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Chapter

Probabilistic Slope Stability
Analysis for Embankment Dams
Yijiang Zhang, Enyue Ji and Weiwei Xu

Abstract

Slope instability is one of the most common forms of dam failure. The
commonly used slope stability analysis methods ignore the uncertainty and
randomness of dam materials, which may overestimate the stability of dams. In this
chapter, a deterministic slope stability analysis based on strength reduction finite-
element method is introduced first. After that, the slope is investigated using simple
probabilistic concepts and classical slope stability techniques, and the shear strength
is treated as a single random variable. Further, the random finite-element method
(RFEM) is shown, in which spatial correlation and local averaging are illustrated in
detail. Finally, the RFEM is applied to slope stability risk assessment, and the results
can lead to higher probabilities of failure.

Keywords: slope stability, finite element, probabilistic methods, dam failure,
risk assessment

1. Introduction

Slope instability is one of the most common forms of dam failure. Traditional
slope stability analysis methods mainly depend on deterministic analysis, including
limit equilibrium analysis and finite-element (FE) analysis. Equilibrium methods
mainly include the ordinary method of slices, Bishop’s modified method, force
equilibrium methods, Janbu’s generalized procedure of slices, Morgenstern and
Price’s method, and Spencer’s method. All the equilibrium methods assume that the
soil can be divided into slices, which is an artificial distinction. This assumption is
the main characteristic that distinguishes different limit equilibrium methods. The
main advantage of equilibrium methods is that they involve relatively simpler
calculation, which leads to wide use [1–4].

While the finite element method is another powerful approach for slope stability
analysis, it can better reflect the stress–strain relationship of soils than the equilib-
rium methods. Slope failure in the finite-element model occurs naturally through
the area in which the shear strength of the soil is insufficient to resist the shear
stresses. There are several advantages of a FE approach to slope stability analysis
over traditional limit equilibrium methods: (a) there is no assumption about the
shape or location of the failure surface, (b) there are no slices and slice side forces,
and (c) the FE method is able to monitor progressive failure up to and including
overall shear failure [5, 6].

For a practical slope, not only the stress–strain relationship of soils but
also the uncertainty of soil properties should be taken into consideration.
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However, traditional slope stability analysis methods always ignore the uncertainty
and randomness of dam materials, which may overestimate the stability of dams.
Attention was drawn to probabilistic slope stability analyses [7, 8]. Most probabi-
listic slope stability analyses continue to use classical slope stability analysis tech-
niques which are mainly based on the equilibrium methods [9–12]. An obvious
deficiency of the traditional slope stability methods is that the shape of the failure
surface is always fixed; therefore, the failure mechanism is not allowed to look for
the most critical path through the soil. Besides, these traditional methods cannot
take the importance of spatial correlation and local averaging of statistical geotech-
nical properties into consideration [13–15].

A more rigorous method, in which nonlinear finite-element methods are com-
bined with random field generation techniques, called the random finite-element
method (RFEM), was proposed by Griffiths and Fenton [16]. It can fully account
for spatial correlation and averaging and is also a powerful slope stability analysis
tool that does not require a priori assumptions relating to the shape or location of
the failure mechanism.

In this chapter, a deterministic slope stability analysis based on strength reduc-
tion finite-element method is introduced first. After that, the slope is investigated
using simple probabilistic methods, including first-order second-moment (FOSM)
method, first-order reliability method (FORM), and Monte Carlo method. Further,
RFEM is shown, in which spatial correlation and local averaging are illustrated in
detail. Finally, the RFEM is applied to slope stability risk assessment, and the results
can lead to higher probabilities of failure.

2. Deterministic slope stability analysis

Deterministic slope stability analysis in this chapter is based on FE analysis. The
program used is called SLOPE64 [6]. This program is for two-dimensional plane
strain analysis. The soil is assumed to follow a linear elastic-perfectly plastic behav-
ior characterized by the Mohr-Coulomb shear failure criterion. In the gravity load
generation, the stiffness matrix generation, and the stress redistribution procedure,
the program uses eight-node quadrilateral elements with simplified integration
(four Gauss points per element). Initially, the soil is assumed to be elastic, and the
model generates normal and tangential stresses at all Gauss points in the grid. These
stresses are then compared with the Mohr-Coulomb failure criterion. If the stress at
a particular Gauss point is within the Mohr-Coulomb failure envelope, it is assumed
that the position remains elastic. If the stress is on or outside the failure envelope, it
is considered that the point is yielding. The yield stresses are redistributed in the
whole grids by the viscoplastic algorithm. Overall shear failure occurs when a
sufficient number of Gauss points have yielded to allow a mechanism to develop
[5, 6].

2.1 Soil model

The soil model used in this program consists of six parameters, as shown in
Table 1.

The Mohr-Coulomb failure criterion used in this program can be written as
follows:

F ¼ σ01 þ σ03
2

sinϕ0 � σ01 � σ03
2

� c0cosϕ0 (1)
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where σ01 and σ02 are the major and minor principal effective stresses,
respectively.

The failure function F can be described as follows:
F < 0 stresses inside the failure envelope (elastic).
F = 0 stresses on the failure envelope (yielding).
F > 0 stresses outside the failure envelope (yielding and must be redistributed).

2.2 Determination of the factor of safety (FS)

The FS of a soil slope is defined as the ratio between the strength of the soils and
the actual load. It is exactly the same as that used in traditional limit equilibrium
methods. The factored shear strength parameters cf

0 and ϕf
0 are therefore given by

c0f ¼ c0=FS

ϕ0
f ¼ arctan

tanϕ0

FS

� �

(2)

In this program, in order to find the actual FS, it is necessary to start a systematic
search for FS values that will cause the slope to fail. This is achieved by the program
that repeatedly solves problems using a sequence of user-specified FS values.

2.3 Slope stability analysis examples

Figure 1 shows a homogeneous slope with a foundation layer. The height of the
slope (H) is 10 m, and the thickness of the foundation layer is H/2, 5 m. Soil
parameters are shown in Table 2.

Figure 2 shows the undeformed mesh of the homogeneous slope. The slope is
inclined at an angle of 26.578° (2:1). The left boundary is fixed horizontally but is
free along the vertical direction, and the base boundary is fixed in both directions.
Gravity loads were applied to the mesh, and the trial FS gradually increased until

ϕ0 Friction angle

c0 Cohesion

ψ Dilation angle

E0 Young’s modulus

ν0 Poisson’s ratio

γ Unit weight

Table 1.
Six parameters for soil model.

Figure 1.
Homogeneous slope with a foundation layer.
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convergence could not be achieved within the iteration limit. The deformed mesh
and the nodal displacement vectors are shown in Figure 3(a) and (b), respectively.
The critical FS is calculated to be 1.34.

3. Classical probabilistic slope stability analysis

In this section, a homogeneous slope and an infinite slope are investigated using
simple and classical probabilistic slope stability methods, including FOSM, FORM,
and Monte Carlo method. These methods are illustrated one by one in detail
followed by a simple example, respectively.

3.1 FOSM

The FOSM method is a relatively simple method of including the effects of
variability of input variables on a resulting dependent variable [17, 18]. It is basi-
cally a formalized methodology based on a first-order Taylor series expansion. This
expansion is truncated after the linear term. The modified expansion is then used,
along with the first two moments of the random variable(s), to determine the
values of the first two moments of the dependent variable [19–21].

Consider a function f (X, Y) of two random variables X and Y. The Taylor series
expansion of the function about the mean values (μX, μY) gives

f X,Yð Þ≈ f μX, μYð Þ þ X � μXð Þ ∂f
∂x

þ Y � μYð Þ ∂f
∂y

(3)

where derivatives are evaluated at (μX, μY).
To a first order of accuracy, the expected value of the function is given by

E f X,Yð Þ½ �≈ f E X½ �,E Y½ �ð Þ (4)

ϕ0
c
0 ψ E

0 ν0 γ

20° 10 kPa 0 10,000 kN/m2 0.3 20 kN/m3

Table 2.
Soil parameters.

Figure 2.
Undeformed mesh of a homogeneous slope with a foundation layer.

Figure 3.
(a) Deformed mesh of a homogeneous slope with a foundation layer; (b) nodal displacement vectors.
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and the variance by

Var f X,Yð Þ½ �≈Var X � μXð Þ ∂f
∂x

þ Y � μYð Þ ∂f
∂y

� �

(5)

Hence,

Var f X,Yð Þ½ �≈ ∂f

∂x

� �2

Var X½ � þ ∂f

∂y

� �2

Var Y½ � þ 2
∂f

∂x

∂f

∂y
Cov X,Y½ � (6)

where E[X] and E[Y] are the expected values of X and Y, respectively; Var[X]
and Var[Y] are the variances of X and Y, respectively; Cov[X,Y] is the covariance of
X and Y, and Cov[X,Y] = E[(X-E[X])(Y-E[Y])].

If X and Y are uncorrelated,

Var f X,Yð Þ½ �≈ ∂f

∂x

� �2

Var X½ � þ ∂f

∂y

� �2

Var Y½ � (7)

In general, for a function of n uncorrelated random variables, the FOSM method
tells us that

Var f X1,X2, … ,Xnð Þ½ �≈
X

n

i¼1

∂f

∂xi

� �2

Var Xi½ � (8)

where the first derivatives are evaluated at the mean values (μX1, μX2,. .., μXn).
Here is another example on the homogeneous slope presented in Section 2.3; a

probabilistic analysis using FOSM is investigated on this slope. The shear strength
parameters are as follows:

μϕ0 ¼ 20°, σϕ0 ¼ 3°

μc0 ¼ 10kN=m2, σc0 ¼ 3:0kN=m2

According to Eqs. 4 and 7, the expect and variance of FS can be expressed as

E FS½ �≈ FS μϕ0 , μc0
� �

(9)

Var FS½ �≈ ∂ FSð Þ
∂ϕ0

� �2

Var ϕ0½ � þ ∂ FSð Þ
∂c0

� �2

Var c0½ � (10)

Using a central difference estimate of the derivatives with perturbations of �σ,
then

Var FS½ �≈ ΔFSϕ0
2

� �2

þ ΔFSc0
2

� �2

(11)

where

ΔFSϕ0 ¼ FS μϕ0 þ σϕ0 , μc0
� �

� FS μϕ0 � σϕ0 , μc0
� �

ΔFSc0 ¼ FS μϕ0 , μc0 þ σc0
� �

� FS μϕ0 , μc0 � σc0
� �

(12)

Using program SLOPE64, FS calculated for each case is shown in Table 3.

5

Probabilistic Slope Stability Analysis for Embankment Dams
DOI: http://dx.doi.org/10.5772/intechopen.93274



So, the variance of FS can be calculated by

Var FS½ � ¼ ΔFSϕ0
2

� �2

þ ΔFSc0
2

� �2

¼ 0:3

2

� �2

þ 0:28

2

� �2

¼ 0:0421

Hence

σFS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0421
p

¼ 0:205

Assume that the FS probability density function is normal distribution (as
shown in Figure 4).

p FS< 1½ � ¼ Φ
1� 1:34

0:205

� �

¼ Φ �1:66ð Þ ¼ 1�Φ 1:66ð Þ ¼ 1‐0:9515 ¼ 0:0485 4:85%ð Þ

Consider a “performance function” for this problem in which failure is defined

when M < 0, the reliability index β in this case is given by β ¼ E M½ �
ffiffiffiffiffiffiffiffiffiffiffi

Var M½ �
p .

There are three different approaches calculating the reliability index β listed as
follows.

ϕ0
c
0

FS

μϕ0, μc0 20.0 10.0 1.34 μFS = 1.34

μϕ0 + σϕ0, μc0 23.0 10.0 1.50 ΔFSϕ0 = 0.3

μϕ0 - σϕ0, μc0 17.0 10.0 1.20

μϕ0, μc0 + σc0 20.0 13.0 1.48 ΔFSc0 = 0.28

μϕ0, μc0 - σc0 20.0 7.0 1.20

Table 3.
Factor of safety for five cases.

Figure 4.
Normal distribution of FS.
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3.1.1 Approach 1

For nonnegative loads and resistances (typical in geotechnical engineering), an
alternative definition of the performance function could be

M ¼ R

Q
� 1 (13)

so that failure occurs when M < 0 as before.
Once more assuming R and Q are uncorrelated, the FOSM method gives

E Mð Þ ¼ E R½ �
E Q½ � � 1 (14)

Var M½ �≈ ∂M

∂R

� �2

Var R½ � þ ∂M

∂Q

� �2

Var Q½ �

¼ 1

E2 Q½ �
Var R½ � þ E2 R½ �

E4 Q½ �
Var Q½ �

(15)

Hence β ¼ μQ μR�μQð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2
Q
σ2
R
þμ2

R
σ2
Q

p .

3.1.2 Approach 2

In the classical “resistance” versus “load” problem, the performance function
can be defined as

M ¼ R� Q (16)

Assuming R and Q are uncorrelated, the FOSM method gives

E M½ � ¼ E R½ � � E Q½ � ¼ μR � μQ (17)

And

Var M½ � ¼ ∂M

∂R

� �2

Var R½ � þ ∂M

∂Q

� �2

Var Q½ � ¼ σ2R þ σ2Q (18)

Hence β ¼ μR�μQ
ffiffiffiffiffiffiffiffiffiffiffi

σ2
R
þσ2

Q

p which is obviously different to Approach 1.

3.1.3 Approach 3

For nonnegative loads and resistances (typical in geotechnical engineering), an
alternative definition of the performance function could be

M ¼ ln
R

Q

� �

(19)

so that failure occurs when M < 0 as before.
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Once more assuming R and Q are uncorrelated, the FOSM method gives

E M½ � ¼ ln
E R½ �
E Q½ �

� �

¼ ln μR � ln μQ (20)

Var M½ �≈ ∂M

∂R

� �2

Var R½ � þ ∂M

∂Q

� �2

Var Q½ �

¼ Var R½ �
R2 þ Var Q½ �

Q2

¼ Var R½ �
E2 Q½ �

þ Var Q½ �
E2 Q½ �

¼ ν2R þ ν2Q

(21)

Hence β ¼ ln μRð Þ� ln μQð Þ
ffiffiffiffiffiffiffiffiffiffi

ν2
R
þν2

Q

p which is clearly different to the results before.

Apparently, the reliability index β differs with the definition of the performance
function, which is one of the major drawbacks of FOSM. Also, the method takes no
account of the form of the probability density function describing the random
variables, using only their mean and standard deviation, which ignores the effect of
distribution of random variables to the results.

3.2 FORM

The major drawback to the FOSM method when used to compute probabilities
relating to failure is that it can give different failure probabilities for the same
problem [19, 22], which caused Hasofer and Lind to develop an improved approach,
FORM [23].

As shown before, the reliability index β is given as

β ¼ E M½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var M½ �
p (22)

which measures how far the mean of the safety marginM is from zero (assumed
to be the failure point) in units of number of standard deviations. The interesting
point is on the probability that failure occurs, that is, M < 0. Therefore, a unique
relationship between the reliability index (β) and the probability of failure (pf) is
given by

p f ¼ 1�Φ βð Þ (23)

where Φ is the standard normal cumulative distribution function. The point,
line, or surface defined by M = 0 is called the failure surface.

The inconsistency of the FOSM method is due to that different definitions of
margin M may have different mean estimates and different first derivatives. What
the FOSM method does is calculating the distance from the average point to the
failure surface in the gradient direction of the average point [18]. Hasofer and Lind
solved the inconsistent problem by looking for the overall minimum distance
between the average point and the failure surface, rather than just along the
gradient direction [23].
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In the general case, suppose that the safety margin M is a function of a sequence

of random variables XT ¼ X1,X2, …f g, that is, M ¼ f X1,X2, …ð Þ, and that the
random variables X1, X2, . . . have covariance matrix C. Then, the Hasofer-Lind
reliability index β is defined by [23].

β ¼ min
M¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� E X½ �ð ÞTC�1 x� E X½ �ð Þ
q

(24)

which is the minimum distance between the failure surface (M = 0) and the
mean point (E [X]) in units of number of standard deviations. For example, ifM = f
(X), then Eq. (24) simplifies to β ¼ min x x� μXð Þ=σX . It is an iterative process to
find β under this definition. On the curve M = 0, choose a value of x0 and compute
β0, choose another point x1 on M = 0 and compute β1, and so on. The Hasofer-Lind
reliability index is the minimum of all possible values of βi. When the minimum
reliability index β is determined, the probability of failure can be calculated by
Eq. (23).

Figure 5 gives an example for an infinite slope. In this example, H = 5 m, γ = 20
kN/m3, α = 30°, c0 and tanϕ0 are lognormal random variables with μc

0 = 10 kPa,
σc

0 = 3 kPa (νc
0 = 0.3) and ϕ0 = 30°, μtanϕ0 = 0.5774, σtanϕ0 = 0.1732 (νtanϕ0 = 0.3); the

logarithmic normal distributions of c0 and tanϕ0 are shown in Figure 6.

Figure 5.
Infinite slope.

Figure 6.
Logarithmic normal distributions of (a) c

0 and (b) tanϕ0.
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FS for this slope can be expressed as follows [24]:

FS ¼ c0

γH sin α cos α
þ tanϕ0

tan α
(25)

where H is the height of the slope, γ is the saturated unit weight, α is the slope
angle to the horizontal direction, c0 is the effective cohesion, and ϕ0 is the effective
friction angle.

Using Eq. (25), it can be calculated that FS ¼ 1:23. Further, according to FORM
algorithm, β ¼ 0:835, p f ¼ 20:20%.

In practical applications, there are many different complex optimization algo-
rithms, usually involving the gradient of M, which can find the point where the
failure plane is perpendicular to the origin. The distance between these two points is
β [25, 26]. Now, many spreadsheet programs include algorithms that allow users to
specify only the minimum equations and constraints on the solution. Unfortunately,
nonlinear failure surfaces can sometimes have multiple local minima, with respect
to the mean point, which further complicates the problem. In this case, techniques
such as simulated annealing may be necessary, but which still do not guarantee
finding the global minimum. Monte Carlo simulation is an alternative means of
computing failure probabilities which is simple in concept. Furthermore, it is not
limited to first order and can be extended easily to very difficult failure problems
with only a penalty in computing time to achieve a high level of accuracy [16].

3.3 Monte Carlo method

The Monte Carlo method is a broad computational algorithm that relies on
repeated random sampling to obtain numerical results. The basic concept is to use
random numbers (sometimes pseudo-random numbers) to solve problems that
might be deterministic in principle. This method was proposed in the 1940s and has
been widely used in slope stability probability analysis [12, 27–29].

Figure 7.
Algorithm for Monte Carlo analysis of slope stability.
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The idea of the Monte Carlo method is to randomly generate samples according
to an input probability density function and evaluate the model response of each
sample by a deterministic computational model. Consider the problem of deter-
mining the probability of failure of a systemwhich has two random inputs, X1 and X2.
The response of the system to these inputs is then defined as a function g (X1, X2).
Obviously, the function g (X1, X2) is also random because the input variables are
random. Assume that system failure will occur when g(X1, X2) > gcrit, where gcrit
represents the critical state. In the space of (X1, X2) values, there will be some region
in which g (X1, X2) > gcrit, and the problem boils down to assessing the probability
that the particular (X1, X2) which actually occurs will fall into the failure region. So
the probability pf can be defined as

p f ¼ P g X1,X2ð Þ> gcrit
	 


(26)

Figure 7 shows the algorithm for Monte Carlo analysis of slope stability.
Consider the same infinite slope given in Figure 5, c0 and tanϕ0 are lognormal

random variables with μc
0 = 10 kPa, σc

0 = 3 kPa (νc
0 = 0.3) and ϕ0 = 30°, μtanϕ0 = 0.5774,

σtanϕ0 = 0.1732 (νtanϕ0 = 0.3), which are the same with the previous example. It can be

calculated that FS ¼ 1:23,pf ¼ 23:6%. Compared with the probability of failure cal-

culated by FORM, pf calculated using the Monte Carlo method is a little higher.

4. RFEM slope stability analysis

In this part, a new parameter spatial correlation and the local averaging method
are illustrated first. After that, random finite-element method is presented. Finally,
results from a full RFEM method are analyzed. Throughout this section, the proba-
bility of failure (pf) is compared with the traditional FS that would be obtained from
charts or classical limit equilibrium methods.

4.1 Spatial correlation

In probabilistic slope stability study, the shear strength c and ϕ are assumed to be
characterized statistically by a normal distribution or lognormal distribution
defined by means μc and μtanϕ and standard deviations σc and σtanϕ. The probability
of the strength that is less than a given value can be found from standard normal
distribution table. When the variables are characterized by lognormal distribution,
the lognormal can be transformed to normal as follows (take c for example):

P c< a½ � ¼ P ln c< ln a½ � ¼ P Z <
ln a� μ ln c

σ ln c

� �

¼ Φ
ln a� μ ln c

σ ln c

� �

(27)

The lognormal parameters μlnc and σlnc given μc and σc are obtained via the
transformations:

σ2ln c ¼ ln 1þ ν2c
� �

μ ln c ¼ ln μcð Þ � 1

2
σ2ln c

(28)

in which the coefficient of variation of c, νc, is defined as

νc ¼
σc

μc
(29)
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Unlike the former simulation, another parameter, the spatial correlation length
θc or θlnc, will be considered in the following study. The spatial correlation length
describes the significant correlation distance between spatially random values in the
Gaussian field. Thus, a small value of θ refers to a ragged field, while a large value
refers to a smooth field. In practice, the spatial correlation length can be estimated
from a set of shear strength data (c and ϕ) taken over some spatial region simply by
performing the statistical analyses on the data.

It has been suggested that typical νc values for undrained shear strength lie in the
range of 0.1–0.5. The spatial correlation length, however, is less well documented
and may well exhibit anisotropy, especially when soils are typically horizontally
layered. To simplify in this chapter, the spatial correlation will be assumed to be
isotropic.

4.2 Local averaging

The local average subdivision (LAS) method is a fast and accurate method that
produces realizations of a discrete local average random process [30]. Consider a
random process Z; Table 4 presents the local average procedure via the LAS method.

The algorithm proceeds as follows:

1.Generate a normally distributed random number Z0
1 with mean zero; the

variance is obtained from the random field.

2.Subdivide Z0
1 into two equal parts, Z1

1 and Z1
2; the means and variances should

be satisfied with three criteria:

a. Their variances meet the requirements of local averaging theory.

b. The relationship between Z1
1 and Z1

2 meets the requirements of local
averaging theory.

c. The means of Z1
1 and Z1

2 are equal to the mean of Z0
1 , that is,

Z0
1 ¼ 1

2 Z1
1 þ Z1

2

� �

.

3.Subdivide each cell in stage 1 into another two equal parts; the means and
variances should be satisfied with the above three criteria, and another new

requirement, Z2
1 and Z2

2, should be properly correlated with Z2
3 and Z2

4.

4.The above steps are repeated, and the cell is subdivided gradually until the size
of the subunit reaches the expected requirement.

Stage 0 Z0
1

Stage 1 Z1
1 Z1

2

Stage 2 Z2
1 Z2

2 Z2
3 Z2

4

Stage 3 Z3
1 Z3

2 Z3
3 Z3

4 Z3
5 Z3

6 Z3
7 Z3

8

Stage 4

Table 4.
Procedure of the LAS method.
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Using the RFEM approach to analyze a slope, each element is assigned a constant
property, including the mean, standard deviation, and spatial correlation length of
the shear strength, at each realization of the Monte Carlo process. The assigned
property represents an average over the area of each finite element used to
discretize the slope. If the point distribution is normal, local arithmetic averaging is
used which results in a reduced variance but the mean is unaffected. In a lognormal
distribution, however, local geometric averaging is used, and both the mean and the
standard deviation are reduced by this form of averaging as is appropriate for
situations in which low-strength regions dominate the effective strength. The
reduction in both the mean and standard deviation is from

μX ¼ E X½ � ¼ eμ lnXþ1
2σ

2
lnX (30)

σ2X ¼ Var X½ � ¼ μ2X eσ
2
lnX � 1

� �

(31)

The mean of a lognormally random variable depends on both the mean and the
variance of the underlying normal log variable:

σ2lnX ¼ ln 1þ σ2X
μ2X

� �

(32)

μ lnX ¼ ln μXð Þ � 1

2
σ2lnX (33)

Obviously, local averaging has a great influence on the form of a reduced mean
and standard deviation. These adjustments are fully accounted for in the following
RFEM analysis.

4.3 Random finite-element method

A powerful and general method of accounting for spatially random shear
strength parameters and spatial correlation is the RFEM, which combines
elastoplastic finite-element analysis with random field theory generated using the
LAS method. Figure 8 shows a typical finite-element mesh for the test problem
considered in this section. Most of the elements are square, and the elements
adjacent to the slope are degenerated into triangles. Taking full account of element
size in the local averaging process, the random field of shear strength values was
generated and mapped onto the finite-element mesh. In a random field, the value
assigned to each finite element is a random variable. The random variables can be
correlated to one another by controlling the spatial correlation length θlnc as
described previously. Figure 9a, b, and c shows the typical meshes corresponding
to different spatial correlation lengths. Figure 9a shows a relatively low spatial
correlation length of θ = 1, Figure 9b shows a medium spatial correlation length of
θ = 5, and Figure 9c shows a relatively high spatial correlation length of θ = 10. In
these figures, light regions represent weak- or low-strength soils, while dark regions

Figure 8.
Undeformed mesh of a homogeneous slope with a foundation layer.
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represent strong- or high-strength soils. The shear strength distributions of these
three cases come from the same lognormal distribution, and the only difference is
the spatial correlation length. The slope stability analyses use the Tresca failure
criterion which is an elastic-perfectly plastic stress–strain law. When the stresses
exceed the yield stress, the program attempts to redistribute excess stresses to
neighboring elements that still have reserves of strength. This process is iterative
and will continue until the Tresca criterion and global equilibrium are satisfied at all
points within the mesh under quite strict tolerances. Plastic stress redistribution is
accomplished using a viscoplastic algorithm with eight-node quadrilateral elements
and reduced integration in both the stiffness and stress redistribution parts of the
algorithm [5, 6].

4.4 Results of RFEM analyses

Figure 9 shows three typical random field realizations and the associated failure
mechanisms for slopes with θ = 1, 5, and 10. It can be concluded that spatial correla-
tion length has a great influence on the failure surfacemorphology.When θ is low, the
shear strength between neighbored elements varies severely; when θ is high, similar
properties can be found between neighbored elements. In the RFEM approach, the

Figure 9.
Deformed mesh at slope failure for three different spatial correlation lengths. (a) θ = 1; (b) θ = 5; (c) θ = 10.
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failure mechanism is free to seek out the weakest path through the soil. Thus, the
failure surface will tend to pass through elements with weaker shear strength.

In the following part, the two parameters of shear strength, c and ϕ, are defined
as the random variable, respectively, to investigate the influence of spatial correla-
tion length and coefficient of variance on the probability of failure.

4.4.1 Define c as random

Defining friction angle as a deterministic parameter, ϕ = 20°, and then fixing the
mean of cohesion with μc = 10 kPa, Figure 10 shows the probability of failure pf as a
function of the spatial correlation length θ for a range of coefficients of variation,
with the mean cohesion fixed at μc = 10 kPa. Figure 11 shows the relationship
between probability of failure pf and the coefficient of variation νc with two differ-
ent spatial correlation lengths. It can be seen from Figure 10 that the probability of
failure can be divided into two branches, with the probability of failure tending to
unity or zero for higher and lower values of νc, respectively. Figure 11 demonstrates
that when θ becomes large, the probability of failure is overestimated (conserva-
tive) when the coefficient of variation is relatively small and underestimated
(unconservative) when the coefficient of variation is relatively high. The RFEM
results show that the inclusion of spatial correlation and local averaging in this case
will always lead to a smaller probability of failure.

4.4.2 Define ϕ as random

Defining cohesion as a deterministic parameter, c = 10 kPa, and then fixing the
mean of friction angle with μϕ = 20°, Figures 12 and 13 show the effect of the spatial
correlation length θ and the coefficient of variation νϕ on the probability of failure for
the test problem. It is obvious that Figures 12 and 13 show similar tendency with
Figures 10 and 11. Comparing Figures 11 and 13, it can be concluded that the influ-
ence of spatial correlation length of ϕ on the probability of failure is less than that of c.

Figure 10.
Probability of failure versus spatial correlation length (the mean of cohesion is fixing at μ

c
= 10 kPa).
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4.4.3 Define c and ϕ as random

Defining cohesion c and friction angle ϕ as random parameters, and then fixing
the mean of cohesion with μc = 10 kPa and the mean of friction angle with μϕ = 20°,
Figure 14 shows the probability of failure versus spatial correlation length with
different coefficients of variance of c and ϕ. Clearly, Figure 14 shows similar
tendency with Figures 10 and 12. Figure 15 shows the probability of failure pf as a

Figure 11.
Probability of failure versus coefficient of variance (the mean of cohesion is fixing at μ

c
= 10 kPa).

Figure 12.
Probability of failure versus spatial correlation length (the mean of friction angle is fixing at μϕ = 20°).
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function of coefficient of variance νc for two different θ = 2 and 10, with the mean
cohesion fixed at μc = 10 kPa, the mean of friction angle fixing at μϕ = 20° and νϕ
fixing at 1. Similarly, Figure 16 shows the probability of failure pf as a function of
coefficient of variance νϕ for two different θ = 2 and 10, with the mean cohesion

Figure 13.
Probability of failure versus coefficient of variance (the mean of friction angle is fixing at μϕ = 20°).

Figure 14.
Probability of failure versus spatial correlation length (the mean of cohesion is fixing at μ

c
= 10 kPa and the

mean of friction angle is fixing at μϕ = 20°).
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fixed at μc = 10 kPa, the mean of friction angle fixing at μϕ = 20° and νc fixing at 1.
Clearly, these two figures show a similar relationship with Figures 11 and 13. It is
worth noting that defining ϕ as random has an apparent influence on the

Figure 15.
Probability of failure versus coefficient of variance of cohesion (the coefficient of variance of friction angle is
fixing at νϕ = 1).

Figure 16.
Probability of failure versus coefficient of variance of friction angle (the coefficient of variance of friction angle is
fixing at ν

c
= 1).
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probability of failure versus coefficient of variance of cohesion. From Figure 15, pf
is relatively higher than the case that only c is the only random parameter.

5. Conclusion

This chapter presents a deterministic slope stability analysis based on strength
reduction finite-element method first. After that, three simple probabilistic
methods, including FOSM, FORM, and Monte Carlo method, are introduced to
perform a simple probabilistic slope stability analysis. Finally, the RFEM approach
combining random field generation techniques and finite-element methods is
shown and applied to slope stability risk assessment.

The elastoplastic finite-element slope stability method makes no a priori
assumptions about the shape or location of the critical failure mechanism, offering
significant benefits over traditional limit equilibrium methods on slope stability
analysis.

FOSM, FORM, and Monte Carlo method are relatively basic and practical prob-
abilistic analysis methods. Based on different algorithms, the uncertainty and ran-
domness of the soil properties, especially the mean and standard deviation, can be
taken into account from different views. However, there are some deficiencies,
such as limit of accuracy and time-consuming on these methods.

The RFEM approach combines finite-element slope stability method and local
averaging subdivision method, which can take full account of spatial correlation
and local averaging. The influence of spatial correlation length and coefficient of
variance on the probability of failure can be studied using a parametric approach. In
the elastoplastic RFEM, the failure mechanism is free to seek out the weakest path
through the soil, which leads to higher probabilities of failure than that conducted
by finite-element local averaging alone.

In summary, simplified probabilistic analysis in which spatial variability is
ignored can lead to unconservative estimates of the probability of failure, while the
RFEM approach that considers spatial correlation and local averaging would be a
practical method on slope stability risk assessment.
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