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Abstract 
 

Atmospheric localised corrosion of stainless steel has been investigated under salt 

droplets containing a mixture of MgCl2 and NaCl between the deliquescence relative 

humidity of the two salts where there was precipitation of NaCl crystals. Dish-shaped 

pits and crevice-like attack could be observed.  

Effects of the change of relative humidity (RH) have been studied. In a wet-wetter cycle 

(33% RH + 85% RH + 33% RH), a pit that has grown at 33% RH for 1 day will tend to 

repassivate when the RH is increased to 85% while pits grown at 33% RH for 3 weeks 

may not repassivate at 85% RH and can continue to grow when the RH is returned to 

33%.   

In a wet-dry cycle (33% RH + 12% RH + 33% RH), a pit that has grown at 33% RH can 

continue to grow after 1 day at 12% RH if the RH is returned to 33%. RH fluctuations, 

either to low or high RH, lead to greater number of pits.  

Using the 1D artificial pit method, a potential sweep method was developed to 

investigate the repassivation process of pits in concentrated solutions, representative of 

atmospheric conditions. The onset of repassivation is defined as the point where there is 

no increase in current with an increase in potential. It has been found that repassivation 

takes place when the concentration of MgCl2 is lower than 3.2 M (equivalent to 64% 

RH) while there is no repassivation for 3.5 M and 4 M MgCl2 (equivalent to 59% RH 

and 50% RH respectively). A range of the repassivation potential and the critical metal 

ion concentration to prevent pits from repassivation was determined. Both of them 

decrease with increasing chloride concentration and pit depth. 



 
 

Tests were carried out to help understand the corrosion behaviour of stainless steel 

under atmospheric conditions, especially for the storage conditions of intermediate level 

nuclear waste containers. 
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*
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*
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1 Introduction 
 

Stainless steel containers are currently used for storing intermediate level nuclear waste. 

They are currently in stores above ground, some of which are near the coast, where they 

will be stored for a number of decades before being placed underground in a geological 

disposal facility (GDF) [1]. Atmospheric aerosols containing salts may be deposited on 

stainless steel surfaces, particularly near the sea. When the relative humidity (RH) is 

high, the salts may deliquesce, leading to the formation of droplets on the metal surface, 

under which localised corrosion may take place, particularly in the presence of 

aggressive ions involved such as chloride ions. Consequently, attention has been paid to 

localised corrosion of stainless steel in atmospheric environments to ensure the integrity 

of nuclear waste containers before placing into a GDF [1-3]. 

Localised corrosion of stainless steel in fully immersed environments has been 

extensively studied [4-6]. However, relatively little work has been carried out under 

atmospheric corrosion conditions. Furthermore, the studies carried out so far have only 

investigated the effect of pure MgCl2 [7-12], pure NaCl [13, 14] and artificial sea water 

[7, 12] on localised corrosion behaviour of stainless steel in atmospheric environments. 

However, salt composition changes with environment such as geographic locations [15]. 

Consequently, there is a need to study the effect of mixed salts with different 

compositions other than artificial sea water.  

Studies on atmospheric localised corrosion are usually performed under constant RH [7-

10, 12, 13, 16-19]. However, the RH fluctuates in the natural exposure conditions [20]. 

Studies carried out to investigate the effect of RH variation have been limited to 

corrosion current and potential monitoring [14, 21-23]. However, the current and 
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potential monitoring method is unable to tell whether the corrosion current is caused by 

damage accumulation, i.e., growth of individual pits, or initiation of new pits. If there is 

growth of one dominant pit, then large deep pits can form, which might lead to the 

formation of stress corrosion cracks, while initiation of new pits is much less of a 

concern since a large population of small pits is less likely to lead to cracks. Hence, 

there is a need to carry out optical measurements to visualise the corrosion behaviour 

during RH fluctuation. 

It is difficult to observe pit propagation with time since the growth takes place under 

droplets that develop rust layers. However, in situ synchrotron X-ray tomography makes 

it possible to visualize the growth of pits in a non-destructive way [2, 24].  In this 

project, X-ray microtomography was used to investigate the propagation of pits on 

stainless steel in an atmospheric environment.    

The pit shape is quite complex under atmospheric conditions. Therefore, 1D artificial 

pit electrodes [4, 25, 26], with a relatively well controlled geometry, have been used in 

the current study to investigate the repassivation process of pits in concentrated 

solutions, which are representative of atmospheric conditions. The electrochemical 

behaviour contributes to the understanding of the repassivation of pits under 

atmospheric conditions. 
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2 Literature review 

2.1 Introduction to stainless steel 

Stainless steels can be divided into four main groups: ferritic, austenitic, martensitic and 

duplex. AISI 304 stainless steel (SS304) is commonly used, and it is austenitic. 

Typically, SS304 contains 18 wt% Cr, 8 wt% Ni and Fe (balance). Ni is an austenite 

stabilizer and it is added to the alloy to improve formability. Addition of Cr allows the 

formation of a thin (nanometre), chromium rich and protective oxide film [27-29]. For 

the application of intermediate level nuclear waste containers, SS304L, which has a low 

carbon level (< 0.03%) is used instead of SS304, to avoid intergranular corrosion [30]. 

SS304 is susceptible to intergranular corrosion due to carbide precipitation, which can 

be caused by welding.  

2.2 Pitting corrosion of stainless steel 

2.2.1 Introduction 

The protective oxide film, which forms on the surface of the stainless steel, protects the 

metal from general corrosion. However, the alloy is susceptible to localised corrosion, 

such as pitting, when the exposure environments contains aggressive ions such as 

chloride ions [7, 31]. Chloride is relatively small and its diffusivity is quite high; 

therefore it can interfere with passivation. It is also the anion of the strong acid, 

hydrochloric acid. There is a considerable solubility of metal ions in chloride 

solutions [32]. 

Figure 2-1 illustrates the pitting corrosion process [33]. The pitting process has been 

considered to be autocatalytic. Once pitting starts, pits tend to keep growing by 



4 
 

maintaining an aggressive condition which promotes pitting propagation. For stainless 

steels, pits often initiate at inclusions. The dissolution of metal gives rise to metal ions, 

as shown in Equation 2-1.  

 M → Mn+ +  n e− Equation 2-1 

The hydrolysis of metal ions decreases the pH and thus provides an acidic environment, 

as shown in Equation 2-2. 

 Mn+ +  H2O → M(OH)n +  nH+ Equation 2-2 

Chloride ions will be drawn into the pit to balance the charge neutrality. The acidic 

chloride environment inside the pit promotes further growth of the pit [32]. The pit area 

then becomes depleted of oxygen and acts as the anode. The dissolution of the metal is 

the anodic reaction. The area outside of the pit is the cathode. With relatively easy 

access to oxygen in the cathode area, the cathodic reaction can be an oxygen reduction 

reaction, as shown in Equation 2-3. 

 O2 +  2H2O + 4e−  → 4OH−  Equation 2-3 
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Figure 2-1 Schematic diagram showing the pitting corrosion process [33].  

In the following sections, pit initiation (passive film breakdown), pit propagation and pit 

repassivation process will be reviewed in detail.  

Pitting potential (also called as breakdown potential) pitE  and repassivation potential 

repE  are frequently used to characterise the pitting behaviour. pitE  is the lowest 

potential where there is initiation of stable pits [32, 34] and repE  is the lowest potential 

where a stable pit can propagate [32, 34]. There is an induction time, which is the 

exposure time before stable pitting is observed [35]. As reviewed by Soltis [35], the 

induction time usually decreases with increasing concentration of aggressive 

solutions [36-38], increasing temperature [38], increasing applied potential [38, 39] and 

thinner passive film [40]. Before stable pitting, initiation and repassivation of 

metastable pits could be observed [41, 42]. The life of metastable pits is usually within 

seconds and their size is of micron size at most [32]. Depending on the condition of the 

pits, some metastable pits may keep growing and become stable pits.  
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2.2.2 Pit initiation 

In pure metal systems, there are three main mechanisms of passive film breakdown and 

pit initiation: passive film penetration, adsorption or film breaking mechanism [32]. 

However, for real alloy systems, pits mostly initiate at local heterogeneities, such as 

inclusions, second phase particles, or mechanical damage [32, 43]. MnS inclusions are 

often considered as pitting initiation sites for stainless steels. The dissolution products 

of MnS inclusions have been reported as Mn2+, aqueous sulfide (H2S) [44], elemental 

sulfur [44-46], thiosulfate (S2O3
2-) [47, 48], SO3

2- [45] and sulfate SO4
2- [44, 45]. The 

dissolution process is usually associated with decreasing solution pH, which facilitates 

dissolution of the metal. Thiosulfate has been reported to promote chloride-induced 

pitting corrosion [49, 50]. The adsorbed sulfur layer delays the passivation of the alloy 

and enhances metal dissolution rate by weakening metal-metal bonds [51]. 

Consequently, dissolution of the metal is likely to take place. 

2.2.3 Pit propagation 

An aggressive acidic environment should be sustained within the pit to keep the pit 

growing. The dissolution of metal ions should be greater than their rate of escape by 

diffusion or the pit solution will become diluted.  It is important for pit propagation that 

the low pH inside the pit should be maintained through hydrolysis of metal ions. 

Galvele proposed the idea of ix , the product of current density and pit depth [52-54]. 

He used a one dimensional pit and ignored the electromigrational effect in his model. 

Taking into account the dissolution of the metal, the following hydrolysis, and solving 

the five equations based on the balance of the flow of species containing metal atoms, 

oxygen atoms, hydrogen atoms, the law of mass action and the ionic product of water, 

Galvele plotted a series of curves of ionic concentration against ix . One of the curves is 
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shown in Figure 2-2 [52]. The cross in the figure represents the pH when the oxide film 

is thermodynamic stable according to Pourbaix diagram. ix  needs to be greater than the 

corresponding value to maintain the acidic solution inside the pit. Otherwise pit will 

repassivate. If i  is the same, a greater x  will lead to a greater ix  and therefore the pit 

will be more likely to reach the critical ix  value. Hence, it is easier for pitting to take 

place on a coarse surface since a coarse surface gives a greater x .  

 

Figure 2-2 Concentrations vs. the product of current density and pit depth in a one 
dimensional pit [52] 
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Considering the IR drop inside the pit, Galvele proposed that pitE  decreases with the 

increasing bulk chloride concentration ClC , as shown in Equation 2-4. The logarithm 

relationship between pitE  and ClC  has been reported by other researchers [5, 55] as well. 

  

 
Clpit CBAE log  Equation 2-4 

 

2.2.4 Metastable pits 

Metastable pitting takes place below pitE  and they can only grow for a limited period, 

on the order of seconds or less until they reach a critical stage when a perforated passive 

cover over the pit mouth breaks [32]. The growth mechanism of metastable pits and 

stable pits at the early stage is essentially the same [5, 32, 56]. Pistorius and Burstein 

referred to ix  as pit stability product and proposed that the remnant of the passive film 

functions as diffusion barriers during the metastable pit growth stage. When the 

perforated passive cover breaks and the pit stability product has not reached the critical 

value, the metastable pit repassivates, whereas stable pits grow if the pit stability 

product has been reached [41, 57]. Frankel proposed that the passive film behaves as the 

resistive layer. Metastable pits will repassivate if there is no precipitation of salt films 

when the oxide film ruptures [42]. 

2.2.5 Crevice corrosion of stainless steel 

Crevice corrosion is a form of localised corrosion and it has been considered as a 

geometrical stabilisation of pitting [58-60]. The design of the component and deposits 

including biological activity and corrosion products can cause crevice geometry [61].  

In pitting corrosion, the pit itself acts as a diffusion barrier, while in crevice corrosion 
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the crevice geometry is the diffusion barrier, which helps to stabilise the localised 

corrosion site. Inside the crevice, there is a stagnant liquid in contact with the metal. 

When the area inside the crevice becomes depleted of oxygen, the cathodic reaction 

mainly takes place outside the crevice while there is anodic dissolution inside the 

crevice. 

2.2.6 Repassivation 

2.2.6.1 Definition of repassivation potential 

The concept of repassivation potential (Erp) was introduced by Pourbaix and it was 

called the ‘protection tension’ at that time [34]. Pourbaix suggested that below the 

protective tension, steel stops corroding. Starr further proposed that the protection 

potential could be the result of a deactivation or repassivation mechanism [62]. For 

alloys containing 16.9% or more Cr, a repassivation mechanism will occur if the 

electrode potential is low. The thermodynamically unstable metal is protected by a 

passive film. Repassivation can be detected experimentally: “With a large increase in 

electrode potential, there is very little increase in current upon anodically re-polarising 

the specimen after determining the protection potential” [62]. Similarly, Ernst and 

Newman suggested that when passivation starts, the diffusion limited current cannot be 

immediately regained when the potential is rapidly scanned to a high value [26]. 

Electrochemical methods have been used to determine Erp. Regardless of the methods, 

which might be galvanostatic, galvanodynamic, potentiostatic, potentiodynamic or a 

combination of the above methods for the initiation and growth of pits, electrochemical 

methods to repassivate pits can be divided into potentiodynamic, stepping potentiostatic 

and potentiostatic methods. The potentiodynamic method is most widely used.  After 
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pitting initiation and growth, the potential is decreased at a constant scan rate and Erp 

has been defined as the potential when the current density is cathodic [63, 64] or the 

current density is low, e.g. 0.1 µA/cm2 [9], 1 µA/cm2 [65-69] or 50 µA/cm2 [70]. For 

some studies, if the initiation and growth of pits occurs by the potentiodynamic method, 

Erp is defined as the potential when the hysteresis loop is completed [71-75], as shown 

in Figure 2-3 (the repassivation potential is labelled as Ep in the figure).  

 

Figure 2-3 Potentiodynamic polarisation curve for SS430. Ep refers to the repassviation 
potential [71]. 

In stepping potentiostatic method, after pitting initiation and growth, the potential is 

held for a period of time and then the potential is decreased in discrete steps and held 

for a period of time. Accordingly, an average potential scan rate can be calculated. Erp 

can be determined as the highest potential when the current decreased during the 

holding time and there was no further increase in current at lower potentials [76]. In 

other studies, the potential is decreased until the measured minimum current density 
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over the holding time was less than a critical value, e.g. 50 µA/cm2, and the 

corresponding potential was determined as Erp [77, 78]. Similarly, using a stepping 

potentiostatic method, Erp was defined as the point at which the current density 

decreased to the passive current density with no further increase [79]. 

Giordano used a time-consuming potentiostatic method to measure the repassivation 

potential of the crevice [74, 75]. In his study, the crevice was left at a potential near the 

reported repassivation potential for 24 h. If there was no increase in the current during 

the 24 h exposure, it means there was no stabilisation of the crevice corrosion. Several 

potentials were tested and the highest potential where there was no increase in the 

current was defined as the repassivation potential. 

2.2.6.2 Parameters that affect Erp: scan rate 

The repassivation potential at a fast scan rate was found to be lower than that at a slow 

scan rate [77]. This is probably because at a fast scan rate not sufficient time was given 

for ions to diffuse from the pit bottom to pit mouth. If the potential is held at the high 

potential, repassivation might be able to take place [4]. Therefore, a slow scan rate can 

determine Erp more accurately than a fast scan rate. However, there will be more growth 

of the pit with a slow scan rate than a fast scan rate, and therefore the growth of the pit 

during a slow scan will give a lower limit on the depth of the pit that can be studied. 

Besides, Erp of a slow scan rate, less than 0.167 mV/s, scatters greatly [80]. 

Consequently, the scan rate 0.167 mV/s was frequently used during tests [68, 70, 71, 

73]. 
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2.2.6.3 Parameters that affect Erp: pit depth 

It has been reported that Erp was dependent on pit depth and that Erp decreases with 

increasing pit depth [71, 72, 81]. However, it has been also proposed that if the pit is 

deep enough, Erp is independent of pit depth [63, 65, 70, 77-79, 82], as shown in Figure 

2-4 [70].  

 

Figure 2-4 Effect of pit/crevice depth on Erp [70]. 
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Sridhar proposed a pit chemistry modification approach to explain the repassivation 

process [77]. A modification of the chemistry inside the pit, such as a lower chloride 

concentration and a higher pH, which can be caused by lowering the external potential, 

results in repassivation. They further used Gravano and Galvele’s model [54] to 

characterise repassivation potential rpE , as shown in Equation 2-5.  

  corrrp EE  Equation 2-5 

where corrE  is the corrosion potential of the metal in the pit solution,   is the 

overpotential required to sustain a critical value of ix  and   is the ohmic potential drop 

across the pit. When the pit is deep, they claimed   was negligible and   was 

independent of pit depth as   might be controlled by the formation of a salt layer. 

However, recent studies show that salt layers are commonly found in the solution that is 

supersaturated in metal chloride [5, 25, 83], while the concentration of dissolved metal 

ions is low at the repassivation stage.  

2.2.6.4 Parameters that affect Erp: chloride concentration 

The decrease of Erp with increasing chloride concentration has been widely reported [9, 

68, 70, 77, 79]. Yashiro investigated SS304 in 0.01 M to 2 M dearated NaCl solutions at 

150 ºC and 250 ºC. He observed that Erp was pit depth dependent, but the minimum Erp 

decreased linearly with the logarithm of chloride concentration. In the study of alloy 

825 [70, 77] and SS316L [70], Sridhar and his co-workers also found the linear 

relationship with a chloride concentration from 10-2 M to 9 M at 95 ºC. Anderko further 

proposed that there were two slopes of the repassivation potential against the logarithm 

of the chloride activity experimentally and theoretically using a thermodynamic model. 

The slope is steeper for low concentrations. The slope varies with chloride 
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concentrations because parameters showing the formation of oxide layer through the 

reaction with water should also be considered in determining the slope of the low 

concentrations [68]. Mi observed two slopes in the study of SS304 in 0.1 to 5 M MgCl2 

at ~20 ºC [9], but the slope in her study was steeper for high concentrations.  

2.2.7 1D artificial pits 

The 1D artificial pit/lead-in-pencil method has been widely used to study the formation 

of the salt layer, local chemistry of the pit, mass transport properties and effect of 

electrochemical kinetics [4, 25, 66, 84-86]. The advantages of 1D artificial pit methods 

include a well defined pit geometry and easily controlled pit depth. Figure 2-5 shows 

the cross-section of a 1D artificial pit [9]. A metal wire is usually embedded in an inert 

epoxy and the top surface of the metal wire is exposed to the bulk solution. When 

corrosion takes place, top surface of the metal dissolves and dissolution products diffuse 

away. When the depth of the pit reaches a critical value, the hemispherical diffusion of 

the pit from the pit mouth can be neglected and there is only 1D diffusion.  

 

Figure 2-5 Sketch of the cross-section of 1D artificial pit [9] 
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2.2.7.1 Current-voltage characteristics 

Figure 2-6 shows a typical current response during a cyclic voltammetry test on a 1D 

artificial pit [87]. The region between A and B is activation/ohmic controlled. At the 

initial stage of pitting, the current is low and all of the applied potential is used for the 

metal dissolution at the metal-solution interface. This is called the activation-controlled 

region. When the current increases further, at the ohmic-controlled region, the potential 

drop in the pit should also be taken into consideration. The applied potential is the sum 

of the potential across the metal/solution interface and the ohmic drop in the electrolyte 

both inside and outside the pit. When the current increases further, the metal dissolution 

process is greater than the diffusion of metal ions from the pit bottom to the pit mouth. 

Therefore, the metal ions become supersaturated, which leads to precipitation of a salt 

layer. The resistive salt layer [88] leads to a potential drop and thereby a decrease in the 

current is observed at point D. Afterwards, the salt layer adjusts its thickness according 

to the applied potential [83, 88]. The system reaches a steady state and becomes 

diffusion controlled, as is shown in the area around point E. The diffusion-limited 

current is independent of potential.  
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Figure 2-6 Diagram showing the current-voltage (I vs. E) characteristics of 1D artificial 
pits [87] 

By taking both diffusional and electromigrational effects into account, Tester proposed 

that the anodic current could be expressed in the Nernst-Einstein equation [84], as 

shown in Equation 2-6: 
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Where I  is the anodic current, A  is the cross-section area of the electrode, n  is the 

average valence of metal ions, F  is the Faraday constant, C  is the concentration of 

dissolving metal ions, x  is the pit depth, R  is the gas constant, T  is the absolute 

temperature, D  is the average diffusion coefficient of dissolved metal ions and   is the 

potential drop. 
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Isaacs proposed that if electromigration can be neglected and the system is at steady 

state, Fick’s 1st law shown in Equation 2-7, can be used to determine the current 

density [88]: 

 





x

CCnFD

A

I Bsat )(  Equation 2-7 

Where satC  is the saturation concentration of metal ions, BC  is the concentration of 

metal ions in the bulk solution and   is the boundary layer thickness, the additional 

diffusion length. When the pit is deep enough,   can be neglected and therefore 

Equation 2-7 can be further simplified, as shown in Equation 2-8: 
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In Figure 2-6, during the reverse scan, the pit is under diffusion control until a low 

potential is reached when the anodic current density is lower than the diffusion limited 

current density, so the salt layer dissolves. Then the current starts to decrease with 

decreasing potential, as shown in point G. During the salt layer free stage, Gaudet et al. 

observed surface roughening via microscopic examination [4]. Xu carried out a study of 

the dissolution of Fe in HCl using in situ radiography, and crevice corrosion between 

the metal and the inert epoxy resin was observed [89]. In further SEM measurements, it 

was found that the surface of Fe at the salt layer free stage was rougher than the metal 

surface when there were salt layers. Xu proposed that the formation of crevice corrosion 

might be due to the presence of partial passivation. When partial repassivation occurs at 

the surface, there will be less dissolution of metal and thereby crevice corrosion might 

take place since it can contribute to the dissolution. Similarly, the surface roughening 

can also contribute to the dissolution of the metal by increasing the corroded area. 
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2.2.7.2 Critical chemistry 

As mentioned previously, a critical value ix  is required to maintain a critical metal ion 

concentration and thereby a localised acidity through hydrolysis of metal ions can be 

maintained [52, 53]. The 1D artificial pit method has been used extensively to study the 

critical metal ion concentration. A diffusion model and dissolution kinetics have been 

combined together to determine the critical metal ion concentration [4, 25, 90, 91]. 

Several simplifications were made in the study. Firstly, all the reacting cations were 

assumed to be one metal ion: Mn+. The molecular weight and valence of M was an 

average molecular weight and valence of the metal elements in the alloy. Secondly, the 

concentration of H+ ions due to hydrolysis of metal ions is small. Therefore, the mass 

transport of H+ ions could be neglected. Thirdly, the diffusion length is assumed to be 

the pit depth only. This assumption is only valid when the pit is deep enough to have a 

constant current-pit depth product. Consequently, the dissolution kinetics at the metal 

and solution interface can be obtained, as shown in Figure 2-7. The straight line in 

Figure 2-7(a) is based on Fick’s First Law and it represents the diffusion current. The 

curve GHIB and curve GB́ represents the theoretical dissolution current against surface 

concentration at two different applied potential. The crossing point of curve GHIB and 

the straight line GA are predicted to be under steady states where the dissolution rate 

meets the diffusion rate. When the applied potential is low, the dissolution rate is 

illustrated by curve GB́ where the current density will decrease to zero. 
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Figure 2-7 (a) Current density against surface concentration for a theoretical prediction 
of multiple steady states (b) surface kinetics against surface concentration at different 
applied potentials. The test was carried out in 1 M NaCl on SS304 at room temperature 
[4] 

Figure 2-7(b) shows the experimental results of the dissolution rate at the metal and 

solution interface at different applied potential. It was suggested that the lower 

concentration at half the maximum current density could be used to represent the critical 

metal ion concentration that characterises the propensity for repassivation [90]. As 

shown in Figure 2-7 (b), the critical metal ion concentration for SS304 is ~65% of its 

saturation value.  

The critical metal ion concentration was found to be alloy-dependent and independent 

of pit depth [4, 25]. Steinsmo and Isaacs reported that in 1 M NaCl, the critical metal 

ion concentration was 10% of saturation for Fe-11.6Cr alloys, 32% of saturation for Fe-

17.4Cr alloys and 36% of saturation for Fe-24.3 Cr alloys [90]. Enerhaug reported that 

in 1 M NaCl the critical metal ion concentration was 30% of saturation for a super 

martensitic stainless steel 12.3Cr-2.6 Mo- 6.5Ni [66]. 
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Figure 2-8 shows the current density plotted against time. It illustrates another way, 

developed by Ernst and Newman, to determine the critical metal ion concentration via a 

study of 1D artificial pits [26, 92]. sC  is the saturation concentration of metal ions and 

*C  is the critical metal ion concentration. *C  is determined experimentally when the 

plot of current density vs. time/potential starts to change curvature in a slow reverse 

sweep, as shown in Figure 2-8. Ernst and Newman [26] proposed that *C  represented 

the start of repassivation. In a slow potential backscan, below the current density 

corresponding to the critical metal ion concentration, the diffusion limited current 

cannot be immediately regained when the potential is scanned rapidly to a high value. 

 sDC  and *DC  are determined via Fick’s First law as mentioned in Section 2.2.7.1 and 

shown in Figure 2-8. If D , the average diffusion coefficient of the dissolved alloy metal 

ions, is assumed to be constant, sCC /*  can be obtained. 
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Figure 2-8 Current density vs. time during the initiation, propagation and repassivation 
stage of a 1D artificial pit [92]. 

Mi used a similar method to measure the critical chemistry of SS304 in MgCl2 solutions 

of different concentrations [9]. She observed that shallow pits in dilute solutions had a 

current-potential response similar to the one shown in Figure 2-8 and a typical curve 

was shown in the left image in Figure 2-9. A deep pit in dilute solutions or a pit in 

concentrated solutions (2 M, 3 M and 4 M MgCl2) behaved as the one shown in the 

right image in Figure 2-9. Although the change in curvature of the current decay in 

concentrated solutions was different from that of a shallow pit in dilute solutions, Mi 

still defined *C  as the point when the plot of the current density against the potential 

changed curvature. Note that in her study, no potential increase was carried out to 

examine whether the pit could regain the limiting current density or not.  



22 
 

 

Figure 2-9 Current density vs. potential during the repassivation stage of a 1D artificial 
pit [9] 

Mi found that for 0.01 to 0.5 M MgCl2 solutions, both *DC  and satDC  ( satC  is used to 

represent the saturated metal ion concentration in Mi’s study) appeared to be 

independent of chloride concentration. Thereby, satCC /*  was ~60-70% and there was 

no obvious decrease with increasing chloride concentration. For 0.5 to 4 M MgCl2, both 

*DC  and satDC  decreased with increasing chloride concentration. satCC /*  decreased 

sharply with increasing chloride concentration and can be as low as 10-20% in 4 M 

MgCl2. Mi attributed the decrease in satDC  with increasing chloride concentration to 

the common-ion effect and the decreased diffusion coefficient with an increase in the 

bulk chloride concentration. The decrease in satCC /*  has also been reported in Ernst’s 

study of SS316 in concentrated CaCl2 solutions [26]. Figure 2-10 is a summary of the 

results obtained from Mi’s [9] and Ernst and Newman’s tests [26]. 
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Figure 2-10 Critical metal ion concentration of saturation to prevent pits from 
repassivation vs. chloride concentration 

2.2.7.3 Solution resistance measurements 

To measure the interfacial potential at the pit surface, the potential drop due to the 

solution resistance should be considered. The solution resistance includes both that 

inside the pit and in the bulk solution. In 1D artificial pit experiments, the diameter of 

the pit is fixed and if there is no change of bulk solutions during the test, the resistance 

of the bulk solution will be constant. The solution resistance of the pit increases with 

increasing pit depth and it is also dependent on the resistivity of the solution inside the 

pit [4, 93]. The solution resistance can be determined from the slope of the applied 

potential and the current curve in  potential step experiments [4, 92]. Similarly, 

Steinsmo obtained the solution resistance by adjusting the estimated resistance 

repeatedly until there was a linear relationship between the logarithm of the current and 

the IR-corrected potential [25]. The solution resistance can also be identified by 
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imposing an AC signal with constant frequency [9, 25, 66, 89, 94]. At high frequencies, 

the part where polarisation resistance is parallel to the interfacial capacitance will be 

shorted due to the nearly zero capacitance [25]. Therefore, at high frequencies, the 

solution resistance can be obtained. Ha has carried out impedance measurements with a 

range of frequencies applied [95, 96]. By analysing the corresponding electrical 

equivalent circuit, the solution resistance of the cell can also be obtained. 

2.3 Localised corrosion under water droplets 
One classic experiment in corrosion science has been carried out by Evans [97]. Figure 

2-11 shows a schematic diagram of the Evans drop. Due to the differential aeration, the 

carbon steel under the centre of the droplet was anodic while the steel at the edge of the 

droplet became cathodic since the diffusion path of oxygen was the shortest at the edge. 

Corrosion products were developed at the junction of the anode and the cathode. 

 

Figure 2-11 Schematic diagram showing the Evans’ droplet [98] 

Localised corrosion under water droplets have been investigated in various metals, such 

as iron [99], zinc [100-102] and stainless steel [7, 8, 103]. Compared with iron, which is 

spontaneously active, the stainless steel is passive due to the formation of the protective 
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oxide layer. For stainless steel under droplets, pits usually initiate at inclusions, such as 

MnS, and thereby the location of the pit is not necessarily at the centre of the droplet [8, 

10].  

One important observation in localised corrosion under water droplets is the formation 

of micro-droplets [19, 104-106] and a secondary spreading area [107, 108] around the 

edge of the main droplet. Micro-droplets are thought to be the precursor to the 

secondary spreading area. Over the time, the coalescence of micro-droplets will form a 

secondary spreading area [108]. The driving force for formation of micro-droplets was 

reported to be the corrosion current /potential difference between the central area and 

the peripheral area [104].  

The secondary spreading area was found to be related to the exposure RH, with a 

greater tendency of forming a larger spreading area at a higher RH. Tsuru observed a 

greater secondary spreading area at 90% RH than at 65% RH for carbon steel under 

droplets of NaCl solutions [105]. For the study of AA2024 under NaCl droplets, there 

was no spreading for RH lower than 75%, little spreading at 75%, but extensive 

formation of micro–droplets and secondary spreading at 85% and 90% [108].  

The secondary spreading area was observed to increase with the exposure time [104, 

107, 108] and it was also related to the salt deposited onto the metal surface. Tsuru and 

Zhang claimed that there was no secondary spreading for MgCl2 on stainless steels 

without reporting exposure RH tested [104, 105]. They proposed that the precipitation 

of insoluble Mg(OH)2 could help to reduce the increased ionic strength and pH caused 

by cathodic reaction and thereby there was no second spreading.  
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2.4 Atmospheric corrosion of stainless steel 

2.4.1 Introduction to atmospheric corrosion 

Pitting corrosion of stainless steel has often been studied in fully immersed conditions, 

while atmospheric pitting corrosion has been less well investigated. However, in real 

applications, when structures such as automobiles, ships or buildings are exposed to 

atmospheric environment, atmospheric corrosion might take place [30]. Furthermore, 

when there is a tensile stress, atmospherically-induced stress corrosion cracking might 

occur [33]. There is a particular concern for intermediate level nuclear waste storage 

containers which are made of austenitic stainless steels. The containers need to maintain 

their integrity during the atmospheric storage conditions before geological disposal 

facilities are available [20].  

When the metal is exposed to marine environments, airborne salt particles, such as NaCl 

and MgCl2, might be deposited onto the metal surface. When the exposure relative 

humidity (RH) is higher than the deliquescence relative humidity (DRH) of the salt, 

droplets or thin electrolyte layers may form. The DRH varies with salt type. For 

example, the DRH of NaCl is 75% and that of MgCl2 is 33% [109]. When the 

conditions are aggressive enough, atmospheric localised corrosion may take place.  

The salt concentration of the electrolyte layer is controlled by the exposure RH since 

equilibrium of the water vapour pressure will be reached between the electrolyte layer 

and the exposure environment. Figure 2-12 shows the relationship between RH and the 

concentration of MgCl2, calculated by OLI software [110].  
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Figure 2-12 Relationship between RH and MgCl2 concentrations at 298 K [110]. 

Kelly and his co-workers have used computational modelling to predict the maximum 

pit diameter under a certain atmospheric condition [17, 64, 111]. Kelly’s model is based 

on the idea that a pit can keep growing if the anodic demand is smaller than the 

maximum cathodic current available. In the model, the effect of the size of the 

electrolyte layer deposited, the deposition density and the exposure relative humidity 

has been investigated and the effect of these parameters will be reviewed later. The 

composition and amounts of the salt deposited, exposure time and the properties of the 

material are also important. These parameters will be reviewed in detail below as well. 

2.4.2 Review of environmental conditions for the intermediate level of nuclear 

waste containers 

The motivation for the current work involves the corrosion of intermediate level waste 

containers in waste stores. The storage conditions in such a store have been monitored 

for two years [20]. The temperature was found to vary between 0 and 30 ºC and the 
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external RH changed according to the atmospheric conditions, generally fluctuating 

between 30% and 90% RH, as shown in Figure 2-13 [20]. The concentrations of ions 

deposited onto the surface of the container depended on the surface studied. The 

greatest amount of chloride ion deposition was on the horizontally orientated surface 

while there were only small amounts on vertical and overhanging surfaces. Anions, 

such as chloride, sulphate, nitrate etc., and cations, such as calcium, sodium, magnesium, 

potassium etc. were observed. Table 2-1 is an example of analyses of cations and anions 

of swabs collected at the storage conditions [20].        

 

Figure 2-13 External air temperature and relative humidity monitored in the 4 Metre 
Box Programme between November 2000 and November 2002 [20]. 
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Table 2-1 Cation and anion analyses of swabs (for the ions indicated in the table) 
collected at Building B2, Culham in March 2001. The results are shown as total µg in 
the samples [20]. 

Location 
of 

Sample 
Na Mg K Ca Fe F- Cl- Br- NO3

- PO4
3- SO4

2- 

Limit of 
detection 0.8 0.5 2 0.3 0.05 1.3 0.13 0.3 0.3 0.8 0.3 

Area k, 
ledge 
(116 
cm2) 

270 110 65 1000 3.4 71 380 <3.2 490 <9 1000 

Area l, 
lid l, 
ledge 
(116 
cm2) 

220 100 43 830 6.6 120 220 <3.2 430 <9 680 

Area m, 
lid l, 
ledge 
(116 
cm2) 

230 39 47 430 3.2 16 240 <3.2 15 <9 310 

Stainless 
steel 

corrosion 
coupon 

(75 cm2) 

230 37 71 630 3.2 29 250 <3.2 21 <9 650 

Blank  (0.6)   (0.8) <1.3 2.4 <0.3 13 <0.8 0.8 
 

2.4.3 Experimental methods to study atmospheric corrosion of stainless steel 

Atmospheric corrosion of metals exposed to laboratory conditions can be studied by 

deposition of salts on the metal surface, leaving the sample under controlled exposure 

conditions for a period of time and then characterising the corrosion behaviour [7, 9, 11, 

12]. Salt droplets can be deposited onto the substrate by a micropipette or a syringe [7, 8] 

or by inkjet printing [112, 113]. Besides, clusters of salt particles can be deposited on 

the metal, prior to placing them in a humid environment to form droplets. Some 

researchers place salt crystals directly onto the surface [114, 115]. An alternative 

method is to deliver salt solutions dissolved in ethanol [116, 117]. Deposition of salt 
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clusters can also be carried out by atomizing salt solutions with high pressure nitrogen, 

followed by utilizing a cascade impactor [118].  

Various electrochemical techniques have also been used to study atmospheric 

corrosion [8, 14, 16, 18, 21-23, 119-122]. Corrosion behaviour can be investigated by 

the Kelvin Probe (KP) [8, 16, 119]. The KP technique was first demonstrated by 

Stratmann and his co-workers in studying the corrosion behaviour of iron and Fe-Cu 

alloys [99, 123, 124]. Later the KP technique has been further used for the study in 

different alloy systems, such as aluminium alloys [125, 126] and stainless steel [8, 16, 

119]. In the KP experiments, there is a vibrating probe above the sample and corrosion 

potential of the sample during the experiment can be measured. A decrease in the 

corrosion potential indicates the initiation and growth of pits while an increase in the 

corrosion potential suggests the repassivation of pits. 

Researchers have also used coplanar-electrode methods (where reference electrode (RE) 

or counter electrode (CE) and working electrode (WE) are all be embedded in the epoxy 

resin) to obtain the corrosion rate, corrosion potential or current between the electrodes 

during the atmospheric corrosion process [14, 18, 22, 23, 120-122]. An example of the 

coplanar-electrode design is shown in Figure 2-14 [122]. Electrolyte layers are 

deposited onto the sample surface, covering the RE, CE and WE. When 

Electrochemical Impedance Spectroscopy (EIS) measurements were carried, 

polarisation resistance could be obtained. Hence, corrosion rate, which is inversely 

proportional to the polarisation resistance, can be determined [18, 23, 121, 122]. The 

corrosion potential can also be obtained for some of the cell design [14, 22, 23, 120] and 

this is helpful to indicate the pitting initiation and repassivation. In addition, the 
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galvanic current between the two identical stainless steel surfaces can be obtained and 

an increase in current indicates the initiation and propagation of pits [14, 21].  

 

Figure 2-14 A schematic diagram showing one three-electrode cell where working 
electrode, counter electrode and reference electrode are embedded together [122]. 

2.4.4 Influential factors 

2.4.4.1 Effect of salt composition 

NaCl and MgCl2 are two major chloride-containing salts in the ocean water. Compared 

with NaCl, MgCl2 has been more frequently used for the study of atmospheric corrosion 

of SS304 to produce an aggressive environment. Pitting corrosion has been reported to 

progress only when the RH is lower than a critical value, which is between 65% and 75% 

for SS304 (with a surface finish of 1000 grit) [7]. The DRH of MgCl2 is 33% and that of 

NaCl is 75%. Therefore, if NaCl particles are deposited on SS304 and the exposure RH 

is 65%, there will be no formation of electrolyte layers. This means there is no solution 

for ion transportation and thus, after exposure for short periods of time, localised 

corrosion should not take place. On the contrary, if MgCl2 particles are deposited on 
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SS304 and the exposure RH is 65%, electrolyte layers will form and corrosion may take 

place. Consequently, MgCl2 is more frequently used. 

The pH of the salt solutions might also affect the corrosion behaviour. Prosek [102, 127] 

proposed that the lower corrosiveness of NaCl might be due to lower pH of MgCl2 than 

NaCl. Due to hydrolysis effects at the chloride concentration of 5 mol/kg water at 20 ºC, 

the pH of NaCl and MgCl2 solutions has been reported to be 6.3 and 5.4, 

respectively [102, 127]. Tsutsumi reported that the critical RH for pitting of stainless 

steel under artificial sea water droplets was between 55% and 65%, lower than that 

under MgCl2 droplets [7]. Similarly, Hastuty has also reported that for SS430, the 

probability of pitting and the critical RH for pitting was lower for artificial sea water 

than MgCl2 solution [12]. Tsutsumi attributed this to the pH difference. The pH of 

artificial sea water is 8.2 [128], more alkaline than pure MgCl2, which is neutral or 

slightly acidic due to dissolution of CO2 [7].  

The composition of the salts deposited onto the metal surface varies with the exposure 

environment such as the geographic locations [15, 100]. However, studies of 

atmospheric corrosion have been mostly carried out using pure MgCl2 [7, 8], pure 

NaCl [13, 14] and artificial sea water [7, 12]. Therefore, there is a need to investigate 

the effect of mixed salts in addition to pure NaCl, pure MgCl2, or artificial sea water. 

2.4.4.2 Effect of droplet size 

The pit diameter [103] and probability of atmospheric pitting corrosion [7, 13] increases 

with increasing droplet diameter. If a droplet is larger, there is a greater chance for the 

droplet to contain a susceptible defect, such as MnS inclusions, which is the pitting 

initiation site. Therefore, in Maier’s experiments, it was found that for a larger droplet, a 
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pit is more likely to initiate at a lower chloride concentration (higher RH) than a smaller 

droplet and he proposed that this was because for a larger pit, there was a higher 

probability of containing a susceptible defect [8]. Furthermore, oxygen reduction is the 

dominant cathodic reaction in the normal near neutral solution studied. Hence a droplet 

with greater diameter can supply enough cathodic current to meet the anodic demand to 

support the growth of the pit. Consequently the pit diameter was observed to increase 

with increasing droplet diameter [9].  

The effect of droplet thickness is complicated. It is assumed that the oxygen reduction 

rate is controlled by the diffusion process [8, 119, 129]. When the electrolyte layer is 

neither very thick nor very thin, the oxygen reduction rate increases with decreasing 

thickness of the electrolyte layer [8, 119, 129]. Frankel used a Kevin Probe Potentiostat 

to study the diffusion limited current density in the cathodic polarisation curves for 

SS304 under 1 M NaCl electrolyte layer with various thicknesses [119], and he found 

that the diffusion limited current density decreased with increasing layer thickness in 

the range of 10 to 200 µm. For electrolyte layers, the thickness of which is greater than 

200 µm, natural convection controls the diffusion layer thickness and therefore the 

oxygen reduction rate is independent of thickness of the electrolyte layer [8]. For very 

thin electrolyte layers, the thickness of which is lower than 10 µm, the dissolution 

process of oxygen at the air/solution interface is rate determining, and thereby the 

oxygen reduction rate is independent of the layer thickness [8]. However, Cruz and his 

co-workers proposed that for passivated stainless steel surfaces, the oxygen reduction 

rate was controlled by the charge-transfer process instead of the diffusion process [12, 

23, 120]. Cruz monitored the corrosion potential of SS430 under an alternate conditions 

of immersion in 1 M NaCl for 1 h and then drying at 67% RH and 30 ºC for 7 h. He 
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observed pitting during the drying. Cruz also measured the cathodic polarisation curve 

of SS430 under 1 M and 5 M NaCl (bulk solution and thin electrolyte layers of 80 µm 

in thickness). He found that the corrosion potential prior to pitting, at pitting initiation 

and growth was at the Tafel region of the cathodic polarisation curve [23]. Hence, Cruz 

proposed that the oxygen reduction rate on passivated stainless steel surfaces was not 

determined by the diffusion process [23, 120]. 

Ohmic effects should also be considered. A thinner droplet will give rise to a higher 

approach resistance between the location of the cathodic reaction and the dissolving 

interface within the pit. Hence there will be a lower potential difference to support pit 

initiation and growth due to Ohmic losses [12]. Mi has reported that if the droplet 

diameter and the exposure RH is the same, the pit diameter increases with increasing 

salt deposition amount [9]. She attributed this to a lower approach resistance for thicker 

droplets.  

2.4.4.3 Effect of chloride deposition density 

If the droplet area and the exposure condition is the same, the electrolyte layer will be 

thicker for a droplet with a higher chloride deposition density (CDD), since the 

concentration of the droplet is determined by the exposure RH. Thereby the resistance 

of the droplet and diffusion rate might be different, as discussed above. 

2.4.4.4 Effect of relative humidity 

The exposure RH is important for the atmospheric localised corrosion since the solution 

concentration is controlled by the exposure RH. The solution should be aggressive 

enough for pit initiation and propagation. 
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The critical RH/concentration of the droplet for pit initiation has been investigated by 

monitoring of the corrosion potential. A decrease in the corrosion potential indicates 

initiation and growth of pits. If the critical RH is determined in a drying process (from a 

high RH to a low RH), the drying rate will affect the critical RH [120]. Tsutsumi and his 

co-workers reported a minimum chloride concentration for pit initiation of SS304 at 

300 K was 5.8 M (equivalent to ~70% RH) by drying solution layers from 95% RH to 

25% RH for all the drying rates from 1.75% RH/h to 70% RH/h investigated [120]. 

Tsutsumi proposed that an incubation time was needed for pitting to take place. 

Therefore, under high drying rates, the pit could not initiate at high RH (low chloride 

concentration). Under very low drying rates, initiation and repassivation of metastable 

pits were observed, without the formation of stable pits. Therefore, the minimum 

chloride concentration for pitting initiation was found at 5.8% RH/h, an intermediate 

drying rate. 

The reported critical RH value to initiate a pit on SS304 under atmospheric conditions 

was lower for a finer surface finish of the sample. The test (carried out by Tsutsumi) 

which reported a critical RH of ~70% for pit initiation was on a surface finish of 1000 

grit [120]. Using a similar experimental method to that of Tsutsumi, Nishikata reported 

that the critical chloride concentration (RH) for pit initiation for SS304 at 300 K was 

7.5 M (equivalent to 55% RH) on a surface finish of 2000 grit [22]. When the surface 

was polished to a 0.25 µm diamond suspension, the critical RH was reported to be 47%-

58% RH for SS304 [130]. 

Furthermore, the critical concentration for pit initiation was found to be affected by the 

initial concentration of the droplet deposited. With corrosion potential monitoring, 

Maier reported that the critical chloride concentration for pitting initiation of SS304 
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(with a surface finish of 4000 grit) can be as low as 3 M if the chloride concentration of 

the initial droplets deposited was 0.88 M while the critical value was 6.5 M (equivalent 

to 64% RH) if the chloride concentration of the initial droplets deposited was 5 M [8].  

Without potential or current monitoring, simple tests with droplet-deposition methods 

have been performed to investigate the critical RH for pit propagation [7, 12]. Tsutsumi 

exposed samples at different constant RH up to 100 h and reported that, at 300 K, the 

critical RH for pit propagation of SS304 (with a surface finish of 1000 grit) under 

MgCl2 droplets was between 65% and 75% RH.  

The critical RH for pit repassivation has been investigated by corrosion potential 

monitoring with the tests of increasing the RH from a low value to a high value. 

Nishikata proposed that the RH for repassivation of SS304 (with a surface finish of 

2000 grit) under MgCl2 was ~70-75% RH at 300 K [22].  

Experiments of cyclic RH fluctuation have been carried out. Not surprisingly, pit 

initiation and propagation was mainly found during the drying stage from high RH to 

low RH, not the wetting stage. Beom’s cyclic experiments included salt spray, drying at 

30% RH and 60 ºC, and then wetting at 90% RH and 50 ºC. As expected, the current 

was greatest during the drying of stainless steel samples under CaCl2 solutions [21]. 

Nishikata lowered RH from 95% to 45% (or 60%) and then increased RH to 95% at 

5% RH/h [22]. He concluded that there was pit initiation when the RH decreased and pit 

repassivation when the RH increased by monitoring the corrosion potential. Similar 

observations were found in Nam’s tests [130]. However, in these cyclic tests, whether 

the current increase or the potential decrease is caused by growth of individual pits or 
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initiation of many small pits cannot be known. Growth of a single pit is concerned since 

it might potentially lead to cracks. 

RH has been reported to affect the morphology of the pit. Figure 2-15 shows the 

morphologies of pits on SS304L under MgCl2 droplets after exposure for 24 h at 

30 ºC  [10]. Street observed satellite pits around a shallow dish region under low 

exposure RH (33% and 38%), as shown in Figure 2-15(a) and (b). For higher RH (38%, 

43% and 48%), spiral pits formed, as shown in Figure 2-15(c), (d) and (e). At 56% RH, 

only pits with narrow circular mouths were observed. Street attributed the morphology 

difference to the difference in IR drop, solution conductivity and diffusivity, which are 

related to the exposure RH. He further pointed out that for pits growing under 33% RH, 

the shallow dish region would cease to develop but the satellite pits would grow.  

 

Figure 2-15 Typical morphologies of pits under MgCl2 droplets (chloride deposition 
density (CDD): 750 µg/cm2) after exposure at RH 33% to 56% (indicated in the figure) 
for 24 h at 30 ºC  [10].  
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2.4.4.5 Effect of microstructure 

As mentioned previously, pits generally initiate at inclusions for stainless steel. 

Initiation and growth of pits along elongated inclusions have been reported [9, 131]. 

Figure 2-16 are horizontal and vertical sections of X-ray tomograms of a pit on SS304 

under a MgCl2 droplet, shown in Mi’s studies [9]. In Figure 2-16, after exposure for 3 h 

at 45% RH, there was no pit while pre-existing defects, which were suspected to be 

inclusions, along the rolling direction existed. After 17 h, there was a dish-shaped pit 

with a drilling down bottom. The formation of the drilling down bottom was probably 

due to the pre-existing defects.  

 

Figure 2-16 Horizontal and the corresponding vertical sections of the pit imaged with 
X-ray microtomography in a SS304 pin under a MgCl2 droplet with a CDD of 
1000 µg/cm2 after exposure at 45% RH and 21±1 ºC [9]. 

In addition to inclusions, the retained ferrite in the austenitic stainless steels can also 

affect the pit morphology. Figure 2-17 shows that a pit on the top surface of the plate 

(longitudinal transverse direction) had circular layers, while stripped morphology was 

observed for the pit on the end grain side (short transverse direction) [11]. It was 
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proposed that the striped morphology was due to the presence of the ferrite bands since 

ferrite was preferentially attacked and then austenite was under attack. Furthermore, it 

has been reported that deep pits can develop at inclusions along ferrite bands [132].  

 

Figure 2-17 SEM images of pits grown on SS304L under MgCl2 droplets (with a CDD 
of 1000 µg/cm2) at 30 ºC and 43% RH [11]. The top surface is the longitudinal 
transverse side and the end grain refers to the short transverse side [11]. 

2.5 Synchrotron X-ray microtomography 

2.5.1 Principles 

There are two types of X-ray sources for tomography experiments: laboratory micro-

focus X-ray tubes and synchrotron radiation [133-136]. Synchrotron radiation facilities 

can produce very high flux, much greater than micro-focus X-ray tubes. The higher flux 

leads to a shorter acquisition time for a test. This enables real time in situ experiments.  

Figure 2-18 shows a typical layout of the synchrotron radiation facility [136, 137]. 

Electrons are generated in the electron gun, then accelerated by the linac and the booster 
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synchrotron. Finally the electrons enter into the storage ring. The storage ring is not a 

circle, but is angled with bending magnets. In third generation synchrotron facilities, 

there are also special arrays of magnets, which are called insertion devices. When the 

electron beam is deflected by the magnets, the electrons will lose energy and X-rays are 

emitted. The X-rays are channelled into the beamlines. 

Figure 2-18 Layout of a synchrotron facility [137] 

Figure 2-19 shows the data collection process in synchrotron X-ray microtomography 

experiments [108]. X-rays pass through a rotating sample and are attenuated by the 

specimen. The absorption coefficient varies with different parts of the sample because 

the absorption coefficient is dependent on electron density, which corresponds to mass 

density. The attenuated X-rays are then converted into visible light by a scintillator and 

a series of radiographs are obtained. The radiographs are reconstructed to allow a 3D 

analysis of the sample [136]. 
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Figure 2-19 Illustration of data collection of a synchrotron X-ray microtomography 
experiments [108] 

2.5.2 Applications in corrosion research 

Synchrotron X-ray microtomography is a non-destructive way to visualise time-

dependent internal changes in a material. The method has been used to study a number 

of different types of corrosion [9, 24, 108, 131, 138-142]. For atmospheric corrosion 

studies, Mi deposited droplets on SS304 and investigated the effect of deposition 

density [9]. Knight monitored the development of corrosion in aluminium alloys [24]. 

du Plessis investigated the growth rate, the effect of RH fluctuations and salt 

compositions on aluminium alloys [108]. However, beam damage has been reported 

previously [9, 89, 143, 144]. Mi observed that compared with lab-based experiments, 

there were greater number of pits for samples examined in synchrotron X-ray 

microtomography experiments. Nagy proposed that there were radiolytic products of 

water: H2 and H2O2, and other possible radiolytic products of the solutes [143]. Mesu 
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suggested that there might be further breakdown of H2O2 and thereby both H2 and O2 

gases might exist [144]. 

2.6 Summary 

Studies of atmospheric localised corrosion of stainless steels have been limited to either 

artificial sea water or single salts, such as pure MgCl2 and pure NaCl. However, 

compositions of aerosols or salt particles deposited on the metal surface in an 

atmospheric environment vary. Therefore there is a need to investigate the effect of salt 

composition, for example, a mixture of MgCl2 and NaCl, on the corrosion behaviour. 

Studies of atmospheric corrosion have usually been carried out at constant RH, while 

under realistic conditions, the RH fluctuates. Besides, the electrochemical methods used 

to study the effect of RH fluctuation on atmospheric localised cannot tell whether the 

current or potential response is caused by damage accumulation, i.e., growth of 

individual pits, or initiation of new pits. Damage accumulation might potentially lead to 

stress corrosion cracks, while a large population of shallow pits is much less concerning 

since a large population of small pits is less likely to lead to cracks. The repassivation 

process of stainless steels in concentrated solutions (which corresponds to the RH at 

atmospheric conditions) also needs further investigation to achieve a better 

understanding of the pitting behaviour under atmospheric conditions.  

In the present work, in addition to the lab-based experiments, synchrotron X-ray 

microtomography was used to investigate the effect of salt composition and the 

fluctuation of RH on atmospheric localised corrosion of stainless steel. A 1D artificial 

pit technique was used to study the repassivation process of stainless steel in 

concentrated solutions, representative of atmospheric conditions. 
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3 Experimental Method 

3.1 Materials 

SS304 and SS304L were obtained from Goodfellow, Aperam and Advent Research 

Materials. The details are showed in Table 3-1. The compositions were provided by the 

suppliers. 

Table 3-1 Alloys used in the current studies 

Material Form Supplier Thickness/ 
Diameter Processing Composition Experiments 

SS304 

Foil Goodfellow 100 µm Annealed 

Cr 17-20%, 
Mn <2%, 
Ni 8-11%, 

C< 800 
ppm, 

Fe balance 

Lab-based  
experiments 
for studies of 
mixed salts 

Rod Goodfellow 2 mm Cold-
worked 

Cr 17-20%, 
Mn <2%, 
Ni 8-11%, 

C< 800 
ppm, 

Fe balance 

Synchrotron 
micro-

tomography 
experiments 
for studies of 
mixed salts 

SS304L 

Sheet Aperam 3 mm 

Cold-
rolled, 

solution 
treated 
(1040-

1100 ºC) 
and then 
cooled by 
forced air 

Cr 18-
19.5 %, 
Mn 2%, 

Ni 8-10.5%, 
C 0.03%, 
Si 0.75%, 
N 0.1%, 

S 0.015%, 
P 0.045%, 
Fe balance 

Lab-based 
and 

synchrotron 
micro-

tomography 
experiments 
for studies of 

wet-dry 
cycles 

Wire 
Advent 

Research 
Materials 

50 µm Temper 
annealed 

Cr 17-20%, 
Mn < 2%, 

Ni 8-11%k, 
C<300 ppm, 
Fe balance 

1D artificial 
pits for 

studies of 
the 

repassivation 
process 
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3.1.1 Sample preparation for lab-based atmospheric corrosion 

For studies of mixed salts, SS304 foils (100 µm in thickness, provided by Goodfellow) 

were cut into samples 3 cm × 6 cm. The sample was hand ground with SiC papers to 

800 grit and then washed with de-ionised water (Millipore > 15 MΩ) and methanol. For 

studies of wet-dry cycles, an Addison Mitre Saw and an IsoMet 4000 Precision Saw 

were used to cut sheets (provided by Aperam) into slices perpendicular to the rolling 

direction, exposing the end grain. Then the sample was cold mounted in Var-set resin. 

The specimen was polished to 800 grit and then washed with de-ionised water and 

methanol. 

3.1.2 Sample preparation for synchrotron atmospheric corrosion 

For studies of mixed salts in synchrotron microtomography tests, pin samples 2 mm in 

diameter, were cut from the rod (2 mm in diameter, provided by Goodfellow). For 

studies of wet-dry cycles in tomography tests, pin samples, with 2 mm in diameter, were 

machined from the sheet (3 mm in thickness, provided by Aperam) with the rolling 

direction of the sheet parallel to the pin axis so that the top surface was the end grain of 

the sheet. For samples used in both studies of mixed salts and wet-dry cycles, the pins 

were ground to 800 grit and then washed with de-ionised water and methanol.  

3.1.3 Plate characterisation  

The composition of the inclusions on the end grain side of the SS304L sheet (provided 

by Aperam) was examined by a JEOL6060 scanning electron microscope (SEM). Two 

sites, each containing an area of 80 by 60 µm 2, were randomly chosen to examine the 

type and distribution of inclusions. Two types of inclusion were found: MnS-containing 
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inclusions (with or without oxide) or multi-oxide phases. Figure 3-1 shows a site which 

contains four inclusions.  

 

Figure 3-1 An area of 80 by 60 µm2 on SS304L plate (end grain side), containing four 
inclusions: inclusion A and B were MnS-containing inclusions; inclusion C and D were 
multi-oxide phases. 
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Table 3-2 shows the composition of inclusion A, B, C and D. Inclusion A contained 

MnS, inclusion B contained MnS and multi-oxide phases and inclusions C and D were 

multi-oxide phases.  

Table 3-2 EDX analysis of composition of inclusion A, B, C and D shown in Figure 3-1 

Weight% O Mg Al Si S Ca Ti V Cr Mn Fe Ni 

A (MnS-

containing) 
0 0.1 0 0.3 9.1 0 0 0.1 15.9 20.0 49.9 4.7 

B (MnS-

containing) 
4.3 0.2 2.2 0.4 2.8 0.2 4.0 0.7 27.6 23.3 31.6 2.7 

C (Multi-

oxides) 
2.6 1.2 0.8 4.7 0 2.6 0.4 0.1 17.0 5.3 59.4 5.9 

D (Multi-

oxides) 
2.5 1.1 0.7 4.4 0.4 2.6 0.5 0.2 17.4 6.1 58.5 5.6 

Base metal 0.4 0 0 0.3 0 0 0 0 18.9 1.8 70.5 8.1 

 

3.1.4 Samples for artificial pits 

Figure 3-2 is a schematic diagram of a 1D artificial pit electrode. SS304L wire (50 µm 

in diameter, provided by Advent Research Materials) was degreased with methanol and 

then wound around the stripped end of the electrical cable. The wound cable was then 

painted with silver powder for a good electrical connection. Afterwards, this area was 

wrapped with sealing tape (RS Components, UK). Then the SS304L wire with part of 

the wrapped electrical cable was placed within an acrylic tube. The outer diameter of 

the tube was 6 mm and the inner diameter was 4 mm (Alternative Plastics Ltd., UK). 
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Araldite epoxy resin was used to fix the position of the wire and cable inside the acrylic 

tube. The SS304L wire was then mounted using EpoFix resin (Struers). The resin cured 

for at least 1 day before the test. Before electrochemical tests, the electrode was 

polished to 800 grit and then immersed into the testing solutions immediately.  

 

Figure 3-2 A schematic diagram of a 1D artificial pit electrode 

3.2 Salt solutions 

For mixed salts studies, two solutions: 0.5 M MgCl2 and the mixed salt solutions: 

0.25 M MgCl2+ 0.5 M NaCl were used. For wet-dry cycling studies, one solution: 

0.4 M MgCl2 was used. For electrochemical studies, 2-4 M MgCl2 solutions were used. 
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All MgCl2 solutions for tests were made up from MgCl2.6H2O (Fisher Scientific or 

Sigma-Aldrich) and de-ionised water (Millipore > 15 MΩ). The mixed salt solution was 

made up from MgCl2.6H2O (Fisher Scientific or Sigma-Aldrich), NaCl (Fisher 

Scientific or Sigma-Aldrich) and de-ionised water (Millipore > 15 MΩ). 

3.3 Lab-based atmospheric corrosion tests 

3.3.1 Droplet deposition 

The specimen was polished to 800 grit and then washed with de-ionised water and 

methanol, followed by immediate deposition of droplets. For mixed salt studies, a 

droplet, ~1.8 µL of solutions containing 0.25 M MgCl2+ 0.5 M NaCl or 0.5 M MgCl2, 

giving a chloride deposition density (CDD) of 900 to 1600 µg/cm2 and an equivalent 

droplet diameter of 2.2-2.8 mm (the droplet diameter is the equivalent diameter of a 

circular droplet that would give the average droplet area), was deposited with a 

micropipette onto the foil surface. For wet-dry cycling studies, a droplet, ~1.1 µL of 

solutions containing 0.4 M MgCl2, giving a CDD of 900 to 1100 µg/cm2 and an 

equivalent droplet diameter of 1.9 to 2.1 mm, was deposited onto the end grain surface 

(perpendicular to rolling direction) of the plate, which was in the dimension of 3 mm × 

2 cm.  

3.3.2 Relative humidity and temperature control 

After deposition of droplets, foils or plates were put in a desiccator, which contained 

salts to control the exposure relative humidity. For lab-based experiments, a transparent 

desiccator was used to visualize the morphology of the pit during the exposure time. In 

mixed salt studies, the desiccator was put into an atmospheric chamber to control the 

temperature to be 21 ºC. The tests of wet-dry cycles were carried out at 22±2 ºC. 
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Saturated salt solutions were used to control the relative humidity (RH) [109]. The salts 

used are shown in Table 3-3. In addition, 4.25 M MgCl2 was also used to maintain the 

RH to be ~45% [7]. OMEGA OM-EL-USB-2-LCD and OMEGA OM-73 data loggers 

were used to monitor the RH and temperature during the corrosion test in lab-based 

experiments. However, it was not possible to put a data logger into the small cell in 

synchrotron microtomography experiments. Figure 3-3 shows the monitored RH and 

temperature of samples exposed at the RH controlled by the saturated salts shown in 

Table 3-3 for 1 day. The plot shows that the monitored RH data were close to the 

expected values.  

Table 3-3 Saturated salt solutions used to maintain a specific constant relative humidity 
during corrosion tests at 20-25 ºC [109]. 

Salt LiCl MgCl2 K2CO3 KCl 
% RH 12 33 43 85 

 

 

Figure 3-3 RH and temperature plots at 12% RH, 33% RH, 43% RH and 85% RH for 1 
day of exposure. RH was controlled by saturated salts shown in Table 3-3. 
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3.3.3 Optical and SEM characterisation 

A Leica DFC 420 light optical microscope (OM) were used to characterize the pit size 

for lab based tests. SEM JEOL 6060 and JEOL 7000 were used for pit and material 

characterisation.  

The width of a pit refers to the diameter of a circle which has the same area as the pit 

area. In Figure 3-4, the pit area is highlighted in yellow. Although some part of the pit is 

shallow and another part is quite deep, the whole area inside the yellow circle is 

regarded as the pit area. The pit width is then calculated.  

 

Figure 3-4 Optical microscope image of a pit on SS304 foils under a MgCl2 droplet 
(chloride deposition density (CDD): ~1000 µg/cm2) after exposure at 45±2% RH and 
21±1 ºC for 48 hours, followed by washed with water to view the pit in detail. The pit 
was highlighted by a yellow circle. 

The depth of a pit is defined as the greatest depth found among different parts of a pit. 

Pit depths were measured by OM by using the depth of focus. 
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3.4 Synchrotron atmospheric corrosion tests 

Figure 3-5 shows the design of the cell used for in situ X-ray microtomography studies. 

The side of the stainless steel sample was coated with a 2 mm (inner diameter) silicone 

tube, wrapped with parafilm afterwards to fill the gap between the 2 mm and 4 mm 

(inner diameter) silicone tube. Samples were ground to 800 grit and then washed with 

de-ionised water and methanol, followed by immediate deposition of droplets. In mixed 

salt studies, a droplet, ~1.8 µL of solutions containing 0.25 M MgCl2 + 0.5 M NaCl, 

giving a CDD of 2000 µg/cm2, was deposited onto the metal surface (perpendicular to 

the rolling direction). In wet-dry cycling tests, a droplet, ~1.1 µL, containing 0.4 M 

MgCl2, giving a CDD of 1000 µg/cm2, was deposited onto the metal surface 

(perpendicular to the rolling direction). Filter paper saturated with corresponding salts, 

as mentioned in Section 3.3.2, was inserted into the top of the silicone tube to control 

the relative humidity and an aluminum cap was used to seal the sample. Samples were 

scanned regularly to examine the time-dependent pit growth. Tests were carried out at 

21±1 ºC.  
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Figure 3-5 Stainless steel pin sample used for in situ X-ray microtomography 
experiments 

The tomography experiments using 70 keV X-rays were performed on the Beamline I12 

at Diamond Light Source, UK. The sample was rotated and radiographs (projections) 

collected at intervals 0.1° per step through 180°, giving 1800 projections in total. 

Filtered back-projection was used during reconstruction to reduce the background noise. 

In the study of mixed salts, two modules were used during scanning. The exposure time 

of the first module is 1.0 s, giving a pixel size of 1.8 µm. The total test time per sample 

per scanning was ~40 minutes. The exposure time of the second module is 2.2 s, giving 

a pixel size of 1 µm. The total test time per sample per scanning was ~80 minutes. In 

the study of wet-dry cycles, only the first module was used. 
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After obtaining the raw data, tomography reconstruction is conducted to enable data 

analysis by Fiji [145] for 2D visualization and characterisation of the pit and Avizo 

software for 3D characterisation of the pit. The semi-automatic ‘wand’ tool combined 

with the ‘Freehand selections’ tool was used in Fiji for segmentation to quantify the 

width and depth of the pit and a semi-automatic ‘blow’ tool was used in Avizo for 

segmentation to quantify the volume of the pit [9]. The segmentation is based on 

different greyscale values between the pit and the non-corroded area.  

The top surface of the pit in tomography tests is usually quite hard to determine. 

Therefore, at the end of the test, SEM images of the pit were taken. Then the top surface 

in tomography is determined when the morphology of the pit in tomography looks the 

most similar to the morphology of the pit in SEM images. Figure 3-6(a) shows the SEM 

observation of the pit. Figure 3-6(b) and Figure 3-6(c) are the horizontal and vertical 

section of the pit after segmentation. The pit was highlighted in yellow. The area of the 

top surface of the pit in tomographic analysis: 2840 µm 2 is very close to that of SEM 

measurements: 2850 µm2. For consistency, the pit area measured through segmentation 

by using Fiji is defined as the pit area for samples which were studied in tomography. 

Afterwards, the pit width was calculated from the pit area, using the definition 

mentioned previously. Figure 3-6(c) shows the deepest part found among different parts 

of that pit. The depth of the pit was measured from the pit mouth to the pit bottom. 
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Figure 3-6 (a) a SEM image, (b) horizontal and (c) vertical sections of a tomogram of a 
pit on a SS304 sample, under a MgCl2 + NaCl mixed salt droplet (with a CDD of 
2000 µg/cm2) after exposure at 45±2% RH and 21±1 ºC for 79 h. The pit has been 
highlighted in yellow. 

3.5 Electrochemical measurements 

Figure 3-7 shows the schematic diagram and experimental setup for the study of the 

repassivation process using 1D artificial pit methods. The 1D artificial pit electrode 

faced upwards, with an SCE reference electrode and a Pt counter electrode in a plastic 

container. The container contained ~200 mL solutions. Before electrochemical tests, the 

plastic container was partly covered with Parafilm to reduce the water evaporation of 

the solution or water absorption from the environment. During the electrochemical test, 

a microscope coupled with a CCD camera was used to visualize the pit depth.  
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Figure 3-7 The schematic diagram and experimental setup for 1D artificial pit 
measurements [9] 

The electrochemical tests of 1D artificial pits were performed by Ivium CompactSat at 

room temperature 23±2 ºC. For each test, a potential of 600 mV (SCE) was first applied 

for 300 s to initiate a pit. The potential was then decreased to 200 mV (SCE) and held 

for a period of time during the pit growth stage. When a desired pit depth was reached, 

the potential was decreased to -70 mV (SCE), -90 mV (SCE), -90 mV (SCE), -110 mV 

(SCE) and -130 mV (SCE) for 2 M, 3 M, 3.2 M, 3.5 M and 4 M MgCl2 solutions 

respectively. At that low potential, the metal ion concentration at the pit bottom was 

saturated or nearly saturated, as indicated by the current (This will be discussed in detail 

in Section 6.2.) Afterwards, a sequence of potential sweeps were carried out. In each 

sweep, the potential was decreased by 30 mV (SCE) and then increased by 10 mV (SCE) 

at a sweep rate of 0.2 mV/s. The test was stopped at the cathodic region or when there 
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was no increase in current with increasing potential. In some tests, an ac signal at 

30 kHz with amplitude of 5 mV was imposed during the test to record the solution 

resistance. At least two tests with ac signals applied and two tests without ac signals 

applied were performed for each condition.  
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4 Study of effect of mixed salts 

4.1 Introduction 

Atmospheric corrosion of stainless steel can take place when airborne salt particles 

deposit on the metal surface [100], forming droplets when the relative humidity reaches 

a critical value: the deliquescence relative humidity (DRH) of the salt. The DRH is 

specific to each salt. For example, the DRH of the two major constituents of sea water; 

NaCl and MgCl2 are 75% and 33%, respectively [109]. Most work to date has focused 

either on single salts such as MgCl2 [7, 8], NaCl [13, 14] or artificial sea water [7, 12]. 

The probability of pitting and the critical relative humidity (RH) for pitting on stainless 

steel 304 (SS304) and stainless steel 403 (SS403) under artificial sea water droplets was 

lower than those under MgCl2 droplets [7, 12]. This might be because the pure MgCl2 is 

neutral or slightly acidic due to dissolution of CO2 while the pH of artificial sea water is 

8.2.  In the marine environment, factors such as the intensity and direction of prevailing 

winds, geographic location and topography of the land could affect the composition of 

deposited aerosols [100]. Consequently, there is a need to study the effect of mixed salts 

with different compositions on stainless steel. Investigation can start from salts 

containing magnesium and sodium chlorides, which are two major compositions of 

artificial sea water [128]. 

In the present work, the effect of mixed salts is investigated at a relative humidity above 

the DRH of MgCl2 but below that of NaCl. For lab-based tests, characterization was 

carried out at the end of the test whereas for synchrotron X-ray microtomography tests, 

in situ characterisation was performed at several points during the exposure period. 

Droplets were deposited on foils in lab-based tests and on pins in tomography tests.  
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4.2 Results 

4.2.1 Localised corrosion under MgCl2  

Figure 4-1 shows a typical droplet immediately after deposition in lab-based 

experiments. The droplet was not perfectly circular since there was spreading of the 

droplet along the grinding direction. Due to the spreading, the diameter of the droplet 

varied from 2.2 to 2.8 mm and the chloride ion deposition density (CDD) of the droplets 

studied varied from 900 to 1600 µg/cm2. Figure 4-1 also illustrates that the droplet 

contained a pit after exposure at 45±2% RH and 21 ºC  for 48 h. Twenty out of twenty-

three studied droplets showed pitting corrosion after exposure. Only one pit was found 

under each droplet. For the pit shown in Figure 4-1, it can be seen that there is a shallow 

part in contact with a deep one, similar to pits found in previous literature [8, 10] where 

the deep part is described as spiral morphology [10] or ear-shaped regions [8], which 

indicates cathodic limitation. At the center of this pit, there is also a small hole, which 

might be the pit initiation site, as suggested by Tsutsumi and Maier [7, 8]. 

 

Figure 4-1 Optical microscope images of SS304 foils under a MgCl2 droplet with a 
CDD of 1110 µg/cm2 after deposition and after exposure at 45±2% RH and 21±1 ºC for 
48 h. A pit under the droplet was highlighted by a dashed square. SEM image of the pit 
was also shown.  
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4.2.2 Localised corrosion under mixed salt: MgCl2 + NaCl 

4.2.2.1 Droplet morphology 

Only one mixed salt containing 1MgCl2:2NaCl (i.e.the chloride concentration from 

MgCl2 is the same as that from NaCl) is studied in the current test. Figure 4-2(a) shows 

a typical mixed salt droplet immediately after deposition on a foil and after exposure at 

45±2% RH and 21 ºC  for 48 h in lab-based experiments.  

 

Figure 4-2(a) Optical microscope images of SS304 foils under a 1MgCl2:2NaCl mixed 
salt droplet with a CDD of 1140 µg/cm2 after deposition and after exposure at 45±2% 
RH and 21 ºC for 48 h. (b) Vertical sections of an X-ray tomogram of a SS304 pin 
under a 1MgCl2:2NaCl mixed salt droplet with a CDD of 2000 µg/cm2 after exposure at 
45±2% RH and 21±1 ºC for 17 h. A higher magnification view of the crystal is shown 
in (b). 
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After exposure, crystals as well as brown rusts and electrolyte layers can be found on 

the foil surface as shown in Figure 4-2(a). The process where water evaporates from the 

deliquesced salt is called efflorescence. Given the 45±2% RH experimental condition 

and reported efflorescence relative humidity (ERH) of NaCl, which is 41% to 51% RH 

[146-151], it is reasonable to assume that the crystals are NaCl particles. However, since 

the DRH of MgCl2, which has been reported to be 33%, is lower than the exposure RH, 

MgCl2 is expected to remain in solutions. Therefore, solution layers can also be 

observed on the foil surface within the original deposited droplet area.  

Figure 4-2(b) shows the vertical section of an X-ray tomogram of a pin sample, 

deposited with mixed 1MgCl2:NaCl droplets, after exposure at 45±2% RH and 21±1 ºC 

for 17 h. It clearly shows the presence of crystals on top of the pin sample.  

4.2.2.2 Characterisation of corrosion behaviour of SS304 

In lab-based experiments, mixed salt droplets were deposited onto SS304 foils and 

exposed at 45±2% RH and 21 ºC  for 24 h, 48 h and 72 h. 18 droplets were studied for 

24 h or 72 h exposure time. 41 droplets were studied for 48 h exposure time. After 

exposure, all droplets showed pitting or crevice corrosion behaviour under crystals or 

droplet solution layers.  

Figure 4-3 shows three typical forms of corrosion attack found under droplets after 

exposure. Three different droplets were chosen to show the corrosion behaviour. Figure 

4-3(a) shows micrographs of selected regions of the three droplets after exposure for 

48 h. Crystals as well as solution layers could be observed on the foil surface. Figure 

4-3(b) displays the foil surface following washing with deionised water at the end of 

test. The samples were washed with de-ionised water to study the pit/crevice-like attack 

in detail. Figure 4-3(c) shows SEM images which display different types of typical 
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corrosion behaviour: dish-shaped pits, shallow crevice-like attack and a combination of 

the previous two (crevice-like attack in contact with a pit) found under three different 

droplets shown in Figure 4-3(a) and (b).  

 

Figure 4-3(a) and (b): Optical microscope images of SS304 foil under three 
1MgCl2:2NaCl mixed salt droplets (CDD varying from 1060 to 1300 µg/cm2) (a) after 
exposure at 45±2% RH and 21±1 ºC for 48 h and (b) following washing with water. (c) 
SEM images of the pits/crevice-like attack/crevice-like attack in contact with a pit 
observed under the droplets shown in (a) and (b). 
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The dish-shaped pit shown in Figure 4-3(c) shows the typical morphology. The pit is 

~100 µm in width and ~50 µm in depth. As defined in Section 3.7, the width of a pit 

refers to the diameter of a circle which has the same area as the pit area. Width of the 

spiral pit (as shown in Figure 4-1) includes both the shallow area and the spiral attack. 

The depth of a pit is defined as the greatest depth found among different parts of a pit. 

Dish-shaped pits can be found under crystals, but they were more commonly found 

under solution layers, as shown in Figure 4-3(a). The morphology of the dish-shaped pit 

is quite different from the spiral pit found under pure MgCl2 solutions, where there is 

always a shallow region in contact with a deep one, as shown in Figure 4-1(a).  

Crevice corrosion was also observed after exposure. The crevice-like attack, as shown in 

Figure 4-3(c) is wide and shallow (~200 µm in width and ~20 µm in depth). Compared 

with a dish-shaped pit, a crevice-like attack was usually wider and shallower. The depths 

of four crevice-like attacks after exposure for 48 h were measured and depths varied 

from 5 to 30 µm. Most of the crevice-like attack was of irregular and crystallographic 

etching shape. This type of corrosion attack was only found under crystals, which were 

regarded as crevice-formers.  

Figure 4-3(c) also illustrates a crevice-like attack in contact with a dish-shaped pit 

(~200 µm in width and ~35 µm in depth). The depths of three crevice-like attacks in 

contact with a dish-shaped pit (after exposure for 48 h) were measured and the depths 

varied from 10 to 35 µm. It was not clear whether the crevice-like attack or the dish-

shaped pit formation happened first. To some extent, this morphology: a shallow part in 

contact with a deep part, is similar to that of the spiral pit observed under pure MgCl2 

shown in Figure 4-1. However this type of attack was only found under NaCl particles, 



63 
 

although it was sometimes difficult to observe the exact location when the droplets and 

crystals were present, and could only be confirmed after washing. 

Two pin samples under mixed salt 1MgCl2:2NaCl droplets were monitored in X-ray 

microtomography to study the time dependence of pit growth. In Figure 4-4, the images 

on the left are the horizontal sections of the tomogram and the images on the right are 

the corresponding vertical sections.  

 

Figure 4-4 Observation of (a) a dish-shaped pit under solution layers (b) a crevice-like 
attack under NaCl particles and (c) a crevice-like attack in contact with a pit under NaCl 
particles found on a SS304 pin sample in horizontal section above the pit/attack and 
vertical section through the pit/attack and solution layers under a mixed salt droplet: 
1MgCl2:2NaCl with a CDD of 2000 µg/cm2 after exposure at 45±2% RH and 21±1 ºC 
for 34 h. Dashed squares are used to highlight the pit/attack. The sample was monitored 
in in situ X-ray microtomography. 
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Figure 4-4(a) shows a dish-shaped pit and crystals near it. It is difficult to observe 

electrolyte layers above the pit through the horizontal section. However, the vertical 

section shows that there were layers above the pit. Since no crystals were observed to be 

above the pit, the layers above the pit were assumed to be droplet electrolyte layers. 

Figure 4-4(b) illustrates a crevice-like attack under a crystal. Although the crystals were 

not obvious in the vertical section, the horizontal section clearly shows the presence of 

crystals and the attack underneath. Compared with the dish-shaped pit shown in Figure 

4-4(a), the crevice-like attack found here is wider and shallower. Figure 4-4(c) displays 

a crevice-like attack in contact with a pit. The horizontal section shows the crystals 

above the attack and the vertical section shows a shallow pit with a deep one. Pitting 

corrosion under droplet electrolyte layers and crevice corrosion under crystals in 

synchrotron X-ray microtomography is consistent with what was found in lab-based 

experiments. However, it should be noticed that multiple pits (more than four) were 

found on each of the pin sample in tomography experiments while the observation of 

single pits was most frequent in lab-based tests, although in a few cases four pits were 

also found. The observation of multiple pits in tomography experiments might indicate 

beam damage.   
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Figure 4-5 gives a summary of the corrosion behaviour on SS304 foils under mixed salt 

droplets after exposure for 24, 48 or 72 h in lab-based experiments. Dish-shaped pits 

were most frequently observed under the experimental conditions studied here. In terms 

of pit numbers under one droplet, a single pit was more common although sometimes 

multiple pits were also found. 

 

Figure 4-5 Summary of observations of pits or crevice-like attack found on SS304 foils 
deposited with 1MgCl2:2NaCl mixed salt droplets with a CDD varying from 900 to 
1600 µg/cm2 after exposure at 45±2% RH and 21±1 ºC for 24, 48 or 72 h in lab-based 
tests. 18 droplets were tested for 24 h or 72 h exposure time. 41 droplets were tested for 
48 h exposure. 
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Since one single pit under a droplet after exposure was the most common observation 

for both MgCl2 and MgCl2 + NaCl droplets, the widths and depths of these pits were 

studied further. Figure 4-6 is a summary of the widths and depths of 15 randomly 

chosen single pits, found under MgCl2 droplets or MgCl2 + NaCl mixed salt droplets. 

Figure 4-6 shows that widths of the single spiral pits observed under MgCl2 (including 

both shallow and spiral parts) are commonly greater than the dish-shaped pits under 

MgCl2 + NaCl. However, there is no obvious trend for pit depths. 

 

Figure 4-6 Depth and width of 15 randomly chosen single pits found on SS304 foil 
under MgCl2 or 1MgCl2:2NaCl droplets with a CDD varying from 900 to 1600 µg/cm2, 
after exposure at 45±2% RH and 21 ºC for 48 h. Only single pit under a droplet after 
exposure was taken into account.  
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4.2.3 Pit growth with time 

Due to limitations in lab-based experiments, it was not possible to measure the depth 

change of the same pit with time. However, the width and depth of the same pit at 

different exposure time could be checked with tomography. Samples were imaged at 

different exposure times: 3 h, 17 h, 34 h and 69 h or 79 h in tomography experiments. 

Pit width, depth and volume at different exposure time were then measured through 

segmentation by using the Fiji [145] and the Avizo software. The procedure was 

detailed in Section 3.4.  

Figure 4-7(a) shows the growth of the dish-shaped pit shown in Figure 4-4(a) as a 

function of time. Horizontal and vertical sections of tomogram of the pit are shown. 

There is no obvious sign of pitting after 3 h. After 17 h, a very small hole surrounded by 

a very shallow pit area can be observed from the vertical section. However, the phase 

contrast here is not good enough to see the pit in more detail. After 34 h exposure a dish-

shaped pit was found. It can be seen that the pit grew more dish-shaped between 34 h 

and 79 h. Figure 4-7(b) shows the pit size after exposure for 34 h and 79 h. It shows that 

although there is little increase in pit width and pit depth, there is a substantial pit 

volume increase from ~16000 µm 3 to 26000 µm 3. 



68 
 

 

Figure 4-7(a) Observation of horizontal and vertical sections of the tomogram of a dish-
shaped pit (shown in Figure 4-4) imaged with X-ray microtomography on a 2 mm 
SS304 pin deposited with a 1MgCl2:2NaCl mixed salt droplet with a CDD of 
2000 µg/cm2 following exposure at 45±2% RH and 21±1 ºC for 3 h, 17 h, 34 h and 79 h. 
(b) Width, depth and volume of the dish-shaped pit at 34 h and 79 h.  
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Figure 4-8 shows the growth of the crevice-like attack under crystals shown in Figure 

4-4(b). After exposure for 3 h, there was no obvious crevice corrosion while crystals 

formed (the image of precipitation of crystals was not shown). After exposure for 17 h, a 

crevice-like attack was found under the crystals which was seen after exposure for 3 h. 

Both width and depth of the crevice-like attack has increased during the following 

exposure. Pit volume has changed greatly from 7300 µm3 (after exposure for 17 h) to 

38000 µm3 (after exposure for 69 h). It is seen that growth, once initiated, continues 

throughout the experiment.  
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Figure 4-8 Horizontal and vertical sections of the tomogram of a crevice-like attack 
(shown in Figure 4-4) imaged with X-ray microtomography on a 2 mm SS304 pin 
deposited with a 1MgCl2:2NaCl mixed salt droplet with a CDD of 2000 µg/cm2 

following exposure at 45±2% RH and 21±1 ºC for 3 h, 17 h, 34 h and 69 h. (b) Width, 
depth and volume of the crevice-like attack at 17 h, 34 h and 69 h. 
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It has been proposed that the growth of pits in depth can be under diffusion control 

[131]. If this is the case, the relationship between the pit depth and time can be predicted 

by considering Faraday’s 2nd Law,  

 



 idt

M

dxnF
 Equation 4-1 

where n  is the average valence of dissolved metal ions, F  is the Faraday constant,   

is the density of the metal, x  is the pit depth, M  is the molecular weight of the 

dissolved metal, i  is the current density and t  is the time. Assuming that the diffusion 

length is simply the pit depth, according to Fick’s 1st Law, 

 
t

x

CCnFD
i mb )( 
  Equation 4-2 

where D  is the diffusion coefficient, bC  is the metal ion concentration at the pit bottom 

and mC  is the metal ion concentration at the pit mouth. 

After combining Equation 4-1 and Equation 4-2, Equation 4-3 can be obtained.  

 t
CCMD

x mb



)(22 
  

Equation 4-3 

Therefore, if the pit depth is diffusion-controlled, 2x  should be linear in t . 

Figure 4-9 shows the square of pit depth vs. exposure time for the crevice-like attack 

shown in Figure 4-8. With the available limited data, 2x  is nearly linear in t . 
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Figure 4-9 Square of pit depth vs. exposure time for the crevice-like attack shown in 
Figure 4-8. The crevice-like attack was formed on a 2 mm SS304 pin deposited with a 
1MgCl2:2NaCl mixed salt droplet with a CDD of 2000 µg/cm2 following exposure at 
45±2% RH and 21±1 ºC. 

4.3 Discussion  

4.3.1 Morphology of the mixed salt droplets after exposure 

When the exposure RH is higher than the DRH of the salt, the salt particles takes up 

water and forms droplets. When the exposure RH was lower than the ERH of the salt, 

water evaporates off the deliquesced salt and the salt crystallises out. From a 

thermodynamic view, the ERH should be the same as DRH. However, there is a 

hysteresis effect and ERH is found to be more strongly kinetic limited [146, 149, 151, 

152]. Since the ERH of NaCl has been reported to be 41 to 51% RH [146-151], 

precipitation of NaCl particles were observed in the current study, as shown in Figure 

4-2, Figure 4-3 and Figure 4-4. The exposure RH is higher than the DRH of MgCl2 and 
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thereby electrolyte layers can also be seen on the metal surface, as shown in Figure 4-2, 

Figure 4-3 and Figure 4-4. 

4.3.2 Corrosion behaviour under mixed salt droplets 

Dish-shaped pits and crevice-like attack, including crevice-like attack in contact with a 

pit were observed both on lab-based and tomography tests.  

Street [10] reported that pits with spiral morphology were observed at 38%, 43% and 48% 

RH while pits with narrow circular mouths were observed at 56% RH. The absence of 

the shallow region of the pits observed at 56% RH was attributed to the comparatively 

lower passive current density and lower breakdown potential due to the lower solution 

resistivity and the thicker droplet at higher RH. 

In the current study, the spiral pits were commonly observed under pure MgCl2 droplets 

(as shown in Figure 4-1) after exposure at 45% RH while for mixed salt droplets, the 

pits under electrolyte layers between crystals generally had narrow circular mouths (as 

shown in Figure 4-3). For pits in mixed salt droplets, under electrolyte layers between 

crystals, diffusion of ions away from the pit is expected to be reduced due to the 

resistance of the neighbouring precipitated NaCl particles. Therefore, for mixed salt 

droplets, an aggressive environment for pit initiation and propagation is more easily 

developed and maintained under electrolyte layers. Consequently, the breakdown 

potential might be lower. Hence dish-shaped pits with narrow circular mouths were 

usually observed under mixed salt droplets. 

Samples were exposed for 24 h in Street’s tests and he examined the samples once an 

hour [10]. However samples were only examined after 24 h, 48 h or 72 h in the current 

study. Therefore, it might be possible that there was a shallow region for the dish-
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shaped pits under mixed salt droplets within a short exposure time and the shallow 

regions became deeper due to the further attack in the shallow region with the 

increasing exposure time.  

The observation (shown in Figure 4-6) that the widths of the dish-shaped pits found 

under mixed salt MgCl2 + NaCl are generally smaller than those of the spiral pits 

(including both the shallow and the spiral part) under pure MgCl2 droplets might be due 

to the increased solution resistance under the mixed salt droplets. Although the initial 

volume and CDD of the droplets deposited are the same for the mixed salt and pure 

MgCl2 droplets, due to the precipitation of NaCl crystals, the amounts of chloride ions 

remaining in the mixed salt electrolyte layers will be less than those in the pure MgCl2 

solutions. Since the final exposure RH, which controls the concentration of the 

electrolyte layers was the same for the mixed salt and the pure MgCl2, the solution layer 

of mixed salt was expected to be thinner than that of MgCl2 due to the less amounts of 

chloride ions remaining in the electrolyte layers. A thinner layer will lead to a greater 

approach resistance. Besides, the crystallised particles themselves will also increase the 

resistance of the system. The increased resistance will increase ohmic losses and 

thereby less cathodic current will be available for the growth of the pit [17]. Hence, 

widths of the pits under mixed MgCl2 + NaCl were smaller than those under pure 

MgCl2. 

The observation that the pit width is IR-controlled is consistent with previous studies. 

Ghahari found that the pit width increased with potential and chloride concentration in 

studying 2D pits in immersed condition and therefore he proposed that the width of the 

pit was IR-controlled [131]. Mi observed that for the same deposition area, pit width 

increased with deposition density [9]. She attributed this to the increased droplet 
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thickness, which leads to a lower approach resistance. Street [10] observed that width of 

the shallow dish region of the pit is influenced by the location of the pit: with a greater 

diameter towards the center of the droplet than towards the edge of the droplet. The 

droplet layer is thicker at the center than at the edge and thereby a lower resistance 

could be expected at the center of the droplet. Consequently, the pit is larger towards the 

center with less ohmic losses compared with the edge of the droplet. 

Figure 4-3 shows that crystallised particles were found on the SS304 surface after 

exposure. The crystals can hinder the diffusion of oxygen into the occluded region, 

while oxygen can diffuse to the region at the edge of crystals. Consequently, a 

differential aeration cell might form. Furthermore, crystallised NaCl particles can act as 

diffusion barriers to restrict mass transport and thus an aggressive solution can develop 

under crystals. Hence, crevice corrosion could happen, as shown in Figure 4-3 and 

Figure 4-4. Furthermore, it appears that the presence of NaCl crystals had effects on the 

shape of the crevice-like attack, as shown in Figure 4-3(c). 

4.3.3 Pit growth with time 

In tomography, the dish-shaped pit shown in Figure 4-7 and the crevice-like attack 

shown in Figure 4-8, once initiated, were found to grow in both width and depth during 

the observation time. This information might be useful for modelling purposes.  

In Ghahari’s study of 2D pits in immersed conditions, he observed that the square of the 

pit depth increased linearly with time and thereby he concluded that the pit depth was 

diffusion controlled [131]. Mi studied three different pits found on SS304 under MgCl2 

droplets using synchrotron X-ray microtomography [9]. However, Mi did not find the 

linear relationship between the square of the pit depth and time. She proposed that mC  
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could be assumed to zero in immersed condition while in atmospheric condition mC  

would be affected by the limited volume of the droplet layer. Thereby mC  and 

consequently 


)(2 mb CCMD   was not constant. In the current investigation, the pit 

depth 2x  has been found to be linear with time t  for a crevice-like attack. The presence 

of crystals can act as diffusion barriers to restrict mass transport. Therefore, mC  and 

consequently 


)(2 mb CCMD   might be constants. Hence, there is a linear relationship 

between 2x  and t . However the data available is quite limited and more data are 

required to get to a conclusion. These results show the potential value of using 

synchrotron X-ray microtomography to study the pit growth kinetics.  

4.3.4 Implications for storage conditions for intermediate level nuclear waste 

containers 

Lab-based tests have usually been carried out with pure MgCl2 solutions while there are 

other cations, such as sodium, calcium in real store conditions for intermediate level 

nuclear waste (ILW) containers [20]. The current study has investigated a mixed salt 

solution containing both magnesium and sodium chlorides. Different morphologies: pits 

and crevice-like attack including crevice-like attack in contact with a pit were observed. 

Besides, the pits found under single MgCl2 droplets were observed to have spiral 

morphology, different from the pits with narrow mouths under mixed salt droplets. 

Stress corrosion cracking might take place if a pit is under stress and thus the integrity 

of the ILW containers cannot be ensured. The shape of the pit might further affect the 

susceptibility of the pit to cracking [43, 153]. Therefore, it is necessary to study salts 

with a wider composition. 
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4.4 Conclusions 

 Atmospheric corrosion of stainless steel has been investigated under salt droplets 

containing a mixture of NaCl and MgCl2 at 21±1  ºC and at 45±2% RH between the 

deliquescence relative humidity of the two salts where NaCl crystals precipitate out.  

 Ex situ lab-based tests of pitting damage were made following exposure of stainless 

steel foils under mixed salt droplets at 45±2% RH and 21±1°C for 24 h, 48 h and 

72 h. Two types of corrosion attack were observed: dish-shaped pits, which were 

usually under electrolyte layers and crevice-like attack, which tends to occur under 

NaCl crystals. In some cases, the crevice-like attack in contact with a pit was also 

observed. Widths of the pits found under NaCl + MgCl2 solutions were smaller than 

the pits observed under MgCl2.  

 In situ X-ray microtomography can be used to monitor the pit growth on metal pins. 

The morphologies of pits in the tomography observations are consistent with lab-

based measurements on foils where pits were examined ex situ at the end of 

experiments, but the resolution is lower. 
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5 Study of the effect of relative humidity change on 

atmospheric pitting corrosion 

5.1 Introduction 

Intermediate level of nuclear waste (ILW) containers will be placed above ground for a 

number of decades and the integrity of the containers must therefore be ensured [20]. 

However, atmospheric pitting corrosion of the stainless steel containers can take place 

when there is deposition of salt particles on the metal surface and the relative humidity 

(RH) reaches the deliquescence point of the salt. Measurements of temperature and RH 

in a typical store over 2 years indicated that the RH generally fluctuates between 30% 

RH and 90% RH, and the temperature varies between 0 and 30 ºC [20].  

Research on atmospheric pitting corrosion of stainless steel has generally focused on 

constant conditions of RH [7, 9]. Studies on the effect of RH variations have been 

limited to corrosion current or potential monitoring [14, 21, 22]. However, the current 

or potential response only gives the overall corrosion behaviour of the sample tested. It 

does not indicate whether the response is caused by damage accumulation at the same 

site (i.e., growth of individual pits) or initiation of new pits during RH fluctuations. 

Damage accumulation means that large pits can form, which might be more likely to 

lead to atmospherically-induced stress corrosion cracking, while new pit initiation is of 

much less concern since a large population of small pits is less likely to lead to cracks. 

In this chapter, in situ lab-based experiments with the use of optical microscopy and in 

situ X-ray microtomographic experiments were carried out to study the effect of RH 

fluctuations. Stable pits were grown at 33% RH, and then RH was changed to a higher 

value (85% RH) or a lower value (12% RH). The old stable pits were expected to 
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repassivate at 85% RH since it has been reported that pitting corrosion of SS304 only 

progresses when RH is below a critical values between 65% and 75% RH [7]. Pits were 

also expected to repassivate at 12% RH since 12% is far below the deliquescence point 

of MgCl2. The RH was then changed back to 33% to investigate whether the ‘old pits’ 

previously initiated at 33% RH would keep growing, or new pits would form or both 

types of corrosion behaviour would be observed. 

5.2 Results 

5.2.1 Number of pits after 1 day exposure at 33% RH 

After exposure of droplets on a stainless steel 304L (SS304L) surface at 33% RH for 

one day, varying number of pits have been observed in each droplet. Figure 5-1(a) 

shows a typical droplet containing one pit. Figure 5-1(b) shows the pit in higher 

magnification. The pit position in the droplet is quite random, not necessarily near the 

droplet edge. The width of single pits varied from 65 µm to 125 µm. Figure 5-1(c) 

shows another droplet containing (d) multiple pits after 1 day of exposure at 33% RH. 

Multiple pits (usually 2 or 3) in lab-based experiments tend to be in clusters. The width 

of the largest pit among the clusters of pits can be as large as that of the single pit found 

under one droplet. For example, width of the largest pit shown in Figure 5-1(d) is 

~75 µm. The width of a pit refers to the diameter of a circle which has the same area as 

the pit area. 
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Figure 5-1 Optical microscope images of SS304L (a) and (c) under MgCl2 droplets with 
a chloride deposition density (CDD) of 1000±100 µg/cm2 containing (b) one single pit 
and (d) multiple pits in clusters after exposure at 33±2% RH and 22±2 ºC for 1 day.  
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In in situ X-ray microtomography experiments, single or multiple pits could both be 

observed after 1 day of exposure at 33% RH. Figure 5-2 shows a (a) horizontal and (b) 

vertical section of a tomogram of a SS304L pin sample containing a single pit after 1 

day exposure.  

 

Figure 5-2(a) A horizontal and (b) the corresponding vertical section of an X-ray 
tomogram of a SS304L pin (2mm in diameter) containing one pit under a MgCl2 droplet 
(CDD: 1000 µg/cm2) after exposure at 33±2% RH and 21±1 ºC for 1 day. 
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Figure 5-3 shows (a) the horizontal section, (b) the corresponding vertical sections and 

(c) 3D view of the hemispherical pit shown in Figure 5-2(b) in high magnification. The 

pit is ~60 µm in width and ~30 µm in depth. The depth refers to the greatest depth 

found among different parts of a pit and the width is defined as above.  

 

Figure 5-3 (a) Horizontal, (b) the corresponding vertical sections and (c) 3D view of the 
pit (shown in Figure 5-2) imaged with X-ray microtomography in a SS304L pin under a 
MgCl2 droplet with a CDD of 1000 µg/cm2 after exposure at 33±2% RH and 21±1 ºC 
for 1 day. 

 

 

 

 

 



83 
 

Figure 5-4 shows a pin sample containing multiple pits after 1 day of exposure at 

33% RH in microtomography experiments. The pits were not close to each other, unlike 

the clusters of the multiple pits in lab-based experiments, as shown in Figure 5-1(d). 

The random position of the multiple pits raised a concern that there was beam damage.  

 

Figure 5-4 Horizontal section and vertical sections of a tomogram of a pin sample, 
which contained multiple pits, under MgCl2 droplets (with a CDD of 1000 µg/cm2) after 
exposure at 33±2% RH and 21±1 ºC for 1 day. 
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The number of pits under a droplet after exposure at 33% RH for 1 day is summarised 

in Table 5-1. 107 droplets were studied in lab-based experiments and one single pit was 

the most frequent observation (58/107). It is also possible (38/107) to observe multiple 

pits in clusters. In a few cases (11/107), there were no pits under one droplet.  For 

tomography tests, multiple pits with random position were more frequently observed. 

Table 5-1 Number of pits found on SS3034L under MgCl2 droplets (CDD: 
1000±100 µg/cm2, ~2 mm in diameter) after exposure at 33±2% RH and 22±2 ºC for 1 
day. 

*Multiple pits in lab-based experiments were in clusters while the position of multiple 
pits in microtomography was random.  

 0 pit 1 pit Multiple pits* 

Lab based 11 58 38 

X-ray 

microtomography 
0 2 4 
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5.2.2 Corrosion behaviour at constant relative humidity at 33% RH 

If there is only one single pit under a droplet after a 1 day of exposure at 33% RH, after 

11 days of exposure at 33% RH, the width of the pit can be greater. Figure 5-5 shows an 

example, where the width of the pit increased after exposure for 6 days and 11 days. 

There was no obvious change of the top part of the pit. It is likely that the top part has 

already repassivated. However, the bottom part was getting wider and wider with the 

increasing exposure time. Partial repassivation of the pit has been reported previously. 

Street [10] observed satellite pits around a shallow dish region and found that the 

shallow dish region repassivated while satellite pits kept growing with increasing 

exposure time. Maier [8] proposed that the active pit area would be decreased and an 

ear-shaped region in a confined area would form with longer exposure. 

If there was growth of the width of the single pit under a droplet, only side growth of 

the pit would be observed, as shown in Figure 5-5. 

 

Figure 5-5 In situ optical microscope images of a pit formed on a SS304L under a 
MgCl2 droplet (CDD: 1000±100 µg/cm2) after exposure at 33±2% RH and 22±2 ºC for 
(a) 1 day, (b) 6 days and (c) 11 days. Only one single pit was found under that droplet. 
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For droplets containing multiple pits after 1 day exposure at 33% RH, growth of one of 

the multiple pits was frequently observed. Figure 5-6 shows an example where one pit 

grew. Two pits were observed under the droplet after 1 day of exposure. There was no 

width change for the upper pit after 11 days of exposure. However, the width of the 

lower pit increased gradually during the exposure.  

If there are multiple pits under a droplet, it is not necessarily the case that the largest pit 

will grow. In Figure 5-6, the width of the bottom pit was smaller than the top pit after 1 

day of exposure and the small pit continued to grow during the exposure time. 

 

Figure 5-6 In situ optical microscope images of SS304L under a MgCl2 droplet (CDD: 
1000±100 µg/cm2) containing two pits after exposure at 33±2% RH and 22±2 ºC for 
(a) 1 day, (b) 6 days and (c) 11 days. 

Among the 20 droplets which contained multiple pits under a droplet after 1 day of 

exposure at 33% RH, 4 droplets showed growth of two pits after 11 days at 33% RH. 

Among the 4 droplets, 3 droplets were examined part way through the exposure. It was 

found that after 6 days of exposure, there was increase in the width of two pits. 

However, only one pit under each droplet showed further width change after 11 days of 

exposure. Figure 5-7 is an example where both the pit highlighted in black and red 

dashed square grew from 1 day to 6 days of exposure. However, only the pit highlighted 

in red (dashed square) grew further from 6 days to 11 days. 
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Figure 5-7 In situ optical microscope images of SS304L under a MgCl2 droplet (CDD: 
1000±100 µg/cm2) containing multiple pits after exposure at 33±2% RH and 22±2 ºC 
for (a) 1 day, (b) 6 days and (c) 11 days.  

Pin samples were exposed at 33% RH for 1 day or 3 weeks and then imaged with X-ray 

microtomography. Multiple pits were found under each droplet after 3-week exposure. 

Figure 5-8 shows a pit under a droplet after 3 weeks of exposure at 33% RH. Compared 

with the 1-day pit shown in Figure 5-3 and Figure 5-4, the 3-week pit tends to be deeper. 

The pit shown in Figure 5-8 is ~90 µm in width and ~60 µm in depth. Another 3-week 

pit (not shown) examined in tomography is ~45 µm in depth. Depths of 15 1-day pits 

(including pits found in lab-based and tomography experiments) were measured and the 

depths were smaller than 35 µm. This indicated that pits can grow in depth from 1 day 

to 3 weeks under constant RH exposure. 

Furthermore, in Figure 5-8, the bottom of the pit shows narrow and deep attack. This is 

most likely to be attack down ferrite bands since the rolling direction of the steel is 

parallel to the pin axis [11]. However, it could also be due to an extended inclusion [9, 

131], as mentioned in Section 2.4.4.5.  
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Figure 5-8 (a) Horizontal, (b) corresponding vertical sections and (c) 3D view of a pit 
imaged with X-ray microtomography of a SS304L pin under a MgCl2 droplet (CDD: 
~1000 µg/cm2) after exposure at 33±2% RH and 21±1 ºC for 3 weeks.  
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Table 5-2 gives a summary of the corrosion behaviour of the droplets exposed at 

constant 33% RH in lab-based experiments. Although the number of pits under each 

droplet varied, growth of an old pit is most frequently observed and it is very 

uncommon to observe new pit initiation. For some droplets, there is neither obvious 

width change of the pit nor new pit initiation from 1 day of exposure to 11 days of 

exposure. The old pit may have repassivated or it kept growing in depth. However, it is 

impossible to measure the depth of the pit in lab-based experiments. Therefore, pit 

growth is counted only when there is a width change. 

Table 5-2 Summary of observations of the corrosion behaviour of SS304L under MgCl2 
droplets with a CDD of 1000±100 µg/cm2 in in situ lab based experiments after 
exposure at 33±2% RH for 11 days. 32 droplets were tested in total. The pits observed 
after exposure for 1 day were called as old pits. 

After 1 day at 33% RH          After 11 days at 33% RH  

No. of pits per 

droplet 

No. of 

droplets 
Growth of the 

old pit 

New pit 

initiation 

No obvious 

growth and no 

new pits  

0 3 0 2 1 

1 9 5 0 4 

≥ 2 20 15 1 4 
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Figure 5-9 is a summary of widths of the pits under droplets after exposure at 33% RH 

for 1 day, 11 days and 21 days in ex situ lab-based or in situ X-ray microtomography 

experiments. Different samples were measured for each condition. For simplicity and 

consistency, only data of droplets containing one single pit after exposure were used. 

Figure 5-9 shows that pit widths after 11 days of exposure were slightly greater than 

those after 1 day of exposure, and there was also a significant increase in pit width after 

21 days exposure, compared with 1 day exposure.    

 

Figure 5-9 Widths of pits found on SS304L under MgCl2 droplets (with a CDD of 
1000±100 µg/cm2) after exposure at 33±2% RH and 22±2 ºC for 1 day, 11 days and 21 
days. 9-11 different droplets were measured for each condition. Each of the droplets 
after exposure contained one pit.   
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5.2.3 Corrosion behaviour under “wet-wetter cycles” (33% + 85% + 33%) 

A “wet-wetter cycle” means the change of exposure RH between 33% RH (“wet”) and 

85% RH (“wetter”). Typically, samples were left at 33% RH for 1 day for pit initiation. 

Then the RH was changed to 85% for 1 day. Pits that initiated at 33% were expected to 

repassivate at this point. Finally, the RH was changed to 33% for 9 days to check 

whether re-growth of old pits or new pit initiation is favoured. Droplets were usually 

checked after the first 33% RH exposure and at the end of the cycle.  

Figure 5-10 shows the typical behaviour of a droplet in which only one pit was found 

after exposure at 33% RH for 1 day. When the RH was increased to 85% for 1 day and 

then returned to 33% for 9 days, one new pit was formed while there was no obvious 

width change in the old pit. Among the droplets studied, 5 droplets were examined after 

85% RH exposure as well, in addition to the first and final 33% RH exposures. Among 

these 5 droplets, 3 droplets contained one or more pits after 1 day exposure at 33% RH. 

For these 3 droplets, there were no new initiated pits when RH was increased to 85%. 

However, there were always new pits when the RH was changed back to 33% RH. 

Furthermore, during the cycling, there was no obvious width change of the old pit that 

initiated after the first 33% RH exposure. This suggests that the old pit has already 

repassivated when the RH was increased to 85% RH and thereby there was no growth 

of the old pit when the RH was changed back to 33%. It should be noted that for 1 

droplet there was no pitting after the initial 33% RH exposure, while pitting was 

observed when the RH was increased to 85%. However, the initiation of new pits after 

the change of RH from 33% to 85% was not observed for droplets which already 

contained old pits after the initial exposure to 33% RH. 
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Figure 5-10 In situ optical microscope images of SS304L under MgCl2 droplets with a 
CDD of 1000±100 µg/cm2 and the corresponding pit after exposure at 33% RH for 1 
day, followed by exposure at 85% RH for 1 day and exposure at 33% RH for 9 days 
at 22±2 ºC.  

The newly initiated pits were not necessarily close to the edge of the droplet but they 

were usually not near the old pit, as shown in Figure 5-10. The distance between the old 

pit and the new pit varied from 500 µm to 1800 µm, for droplets with an average 

diameter of ~2000 µm. The observation that the newly initiated pit was not very close to 

the old pit might be due to the cathodic protection of the old pit [8]. 
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In synchrotron X-ray tomography experiments, two pin samples were examined both 

after the initial 1 day of exposure at 33% RH and then again after a 1 day of exposure at 

85% RH. One of the pin samples was further examined after the final 1 day of exposure 

at 33% RH. Multiple (3 to 6) pits were observed on both samples after the initial 

33% RH exposure. When the RH was increased to 85%, new pit initiation was observed 

on both samples, while this was not observed among the droplets checked in lab-based 

experiments. The initiation of new pits after 85% RH might be caused by beam damage. 

Figure 5-11 shows horizontal and vertical sections of a tomogram of a pin sample. A pit 

was observed to initiate after 33% RH + 85% RH and the pit grew after the following 1 

day of exposure at 33% RH. However, there was no growth of the old pit in tomography 

experiments. 

 

Figure 5-11 Horizontal and vertical sections of an X-ray tomogram of a SS304L pin 
under a MgCl2 droplet with a CDD of 1000 µg/cm2 after exposure at 33% RH for 1 day, 
85% RH for 1 day and 33% RH for 1 day at 21±1 ºC. A new pit initiated after exposure 
at 85% RH for 1 day and the pit grew after the following 1 day exposure at 33% RH.  
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Other samples were left at the initial 33% RH for 3 weeks, followed by exposure at 85% 

RH for 1 day and then exposure at 33% RH for 1 week. New pit initiation could be 

observed at the end of the cycle. In addition, side growth of the old pit after a wet cycle 

could be observed among some droplets. Figure 5-12 shows a typical example of the 

droplet and the corresponding pit, the width of which has grown after the cycle. After 

exposure at 33% RH for 3 weeks, one pit was observed. When the RH was increased to 

85% for 1 day, there were no new pits and no obvious change in the old pit. After the 

final exposure at 33% RH for 1 week, there was still no new pit initiation, but slight side 

growth of the old pit could be observed. The part which grew was highlighted in the red 

dashed square. The pit was initially exposed at 33% RH for 3 weeks, therefore the pit 

was expected to be deeper and wider than the pit which was initially exposed at 33% 

RH for 1 day, according to Section 5.2.2. It seems that the deep and wide pit could 

prevent itself from repassivation at 85% RH.  

 

Figure 5-12 Optical microscope images of SS304L under MgCl2 droplets with a CDD 
of 1000±100 µg/cm2 and the corresponding pit after exposure at 33% RH for 3 weeks, 
followed by exposure at 85% RH for 1 day and exposure at 33% RH for 1 week 
at 22±2 ºC.  
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Figure 5-13 shows horizontal and vertical sections of a tomogram of a pin sample. The 

left images shows the pit found on the pin sample after exposure at 33% RH for 3 

weeks, followed by exposure at 85% RH for 1 day. The pin sample was then exposed at 

33% RH for 1 day, shown in the right images. The main part of the pit appeared to grow 

in both width and depth. Besides, there was an elongated deep fissure, which was 

slightly wider after exposure at 33% RH for 1 day. As mentioned previously, the deep 

fissure might be due to the corrosion of elongated inclusions or ferrite bands.  

 

Figure 5-13 Horizontal and vertical sections of a tomogram (in situ X-ray 
microtomography) of a SS304L pin under a MgCl2 droplet with a CDD of 1000 µg/cm2 
after exposure at 33% RH for 3 weeks, 85% RH for 1 day and 33% RH for 1 day 
at 21±1 ºC .  
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Figure 5-14 is a summary of the size change of the main part of the pit, shown in Figure 

5-13, during cycling. The width, depth and volume of the pit were measured through 

segmentation by using Fiji [145] and Avizo software. The procedure was described in 

detail in Section 3.4. The quality of the reconstruction data of the pit after exposure at 

33% RH for 3 weeks was too poor to carry out any quantification and thereby data was 

only shown after 85% RH and the final 33% RH exposure. It could be observed that 

there was a slight increase in the pit width and pit depth. The pit volume has increased 

~30% of its volume at the end of the test, compared with exposure at 85% RH for 1 day. 

 

Figure 5-14 Width, depth and volume of the pit shown in Figure 5-13 after exposure at 
33% RH for 3 weeks, followed by 85% RH for 1 day and then 33% RH for 1 day.  
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The previous experiments showed that exposure at 85% RH for 1 day may not always 

be sufficient to repassivate a pit which was initially exposed at 33% RH for 3 weeks. 

Therefore, some samples were left at 85% RH for 1 week to see whether this was 

enough to repassivate a deep and wide pit.  

Figure 5-15 shows a deep pit which has been exposed at 85% RH for 1 week. Width 

growth of the pit was even observed from 1 day to 1 week exposure at 85% RH. When 

the RH was changed back to 33%, there was an obvious further side growth of the pit.   

 

Figure 5-15 Optical microscope images of pit on SS304L found under MgCl2 droplets 
with a CDD of 1000±100 µg/cm2 after exposure at 33% RH for 3 weeks, followed by 
exposure at 85% RH for 1 week and exposure at 33% RH for 1 week at 22±2 ºC.    
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Table 5-3 is a summary of the corrosion behaviour of droplets after wet-wetter cycles. It 

shows that if there were pits after exposure at 33% RH for 1 day, after one wet-wetter 

cycle the old pits would not show any growth while there was always new pit initiation. 

If the pits have been exposed at 33% RH for three weeks, after one cycle, growth of the 

old pit can be observed, even when the sample was left at 85% RH for 1 week.  

Table 5-3 Summary of observations of the corrosion behaviour of SS304L under MgCl2 
droplets with a CDD of 1000±100 µg/cm2 in lab based experiments after wet-wetter 
cycles.  

Condition 

After 33% (1 day/3 

weeks) 
At the end of the test  

No. of pits 

per droplet 

No. of 

droplets 

Growth of 

the old pit 

New pit 

initiation 
No change 

33% (1 day) + 

85% (1 day) + 

33% (9 days) 

 

0 2 0 1 1 

1 6 0 6 0 

≥ 2 4 0 4 0 

33% (3 

weeks) + 85% 

(1 day) + 33% 

(1 week) 

0 2 0 0 2 

1 6 2 4 0 

≥ 2 7 5 1 1 

33% (3 

weeks) + 85% 

(1 week) + 

33% (1 week) 

≥ 2 5 4  1  0 

 



99 
 

5.2.4 Corrosion behaviour under “wet-dry cycles” (33% + 12% + 33%) 

A “wet-dry cycle” represents the change of exposure RH between 33% RH (“wet”) and 

12% RH (“dry”). Typically, droplets were exposed at 33% RH for 1 day, followed by 

12% RH for 1 day and then 33% RH for 9 days. The first measurement was carried out 

after the initial 33% RH exposure and the droplet was usually examined again at the end 

of the test.  

Initiation of one or two new pits could be observed for droplets after the cycle. Among 

the 5 droplets which were checked after 12% RH as well, new pit initiation was 

observed among 3 droplets and the new pits were observed when the RH was increased 

from 12% to 33%.  

In a wet-dry cycle, growth of the old pit, which initiated after exposure at 33% RH for 1 

day, could also be observed at the end of the test. Figure 5-16 shows that after exposure 

at 33% RH for 1 day, there was a single pit, ~80 µm in width. When the RH was 

decreased to 12% RH for 1 day, the metal surface was quite dry and there were cystals. 

In Figure 5-16, there was no obvious width change of the old pit after exposure at 

12% RH for 1 day. When the RH was changed back to 33% RH for 9 days, there was a 

side growth of the old pit. This indicated that a pit might be able to survive 12% RH, the 

dry condition.  
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Figure 5-16 Optical microscope images of SS304L under MgCl2 droplets (with a CDD 
of 1000±100 µg/cm2) and the corresponding pit after exposure at 33% RH for 1 day, 
followed by exposure at 12% RH for 1 day and exposure at 33% RH for 9 days 
at 22±2  ºC.  
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Figure 5-17 shows a pit which was exposed at 33% for 3 weeks, followed by a wet-dry 

cycle and the pit has been imaged with tomography. Compared with the size of the pit 

after exposure at 33% RH for 3 weeks, there was no obvious width and depth change of 

the pit after exposure at 12% RH for 1 day. However, when the RH was increased to 33% 

for 1 day, the depth and width of the pit both increased.  

 

Figure 5-17 Horizontal and vertical sections of a tomogram (in situ X-ray 
microtomography) of a SS304L pin under a MgCl2 droplet (with a CDD of 
1000 µg/cm2) after exposure at 33% RH for 3 weeks, 12% RH for 1 day and 33% RH 
for 1 day at 21±1 ºC . 
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Figure 5-18 is a summary of the size change of the pit shown Figure 5-17. After cycling, 

the volume of the pit has increased by ~15% of its size after exposure at 33% RH for 

three weeks. 

 

Figure 5-18 Width, depth and volume of the pit shown in Figure 5-17 after exposure at 
33% RH for 3 weeks, followed by 12% RH for 1 day and then 33% RH for 1 daye. 

Table 5-4 is a summary of the corrosion behaviour of the droplets after the wet-dry 

cycle. In lab-based tests, growth of the old pit and new pit initiation could both be 

observed. However in very few cases, growth of the old pit and new pit initiation were 

observed to take place under the same droplet. New pit initiation is more likely to take 

place under the droplets which contained one single pit after exposure at 33% RH for a 

day while growth of the old pit is more likely to take place under the droplets which 

contained multiple pits. In tomography experiments, new pit initiation and growth of the 

old pit can take place at the same time. Since these two behaviours were rarely observed 

at the same time in lab-based experiments, this indicated beam damage. 
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Table 5-4 Summary of observations of the corrosion behaviour of SS304L under MgCl2 
droplets with a CDD of 1000±100 µg/cm2 in lab-based and tomography experiments 
after wet-dry cycles. 

Condition 

After 33% (1 day/ 

3 weeks) 
At the end of the test  

No. of pits 

per droplet 

No. of 

droplets 

Growth of 

the old pit 

New pit 

initiation 

Growth of 

the old pit 

and new pit 

initiation 

33% (1 day)+ 

12% (1 day)+ 

33% (9 days) 

Lab based 

0 2 0 2 0 

1 7 1 6 0 

≥ 2 4 3 0 1 

33% (1 day)+ 

12% (1 day)+ 

33% (1 day) 

Tomography 

1 1 0 0 1 

33% (3 

weeks)+ 12% 

(1 day)+ 33% 

(1 day) 

Tomography 

≥ 2 2 0 0 2 
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5.2.5 Effect of number of cycles 

Figure 5-19 shows a typical droplet which was exposed at 33% RH for 1 day, followed 

by the change of the RH from 85% to 33% for five times. The droplet was exposed at 

each RH for 1 day. The old pit which initiated after the initial exposure at 33% RH is 

highlighted in black dashed square. The old pit is ~90 µm in width and ~30 µm in depth 

at the end of the test. There was no width change of the old pit during the cycling. After 

5 cycles, four new pits were observed. The new initiated pits are highlighted in the 

figure by red dashed squares. The new initiated pits were observed to be much smaller 

than the old pit in width. The width of the largest new initiated pit at the end of the test 

is ~40 µm. Although the pit was quite small, it should be noticed that the deepest pit at 

the end of the test could be ~30 µm in depth, similar to the depth of the old pit.  
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Figure 5-19 Optical microscope images of SS304L and the corresponding pits under 
MgCl2 droplets (with a CDD of 1000±100 µg/cm2) after exposure at 33% RH for 1 day, 
followed by the change of the RH from 1 day exposure at 85% RH to 1 day exposure at 
33% RH for five times at 22±2 ºC.  

In lab-based experiments, if there was only 1 pit under the droplet after the initial 33% 

RH exposure, no new initiated pit was found to be both wider and deeper than the old 

pit. This might be due to the formation of corrosion products. Corrosion products could 

increase the approach resistance of the droplet. Due to the ohmic losses, a smaller 

cathodic current would be available to support the growth of new pits [17]. Thereby, the 

new initiated pit appeared to be either smaller or shallower than the old pit. 

For the studied droplets, after 5 cycles, usually 2 to 6 new pits could be found and there 

was no width change of the old pit initiated after the first day exposure at 33% RH. 
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Table 5-5 is a summary of the corrosion behavior of the droplets after cycling. It shows 

that new pit initiation was frequently observed after multiple wet-wetter cycles.  

Table 5-5 Summary of observations of the corrosion behaviour of SS304L under MgCl2 
droplets with a CDD of 1000±100 µg/cm2 in lab based experiments after multiple wet-
wetter cycles at 22±2 ºC.  

Condition 

After 33% (1 day) At the end of the test  

No. of pits 

per droplet 

No. of 

droplets 

New pit 

initiation 
No change 

33% (1 day) + 

(85% (1 day) + 33% (1 day)) 

× 5 times 

 

0 1 0 1 

1 6 6 0 

≥ 2 1 1 0 

 

Similar multiple-cycle experiments were also carried out for the wet-dry cycle. Figure 

5-20 shows a typical droplet, which was exposed at 33% RH for 1 day, followed by RH 

change from 12% to 33% for five times. The old pit initiated after the initial exposure at 

33% RH was highlighted in black dashed square. The old pit had a striped morphology 

in the shallow part. The pit is ~90 µm in width and ~30 µm in depth. At the end of the 

test, there was no width change of the old pit, but there were 4 new initiated pits which 

are highlighted in red dashed squares in the figure. The new initiated pits were found to 

be smaller than the old pit in width. For all droplets studied in the dry cycles, 3 to 8 new 

initiated pits could be observed after 5 cycles. Similar to the wet cycle, the new initiated 

pits were not both wider and deeper than the old pit. This also might be due to the 

increased approach resistance caused by corrosion products. 



107 
 

 

Figure 5-20 Optical microscope images of SS304L under MgCl2 droplets (with a CDD 
of 1000±100 µg/cm2) and the corresponding pits after exposure at 33% RH for 1 day, 
followed by RH change from 1 day exposure at 12% RH to 1 day exposure at 33% RH 
for five times at 22±2 ºC. The old pit initiated after the initial 33% RH was highlighted 
in black dashed square. The new pits observed after 5 cycles were highlighted in red 
dashed squares. 
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Table 5-6 is a summary of the corrosion behaviour of droplets after 5 wet-dry cycles. 

Initiation of new pits after multiple wet-dry cycles was commonly observed. In one case, 

growth of the old pit was observed. 

Table 5-6 Summary of observations of the corrosion behaviour of SS304L under MgCl2 
droplets with a CDD of 1000±100 µg/cm2 in lab based experiments after multiple wet-
dry cycles.  

Condition 

After 33% (1 day) At the end of the test 

No. of pits 

per droplet 

No. of 

droplets 

New pit 

initiation 

Growth of 

the old pit 

and new pit 

initiation 

33% (1 day) + 

(12% (1 day) + 33% (1 day)) 

× 5 times 

0 1 1 0 

1 5 4 1 

≥ 2 1 1 0 
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Table 5-7 is a summary of the droplets exposed at constant RH, 1 wet-wetter/dry cycle 

and 5 wet-wetter/dry cycles. The table shows that the possibility of growth of the old pit 

decreases with increasing number of cycles while the possibility of initiation of new pits 

increases with increasing number of cycles. This indicates damage accumulation could 

be hindered by cyclic exposures to high or low RH. 

Table 5-7 Summary of observations of the corrosion behaviour of SS304L under MgCl2 
droplets with a CDD of 1000±100 µg/cm2 in lab based experiments after exposure at 
constant RH, 1 wet-wetter/wet-dry, 5 wet-wetter/wet-dry cycles. The number 
(percentage) in the table represents the number of droplets (percentage of the total 
droplets studied under the same experimental condition) which show the corresponding 
corrosion behaviour after exposure. 

Condition 

At the end of the test  

Growth of 

the old pit  

New pit 

initiation 

Growth of 

the old pit 

and new 

pit 

initiation 

No 

obvious  

width 

change 

Constant 

RH 
33% (11 days) 21 (66%) 3 (9%) 0 8 (25%) 

1 cycle 

33% (1 day) + 

85%/12% (1 day) 

+33% (9 days) 

4 (16%) 19 (76%) 1 (4%) 1 (4%) 

5 cycles 

33% (1 day) + 

(85%/12% (1 day) 

+ 33% (1 day)) 

×5 times  

1 (7%) 13 (86%) 0 1 (7%) 
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5.2.6 Pit covers 

Figure 5-21 shows a pit found on the sample after exposure at 33% RH for 3 weeks, 

followed by exposure at 85% RH for 1 day and 33% RH for 1 day. At the end of the test, 

the sample was washed with de-ionised water, but it is clear that there were still some 

covers with grinding marks above a pit. Both optical microscope and SEM images of 

the pit were shown and labelled as ‘As corroded’. The sample was then immersed in 

dilute HNO3  at room temperature for 1 hour to remove the corrosion products and pit 

covers [154]. After HNO3 treatment, the covers were removed and a pit could be 

observed. The pit shown in Figure 5-21 has been imaged with X-ray microtomography 

at the end of corrosion test and the depth was ~50 µm. The sample was only checked at 

the end of the test and so it is not clear whether this pit initiated after the initial 33% RH 

exposure or during RH changes. However, due to its considerable depth, it was 

suspected the pit initiated and grew during the initial 3 weeks of exposure at 33% RH. 

Similar pit covers were also observed for the pit which exposed at 33% RH for 11 days 

(pictures not shown). Similar covers with grinding marks have been reported for 

satellite pits on SS304L under MgCl2 (CDD: 750 µg/cm2) after 1 day of exposure at 33% 

RH at 30 ºC [10]. 
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Figure 5-21 Optical microscope and SEM images of a pit found on SS304L under 
MgCl2 droplets (with a CDD of 1000 µg/cm2) after exposure at 33% RH for 3 weeks, 
followed by exposure at 85% RH for 1 day and at 33% RH for another day at 21±1 ºC. 
The sample was then immersed in diluted HNO3 [154] for 1 h at room temperature to 
remove the corrosion products and the pit cover. The diluted HNO3 was made by 
mixing 200 ml HNO3 (65%, Sigma-Aldrich) with water to obtain a 1000 ml solution. 
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Figure 5-22 shows the SEM image, horizontal and vertical sections of a tomogram of a 

pit on a pin sample which was exposed at 33% RH for 3 weeks and then exposed at 12% 

RH for 1 day, followed by exposure at 33% for another day. SEM image of the pit 

shows there was a pit cover with grinding marks above the pit. The vertical section of 

the X-ray tomogram shows a bright line just above the pit. The bright line probably 

characterized the pit cover and it indicated the high density of the pit cover.  

 

Figure 5-22 SEM image, horizontal and the corresponding vertical section of an X-ray 
tomogram of a pit found on SS304L under MgCl2 droplets (with a CDD of 
1000 µg/cm2) after exposure at 33% RH for 3 weeks, followed by exposure at 12% RH 
for 1 day and then following additional exposure at 33% RH for another day at 21±1 ºC.  
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After corrosion tests, the sample was washed with water. The pit cover was then 

analyzed by EDX. Table 5-8 shows a typical composition of the pit cover, shown in 

Figure 5-23 and the base metal. Compared with the base metal, the pit cover is rich in O, 

Mg, Cl, Cr and low in Mn, Fe and Ni. Street did EDX on the pit cover of the satellite pit 

and found that the cover contained ~40% Cr, ~45% O, ~5% S and ~10% Cl [10]. High 

amounts of S were not found in the pit cover in the current study. This might be because 

the pit in Street’s test was only exposed at 33% RH for 1 day while the pit in the current 

experiment was exposed for more than 3 weeks and thereby sulphur probably dissolved 

over the exposure time. The role of such covers is important since the covers can slow 

down the escape of metal ions from the pit mouth. Continuous growth instead of 

repassivation of the old pit can thus be favoured.  

 

Figure 5-23 A SEM image of a pit with a pit cover. The pit was found on SS304L under 
MgCl2 droplets (with a CDD of 1000±100 µg/cm2) after exposure at 33% RH for 
3 weeks, followed by exposure at 85% RH for 1 day and then additional exposure at 
33% RH for 7 days at 22±2 ºC.  

Table 5-8 EDX analysis of the pit shown in Figure 5-23 and the base metal.  

Weight % Fe Cr Ni Mn O Si Cl Mg 
Pit cover 17.2 44.5 2.1 0.3 14.5 0.8 18.4 2.2 

Base 
metal 70.5 18.9 8.1 1.8 0.4 0.3 0 0 
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5.3 Discussion 

5.3.1 Pits after 1 day of exposure at 33% RH 

After 1 day of exposure at 33% RH, one single pit or multiple pits in clusters shown in 

Figure 5-1, were frequently observed. Street [10] deposited droplets with a CDD of 

750 µg/cm2 on SS304L at 30 ºC. During 1 day of exposure at 33% RH, he observed that 

pits started with a shallow dish region and were later surrounded by satellite pits with 

deeper attack. However satellite pits around a shallow dish region were not commonly 

observed in the current study. The plate used in Street’s test and the current test were 

from the same supplier and the plate has been found to have up to 3% ferrite [10]. In the 

current test, droplets were deposited on the end grain (short transverse direction) of the 

plate while droplets were deposited on the top surface (longitudinal transverse direction) 

of the plate in Street’s tests. Preliminary tests on the end grain surface showed that 

ferrite was first attacked and then austenite was under attack and there was a greater 

density of ferrite at the center of the plate (in terms of the end grain surface) [155]. 

Hence due to the ferrite bands, it has been reported that pits on the end grain surface 

was observed to have a striped morphology while pits on the top surface had a layered 

morphology after exposure at 43% RH [11]. In Street’s tests, only shallow pits were 

observed after exposure for two hours and then there was formation of satellite pits. 

However, in the current test, due to the relatively easy attack into the ferrite, further 

growth of the pit by the dissolution of the ferrite might be favoured compared with  

initiation and growth of satellite pits. Consequently satellite pits surrounding a shallow 

dish region was not frequently observed.  
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Maier [8] reported that there was only one pit under each droplet after exposure at 33% 

RH up to 14 h, with a CDD of 880-5000 µg/cm2. The sample was polished to 800 grit in 

the current study while the sample was polished to 4000 grit in Maier’s test. Inclusions 

(pit initiation sites) might have been removed during the fine polishing. Besides, an 

aggressive environment for the stabilisation of pits is more easily developed under a 

coarser surface due to a longer diffusion path. Therefore only one pit is found in Maier’s 

study while multiple pits could be observed in the current study. Tsutsumi [7] observed 

one single pit under each droplet after exposure at 35% RH up to 100 h, with a CDD 

from 1-630 µg/cm2 and the sample was polished to 1000 grit before the droplet 

deposition. The CDD used in the current study was ~1000 µg/cm2. A greater CDD with 

a same exposure RH and droplet diameter leads to a higher droplet and therefore a 

smaller resistance, as well as a smaller IR drop between the anode and the cathode. 

Therefore, the breakdown potential for pit initiation might be more easily reached in the 

current study. In addition, the coarser surface finish in the current study compared with 

Tsutsumi’s test is also beneficial for pit initiation and pit propagation as reasons 

mentioned in the comparison between Maier’s and the current test. 

5.3.2 Growth of the pit under constant relative humidity exposure 

Although multiple pits were observed after the first day exposure at 33% RH, only one 

single pit kept growing from the first day to the eleventh day during the subsequent 

constant RH exposure, as shown in Figure 5-6 and Figure 5-7. This observation might 

be due to the limited cathodic current available to support the anodic dissolution under 

droplets in atmospheric conditions [8, 10, 17]. There is a competition among the pits 

and only one could grow eventually. In immersed conditions, it has been reported that 



116 
 

multiple pits initiated under potentiostatic conditions while only one or two pits 

survived under galvanostatic control [131] .  

5.3.3 Wet-wetter cycles (33% + 85% + 33%) 

As shown in Table 5-3, if samples were left at 33% RH for 1 day to grow stable pits, no 

damage accumulation (growth of a large pit at a single site) could be observed at the end 

of a wet-wetter cycle (33%+85%+33%) among all droplets studied. This indicated that 

the old pits repassivated at 85% RH and did not re-initiate when the exposure 

environment was aggressive again. This observation was consistent with previous 

literature: the RH for repassivation of  a pit was reported to be 70% to 75% for SS304 

(with a surface finish of 2000 grit) [22].  

However, repassivation was retarded for a wide and deep pit, which has grown for 3 

weeks at 33% RH before the wet-wetter cycle, as shown in Table 3, Figure 5-13 and 

Figure 5-15. The old pit did not repassivate at 85% RH and it could even survive 1 

week of exposure at 85% RH. For repassivation to take place, concentrations of metal 

ions inside the pit need to be lower than a critical value [4]. Compared with a shallow 

pit, a deep pit would require more time for metal ions to diffuse from the pit bottom to 

the pit mouth according to Fick’s 2nd Law. Furthermore, pit covers are found on top of 

long-time-exposure pits, as shown in Figure 5-21, Figure 5-22 and Figure 5-23. The 

covers would provide effective diffusion barriers to limit the escape of metal ions from 

the pit. Therefore, repassivation of a deep pit was more difficult than a shallow pit. 

Figure 5-24 shows the polarization curves of SS304 wire in 0.05-5 M MgCl2 in 

immersed conditions [9]. The figure shows that the breakdown potential for pit 

initiation decreases with increasing chloride concentration. At room temperature, 2 M 
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MgCl2 is equivalent to 83% RH and 5 M MgCl2 is equivalent to 33% RH [110]. 

Therefore, new pit initiation was always observed when RH changed from 85% to 33% 

since the breakdown potential is more easily reached in concentrated solutions. Beom 

[21] observed that the current was greatest during the drying stage from 90% RH and 

50 ºC to 30% RH and 60 ºC in the study of stainless steel 409 and stainless steel 439 

under CaCl2 electrolyte layers although it couldn’t be determined whether the increase 

in current was caused by damage accumulation or new pit initiation. Tsutsumi [120] 

also reported pit initiation of SS304 under MgCl2 solutions when RH changed from 95% 

to 25%.   

  

Figure 5-24 Polarisation curves of the current density vs. potential of SS304 wire 
(250 µm diameter) in (a) 0.05-3 M and (b) 3-5 M MgCl2 solutions. The sample was 
abraded to 4000 grit by SiC papers. The potential sweep rate is 0.2 mV/s [9]. 

5.3.4 Wet-dry cycles (33% + 12% + 33%) 

As shown in Figure 5-16, Figure 5-17, Figure 5-18 and Table 5-4, a pit may not 

repassivate at 12% RH and keep growing when RH returns back to 33%. One reason 

might be due to the low efflorescence relative humidity (ERH) of MgCl2, below which 

water evaporates from the salt solutions. At room temperature, incomplete efflorescence 

of MgCl2 has been reported to be lower than 2% [148, 156]. With impedance 



118 
 

measurements and optical microscope examination of MgCl2 droplets after exposure to 

lower than 1.5% RH for up to 22 hours, Schindelholz reported formation of solid shells 

with trapped fluid [148]. Using infrared aerosol spectroscopy technique, Cziczo 

proposed that there was MgCl2∙6H2O when RH was lower than 1% , but the sample was 

not completely solid as considerable uptake of water was found when RH was slightly 

greater than 1% [156].  

Corrosion could be inhibited if there is no water available to solvate metal ions [17]. 

However, since water might still be retained in the droplet at 12% RH due to the low 

ERH of MgCl2, pitting corrosion could not be inhibited completely. Incomplete 

repassivation due to imperfect drying has been reported previously. Cruz [23] immersed 

a stainless steel sample in NaCl solutions (ERH of NaCl has been reported to be ~41 to 

51% RH) and then dried the sample at 67% RH and 35% RH. By corrosion rate and 

corrosion potential monitoring, they observed that there was no complete repassivation 

for some pits at 67% RH while complete repassivation occurred at 33% RH.  

Although there was still retained water in the MgCl2 droplets at 12% RH, corrosion 

rates were expected to be very low due to lack of enough water to solvate metal ions. 

The observation that the initiation of new pits was found when RH changed from 12% 

to 33% indicated the importance of water. More water will be available to solvate metal 

ions with increasing RH from 12% to 33% and thereby the increase in RH benefits the 

dissolution of the metal. Consequently new pits were commonly observed at 33% RH 

rather than 12% RH. 

Another reason why repassivation is difficult at 12% RH might be due to lack of 

sufficient water to form the passive film. At 85% RH, there is plenty of water available 
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to form the oxide film. Thereby, compared with 85% RH, it would be more difficult for 

the pit to repassivate at 12%. 

5.3.5 Implications for storage conditions for intermediate level nuclear waste 

containers 

RH generally fluctuates between 30% and 90% in realistic conditions for the storage of 

ILW [20] while lab-based tests are usually performed under constant RH [7, 8, 10]. In 

the current study, it was found that a pit could keep growing throughout the 11-day 

constant 33% RH exposure while a shallow pit repassivated at 85% RH. Therefore, this 

indicates that the experiments carried out at constant RH probably represent a worse 

case than what would take place in waste stores. Besides, these results show that more 

RH fluctuations either to high RH or low RH lead to more pits. This suggests that 

natural fluctuations are beneficial to initiate a large population of small pits rather than 

growth of a large deep penetrating pit. It was also observed that a pit might survive 12% 

and keep growing when RH changed back to 33% RH. Therefore dehumidification 

methods to avoid localized corrosion are not advisable since a pit might not repassivate 

completely even when RH was decreased to 12%.  

5.4 Conclusion 

 After one day exposure at 33% RH, generally either 1 pit or a cluster of pits are 

observed. After further exposure at constant 33% RH for 10 days, growth of old pits 

is generally observed. If a cluster of pits is present, only one of the pits is observed 

to grow continuously throughout the test.  

 A pit that has grown at 33% RH for 1 day will tend to repassivate when the RH is 

increased to 85% and a new pit will commonly be observed when the RH is returned 
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to 33%. However, pits grown at 33% RH for 3 weeks may not repassivate at 85% 

RH and can continue to grow when RH is returned to 33%. Further RH fluctuations 

tend to lead to nucleation of many small pits whereas continuous exposure at 

constant 33% RH leads to damage accumulation.  

 A pit that has grown at 33% RH for 1 day or 3 weeks can continue to grow after 1 

day at 12% RH if the RH is returned to 33%. Compared with exposure at 85% RH, a 

pit is less likely to repassivate at 12% RH. Initiation of new pits can be observed 

when the RH changes from 12% to 33% and further RH fluctuations between 33% 

and 12% show that more fluctuations lead to greater number of pits. 

 Natural fluctuations in RH might be beneficial in initiating a large population of 

small pits rather than leading to growth of a large penetrating pit. Tests carried out 

at constant RH in lab might lead to larger pits than would be found in realistic 

conditions where there are RH fluctuations. 
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6 Study of the repassivation process of 1D artificial pits 

6.1 Introduction 

In order to have a better understanding of the pitting process in atmospheric conditions, 

the electrochemical kinetics of pits in concentrated solutions, which are equivalent to 

atmospheric conditions, need to be investigated. The concentration of solutions 

involved in atmospheric corrosion is determined by the relative humidity (RH). Figure 

6-1 shows the relationship between the RH and the concentrations of MgCl2 solutions 

[110]. With a well-defined pit geometry, 1D artificial pit method has been used to study 

the local chemistry of the pit. With several simplifications made, the critical metal ion 

concentration can be determined via Fick’s First Law [4, 9, 26, 90].  In this chapter, the 

1D artificial pit technique was used to study the repassivation potential and the critical 

metal ion concentration for repassivation, especially the effect of pit depth and 

concentration of the bulk solutions (representative of atmospheric conditions). Tests of 

1D artificial pits were performed in solutions ranging from 2 M MgCl2 (equivalent to 83% 

RH) to 4 M MgCl2 (50% RH) in order to study the repassivation process. 
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Figure 6-1 Relationship between RH and MgCl2 concentrations at 298 K, calculated by 
OLI software [110]. 

6.2 Experimental methods 

In the electrochemical test, constant potential was applied for pit initiation and growth, 

followed by a sequence of potential sweeps to investigate the repassivation behaviour of 

the pit. Figure 6-2(a) shows a typical electrochemical procedure used to investigate the 

repassivation process. A potential of 600 mV was applied for pit initiation and then 

200 mV was applied for pit growth. The current increased rapidly during pit initiation. 

The current then decreased and became diffusion controlled during pit growth, as shown 

in Figure 6-2(a). The potential was further decreased to -70 mV, and then a sequence of 

potential sweeps were carried out. During each potential sweep, the potential was 

decreased by 30 mV and then increased by 10 mV. Figure 6-2(b) shows the region 

where potential sweeps were carried out at high magnification. In the potential sweep 

stage, after a short disturbance, the current density becomes independent of potential. 

This is consistent with the presence of a salt layer that forms because the dissolution of 

the metal is under diffusion control [88]. When the potential is low enough to remove 



123 
 

the salt layer, the cell is in the IR/activation-controlled region. While the entire surface 

of the pit is undergoing active dissolution, the current will decrease and increase during 

the sweep, following the changes in potential. However, the response changes once 

passivation starts to take place. 

 

Figure 6-2 Potential and current density vs. time on SS304L wire 1D artificial pits 
50 µm diameter in 3.2 M MgCl2 at 23±2 ºC (a) during the whole electrochemical 
process (b) during the potential sweep stage in high magnification. The scan rate of the 
potential was 0.2 mV/s. 
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An ac impedance spectrum (from 1 MHz to 1 Hz at amplitude of 10 mV, at OCP) was 

taken before pit initiation and at the end of the test to determine which frequency could 

be used to monitor the resistance change of the solution during the pit repassivation 

process. Figure 6-3 shows the equivalent circuit typical of a passive metal [157, 158].  

 

Figure 6-3 The equivalent circuit for a passive metal. CPE represents a constant phase 
element. Rpol refers to the polarisation resistance and Rs refers to the solution resistance.  

In Figure 6-3, a solution resistance sR  is in series with a constant phase element CPE  

(caused by the double layer and the oxide layer) and the CPE  is in parallel with the 

polarisation resistance polR . When the frequency is high enough, polR  will be shorted by 

the capacitance. Therefore sR  including the solution resistance of the bulk solution and 

the solution resistance inside the pit can be measured. Similarly, when the pit is active, 

the solution resistance can also be determined at a high frequency [9, 25, 89, 94]. Figure 

6-4(a) shows Bode plots of the electrochemical impedance spectroscopy (EIS) 

measurements before pit initiation. It shows that the impedance decreases with 

increasing frequency and the phase angle is almost constant over the range of interest 

(from 10 kHz to 100 kHz, which has been previously used in studies to measure the 

solution resistance [9, 25, 89, 94]). Before pit initiation, the solution resistance is small 

and the capacitive component dominates the system [159]. Figure 6-4(b) shows a Bode 

plot for a ~180 µm pit in 3.2 M MgCl2 after pit repassivation. It shows that there is 
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almost no influence of the capacitive component between 4 kHz to 96 kHz. For all 

concentrations of MgCl2 solution and pit depths tested, it was found that the effect of 

the capacitive component was almost negligible between 25 kHz to 65 kHz. Thereby, an 

AC signal at 30 kHz with amplitude of 5 mV was imposed upon the applied potential to 

measure the resistance change during the pit repassivation process. 5 mV instead of 

10 mV amplitude was used in order to minimise the effect of the imposed AC signal on 

the pitting behaviour. An ac impedance spectrum (from 1 MHz to 1 Hz at amplitude of 

5 mV, at -100 mV) was measured in 2 M MgCl2 for an active pit without salt layer and 

it was found that the capacitive component was almost negligible at 30 kHz. 
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Figure 6-4 Bode plots of SS304L wire (50 µm in diameter) in 3.2 M MgCl2 (a)  prior to 
pitting tests (b) at the end of the test. SS3034L was held at OCP for 10 minutes prior to 
both EIS measurements. The EIS measurements were performed at OCP, with 
frequency ranging from 1 MHz to 1 Hz at amplitude of 10 mV. Tests were carried out at 
23±2 ºC. The pit depth at the end of the test is ~180 µm. 
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6.3 Results 

6.3.1 Introduction 

6.3.1.1 Validation of pit depth 

For a 1D artificial pit, the pit depth x  can be measured with an optical microscope or 

calculated by Faraday’s Second Law [88], using Equation 6-1: 

 


t

Idt
AnF

M
x

0
 Equation 6-1 

where M  is the molar mass (55.4 g/mol), A  is the cross sectional area of the wire 

(50 µm in diameter), n  is the average valence of metal ions (2.2), F  is the Faraday 

constant (96500 C/mol),   is the density of the material (7.93 g/cm3), I  is the current 

and t  is the time. Figure 6-5 shows a plot of pit depths measured by visual observation 

versus those calculated by Faraday’s Second Law. It shows that the two methods give 

similar results and agree to within 7%. The difference between the two might be caused 

by measurement errors of visual observation. To be consistent, the pit depth calculated 

by Faraday’s Second Law is used throughout the chapter. 
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Figure 6-5 Comparison between the depths of artificial pits in 304L stainless steel 
(SS304L) measured by visual observation and calculated by integration of the current. 

6.3.1.2 Conditions when the diffusion length is the pit depth 

As mentioned in Section 2.2.7, when the pit reaches a certain depth, the contribution of 

external hemispherical boundary layer to the diffusion path can be neglected, so the pit 

depth can be regarded as equal to the diffusion length, and the current density will be 

linear with the inverse of the pit depth [4]. Figure 6-6(a) shows the current density 

against the inverse pit depth in a 2 M MgCl2 solution. It may be seen that when the 

inverse pit depth is smaller than ~80 (1/cm), i.e. when the pit depth is greater than 

~130 µm, the current density has a linear relationship with the inverse pit depth. 

Therefore, when the pit is deeper than 130 µm, the diffusion length can be regarded as 

equivalent to the pit depth. Figure 6-6(b) shows a plot of ix  vs. pit depth in a 2 M 

MgCl2 solution which gives another way to determine when the diffusion length may be 

regarded as the pit depth [89]. In Figure 6-6(b), when the pit is deeper than ~120 µm, 
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ix  is independent of the pit depth. Fluctuation in the value of ix  have been observed 

even when the pit depth has been greater than 120 µm , which might be due to the 

localized passivation and reactivation of pits under the salt layer [160]. In this study, the 

pit has grown to at least 130 µm and thereby diffusion length is simply the pit depth. 

 

Figure 6-6 (a) Diffusion-limited current density vs. inverse pit depth (b) ix  vs. pit depth 
for 50 µm diameter SS304L wire artificial pits in 2 M MgCl2 at 23±2 ºC. Vertical 
dashed lines have been used to show when the diffusion length is simply the pit depth. 
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At the steady state, Fick’s First Law could be used to obtain the value of CD  , as 

shown in Equation 6-2 

 
nF

ix
CD   Equation 6-2 

 

Where D  is the average diffusivity of the dissolving metal cations inside the pit, C  is 

the difference of the metal ion concentration between the pit bottom and the pit mouth 

and i  is the current density. 

6.3.2 Test for repassivation 

Figure 6-7 shows typical electrochemical responses for 1D artificial pits in 2 M MgCl2 

during the potential sweep stage for tests with and without AC signals imposed (labelled 

as ‘AC’ and ‘No AC’, respectively). The resistance of the solution was recorded for the 

tests with AC signals applied.  In the presence of AC signals, the auto-ranging feature of 

the potentiostat could not be used, so low currents could not be accurately determined.   
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Figure 6-7(a)-(e) Current density vs. potential (f)-(h) Current density vs. IR-corrected 
potential on SS304L wire 1D artificial pits 50 µm diameter in 2 M MgCl2 during the 
potential sweep process at 23±2 ºC. The scan rate of the potential was 0.2 mV/s. At the 
end of both tests, pit depths were ~205 µm. ‘AC’ refers to the test where an AC signal 
at 30 kHz with amplitude of 5 mV was imposed to record the solution resistance. ‘No 
AC’ refers to the test where no AC signal was applied.  
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Figure 6-7(a) shows the electrochemical response (current density vs. potential) during 

the sweep stage for one artificial pit with ac resistance measurement (AC) and another 

pit without ac measurement (No AC). The current density is plotted on a log scale. A 

cathodic region can be observed for the test ‘No AC’ below -240 mV, but for the ‘AC’ 

test, such low currents could not be accurately measured as noted above. 

Figure 6-7(b)-(e) shows the current density vs. applied potential of four sweeps of both 

the ‘AC’ and ‘No AC’ tests in detail. Figure 6-7(f)-(h) shows the current density vs. IR-

corrected potential of three sweeps of the ‘AC’ test. The change in pit depth during each 

sweep varies, as the change of the depth is related to the dissolution rate of the metal. 

For example, the depth of the one ‘AC’ measurement changes from 178 µm to 190 µm 

in Figure 6-7(b) and it changes from 190 µm to 199 µm in the next sweep, shown in 

Figure 6-7(c). 

In Figure 6-7(b) and (f), the current decreases with the decreasing potential and then 

increases with increasing potential. When the applied potential increases from -140 mV 

to -130 mV, the current increases to slightly greater values than those found for the 

same potential on the downward sweep. The decrease in current density on the 

downward sweep will have decreased the concentration of metal ions in the pit, which 

could lead to a slight drop in pit resistance. However, the observation is not simply a 

result of this since the same effect is observed in Figure 6-7(f), where the potential has 

been IR corrected. The observed increase in current might therefore be due to an 

increase in greater corroded area caused by non-uniform dissolution or crevice 

corrosion between the wire and the epoxy.  
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In Figure 6-7(c), when the applied potential decreases from -130 mV to -160 mV and 

then increases again, there is a loop for the current density of the test ‘AC’. This is 

clearly shown in the ‘IR-corrected’ Figure 6-7(g). In the loop, when the applied/IR-

corrected potential is the same, the current density in the upward sweep is smaller than 

that in the downward sweep. This might be attributed to partial repassivation occurred 

during the downward sweep, leading to a lower active area and a thus a lower average 

current density. Therefore when the potential increased again, the dissolution of metal 

ions was less than previously. A similar loop in the current was also observed for the 

test ‘No AC’ as shown in Figure 6-7(d).  

In Figure 6-7(d), when the applied potential decreases from -150 mV to -180 mV and 

then increases to -170 mV, the current density of the test ‘AC’ continues to decrease 

from ~140 mA/cm2 to ~0.5 mA/cm2. In the current experiments, the onset of 

repassivation is defined as the point where there is no increase in current with an 

increase in potential. According to this definition, repassivation was also observed for 

the test ‘No AC’, as shown in Figure 6-7(e).  

Equation 6-3 [4, 161] can be used to estimate the solution resistance R  when there is 

no salt layer： 

 b
s

bp R
r

x
RRR  2

  Equation 6-3 

where pR  is the solution resistance inside the pit, bR  is the resistance of the bulk 

solution, which should be constant, 
s  is the average solution resistivity within the pit, 

x  is the pit depth and r  is the radius of the pit (which is 25 µm). 
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From Equation 6-3, it can be seen that the solution resistance increases with solution 

resistivity, pit depth and decreasing pit radius. Pit depth increases with the dissolution of 

the metal. The average solution resistivity within the pit changes during the test due to 

changing concentrations of the dissolved metal ions during the electrochemical test. 

Figure 6-8 shows resistivity of various concentrations of FeCl2 in 2-4 M MgCl2 bulk 

solutions, calculated via the OLI software [110]. For 3-4 M MgCl2 solutions, resistivity 

increases with the concentration of FeCl2. However, in 2 M MgCl2, with an increase in 

the concentration of FeCl2, the resistivity decreases slightly first and then increases. The 

lowest resistivity is at the point when FeCl2 is 0.1 M, ~5% of saturated FeCl2 in 2 M 

MgCl2.  
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Figure 6-8 Resistivity vs. concentrations of FeCl2 in 2 M, 3 M, 3.2 M, 3.5 M and 4 M 
MgCl2 bulk solutions at 298 K, calculated using the OLI software [110]. 
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Figure 6-9 shows the current and resistance, plotted against the IR-corrected potential 

for the test ‘AC’ shown in Figure 6-7 during the potential sweep. In Figure 6-9(b) and 

(c), the resistance decreases with decreasing current and increases with increasing 

current. The resistance change is probably due to the change of resistivity caused by the 

change of the concentration of the dissolved metal ions during the sweep. As the current 

decreases, fewer metal ions are produced, so the concentration of metal ions decreases 

and thus the resistivity decreases according to Figure 6-8. Although the increase in the 

pit depth during the sweep would lead to an increase in resistance, according to the 

resistance data, the dominant effect here seems to be the change of resistivity. 

The resistance change in Figure 6-9(d) is different from that in Figure 6-9(b) and (c). In 

Figure 6-9(d), when the current density decreases from 140 mA/cm2 to 70 mA/cm2, 

there is a decrease in the resistance first and then the resistance increases. When the 

current decreases further from 70 mA/cm2 to 0.5 mA/cm2, the resistance initially 

decreases, and then increases. The initial decrease corresponds to the decrease in 

resistivity associated with the drop in current, which leads to a lower concentration of 

metal ions. However, the most likely explanation for the subsequent increase in 

resistance is that repassivation of the metal takes place when the interfacial potential is 

~-190 mV in Figure 6-9(d). During the repassivation process, parts of the metal surface 

start to be covered by the passive film and there is thus less active area, leading to a 

higher resistance. However, as the concentration of metal ions falls further, the 

resistance will start to decrease as the concentration of metal ions falls further. 
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Figure 6-9 Current density and resistance vs. IR-corrected potential on SS304L wire 1D 
artificial pits 50 µm diameter in 2 M MgCl2 during the potential sweep/repassivation 
process at 23±2 ºC. The scan rate of the potential was 0.2 mV/s. An AC signal at 30 
kHz with amplitude of 5 mV was imposed in this sweep. The pit depth was 205 µm at 
the end of the test. 
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Figure 6-10 and Figure 6-11 show the current response to the potential for pits with 

depth of ~360 µm and ~560 µm in 2 M MgCl2, with or without ac signals applied. 

Similar behaviour was observed to the shallow pit shown in Figure 6-7. For the early 

sweeps, the current increased with increasing potential. In addition, there was in each 

case a sweep where there was no increase in the current in spite of the increase in the 

potential. This implies that repassivation can also take place in deep pits. 
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Figure 6-10 Current density vs. potential on SS304L wire 1D artificial pits 50 µm 
diameter in 2 M MgCl2 during the potential sweep/repassivation process at 23±2 ºC. 
‘AC’ refers to the test where an AC signal at 30 kHz with amplitude of 5 mV was 
imposed to record the resistance. ‘No AC’ refers to the test where an AC signal was not 
applied. Pit depth of the ‘AC’ and ‘No AC’ was 360 µm and 367 µm respectively at the 
end of the test. The scan rate of the potential was 0.2 mV/s. 
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Figure 6-11 Current density vs. potential on SS304L wire 1D artificial pits 50 µm 
diameter in 2 M MgCl2 during the potential sweep/repassivation process at 23±2 ºC. 
‘AC’ refers to the test where an AC signal at 30 kHz with amplitude of 5 mV was 
imposed to record the resistance of the bulk solution and the pit. ‘No AC’ refers to the 
test where an AC signal was not applied. Pit depth of the one ‘AC’ was 561 µm and that 
of the one ‘No AC’ was 554 µm at the end of the test. The scan rate of the potential was 
0.2 mV/s. 
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Figure 6-12 shows the current and resistance plotted against the IR-corrected potential 

for a deep pit (~360 µm at the end of the test) in 2 M MgCl2. The resistance response 

for a pit, ~560 µm, is similar to that shown in Figure 6-12. 

In Figure 6-12(b), there is a significant decrease of the resistance from ~27 kΩ to 

~21 kΩ when the IR-corrected potential decreases from -152 mV to -164 mV. The large 

resistance change is probably due to the dissolution of the salt layer. In the upward 

potential scan, the resistance increased with the increasing current. However, in the 

upward potential scan in Figure 6-12(c), the resistance decreases with the increasing 

current/potential first and then increases with the increasing current and potential. The 

delay in the increase in the resistance might be due to diffusion effects. In Figure 

6-12(d), when there is an increase in the potential, there is no increase in the current. 

According to the previous definition, repassivation took place. In Figure 6-12(d), when 

there is no increase in the current there is an increase in the resistance. The resistance 

kept increasing even when there was a further decrease in current, as shown in Figure 

6-12(e). The increase in the resistance was much greater than the resistance increase for 

a shallow pit, as shown in Figure 6-9(d). The difference might be due to the depth 

difference, as illustrated in Equation 6-3.  
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Figure 6-12 Current density and resistance of the cell vs. IR-corrected potential on 
SS304L wire 1D artificial pits 50 µm diameter in 2 M MgCl2 during the potential sweep 
at 23±2 ºC. The scan rate of the potential was 0.2 mV/s. An AC signal at 30 kHz with 
amplitude of 5 mV was imposed in this sweep. The pit depth was 360 µm at the end of 
the test. 
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Figure 6-13 and Figure 6-14 show the current and resistance plotted against the applied 

potential in 3 M and 3.2 M MgCl2 solutions, with or without ac signals applied. It can be 

seen that there was always a sweep where there was no increase in current with 

increasing potential. This means repassivation can take place in 3 M and 3.2 M MgCl2 

solutions.  
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Figure 6-13 Current density vs. potential on SS304L wire 1D artificial pits 50 µm 
diameter in 3 M MgCl2 during the potential sweep/repassivation process at 23±2 ºC. 
The scan rate of the potential was 0.2 mV/s. ‘AC’ refers to the test where an AC signal 
at 30 kHz with amplitude of 5 mV was imposed to record the resistance. ‘No AC’ refers 
to the test where no AC signal was applied. Pit depth of the one ‘AC’ was 186 µm and 
that of the one ‘No AC’ at the end of the test was 192 µm. 
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Figure 6-14 Current density vs. potential on SS304L wire 1D artificial pits 50 µm 
diameter in 3.2 M MgCl2 during the potential sweep/repassivation process at 23±2 ºC. 
The scan rate of the potential was 0.2 mV/s. ‘AC’ refers to the test where an AC signal 
at 30 kHz with amplitude of 5 mV was imposed to record the resistance. ‘No AC’ refers 
to the test where an AC signal was not applied. Pit depth of the one ‘AC’ at the end of 
the test was 187 µm and that of the one ‘No AC’ at the end of the test was 181 µm. 
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Figure 6-15 shows the current and resistance plotted against the IR-corrected potential 

for a pit in 3 M MgCl2. The resistance change in 3.2 M MgCl2 was similar (and not 

shown). Figure 6-15(b) shows that the resistance increases with increasing current 

during the early sweeps. In later sweeps shown in Figure 6-15(c), due to diffusion 

effects, the resistance keeps decreasing even when current increases. In Figure 6-15(d), 

there is no increase in current when there is an increase in potential. This means 

repassivation took place. The resistance is almost constant when there is no increase in 

current. In Figure 6-15(e), the resistance was also observed to be almost constant. This 

is probably because the pit has repassivated and thus the resistance was constant. 
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Figure 6-15 Current density and resistance of the cell vs. IR-corrected potential on 
SS304L wire 1D artificial pits 50 µm diameter in 3 M MgCl2 during the potential 
sweep/repassivation process at 23±2 ºC. The scan rate of the potential is 0.2 mV/s. An 
AC signal at 30 kHz with amplitude of 5 mV was imposed in this sweep. The pit depth 
was 186 µm at the end of the test. 
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Figure 6-16 shows the current density plotted against applied potential for a pit in 3.5 M 

MgCl2 solution. Unlike 2 M, 3 M or 3.2 M MgCl2 solutions, the figure shows that when 

there was a potential increase, there was always an increase in the current even when the 

current density decreased below 0.1 mA/cm2, as shown in Figure 6-16(e). When the 

potential decreased further from -370 mV to -400 mV, cathodic current was shown and 

hence the test stopped. This means that there was no repassivation for 3.5 M MgCl2 

solutions.  
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Figure 6-16 Current density vs. potential on SS304L wire 1D artificial pits 50 µm 
diameter in 3.5 M MgCl2 during the potential sweep at 23±2 ºC. The scan rate of the 
potential was 0.2 mV/s. No AC signal was imposed in this sweep. The pit depth was 
175 µm at the end of the test. 
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Figure 6-17 shows the current response to the potential sweep for a 1D artificial pit in 

4 M MgCl2 solution. Similar to the pit behaviour in 3.5 M MgCl2, when there was a 

potential increase, there was always a current increase and the test was stopped when 

there was cathodic current. Hence there was no repassivation for 4 M MgCl2 solutions. 
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Figure 6-17 Current density vs. potential on SS304L wire 1D artificial pits 50 µm 
diameter in 4 M MgCl2 during the potential sweep at 23±2 ºC. The scan rate of the 
potential was 0.2 mV/s. No AC signal was imposed in this sweep. The pit depth was 
165 µm at the end of the test. 
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6.3.3 Repassivation potential 

Figure 6-18 shows the current response to a potential sweep in 3 M MgCl2 solutions. It 

illustrates how the range of repassivation potential (Erp) is determined in the current 

study. When the potential is swept upwards from -280 mV, there is an instant increase 

in the current. This means -280 mV is high enough to keep the pit active. However the 

current decreases when the potential is swept upwards from -300 mV. This behaviour 

meets the experimental determination of Erp [62]. Therefore, it can be proposed that the 

repassivation potential lies between -280 mV and -300 mV. Consequently, in the 

current test, a range of repassivation potential, with an upper bound and a lower bound, 

was determined. For example, the range of Erp in Figure 6-18 is -280 mV to -300 mV. 

 

Figure 6-18 Current density vs. potential on SS304L wire 1D artificial pits 50 µm 
diameter in 3 M MgCl2 at 23±2 ºC. The scan rate of the potential was 0.2 mV/s.  
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Using the definition above, the range of Erp in different solutions can be determined. 

Figure 6-19(a) shows the range of Erp in 2-3.2 M MgCl2 solutions. The upper line is the 

upper bound of Erp and the lower line is the lower bound of Erp. The number in between 

the upper line and the lower line is the number of times the same result was obtained. 

An arrow pointing downwards was used to show that repassivation was not observed in 

3.5 M and 4 M MgCl2. The potentials shown in Figure 6-19(a) are non IR-corrected. For 

2 M MgCl2, the range of Erp of the tests with ‘AC’ is slightly higher than that of the 

ones without ‘AC’. However, for 3 M and 3.2 M MgCl2, there was no significant 

difference between the range of Erp of ‘AC’ and that of ‘No AC’. It is clear that Erp of 

2 M MgCl2 is much higher than that of 3 M MgCl2. Erp of 3 M MgCl2 is slightly higher 

than that of 3.2 M MgCl2 and in some cases the range of Erp of 3 M and 3.2 M MgCl2 is 

the same. 

Figure 6-19(b) shows the range of the IR-corrected Erp for 2-3.2 M MgCl2 solutions for 

tests ‘AC’, where resistance was recorded. In one potential sweep, if there is no increase 

in current with increasing IR-corrected potential, the lowest potential in that sweep is 

defined as the lower bound of the IR-corrected Erp. The lowest potential in the previous 

sweep is the upper bound of the IR-corrected Erp. It should be noticed that during the 

potential sweep, the lower bound of the IR-corrected Erp does not necessarily 

correspond to the lower bound of the non IR-corrected Erp, especially for 2 M MgCl2 

solutions, as shown in Figure 6-7(d) and (h). Figure 6-19 shows that, for 2 M MgCl2, 

the upper bound and the lower bound of IR-corrected Erp are both lower than those of 

non IR-corrected Erp. For the upper bound, the difference between the IR-corrected and 

non-IR-corrected Erp can be as great as 30 mV and the greatest difference for the lower 

bound is ~10 mV. Furthermore, the difference between the upper bound and the lower 
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bound of IR-corrected Erp is smaller than that of non-IR-corrected Erp. For 3 M and 

3.2 M MgCl2, due to the small current near the repassivation stage, IR-corrected Erp is 

almost the same as the non-IR-corrected Erp. Similar to non-IR-corrected results, it can 

be observed that the IR-corrected Erp of 2 M MgCl2 is much higher than that of 3 M and 

3.2 M MgCl2. The IR-corrected Erp of 3 M is slightly higher than that of 3.2 M MgCl2. 
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Figure 6-19 The range of (a) non-IR-corrected and (b) IR-corrected repassivation 
potential (on SS304L wire 1D artificial pits 50 µm diameter), as defined in Figure 6-18, 
of 2-4 M MgCl2 at 23±2 ºC. ‘No AC’ refers to the test where no AC signal was applied. 
‘AC’ refers to the test where an AC signal at 30 kHz with amplitude of 5 mV was 
imposed. The pit depth at the end of tests varied from 160 µm to 200 µm. 
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Figure 6-20 shows the dependence of (a) non-IR-corrected and (b) IR-corrected Erp 

upon different pit depths in 2 M MgCl2. The lower and upper bounds of the IR-

corrected Erp are both smaller than those for non IR-corrected Erp. However, the 

difference diminishes with increasing pit depth. For both IR-corrected and non-IR-

corrected tests, there is a trend that Erp decreases with increasing pit depth for the range 

of the pit depth measured. 

Figure 6-20 The range of (a) non-IR-corrected and (b) IR-corrected repassivation 
potential (on SS304L wire 1D artificial pits 50 µm diameter in 2 M MgCl2 solution), as 
defined in Figure 6-18, for pits with depth from 190 µm to 570 µm at 23±2 ºC. ‘No AC’ 
refers to the test where no AC signal was applied. ‘AC’ refers to the test where an AC 
signal at 30 kHz with amplitude of 5 mV was imposed.  
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6.3.4 Critical point to prevent pits from complete repassivation 

As mentioned in Section 2.2.7, if it is assumed that the dissolved metal ion 

concentration at the pit mouth is zero, the DC value ( D  is the average diffusivity of the 

dissolving metal cations inside the pit and C  is the metal ion concentration at the 

dissolving surface) may be obtained from ix  ( i  is the current density and x  is the pit 

depth). When the current density is diffusion controlled, satDC  can be obtained, as 

shown in Equation 6-4:  

 
nF

xi
DCsat

lim
 

Equation 6-4 

where satC  is the saturated metal ion concentration and limi  is the diffusion limited 

current density. When the current density is below the diffusion-limited current density 

but still at steady state, DC  can still be obtained, as shown in Equation 6-5: 

 
nF

ix
DC 

 
Equation 6-5 

Therefore, if D  is the same, satCC /  can be determined from lim/ ii .  

Figure 6-21 shows how the values of satix)(  (value on ix  at the saturated metal ion 

concentration), *)(ix  (value on ix  at the critical metal ion concentration) and thereby  

satCC /*  ( *C  is the critical metal ion concentration) are determined. Figure 6-21(a) 

shows ix  vs. pit depth during pit initiation and growth stages. During the pit growth 

stage (200 mV applied), the pit is covered with a salt layer, which indicates a saturated 

metal ion concentration. Twenty ix  values, after the pit grew to 130 µm, were averaged 

to give satix)( . Figure 6-21(b) shows how *)(ix  is determined. When the potential 

increases from -180 mV upwards, there is an increase in the current. However, when the 
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potential increases from -200 mV upwards, the current decreases. Hence, ix  value at -

180 mV (corresponding to the upper bound of the range of Erp) is chosen as *

no repassix)( , 

the critical value above which there was no repassivation. The value of ix  at -200 mV 

(corresponding to the lower bound of the range of Erp) is chosen as *

repassix)( , the critical 

value below which there was repassivation.  Hence, 
sat

*

no repass

ix

ix

)(
)(

 and 
sat

repass

ix

ix

)(
)( *

can be 

obtained. Consequently, 
sat

*

no repass

C

C
 ( *

no repassC  is the critical concentration above which 

there was no repassivation) and 
sat

repass

C

C*

 ( *

repassC  is the critical concentration below which 

there was repassivation) can be calculated, as shown in Figure 6-21(c).  
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Figure 6-21 (a) ix vs. pit depth (b) current density vs. potential and (c) 
satC

C*

 of SS304L 

wire 1D artificial pits 50 µm diameter in 2 M MgCl2 at 23±2 ºC.  

 

 



160 
 

For the measurements where the resistance was recorded, *

no repassix)(  and *

repassix)(  is 

defined as the value corresponding to the lower bound and upper bound of the range of 

the IR-corrected Erp. Due to the great decrease in current density and changing 

resistance near the repassivation point, the current corresponding to the lower bound of 

the non-IR-corrected Erp does not always equal the current corresponding to the lower 

bound of the IR-corrected Erp. Figure 6-22 shows the same test results with or without 

IR correction of the potential. The current density corresponds to the lower bound of IR-

corrected Erp was ~90 mA/cm2. Using the method shown in Figure 6-21, 
sat

repass

C

C*

(×100%) 

was ~46%. The current density corresponds to the lower bound of non IR-corrected Erp 

was ~20 mA/cm2 and thereby 
sat

repass

C

C*

(×100%) was ~11%. Hence a large difference 

could be expected between the IR-corrected results and non IR-corrected results for a 

same test.  

 

Figure 6-22 Current density vs. potential/IR-corrected potential on SS304L wire 1D 
artificial pits 50 µm diameter in 2 M MgCl2 at 23±2 ºC. 
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Figure 6-23 shows (a) satDC  (b) *DC  and (c) 
satC

C*

 for 2-3.2 M MgCl2. For tests ‘No 

AC’, *DC  was determined according to the applied potential, as shown in Figure 6-21. 

For tests ‘AC’ (with resistance recorded), *DC  was determined according to the IR-

corrected potential. 

Figure 6-23(a) shows that satDC  decreases with increasing chloride concentrations and 

there is no obvious difference for the results between ‘AC’ and ‘No AC’. The 

decreasing tendency is fairly consistent with what has been reported [9, 26]. The 

decrease in satDC  with increasing chloride concentration is partly due to the chloride 

common-ion effect. The solubility of the dissolved metal chlorides decreases with the 

increasing bulk MgCl2 concentration [84]. In addition, the diffusivity in our calculation 

has been assumed to be constant while it actually decreases with increasing chloride 

concentration for the range of chloride concentration tested.  

The value of *DC  in Figure 6-23(b) has been plotted in log scale to show the low values 

at 3 M and 3.2 M MgCl2. It can be observed that *DC  decreases steeply with increasing 

chloride concentration. For 3 M and 3.2 M MgCl2, values of *DC  are similar for results 

determined according to the applied potential or the IR-corrected potential. However, 

for 2 M MgCl2, *

repassDC  determined from the IR-corrected potential is much higher 

than that determined from the applied potential. Figure 6-23(c) shows that for 2 M 

MgCl2 solutions, the critical metal ion concentration to prevent pits from repassivation 

is ~45% of saturation. For 3 M and 3.2 M MgCl2, the critical metal ion concentration is 

lower than 10%. 
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Figure 6-23 (a) satDC (b) *DC  and (c) 
satC

C*

 (on SS304L wire 1D artificial pits 50 µm 

diameter) for 2-3.2 M MgCl2 at 23±2 ºC. ‘AC’ refers to the results of tests where an AC 
signal at 30 kHz with amplitude of 5 mV was imposed. ‘No AC’ refers to the results of 

tests where an AC signal was not applied. satDC , *DC  and 
satC

C*

 was as defined in 

Figure 6-21. *DC  and 
satC

C*

 of tests with resistance recorded were determined according 

to the IR-corrected potential and labeled as ‘IR corrected’. The pit depth at the end of 
tests varied from 160 µm to 200 µm. 
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Figure 6-24 shows 
satC

C*

 for different pit depths in 2 M MgCl2. The 
satC

C*

 value 

determined according to the IR-corrected potential is higher than that determined 

according to the non-IR-corrected potential. However the difference becomes smaller 

with increasing pit depth. Figure 6-24 also shows that the critical metal ion 

concentration to prevent pits from repassivation decreased with increasing pit depth. 

The critical metal ion concentration is ~45% of saturation for a 200 µm pit (in depth), 

~30% of saturation for a 360 µm pit (in depth), 10-20% of saturation for a 560 µm pit 

(in depth).   

 

Figure 6-24 
satC

C*

 (on SS304L wire 1D artificial pits 50 µm diameter in 2 M MgCl2 

solution) vs. pit depth (at the end of tests) at 23±2 ºC. 
satC

C*

 was as defined in Figure 

6-21. 
satC

C*

 of tests with the resistance recorded was determined according to the IR-

corrected potential and labeled as ‘IR corrected’. 
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6.3.5 Morphology of the pit during the repassivation process 

Figure 6-25(a)-(c) shows three SEM images of samples which were stopped at different 

stages of the electrochemical tests. All tests were carried out in 3.5 M MgCl2 solutions. 

When the test was stopped, the sample was washed with water and then immersed in 

acetone overnight to remove the epoxy. Figure 6-25(d)-(f) shows the top surface of the 

wire and Figure 6-25(g)-(h) shows the surface between the wire and the epoxy in detail. 

The first sample, shown in Figure 6-25(a) and (d), was extracted when the surface was 

covered with salt layer. The top surface of the wire is comparatively smooth and there is 

no obvious evidence of crevice corrosion at the side of the wire. The second sample, 

shown in Figure 6-25(b), (e) and (g), was stopped after three potential sweeps. The salt 

layer has already dissolved due to the low potential. Using the method detailed in 

Section 6.3.4, the lowest metal ion concentration was calculated to be ~85% of 

saturation during the third sweep. Surface roughening evidenced by a non-uniform, 

rough top surface of the wire can be observed. Furthermore, crevice corrosion has 

started to develop at the side of the wire/between the wire and the epoxy. Figure 6-25(c) 

shows the third sample, which was collected at the end of electrochemical sequences. 

Similar to the second sample, the dissolution of the top surface of the wire was not 

uniform. Furthermore, severe crevice corrosion was observed at the side of the wire, as 

shown in Figure 6-25(h). 
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Figure 6-25 SEM images of three different samples, which were stopped at different 
stages of the electrochemical sequences, as shown in the left ‘potential vs. time’ figure. 
Electrochemical tests were done on SS304L wire 1D artificial pits 50 µm diameter in 
3.5 M MgCl2 at 23±2 ºC.  

6.4 Discussion 

6.4.1 Determination of repassivation potential 

The repassivation potential has been generally considered to be the potential, below 

which there is no active pitting [32, 34]. Star proposed that if passivation takes place 

there is little increase in current with a large increase in applied potential [34]. Ernst and 

Newman also proposed a similar definition of the onset of repassivaiton [26]. In the 

current study, repassivation is defined only when there is a point where there is no 

increase in current with an increase in potential.  

It has been found that repassivation can only happen when the concentration of MgCl2 

is not greater than 3.2 M (equivalent to 64% RH) and repassivation does not happen for 

3.5 M MgCl2 (equivalent to 59 % RH) and 4 M MgCl2 (equivalent to 50% RH). In 
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concentrated solutions, there is less free water to form a passive film compared with 

more dilute solutions. Hence repassivation was not observed in concentrated solutions. 

Figure 6-26 shows the polarisation curves of SS304 in 0.05-5 M MgCl2 solutions [9]. 

The passive current density for 0.05-3 M MgCl2 is similar, as shown in Figure 6-26(a). 

However, the current density increases with increasing chloride concentration for 3-5 M 

MgCl2, as shown in Figure 6-26(b). The passive current density is the dissolution and 

formation rate of the oxide film. A high current density in concentrated solutions means 

that an oxide film can dissolve quickly. Therefore, even if there is formation of oxide 

layers in highly concentrated solutions, the oxide layers are expected to dissolve quickly 

in concentrated solutions once the condition is aggressive. Hence without the presence 

of oxide layers, there is always an increase in current with increasing potential in 3.5 M 

and 4 M MgCl2 solutions. 

 

Figure 6-26 Polarisation curves of the current density vs. potential of SS304 wire (250 
µm diameter, 4000 grit surface finish) in (a) 0.05-3 M and (b) 3-5 M MgCl2 solutions. 
The sample was abraded to 4000 grit by SiC papers. The potential sweep rate is 
0.2 mV/s [9].  
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For concentrations of solutions where repassivation has been observed: 2 M, 3 M and 

3.2 M MgCl2 solutions, Erp decreases with increasing chloride concentration. This 

observation is consistent with previous studies [9, 68, 70, 77, 79], as mentioned in 

Section 2.2.6.4. 

IR correction can be performed for measurements with resistance recorded. As shown in 

Figure 6-7, shallow pits in comparatively dilute solutions, such as 2 M MgCl2, 

repassivate at high current densities. Therefore the difference between the IR-corrected 

and the non-IR-corrected for the upper bound of the range of Erp can be as great as 

30 mV and the greatest difference for the lower bound of the range of Erp is observed to 

be ~10 mV, as shown in Figure 6-19. The difference between the IR-corrected and the 

non-IR-corrected Erp becomes smaller with increasing pit depth and chloride 

concentration, as shown in Figure 6-19 and Figure 6-20. Therefore, IR correction should 

be made for shallow pits in dilute solutions while the IR correction is of less concern for 

deep pits in concentrated solutions. 

6.4.2 Critical metal ion concentration 

For dilute solutions, such as 1 M NaCl, the critical chemistry needed to prevent pits in 

SS304 from repassivation has been considered to be ~65% of saturation [4, 9, 162]. 

However, it has been proposed that for concentrated solutions, the critical metal ion 

concentration to prevent pits from repassivation is lower than 65% [9, 26].   

In the current test, for a pit ~200 µm in depth, the critical point for 2 M MgCl2 is ~45% 

of saturation and the critical point for 3 M and 3.2 M MgCl2 solutions is below 10%. As 

mentioned in Section 2.2.7.2, in SS304, Mi found that the critical metal ion 

concentration was 40% to 50% of saturation for 2 M MgCl2, 35% to 45% for 3 M 
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MgCl2 and 10% to 25% for 4 M MgCl2 [9]. In her tests, the critical point was 

determined when there was a curvature change of the current in the potential vs. current 

plot during a potential sweep, since the curvature change might be due to partial 

repassivation of the pit. However, there was no potential increase in her method to 

check the validity of the determination.  

In the current test, Fick’s 1st Law was used to determine the DC value but Fick’s 1st 

Law is only valid at steady state. A slow scan rate, 0.2 mV/s, was used during the test to 

mimic a steady state. However, time-dependent effects have been found, as evidenced 

by the decrease in resistance with an increase in current when the metal ion 

concentration is still quite high (shown in Figure 6-12(c) and Figure 6-15(c)). This 

means the solution is probably not under steady state.  

For a reverse potential sweep, the total sweep time can be estimated as below: 

 s 150
mV/s 0.2
mV 30

rate sweep
length sweep

sweept  Equation 6-6 

The time t  required for metal ions to diffuse from the pit bottom to the pit mouth could 

be estimated by a simplification of Fick’s 2nd Law, as shown in Equation 6-7:  

 
D

x
t

2

  Equation 6-7 

Figure 6-27 (derived from the OLI software) shows how the diffusivity of Fe2+ ions 

varies with the concentration of FeCl2 in different MgCl2 solutions. It shows that the 

diffusivity of Fe2+ ions decreases with increasing FeCl2 concentrations for the same 

concentration of MgCl2 solution.  
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Figure 6-27 Diffusivity vs. concentrations of FeCl2 in 2-4 M MgCl2 bulk solutions at 
298 K [110]. 

 

Assuming a 2 M MgCl2 bulk solution, a 200 µm pit in depth and the average diffusivity 

is when the dissolved metal ion concentration is saturated, the time required for metal 

ions to diffuse from the pit bottom to the pit mouth will be ~200 s. Assuming another 

extreme: using  the diffusivity determined when the dissolved metal ion concentration is 

zero, the diffusion time will be ~110 s. Assuming a 550 µm deep pit in 2 M MgCl2 and 

the diffusivity is at zero metal ion concentration point, the diffusion time will be ~840 s. 

Apparently, for a deep pit, the time required for diffusion is much more than the sweep 
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time. Hence, due to the diffusion effects, the critical metal ion concentration appeared to 

be dependent of pit depth, as shown in Figure 6-24. 

The above calculation simply gives a rough idea of the diffusion time since there is a 

variation of diffusivity along the pits. Besides, diffusivity at each position changes 

according to the dissolution rates during the electrochemical process.   

6.4.3 Dependence of repassivation potential on pit depth 

Figure 6-20 shows that, within the pit depths range measured: 190 µm (equivalent to 

~570 C/cm2) to 570 µm (equivalent to ~1720 C/cm2), the range of rpE  in 2 M MgCl2 

appears to decrease with increasing pit depth. Woldemedhin used the 1D artificial pit 

method to study the repassivation potential of SS304L in 1.43 M FeCl3 and observed 

that Erp was independent of pit depth when the charge density was greater than 

~1300 C/cm2 [63]. In the current work, pits with a limited range of depths were studied 

and thereby the independence of rpE  on pit depth might be observed if a greater number 

of deeper pits had been studied. Besides, in Woldemedhin’s study and other studies 

which reported the independence of rpE  on pit depth, rpE  was determined when the 

corresponding current reaches a small pre-determined current, such as 1 µA/cm2 [65] or 

50 µA/cm2 [70, 77, 78], or when the current changes polarity [63]. However, as shown 

in Figure 6-7, Figure 6-10, Figure 6-11 and Figure 6-13, repassivation can take place at 

a relatively high current density, which can be as high as 20 mA/cm2. For example, in 

Figure 6-7, according to the definition of rpE  in this work, the lower bound of rpE  is -

200 mV. However, rpE  will be -230 mV if rpE  is defined as the potential when the 

current reaches 1 µA/cm2 and rpE  will be -235 mV if rpE  is defined as the potential 
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when the current reaches the cathodic current. Therefore, the repassivation potential, 

which is determined when the current is low or there is a cathodic current, probably 

gives rise to a lower value than the measurement in this work. Besides, the potential 

sweep method shown here includes a decrease in potential and then a slight increase 

while only a decrease in potential is involved in the previous studies. 

6.4.4 Surface roughening and crevice corrosion 

As shown in Figure 6-25, surface roughening and crevice formation between the metal 

and the epoxy resin were observed during the salt layer free stage, especially when the 

current density was very low and there was little dissolution of the metal. With 

microscopic examination, Gaudet found surface roughening during salt layer free stage 

in the study of SS304 in NaCl [4]. Xu observed surface roughening and crevice 

corrosion between the metal and the inert epoxy resin in the study of Fe in HCl [89]. Xu 

suggested that when the metal ion concentration was below the critical point, the pit 

may not be completely active and partial repassivation can take place. Therefore, there 

is less dissolution of the metal. Hence surface roughening and crevice corrosion can 

take place to contribute to the dissolution. Consequently, the significant crevice 

corrosion that observed in 3.5 M MgCl2 at the end of the test shown in Figure 6-25(h) 

might indicate the existence of partial repassivation in 3.5 M MgCl2.  

6.4.5 Implications for atmospheric conditions 

Concentrated solutions have been studied in this chapter to enable a better 

understanding of the corrosion behaivour of pits in atmospheric conditions. In the 

current electrochemical work, there is a threshold concentration of MgCl2, between 

3.2 M and 3.5 M (equivalent to 64%-59% RH) and repassivation only takes place when 
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the concentration of the solution is lower than that critical value. This might predict the 

critical RH for pit initiation and propagation in atmospheric conditions. A fast 

dissolution rate of the oxide film in concentrated solutions (low RH), as shown in 

Figure 6-26, might benefit stable pitting in atmospheric conditions. In atmospheric 

conditions, the critical RH for pit initiation and propagation for SS304 (with a surface 

finish of 1000 grit) has been reported to be 65% -75% RH [7, 120]. A lower critical 

value: 47%-58% RH in atmospheric conditions has been reported by other researchers, 

which might be due to a finer surface finish used in their studies [130]. Besides, the size 

and concentration of the droplet deposited have also been reported to have effects on the 

critical RH for pit initiation and propagation in atmospheric conditions [16].   

6.5 Conclusion 

The electrochemical behaviour of 304L stainless steel in concentrated solutions which 

are representative of atmospheric conditions has been investigated in this chapter using 

the1D artificial pit method to study pit repassivation. 

 A potential sweep method was developed to detect the onset of pit repassivation. 

This method involved potentiodynamic polarisation of a salt layer-free metal 

surface with a series of stages comprising a decrease in potential, followed by a 

small increase in potential. In the absence of repassivation, increasing the 

potential will lead to a corresponding increase in current. However, if there is no 

increase in current with increasing potential, it means that repassivation is taking 

place. 

 The tests were performed in different bulk concentrations of MgCl2 

corresponding to different RH values in atmospheric corrosion. It was found that 
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there can be repassivation when the concentration of MgCl2 solutions is lower 

than 3.2 M (equivalent to 64% RH) while there is no repassivation, for 3.5 M 

(equivalent to 59% RH) and 4 M MgCl2 (equivalent to 50% RH). 

 The repassivation potential was measured with high frequency IR drop 

correction. It was found that the repassivation potential decreases with 

increasing chloride concentration and pit depth. 

 The critical metal ion concentration for repassivation was determined on the 

assumption that the current flowing obeys Fick’s Law.  For 2 M MgCl2, the 

critical point is ~45% of saturation for a pit ~200 µm in depth. The critical point 

appeared to decrease with increasing pit depth. For 3 M and 3.2 M MgCl2, pits 

can survive a metal concentration less than 10% of saturation. 

 Surface roughening, as well as crevice corrosion has been found during the 

potential sweep process. The presence of surface roughening and crevice 

corrosion indicated that for 3.5 M MgCl2 and 4 M MgCl2, partial repassivation 

might have taken place. 
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7 General Discussion and Future Work 

7.1 Pitting corrosion behaviour in realistic conditions 

Atmospheric corrosion can take place with the deliquescence of the salts from 

atmospheric aerosols deposited on the metal surface. This is a particular concern for the 

intermediate level nuclear waste (ILW) containers. The austenitic stainless steel 

containers will be placed above ground in stores, which may be near the coast, for 

several decades and the integrity of the containers should be ensured before a geological 

disposal facility is available [1]. There is concern that atmospheric pitting corrosion of 

the containers might lead to atmospherically-induced stress corrosion cracking [153], 

and this is more likely for larger and deeper pits. 

In the realistic conditions for the storage of ILW containers, anions such as sulphate and 

nitrate; cations such as calcium and potassium; insoluble particles and organic species 

have all been found on the metal surface [20].  However, research into atmospheric 

corrosion of stainless steels has generally focused on solutions with single salts [7-11, 

13, 14, 18, 119, 120]. Furthermore, the relative humidity (RH) fluctuates in real 

applications [20] while studies were usually performed under constant RH [7-10, 12, 13, 

16-19]. In the current study, the effects of mixed salt containing both magnesium and 

sodium chlorides and fluctuations in RH have been investigated. 

After deposition of mixed salt droplets containing MgCl2 and NaCl at an RH between 

the deliquescence relative humidity of MgCl2 and NaCl, dish-shaped pits under solution 

layers and crevice-like attack under NaCl crystals can be observed.  

Tests were carried out at constant RH and with RH change. The RH is increased to 85% 

to mimic real storage conditions since RH generally fluctuates between 30% and 90% 
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under storage conditions of ILW containers [20]. Growth of individual pits has been 

observed for samples exposed at constant RH. However, there are natural fluctuations in 

realistic conditions. The current study shows that fluctuations of RH tend to lead to 

initiation of new pits and a greater number of RH fluctuations give rise to a greater 

number of small pits. Therefore, due to the natural fluctuations in realistic conditions, 

the pit depths measured on the SS316L corrosion coupons were always less than 7 µm 

after exposure for ~10 years in a simulated storage conditions of ILW containers [20].  

If a pit is under stress, it is possible that stress corrosion cracking can take place and the 

shape of the pit may also affect the susceptibility of the pit to cracking [43, 153]. The 

different morphology: pit and crevice observed under mixed salt droplets indicates the 

importance of studying salts with a wider composition. As mentioned above, studies 

were usually focused on a single salt. Although effects of artificial sea water have been 

investigated [7, 163], factors such as the geographic location can affect the composition 

of the salt deposited [100]. Hence, droplets containing different ratios of MgCl2 and 

NaCl need to be further studied. Furthermore, studies on pitting corrosion inhibitors 

such as sulphate and nitrate ions are limited and need to be investigated in the future. In 

the current wet-dry cycling test, exposure time at each RH and the value of the RH is 

fixed. Further tests can be carried out by exposing the sample in the natural environment 

without controlling the exposure time and RH to mimic realistic conditions.    

7.2 Cathodic limitations at atmospheric conditions 

It has been previously proposed that at atmospheric conditions, pit growth is limited by 

the cathodic current available, due to a limited droplet size [7, 8, 10, 17]. Observation in 

the current test is consistent with this. Multiple pits can be observed under MgCl2 
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droplets after one day exposure, as shown in Section 5.2. However, only one single pit 

can keep growing throughout the 11-day exposure at the constant RH. Due to the 

limited cathodic current available, there is a competition among the pits and thereby 

eventually only one pit grows. It has only been reported that in the fully immersed 

condition multiple pits can grow under potentiostatic condition while only one or two 

pits among the multiple pits can keep growing when the condition is changed to 

galvanostatic controlled [131, 164].  

The current study shows that the growth of the pit is limited by the cathodic current and 

thereby it indicates the importance of the size of the droplet. Mi [103] studied droplets 

with a diameter ranging from 0.5 to 2.8 mm and found that the diameter of the pit 

increased with the size of the droplet. Tsustumi [7] studied droplets with a diameter 

ranging from 1.3 to 12 mm and found that probability of pitting increased with the size 

of the droplet. However, there is a size distribution of aerosol particles and the aerosol 

particles can be divided to two groups: the small particles which are less than 2 µm in 

diameter and the large particles which are 2-100 µm in diameter [1]. When the RH is 

high enough, the aerosol particles will deliquescence, forming droplets and the size of 

droplets will be related to the exposure RH and the size of the dry particles [100]. In the 

future, the effect of droplet size with a wider distribution might be studied to 

characterise the corrosion behaviour in real applications. 

7.3 Synchrotron X-ray microtomography tests 

For the mixed salts and wet-dry cycling tests, both lab-based tests and tomography tests 

were carried out. For mixed salts, the observation of dish-shaped pits and crevice 

corrosion both can be observed in lab-based and tomography tests. The observation that 
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deep pits can grow in wet-wetter cycles was both found in lab-based and tomography 

tests. The tomography tests have the advantage of visualising the shape of the pit and 

characterising the change in pit depth and volume during the test, which was not 

possible in the lab-based tests. However, it seems that more pits were initiated in 

tomography tests compared with lab-based ones. This indicated beam damage, which 

has been reported previously [9, 89, 143, 144]. The radiolytic products of water have 

been proposed to be H2 and H2O2 and other possible radiolytic products of the solutes 

[143]. Mesu further suggested the presence of H2 and O2 due to breakdown of H2O2 

[144]. Hence, the tomography data need to be analyzed with caution. Results of 

tomography tests should be compared with those of controlled tests (without radiation) 

to ensure the validity of the results. 

7.4 Repassivation potential 

Ernst [26, 92] and Mi [9] have used 1D artificial pit methods to investigate the pit 

repassivation process. Ernst [26] proposed that at the start of the repassivation, the 

diffusion limited current cannot be immediately regained when the potential is scanned 

rapidly to a high value. Then Ernst and Mi defined the start of repassivation at the point 

when the plot of current density against potential started to change curvature in a slow 

backward sweep. However, neither Ernst nor Mi has shown any evidence that after 

curvature change of the plot, the diffusion limited current cannot be immediately 

regained when the potential is scanned to a high value. In the current test, a potential 

sweep method comprising a decrease in potential, followed by a small increase in 

potential has been used to investigate the condition when repassivation can take place.  
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In the current study, the start of repassivation is defined as when there is no increase in 

current with increasing potential. When repassivation starts, metal ions produced are 

less than the ions diffusing away from the pit and hence gradually the pit repassivates 

completely. Previous studies usually defined the repassivation potential (Erp) at the 

potential when the corresponding current density was cathodic [63, 64] or very low [65-

69]. However, as shown in Section 6.2.2, when repassivation started, the current density 

might still be quite high. Therefore, previous studies were expected to give a lower 

value than the real Erp. Furthermore, the repassivation potential was IR corrected in the 

current test. Therefore, the current test is supposed to give a real characterisation of the 

repassivation potential.  

Using the 1D artificial pit method, it has been found that repassivation occurs when the 

concentration of MgCl2 solutions is not greater than 3.2 M whereas there is no 

repassivation for 3.5 M MgCl2. This is consistent with previous studies in atmospheric 

conditions that pitting takes place when the RH is below the critical relative humidity 

which is 65%-75% [7] (equivalent to ~2.6-3.2 M MgCl2, calculated by OLI software  

[110]).  

It has been proposed that Erp [77, 78] can be used to predict the long-term performance 

of the metal. If the corrosion potential of the metal under atmospheric conditions is 

below Erp, there should not be any active localised corrosion and the metal is expected 

to repassivate. In the future, work needs to be carried out to compare the corrosion 

potential of long-term exposure samples with Erp measured in the current test to validate 

Erp obtained.  
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7.5 Effects of the pit depth 

In the current study, it has been found that a deep pit is less likely to repassivate both 

under atmospheric conditions and in fully immersed conditions. This might be due to 

the diffusion effects since for a deeper pit, more time is required for metal ions to 

diffuse form the pit bottom to the pit mouth according to Fick’s First Law. Hence an 

aggressive environment is more likely to be maintained in a deep pit.  

Long term exposure (up to 2 years) studies of atmospherically-induced stress corrosion 

cracking of stainless steel have been investigated by using U-Bends to identify the 

condition when stress corrosion cracking can take place [127, 165-167]. However, 

previous lab exposure tests for atmospheric localised corrosion have been limited to 5 

days [7, 8, 10, 14, 16, 120, 168]. The ILW containers are planned to be placed above 

ground for several decades. In the current study, a deep pit has been observed to give 

different corrosion behaviours, like the repassivation tendency at a high RH. Therefore 

in the further work, samples should be exposed for a longer time to characterise the 

corrosion behaviour.   
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8 Conclusion 

 Atmospheric localised corrosion of stainless steel has been studied in realistic 

conditions by depositing droplets with mixed salts and investigating the effect of RH 

change. Droplets containing mixed salts (MgCl2+NaCl) were deposited on the metal 

surface. In addition to the observation of dish-shaped pits, crevice corrosion could be 

found under NaCl crystallites. The effect of RH fluctuation has also been 

investigated and it shows that more fluctuations lead to greater numbers of small pits. 

 Growth of pits under droplets in atmospheric conditions has been found to be limited 

by the cathodic current available. If there are multiple pits under a droplet after 

exposure at 33% RH for one day, due to the limited cathodic current, only one pit can 

keep growing with the further 10-day exposure at 33% RH.   

 In situ synchrotron X-ray microtomography measurements were used to show the 

growth kinetics of atmospheric localised corrosion. However, samples imaged with 

tomography appeared to have more pits than those examined in lab-based 

experiments, suggesting that the radiation may influence pit initiation. 

 Using the 1D artificial pit method, a potential sweep method has been developed to 

study the repassivation process in concentrated solutions, representative of 

atmospheric conditions. The onset of repassivation was defined as the point when 

there is no increase in current with an increase in potential. Artificial pits in 3.2 M 

MgCl2  repassivated, whereas those in 3.5 M MgCl2 did not. This is consistent with 

the observation that pitting is not observed at 75% RH (equivalent to ~2.6 M MgCl2) 

whereas pitting takes place at 65% RH (equivalent to ~3.2 M MgCl2).  

 A pit that has grown at 33% RH for 1 day repassivates at 85% RH while a pit that has 

grown at 33% RH for 3 weeks can survive at 85% RH and keep growing when the 
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RH changes to 33%. In electrochemical studies, the repassivation potential and the 

critical metal ion concentration to prevent pits from repassivation decreased with 

increasing pit depth. Therefore, both atmospheric corrosion studies and tests under 

immersion conditions show that a deeper pit is more difficult to repassivate.  
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