the first transition. We are able to measure the extent to which the anisotropy of the clock

model is relevant to the thermodynamics. Once the clock model becomes the plane rotator,

the free energy becomes a function of only one parameter.

The two transitions have now been characterised as much as the technique allows. The

existence of singular behaviour at two critical temperatures have been established, and we

have gained insight into the nature of the three temperature regions. The focus of our

results shall turn away from the characterisation of the transitions and we deal with a

complementary investigation of the clock model with a finite χ within the context of an

extension of Fisher Zeros.
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3.6 Vortices through the spiral

In this section we will attempt to show that there are phase changes at points of degeneracy

in eigenvalues of the transfer matrix. We do this using the Hamiltonian in the previous

section and calculate the free energy as a function of the external parameter χ. A compar-

ison between analytic results of the ground state and the free energy of our system at low

temperature will show that there are crossing points of the highest eigenvalue and the free

energy follows them.

We introduced the notion of a generalisation of Fisher Zeros in section 2.4.2 where in

our 1-D to 2-D crossover technique the idea is that a phase transition occurs when the

highest eigenvalues are degenerate. It is worth calculating the highest lying eigenvalues as a

function of temperature to see if there is any degeneracy that occurs around the presumed

phase transitions. Work has been performed in this area which suggests degeneracy in the

limit N → ∞ but this work was not included in this investigation.

Instead we find as a function of χ⊥ the free energy of the Hamiltonian we used in the

previous section at select temperatures.

H = −
∑

i

cos (φi+1 − φi) + cos (φi+N − φi − χ⊥) , (3.6.1)

where in this case 0 < χ⊥ < 2π. The idea is that vortices are induced through the middle

of the spiral, which correspond to discretised ground states and quantised flow. At low

temperature we shall see that the structure of the free energy is very much dependant on

the value of p, where the structure has a periodicity of π. In the intermediate phase we shall

see that regardless of clock tick, the free energy is periodic in 2π
N

, resembling the exact results

we achieve for the plane rotator. At very high energy, the amplitude of this periodicity tends

to zero as the cost to put any number of vortices into the system tends to zero.
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3.6.1 Results

We plot the low temperature solution for the p = 7, N = 8 with the zero energy solution

which has been found analytically in figure 3.11a. Each lowest energy state corresponds to

an increase in the number of vortices placed through the system. As expected these agree

with each other very well; the free energy is dominated by the energy at low temperature.

We plot the results for the intermediate phase in figure 3.11b and notice that the system

no longer notices the anisotropy inherent in the clock model. In this intermediate phase

the free energy is still sharp but now has a periodicity of 2π
N

. We see this behaviour in

most clock models when the power law convergence between the plane rotator and clock

model is sufficiently large. This indicates that the spins at this temperature are behaving

isotropically.
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(a) The high temperature expansion between T = 5 −
10 for the p = 6, n = 8 model. The blue curves are the
calculated expansion at higher orders, the lower set is
considers the contribution from p only and the higher
set are both p and N contributions. The green and red
curve are the extrapolated helicity moduli. The black
curve is simply the contribution from N .
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(b) The same graph taken at temperatures between
T = 0 − 2.

Figure 3.10: The high temperature expansion of the helical stiffness for the p = 6, n = 8
model.
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Figure 3.11: The free energy as a function of χ‖ for the p = 7, N = 9 model at temperatures
T = 0.2 (a) and T = 0.75 (b)
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Chapter 4

CONCLUSIONS

We have developed a novel technique for probing 2-D thermodynamic systems. It is con-

ceptually easy to understand as it is an extension of the well known transfer matrix method

of solving the Ising model in 1-D. The power in the technique relies on the ability to use it

on models that tend towards a 2-D lattice model limit, which we see in the spiral geometry.

Unlike other statistical techniques, macroscopic quantities are known exactly for the models

that we calculate and the calculations are made in the 1-D thermodynamic limit where the

total number of sites is infinite. The technique is not restricted to clock models, there is

work to be published by Robson et al [58] that relies on this technique for the plane rotator

model and further work has begun on clock model analogues to spins with 2 degrees of

freedom.

Our results allow us to draw two main conclusions about the square lattice clock model.

From results mainly on the specific heat, figures 3.5 we can conclude that there are indeed two

second order phase transitions in clock models with p > 4. Our second conclusion dictates

that above the low temperature transition there is a power law convergence between the

clock model and the plane rotator in the free energy, implying that the high temperature

transition that is seen in the clock model is exactly the same transition in the plane rotator.

This is seen in figure 3.6. This implies that clock systems can be used to model the plane

rotator, which can ease calculations. Both conclusions are in direct contrast with a lot of
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literature results, and we shall place them in context here, addressing results on both clock

and plane rotator calculations.

It has been generally accepted that the method of transition for both plane rotator and

clock models on the square lattice are Kosterlitz-Thouless in type [1], [2]. This is based on

continuum results of the plane rotator, which is best represented in helium-4 films [13]-[16]

rather than on discrete lattices where the effect of the lattice has been ignored.

Nevertheless there is plenty of numerical data that conclude Kosterlitz-Thouless type

transitions for the p > 4 clock models but there appears to be a general acceptance within

the literature that they are not thermodynamically the same model.

Our data on specific heat provides clear divergent behaviour for the 2-D limit, and

coupled with correlation length results, figures 3.1b and 3.3 we see that in the N → ∞

limit our system provides a plausible 2-D limit. The specific heat scales with the size of our

system and the derivatives which we calculate essentially exactly show that it is diverging.

Though we only deal with a small system size we pick up no long range behaviour such as

a unbinding of vortices which would be characteristic of a Kosterlitz Thouless transition.

In fact our data is self consistent in the idea that their extrapolated behaviour present a

physical realisation of a 2-D limit.

This is in contrast to the literature. Monte Carlo results which fit using a Monte Carlo

Renormalisation Group technique or fit to the magnetic susceptibility or correlation length

that exhibit essential singularities conclude Kosterlitz Thouless type transitions [29], [28],

[24], [26], [59], [25], [60], amongst many others. However many of these investigations nu-

merically calculate the specific heat and find the same two peaks that are seen in this inves-

tigation. We plot examples of these in figure 4.1. Currently there is no general acceptance of

the behaviour associated with these peaks in either numerical or analytical investigations. In

fact our investigation is more in line with conclusions drawn by Lapilli et al [25] and Hwang

[30]. Lapilli concludes that p < 7 models do not exhibit Kosterlitz Thouless transitions and

Hwang concludes that the p = 6 model, using a numerical Fisher Zero approach exhibits a
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normal continuous phase transition.

We see from the correlation length that we have plausible 2-D behaviour and now that

we see that we have continuous phase transitions, we use its derivative to gain a range for the

critical exponent and an idea of the universality class. We get Ising like transitions but we

see from a lot of the literature that the correlation length experiences an essential singularity

[1], [2] and does not have critical exponents in the normal sense. The only critical exponent

that can be found is the one associated with correlation function η, which is associated with

the long range decay of the correlation function. According to the literature [1], [2] and [10]

the Kosterlitz Thouless transition occurs when η = 1
4

and at the lower transition η ∼ 1
p2 .

This has not been confirmed by the literature [19], [29], [24], [26].

The relative orientational probabilities that we plot in figure 3.8a and 3.8b attempt to

characterise the three phases, and we see a novel intermediate phase that exists in the critical

region. We can conclude from the Fourier and real spin space probabilities that both are very

similar transitions, in both spaces the intermediate regime can be characterised similarly;

disorder between neighbouring clock ticks and the high and low temperature phase can be

characterised by a single orientation presenting a possible duality between transitions. This

is in fact in line with the arguments presented by Ortiz et al [50] and Elitzur et al [61], but

their conclusions are based on the idea that both transitions are Kosterlitz Thouless in type

rather than a second order transition.

We have used the helicity modulus in figure 3.9 as the order parameter for both tran-

sitions, much like the literature on Kosterlitz Thouless transitions, but we do not expect,

yet cannot conclude that our calculated results exhibit a discontinuous jump at the phase

transition, rather it is more likely that it behaves singularly.

Our second main conclusion draws again upon our specific heat results, the high temper-

ature expansion and vortex inducing Hamiltonian but also on similar data found by Robson

et al [58] on the plane rotator. We see that comparisons between specific heat on any clock

model and plane rotator results show that the high temperature transition is the same in
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both models. The two models are thermodynamically equivalent at the second transition

and from our high temperature expansions the free energy converges as a power law after the

low temperature transition. As we force a vortex in the spiral we see again the same results,

that the free energy as a function of the induced spiral ignores the effect of the symmetry

breaking field after the low temperature transition.

This again is in contrast to much of the literature. There is a lot of discussion about the

clock model exhibiting plane rotator like behaviour and it is generally believed that both

models undergo the same type of transitions. However, transition temperature results place

the two models at different temperatures, general consensus with the literature place the

plane rotator transition temperature at ∼ 0.89, [21], [62], [18], but there have been some

recent results that place it at ∼ 0.70 [63], [64], [65]. The literature for the clock model, place

what we are claiming to be the same transition at a different temperatures. There is no

general consensus for the high temperature transition, whether it is a universal temperature

or not, and for a variety of clock ticks the transition is between 0.9[26]-1.3[29]. There exists

some results by Lapilli [25] that equate the two models above p = 6 and conclude much like

we do that they are equivalent. Our results have more agreement with this investigation

than with the rest of the literature and we conclude that studying the p > 4 clock model

above the low temperature transition is equivalent to studying the plane rotator model.

Overall our new technique has prescribed an exact method of extracting critical infor-

mation about two dimensional systems through exactly solvable 1-D models. We hope that

with this new technique the key information regarding the nature of the transitions in both

the clock and plane rotator systems is illuminating as singular behaviour in thermodynamic

quantities.

136



Figure 4.1: Investigations that show the same specific heat peaks that are seen in this
investigation. Figures taken from [60], [29], [30], [24], [59], [25]
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Appendix A

SPECIFIC HEAT RESULTS

Here we present the specific heat results and their first two derivatives along with the its

ratio with the specific heat of the plane rotator model on our JN−1 − JN , p = 5, 6, 8, 9 clock

models.
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Figure A.1: The specific heat and first two deriviatives and the specific heat ratio with the
plane rotator model for the p = 5 clock model. The extrapolation is plotted in each (solid
black curve). The spcific heat and its dreivatives go from J1 − J2 which is the lowest red
curve up to J10 − J11. The specific heat ratio goes up to J6 − J7.
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Figure A.2: The specific heat and first two deriviatives and the specific heat ratio with the
plane rotator model for the p = 6 clock model. The spcific heat and its derivatives go from
J1 − J2 which is the lowest red curve up to J10 − J11. The specific heat ratio goes up to
J6 − J7, which is plotted with the extrapolation (solid black curve).
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Figure A.3: The specific heat and first two deriviatives and the specific heat ratio with the
plane rotator model for the p = 8 clock model. The spcific heat and its derivatives go from
J1 −J2 which is the lowest red curve up to J8 −J9. The specific heat ratio goes up to J6 −J7,
which is plotted with the extrapolation (solid black curve).
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Figure A.4: The specific heat and first two deriviatives and the specific heat ratio with the
plane rotator model for the p = 9 clock model. The spcific heat and its derivatives go from
J1 −J2 which is the lowest red curve up to J8 −J9. The specific heat ratio goes up to J5 −J6,
which is plotted with the extrapolation (solid black curve).
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Appendix B

CORRELATION LENGTH RESULTS

We present the correlation length results and their first two derivatives on our JN−1 − JN ,

p = 5, 6, 8, 9 clock models.
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Figure B.1: The correlation length (a) and first two deriviatives (b) and (c) for the p = 5
clock model. Plotted is the J1 − J2 model up to the J10 − J11 model
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Figure B.2: The correlation length (a) and first two deriviatives (b) and (c) for the p = 6
clock model. Plotted is the J1 − J2 model up to the J9 − J10 model.
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Figure B.3: The correlation length (a) and first two deriviatives (b) and (c) for the p = 8
clock model. Plotted is the J1 − J2 model up to the J7 − J8 model.
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Figure B.4: The correlation length and first two deriviatives for the p = 9 clock model.
Plotted is the J1 − J2 model up to the J7 − J8 model.
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Appendix C

ORIENTATIONAL PROBABILITY RESULTS

We present here the orientational probability results for both real and fourier spin space for

p = 5, 6, 8, 9 for the JN−1 − JN . The blue curves are between sites i and i+N − 1 and i and

i+N − 2; the green curve between sites i and i+ 1; the black curves are between sites that

are diametrically opposite and the red curves are between all sites from i+ 2 to i+N − 3.
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Figure C.1: The relative orientational probabilities for both real and fourier spin space for
the p = 5, J11 − J12 clock model
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Figure C.2: The relative orientational probabilities for both real and fourier spin space for
the p = 6, J10 − J11 clock model
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Figure C.3: The relative orientational probabilities for both real and fourier spin space for
the p = 8, J8 − J9 clock model
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Figure C.4: The relative orientational probabilities for both real and fourier spin space for
the p = 9, J8 − J9 clock model.

xiv



Appendix D

HELICAL STIFFNESS RESULTS

We present the helical stiffness results for J1 −JN , p = 5, 6, 8, 9 models for both cases where

χ‖ = 0 and χ⊥ = 0 from the Hamiltonian (3.5.10)
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Figure D.1: The helical stiffness for the p = 5 model for χ⊥ = 0 and χ‖ = 0 respectively
with their extrapolation. The curves plotted are for the J1 − J2 model up to the J1 − J12 as
they become more convergent.
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Figure D.2: The helical stiffness for the p = 6 model for χ⊥ = 0 and χ‖ = 0 respectively
with their extrapolation. The curves plotted are for the J1 − J2 model up to the J1 − J11 as
they become more convergent.
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Figure D.3: The helical stiffness for the p = 8 model for χ⊥ = 0 and χ‖ = 0 respectively
with their extrapolation. The curves plotted are for the J1 − J2 model up to the J1 − J9 as
they become more convergent.
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Figure D.4: The helical stiffness for the p = 9 model for χ⊥ = 0 and χ‖ = 0 respectively
with their extrapolation. The curves plotted are for the J1 − J2 model up to the J1 − J9 as
they become more convergent.
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Appendix E

INDUCED VORTICITY RESULTS

Here we present vortices through the spiral data for the p = 5 model.
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Figure E.1: Free energy calculations for induced vorticity for p = 5, J1 −J9 model at T = 0.2
and T = 0.85 respectively. The low temperature has the exact energy calculations overlaid.
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