
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

125,000 140M

TOP 1%154

5,000



Chapter

Exactly Solvable Problems in
Quantum Mechanics
Lourdhu Bruno Chandrasekar,

Kanagasabapathi Gnanasekar and Marimuthu Karunakaran

Abstract

Some of the problems in quantum mechanics can be exactly solved without any
approximation. Some of the exactly solvable problems are discussed in this chapter.
Broadly there are two main approaches to solve such problems. They are (i) based
on the solution of the Schrödinger equation and (ii) based on operators. The nor-
malized eigen function, eigen values, and the physical significance of some of the
selected problems are discussed.

Keywords: exactly solvable, Schrödinger equation, eigen function, eigen values

1. Potential well

The potential well is the region where the particle is confined in a small region.
In general, the potential of the confined region is lower than the surroundings
(Figure 1) [1, 2].

The potential of the system is defined as

V ¼
0, �L< x<L

∞, Otherwise

�

The one dimensional Schrödinger equation in Cartesian coordinate is given as

�ℏ
2

2m
Ψ00 þ VΨ ¼ EΨ¼)Ψ00 þ 2m

ℏ
2 E� Vð ÞΨ ¼ 0 (1)

In the infinite potential well, the confined particle is present in the well region
(Region-II) for an infinitely long time. So the solution of the Schrödinger equation
in the Region-II and Region-III can be omitted for our discussion right now. The
Schrödinger equation in the Region-II is written as

Ψ00 þ 2m

ℏ
2 Eð ÞΨ ¼ 0

Ψ00 þ α2Ψ ¼ 0,where α2 ¼ 2mE

ℏ
2 (2)

The solution of the Eq. (2) is

Ψ ¼ A1 sin αxþ A2 cos αx (3)
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At x ¼ �L, and at x ¼ L, the wave function vanishes since the potential is
infinite. Hence, At x ¼ �L,

�A1 sin αLþ A2 cos αL ¼ 0 (4)

Similarly, at x ¼ L

A1 sin αLþ A2 cos αL ¼ 0 (5)

The addition and subtraction of these equations give two different solutions.

i. 2A2 cos αL ¼ 0¼) cos αL ¼ 0¼)αL ¼ nπ=2¼)α2 ¼ n2π2=4L2; n ¼ 1, 3, 5, … … .

Since α2 ¼ 2mE
ℏ
2 , 2mE

ℏ
2 ¼ n2π2=4L2, the energy eigen value is found as

E ¼ n2π2ℏ2=8mL2 (6)

The eigen function is Ψ ¼ A1 cos αx

¼ A1 cos nπx=2Lð Þ

According to the normalization condition,

ð

L

�L

Ψ ∗Ψdx ¼ 0¼)A1 ¼ L�1=2

Hence the normalized eigen function for n ¼ 1, 3, 5, … … is

Ψ ¼ L�1=2 cos nπx=2Lð Þ (7)

ii. 2A1 sin αL ¼ 0¼) sin αL ¼ 0¼)αL ¼ nπ=2¼)α2 ¼ n2π2=4L2; n ¼ 2, 4, 6, … … .
For this case, n ¼ 2, 4, 6, … … , the corresponding energy eigen value is

E ¼ n2π2ℏ2=8mL2 (8)

Figure 1.
Infinite potential well.
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The eigen function is Ψ ¼ A2 cos αx and the normalized eigen function is

Ψ ¼ L�1=2 sin nπx=2Lð Þ (9)

In Summary, the eigen value is E ¼ n2π2ℏ2=8mL2 for all positive integer values
of “n.” The normalized eigen functions are

Ψ ¼
L�1=2 cos nπx=2Lð Þ, n ¼ 1, 3, 5, …

L�1=2 sin nπx=2Lð Þ, n ¼ 2, 4, 6, …

(

(10)

The integer “n” is the quantum number and it denotes the discrete energy states in
the quantumwell. We can extract some physical information from the eigen solutions.

• The minimum energy state can be calculated by setting n ¼ 1, which
corresponds to the ground state. The ground state energy is

E1 ¼ π2ℏ2=8mL2 (11)

This is known as zero-point energy in the case of the potential well. The excited

state energies are E2 ¼ 4π2ℏ2=8mL2, E3 ¼ 9π2ℏ2=8mL2, E4 ¼ 16π2ℏ2=8mL2, and so
on. In general, En ¼ n2 � E1.

• The energy difference between the successive states is simply the difference
between the energy eigen value of the corresponding state. For example,
∆E12 ¼ E1 � E2 ¼ 3E1 and ∆E23 ¼ E2 � E3 ¼ 5E1. Hence the energy difference
between any two successive states is not the same.

• Though the eigen functions for odd and even values of “n” are different, the
energy eigen value remains the same.

• If the potential well is chosen in the limit 0< x< 2L (width of the well is 2L), the
energy eigen value is the same as given in Eqs.(6) and (8). But if the limit is
chosen as 0< x<L (width of the well is L), the for all positive integers of “n,”

the eigen function is Ψ ¼ 2=Lð Þ1=2 sin nπx=Lð Þ and the energy eigen function is

E ¼ n2π2ℏ2=2mL2.

2. Step potential

Step potential is a problem that has two different finite potentials [3]. Classically,
the tunneling probability is 1 when the energy of the particle is greater than the height
of the barrier. But the result is not true based on wave mechanics (Figure 2).

Figure 2.
Step potential.
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The potential of the system

V ¼
0, �∞< x<0

V0, 0≤ x<∞

�

The Schrödinger equation in the Region-I and Region-II is given, respectively as,

Ψ00 þ 2m

ℏ
2 Eð ÞΨ ¼ 0 (12)

Ψ00 þ 2m

ℏ
2 E� Vð ÞΨ ¼ 0 (13)

Case (i): when E<V0, the solutions of the Schrödinger equations in the Region-I
and Region-II, respectively, are given as

Ψ1 ¼ A1 exp iαxð Þ þ B1 exp �iαxð Þ (14)

Ψ2 ¼ A2 exp �βxð Þ þ B2 exp βxð Þ

where α2 ¼ 2mE
ℏ
2 and β2 ¼ 2m E�V0ð Þ

ℏ
2 . Here, B2 exp βxð Þ represents the exponentially

increasing wave along the x-direction. The wave functionΨ2 must be finite as x ! ∞.
This is possible only by setting B2 ¼ 0. Hence the eigen function in the Region-II is

Ψ2 ¼ A2 exp �βxð Þ (15)

According to admissibility conditions of wave functions, at x ¼ 0, Ψ1 ¼ Ψ2 and
Ψ0

1 ¼ Ψ0
2. It gives us

A1 þ B1 ¼ A2 (16)

A1 � B1 ¼ i
β

α

� �

A2 (17)

From these two equations,

A2 ¼
2α

αþ iβ

� �

A1

B1 ¼
α� iβ

αþ iβ

� �

A1

The reflection coefficient R is given as

R ¼ B1j j2

A1j j2
¼ α� iβ

αþ iβ

�

�

�

�

�

�

�

�

2

¼ 1 (18)

It is interesting to note that all the particles that encounter the step potential are
reflected back. This is due to the fact that the width of the step potential is infinite.
The number of particles in the process is conserved, which leads that T ¼ 0, since
T þ R ¼ 1.

Case (ii): when E>V0, the solutions are given as

Ψ1 ¼ A1 exp iαxð Þ þ B1 exp �iαxð Þ
Ψ2 ¼ A2 exp iβxð Þ þ B2 exp �iβxð Þ
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where β2 ¼ 2m E�V0ð Þ
ℏ
2 . As x ! ∞, the wave function Ψ2 must be finite. Hence

Ψ2 ¼ A2 exp iβxð Þby settingB2 ¼ 0. According to the boundary conditions at x ¼ 0,

A1 þ B1 ¼ A2 (19)

A1 � B1 ¼
β

α

� �

A2 (20)

From these equations,

A2 ¼
2α

αþ β

� �

A1

B1 ¼
α� β

αþ β

� �

A1

The reflection coefficient R and the transmission coefficient T, respectively, are
given as

R ¼ B1j j2

A1j j2
¼ α� β

αþ β

� �2

(21)

T ¼ A2j j2

A1j j2
¼ 4αβ

αþ βð Þ2
(22)

From these easily one can show that

T þ R ¼ 4αβ

αþ βð Þ2
þ α� β

αþ β

� �2

¼ 1 (23)

The results again indicate that the total number of particles which encounters
the step potential is conserved.

3. Potential barrier

This problem clearly explains the wave-mechanical tunneling [3, 4]. The
potential of the system is given as (Figure 3)

V ¼
V0, 0< x<L

0, Otherwise

�

Figure 3.
Potential barrier.
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In the Region-I, the Schrödinger equation is Ψ00 þ α2Ψ ¼ 0. The wave function in
this region is given as

Ψ1 ¼ A1 exp iαxð Þ þ B1 exp �iαxð Þ where α2 ¼ 2mE

ℏ
2 (24)

In Region-II, if E<V0, the Schrödinger equation is Ψ00 � β2Ψ ¼ 0. The solution
of the equation is given as

Ψ2 ¼ A2 exp βxð Þ þ B2 exp �βxð Þ where β2 ¼ 2m E� V0ð Þ
ℏ
2 (25)

The Schrödinger equation in the Region-III is Ψ00 þ α2Ψ ¼ 0. The corresponding
solution is Ψ3 ¼ A3 exp iαxð Þ þ B3 exp �iαxð Þ. But in the Region-III, the waves can
travel only along positive x-direction and there is no particle coming from the
right, B3 ¼ 0. Hence

Ψ3 ¼ A3 exp iαxð Þ (26)

At x ¼ 0, Ψ1 ¼ Ψ2 and Ψ0
1 ¼ Ψ0

2. These give us two equations

A1 þ B1 ¼ A2 þ B2 (27)

A1 � B1 ¼
β

iα

� �

A2 � B2ð Þ (28)

At x ¼ L, Ψ2 ¼ Ψ3 and Ψ0
2 ¼ Ψ0

3. These conditions give us another two equations

A2 exp βLð Þ þ B2 exp �βLð Þ ¼ A3 exp iαLð Þ (29)

A2 exp βLð Þ � B2 exp �βLð Þ ¼ A3
iα

β

� �

exp iαLð Þ (30)

Solving the equations from (27) to (30), one can find the coefficients in the
equations. The reflection coefficient is R is found as

R ¼ B1j j2

A1j j2
¼ V2

0

4E V0 � Eð Þ sinh
2
βLð Þ

� �

1þ V2
0

4E V0 � Eð Þ sinh
2
βLð Þ

� ��1

(31)

The transmission coefficient T is found as

T ¼ A2j j2

A1j j2
¼ 1þ V2

0

4E V0 � Eð Þ sinh
2
βLð Þ

� ��1

(32)

From Eqs. (31) and (32), one can show that T þ R ¼ 1. The following are the
conclusions obtained from the above mathematical analysis.

• When E<V0, though the energy of the incident particles is less than the height
of the barrier, the particle can tunnel into the barrier region. This is in contrast
to the laws of classical physics. This is known as the tunnel effect.

• As V0 ! ∞, the transmission coefficient is zero. Hence the tunneling is not
possible only when V0 ! ∞.
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• When the length of the barrier is an integral multiple of π=β, there is no
reflection from the barrier. This is termed as resonance scattering.

• The tunneling probability depends on the height and width of the barrier.

• Later, Kronig and Penney extended this idea to explain the motion of a charge
carrier in a periodic potential which is nothing but the one-dimensional
lattices.

4. Delta potential

The Dirac delta potential is infinitesimally narrow potential only at some point
(generally at the origin, for convenience) [3]. The potential of the system

V ¼
�λδ xð Þ, x ¼ 0

0, Otherwise

�

Here λ is the positive constant, which is the strength of the delta potential. Here,
we confine ourselves only to the bound states, hence E<0 (Figure 4).

The Schrödinger equation is

Ψ00 þ 2m

ℏ
2 E� Vð ÞΨ ¼ 0¼)Ψ00 þ 2m

ℏ
2 Eþ λδ xð Þð ÞΨ ¼ 0 (33)

The solution of the Schrödinger equation is given as

Region� I : Ψ1 ¼ A1 exp βxð Þ (34)

Region� II : Ψ2 ¼ A2 exp �βxð Þ (35)

where β2 ¼ �2mE
ℏ
2 . At x ¼ 0, Ψ1 ¼ Ψ2. So the coefficients A1 and A2 are equal. But

Ψ0
1 6¼ Ψ0

2, since the first derivative causes the discontinuity. The first derivatives are
related by the following equation

Ψ0
2 �Ψ0

1 ¼ � 2mλ

ℏ
2 (36)

This gives us

β ¼ mλ

ℏ
2 (37)

Figure 4.
Dirac delta potential.
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Equating the value of β gives the energy eigen value as

E ¼ �mλ2

2ℏ2 (38)

The energy eigen value expression does not have any integer like in the case of
the potential well. Hence there is only one bound state which is available for a
particular value of “m.”

The eigen function can be evaluated as follows: The eigen function is always
continuous. At x ¼ 0 gives us A1 ¼ A2 ¼ A. Hence the eigen function is

Ψ ¼ A exp β xj jð Þ

To normalize Ψ,

ð

∞

�∞

Ψj j2dx ¼ 1 ) 2

ð

∞

0

Ψj j2dx ¼ 1

This gives us A ¼ ffiffiffi

β
p ¼

ffiffiffiffiffi

mλ
p

ℏ
.

5. Linear harmonic oscillator

Simple harmonic oscillator, damped harmonic oscillator, and force harmonic
oscillator are the few famous problems in classical physics. But if one looks into the
atomic world, the atoms are vibrating even at 0 K. Such atomic oscillations need the
tool of quantum physics to understand its nature. In all the previous examples, the
potential is constant in any particular region. But in this case, the potential is a
function of the position coordinate “x.”

5.1 Schrodinger method

The potential of the linear harmonic oscillator as a function of “x” is given as
(Figure 5) [4–6]:

V ¼ mω2x2

2
(39)

Figure 5.
Potential energy of the linear harmonic oscillator.
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The time-independent Schrödinger equation is given as

Ψ00 þ 2m

ℏ
2 E�mω2x2

2

� �

Ψ ¼ 0 (40)

The potential is not constant since it is a function of “x”; Eq. (40) cannot solve
directly as the previous problems. Let

α ¼ mω

ℏ

	 
1=2
x and β ¼ 2E

ℏω:

Using the new constant β and the variable α, the Schrödinger equation has the
form

d2Ψ

dα2
þ β � α2
� �

Ψ ¼ 0 (41)

The asymptotic Schrödinger equation α ! ∞ð Þ is given as

d2Ψ

dα2
� α2Ψ ¼ 0 (42)

The general solution of the equation is exp �a2=2ð Þ. As α ! ∞, exp þa2=2ð Þ
becomes infinite, hence it cannot be a solution. So the only possible solution is
exp �a2=2ð Þ. Based on the asymptotic solution, the general solution of Eq. (42) is
given as

Ψ ¼ Hn αð Þ exp �a2=2
� �

The normalized eigen function is

Ψ ¼ mω

ℏπ

	 
1=2 1

2n � n!

� �� �1=2

Hn αð Þ exp �a2=2
� �

(43)

The solution given in Eq. (43) is valid if the condition 2nþ 1� 2E
ℏω

¼ 0 holds.

This gives the energy eigen value as

E ¼ nþ 1

2

� �

ℏω (44)

The important results are given as follows:

• The integer n ¼ 0 represents the ground state, n ¼ 1 represents the first
excited state, and so on. The ground state energy of the linear harmonic
oscillator is E ¼ ℏω=2. This minimum energy is known as ground state energy.

• The ground state normalized eigen function is

Ψ0 xð Þ ¼ mω

ℏπ

	 
1=4
exp �mωx2

2ℏ

� �

(45)
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• The energy difference between any two successive levels is ℏω. Hence the
energy difference between any two successive levels is constant. But this is not
true in the case of real oscillators.

5.2 Operator method

The operator method is also one of the convenient methods to solve the exactly
solvable problem as well as approximation methods in quantum mechanics [5]. The
Hamiltonian of the linear harmonic oscillator is given as,

H ¼ p2

2m
þ 1

2
mω2x2 (46)

Let us define the operator “a,” lowering operator, in such a way that

a ¼ 2mωℏð Þ�1=2 mωxþ ipð Þ (47)

and the corresponding Hermitian adjoint, raising operator, is

aþ ¼ 2mωℏð Þ�1=2 mωx� ipð Þ (48)

aþa ¼ 2mωℏð Þ�1 mωx� ipð Þ mωxþ ipð Þ

¼ 2mωℏð Þ�1 m2ω2x2 þ p2 þ imωxp� imωpx
� �

¼ 2mωℏð Þ�1 m2ω2x2 þ p2 þ imω x, p½ �
� �

(49)

Here, x, p½ � represents the commutation between the operators x and p. x, p½ � ¼ iℏ
and Eq. (49) becomes

aþa ¼ 2mωℏð Þ�1 m2ω2x2 þ p2 �mωℏ
� �

¼ 1

ωℏ

1

2
mω2x2 þ p2

2m

� �

� 1

2

¼ H

ℏω
� 1

2
(50)

In the same way, one can find the aaþ and it is given as

aaþ ¼ H

ℏω
þ 1

2
(51)

Adding Eqs. (50) and (51) gives us the Hamiltonian in terms of the operators.

H ¼ ℏω

2
aaþ þ aþað Þ (52)

Subtracting Eq. (50) from (51) gives, aaþ � aþa ¼ 1. This can be simplified as

a, aþ½ � ¼ 1 (53)

The Hamiltonian H acts on any state ∣n⟩ that gives the eigen value En times the
same state ∣n⟩, that is, H ∣n⟩ ¼ En ∣n⟩.

10
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The expectation value of aþa is

aþah i� ⟨njaþajn⟩ ¼ ⟨njH
ℏω

� 1

2
jn⟩

¼ 1

ℏω
⟨njHjn⟩� ⟨nj 1

2
jn⟩

¼ 1

ℏω
En⟨njn⟩�

1

2
¼ En

ℏω
� 1

2

(54)

Let us consider the ground state ∣0⟩:

⟨0jaþaj0⟩ ¼ E0

ℏω
� 1

2

Since a ∣0⟩ ¼ 0, ⟨0jaþaj0⟩ ¼ 0. Thus,

E0

ℏω
� 1

2
¼ 0 ) E0 ¼ ℏω

2
(55)

Similarly, the energy of the first excited state is found as follows:

⟨1jaþaj1⟩ ¼ E1

ℏω
� 1

2

ffiffiffi

1
p

⟨1jaþj0⟩ ¼ E1

ℏω
� 1

2

ffiffiffi

1
p

:
ffiffiffi

1
p

⟨1j1⟩ ¼ E1

ℏω
� 1

2

1 ¼ E1

ℏω
� 1

2
) E1 ¼

3

2
ℏω (56)

In the same way, E2 ¼ 5ℏω=2, E3 ¼ 7ℏω=2, and so on. Hence, one can generalize
the result as

En ¼ nþ 1

2

� �

ℏω (57)

The uncertainties in position and momentum, respectively, are given as

∆x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2h i � xh i2
q

(58)

∆p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2h i � ph i2
q

(59)

In order to evaluate the uncertainties x2
 �

, xh i2, p2
 �

, and ph i2 have to be

evaluated. From Eqs. (47) and (48) the position and momentum operators are
found as

x ¼ ℏ

2mω

� �1=2

aþ aþð Þ (60)

p ¼ mωℏ

2

� �1=2 a� aþ

i

� �

(61)
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a. The expectation value of ‘x’ is given as,

xh i � ⟨njxjn⟩ ¼ ℏ

2mω

� �1=2

⟨nj aþ aþð Þjn⟩

¼ ℏ

2mω

� �1=2

⟨nj að Þjn⟩þ ⟨nj aþð Þjn⟩ð Þ

¼ ℏ

2mω

� �1=2
ffiffiffi

n
p

⟨njn� 1⟩þ
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

⟨njnþ 1⟩
� �

Since the states n� 1, n, nþ 1 are orthogonal to each other, ⟨njn� 1⟩ ¼ 0 and
⟨njnþ 1⟩ ¼ 0. So xh i ¼ 0. The expectation value of the position in any state is
zero.

b. The expectation value of momentum is

ph i � ⟨njpjn⟩ ¼ mωℏ

2

� �1=2 1

i

� �

⟨nja� aþjn⟩¼) ph i ¼ 0:

Not only position, the expectation value of momentum in any state is also zero.

c.

x2
 �

� ⟨njx2jn⟩ ¼ ℏ

2mω
⟨nj aþ aþð Þ aþ aþð Þjn⟩

¼ ℏ

2mω
⟨nj a2 þ aþ

2 þ aaþ þ aþa
	 


jn⟩

¼ ℏ

2mω
⟨nja2jn⟩þ ⟨njaþ2jn⟩þ ⟨njaaþjn⟩þ ⟨njaþajn⟩
	 


¼ ℏ

2mω

ffiffiffi

n
p ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

⟨njn� 2⟩þ
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p ffiffiffiffiffiffiffiffiffiffiffi

nþ 2
p

⟨njnþ 2⟩þ nþ 1ð Þ⟨njn⟩þ n ⟨njn⟩
	 


¼ ℏ

2mω
2nþ 1ð Þ

d.

p2
 �

� ⟨njp2jn⟩ ¼ � mωℏ

2

� �

⟨nj a� aþð Þ a� aþð Þjn⟩

¼ � mωℏ

2

� �

⟨nja2jn⟩þ ⟨njaþ2jn⟩� ⟨njaaþjn⟩� ⟨njaþajn⟩
	 


¼ � mωℏ

2

� �

ffiffiffi

n
p ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

⟨njn� 2⟩þ
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p ffiffiffiffiffiffiffiffiffiffiffi

nþ 2
p

⟨njnþ 2⟩� nþ 1ð Þ⟨njn⟩� n ⟨njn⟩
	 


¼ mωℏ

2

� �

2nþ 1ð Þ

From Eq. (58) and (59), the uncertainty in position and momentum, respec-
tively are given as,

∆x ¼ ℏ

2mω
2nþ 1ð Þ

� �1=2

(62)
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∆p ¼ mωℏ

2

� �

2nþ 1ð Þ
� �1=2

(63)

∆x:∆p ¼ ℏ

2
2nþ 1ð Þ (64)

6. Conclusions

• The minimum uncertainty state is the ground state. In this state, ∆x ¼ ℏ

2mω

� �1=2

and ∆p ¼ mωℏ
2

� �1=2
.

• Hence the minimum uncertainty product is ∆x:∆p ¼ ℏ

2. Since the other states
have higher uncertainty than the ground state, the general uncertainty is
∆x:∆p≥ ℏ

2. This is the mathematical representation of Heisenberg’s uncertainty
relation.

• Since Ψ0 xð Þ corresponds to the low energy state, a Ψ0 xð Þ ¼ 0. This gives us the
ground state eigen function. This can be done as follows:

a Ψ0 xð Þ ¼ 0

2mωℏð Þ�1=2 mωxþ ipð Þ Ψ0 xð Þ ¼ 0

mω

2ℏ

	 
1=2
xþ i

�iℏ∂=∂xð Þ
2mωℏð Þ1=2

 !

Ψ0 xð Þ ¼ 0

ℏ

mω

∂ Ψ0 xð Þ
∂x

¼ �x Ψ0 xð Þ

d Ψ0 xð Þ
Ψ0 xð Þ ¼ �mωx

ℏ
dx

Integrating the above equation gives,

ln Ψ0 xð Þ ¼ �mω

ℏ

x2

2

� �

þ lnA

Ψ0 xð Þ ¼ A exp �mωx2

2ℏ

� �

The normalized eigen function is given as

Ψ0 xð Þ ¼ mω

ℏπ

	 
1=4
exp �mωx2

2ℏ

� �

One can see that this result is identical to Eq. (45).

• The other eigen states can be evaluated using the equation,

Ψn xð Þ ¼ aþð Þn=
ffiffiffiffi

n!
p� �

Ψ0 xð Þ.
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7. Particle in a 3D box

The confinement of a particle in a three-dimensional potential is discussed in
this section [4, 6]. The potential is defined as (Figure 6)

V ¼
0, 0≤ x< a; 0≤ y<b; 0≤ z< c

∞, Otherwise

�

The three dimensional time-independent Schrödinger equation is given as

∇2Ψ x, y, z
� �

� 2m

ℏ
2 VΨ x, y, z

� �

¼ �EΨ x, y, z
� �

(65)

Let the eigen function Ψ x, y, z
� �

is taken as the product of Ψx xð Þ, Ψy yð Þ and Ψz zð Þ
according to the technique of separation of variables. i.e., Ψ x, y, z

� �

¼
Ψx xð ÞΨy yð ÞΨz zð Þ.

Ψy yð ÞΨz zð Þ d
2
Ψx xð Þ
dx2

þ Ψx xð ÞΨz zð Þ d
2
Ψy yð Þ
dy2

þΨx xð ÞΨy yð Þ d
2
Ψz zð Þ
dz2

� 2m

ℏ
2 VΨ x, y, z

� �

¼ � 2m

ℏ
2 EΨ x, y, z

� �

Divide the above equation by Ψ x, y, z
� �

gives us

1

Ψx xð Þ
d2Ψx xð Þ
dx2

þ 1

Ψy yð Þ
d2Ψy yð Þ
dy2

þ 1

Ψz zð Þ
d2Ψz zð Þ
dz2

¼ � 2m

ℏ
2 E (66)

Now we can boldly write E as Ex xð Þ þ Ey yð Þ þ Ez zð Þ

1

Ψx xð Þ
d2Ψx xð Þ
dx2

þ 1

Ψy yð Þ
d2Ψy yð Þ
dy2

þ 1

Ψz zð Þ
d2Ψz zð Þ
dz2

¼ � 2m

ℏ
2 Ex xð Þ þ Ey yð Þ þ Ez zð Þ
� �

(67)

Figure 6.
Three-dimensional potential box.
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Now the equation can be separated as follows:

d2Ψx xð Þ
dx2

þ 2m

ℏ
2 Ex xð ÞΨx xð Þ ¼ 0

d2Ψy yð Þ
dy2

þ 2m

ℏ
2 Ey yð ÞΨy yð Þ ¼ 0

d2Ψz zð Þ
dz2

þ 2m

ℏ
2 Ez zð ÞΨz zð Þ ¼ 0

The normalized eigen function Ψx xð Þ is given as

Ψx xð Þ ¼ 2

a

� �1=2

sin
nxπx

a

	 


In the same way, Ψy yð Þ and Ψz zð Þ are given as

Ψy yð Þ ¼ 2

b

� �1=2

sin
nyπy

b

	 


Ψz zð Þ ¼ 2

c

� �1=2

sin
nzπz

c

	 


Hence, the eigen function Ψ x, y, z
� �

is given as

Ψ x, y, z
� �

¼ Ψx xð ÞΨy yð ÞΨz zð Þ ¼ 8

abc

� �1=2

sin
nxπx

a

	 


sin
nyπy

b

	 


sin
nzπz

c

	 


(68)

The energy given values are given as

Ex xð Þ ¼ n2
xπ

2
ℏ
2

2ma2

Ey y
� �

¼
n2
yπ

2
ℏ
2

2mb2

Ez zð Þ ¼ n2
zπ

2
ℏ
2

2mc2

The total energy E is

E ¼ Ex xð Þ þ Ey yð Þ þ Ez zð Þ ¼ π2ℏ2

2m

n2x
a2

þ
n2y

b2
þ n2z

c2

 !

(69)

Some of the results are summarized here:

• In a cubical potential box, a ¼ b ¼ c, then the energy eigen value becomes,

E ¼ π2ℏ2

2ma2
n2x þ n2y þ n2z

	 


:
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• The minimum energy that corresponds to the ground state is E1 ¼ 3π2ℏ2

2ma2 . Here

nx ¼ ny ¼ nz ¼ 1.

• Different states with different quantum numbers may have the same energy.
This phenomenon is known as degeneracy. For example, the states (i) nx ¼
2; ny ¼ nz ¼ 1, (ii) ny ¼ 2; nx ¼ nz ¼ 1; and (iii) nz ¼ 2; nx ¼ ny ¼ 1 have the

same energy of E ¼ 6π2ℏ2

ma2 . So we can say that the energy 6π2ℏ2

ma2 has a 3-fold

degenerate.

• The states (111), (222), (333), (444),… . has no degeneracy.

• In this problem, the state may have zero-fold degeneracy, 3-fold degeneracy or
6-fold degeneracy.
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