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ABSTRACT 

Difficulties with saliency-based selection and the ability to appreciate the perspective of 

others (mentalizing) are central to both autism and psychosis spectrum disorders. Both 

disorders can co-occur in the same individual at both the diagnostic and trait levels. It has 

been hypothesized that their co-occurrence would lead to greater impairment than would be 

observed in each of the disorders alone. An alternative theory suggests that these disorders 

are etiologically and phenotypically diametrical, and thus predicts that these disorders would 

have opposing effects on these abilities. The current thesis examined these contrasting 

hypotheses using behavioral, eye-tracking and neuroimaging paradigms, in neurotypical 

adults in whom both autism tendencies and psychosis proneness were assessed in tandem. 

The thesis provides converging evidence that autism and psychosis tendencies interactively 

improve mentalizing abilities as well as target selection in the presence of irrelevant salient 

distractors. This interactive effect is also discerned at the neuronal level where autism and 

psychosis tendencies diametrically modulate activity within the attentional and mentalizing 

subdivisions of the right temporo-parietal junction (rTPJ). These findings suggest that co-

occurring autistic and psychotic traits can exert opposing influences on performance, 

resulting in improvement possibly by way of their diametrical effects on attentional and 

socio-cognitive abilities.  
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CHAPTER 1 

 

GENERAL INTRODUCTION 
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INTRODUCTION 

In this thesis, I investigate the interactive effect of autism tendencies and psychosis proneness 

on attentional and socio-cognitive abilities. Research to date has shown that, in both clinical 

and non-clinical participants, traits for autism and psychosis are associated with poorer 

performance in social cognition and attention. However, it is far from clear whether autism 

and psychosis traits yield these effects for the same reasons, not least because it is uncommon 

for these traits to be assessed in the same participants. There is a dearth of research that 

addresses the concurrent effect of autism and psychosis on outcome measures. This can be 

attributed to three main reasons:  

(1) The conceptualization of autism and psychosis as distinct conditions has re-enforced the 

idea that these conditions are mutually exclusive.  

(2) The limitation of theoretical accounts that could reconcile the co-occurrence of these 

conditions, and 

(3) The limitations of standard mathematical/statistical models to meaningfully account for 

the effect of their co-occurrence on outcome measures.  

This thesis addresses this gap by conducting the first systematic investigation of social 

cognition and attention in healthy participants whose traits for autism and psychosis have 

been characterized. Within these two broad domains, I specifically focus on the ability to 

appreciate the perspective of others’ mental states (or mentalizing), and salience-based 

selection, which is a key attentional mechanism associated with the ability to bias attention 

towards (or away from) salient information. These two aspects are major components of 

human social interaction and communication and are considered core features for both autism 

and psychosis. Throughout the thesis, the assessment of autism and psychosis in the healthy 

population rests on the assumption that both autistic tendencies and psychotic proneness exist 

on a continuum, ranging from typicality to disorder. In this regard, it is important to clarify 
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that the use of the term psychosis proneness in this thesis is confined to presence of positive 

psychotic-like experiences which aligns with Meehl’s notion of schizotypy (Meehl, 1990) 

and more specifically, with Claridge’s “aberrant perceptions and beliefs” component of 

schizotypy (Claridge et al., 1996).  

The thesis presents a series of studies utilizing behavioral, eye-tracking and 

neuroimaging paradigms that examine how inter-individual differences in autism and 

psychosis effect behavioral and brain functioning associated with these domains. The results 

will have implications for understanding healthy variation in these traits and abilities, and in 

how clinical autism and psychosis should be understood. 

 What follows is a brief overview delineating the historical and current debate 

surrounding the relationship between autism and psychosis, the way this relationship can be 

conceptualized, and the rationale for conducting this in the healthy population. Importantly, 

this overview is not meant to be comprehensive or exhaustive, but to familiarize the reader 

with context upon which this research is based. In this respect, note that each chapter has 

been written as a self-contained paper, and so contains substantial introductory information 

relevant to that chapter.  

 

The relationship between autism and schizophrenia spectrum disorders 

Schizophrenia and autism spectrum disorders (SSD and ASD, respectively) combined affect 

approximately 2% of individuals during the course of their lifetime, inflicting a broad range 

of cognitive, motor and psychosocial abnormalities. Phenotypically, SSD is associated with 

the presence of core symptoms that have been classified along negative and positive 

dimensions, with the former denoting the absence of a function and the latter with the 

presence of abnormal behavior. Negative symptoms include flat or blunted affect, poverty of 

speech, anhedonia, asociality and avolition. Positive symptoms include the presence of 
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delusions, hallucinations, disorganized speech, thinking and behavior. On the other hand, 

ASD is defined by impairment in social communication and social interaction, and by 

repetitive behavior and restricted interests and activities. Diagnostically, ASD must exclude 

the presence of delusions, hallucinations, loosening of associations, and incoherence as in 

SSD, a criterion that has been enforced until very recently—the current diagnostic manual, 

DSM-5, allows for the additional diagnosis of SSD in individuals with ASD if they present 

with prominent delusions and hallucinations for a period of one month (or if successfully 

treated) (APA, 2013). Conversely, social and communication impairments are integral for the 

diagnosis of ASD, but not for SSD.  

While these definitions were meant to categorically distinguish between the two 

disorders, the relationship between them has been a contentious issue since autism was first 

described, and current clinical reality suggests that absolute forms of the disorders are in fact 

not the norm (Lugnegard, Hallerback, & Gillberg, 2015; Nylander, Lugnegård, & Hallerbäck, 

2008; Sheitman, Kraus, Bodfish, & Carmel, 2004). Several recent lines of evidence suggest 

that there are important cognitive, behavioral and neurophysiological overlaps between the 

two disorders (for recent reviews see (Chisholm, Lin, Abu-Akel, & Wood, 2015; King & 

Lord, 2011; Sasson, Pinkham, Carpenter, & Belger, 2011)) as well as shared etiologic factors 

(Carroll & Owen, 2009; Crespi, Stead, & Elliot, 2010b; P. F. Sullivan et al., 2012; S. 

Sullivan, Rai, Golding, Zammit, & Steer, 2013). This has prompted some researchers to call 

for the reevaluation of their relationship (Nylander et al., 2008; Sasson et al., 2011), or at 

least to reconsider their exclusion criteria (Hofvander et al., 2009). 

There are many ways by which we can explain the association between ASD and SSD 

(for a recent review see (Chisholm et al., 2015). However, four models, though not 

necessarily simultaneously, have dominated the debate regarding the relationship between 

them (see Figure 1.1). Model A posits that ASD is subsumed in SSD or vice versa, model B 
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views the two disorders as independent, model C as overlapping, and model D as diametrical. 

The merit of these models is considered in turn. 

Figure 1.1. Alternative models for the relationship of autism and schizophrenia. (A) Subsumed. (B) 

Separate. (C) Overlapping. (D) Diametric. (Modified from Crespi et al., 2010). Both ASD and SSD 

are placed at the extreme of a normality continuum.  

 

Model A which considers autism as a subtype of schizophrenia or vice versa, suggests 

that autism and schizophrenia could not result from mutually exclusive risk factors. 

Historically, autism was considered an extreme form of schizophrenia (Bleuler, 1911), and 

by others as the childhood form of the illness (Bender, 1947). More recently, it has been 

suggested that ASD-associated brain abnormalities may pave the way for the development of 

SSD in some patients, based on evidence showing that individuals with ASD who experience 

psychosis have brains that resemble those of ultra high risk individuals for psychosis (Toal et 

al., 2009). Under this view, ASD and SSD would necessarily be associated with only a subset 

of the impairments observed in the other disorder. In addition, this model would predict that 

individuals having ASD or SSD would necessarily meet the diagnostic criteria for the other 

disorder, or at least have met it at some point during their etiologic history. However, there is 
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strong evidence suggesting that ASD can be associated with risk factors that are unrelated to 

SSD and vice versa (Crespi et al., 2010b). Moreover, the two disorders exhibit 

neuroanatomical (Cheung et al., 2010) as well as behavioral and cognitive phenotypes that 

are disorder-specific (Stone & Iguchi, 2011). Accordingly, this model can be ruled out with a 

great degree of confidence and will not be considered further.  

Model B considers the two disorders separate based on evidence showing that ASD 

and SSD differ in etiology, developmental trajectories and age of onset (Kolvin, 1971; Rutter, 

1972). Specifically, based on evidence showing that ASD can reliably be diagnosable by 3 

years of age and SSD by late adolescence-early adulthood, the two disorders have been, by 

consensus, considered separate since the introduction of the DSM-III (APA, 1980)1. Under 

this model, both disorders would exhibit different sets of impairments or pattern of 

impairments precipitated by independent risk factors or mechanisms. However, as pointed 

out by several important reviews (Carroll & Owen, 2009; Chisholm et al., 2015; Stone & 

Iguchi, 2011), both disorders are associated with specific genetic loci or alleles, are highly 

heritable within and between conditions, share many environmental risk factors such as 

increased parental age, obstetric complications and urbanicity, and can exhibit similar 

characteristics such as social withdrawal, poor communication and attentional abilities. There 

is also evidence suggesting that both disorders co-occur at both the diagnostic (Solomon et 

al., 2011; Stahlberg, Soderstrom, Rastam, & Gillberg, 2004) as well as at the trait levels 

(Konstantareas & Hewitt, 2001; Spek & Wouters, 2010). Hence, while both disorders can be 

viewed as distinct, they are clearly not mutually exclusive and thus this model might be 

limited in explaining the range of behaviors exhibited in both ASD and SSD.  However, this 

models remains relevant for it dominates current diagnostic practices.   

																																																								
1 It is important to note that from this point onward, the term autism took on a completely different meaning to 
the way it was originally used by child psychologists: Autism, as defined by Bleuler (1911), was originally used 
to describe extreme social withdrawal precipitated by excessive fantasies and hallucinations in infants, whereas 
now autism refers to the absence of the ability to represent life symbolically (Evans, 2013). 
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Model C posits that the two disorders share overlapping etiologies (Burbach & van 

der Zwaag, 2009), and thus can feature overlapping phenotypes and exhibit shared areas of 

deficits (King & Lord, 2011). Indeed, many studies have demonstrated the ASD and SSD can 

result in similar impairments across several domains (Stone & Iguchi, 2011) including the 

processing of salient information (Becchio, Mari, & Castiello, 2010; Poirel et al., 2010), 

theory of mind and perspective-taking (Couture et al., 2010; Craig, Hatton, Craig, & Bentall, 

2004), as well as neurocognition and emotional processing (Eack et al., 2013). Collectively, 

evidence suggests that this model cannot be ruled out as a potential framework to elucidating 

the nature of the relationship between the disorders and their impact on behavior and 

cognition.   

Lastly, model D posits that ASD and SSD are etiologically and thus largely 

phenotypically diametrical. Central to this model is that ASD and SSD represent the extreme 

of a social cognition continuum (Abu-Akel & Bailey, 2000; Crespi & Badcock, 2008), 

wherein autism is associated with underdeveloped social cognition and schizophrenia (at 

least in the paranoid type) with aberrant hyper-developed social cognition. A prediction of 

this model is that deficits in both disorders would deviate in opposite directions from 

normality. Comparative studies lend support to this model and suggest that the disorders are 

associated with genetic risk factors in a pleiotropic manner (Crespi et al., 2010b), 

predisposing the individual to developing one disorder or the other. Also commensurate with 

this model is research showing, for example, that ASD and SSD are diametrically opposed in 

enhanced versus reduced embedded figure detection (Russell-Smith, Maybery, & Bayliss, 

2010), over-selective attention (Reed & McCarthy, 2012) versus reduced selective–attention 

(Morris, Griffiths, Le Pelley, & Weickert, 2013), convergent versus divergent thinking 

(Nettle, 2006), as well as in under- versus over-mentalizing (Frith, 2004). Moreover, while 

the diametric model does not predict diagnostic co-occurrence of both disorders, it does not 
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rule out co-occurrence at the trait level. For example, in such cases, it is predicted that 

behavior would be diametrically modulated towards normality by phenotypic traits that are 

disorder-specific. Accordingly, this model cannot be ruled out as a viable framework to 

describing the relationship between the two disorders and their effect on behavior and 

cognition.  

Based on the above, the overlapping and diametric models appear heuristically most 

viable to examining the relationship between autism and psychosis. However, while these 

models have been conceived to explain the relationship between categorically defined 

conditions that are either absent or present, genetic- and familial-based studies have led to the 

reconceptualization of both ASD (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 

2001; Wing, 1988) and SSD (Claridge et al., 1996; Meehl, 1990) as dimensional conditions, 

that lie at the end of a continuum that ranges from normality to disorder. The dimensional 

approach has been endorsed by current diagnostic manuals such as the DSM-5 to 

complement categorical approaches, as it has been shown to be particularly useful in 

capturing individual differences in the severity of the disorder and the assessment of 

comorbidity (Brown & Barlow, 2005). Indeed, it has been argued that modern psychiatry 

should view the concept of psychotic disorder, and by extension autism, “as a variation of 

normal human mentation that can be expressed quantitatively” (Van Os, 2010) (p.305). In 

addition, studying subclinical expressions of ASD and SSD can inform our understanding of 

etiologic factors, the effect of such expressions on functioning within the healthy population 

and has the distinct advantage of avoiding the confounds of active symptomatology and 

medication (Ettinger et al., 2015; Stefansson et al., 2014). As such, the research conducted in 

this thesis makes virtue of the practical significance and theoretical appeal of the dimensional 

approach to assessing the relationship between autism and psychosis in the healthy 

population within the context of the overlapping and diametric models.  
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Mentalizing and saliency as core features of both autism and schizophrenia spectrum 

disorders 

The conceptualization of ASD and SSD as two distinct conditions and the enforcement of 

this distinction by diagnostic manuals have led to largely independent bodies of research 

despite the recognition of similar impairments in both conditions on several domains 

including attention and socio-cognition. Researchers from both camps have independently 

proposed that saliency is a candidate endophenotype for both ASD (Uddin et al., 2013) and 

SSD (Kapur, 2003; Krishnadas et al., 2014). This is supported by studies examining saliency-

based selection or related processes such as selective-attention or saliency suppression which 

suggest that both ASD and SSD are associated with impairments in these abilities (Becchio et 

al., 2010; Bird, Catmur, Silani, Frith, & Frith, 2006; Poirel et al., 2010; Riby, Brown, Jones, 

& Hanley, 2012). Aberrant mentalizing abilities have similarly been proposed as a candidate 

endophenotype of both conditions (Bora, Yucel, & Pantelis, 2009; Chung, Barch, & Strube, 

2014; Couture et al., 2010; Sasson et al., 2011). This has been confirmed in several studies 

that directly compared the two disorders (Couture et al., 2010; Craig et al., 2004; Pilowsky, 

Yirmiya, Arbelle, & Mozes, 2000) as well as meta-analytically (Chung et al., 2014).   

 

Analytic approach 

The centrality of saliency and mentalizing abnormalities in ASD and SSD creates an 

opportunity where the nature of their relationship between these two conditions can be 

reevaluated. This evaluation is largely guided by two main assumptions. First, both autistic 

and psychotic tendencies exist on a continuum, ranging from normality to disorder. This 

dimensional approach allows us to examine how outcome measures are affected by inter-

individual differences in the expression of autism and psychosis traits. Second, ASD and 

SSD can feature overlapping as well as diametrical phenotypes. Based on the overlapping 
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model one would expect to see a significant mean effect, whereas based on the diametric 

model one would expect to see a significant sub-additive/compensatory effect on behavioral 

and outcome measures. However, while as pointed above, there is sufficient evidence 

suggesting that ASD and SSD are not mutually exclusive conditions, the separate model 

(model B, Figure 1.1) remains relevant for it dominates current diagnostic practices. It 

predicts that ASD and SSD will have independent effects on outcome and behavior. These 

assumptions guide the statistical models used to analyze the data obtained for this thesis, and 

specifically the testing of the predictions borne out of the separate (independent), overlapping 

and the diametric models (models B-D, Figure 1.1). 

  

Thesis Structure 

The thesis reports on data from a series of studies that employed behavioral, eye-tracking and 

neuroimaging methodologies to investigate the interactive effect of autism tendencies and 

psychosis proneness within the healthy populations. In addition to the introductory chapter 

(Chapter 1), the thesis consists of 5 empirical chapters and a closing, discussion chapter 

(Chapter 7). The empirical chapters are written as self-contained manuscripts2. The first 

empirical chapter, Chapter 2, investigates in a large group of healthy adults, the effect of 

autistic and psychotic tendencies on socio-cognitive functioning. In this study (and the others 

included in this thesis), autism and psychotic tendencies were assessed with the co-

administration of trait-specific, psychometrically dimensional, questionnaires, namely the 

Autism Spectrum Quotient (AQ) (Baron-Cohen et al., 2001) and the Community Assessment 

of Psychic Experiences (CAPE) (Stefanis et al., 2002). Socio-cognitive functioning was 

assessed by examining perspective-taking abilities within the context of a referential 

communication task (Apperly et al., 2010; Keysar, Lin, & Barr, 2003), in which participants 
																																																								
2 While I am aware that theses are traditionally written in the 1st person, please note that the empirical chapters 
have been written in 1st person plural as they either published, submitted or written in preparation for 
submission.  
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are required to follow the instructions of an ignorant co-participant (hereafter, a director). 

Specifically, the task examines the ability to accommodate the director’s requests/instructions 

based on inferences one should make of the director’s state of knowledge. Successful 

compliance with the director’s instructions requires an understanding that the director has a 

different state of knowledge (or perspective), and a suppression of a prepotent response that 

is valid only from the individual’s perspective. As such, this task can be seen as a proxy of 

interpersonal communication that relies on efficient use of perspective-taking and theory of 

mind abilities. This task was chosen since it captures a critical social component of 

interpersonal communication that relies on efficient use of perspective-taking abilities, which 

is a core impairment in both autism and psychosis spectrum conditions. In addition, previous 

studies report high error rates on this task (~40%) (Apperly et al., 2010; Keysar et al., 2003) 

and thus it is potentially sensitive to inter-individual differences. This study revealed, and for 

the first time, that the probability of making perspective-taking errors is interactively 

modulated by the relative expression of autism tendencies and psychosis proneness.  

 Intriguingly, individuals with low or high balanced autism and psychosis expressions 

performed at similar levels, and exhibited lower error rates compared to autism-dominant as 

well as psychosis-dominant individuals. I thus asked, in Chapter 3, whether the low and high 

balanced individuals are indeed similar. This question is important, because similar error 

rates do not necessarily imply that low and high balanced individuals process information in 

the same way. To address this question, we employed in this study a more sensitive version 

of the perspective-taking task (Wang, Cane, Ferguson, Frisson, & Apperly, 2015) that allows 

us to examine response times as well as possible information processing differences between 

the low and high balanced individuals by systematically tracking their eye-movements. A 

second goal of this study was to replicate our finding from Chapter 2 regarding the 

interactive effect of autism and psychosis on perspective-taking errors in terms of response 
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time. This study revealed that while low versus high balanced expressions performed equally 

well, the high balanced groups were less efficient in working out the perspective of the other. 

In addition, autism and psychosis had an interactive effect on response times, thus replicating 

our finding from Chapter 2.  

 Turning to saliency, Chapter 4 investigated in a large cohort the interactive effect of 

autism tendencies and psychosis proneness on selective attention and saliency suppression. 

Specifically, the study investigated how these traits affect the processing of two competing 

sources of information where one set of information is more prominent (i.e., more readily 

available for processing) and the other is less prominent but is in fact more relevant to the 

task at hand. This was investigated in two experiments. The first was Mevorach et al.’s 

(2009) variant of the Navon’s classic global-local task (Navon, 1977), and the second is a 

novel face-scene perception, developed in the Lab of Dr. Mevorach. Both tasks allow us to 

test the effect of autism tendencies and psychosis proneness on selective attention and 

saliency suppression. In addition, the face-scene perception task enables us to test for 

attentional/perceptual biases to socially relevant stimuli (i.e., faces) as well as whether the 

effects were perceptual or attentional. Specifically, it enables us to investigate whether the 

effects of autism tendencies and psychosis proneness are associated with the perception of 

salient stimuli, or with the suppression/filtering out of competing salient information. 

Findings from these two experiments provide convergent evidence suggesting that the cost 

associated with the presence of salient distractor (i.e., saliency cost) is interactively 

modulated by autism and psychosis expressions.  

At this point, the thesis turns focus to the brain with the goal of exploring whether this 

interaction between autism and psychosis can be discerned at the neuronal level. However, as 

a necessary initial step, in Chapter 5, I report on an imaging study that investigated in healthy 

adults how the neural network associated with adopting an intentional stance (i.e., perceiving 
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agents as rational thinking beings) (Dennett, 1996) is modulated when interacting with other 

humans or non-humans (e.g., computers), and whether such variations are associated with 

whether these agents are willful, active agents or passive agents that merely fulfill 

instructions. Thus, this study is the first to investigate the intentional stance by orthogonally 

varying perceptions of the opponents’ intentionality (they responded actively and freely or 

passively according to a script) and their embodiment (they were a human or a computer), 

while playing the famous playground game, Rock, Paper, Scissors (RPS). This task was 

chosen since it has been shown to reliably activate the mentalizing network in a competitive 

context (Chaminade et al., 2012; Gallagher, Jack, Roepstorff, & Frith, 2002), an thus it is an 

attractive alternative to language- and cognitively-laden mentalizing tasks (such as the 

functional localizer task (Saxe & Kanwisher, 2003)), because it is engaging, interactive, and 

cognitively undemanding. 

Results reveal that this task robustly drives activity in the mentalizing network, and 

particularly in the right temporopariental junction (rTPJ) and the anterior paricingulate 

cortex. This finding is confirmed with an overlap analysis with activations obtained from the 

same participants whilst performing the theory of mind functional localizer task (Hartwright, 

Apperly, & Hansen, 2012; Saxe & Kanwisher, 2003). However, given that our sample 

consisted of 24 adults, the study is not sufficiently powered to conduct whole brain analysis 

as a function of autism and psychosis traits and their interaction. Therefore, in Chapter 6, I 

conducted a region of interest correlational analyses to examine the effect autism, psychosis 

and their interaction on neuronal activity within the rTPJ and the anterior paracingulate 

cortex. With respect to the rTPJ, we investigated these potential effects within specific 

regions of the rTPJ based on recent advances suggesting that the rTPJ can be divided in to 

three subdivisions that are functionally linked to the mentalizing, ventral and dorsal 
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attentional systems. This study provided the first evidence that the interactive effect of autism 

and psychosis can be captured at the neuronal level.  

In closing, Chapter 7 summarizes the main findings of the thesis. I discuss that 

investigating mentalizing and saliency as a function of the relationship of autism tendencies 

and psychosis proneness can have profound implications for: 1) the continuity models of 

psychosis and autism and in particular how healthy variation in the expression of these 

conditions affect core features, 2) conceptualizing the relationship of autism and psychosis, 

and more specifically the nature of their interactive effect on these abilities, 3) research 

concerned with the identification of divergent and/or convergent mechanisms that could 

explain performance on these abilities in ASD and SSD, and 4) research methods that 

investigate ASD and SSD, whether comparatively or in isolation. Here I also discuss research 

limitations and future research suggestions. 
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CHAPTER 2 

 

PERSPECTIVE-TAKING ABILITIES IN THE BALANCE BETWEEN 

AUTISM TENDENCIES AND PSYCHOSIS PRONENESS3 

																																																								
3 This chapter is published: Abu-Akel, A., Wood, S.J., Hansen, P.C., Apperly, I.A. (2015). Perspective-taking 
abilities in the balance between autism tendencies and psychosis proneness. Proceedings of the Royal Society B: 
Biological Sciences 282 (1808). http://dx.doi.org/10.1098/rspb.2015.0563 
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ABSTRACT 

Difficulties with the ability to appreciate the perspective of others (mentalizing) is central to 

both autism and schizophrenia spectrum disorders. While the disorders are diagnostically 

independent, they can co-occur in the same individual. The effect of such co-morbidity is 

hypothesized to worsen mentalizing abilities. The recent influential ‘diametric brain theory’, 

however, suggests that the disorders are etiologically and phenotypically diametrical, 

predicting opposing effects on one’s mentalizing abilities. To test these contrasting 

hypotheses, we evaluated the effect of psychosis and autism tendencies on the perspective-

taking abilities of 201 neurotypical adults, on the assumption that autism tendencies and 

psychosis proneness are heritable dimensions of normal variation. We show that while both 

autism tendencies and psychosis proneness induce perspective-taking errors, their interaction 

reduced these errors. Our study is the first to observe that co-occurring autistic and psychotic 

traits can exert opposing influences on performance, producing a normalizing effect possibly 

by way of their diametrical effects on socio-cognitive abilities. This advances the notion that 

some individuals may, to some extent, be buffered against developing either illness or present 

fewer symptoms due to a balanced expression of autistic and psychosis liability. 

 

INTRODUCTION 

The relationship between schizophrenia and autism has been a contentious issue since autism 

was first distinguished from schizophrenia (Kolvin, 1971). While currently conceptualized as 

separate disorders, several recent lines of evidence suggest that the disorders co-morbidly 

occur at a higher than expected rate (Hofvander et al., 2009; Nylander, Lugnegård, & 

Hallerbäck, 2008; Sheitman et al., 2004), and can themselves be mutual risk factors (Crespi, 

Stead, & Elliot, 2010; King & Lord, 2011; P. F. Sullivan et al., 2012). Both disorders are also 

thought to exist on extended phenotypic continua (Baron-Cohen et al., 2001; Claridge et al., 
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1996; Crespi et al., 2010; Wing, 1988), with overlapping diagnostic (such as deficits in social 

interaction and communication) and non-diagnostics traits (such as impaired attention and 

mentalizing). Despite evidence for such overlaps, no studies to date have examined the 

impact that either diagnostic or trait-level co-occurrence could have on cognition and 

behavior.  

 Socio-cognitive difficulties, particularly understanding and using the mental 

perspectives of others, are a core feature of both disorders, and are variably affected by the 

degree of their severity (Abu-Akel, 2003; Chung et al., 2014). These abilities are essential for 

social and linguistic functioning in that they allow us to understand and predict the behavior 

of others in terms of the state of their knowledge, intentions, beliefs and desires. Thus social 

cognition is one central domain where the relationship between the two disorders can be 

evaluated (Sasson et al., 2011).  

On the assumption that both autistic tendencies and psychotic proneness exist on a 

continuum, ranging from typicality to disorder, one approach to evaluating the impact of co-

occurring traits on social cognition is by examining the association of autistic tendencies and 

psychosis proneness among non-clinical populations. This approach allows us to study both 

schizophrenia- and autism-like socio-cognitive characteristics without the confounding 

effects of medication or active symptomatology. To this end, the socio-cognitive abilities of 

201 healthy adults were examined using Apperly et al.’s (Apperly et al., 2010) variant of the 

Keysar et al. (Keysar, Barr, Balin, & Brauner, 2000) referential communication task in which 

participants are required to follow the instructions of “director” characters. Critical trials 

required the participant to follow requests/instructions from a director who did not know 

about all of the possible objects in a grid, and participants had to take this into account when 

interpreting the director’s instructions. Relational trials involved three critical objects varying 

in size or shape (e.g., three sizes of block). In these trials, only two of these three objects 
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were visible to the director, and participants had to take this into account when following his 

instruction (e.g., to “Move the large block…”). Ambiguous trials involved two critical 

objects described with homophones (e.g., a computer mouse and a rodent mouse) of which 

only one is visible to the director. In both cases, correct responses required participants to 

ignore a potential referent that was not visible from the director’s view, and select a valid 

referent that was visible to the director (see Methods, Figure 2.1). Thus, successful 

compliance with the director’s instructions requires an understanding that the director has a 

different state of knowledge, and use of that information to constrain linguistic reference. As 

such, this task captures a critical social component of interpersonal communication that relies 

on efficient use of perspective-taking abilities. Psychosis proneness was assessed using the 

positive scale of the Community Assessment of Psychic Experiences (CAPEp) Questionnaire 

(Stefanis et al., 2002), and autism tendencies were assessed using the Autism Spectrum 

Quotient (AQ) Questionnaire (Baron-Cohen et al., 2001).  

A natural prediction from the standard clinical conception of autism and 

schizophrenia as independent disorders (Kolvin, 1971) is that related characteristics in the 

typical population make independent negative contributions to perspective-taking 

performance. It follows that co-occurring high levels of these traits should be associated with 

worse perspective-taking than high levels of either set of traits alone. A recent influential 

theory, however, hypothesizes that both autism spectrum disorders (ASD) and schizophrenia 

spectrum disorders (SSD) are etiologically and thus largely phenotypically diametrical 

(Crespi & Badcock, 2008). Central to this model is that ASD and SSD represent opposite 

extremes of a social cognition continuum (Abu-Akel & Bailey, 2000; Crespi & Badcock, 

2008), wherein ASD is associated with under-active mechanistic social cognition and SSD 

with hyper-active mentalistic social cognition, deviating in opposite directions from typical 

performance. Such conceptualization would predict that the relative dominance of traits for 
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either condition would predispose individuals to increased socio-cognitive difficulties. In the 

event that there is a balance between the two, this model predicts that these socio-cognitive 

difficulties would be diametrically modulated towards typical performance by co-occurring 

phenotypic traits that are disorder-specific.  

 

METHODS AND MATERIALS 

Participants  

The socio-cognitive abilities of 201 healthy adults (43 males, 158 females; mean age (SD) = 

21.37±4.32) we examined in this study. Participants were excluded from the study if they had 

a history of psychiatric illness, epilepsy, neurological disorders, suffered brain injury or may 

have current alcohol or substance abuse problems. The study was approved by the University 

of Birmingham Research Ethics Committee, and written informed consent was obtained from 

each participant. 

 

Procedures 

In a quiet room, participants first completed Apperly et al.’s (Apperly et al., 2010) variant of 

the Keysar et al. (Keysar et al., 2000) referential communication task, followed by 

completing the Community Assessment of Psychic Experiences (CAPEp) Questionnaire 

(Stefanis et al., 2002), and autism tendencies were assessed using the Autism Spectrum 

Quotient (AQ) (Baron-Cohen et al., 2001).  

 

Materials 

The Perspective-Taking Task 

The task was based on Apperly et al. (Apperly et al., 2010), Experiment 1. In this task, 

participants are presented with a 4x4 grid that contained 8 cartoon images (Figure 2.1). On 
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the opposite side of the grid stands a male director, and on the front side a female director 

who shares the same view as the participant. Five slots of each grid are occluded from the 

view of the male director, thus creating a different perspective than that of the participant (see 

Figure 2.1 A-B). The male director is ignorant of the content that these slots may contain. 

Audio instructions are played to the participant in a male voice (representing the male 

director) or a female voice (representing the female director). Instructions pertained to 

moving objects within the grid ‘up’ or ‘down’, ‘left’ or ‘right’. Participants were explicitly 

told to take the perspective of the male director when fulfilling his instructions. 

 
Figure 2.1. (A) and (B) are instruction grids to participants. (C) Experimental relational trial. (D) 

Control condition of the experimental relational trial.  

 
The task consisted of 32 grids (3-5 instructions/trials each) for a total of 128 trials. Of 

the 128 trials, 96 trials were fillers and thus are not part of the analyses. The remaining 

critical trials consisted of 16 experimental and 16 control trials. All the critical trials are 

spoken by the male director. Instructions given immediately before the critical instructions 
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were equally often from the male and the female directors. The critical (experimental and 

control) trials were equally divided into ambiguous and relational trials. The 8 experimental 

relational trials pertained to objects that are relative to each other either in size or location. 

Figure 2.1C-D presents an actual example of an experimental relational trial with the 

matching control. In this trial, the participant is instructed to “move the bottom block one slot 

left.” For a correct compliance with the instruction, the participant needs to ignore the 

distracting block (marked ‘X’ in Figure 2.1C and which is not available from the view of the 

director) and move the block marked ‘Y’. The control trial contains the same information as 

the experimental trial except the block in the bottom row is replaced with a different object (a 

lipstick) (Figure 2.1D). In the 8 experimental ambiguous trials (not shown in figure), the 

noun denoting the object to be moved has two potential referents. For example, ‘glasses’ in 

‘move the glasses one slot to the left’ could be referring to either a pair of reading glasses or a 

pair of drinking glasses. Only one of these items is available from the view of the male 

director, as the other ‘competing’ item is in an occluded slot. In the matching control for this 

condition, the ‘competing’ object in the occluded slot is swapped with a different object (e.g., 

a toy car). 

Seated approximately 60cm from a 17” monitor, the session started with two practice 

grids with non-experimental instructions. The 32 grids of the main experiment were 

presented in two fixed pseudo-random orders between-participant. The participant always 

moved the objects from their own perspective with the computer mouse. This was achieved 

by first clicking on the object and then dragging it with the cursor to the appropriate location. 

Participants were told that doing this would not actually move the object, but should act and 

move the mouse as if it did. Each grid appeared for 5 seconds of study time before the 

instruction was given. The instructions were given at 5-second intervals. Correct responses 

were recorded if the participant clicked on the object that fit the instruction and could be seen 
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from both the director’s and the participant’s perspective. Incorrect responses were recorded 

if the participant selected the distracter object (i.e., block marked X in Figure 2.1C) or 

clicked on some other cell. Timeouts were also recorded, but these were not included in the 

error count. Response times (RTs) were measured from the onset of the noun phrase. 

Following earlier work we did not expect RTs to reveal condition differences, but they do 

give the opportunity to examine any tradeoffs between speed and accuracy. This also allows 

us to examine differences between the corresponding control and experimental conditions. 

The experiment was run in a single block using E-prime 2.1.  

 

The Community Assessment of Psychic Experiences (CAPE) Questionnaire 

This self-report questionnaire is based on the Peters et al. Delusions Inventory-21 (PDI-21) 

(Peters, Joseph, & Garety, 1999) and consists of 42 items measuring the presence of positive 

psychotic experiences (20 items), negative psychotic experiences (14 items), and depressive 

experiences (8 items) that an individual may have experienced over the last 12 months 

((Stefanis et al., 2002); http://www.cape42.homestead.com/). The occurrence of these 

symptoms is reported on a likert frequency scale from 1 (never) to 4 (nearly always), and the 

associated distress on a scale ranging from 1 (not distressed) to 4 (very distressed). 

Cronbach’s α for this scale in this study is .92, which indicates high internal consistency. For 

current purposes, the 20-item CAPE positive scale is used as a measure of psychosis 

proneness. The assessment of positive schizotypy rather than the general construct of 

schizotypy is based on evidence for autism-positive schizotypy axis in the non-clinical 

population (Dinsdale, Hurd, Wakabayashi, Elliot, & Crespi, 2013), and that negative 

symptoms do not reliably discriminate between the ASD and SSD (Spek & Wouters, 2010). 

The internal consistency of this scale in this study is very good (Cronbach’s α = .84), and 
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falls within the range of values reported in other studies within the general population (Lin et 

al., 2011). 

 

The Autism Spectrum Quotient (AQ) Questionnaire 

This self-report questionnaire consists of 50 items that measure the presence of traits 

associated with the autistic spectrum within the general population (Baron-Cohen et al., 

2001). Each item is given a score of 0 or 1. Higher scores indicate the presence of greater 

autistic tendencies. The AQ’s internal consistency in this study is good (Cronbach’s α = .82), 

and is comparable to the values reported in other studies (Austin, 2005). 

 

RESULTS 

Before the main analysis, we examined the rate of errors made in the ambiguous and 

relational trials. On average, participants erred (i.e., failed to appreciate the perspective of the 

director) on 20.6% of the ambiguous trials and 41.5% on the relational trials. These rates are 

similar to previous reports using this task (Apperly et al., 2010; Keysar et al., 2003). An 

examination of the response times showed no evidence of speed-accuracy trade-offs (see 

Appendix 1, Table 1). Finally, an examination of the association between the CAPEp and AQ 

scores showed a modest but a significant association (r=.31, p<.001), which is consistent with 

the observed phenotypic overlaps between the autism and psychosis spectra (See Appendix 1, 

Figure 1). 

To examine the effect of autism tendencies and psychosis proneness, the participants’ 

perspective-taking (PT) error counts on the ambiguous and relational trials were analyzed 

using Poisson regression models with negative binomial distribution. Using Generalized 

Linear Models, we first investigated the association of the participant’s PT errors on the 

relational trials with the AQ scores, the CAPEp scores and their interaction. The omnibus test 
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shows that the overall model is significant (χ  2 =13.38, df=3, p=.004). The model’s parameter 

estimates (i.e., the main effects and the interaction term) are also significant (see Table 2.1). 

When entering gender into the model, which is regarded as a relative risk factor for autism 

and psychosis, the results remained unchanged (Appendix 1, Table 2). Although ambiguous 

trials showed a far lower error rate, they yielded data with the same qualitative pattern we 

observed for the relational condition (Appendix 1, Table 3). However, the overall model was 

not significant when these data were subject to the same analysis as the relational trials (χ  2 =2.91 

df=3, p=.406).  

 

Table 2.1. Summary of coefficients with errors on the experimental relational trials as 

the dependent variable 

AQ = Autism Quotient; CAPEp = Positive scale of the Community Assessment of Psychic Experiences.  

 
From Table 2.1, we see that an increase in the AQ or the CAPEp resulted in an 

increase in PT errors. Intriguingly, however, the interaction between these two terms is 

negatively associated with PT errors. To probe the nature of the interaction term, we follow 

the method by Hayes and Matthes (Hayes & Matthes, 2009) whereby the effect of one 

predictor on the probability of committing PT errors (derived from the regression equation) is 

examined at the mean, one standard deviation below the mean and one standard deviation 

above the mean of the other predictor. Figure 2.2A visualizes the interaction between 

psychosis and PT errors by plots of simple regression lines for the participants with low AQ 

       Model 

Coefficient 
β  (SE) Waldχ2 df Exp(β) Sig. 

Constant -1.795 .4299 17.428 1 .166 <.001 

AQ .053 .0233 5.200 1 1.054 =.023 

CAPEp .045 .0156 8.224 1 1.046 =.004 

AQxCAPEp -.002 .0008 4.655 1 .998 =.031 
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(10.04), average AQ (AQ=16.33), and high AQ (AQ=22.63), and Figure 2.2B visualizes the 

interaction between autism tendencies and PT errors for the participants with low CAPEp 

(CAPEp=22.53), average CAPEp (CAPEp=27.37), and high CAPEp (CAPEp=32.21). The 

analysis presented in Figure 2.2A suggests that the relationship between psychosis proneness 

and the increased probability of committing PT errors is significant when the AQ scores were 

low (−1 SD) (β=0.023, p=0.003) as well as when the AQ scores were at the mean (β=0.013, 

p=0.004). Conversely, when the AQ scores are high (+1 SD), the relationship between 

psychosis proneness and PT errors is non-significant (β=0.003, p=0.558). This suggests that 

individuals with higher psychosis proneness commit PT errors mainly when they have low or 

average levels of AQ scores. Conversely, high AQ scores seem to have an attenuating effect 

on the PT errors associated with an increase in psychosis proneness. 

In contrast, the analysis presented in Figure 2.2B suggests that the relationship 

between the AQ scores and the increased probability of committing PT errors is significant 

only when the CAPEp scores were low (−1 SD) (β=0.011, p=.047). Conversely, when the 

CAPEp scores are average or high, the relationships between AQ and PT errors are non-

significant (β=0.003, p=0.407; β=-0.005, p=0.394, respectively). This suggests that AQ is 

predictive of PT errors only in participants with low CAPEp scores and that average and high 

CAPEp scores seem to have an attenuating effect on the PT errors caused by an increase in 

the AQ scores. 
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Figure 2.2: A) The relationship between psychosis proneness and the probability of 

committing perspective-taking errors, evaluated at low, average and high AQ scores. B) The 

relationship between autism tendencies and the probability of committing perspective-taking 

errors, evaluated at low, average and high CAPEp scores. Asterisks indicate significant 

slopes. 

 
To estimate if the relative dominance of autism tendencies or psychosis proneness 

was associated with the occurrence of errors in these trials, the AQ and CAPEp scores were 

converted into Z scores. A bias score for each participant was then derived by subtracting the 

CAPEp Z values from the AQ Z values. An inspection of the data suggested a curvilinear 

relationship between the bias score and the errors in the relational and ambiguous conditions. 

To investigate this possibility, we entered into the regression model the bias score (AQz-
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CAPEpz), the sum of the Z scores of both scales (AQz+CAPEpz), the interaction term of the 

bias score with the sum of Z scores, and the quadratic terms of the bias score and the sum of 

scores. The overall model was significant (χ  2 =14.48, df=5, p=.013), with only the quadratic 

term of the bias being significant (β(±SE) = .021(.001), Waldχ  2 = 4.83, df=1, p=.028). Here 

too gender had no effect on the model (Appendix 1, Table 4). As can be seen from Figure 

2.3, the probability of committing PT errors is associated with the relative dominance of 

autism tendencies or psychosis proneness, following a U-shape pattern. That is, individuals 

with elevated tendencies to either autism or psychosis were equally likely to commit PT 

errors. Interestingly, however, individuals with either high or low tendencies to both autism 

and psychosis, performed at similar levels. A similar, though non-significant, pattern was 

also observed for errors in the ambiguous condition (Appendix 1, Figure 2).  

 
Figure 2.3: 3-D representation of the relationship between autism tendencies and psychosis 

proneness (represented as standardized Z scores) and the probability of making perspective-

taking errors on the relational trials. The negative scores represent low tendencies and the 

positive scores represent high tendencies.  
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DISCUSSION 

Our study reveals a dose-dependent relationship between autism tendencies and psychosis 

proneness and mentalizing difficulties. This finding confirms earlier reports showing that 

both autistic tendencies (Baron-Cohen et al., 2001; Bartz et al., 2010) and psychosis 

proneness (Fyfe, Williams, Mason, & Pickup, 2008; Gooding & Pflum, 2012; Pickup, 2006) 

impact perspective-taking and socio-cognitive abilities in healthy adults. Our findings thus 

provide further support to the continuity/dimensional models of ASD and SSD. They suggest 

that subclinical manifestations of core features of both disorders are detectable in a healthy 

population, and that such subthreshold levels can influence socio-cognitive abilities.  

Surprisingly, co-occurring autism tendencies and psychosis proneness have a 

moderating effect on the mentalizing difficulties engendered by either disorders alone (Figure 

2.2 A and B), such that the moderating effects are greatest when both tendencies are high 

rather when both are low. This can be clearly seen in Figure 2.3 where the performance of 

participants presenting with high tendencies to both disorders is similar to participants 

presenting with low tendencies to both disorders. Thus the association of the interaction 

between autistic tendencies and psychosis proneness with a decrease in mentalizing 

difficulties can be seen as support for the diametrical model (Crespi & Badcock, 2008), 

which posits that autism and schizophrenia have opposing effects on behavior and cognition.  

Whether the errors we observe, as would be predicted by the diametric model, are due 

to hypomentalism (in autism) or hypermentalism (in psychosis) is not directly discernable in 

the Director task. Critically, however, the fact that our data show that highly psychosis prone 

individuals err at similar levels to individuals with high autistic tendencies is not inconsistent 

with the diametric model. Both hypomentalism and hypermentalism can equally lead to 

deleterious effects on mentalizing abilities, albeit for different reasons, because otherwise 

they could not explain the fact that both disorders result in impaired social ability. With this 
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in mind, hypermentalizing is a plausible cause of errors, and it provides a way of making 

sense of how psychosis proneness (leading to hypermentalizing) can compensate for autistic 

tendencies (which could lead to hypomentalizing) (Abu-Akel & Bailey, 2000; Ciaramidaro et 

al., 2014). We speculate that, under time pressure, mentalizing places high demands on 

information selection whereby overly narrow information selection can lead to 

undermentalizing whereas overly broad selection can lead to overmentalizing. Consequently 

the efficiency of information flow and the frequency with which information is captured has 

an effect on the number of hypotheses generated and consequently the probability assigned to 

each hypothesis (Thomas, Dougherty, & Buttaccio, 2014). Information capture tends to be 

slow in autism due to increased focus of attention (Baron-Cohen et al., 2001; Russell-Smith 

et al., 2010), and fast in individuals with positive schizotypy/schizophrenia due to 

overswitching (Yogev, Sirota, Gutman, & Hadar, 2004). Thus by considering the 

mechanisms behind mentalizing, it becomes apparent how these different mentalizing styles, 

characteristic of autism and schizophrenia, can compensate for one another. Another 

important difference between both conditions is that schizophrenia is characterized by a 

'jumping to conclusions' cognitive style (which appears to be specifically associated with 

delusions), whereas autism is characterized by a more deliberative cognitive style (Brosnan, 

Chapman, & Ashwin, 2014). The attenuating effect, observed in individuals presenting with 

high expressions in both autism and psychosis traits (Figure 2.3), thus predicts the presence 

of a brain mechanism that can accommodate the co-existence of these contrasting cognitive 

styles. The anti-correlational nature of the default mode network (associated with mentalistic 

thinking) with the task positive network (associated with mechanistic thinking) (Jack et al., 

2012) is a promising neural framework to investigating these contrasting mentalizing styles 

in autism and schizophrenia. 
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Substantial evidence has accumulated showing that psychosis and autism traits are not 

bound to the presence of the disorder (Baron-Cohen et al., 2001; van Os, Linscott, Myin-

Germeys, Delespaul, & Krabbendam, 2009), with clinical and non-clinical forms of these 

traits share common genetic, neurocognitive, and neurobiological features (Corlett & 

Fletcher, 2012; Lustenberger et al., 2014; Noguchi, Hori, & Kunugi, 2008; Stefansson et al., 

2014; Vollema, Sitskoorn, Appels, & Kahn, 2002), so with due caution (David, 2010), we 

consider the clinical relevance of the current approach and findings. First, in the search for 

disorder-specific phenotypic markers it is difficult to distinguish whether the aberrant marker 

is a cause or consequence of the disorder. By showing that the presence of sub-threshold 

clinical traits in healthy adults impact functions that are deficient in patients with these 

disorders, we provide evidence for a mechanism by which the risk of the disorder may, at 

least in part, be mediated through variation in these socio-cognitive functions. Second, our 

findings highlight the importance of testing whether social-cognition is moderated by the 

relative expression of autism versus psychosis within the clinical population. Such 

confirmation would warrant reconsideration of current practices perceiving these conditions 

as distinct, and consequently would facilitate the development of individualized mentalizing-

based therapeutic approaches (Allen & Fonagy, 2006). Finally, the diametric influences of 

autism and psychosis traits on behavior, suggest that these conditions are affected by 

reciprocal causes. Indeed, some phenomena are risk factors for autism but protect against 

schizophrenia, or vice versa. For example, duplications of 22q11.2 protect against 

schizophrenia but represent an autism risk factor (Rees et al., 2014), and congenital blindness 

causes autism traits but protects against schizophrenia (Hobson & Bishop, 2003; Silverstein, 

Wang, & Keane, 2012). This means that the causes of one condition might be developed into 

treatments for the other. As has already been pointed out by others (Crespi et al., 2010b), 

independent efforts demonstrate the potential of this suggestion. For example, mGluR5 



	 31 

antagonists carry a great potential for the treatment of fragile X of which about 30% have 

comorbid ASD (Dolen & Bear, 2009), and its agonists are being developed for the treatment 

of schizophrenia (Conn, Lindsley, & Jones, 2009).  

Our study is the first to observe that co-occurring autistic and psychotic traits can 

exert opposing influences on socio-cognitive performance. Reminiscent of the ‘normality 

effect’ that is observed in certain co-occurring diametrical pathologies such as Parkinson’s 

disease and hemiballismus (Bergman, Wichmann, & DeLong, 1990; Mitchell, Sambrook, & 

Crossman, 1985), our findings thus raise the possibility that autism-schizophrenia 

comorbidity can have an attenuating effect on socio-cognitive difficulties. More broadly, this 

suggests that some individuals may, to some extent, be buffered against developing either 

illnesses or present fewer symptoms due to a balanced expression of autistic and psychosis 

liability, and will only be diagnosed at the extreme state of either illness. In this regard, our 

analytical approach of indexing these factors in terms of bias and additive effects is 

potentially a useful framework to understanding the effect of common risk factors.  
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CHAPTER 3 

 

PERSPECTIVE-TAKING IN INDIVIDUALS WITH BALANCED LOW VERSUS 

BALANCED HIGH EXPRESSIONS OF AUTISM AND PSYCHOSIS:  

AN EYE-TRACKING STUDY4 

																																																								
4	This chapter is currently in preparation for submission: Abu-Akel, A., Wang, J., Wood, S.J., Hansen, P.C., 
Apperly, I.A. (in prep.). Perspective-Taking abilities in individuals with balanced low versus balanced high 
expressions of autism and psychosis traits: An eye-tracking study. Manuscript in preparation. 
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ABSTRACT 

The expression of autism and psychosis can coexist in the same individual, albeit to varying 

degrees. It has been shown that this variation can predict performance on one’s ability to take 

the perspective of others, an ability also known as mentalizing. In Chapter 2, we 

demonstrated that autism and psychosis interactively reduced the likelihood of committing 

perspective-taking errors. Intriguingly, there was no difference in performance among 

individuals with balanced expression. In this study, we sought to replicate the findings of 

from Chapter 2 (in terms of response time) and to investigate possible differences between 

individuals with low balanced versus high balanced expressions of autism and psychosis 

while systematically tracking their eyemovements when performing a more sensitive 

perspective-taking task. The current study replicated the interactive effect observed in 

Chapter 2 and further revealed that while both the low and high balanced expression groups 

were equally accurate on the task, the high balanced groups performed at increasing cost. We 

discuss possible explanations that may account for the discrepancy between the low and high 

balanced groups.  

  

INTRODUCTION 

In Chapter 2, we examined the concurrent effect of autism tendencies and psychosis 

proneness in healthy adults on perspective-taking abilities. The results revealed that 

perspective-taking errors are associated with the relative expression of autism versus 

psychosis following a U-shaped pattern (see Figure 2.3, Chapter 2). However, the high error 

rates rendered the response time of correct responses unreliable as they were the average of 

only few data points5. Therefore, the first goal of this study was to replicate our findings from 

																																																								
5 In Chapter 2, there were 8 relational trials, and the average error rate was about 40%. This means that response 
time data were comprised of only 4-5 data points. This insufficient number of data points renders the response 
time unreliable for statistical inferences due to the risk of inflated variance (Wang, Ali, Frisson, & Apperly, in 
press). 
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Chapter 2 in terms of response time. In addition, the U-shaped pattern of results suggests that 

a population can be classified into four distinct groups who vary in terms of their expression 

of autism and psychosis. Namely, the population can be classified into an autism-dominant 

group, a psychosis-dominant group, a balanced low expressions group, and a balanced high 

expressions group. As expected, the dominant groups were more likely to make perspective-

taking errors. Intriguingly, however, individuals with high balanced expressions of autism 

and psychosis (henceforth, the HAHP group) performed better than the dominant groups, and 

just as well as the low balanced group (henceforth, the LALP group). We ask whether the 

LALP and HAHP groups are indeed similar? This is an important question, as the 

equifinality in performance for both the LALP and HAHP in terms of their probability of 

making errors, does not necessarily imply that decisions were made using similar strategies 

or patterns of information processing. To address these two goals, we employ in this study a 

more sensitive version of the director task ((Wang et al., 2015); see Methods) that allows us 

to examine response times as well as possible information processing differences between the 

balanced groups by systematically tracking their eye-movements.  

The task in this experiment was modified in the following important respects. First, 

given our interest in response time, we followed a different instruction protocol with the 

purpose of increasing accuracy. To do so, we followed the “two-step” instruction protocol, 

which has been shown to significantly reduce perspective-taking errors (Wang et al., 2015). 

According to this protocol, in the first step, participants, as in the original task, are first made 

aware of perspective differences vis-à-vis the director, and that they need to take this 

perspectival difference into account when fulfilling the director’s instructions. In the second 

step, participants are also shown how perspectival difference can lead to egocentric errors. 

Specifically, participants are told the following: “for example, if she asks you to nudge the 

small ball one slot up, she cannot be talking about this object (experimenter points to the 
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smallest ball from the participant’s perspective—marked Y in Left Panel of Figure 3.1 

below) because this object is not available to her. Instead, she must be talking about this 

object (experimenter points to the smallest ball from her perspective in the open slot—

marked X in Left Panel of Figure 3.1).”  

 
Figure 3.1. (Left Panel) Experimental condition of the relational trial. This condition contains a 

distractor marked Y.  (Right Panel) Control condition of the relational trial. In this condition, the 

distractor from the experimental condition is replaced with an irrelevant item, a “juice carton”.  

 

Second, all experimental trials in this version of the task are of the relational type. 

The inclusion of relational-only instructions is based on the results from Chapter 2 suggesting 

that relational instructions are more sensitive to inter-individual differences in autism 

tendencies and psychosis proneness than the ambiguous instructions. For example, in 

response to the director’s instruction to “nudge the small ball one slot up”, the participant 

needs to choose from three balls (i.e., a small, a medium and a large ball) the appropriate 

referent, from the director’s perspective. This is done by suppressing or ignoring the smallest 

ball from the participant’s perspective (i.e., the distractor object, Marked Y in Left Panel of 

Figure 3.1) because the director cannot see it and is not aware of its existence.  

Third, eye-movements patterns were recorded along the time course of each trial. This 

methodology allowed us to track participants’ pattern of information processing in terms of 

Running Head: COGNITIVE FACTORS IN PERSPECTIVE-TAKING 53 

 

 
Figure 1 Examples of the grid display. An example of the experimental condition is shown on the left, 

control condition on the right. 

  

X 

Y 
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both time and number of fixations on specific areas of interest within the display. 

Specifically, each trial was segmented into three phases: an inspection phase, a lead-in phase, 

and an integration phase. The inspection phase referred to the 5 s study time of the grid, 

before the instructions were spoken. During this phase, and on the assumption that 

participants show preference to common ground objects (i.e., those available to both the 

participant and the director) than to privileged ground objects (those only available to the 

participant) (Barr, 2008; Heller, Grodner, & Tanenhaus, 2008), participants were expected to 

dwell and fixate more on common ground objects. The lead-in phase lasted for 913.52 ms 

and referred to the time it took to utter the first two words of the instruction, i.e., “Nudge 

the”. The separation of this phase from the inspection phase is justified on the assumption 

that the onset of the director’s voice may guide participants to clearer anticipation of the 

object they would be required to move. During this phase, no information was yet given to 

the participant regarding the specific object the director wanted to move, and so participants 

were similarly expected to dwell and fixate more on common ground objects. Such bias to 

common ground objects in both the inspection and lead-in phases might reflect the 

participant’s anticipation that the director would ask to move an object from the shared 

common ground. Finally, the integration phase referred to the time elapsed from the onset of 

the adjective “…small …” until the selection of the target. The utterance of the adjective 

marks the start of the integration phase since it is the earliest point when participants can 

resolve the reference. During this phase, we predicted differences in the time required to 

make the selection in the control versus the experimental trials. In the experimental trials, 

time was expected to be longer due to the expected interference from the distractor object 

whilst resolving the identity of the referent. Control trials did not contain distractor objects. 

Given that distractor objects could influence processing time and target selection, we also 

examined proportion of trials containing fixations on the distractor.  
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By using the two-step protocol, we predicted that participants would overall obtain 

high level of accuracy on this task. However, we predicted that participants would 

nonetheless be slower and not as accurate in the experimental compared to the control 

condition. Previous studies have shown that response times remain sensitive to the cost 

associated with holding in mind another’s perspective, even when participants made very few 

errors (Samson, Apperly, Braithwaite, Andrews, & Bodley Scott, 2010; Surtees, Butterfill, & 

Apperly, 2012; Wang et al., 2015). We also predicted that autism tendencies and psychosis 

proneness would interactively modulate response time, thus replicating the effect we 

observed in Chapter 2, albeit for error rates. We did not have a priori hypothesis about the 

effect of inter-individual differences in autism tendencies and psychosis proneness on the 

eye-tracking measures, except for latency to final target fixation. During latency to final 

target fixation, people tend to fixate on an object prior to selection, and hence this period has 

been regarded as the decision time (Wu & Keysar, 2007). As latency to final target fixation 

might be viewed as a measure of the time taken to resolve reference, we predicted an 

interactive effect for autism and psychosis during this time window, which is potentially 

more sensitive than response times. This aspect of the analysis for the remaining eye-tracking 

measures will be exploratory in nature. With respect to group differences, while we do not 

expect the LALP and the HAHP group to differ in their accuracy, we predict that the HAHP 

will exhibit a greater processing cost. This is based on the assumption put forward in Chapter 

2 suggesting that individuals in the HAHP group arrive at their answers through 

compensatory mechanisms, and thus they are likely to come at some cost. It is important to 

note, that this specific hypothesis motivated the comparison of these groups independent of 

the others. 
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METHODS AND MATERIALS 

Participants 

A total of 100 healthy adults, recruited through the University of Birmingham Research 

Participation Scheme (RPS), participated in this study for a course credit. Given our focus on 

the low and high balanced groups, we also contacted participants from the original 

experiment who scored above the median splits of both the Autism Quotient Spectrum (AQ) 

(Baron-Cohen et al., 2001) and the positive scale of the Community Assessment of Psychic 

Experiences (CAPEp) (Stefanis et al., 2002). As in Chapter 2, the assessment of positive 

schizotypy rather than the general construct of schizotypy is based on evidence for autism-

positive schizotypy axis in the non-clinical population (Dinsdale et al., 2013), and that 

negative symptoms do not reliably discriminate between the ASD and SSD (Spek & 

Wouters, 2010). Four participants were recruited through this call. Participants self-reported 

that they have no history of psychiatric illness, epilepsy, neurological disorders, or brain 

injury, current or past alcohol and/or substance abuse problems. However, data of two 

participants were lost due to program failure, and 1 for failing calibration of eye-movements. 

Thus the final sample consisted of 97 participants. The study was approved by the University 

of Birmingham Research Ethics Committee, and written informed consent was obtained from 

all participants. 

From this pool of participants we identified participants with low and high balanced 

expressions of the AQ and CAPEp scales. This was done by first dividing the overall sample 

into low and high AQ scorers using a median split, and similarly into low and high scorers on 

the CAPEp. Using these initial classifications, we formed the two balanced groups, i.e., the 

Low Autism Low Psychosis (LALP) and the High Autism High Psychosis (HAHP) groups as 

shown in Figure 3.2 below. Table 3.1 summarizes the characteristics of the overall sample 

and the balanced groups. 
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Figure 3.2. Classification of the sample based on median splits of the AQ and CAPE positive 

subscale (CAPEp) scores: The dotted lines represent the median splits for the AQ and CAPEp scales. 

LALP=Low Autism, Low Psychosis. HAHP=High Autism, High Psychosis.  

 
Table 3.1. Characteristics of overall sample and the low and high balanced groups  

Variable Sample 

(N=97) 

LALP 

(N=30) 

HAHP 

(N=26) 

Group Differences 

Gender (M, F) 17, 80 5, 25 5, 21 χ2= 0.06, p=.80 

Age 19.34±0.83 19.33±0.88 19.73±2.41 t=-.84, df=54, p=.40 

AQ 13.91±5.27 9.57±2.60 18.96±3.45 t=-11.61, df=54, p<.001 

CAPEp 25.96±3.70 23.17±1.53 29.81±3.87 t=-8.66, df=54, p<.001 
LALP = Low autism low psychosis; HAHP = High autism and high psychosis; AQ = Autism Quotient; CAPEp 

= Community Assessment of Psychic Experiences, positive subscale.  

 
 

Procedure 

In a quiet room, participants first completed the modified version of the perspective-taking 

task while recording their eye-movements. Participants then completed the CAPEp and the 

AQ questionnaires.  
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Materials 

Questionnaires 

The AQ and the CAPEp scales have been described in Chapter 2. In this study, the internal 

consistency of the CAPEp (Cronbach’s α = .70) and the AQ (Cronbach’s α = .72) is good. 

The scores on the scales correlated modestly (rρ=.29, p=.003). 

 

The Perspective-Taking Task 

In this study, we utilized a modified version of the perspective-taking task described in 

Chapter 2. Specifically, the instruction protocol of the current task highlighted (1) perspective 

differences between the participant and the director, and the need to take this perspectival 

difference into account when fulfilling the director’s instructions to move objects about the 

grid, and (2) showed the participant an example demonstrating how such perspectival 

difference can lead to egocentric errors as described above.  

As in the original experiment, there were a total of 128 instructions given in 4 blocks 

of 32 instructions each. During each block, there were 8 grids, and during each grid the 

director gave 3-5 instructions, of which one was a critical (control or experimental) 

instruction. In this version of the task, all the 32 critical instructions were of the relational 

type (see example experimental and control trials in Figure 3.1). Once the instruction is 

played, the participant has 4 s to respond. If a selection is not made during this time, the next 

instruction is played or a new grid is presented. Objects were moved by clicking on it with 

the computer mouse and dragging it to the nearby slot, up/down or left/right, as instructed. It 

is important to note that whilst the 128 instructions were matched for the number of up/down, 

left/right instructions, the critical trials only contained up/down instructions to reduce 

potential noise from left/right confusion.  
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Eye-movements record 

Participants’ eye-movements was recorded at 1000Hz with an Eyelink 1000 (SR Research). 

Participants were positioned on a chin rest 60cm from a 24 inch gaming computer screen. 

The grid-images subtended 26.93° (width) by 20.15° (height). We drew interest areas around 

each slot on the grid, which subtended 3.25° (width) by 3.15° (height). A 13-point calibration 

was carried out before each block. After the end of each block, participants were encouraged 

to take a break to avoid neck strain and fatiguing of the eyes.  

Eye-movements data, in both the control and experimental conditions, are reported 

for three phases of a trial in which the participant made correct responses, i.e., during the 

inspection, lead-in and integration phases. Within the inspection and lead-in phases, we 

calculated, for both the control and experimental conditions, the average time a participant 

dwelled on common ground objects (those available to both the participant and the director) 

versus privileged ground objects (those only available to the participant). Since the number of 

common and privileged ground objects was uneven for most grids, the dwell time is thus 

confounded by the number of objects available in each ground. To adjust for this, the average 

dwell time for both the common and privileged ground objects was calculated by dividing the 

cumulative dwell time by the number of objects available in each ground. However, given 

that during both the inspection and lead-in phases the participants are unaware whether they 

will need to take the director’s perspective, and that the control and experimental girds 

differed by only one object, the data of the average dwell time were collapsed across the 

control and experimental conditions for both phases. Similarly, we also calculated the 

average number of fixations landed on both the common and privileged ground objects, while 

adjusting for the number of items in the common and privileged grounds.  

During the integration phase, we calculated, in both the control and experimental 

conditions, the average amount of time elapsed from the onset of the adjective until the final 
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fixation on the target selected for response. This is termed latency to final target fixation. 

Unlike the inspection and lead-in phases, in this phase it is important to make the distinction 

between the control and experimental conditions, as we anticipate an effect on the processing 

time required to resolve the reference in the presence of a distractor object (i.e., the small ball 

marked Y in Left Panel of Figure 3.1).  

In addition, during the integration phase we also computed the proportion of trials 

during which the participants fixated on the distractor item in the grid at least once during the 

experimental trials. This was to assess the degree to which the participants were distracted by 

the competing item available to them in the privileged ground whilst they were trying to 

resolve the item referred to by the director.  

 

RESULTS 

Overall Sample: Behavioral data 

First, we report the behavioral data in terms of accuracy and response time of accurate 

responses for the entire sample (see Table 3.2). Participants overall were more accurate 

(tdf=96=3.64, p<.001, Cohen’s d= .47) and faster (tdf=96=-3.66, p<.001, Cohen’s d= .25) on the 

control compared to the experimental trials. Accuracy scores were negatively correlated with 

response times on both the control (rρ=-.31, p=.002) and experimental (rρ=-.33, p=.001) 

conditions, suggesting that there is no tradeoff between accuracy and response times.  

 
Table 3.2. Sample overall performance in terms of accuracy (proportion correct) and 

response time 
 Mean Accuracy (Proportion ± SD)  Mean Response Time (ms ± SD) 

Control Experimental Control Experimental 

Sample  

(N=97) 0.97±0.06 0.91±0.17 2932.54±178.47 2980.92±213.04 
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Overall sample: Eye-movements record 

A series of paired-samples t-tests investigated the participants’ eye-movements pattern in 

terms of average dwell time per object as well as the average number of fixations on common 

versus privileged ground objects in both the inspection and lead-in phases. We also examined 

differences in latency to final target fixation during the integration phase in the control versus 

the experimental trials (see Table 3.3). The analysis revealed that participants overall dwelled 

more on common ground objects during both the inspection (tdf=96=2.26, p=.026, Cohen’s d= 

.29) and lead-in phases (tdf=96=2.37, p=.020, Cohen’s d= .31). They also fixated on common 

more often than privileged ground objects during both the inspection (tdf=96=2.69, p=.008, 

Cohen’s d= .26) and lead-in phases (tdf=96=2.57, p=.012, Cohen’s d= .32). During the 

integration phase, latencies were longer in the experimental than the control condition at a 

trend level (tdf=96=-1.81, p=.074, Cohen’s d= .18). 

 
Table 3.3. Summary of eye-movement record in the inspection, lead-in and integration 

phases of a trial for the entire sample (N=97). Standard errors in parentheses 
 Inspection Phase Lead-in Phase Integration phase 

Common 

Ground 

Privileged 

Ground 

Common 

Ground 

Privileged 

Ground 

Control 

trials 

Experimental 

trials 

Dwell time per 

object (ms)1 

345.28 

(8.48) 

321.98 

(8.05) 

78.22 

(2.35) 

70.93  

(2.38) 

 

Average fixations 

per object2 

1.33  

(0.03) 

1.24 

(.04) 

0.27 

(0.01) 

0.25 

(0.01) 

Latency to final 

target fixation 

(ms) 

 
2289.83 

(27.51) 

2354.61 

(42.72) 

1 Only fixations over 100ms were included, as saccades typically take from 30-120ms (Young & Sheena, 1975).  
2 The first 200ms of the inspection phase were excluded from the dwell-time analysis, as there is typically a 

100-200 refractory period before a saccade is made (Young & Sheena, 1975).  

 
In addition, participants, on average, fixated on the distractor object in 59% of the 

experimental trials (95% CI = 54.74, 63.22); the control condition contained no distractor.   
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Individual differences as a function of AQ, CAPEp and their interaction: Response time 

To examine the effect of autism and psychosis scores and their interaction on the accuracy 

and response times during the control and experimental conditions, we conducted regression 

analyses using generalized linear models. The omnibus tests were nonsignificant for accuracy 

in both the control (χ  2 =5.85, df=3, p=.119) and experimental (χ  2= .20, df=3, p=.98) 

conditions, as well as for response time in the control condition (χ  2 =5.97, df=3, p=.113). 

However, the omnibus test for response times during the experimental condition was significant 

(χ  2 =7.95, df=3, p=.047). As shown in Table 3.4, the model’s parameter estimates (i.e., the 

main effects and the interaction term) are all significant. 

 

Table 3.4. Summary of coefficients with response time on the experimental relational 

trials as the dependent variable 

AQ = Autism Quotient; CAPEp = Positive scale of the Community Assessment of Psychic Experiences. 

 
The results suggest that autism and psychosis scores interactively reduce response time. We 

unpacked the interaction following the method by Hayes and Matthes (Hayes & Matthes, 

2009) as described in Chapter 2. As shown in Figure 3.3A, the increase in response time as a 

function of AQ scores depends on the level of psychosis proneness and is particularly 

attenuated in individuals with high psychosis scores (defined as 1 SD above the mean). 

Similarly, Figure 3.3B shows that the increase in response time as a function of psychosis 

Model 

 

Coefficient 

β  (SE) Waldχ  2  

 

df 

 

 

Sig. 

 

Constant 1645.58 523.36 9.89 1 =.002 

AQ 73.96 31.39 5.55 1 =.018 

CAPEp 50.10 20.75 5.83 1 =.016 

AQxCAPEp -2.71 1.22 4.95 1 =.026 
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depends on the level of autism tendencies and is particularly attenuated in individuals with 

high AQ scores (defined as 1 SD above the mean).   

 
Figure 3.3. (A) The relationship between autism tendencies and response time, evaluated at low 

(Mean – 1 SD), average, and high CAPEp scores (Mean +1 SD). (B) The relationship between 

psychosis proneness and response time, evaluated at low (Mean – 1 SD), average, and high AQ scores 

(Mean +1 SD). 

 
Individual differences as a function of AQ, CAPEp and their interaction: Eye-movements 

record 

Using generalized linear models, we examined the association of autism, psychosis and their 

interaction as a function of the average dwell time and average number of fixations during 

both the inspection and lead-in times on the common and privileged ground objects. We also 

examined the association of these parameters with latency to last target fixation during the 

control and the experimental trials, and with the proportion of trials during which the 

participants fixated on the distractor during the experimental trials. None of the ombibus tests 

were significant (all ps>.16). 

 

Group analysis: Behavioral data 

To examine differences between the balanced groups in their performance on the task, we 

conducted two separate, 2x2 ANOVAs of condition (experimental vs control) x group 

(LALP, HAHP) for accuracy and response time. For accuracy, the analysis revealed only a 
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main effect for condition (F(1,54)=7.69, p=.008, ηp
2=.13), where participants were more 

accurate in the control (M(SE)=.97(.008)) than the experimental (M(SE)=.90(.028)) 

condition. For response time, the analysis revealed a main effect for condition (F(1,54)=6.69, 

p=.012, ηp
2=.11), where participants were faster in the control (M(SE)=2925.69(24.79)) than 

the experimental (M(SE)=2968.08 (29.20)) condition, and a significant condition x group 

interaction (F(3, 51)=4.72, p=.034, ηp
2=.08) (see Figure 3.4). There was no main effect for 

group (F(1,54)=1.04, p=.31). 

 
Figure 3.4. Mean response time of the balanced groups in the experimental and control conditions. 

LALP=Low Autism Low Psychosis, HAHP=High Autism High Psychosis. Error bars represent 

standard error of the means. 

 
Post-hoc t-tests corrected form multiple comparisons (significant if p<.013) revealed a 

significant difference only between the control and experimental conditions in the HAHP 

group with the group being slower in the experimental (M(SE)=3012.16(42.75)) than the 

control (M(SE)=2934.16(36.29) condition (tdf=25=-2.90, p=.008, Cohen’s d= .45).   

 

Group analysis: Eye-movements record 

Inspection phase: Dwell time and fixations on privileged vs common ground objects  

For both the dwell time and number of fixations during the inspection phase, the ground 

*	
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(common vs privileged) x group (LALP, HAHP) ANOVAs revealed only a main effect for 

ground. Specifically, participants dwelled significantly more on the common 

(M(SE)=347.82(10.84) versus the privileged (M(SE)=313.23(11.25) ground objects 

(F(1,54)=7.18, p=.010, ηp
2=.12). They also fixated significantly more frequently on the 

common (M(SE)=1.37(0.44) versus the privileged (M(SE)=1.24(0.05) ground objects 

(F(1,54)=9.29, p=.004, ηp
2=.15).  

 

Lead-in time phase: Dwell time and fixations on privileged vs common ground objects  

For both the dwell time and number of fixations during the lead-in phase, the ground 

(common vs privileged) x group (LALP, HAHP) ANOVAs revealed only a main effect for 

ground. Specifically, participants dwelled significantly more on the common 

(M(SE)=79.01(3.08) versus the privileged (M(SE)=69.91(3.32) ground objects 

(F(1,54)=5.42, p=.025, ηp
2=.09). They also fixated significantly more on the common 

(M(SE)=.27(0.01) versus the privileged (M(SE)=.24(0.01) ground objects (F(1,54)=4.45, 

p=.040, ηp
2=.08).  

 

Integration phase: Latency to final target fixation 

To examine differences in the average latency to last target fixation, we conducted a 

condition (control vs experimental) x group (LALP, HAHP) ANOVA. The analysis revealed 

a trend for a significant condition x group interaction (F(1,89)=3.04 p=.087, ηp
2=.05) (see 

Figure 3.5). Exploratory, post-hoc analysis revealed longer latency during the experimental 

M(SE)=2366.72(61.63) compared to the control M(SE)=2276.78(56.27) condition (tdf=25=-

2.34, p=.028, Cohen’s d= .30) only in the HAHP group.   
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Figure 3.5. Mean latency to last target fixation of the balanced groups in the experimental and control 

conditions. LALP= Low Autism Low Psychosis; HAHP= High Autism High Psychosis. Error bars 

represent standard error of the means. 

 
Proportion of trials containing fixations on distractor 

In examining the proportion of trials containing fixations on the distractor, we only analyzed 

group differences during the experimental condition, as the distractor is only present during 

this condition. There was no difference between the LALP (M(SE)=.57(.04) and HAHP 

(M(SE)=.55(.05) groups (tdf=54=.31, p=.76).  

 

DISCUSSION 

The aim of this study was twofold. First, we wanted to replicate the findings from Chapter 2 

in terms of response time. Second, we wanted to examine possible differences between the 

low balanced (LALP) and high balanced (HAHP) groups. To do this, we adopted a more 

sensitive version of the perspective-taking task that was designed to reduce the error rates 

thus allowing for the examination of the effects of autism tendencies and psychosis proneness 

on response times. Our findings show that the two-step instruction method was successful in 

considerably reducing the error rate. The participants achieved over 90% correct responses, 

which is in stark in contrast to the 42% error rate we reported in Chapter 2. This is consistent 

*	
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with previous work using the “two-step” instruction (Wang et al., 2015), and suggests that by 

demonstrating how the director’s perspective can constrain reference, participants are able to 

achieve high level of accuracy on this task. We also observed an interactive effect between 

autism and psychosis scores on response time, such that the effect engendered by the 

expression of one condition was attenuated by the relative expression of the other.  This 

result thus replicates our finding from Chapter 2, in a largely independent sample from the 

sample reported in Chapter 2. It should be noted, however, that this is based upon observing 

the effect in the experimental trials, and not on demonstrating a difference between the 

patterns of experimental and control trials. 

With respect to differences between the LALP and HAHP groups, our results indicate 

that while both groups were equally efficient and accurate on the task, the participants from 

HAHP were slower in the experimental compared to the control condition. The delayed 

response time in the experimental condition may reflect greater egocentric interference, and 

thus the need for more time to resolve the identity of the referent. This effect is somewhat 

captured during the integration phase of the trial as suggested by the slower latency to final 

target fixation times. Thus, the difficulty of the HAHP group appears to occur during the 

phase that requires them to integrate incoming linguistic instruction with the available ground 

information. It is noteworthy that this difficulty is unlikely to have resulted from how ground 

information was processed, as both groups showed preference to common ground objects, 

suggesting that both groups equally anticipated the referent to come from common ground 

objects. Similarly, the lack of difference between the groups in the proportion of trials 

containing fixations on the distractor suggests that the processing of the distractor object is 

equally unlikely to account for the egocentric effect observed for the HAHP group during the 

experimental condition. However, with respect to the latter suggestion, although the 

likelihood of looking at the distractor on a given trial did not differ between the LALP and 
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HAHP groups, the fact that interference occurred only during the experimental condition, the 

greater cost suffered by the HAHP group may be due to greater difficulty disengaging from 

the distractor object.  

If the integration of linguistic and ground information during the experimental 

condition is responsible for retarding perspective-taking efficiency in the HAHP group, it is 

conceivable that the difference between the groups lies in executive functioning. Indeed, 

prior work has shown that executive functioning can influence performance on perspective-

taking tasks (Brown-Schmidt, 2009). In the context of our task, it is possible that holding in 

working memory another potential referent (i.e., discerning between two relevant referents vs 

three referents) is a potential source for the processing delay in the experimental condition. It 

is important to note that information complexity is unlikely to affect perspective taking per se 

(i.e., competence), but only the efficiency in doing so (i.e., performance). Experimental 

manipulations that increase or reduce the number of potential referents can be instrumental in 

testing this hypothesis. For example, by adding another ball to the three available balls that 

the participant needs to choose from when asked to “nudge the smallest ball one slot up” we 

should observe longer latencies in identifying the correct reference. Alternatively, we can 

assess this hypothesis by assessing the performance of the HAHP group in terms of inter-

individual differences in working memory capacity. This is plausible, as previous work has 

shown that working memory capacity can lead to longer latencies during the integration 

phase of the director task (Lin, Keysar, & Epley, 2010). 

In conclusion, the present study successfully replicated the interactive effect of autism 

and psychosis on perspective-taking, using response times as an outcome measure. This 

finding underscores the robustness of this effect and thus the need for the simultaneousness 

assessment of autism and psychosis when examining socio-cognitive abilities. In addition, 

the response time data were sensitive in discerning differences between the LALP and HAHP 
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groups. While our previous findings, from Chapter 2, in terms of error rate lead us to believe 

that the groups were equifinal in their performance, the eye-tracking data suggest that both 

groups differ in their ability to integrate pertinent linguistic input with available ground 

information. While this difference is subtle, it constitutes, nonetheless, the first evidence 

suggesting that the HAHP group resolves perspective-taking conflicts less efficiently than the 

LALP group. Further research is needed to understand in greater detail the source of this 

interference and more specifically how and what information is processed en route to 

resolving conflicts emanating from perspectival difference. 
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CHAPTER 4 

 

AUTISM TENDENCIES AND PSYCHOSIS PRONENESS 

INTERACTIVELY MODULATE SALIENCY COST6 

																																																								
6	This chapter is currently under review: Abu-Akel, A., Apperly, I.A., Wood, S.J., Hansen, P.C., Mevorach, C. 
Autism tendencies and psychosis proneness interactively modulate saliency cost. 	
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ABSTRACT 

Saliency is a candidate endophenotype for both autism and psychosis spectrum disorders. 

However, while both conditions are associated with saliency-related deficits, there is 

evidence that autism can render some benefits on some tasks. Recent evidence suggests that 

autism and psychosis can co-occur at both the diagnostic and trait levels. In this study, we 

investigated saliency-based selection in a large cohort of neurotypical adults in whom both 

autism and psychosis traits have been assessed. Converging evidence from two experiments 

suggest that autism tendencies and psychosis proneness interactively modulate the cost 

incurred in the presence of a task-irrelevant salient distractor, such that the effect engendered 

by the expression of one condition depends on the co-occurring expression level of the other 

condition.  

 

INTRODUCTION 

In both clinical and non-clinical participants, traits for autism and schizophrenia spectrum 

disorders (ASD and SSD, respectively) are associated with differences in attentional 

processing. Although these are often seen as deficits, there is also some evidence of autism 

giving benefits on some tasks. As such, it is far from clear whether autism and psychosis 

traits yield these effects for the same reasons, not least because it is uncommon for these 

traits to be assessed in the same participants. Recent theoretical and empirical evidence, 

however, highlights the need to assess autism and psychosis traits in tandem as they might be 

additive or even interact (Abu-Akel, Wood, Hansen, & Apperly, 2015). Here, we investigate 

the interactive effect of autism and psychosis traits on saliency-based selection in a large 

cohort of neurotypical adults. Salience-based selection is a key attentional mechanism 

associated with the ability to bias attention towards (or away from) salient information 

(Mevorach et al., 2006), and is considered a candidate endophenotype for both autism (Uddin 
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et al., 2013) and schizophrenia (Kapur, 2003). As such understanding how healthy variations 

in these traits impact attentional processing can facilitate our understanding of clinical autism 

and psychosis and their interaction. 

Research in SSD and the broader spectrum of these traits in healthy participants has 

consistently and robustly shown increased processing cost in the presence of salient distractor 

stimuli (Ettinger et al., 2015; Hahn et al., 2010; Minas & Park, 2007; Poirel et al., 2010). For 

example, in a global-local processing paradgim where participants were required to judge 

whether a pair of compound stimuli (global froms composed of local forms) were identical or 

not, there was a significant slowing in information processing in schizophrenia patients, 

particularly in the presnece of a salient distractor element at the local level (Poirel et al., 

2010). Similarly, neurotypicals with high positive schizotypy scores had more difficulties 

filtering out non-relevant salient stimuli (the more complex figure) while they were required 

to detect an embedded figure (Russell-Smith et al., 2010).  

Research in ASD and the broader spectrum of ASD traits in neurotypical participants 

also reports significant effects on information processing in the presence of salient distractors 

(Becchio et al., 2010; Behrmann et al., 2006; Leader, Loughnane, McMoreland, & Reed, 

2009). For example, Becchio et al. (2010) have shown that, compared to typically developing 

children, children with ASD were significantly slower in identifying objects in the presence 

of their cast-shadow compared to objects without a shadow. In addition, both individuals 

with ASD and their unaffected brothers are less efficient than controls at a visual divided-

attention task requiring the suppression of spatially intervening distractors, with the 

unaffected brothers performing intermediately (Belmonte, Gomot, & Baron-Cohen, 2010). 

While these studies collectively suggest that autism is associated with reduced ability to filter 

out irrelevant information, there is contrasting evidence suggesting that individuals with ASD 

are more adept at ignoring distracting salient information. For example, compared to 
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typically developing children, children with ASD have been shown to be more resistant to 

both non-social (e.g., odd balls) (Blaser, Eglington, Carter, & Kaldy, 2014) and social (e.g., 

faces) distractors (Riby et al., 2012), and that the degree of interference by the presence of 

the distractor appears to negatively correlate with the severity of autism functioning (Riby et 

al., 2012). Similarly, individuals with ASD show less global precedence (assuming that the 

global level is typically more salient) when processing global versus local information 

(Koldewyn, Jiang, Weigelt, & Kanwisher, 2013), although this study also reports that their 

processing of global information is unimpaired when explicitly instructed to attend to the 

global level. Although, it is plausible that the inconsistency of findings in ASD might be 

partly due to unrecognized variation due to other trait dimensions such as SSD, there is 

significant evidence suggesting that there may be some aspects of saliency processing that 

are better in ASD.   

The evidence described above opens the possibility that traits for ASD and SSD 

might each have effects on salience processing, and that these effects may interact. While 

ASD and SSD have been formally conceptualized as distinct disorders since the 1970s 

(Kolvin, 1971), several recent lines of evidence suggest that there are important cognitive, 

behavioral, neurophysiological and etiologic relationships between the two disorders (Crespi 

et al., 2010b; Sasson et al., 2011; P. F. Sullivan et al., 2012). Furthermore, accumulating 

evidence suggests that the disorders can co-occur at both the diagnostic and trait levels within 

the individual (Chisholm et al., 2015; Hofvander et al., 2009; Sheitman et al., 2004; Solomon 

et al., 2011). In the context of such co-occurrence, it is important to determine what the 

relative impact is of disorder-specific traits on phenotypes within an individual. This question 

has significant implications for the individual’s for treatment and prognosis, as well as the 

nature of the relationship between ASD and SSD. Despite the recognition of the centrality of 

saliency-related effects in both ASD and SSD, no previous saliency-related studies have 
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directly compared both conditions, or the effect of their co-occurrence at either the trait or 

diagnostic levels.  

One approach to evaluating the co-occurring effect of ASD and SSD on the 

suppression/filtering out of salient information (“saliency” henceforth), is by examining the 

association of psychosis proneness and autistic tendencies among non-clinical populations. 

This approach draws on the notion that both autistic (Baron-Cohen et al., 2001) and psychotic 

tendencies (Allardyce, Suppes, & Van Os, 2007) exist on a continuum, ranging from 

typicality to disorder, and has the advantage of eliminating the confounding effects of active 

symptomatology or medication (Stefansson et al., 2014). We therefore investigated the effect 

of autistic tendencies and psychosis proneness on the cost associated with the processing of 

information in the presence of competing salient information in a large sample of non-clinical 

adults. More specifically, we examined how autistic and psychotic tendencies affect the 

processing of two competing sources of information where one set of information is more 

prominent (i.e., more readily available for processing) but irrelevant and the other is relevant 

but is less prominent.  

To this end, saliency was examined in two separate experiments. The first is 

Mevorach et al.’s (2009) variant of the Navon’s classic global-local task (Navon, 1977) 

which assesses overall local and global biases, selective attention and saliency suppression. 

The second is a novel Face-Scene Perception Task. This task enables us to test for 

attentional/perceptual biases to socially relevant stimuli (i.e., faces) as well as whether the 

effects are perceptual or attentional. More specifically, this task enables us to investigate 

whether the effect of autism tendencies and psychosis proneness is associated with the 

perception of salient stimuli, or with the suppression/filtering out of competing salient 

information. The autistic and psychotic tendencies were respectively assessed with the 

Autism Spectrum Quotient (Baron-Cohen et al., 2001) and the Community Assessment of 
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Psychic Experiences Questionnaire (Stefanis et al., 2002). These are well-validated 

questionnaires that have been used extensively to assess these traits in the general population 

(see Method for details). While the focus of the current study was on saliency, we also tested 

for the effect of autism and psychosis traits on differences in information processing as a 

function of level (i.e., local versus global), target (face versus scene) and congruency 

(congruent versus incongruent information) given research suggesting that information 

processing related to these factors varies as a function of autism and psychosis (Koldewyn et 

al., 2013; McCabe et al., 2013; Russell-Smith et al., 2010).  

Based on findings from existing literature, we predicted that higher levels of 

psychosis proneness would increase the burden of information processing in the presence of 

salient distracting stimuli. While the literature regarding the affect of autism traits is less 

clear, we further predicted that any increased cost associated with autism tendencies will vary 

depending on the level of co-occurring psychosis proneness. However, the effect of their co-

occurrence on cost depends on the nature of the relationship between autism and psychosis, 

which as described in Chapter 1 (Figure 1.1) can be independent (or separate), overlapping or 

diametrical.  The independent model predicts that co-occurrence will result in a non-additive 

effect perhaps due to a ceiling effect, or a dominance effect where the effect is mainly driven 

by level of psychosis; the overlapping model predicts that co-occurrence will result in an 

additive effect leading to greater interference by the competing salient distractor; and the 

diametric model predicts that co-occurrence will result in a sub-additive effect where the cost 

will be reduced in the presence of both conditions, perhaps through some compensatory 

effect, whereby saliency suppression is contrastingly modulated by autism and psychosis 

tendencies. The latter scenario is conceivable if autism, in contrast to psychosis, is less 

affected by the presence of salient distracting information.  
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METHODS AND MATERIALS 

Participants  

Data were collected from 202 healthy adults (43 males, 159 females; mean age = 21.45, SD = 

4.33). Participants were university students who participated either for course credit or cash 

compensation. Participants self-reported that they have no history of psychiatric illness, 

epilepsy, neurological disorders, or brain injury, current or past alcohol and/or substance 

abuse problems. The study was approved by the University of Birmingham Research Ethics 

Committee, and written informed consent was obtained from all participants.  

 

Measures and materials  

The Community Assessment of Psychic Experiences (CAPE) Questionnaire 

The CAPE questionnaire was used to assess psychosis proneness. This self-report 

questionnaire is based on the Peters et al. Delusions Inventory-21 (PDI-21) (Peters et al., 

1999) and consists of 42 items measuring the presence of positive psychotic experiences (20 

items), negative psychotic experiences (14 items), and depressive experiences (8 items) that 

an individual may have experienced over the last 12 months (Stefanis et al., 2002). The 

occurrence of these symptoms is reported on a likert frequency scale from 1 (never) to 4 

(nearly always). For current purposes, the 20-item CAPE positive scale (CAPEp) is used as a 

measure of psychosis proneness. The assessment of positive schizotypy rather than the 

general construct of schizotypy is based on evidence for autism-positive schizotypy axis in 

the non-clinical population (Dinsdale et al., 2013), and that negative symptoms do not 

reliably discriminate between the ASD and SSD (Spek & Wouters, 2010). The internal 

consistency of this scale in this study is very good (Cronbach’s α = .84), and falls within the 

range of values reported in other studies within the general population (Lin et al., 2011).  
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The Autism Spectrum Quotient (AQ) Questionnaire 

Autism tendencies were assessed using the AQ. This self-report questionnaire consists of 50 

items that measure the presence of traits associated with the autistic spectrum within the 

general population (Baron-Cohen et al., 2001). Each item is given a score of 0 or 1. The 

AQ’s internal consistency in this study is good (Cronbach’s α = .82), and is comparable to 

the values reported in other studies (Austin, 2005). 

 

The Center for Epidemiologic Studies Depression Scale – Revised (CESD-R)  

This brief 20-item self-report scale is a revision of the original CESD scale (Radloff, 1977) 

that closely reflects the DSM-IV criteria for depression (Eaton, Smith, Ybarra, Muntaner, & 

Tien, 2004). It assesses the individual’s level of depressive symptomatology experienced 

over the last two weeks. A score of zero (not at all or less than one day) to 3 (5-7 days) is 

given for symptoms experienced over the last week. A score of 4 is given if the individual 

experiences the symptom nearly every day over the last two weeks. The internal consistency 

in this study is high (Cronbach’s α =.91) and is comparable to the values reported in a recent 

validation study for both a student sample (N=245) and a large community sample (N=6,971) 

(Van Dam & Earleywine, 2011). Depressive symptoms are measured since they are frequent 

clinical features in both ASD (Stewart, Barnard, Pearson, Hasan, & O'Brien, 2006) and SSD 

(Buckley, Miller, Lehrer, & Castle, 2009), and may affect performance on cognitive tasks 

(Jones, Siegle, Muelly, Haggerty, & Ghinassi, 2010). 

 

The Global- Local Task 

In this task, participants were required to identify the global letter of the compound figure 

made up of small letters (an S or an H) or the local letter of the compound figure (an S or an 

H) while ignoring information on the other level. As can be seen from Figure 4.1A below, 
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saliency was manipulated in two ways: Local saliency was achieved by using alternating 

colors for the local elements (to break grouping), and global saliency was achieved by 

blurring the local elements. As such, participants were asked to detect the local or the global 

letter under four conditions: identifying the global letter when the global level is more salient, 

identifying the global letter when the local level is more salient, identifying the local letter 

when the local level is more salient, and identifying the local letter when the global level is 

more salient. 

The task consisted of 4 blocks containing 32 trials each for a total of 128 trials equally 

divided among the 4 different conditions. On half of the trials, the compound figures 

consisted of the same global and local elements (congruent trials), and on the other half there 

were different global and local elements (incongruent trials). Each block was preceded with 

an instruction to either identify the letter at the local level or the letter at the global level. 

Participants, seated approximately 60cm from a 17” monitor, were asked to identify the 

presented letter as quickly and as accurately as possible. Details regarding stimuli’s visual 

angles and positioning on the screen have been described elsewhere (Mevorach, Shalev, 

Allen, & Humphreys, 2009). Each trial began with a 1500msec fixation cross. Letters 

appeared against a black background for 150msec, following a 200msec interval (see Figure 

4.1B). The next trial began after the participant pressed one of two keys on the keyboard: ‘K’ 

and ‘M’. ‘K’ was labeled ‘S’ and ‘M’ was labeled ‘H’. Key presses recorded the participants’ 

responses and reaction times. The task was presented using Presentation® (Neurobehavioral 

Systems, www.neurobs.com). 
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Figure 4.1. (A) Example of stimuli for the global-loca task (Original stimuli were presented against a 

black background). (B) Typical trial display sequence. 

 

The Face-Scene Perception Task 

In this task, participants were required to either detect a face or a scene. There were two faces 

and two scenes that were associated with two keys on the keyboard:  ‘K’ and ‘M’. ‘K’ was 

relabeled ‘S’ and ‘M’ was relabeled ‘H’, denoting Scene and Head respectively). Participants 

were required to associate the scene or the face with the corresponding letter (H or S). To 

neutralize memory constraints, a sheet depicting these associations was placed in front of the 

participant whilst performing the task (see Figure 4.2A). As can be seen from Figure 4.2B, 

these faces and scenes were superimposed onto each other to manipulate saliency and 

congruency. In the neutral condition, the face (or the scene) were presented together with a 

scrambled version of the scene (or the face). The superimposed combinations used a 

manipulation of the face or scene contrast at a 70%/30% ratio. Thus for more salient face 

displays, the face was presented at 70% contrast and the scene (or scrambled scene) was 

presented at 30% contrast. For more salient scene displays, these values were reversed. 

Congruency and incongruency were achieved by superimposing faces and scenes that were 

associated with the same letter (i.e., no response conflict) or different letters (i.e., response 

conflict), respectively. 
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Figure 4.2. (A) Stimuli of the face-scene perception task. (B) Faces and scenes in salient/non-salient, 

congruent/incongruent and neutral conditions. (C) Typical trial display sequence for congruent 

stimuli. (D) Typical trial display sequence for incongruent stimuli.  

 

The task consisted of 12 blocks of 12 trials each for a total of 144 trials, equally 

divided among the congruent, incongruent and neutral conditions. Each block was preceded 

with an instruction to either identify faces or identify scenes as quickly and as accurately as 

possible. The instruction remained on the screen for 5 seconds. Each trial then began with a 

1500msec fixation cross, and following a 200msec interval, the picture appeared for 150msec 

(see Figure 4.2C-D for a typical sequence display of congruent and incongruent stimuli). 

Participants were seated approximately 60cm from a 17” monitor, so that each centimeter on 

the screen represented ~0.96ᴼ of visual angle. The displayed stimuli subtended a visual angle 

of ~12.82ᴼ horizontally and ~12.84ᴼ vertically. Key presses recorded the participants’ 
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responses and reaction times. The task was presented using Presentation® (Neurobehavioral 

Systems, www.neurobs.com).  

 

Procedure 

Participants first completed the Global-Local Saliency task (~10min), followed by the Face-

Scene Perception task (~20min). This was followed by completing the CAPE and the AQ and 

the CESD-R in this order (~20min). The entire session lasted about 1 hour.  

 

 Analytic approach 

Overall performance on the Global-Local task as was assessed using 2x2x2 repeated 

measures of Level (global vs. local), Saliency (global salient vs. local salient) and 

Congruency (congruent vs. incongruent). Overall performance on the Face-Scene task was 

assessed using 2x2x3 repeated measures of Target (Face vs. Scene), saliency (face salient vs. 

scene salient) and Congruency (congruent vs. incongruent vs. neutral). 

Regression analyses using General Linear Models estimated the effect of autism 

tendencies and psychosis proneness on performance as a function of level (for the Global-

Local task)/target (for the face-scene perception task) difference, congruency interference 

and saliency cost. Saliency cost is the difference in performance between conditions when the 

target is the salient aspect of the display (Target Salient) and when the target is the less 

salient aspect of the display (Distractor salient). In the Global-Local task, we calculated the 

efficiency scores (i.e., RT/proportion correct for each cell of the design for each participant) 

for level difference (i.e., Global minus Local), congruency interference (i.e., Incongruent minus 

Congruent) and saliency cost (i.e., Distractor Salient (DS) minus Target Salient (TS)). 

Similarly, in the Face-Scene Perception task, we calculated the efficiency scores for target 

difference (i.e., Face minus Scene), congruency interference (i.e., (Incongruent/ Neutral minus 
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Congruent/ Neutral)), and saliency cost (i.e., DS minus TS). We also tested the effect of autism 

tendencies and psychosis proneness on performance in the neutral-only condition to see if 

they also explain simple effects of perception. The use of efficiency scores allows us to 

incorporate both RT and accuracy into a single measure (Townsend & Ashby, 1983), and to 

be consistent with previous studies using similar  paradigms (Mevorach, Humphreys, & 

Shalev, 2006; Mevorach, Shalev, et al., 2009).  

The effects of autistic tendencies and psychosis proneness on the simple scores of the 

participants on these measures were modeled as follows: 

 

(1) Y = i*A + j*P + k*A*P +ε, where A and P are the scores on the AQ and CAPE positive 

scale, respectively, i, j and k are best fit parameters, and the ε is the error term [Model 1] 

 

Second, the relationship between these measures was expressed in terms of Bias (i.e., 

the relative dominance of one vis-à-vis the other) and Mean Effect. Thus, the extent that A 

and P traits are additive one would expect to see a significant Mean Effect, whereas to the 

extent they are sub-additive/compensatory, one would expect to see a bias effect. To this end, 

the AQ and CAPEp scores were converted into Z scores which, in turn, were used to 

calculate the bias and the mean effect scores. This was captured in a model with 5 dependent 

terms (i.e. two linear, an interaction, and two quadratic terms) as follows: 

 

(2) Y = m*M + n*B + o*M^2 + p*B^2 + q*M*B +ε, where M and B are respectively the 

mean effect and bias scores, m, n, o, p and q are the best fit parameters, and ε is the error 

term [Model 2]  

 

While Model 2 is the mathematical derivative of Model 1 (see Appendix 2) it offers 

two advantages: (1) it can capture both linear and nonlinear trends, and (2) it allows for the 
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assessment of the nature of the relationship between autism and psychosis in terms of mean 

and bias effects.  

 

RESULTS 

The Global-Local Task  

In this task, data were collected from 202 participants. The data of one participant were 

excluded for a program failure and 5 additional for not following instructions, i.e., detecting 

global when the task was to detect local and vice versa. Thus the data of 196 participants (41 

males, 155 females; mean age = 21.40, SD = 4.36) were included in the analyses for this task. 

On average, participants scored 27.25(±5.06) on the CAPEp, 16.25(±6.29) on the AQ, and 

12.47(±11.13) on the CESD-R. Significant Spearman’s ρ correlations were observed between 

the AQ and CAPEp scores (r=.31, p<.001), the AQ and CESD-R (r=.38, p<.001) as well as 

between the CESD-R and CAPEp scores (r=.36, p<.001). There were no associations 

between age and either the AQ or the CAPEp scores (-.07<rs<.07, all ps>.34). Age was 

negatively correlated with the CESD-R scores (r=-.16, p=.024). There were no differences 

between male and female participants on any of these measures except for age where female 

(M±SD= 20.92±4.08) were younger than the male (M±SD= 23.22±4.93) participants (t=2.76; 

p=.008).  

 

Figure 4.3 shows the results of participants’ performance on the task. The 2x2x2 repeated 

measure ANOVA reveals a main effect for congruency (F(1,195)=420.71, p<.001, ηp
2=.68) 

where participants were slower in the incongruent (M(SE)=640.96(8.57)) than the congruent 

(M(SE)=557.39(8.74)) condition. No other main effects were significant. Moreover, the 2-

way interactions of level x congruency (F(1,195)=238.67, p<.001, ηp
2=.55), level x saliency 

(F(1,195)=50.14, p<.001, ηp
2=.21) and congruency x saliency (F(1,195)=15.45, p<.001, 
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ηp
2=.07) were significant, as well as the 3-way interaction of level x saliency x congruency 

(F(1,195)=64.19, p<.001, ηp
2=.25). Follow-up analyses revealed significant saliency x 

congruency interactions at both the local (F(1,195)=9.89, p<.001, ηp
2=.05) and global levels 

(F(1,195)=50.98, p<.001, ηp
2=.21). Furthermore, as can be seen from Figure 3, the shift in 

salience (from local salient to global salient) when detecting the local letter, or the reverse 

(from global salient to local salient) when detecting the global letter was associated with 

increased cost in both the congruent and incongruent conditions (all ts>5.6, all ps<.001). 

However, in the congruent condition, the effect of the cost associated with the shift from the 

local salient to the global salient at the local level (Cohen’s d=.27) or with the reverse at the 

global level (Cohen’s d=.43) was small, although the shift appears more costly at the local 

(M(SE)=62.45±7.43) than the global level (M(SE)=36.18±6.28) (t=2.69, df=195, p=.008, 

Cohen’s d=.28). Conversely, the effects are larger during the incongruent condition when 

detecting either the local (Cohen’s d=.56) or the global (Cohen’s d=.73) letter. However, the 

shift appears more costly at the global (M(SE)=124.05±13.13) than at the local level 

(M(SE)=89.12±8.90) (t=2.05, df=195, p=.042, Cohen’s d=.22). These results replicate the 

pattern of results observed in earlier studies using this task (Mevorach et al., 2006; 

Mevorach, Humphreys, & Shalev, 2009), and suggest that the presence of salient distractor 

has a measurable effect on processing cost. 
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Figure 4.3. Overall performance on the Global-Local Task as a function of level (local vs. global), 

saliency (local salience vs. global saliency) and congruency (congruent vs. incongruent). Bars 

represent standard errors.  

 

Estimating the effect of autism tendencies and psychosis proneness on level difference, 

congruency interference and saliency cost 

First, Spearman’s ρ indicated that there were no correlations between age or depressive mood 

on any of the dependent variables (i.e., level difference, congruency interference and saliency 

cost) except for a negative association between age and congruency interference (r=-.17, 

p=.015). There were also no significant correlations among the dependent measures, or 

differences as a function of gender. Each dependent measure was then entered separately into 

a regression model with the AQ scores, CAPEp scores and their interaction (AQ x CAPEp) 

as predictors. The model estimating congruency interference was carried out while also 

controlling for age. The regression models for the level difference (X2
(df=3)=2.59, p=.46) and 

congruency interference (X2
(df=4)=3.44, p=.49) were non-significant. The model estimating 

saliency cost was significant (X2
(df=3), =11.03, p=.012), with parameter estimates showing 

significant association between saliency cost and the CAPEp scores (β(±SE)=7.26(3.29), 

X2
(df=1)=4.86, p=.027) and at a trend with the AQ scores (β(±SE)=8.34(4.50), X2

(df=1)=3.43, 
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p=.064). The interaction term of the AQ scores x CAPEp scores was negatively associated 

with saliency cost (β(±SE)= -.39(.17), X2
(df=1)=5.35, p=.021).  

To probe the nature of the interaction term, we followed the method by Hayes and 

Matthes whereby the effect of one predictor on saliency cost is examined at the mean, one 

standard deviation below the mean and one standard deviation above the mean of the other 

predictor (Hayes and Matthes, 2009). Figure 4.4A visualizes the interaction between 

psychosis and saliency cost by plots of simple regression lines at low AQ (AQ=9.96), 

average AQ (AQ=16.25), and high AQ (AQ=22.54), and Figure 4.4B visualizes the 

interaction between autism tendencies and saliency cost at low CAPEp (CAPEp=22.19), 

average CAPEp (CAPEp=27.25), and high CAPEp (CAPEp=32.31). To identify the region 

of the moderator variable where the predictor has a significant effect (i.e., p<.05) on the 

outcome measure (i.e., saliency cost), we used the Johnson-Neyman method (Hayes and 

Matthes, 2009). According to this analysis, psychosis proneness (Figure 4.4A) significantly 

increases saliency cost in individuals scoring below 9 on the AQ scale, and significantly 

reduces it in individuals scoring above 29 on the AQ. This suggests that individuals with 

higher psychosis proneness incur greater saliency cost mainly when they have low AQ 

scores, and that this effect is attenuated in individuals with high AQ scores. Conversely, 

saliency cost decreases significantly as a function of autism tendencies (Figure 4.4B) in 

individuals scoring above 26 on the CAPEp scale, suggesting that autism tendencies are 

associated with a decrease in saliency cost in individuals scoring about average and above on 

the CAPEp. 
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Figure 4.4. (A) Visualizes the association between psychosis proneness and saliency cost by plots of 

simple regression lines at low (-1 SD), average, and high (+1 SD) AQ scores. (B) Visualizes the 

association between autism tendencies and saliency cost by plots of simple regression lines at low (-1 

SD), average, and high CAPEp scores (+1 SD) as moderators.  

 

Performance as a function of the relative dominance of autism tendencies versus psychosis 

proneness 

The regression analyses using Model 1 indicated that only saliency cost was impacted by 

autism and psychosis tendencies. Therefore, only saliency cost was used as a dependent 

variable in Model 2. The overall model was significant (χ  2
(df=5) =11.10, p=.049), with only 

the bias effect (β(±SE) = -10.11(5.04), Waldχ  2
(df=1) = 4.03, p=.045) and the quadratic term of 

the mean effect (β(±SE) = -2.97(1.46), Waldχ  2 = 4.18(df=1), p=.041) being significant (see 

Table 4.1 for summary of regression coefficients). As can be seen from Figure 4.5, the bias 

effect suggests that saliency cost increases as the bias shifts from autism-dominant to 

psychosis-dominant individuals. Interestingly, saliency cost is also associated with autism 

tendencies and psychosis proneness following an inverted U-shaped pattern, along which 

both autism and psychosis appear to have an additive effect on saliency cost. This, however, 

seems to be confined to individuals scoring within +/- 2SD from the mean (+2SD > z > -

2SD) and is absent in individuals who have low or high balanced expressions on both traits 

(+2SD < z < -2SD; blue shaded areas in Figure 4.5).   
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Table 4.1. Summary of regression coefficients of the bias model with saliency cost as the 

dependent variable, controlling for level difference and congruency interference 

AQ= Autism Quotient; CAPEp= Positive scale of the Community Assessment of Psychic Experiences 

  
Figure 4.5. Model 2 prediction of saliency cost as a function of autism tendencies and psychosis 

proneness in the Global-Local Task. Values on the autism and psychosis axes represent Z 

standardized scores on the AQ and the positive subscale of the CAPE. Negative/Positive values 

indicate scores below/above the mean. The arrow line at the ridge of the surface is depicted to aid 

visualization of the effect of the shift from autism-dominant to psychosis-dominant expressions on 

saliency cost. Bubbles highlight the zone of extreme low and high balanced expressions and their 

similar attenuating effects on saliency cost. 

 

 

Model 
 

Coefficient 
β  (SE) Waldχ  2  

 
df 
 

 
Sig. 

 
Constant 80.85 6.73 144.24 1 <.001 

Bias [(AQ-CAPEp)/2] -10.11 5.04 4.03 1 =.045 

Bias2 3.38 2.57 1.73 1 =.19 

Mean Effect 

[(AQ+CAPEp)/2] 
-4.74 3.65 1.69 1 =.19 

(Mean Effect)2 -2.97 1.46 4.18 1 =.041 

Bias x Mean Effect 0.58 2.47 .054 1 =.82 
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The Face-Scene Perception Task  

Five participants were removed from the analysis for failing to follow task instructions, i.e., 

responding to faces rather than to scenes or vice versa. Thus, data used in the analyses for 

this task were of 197 participants (42 males, 155 females; mean age = 21.45, SD = 4.35). On 

average, participants scored 27.25(±4.98) on the CAPEp, 16.25(±6.29) on the AQ, and 

12.47(±11.13) on the CESD-R. Significant Spearman’s ρ correlations were observed between 

the AQ and CAPEp scores (r=.32, p<.001), the AQ and CESD-R (r=.38, p<.001) as well as 

between the CESD-R and CAPEp scores (r=.38, p<.001). There were no associations 

between gender or age with either the AQ or the CAPEp scores (-.06<rs<.08, all ps>.26). 

Age was negatively correlated with the CESD-R scores (r=-.15, p=.036).  There were no 

differences between male and female participants on any of these measures except for age 

where female (M±SD= 20.94±4.08)) were younger than the male participants (M±SD= 

23.31±4.85) (t=2.90; p=.005). 

Figure 4.6 shows the results of the participants’ performance on the task. The 2x2x3 

repeated measure ANOVA reveals a main effect for target (F(1,196)=58.48, p<.001, ηp
2=.23) 

where participants were slower responding to faces (M(SE)= 768.09(18.18) than to scenes 

(M(SE)=627.97(10.14); a main effect for saliency (F(1,196)=44.17, p<.001, ηp
2=.18) where 

participant were slower overall in the scene salient condition (M(SE)=742.71(15.58) than the 

face salient condition (M(SE)=653.35(10.63); and a main effect of congruency 

(F(2,392)=48.86, p<.001, ηp
2=.20) where participants were slower in the incongruent 

(M(SE)=772.47(17.78) than either the congruent (M(SE)=658.23(12.88) or neutral 

(M(SE)=663.37(9.29) conditions. There was no difference between the congruent and neutral 

conditions (p=.56). Moreover, the 2-way interactions of target x saliency (F(1,196)=293.38, 

p<.001, ηp
2=.60), target x congruency (F(2,392)=44.24, p<.001, ηp

2=.18) and saliency x 

congruency (F(2,392)=37.48, p<.001, ηp
2=.16) were significant, as well as the 3-way 
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interaction of target x saliency x congruency (F(2,392)=40.64, p<.001, ηp
2=.17). Follow-up 

analysis revealed only a main effect for saliency in the scene condition, where the shift from 

the scene salient (M(SE)=555.13±7.51) to the face salient condition (M(SE)=700.81±15.86) 

was associated with increased cost (F(1,196)=103.51, p<.001, ηp
2=.35). In the face condition, 

the analysis revealed a saliency x congruency interaction (F(2,392)=47.88, p<.001, ηp
2=.20). 

In this condition, the shift from face salient to scene salient was associated wit increased cost 

was significant for the neutral, congruent and incongruent conditions (all ts>8.14, all 

ps<.001, Cohen’s d=.65-1.0). However, as can be seen from Figure 4.6, processing cost was 

significantly more pronounced in the incongruent condition when compared to the neutral 

(t=7.53, df=196, p<.001, Cohen’s d=.71) or congruent conditions (t=6.95, df=196, p<.001, 

Cohen’s d=.64).  There was no difference between the congruent and neutral conditions 

(p=.63). Collectively, these findings show that the presence of a salient distractor has a 

measurable cost on target identification.		

 
Figure 4.6. Overall performance on the Face-Scene Perception Task as a function of Target (Face vs. 

Scene), saliency (Face salient vs. Scene Salient) and congruency (Congruent vs. Incongruent vs. 

Neutral). Bars represent standard errors.  
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Estimating the effect of autism tendencies and psychosis proneness on target difference, 

congruency interference and saliency cost 

First, Spearman’s ρ revealed no correlations between age or depressive mood on any of the 

dependent variables (i.e., target difference, congruency interference and saliency cost). There 

were however significant associations between target difference and congruency interference 

(r=.24, p=.001), target difference and saliency cost (r=.50, p<.001), as well as congruency 

interference and saliency cost (r=.40 , p<.001). There were also no differences between male 

or female participants on any of these measures. Accordingly, each dependent measure was 

entered into a regression model with the AQ scores, CAPEp scores and their interaction 

(AQxCAPEp) as predictors, after controlling for the other two measures in separate 

regression models to remove any shared variation. Thus, the dependent measures in these 

models are the residuals from the original regression models. The overall models for the 

target difference (χ  2
(df=3) =4.42, p=.22) and the congruency interference (χ  2

(df=3) =3.71, 

p=.30) were nonsignificant, suggesting that neither target selection nor the presence or 

absence of response conflict is affected by inter-individual differences on autism or 

psychosis. In contrast, the regression model estimating saliency cost was significant (χ  2
(df=3) 

=18.94, p<.001), with parameter estimates showing significant association between saliency 

cost and CAPEp scores (β(se)=23.47(9.97), X2
(df=1)=10.56, p=.001) and at a trend with the 

AQ scores (β(se)=17.90(7.22), X2
(df=1)=3.22, p=.073). The interaction term of AQ scores x 

CAPEp scores was also significant but negatively associated with saliency cost (β(se)=-

.79(.37), X2
(df=1)=4.52, p=.034).  

We probed the interaction following the same analysis we applied in the Local-Global 

task. Figure 4.7A visualizes the interaction between psychosis and saliency cost by plots of 

simple regression lines at low AQ (AQ=9.95), average AQ (AQ=16.25), and high AQ 

(AQ=22.54), and Figure 4.7B visualizes the interaction between autism tendencies and 
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saliency cost at low CAPEp (CAPEp=22.27), average CAPEp (CAPEp=27.25), and high 

CAPEp (CAPEp=32.23). According to the Johnson-Neyman method, psychosis proneness 

has a significant effect on saliency cost (i.e., p<.05) in individuals scoring below 23 on the 

AQ (Figure 4.7A), suggesting that the effect of psychosis on saliency cost was not detectable 

in individuals with high scores on the AQ scale. Conversely, saliency cost decreases 

significantly as a function of autism tendencies in individuals scoring above 27 on the 

CAPEp scale (Figure 4.7B), suggesting that autism tendencies are associated with a decrease 

in saliency cost in individuals scoring above average on the CAPEp.  

 
Figure 4.7. (A) Visualizes the association between psychosis proneness and saliency cost by plots of 

simple regression lines with low (-1 SD), average, and high (+1 SD) AQ scores. (B) Visualizes the 

association between autism tendencies and saliency cost by plots of simple regression lines with low 

(-1 SD), average, and high CAPEp scores (+1 SD) as moderators.  

	

Estimating the effect of autism tendencies and psychosis proneness on performance during 

the neutral condition 

We investigated the association of autism, psychosis and their interaction on the cost incurred 

during the neutral condition only to see if they also explain simple effects of perception. The 

omnibus test of the overall model was not significant (χ  2
(df=3) =7.09, p=.07) or any of its 

parameter estimates (all ps>.18).  
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Performance as a function of the relative dominance of autism tendencies versus psychosis 

proneness 

The results of the regression analyses using Model 1 indicated that only saliency cost was 

impacted by autism and psychosis tendencies. Therefore, only saliency cost was used as a 

dependent variable in Model 2, controlling for target difference and congruency interference. 

Using generalized linear models, the model was significant (χ  2
(df=7) =97.65, p<.001), with 

only the bias (β(±SE) = -33.30(10.96), Waldχ  2
(df=1) = 9.24, p=.002) and the quadratic term of 

the bias (β(±SE) = 14.77(5.51), Waldχ  2
(df=1) = 7.18, p=.007) being significant (see Table 4.2 

for summary of regression coefficients). As can be seen from Figure 4.8, saliency cost is 

associated with the relative dominance of autism tendencies or psychosis proneness, 

following a U-shaped pattern, along which saliency cost increases as it shift from autism 

dominant individuals to psychosis dominant individuals. While U-shaped pattern of this 

figure contrasts with Figure 4.5 of the Global-Local task, they are similar in that, in both, 

saliency cost increases as the bias shifts from autism-dominant to psychosis-dominant 

individuals. Interestingly, individuals presenting with similar level of expression in autism 

and psychosis including individuals with low scores or high scores on both scales, are 

similarly impacted by the cost incurred by salient distractors (Figure 4.8). However, unlike 

the Global-Local task where the effect is confined to individuals at the extreme distribution 

of biased scores, the effect on saliency cost, in the Face-Scene task, is driven by the entire 

range of the bias scores.  
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Table 4.2. Summary of regression coefficients of the bias model with saliency cost as the 

dependent variable, controlling for target difference and congruency interference 

AQ= Autism Quotient; CAPEp= Positive scale of the Community Assessment of Psychic Experiences 

 
Figure 4.8. Model 2 prediction of saliency cost as a function of autism tendencies and psychosis 

proneness in the face-scene perception task. Values on the autism and psychosis axes represent Z 

standardized scores on the AQ and positive subscale of the CAPE. Negative/Positive values indicate 

scores below/above the mean. The arrow line across the 3-D space is depicted to aid visualization of 

the effect of the shift from autism-dominant to psychosis-dominant expressions on saliency cost. 

White text highlights the zone of balanced expressions of autism and psychosis where the effect on 

saliency cost is the lowest. 

 

 

Model 
 

Coefficient 
β  (SE) Waldχ  2  

 
df 
 

 
Sig. 

 
Constant 156.88 16.41 91.46 1 <.001 

Bias [(AQ-CAPEp)/2] -33.30 10.96 9.24 1 =.002 

Bias2 14.77 5.51 7.18 1 =.007 

Mean Effect 

[(AQ+CAPEp)/2] 
7.37 7.82 0.89 1 =.35 

(Mean Effect)2 -4.99 3.10 2.59 1 =.11 

Bias x Mean Effect -4.93 5.28 0.87 1 =.35 
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DISCUSSION  

Our study provides converging evidence suggesting that autism tendencies and psychosis 

proneness have an interactive effect on saliency cost, such that the effect of the expression of 

one condition depends on the expression level of the other condition (Figures 4.4 and 4.7). 

This effect was unrelated to the tasks variables (i.e., level/target or congruency), suggesting 

that this interactive effect is specific to salience suppression, or, in other words, to attentional 

rather than perceptual abilities. These findings suggest that previous reports assessing 

saliency as a function of one trait without assessing the other need to be viewed with some 

caution. We argue that unmeasured differences in the proportion of one trait in a sample that 

was intended to look at the other trait might adversely affect results, and might account for 

some inconsistencies in previous literature. This renders previous literature reporting main 

effects associating ASD or SSD with saliency cost difficult to interpret with confidence, 

particularly for studies with small samples, where the chances of getting an unrepresentative 

range of variance due to ASD or SSD would be higher.  

This interactive modulation of autism and psychosis on saliency cost is further 

clarified in our analyses of the data in terms of mean and bias effects. They show that 

saliency cost is largely driven by the relative expression of these traits (i.e., the bias effect), 

with salient distractor stimuli conferring most cost in psychosis-dominant individuals (as 

compared to autism-dominant individuals), and least in individuals presenting with either 

balanced low or balanced high expressions of both autism and psychosis tendencies (Figures 

4.5 and 4.8). While this striking trend is observed in both experiments, a key difference is 

that the low saliency costs in the Global-Local task are only observed at the extremes (i.e., in 

individuals scoring ±2D from the mean on the AQ and the positive subscale of the CAPE), 

whereas the low saliency costs in the Face-Scene task are observed across the full range of a 

“balanced” set of autism and psychosis traits. It is tempting to attribute this difference to the 
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inherent differences across the two tasks (e.g., the way saliency was manipulated, the use of a 

single objects with two dimensions in the Global-Local task vs. two separate superimposed 

objects for the Face-Scene task). However, this does not provide a straightforward 

explanation, and so future work will be necessary to determine whether such differences are 

robust over a wider range of tasks that manipulate the salience of attended versus ignored 

aspects of the stimuli. 

Overall, our findings are commensurate with the diametric model of autism and 

schizophrenia spectrum disorders (Crespi & Badcock, 2008) positing that autism and 

schizophrenia exert opposing effects on cognition and behavior, and suggests that saliency 

cost is diametrically modulated by phenotypic traits that are disorder-specific. If so, what 

mechanism might account for this attenuating effect? Examining attentional processes in 

ASD and SSD may hold clues to the mechanism by which this attenuating effect is achieved. 

Studies suggest individuals with ASD show increased focus of attention (Baron-Cohen et al., 

2001; Blaser et al., 2014; Russell-Smith et al., 2010), whereas individuals with positive SSD 

(i.e., those who predominantly show positive symptoms) show overswitching (Yogev, Hadar, 

Gutman, & Sirota, 2003; Yogev et al., 2004). Within the context of our tasks, participants are 

required to attend to task-relevant information and to filter out salient but task-irrelevant 

distracting information. This can be achieved by increasing attentional focus or by resisting 

the tendency to switch or reorient attention. Maintaining attentional focus and reorienting 

attention are respectively associated with the coordinated action of the top-down dorsal and 

bottom-up ventral frontoparietal networks (Corbetta, Patel, & Shulman, 2008). This 

surprising pattern could be accounted for by supposing that autism tendencies and psychosis 

proneness may be associated with contrasting effects on these networks. Specifically, we 

suggest that the attenuated effect of salient distractor stimuli as a function of increased 

expression of autism tendencies is associated with strong top-down modulation. Conversely, 
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we predict that the effect of the salient distractor as a function of increased expression of 

psychosis proneness is associated with a strong bottom-up modulation. This corresponds with 

the notions of proactive and reactive cognitive control (Braver, 2012). In proactive control, 

individuals bias attention by maintaining goal-relevant information and preventing 

interference in an anticipatory manner before the onset of the stimulus. In reactive control, 

individuals respond “online” to interference after the onset of the stimulus. In dealing with 

distractors, there is evidence suggesting that individuals with schizophrenia differentially rely 

on reactive control (Lesh et al., 2013), whereas individuals with high autism traits appear to 

show enhanced proactive control (Mevorach, Spaniol, & Shalev, 2015). As deficits in 

proactive control processes in schizophrenia have been associated with reduced lateral 

prefrontal-parietal recruitment (Lesh et al., 2013), we predict increased prefrontal-parietal 

recruitment in autism.  

Our study is the first to observe that co-occurring autistic and psychotic traits can 

exert opposing influences on saliency cost, and raises the intriguing possibility that saliency-

related abnormalities may be attenuated in individuals with comorbid autism and 

schizophrenia. The similar performance of individuals presenting with low or high 

expressions of both disorders suggests that the effect of distractor stimuli on information 

processing is possibly modulated by contrasting attentional mechanisms—increased focused 

of attention (characteristic of autism) and increased attention switching (characteristic of 

psychosis). Our findings thus imply that phenotypic variation in individuals diagnosed with 

either condition are likely to be a reflection of the relative expression of one disorder vis-à-

vis the other. As intervention in both ASD and SSD are likely to be different, assessing the 

relative expression of both autism and psychosis is important for tailoring individualized 

therapeutic approaches, and particularly for those who meet diagnostic criteria of both 

disorders. In this context, our analytical approach of indexing these disorders (or expression 



	 80 

thereof) in terms of bias and mean effects is potentially a useful framework to understanding 

the effect co-morbid conditions have on outcome and behavior.  
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CHAPTER 5 

 

RE-IMAGING THE INTENTIONAL STANCE IN A COMPETITIVE GAME7 

																																																								
7	This chapter is currently in preparation for submission: Abu-Akel, A., Apperly, I.A., Wood, S.J., Hansen, P.C. 
(in prep.). Re-imaging the intentional stance in a competitive game. Manuscript in preparation.	
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ABSTRACT 

The commonly-used paradigm to investigate Dennet’s “intentional stance” compares neural 

activation when participants compete with a human versus a computer. This paradigm 

confounds orthogonal factors: whether the opponent is natural or artificial; and whether the 

opponent is intentional or an automaton. Findings in existing literature could be due either to 

variation in participants’ use of the intentional stance for mentalizing, or to variation in their 

response to interacting with a human versus a computer, or to some combination of these. 

This fMRI study is the first to investigate the intentional stance by orthogonally varying 

perceptions of the opponents’ intentionality (they responded actively and freely or passively 

according to a script) and their embodiment (they were a human or a computer). The mere 

perception of the opponent (whether human or computer) as intentional activated the 

mentalizing network: the temporo-parietal junction (TPJ) bilaterally, right temporal pole, 

anterior paracingulate cortex and the precuneus. Interacting with humans versus computers 

induced activations in a more circumscribed right lateralized sub-network within the 

mentalizing network, consisting of the TPJ and the anterior paracingulate cortex, possibly 

reflective of the tendency to spontaneously attribute intentionality to humans. The interaction 

between intentionality (Active versus Passive) and opponent (Human versus Computer) 

recruited the left frontal pole, possibly in response to violations of the default intentional 

stance towards humans and computers. These findings expand on earlier research 

investigating human-computer interactions in various social games, and emphasize the 

importance of employing an orthogonal design to adequately capture Dennett’s conception of 

the intentional stance as a mentalizing strategy that can apply equally well to humans and 

other intentional agents.  

 
INTRODUCTION 

To what extent do the cognitive and neural processes involved in playing a competitive game 
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depend on whether one’s interactive partner is human? This question not only bears upon 

theories about the nature of social cognition (Gallagher & Frith, 2003). It is also of relevance 

to our everyday lives, in which we interact increasingly with artificially intelligent agents 

such as robots, computers and avatars, and in which our live interactions with other humans 

are increasingly mediated through electronic media. A burgeoning literature on social 

neuroscience has associated such interactions with two types of processes. One is theory of 

mind or mentalizing, which is typically viewed as “cold cognition” about the beliefs, desires 

and intentions of one’s interactive partner (Harvey & Penn, 2010). Mentalizing focuses on 

the partner’s status as a rational, intentional agent, with little regard for the nature of their 

affective and physical embodiment, and has consistently been associated with activations in 

the posterior superior temporal sulcus (pSTS)/temporo-parietal region (TPJ) and the medial 

prefrontal cortex (MPFC) (including the anterior paracingulate cortex (aPCC)). A second 

type of process is mirroring, which is typically viewed as “flesh-and-blood” simulation of a 

partner’s physical actions and affective reactions (Becchio et al., 2012; Berthoz, Armony, 

Blair, & Dolan, 2002; Decety, Jackson, Sommerville, Chaminade, & Meltzoff, 2004; 

Schulte-Ruther, Markowitsch, Fink, & Piefke, 2007). In contrast to mentalizing, mirroring 

focuses on the partner’s embodiment, with little regard for the explicit content of their 

thoughts. While mirroring is commonly associated with activation in the parietal lobule, the 

premotor cortex and the inferior frontal gyrus, there is also evidence for mirroring properties 

in brain regions associated with mentalizing, including the TPJ and the anterior medial 

prefrontal cortex (Becchio et al., 2012; Hogeveen et al., 2015). In the present study we 

investigated the processes involved in playing a competitive game by orthogonally varying 

perceptions of the interactive partner’s intentionality (they responded freely or according to a 

script) and their embodiment (they were a human or a computer). 

In a very influential paper, titled “Imaging the Intentional Stance”, Gallagher and 
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colleagues were the first to employ the human-player versus computer-player contrast in a 

neuroimaging study (Gallagher et al., 2002). In this study, volunteers were asked to play a 

version of the ‘rock, paper, scissors’ game against a human opponent or a computer 

following simple rule-based strategy. In comparing the two conditions (Human minus 

Computer), only the anterior paracingulate cortex (PCC; BA 9/32, bilaterally) was 

differentially active. Several studies employing various interactive games followed, using a 

similar script according to which participants were led to believe that they were playing 

either against a human opponent or a computer (Chaminade et al., 2012; Kircher et al., 2009; 

Krach et al., 2008; Rilling, Sanfey, Aronson, Nystrom, & Cohen, 2004; Takahashi et al., 

2014). For example, Kircher et al. (2009) reported stronger activations in the MPFC and the 

thalamus when playing the Prisoner’s Dilemma Game against a human than against a 

computer. In a later study, using a variant of the ‘rock, paper, scissors’ game, Chaminade et 

al., (2012) reported bilateral activation in the MPFC and TPJ and the right thalamus when 

contrasting participants playing against a human versus playing a computer generating moves 

at random. In a further contrast between the human and a robot that participants believed to 

be endowed with artificial intelligence, only the TPJ was active, leading the authors to 

conclude that the TPJ was specifically involved in mentalizing about humans. Importantly, in 

this recent study the human player was presented at all times as an “intentional agent” with a 

calculated strategy to win.  

  However, while these studies drew inspiration from a prominent theoretical account 

of mentalizing – Dennet’s “intentional stance” theory (Dennett, 1987) – they do not 

accurately capture Dennet’s original conception. Dennett (1987) summarizes the intentional 

stance as follows “Here is how it works: first you decide to treat the object whose behavior is 

to be predicted as a rational agent; then you figure out what beliefs that agent ought to have, 

given its place in the world and its purpose. Then you figure out what desires it ought to 
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have, on the same considerations, and finally you predict that this rational agent will act to 

further its goals in the light of its beliefs. A little practical reasoning from the chosen set of 

beliefs and desires will in most instances yield a decision about what the agent ought to do; 

that is what you predict the agent will do.” (p.17). Dennett takes great care to point out that 

the stance may be adopted towards any object (animal, vegetable or mineral), but that its 

utility naturally depends upon the degree to which that object fulfills the stance’s assumption 

that it is a rational agent. In other words, the intentional stance applies just as appropriately to 

all rational agents, including humans and artificially intelligent robots and computers, and it 

applies just as inappropriately to humans who lack rationality or free will as it does to pocket 

calculators. This means that the commonly-used paradigm of comparing neural activation 

when participants compete with a rational human agent and a computer that follows simple 

rules actually confounds orthogonal factors: whether the opponent is natural or artificial; and 

whether the opponent is a rational, intentional agent or an automaton. Existing results in the 

literature could be due either to variation in participants’ use of the intentional stance for 

mentalizing, or to variation in their response to interacting with a human versus a computer 

(via mirroring, or some other process), or to some combination of these. The present study is 

the first in the literature to de-confound these factors in a fully orthogonal design. 

Orthogonal variation of the type of competitor and their level of intentionality yields 

four conditions, the participant plays against one of: an actively competitive human; a non-

competitive human who passively follows a predetermined response script; an actively 

competitive computer endowed with artificial intelligence; and a non-competitive computer 

that passively follows a predetermined response script. Main effects of the level of 

intentionality (Active vs. Passive responses) should identify those brain regions involved in 

deploying the intentional stance in the manner envisaged by Dennett – that is to say, 

irrespective of whether the target is human or computer. To the degree that mentalizing is 
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well-characterized as the adoption of an intentional stance, this main effect should overlap 

with brain regions commonly associated with mentalizing. Main effects of the type of 

competitor (Human vs. Computer) should identify brain regions that are distinctively 

involved in interacting with humans rather than computers, and as described above, the 

existing literature leads to the prediction that this might involve circumscribed regions within 

the mentalizing network, namely the TPJ and the MPFC, and perhaps a broader set of regions 

associated with mirroring. Finally, our design offers participants the opportunity to interact 

with an intentional active computer and a non-intentional passive human, which are 

orthogonal to stances we normatively attribute to these agents. Thus, the interaction between 

the Intentionality and Competitor Identity factors should identify those brain regions in which 

the demands of deploying the intentional stance depend on the nature of the competitor. 

Although the expectation that humans are a special target for mentalizing is a 

mischaracterization of Dennett’s intentional stance theory, there are of course other reasons 

why this expectation is plausible. Most obviously, humans are surely the most frequent target 

for mentalizing outside of experimental contexts. This might lead the intentional stance to be 

the default stance towards humans but not computers, one possible outcome of which is 

disproportionately large effects for the human intentional opponent.  

 

METHODS AND MATERIALS 

Participants 

24 right-handed, English-proficient healthy adults (5 males; 19 females; mean age (SD) = 

21.21±4.21)) participated in the study. Exclusion criteria included having a history of 

psychiatric illness, epilepsy, neurological disorders, brain injury as well as current alcohol or 

substance abuse problems. In addition, standard MRI exclusion criteria were considered in 

this study. These included claustrophobia, recent surgery or trauma, the presence of 
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ferromagnetic material in the body, including ferromagnetic implants or pacemakers, 

excessive obesity, excessive tattoos, as well as the inability to lie still for more than and hour. 

None of the participants were excluded for any of the above criteria. 

  

Materials and procedures  

In the pre-screening session, English reading proficiency was assessed with the Test of 

Irregular Word Reading Efficiency (TIWRE) (Reynolds & Kamphaus, 2007) and the Test of 

Word Reading Efficiency (TOWRE) (Torgesen, Wagner, & Rashotte, 1999) questionnaires. 

Handedness was ascertained with the modified Annett Handedness Questionnaire (Annett, 

1972). During the scanning session, participants performed two tasks. The first was a 

computerized version of the Rock, Paper, Scissors game. The second was Hartwright et al.’s 

(Hartwright et al., 2012) British English variant of Saxe and Kanwisher’s theory of mind 

(ToM) functional localizer task (Saxe & Kanwisher, 2003). At the end of the scanning 

session, all participants went through a debriefing interview. The study was approved by the 

University of Birmingham Research Ethics Committee, and written informed consent was 

obtained from all participants. 

 

The rock, paper, scissors (RPS) task8 

In this task, participants were required to predict the moves of their opponent in order to win. 

The game has the following simple rules: Rock beats scissors, paper beats rock, and scissors 

beat paper. The winner of each round was awarded 1 point. A no-response resulted in an 

automatic win for the opponent, and identical moves resulted in a draw and no points were 

awarded. Here we orthogonally manipulated the intentional stance during the game in such a 

way that the participants were led to believe that they were playing under four conditions: (1) 

																																																								
8	We thank Hannah Widdman for helping prototype an initial version of the RPS task. 
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against an active human agent who was a professional RPS player, (2) a passive human agent 

who followed a predetermined response script, (3) an active intelligent computer program 

(called AIRPS) that was capable of analyzing the participant’s strategy, and (4) a passive 

computer program that followed a predetermined response script.  

Participants were cautioned not to use a stereotyped strategy and to play 

competitively with the intention of beating their opponent. Feedback was provided during the 

scan sessions as to how well the participant was scoring at the end of each block of ten 

rounds of the game and a summary of the results at the end of each fMRI run. Positive 

scoring and effort were rewarded with a prize of ₤10 for the highest performing participant 

overall at the end of the study. Before each one of the four conditions, participants were 

provided with on-screen instructions to remind them of what they were required to do and 

which opponent they would be playing. These instructions were also used to induce a shift in 

the participant’s stance towards their opponent. To reinforce the impression that the 

participant was truly playing against a ‘human’ opponent, a 3% fallibility ‘no-response’ 

measure was embedded during the human conditions. It is important to note that he 

“intentional stance” is one among three different stances – the others being design stance and 

physical stance. There may be degrees of intentional stance, but we’re not deliberately 

investigating these here. 

Crucially, unbeknownst to the participants, the game was always played against a 

computer program generating moves entirely at random. The design ensured that the only 

difference across the conditions was the particular stance the participant was adopting under 

the various conditions. Of course, there was always the possibility that participants would not 

behave in the expected manner under the various conditions. Accordingly, a briefing 

procedure was utilized after the scanning session during which participants were asked to 

recount how they understood and experienced these conditions. This information was 
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gathered to ascertain the intentional stance adopted and the different strategies that the 

participants may have used under the various conditions. None of the participants expressed 

doubt regarding the identity of the four opponents and all reported experiences of intentional 

interactions with the opponents such that it was more difficult to play the professional human 

(indicated by 21 participants) and harder to predict AIRPS (indicated by 16 participants). 

Participants also indicated that they were more anxious to play the professional player (16 

participants).  

The RPS experiment consisted of 5 fMRI runs, each lasting 440s per run (~40mins 

total). Each fMRI run consisted of 4 blocks, representing the four conditions of interest. The 

sequence of opponents was chosen from 8 predetermined player-sequences (chosen from the 

24 possible sequences) such that on each sequence the human and the computer opponents 

were presented in alternating order. On four of the sequences, the participants’ first opponent 

was a human and on the remaining four a computer (see Table 5.1). The sequences the 

participants’ played, in each of the 5 fMRI runs, were selected in a pseudorandom order in 

the following manner: The 1st participant played sequences 1 through 5, the 2nd participants 

played sequences 6,7,8,1,2, the 3rd participant played sequences 3,4,5,6,7,8, and so forth.  

 

Table 5.1. Presentation of the 8 player sequences used in the RPS task 

Player Sequence_1 H1 C1 H2 C2 

Player Sequence_2 H1 C2 H2 C1 

Player Sequence_3 H2 C1 H1 C2 

Player Sequence_4 H2 C2 H1 C1 

Player Sequence_5 C1 H1 C2 H2 

Player Sequence_6 C1 H2 C2 H1 

Player Sequence_7 C2 H1 C1 H2 

Player Sequence_8 C2 H2 C1 H1 
H1= Active human; H2=Passive Human; C1= Active Computer; C2=Passive Computer. 
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Each block was preceded by a 10s period during which the instructions were 

displayed, and followed by a 30s rest period. During each block the participant played 10 

trials against one of the four possible opponents. Response selections (i.e., rock, paper or 

scissors) were made using a button box with three active buttons that was placed in the 

participant’s left hand. Figure 5.1 presents a schematic representation of stimuli presentation 

and timing during each trial. All participants went through a practice session of 2 blocks 

outside the scanner. The experiment was presented using Presentation (Neurobehavioral 

Systems, CA), which also recorded the behavioral data (button pressed and reaction time).  

 
Figure 5.1. Each trial began with a countdown 3, 2, 1, in 0.5s intervals, followed by ‘GO’ during 

which the participants made their moves. The ‘GO’ was present for 1s followed by a 0.5s blank 

screen. The results screen is then displayed for 4s indicating the moves drawn by both players and the 

outcome. Winning move is displayed with a yellow star. 

 
The theory of mind (ToM) localizer task 

This task was used to reliably identify regions within the mentalizing network, which include 

the TPJ, the paracingulate/medial prefrontal cortex and precuneus and the temporal pole. In 

this experiment, we used Hartwright et al.’s (Hartwright et al., 2012) anglicized variant of the 

Saxe and Kanwisher’s task (Saxe & Kanwisher, 2003) during which participants read 24 

short vignettes that were displayed on the screen for 10 seconds. Half of the stories described 

the false belief of a character about the current state of affairs (i.e., the False Belief (FB) 
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stories), and the other half described a physical event that is non-concurrent with reality such 

as a photo of a past event (i.e., the False Photograph (FP) stories). Each story was followed 

by a true-false question that was displayed for 4 seconds, and to which they responded using 

a response box with two active buttons that was placed in the participant’s left hand. The task 

consisted of four short fMRI runs. In each run, six stories, 3 FB and 3 FP, were presented in 

an alternating order, interleaved with a 12.5sec rest period. All participants went through a 

practice session of four trials outside the scanner. The experiment was presented using 

Presentation (Neurobehavioural Systems, CA), which also recorded the behavioral data 

(response selection and reaction time).     

 

fMRI data acquisition and analysis 

Data were acquired in a single scanning session using a 3T Philips Achieva scanner. 176 

T2*-weighted standard echo planar imaging (EPI) volumes were obtained in each of the RPS 

task runs, using a 32 channel head coil. Parameters used to achieve whole brain coverage are 

as follows: TR=2.5s, TE=35ms, acquisition matrix = 80 x 80, flip angle =83°, isotropic 

voxels 3x3x3 mm3, 42 slices axial acquisition obtained consecutively in a bottom-up 

sequence. Using the same parameters, 71 EPI volumes were acquired for each run of the 

localizer task. A T1-weighted scan was then acquired as a single volume at higher spatial 

resolution as a 3D TFE image (matrix size 288x288, 175 slices, sagittally acquired and 

reconstructed to 1x1x1 mm3 isotropic voxels. TE =3.8ms. TR = 8.4 ms).  

Preprocessing and statistical analyses of the data were performed using the FMRIB 

software library (FSL version v.5.0.6; FMRIB, Oxford, www.fmrib.ox.ac.uk/fsl). For both 

experiments, initial preprocessing of the functional data consisted of slice timing correction, 

and motion correction (MCFLIRT). The blood oxygen level dependent (BOLD) signals were 

high-pass filtered using a Gaussian weighted filter to remove low-frequency drifts in the bold 
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signal. Spatial smoothing of the BOLD signal was performed using a 5mm full-width-half-

maximum kernel. The functional data were registered to their respective structural images 

and transformed to a standard template based on the Montreal Neurological Institute (MNI) 

reference brain, using a 6-DoF linear transformation (FLIRT). 

RPS task experiment analysis 

Playing against a computer or a human, with either agency or by following a script, provided 

the four baseline conditions. These four conditions comprised a 2x2 ANOVA experimental 

design with factor 1 being the human vs. computer opponent and factor 2 being the element 

of implied agency from the opponent (active vs. passive). Condition regressors were 

convolved with the canonical hemodynamic response function within a general linear model 

framework (GLM). A high-pass filter with a cut-off of 105s was used. Motion parameters 

were treated as regressors of no interest in order to account for unwanted motion effects. 

Session data were aggregated per participant using a second level fixed effects model. Third 

level modeling was used to aggregate the data across participants in a 2x2 repeated measures 

ANOVA with Active vs. Passive and Human vs. Computer as within subjects factors, 

employing a mixed effects analysis with cluster based thresholding at Z > 2.3, pcorr < 0.05.  

 

Localizer task experiment analysis  

The localizer task was modelled as per Hartwright et al. (2012). The FB and the FP 

conditions were convolved with a gamma-derived canonical hemodynamic response function 

within a GLM. A high-pass filter with a cut-off of 21s was used. Second and third level 

modeling were used to aggregate the data across sessions and participants for the contrast of 

interest FB > FP. Individual’s participant session data was aggregated using a fixed effects 

model at second level, and the group data were aggregated at third level using a mixed effects 

analysis with cluster based thresholding at Z > 3.6, pcorr < 0.05. 
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Overlap analysis 

Overlap analysis between the thresholded data (Z > 2.3, pcorr < 0.05) for the Human > 

Computer and the Active > Passive contrasts was conducted to identify shared activations 

across the two thresholded contrasts. We also conducted an overlap analysis between these 

two contrasts and the FB > FP contrast of the ToM localizer task. The analysis we conducted 

with FSL’s easythresh function (Nichols, Brett, Andersson, Wager, & Poline, 2005).  

 

RESULTS 

Whole brain analysis: RPS task 

A 2×2 repeated measures ANOVA of the RPS task identified main effects of the game 

partner (Computer vs. Human) and intentionality (Active vs. Passive), as well as an 

interaction between the two factors. Playing an active rather than a passive opponent largely 

recruited a network of regions associated with mentalizing, which included the TPJ 

bilaterally, right temporal pole, anterior PCC and precuneus. In addition, the middle temporal 

gyri were activated. The reverse contrast of Passive minus Active revealed activation only in 

the superior parietal lobule. Playing a human rather than a computer, activations were 

observed in the right TPJ and the anterior PCC only. Here, the reverse contrast of Computer 

minus Human revealed bilateral activations in the frontal pole. Intriguingly, the interaction 

between the implied agency (i.e., whether the opponent is active or passive) and the game 

partner (i.e., whether the opponent is computer or human) elicited activation in the left frontal 

pole only, specifically in the (Active Computer x Passive Human) minus (Passive Computer x 

Active Human) contrast (see Table 5.2, Figure 5.2).  
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Table 5.2. Cluster Peaks for the Rock, Paper, Scissors Task 

Hemisphere and Region 
MNI Coordinates Z 

Value X Y Z 

Active > Passive      

L Angular Gyrus, Lateral Occipital Cortex, 

Temporoparietal Junction  

-44 -60 32 4.94 

R Angular Gyrus, Temporoparietal Junction, 

Supramarginal Gyrus 

56 -50 30 4.70 

Anterior Paracingulate cortex  -10 44 24 5.16 

L/R Precuneous -8 -60 36 3.90 

R Temporal Pole 28 14 -26 4.43 

L Middle Temporal Gyrus  -56 -26 -14 4.39 

R Middle Temporal Gyrus 60 -20 -16 4.62 

Passive > Active     

Superior parietal lobule 36 -52 62 3.97 

Human > Computer      

R Angular Gyrus, Lateral Occipital Cortex, 

Temporoparietal Junction 

54 -62 16 3.32 

Anterior Paracingulate cortex  10 48 30 3.43 

Computer > Human     

L Frontal Pole -24 44 -18 4.65 

R Frontal Pole 18 46 -20 3.38 

Interaction [(Active Computer + Passive Human) – 

(Passive Computer + Active Human)] 

    

L Frontal Pole -34 46 -16 4.17 
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Figure 5.2. Activations of the Active minus Passive contrast (red), Passive minus Active contrast (cyan), 

Human minus Computer contrast (green), Computer minus Human (Magenta), and the Interaction (blue) 

are presented in A) on a coronal (Y=-59), B) sagittal (X=-10) and C) axial (Z=-16) planes. Yellow 

areas in A, B, D reflect overlapping areas between the Active minus Passive and the Human minus 

Computer contrasts. D is an annotated 3-D summary image. Images are displayed in neurological 

convention, where left is represented on the left side of the image. 

 

Whole brain analysis: ToM localizer task 

The mixed effect analysis of the FB minus FP contrast revealed activations in core regions 

within the prototypical mentalizing network which included both the left and right TPJ, the 
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precuneus as well as the medial prefrontal cortex (see Table 5.3). These results are consistent 

with previous studies using this task (Hartwright et al., 2012; Saxe & Kanwisher, 2003). 

 

Table 5.3. Cluster Peaks for the Theory of Mind Localizer Task  

Hemisphere and Region 
MNI Coordinates Z 

Value X Y Z 

False Belief > False Photograph      

L Angular Gyrus, Lateral Occipital Cortex, Supramarginal 

Gyrus, Temporoparietal Junction  

-56 -62 28 6.18 

R Angular Gyrus, Lateral Occipital Cortex, 

Temporoparietal Junction 

56 -64 30 5.22 

L/R Paracingulate cortex, Frontal Pole  0 58 10 5.87 

L/R Precuneus 0 -60 30 6.85 

L/R Cingulate Cortex 0 -16 34 5.59 

R Medial Frontal Gyrus 44 12 50 4.54 

R Frontal Orbital 50 30 -16 4.72 

L Inferior/Middle Temporal Gyrus -50 0 -40 5.81 

R Inferior/Middle Temporal Gyrus 50 0 -38 6.43 

L Cerebellum Crus II -28 -84 -36 6.25 

R Cerebellum Crus II 30 -86 -36 5.09 

L Cerbellum IX, Vermis VIIIb -6 -62 -44 5.04 

L Amygdala -18 -4 -20 4.08 

	

Overlap analysis 

The overlap analysis between the Active minus Passive and Human minus Computer revealed 

shared activation in the paracingulate [-4, 50, 20] and the rTPJ [58, -52, 28]. The Human minus 

Computer overlapped with the False belief minus False photograph contrast at the right medial 

frontal gyrus [10, 48, 30], in the vicinity of the paracingulate cortex. Finally, the activations 

maps in the Active minus Passive and the False belief minus False photograph contrasts 

overlapped considerably in core regions within the mentalizing network. These included the 
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TPJ bilaterally [-44, 60, 32; 58, -52, 28], and the paracingulate cortex [-4, 50, 20] (see Figure 

5.3).  

 
Figure 5.3. Overlaps between the False belief minus False photograph (ToM Localizer Task; Red) and 

the Active minus Passive contrast (RPS Task, Green), presented on a coronal (Y=-58), sagittal (X=10) 

and axial (Z=35) planes. Yellow reflects overlapping areas between the Active minus Passive and the 

False belief minus False photograph contrasts. Only the left TPJ [-44, 60, 32], right TPJ [58, -52, 28] 

and paracingulate cortex [-4, 50, 20] survived thresholding (Z > 2.3, pcorr < 0.05). Images are 

displayed in neurological convention, where left is represented on the left side of the image. 

 

DISCUSSION 

In the present study, we examined the brain regions recruited when people play an interactive 

game against an opponent that they took to be either a human or a computer, and either freely 

intentional or passively following a script. As such, this is the first study in the literature to 
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de-confound these factors in a fully orthogonal design. A key finding of our study is that a 

network of regions involved in mentalizing was activated whenever participants believed 

their opponent to be an intentional agent, irrespective of whether they believed them to be a 

human or a computer. As presented in Table 5.2 and visualized in Figure 5.2, the main effect 

of intentionality bilaterally activated the TPJ, the precuneus, the anterior PCC and the right 

temporal pole. Converging evidence that these are indeed brain regions consistently 

implicated in mentalizing came from the substantial overlap between these brain regions and 

those observed during the ToM localizer task (see Figure 5.3). These results are clearly 

consistent with Dennett’s (1987) notion of an intentional stance that applies equally well to 

human and non-human intentional agents. 

The second main contrast, Human minus Computer, revealed brain activity that was 

confined to the rTPJ and anterior PCC. One interpretation of these results is that they reflect a 

process of simulative mirroring of the human opponent that is not applied to the computer 

opponent because it lacks the participants’ embodiment. This interpretation is consistent with 

the activation of these regions in some previous studies of the mirror network (Cattaneo & 

Rizzolatti, 2009). However, this interpretation fits less well with the absence of any 

observation in the present study of activity in premotor cortex or inferior frontal gyrus, which 

might have been expected if participants were simulating the actions of their human 

competitors (Molenberghs, Cunnington, & Mattingley, 2012). The absence of these and other 

“mirroring” effects does not count against an important role for mirroring in social cognition 

more generally, and may make sense in the current study given that participants were never 

able to observe their competitor or their actions. This is consistent with the results of a large 

meta-analysis (of over 200 fMRI studies) showing that the mirror network activated in the 

presence of observable biological motion and the mentalizing network activated when 

individuals inferred the intentions of others based on abstract information and in the absence 
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of any perceivable biological motion (Van Overwalle & Baetens, 2009). As such, this leads 

us to suggest that the observed activity in rTPJ and anterior PCC for the Human minus 

Computer contrast reflects spontaneous mentalizing, rather than mirroring. These two regions 

have been consistently activated during spontaneous mentalizing in other studies (Ma, 

Vandekerckhove, Van Overwalle, Seurinck, & Fias, 2011; Mar, Kelley, Heatherton, & 

Macrae, 2007) and have previously been shown to respond preferentially to action/stimuli 

that are deemed of human (vs. computer) origin (Stanley, Gowen, & Miall, 2010). Consistent 

with claims that people have a basic tendency to differentiate humans and computers along 

the lines of intentionality (Levin, Killingsworth, Saylor, Gordon, & Kawamura, 2013) we 

suggest that the mere presence of the human competitor in the present study was sufficient to 

cue participants to think about their mental states, even though the passive human competitor 

had no opportunity to deploy these strategically in the game. 

The third contrast of principal interest was the interaction between intentionality 

(Active versus Passive) and agent (Human versus Computer). Recall that one natural 

prediction from the hypothesis that humans are a default target for mentalizing is that activity 

in brain regions associated with mentalizing will be disproportionately high for the Active-

Human condition. In fact, the only brain region identified with the interaction analysis was 

the left frontal pole (specifically at the base of the frontal pole ~BA 11). This region has 

occasionally been reported in studies of mentalizing (Hynes, Baird, & Grafton, 2006; Stuss, 

Gallup, & Alexander, 2001), but it was not identified either by the main effect of 

Intentionality or by the ToM localizer in the present study. However, left frontal pole has 

frequently been implicated in inhibitory control and the suppression of distractions that 

interfere with the execution of goal-directed actions (Fuster, 2001), as well as in evaluative 

reasoning, in which salient but logically incorrect alternatives must be ignored (Kroger, 

Nystrom, Cohen, & Johnson-Laird, 2008). We propose that this activity can be understood in 
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terms of the hypothesis that humans are a default target for mentalizing, not because left 

frontal pole is involved in mentalizing per se, but because it is recruited for overcoming this 

processing default. As stated above, people have a basic inclination to differentiate humans 

and computers along the lines of intentionality (Levin et al., 2013) and to respond 

preferentially to stimuli and actions that are generated (or believed to be so) by humans 

(Stanley et al., 2010). Thus, if the default is to employ an intentional stance towards a human 

and an instrumental or a physical stance towards a computer, then the interaction observed in 

the left frontal pole may reflect the need to deploy a different stance to the one normally 

adopted to the interacting partner. This interpretation may also be extended to account for the 

deployment of the bilateral frontal pole in the Computer minus Human contrast by making the 

plausible assumption that participants have a general default to employ an intentional stance 

when playing a competitive game such as rock-paper-scissors which is compatible with their 

default for a human competitor but not their default for a computer competitor. In all, the 

involvement of such control regions is consistent with theoretical accounts suggesting that 

the attribution of intentionality and agenthood is a flexible process, and that such flexibility 

in the attribution of intentionality (whether to active or passive, human or computer agents) 

can be manipulated volitionally and even strategically (Frey, 2014), but that such strategic 

deployment works either with or against the default stance for a particular target or activity. 

The fact that playing a human competitor only activated a subset of the regions of the 

“mentalizing network” activated when playing an intentional competitor may be informative 

about the different function of these brain regions for mentalizing. The recruitment of 

additional regions when playing an intentional competitor may reflect the difference between 

“mere mentalizing”, that does not require the integration of mental states in an online 

activity, and the use or deployment of mentalizing, that systematically draws on memory for 

task-relevant information (e.g., what the opponent did last time; or how the identity of the 
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agent might determine her strategy) or resolves task-relevant conflict (between the 

opponent’s intentions and the participant’s own). These additional regions have been variably 

activated in a variety of theory of mind tasks (Carrington & Bailey, 2009), and appear to play 

a general role within the broader mentalizing network (Carrington & Bailey, 2009). For 

example, while there is some causal evidence that the left TPJ is as important as the rTPJ for 

processing mental states (Samson, Apperly, Chiavarino, & Humphreys, 2004), it appears to 

have a more general role in processing perspective difference for both mental and non-mental 

states (Perner, Aichhorn, Kronbichler, Staffen, & Ladurner, 2006). The precuneus has been 

implicated in processing autobiographical memory and visuospatial attention (Cavanna & 

Trimble, 2006), and the temporal pole is involved in face recognition and schematic 

knowledge of social memory (Olson, Plotzker, & Ezzyat, 2007). In addition, a closer look at 

activations of the rTPJ across both contrasts reveals that participants recruited both the 

angular and the supramarginal gyri in the Active minus Passive condition, and only the angular 

gyrus in the Human minus Computer condition. This is confirmed in the overlap analysis where 

the shared activation is in the angular gyrus. In this regard, it has been proposed that the 

angular gyrus is selectively involved in social cognition (“mere mentalizing”, in the present 

study), whereas the supramarginal gyrus is more involved in attention reorienting (Kubit & 

Jack, 2013) which is likely to be essential for use of mentalizing for any practical purpose. 

In conclusion, our results indicate that activation of the “mentalizing network” might 

be specific to mentalizing, but it is not specific to mentalizing about humans and can be 

activated by the mere belief that the target (human or not) is a thinking entity. Interacting 

with humans versus computers, however, induces activations in a more circumscribed right 

lateralized sub-network within the mentalizing network, consisting of the rTPJ and the 

anterior PCC, and which might be reflective of people’s spontaneous tendency to attribute 

intentionality to humans. Interestingly, frontal control regions appear differentially active in 
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response to violation of the default stance adopted to the target, and the degree to which we 

readily attribute human-like abilities to the target. Together, these findings expand on earlier 

results from research investigating human-computer interactions in various social games 

(Fukui et al., 2006; Kircher et al., 2009; Krach et al., 2008; Rilling et al., 2004; Takahashi et 

al., 2014). They emphasize the importance of employing an orthogonal design to adequately 

capture Dennett’s conception of the intentional stance, and consistent with Dennett’s view, 

suggest that the same neural mechanisms are recruited for mentalizing irrespective of the 

nature of the target. 
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CHAPTER 6 
 

AUTISM AND PSYCHOSIS TRAITS DIAMETRICALLY MODULATE 

THE RIGHT TEMPORO-PARIETAL JUNCTION9 

																																																								
9	This chapter is currently under revision: Abu-Akel, A., Apperly, I.A., Wood, S.J., Hansen, P.C. Autism and 
psychosis traits diametrically modulate the right temporo-parietal junction.  	
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ABSTRACT 

The right temporo-parietal junction (rTPJ), subtending socio-cognitive functions such as 

mentalizing and domain-general computations such as attention-reorienting, is atypically 

activated in autism and schizophrenia spectrum disorders when performing tasks targeting 

these abilities. While these disorders are considered diagnostically independent, traits of both 

conditions can co-occur in the same individual. To date, no studies have examined the effect 

of co-occurring autistic and psychotic traits on rTPJ activity. Drawing on the notion that 

autism tendencies and psychosis proneness are dimensions of normal variation, this was 

investigated in neurotypical adults while performing a social competitive game known to 

activate the mentalizing network. Autistic and psychotic traits diametrically modulated the 

ventral posterior and the ventral anterior subdivisions of the rTPJ, which respectively 

constitute core regions within the mentalizing and attention-reorienting networks. The 

diametric effect within the ventral anterior rTPJ was in the opposite direction to that within 

the ventral posterior rTPJ. We suggest that this results from an interaction between regions 

responsible for higher level social cognitive processing and regions subtending domain-

general attentional mechanism. The interactive effect of autism and psychosis traits implies 

that inter-individual differences might be better explained in terms of the relative expression 

of one disorder vis-à-vis the other.  

 

INTRODUCTION 

Difficulty with inferring the mental states of others (“mentalizing”) is a core feature of both 

Autism Spectrum Disorders (ASD) and Schizophrenia Spectrum Disorders (SSD) (Chung, 

Barch, & Strube, 2013). Research concerned with understanding the neural system of 

mentalizing has identified a network of regions that primarily involves the temporo-parietal 

region (TPJ) and the medial prefrontal/paracingulate cortex (Abu-Akel & Shamay-Tsoory, 
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2011; Saxe & Kanwisher, 2003). Atypical alterations in this network have been observed 

independently in individuals with ASD (Ciaramidaro et al., 2014; Kana, Keller, Cherkassky, 

Minshew, & Just, 2009; Lombardo, Chakrabarti, Bullmore, Consortium, & Baron-Cohen, 

2011) and SSD (Ciaramidaro et al., 2014; Walter et al., 2009). These atypicalities have also 

been observed as a function of subclinical autism (Nummenmaa, Engell, von dem Hagen, 

Henson, & Calder, 2012; von dem Hagen et al., 2011) and psychosis (Modinos, Renken, 

Shamay-Tsoory, Ormel, & Aleman, 2010; van der Meer, Groenewold, Pijnenborg, & 

Aleman, 2013) traits within the healthy population. However, there is increasing empirical 

support for a phenotypic overlap between these spectra at the psychometric and behavioral 

levels in both clinical and non-clinical populations (Chisholm et al., 2015; Dinsdale et al., 

2013; King & Lord, 2011; Solomon et al., 2011). This raises important questions about the 

nature of the relationship of these phenotypes within an individual. An alternative to the 

model of overlap between ASD and SSD, the diametric model (Abu-Akel & Bailey, 2000; 

Crespi & Badcock, 2008) conceptualizes ASD and SSD as opposite diametric conditions, 

such that their constituent traits should specifically not overlap to any large degree. Under 

this model, however, it can be predicted that co-occurring traits exert diametric effects on 

mentalizing abilities and corollary the neural activity subtending these abilities. Thus, 

assessing both autism and psychosis expressions within the same individual has important 

implications to understanding the nature of their association and the effect of their co-

occurrence on brain and behavioral phenotypes, and more specifically, whether these 

phenotypes are the result of overlapping or diametric causes  

To date, no studies have examined the impact of co-occurring ASD and SSD on 

neural activity within the mentalizing network. One approach to evaluating the impact of 

such co-occurrence on the neural activity within the mentalizing network is by examining its 

association with autistic tendencies and psychosis proneness within non-clinical populations. 
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This approach draws on the notion that autism tendencies and psychosis proneness are 

dimensions of normal variation (Baron-Cohen et al., 2001; Crespi et al., 2010b; Del Giudice, 

Klimczuk, Traficonte, & Maestripieri, 2014; Dinsdale et al., 2013; Nettle, 2006), with the 

clinical entities being at the extreme of this distribution. This approach also eliminates the 

confounding effects of medication or active symptomatology (Stefansson et al., 2014). To 

this end, we performed a functional magnetic resonance imaging study in 24 right-handed 

neurotypical adults while playing the well-known playground game of Rock, Paper, Scissors 

(RPS). This task has been shown to reliably activate the mentalizing network in a competitive 

context (Chaminade et al., 2012; Gallagher et al., 2002). Participants believed they were 

playing against four possible opponents: (1) an active human agent who was a skilled RPS 

player, (2) a passive human agent who followed a predetermined response script (i.e., the 

player simply executed the moves that were prepared in advance), (3) an active intelligent 

computer program, and (4) a passive computer program that followed a predetermined 

response script. These four conditions thus comprised a 2x2 experimental design with one 

factor being the human vs. computer opponent and the other factor being the element of 

implied agency from the opponent (active vs. passive). Psychosis proneness was assessed 

using the positive scale of the Community Assessment of Psychic Experiences Questionnaire 

(Stefanis et al., 2002) and autism tendencies were assessed using the Autism Spectrum 

Quotient (Baron-Cohen et al., 2001). The assessment of positive schizotypy rather than the 

general construct of schizotypy which comprises both negative and positive symptoms is 

based on evidence for autism-positive schizotypy axis in the non-clinical population 

(Dinsdale et al., 2013), and that negative symptoms do not reliably discriminate between the 

ASD and SSD (Kastner et al., 2015; Spek & Wouters, 2010). We thus asked whether 

variation in co-occurring autism and positive psychosis spectrum traits has an impact on the 

neural activity of core regions within the mentalizing network of neurotypical brains. 



	 107 

METHODS AND MATERIALS 

Participants 

24 right-handed, English proficient healthy adults (5 Males; 19 Females; Mean Age ± SD = 

21.21±4.21) participated in the study. Participants did not have a history of psychiatric 

illness, epilepsy, neurological disorders, brain injury as well as current alcohol or substance 

abuse problems. The study was approved by the University of Birmingham Research Ethics 

Committee, and written informed consent was obtained from all participants. 

  

Materials and procedures 

Psychosis proneness, assessed using the positive scale of the Community Assessment of 

Psychic Experiences (CAPEp) Questionnaire (Stefanis et al., 2002), autism tendencies, 

assessed using the Autism Spectrum Quotient (AQ) Questionnaire (Baron-Cohen et al., 

2001), English reading proficiency, assessed with the Test of Irregular Word Reading 

Efficiency (TIWRE) (Reynolds & Kamphaus, 2007) and the Test of Word Reading 

Efficiency (TOWRE) (Torgesen et al., 1999) questionnaires, and handedness, ascertained 

with the modified Annett Handedness Questionnaire (Annett, 1972), were administered to 27 

participants, on average 7-10 days prior to the scanning session. Of the 27, 24 were scheduled 

for the scanning session during which they performed two tasks. The three participants could 

not attend the scanning session due to scheduling conflicts. The first is a computerized 

version of the Rock, Paper, Scissors game. The second is Hartwright et al.’s (Hartwright et 

al., 2012) variant of Saxe and Kanwisher’s (Saxe & Kanwisher, 2003) theory of mind (ToM) 

functional localizer task. At the end of the scanning session, all participants went through a 

debriefing interview.  
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The rock, paper, scissors (RPS) task 

In this task, participants are required to predict the moves of their opponent in order to win. 

The game has the following simple rules: Rock beats scissors, paper beats rock, and scissors 

beat paper. The winner of each round is awarded 1 point. A no-response results in an 

automatic win for the opponent, and identical moves results in a draw and no points are 

awarded. Here we orthogonally manipulated the intentional stance during the game in such a 

way that the participants are led to believe that they are playing under four conditions: (1) 

against an active human agent who is a skilled RPS player, (2) a passive human agent who is 

followed a predetermined script, (3) an active intelligent computer program (called AIRPS) 

that was capable of analyzing the participant’s strategy, and (4) a passive computer program 

that followed a predetermined response script.  

Participants were cautioned not to use a stereotyped strategy and to play 

competitively with the intention of beating their opponent. Feedback was provided during the 

scan sessions as to how well the participant was scoring at the end of each block of ten 

rounds of the game and a summary of the results at the end of each fMRI run. Positive 

scoring and effort were rewarded with a prize of ₤10 for the highest performing participant 

overall at the end of the study. Before each one of the four conditions, participants were 

provided with on-screen instructions to remind them of what they are required to do and of 

the opponent against whom they would be playing. To reinforce the impression that the 

participant was truly playing against a ‘human’ opponent, a 3% fallibility ‘no-response’ 

measure was embedded during the human conditions. 

Crucially, unbeknownst to the participants, the game was always played against a 

computer program generating moves entirely at random. The design ensured that the only 

difference across the conditions was the perceived identity of the participant’s opponent 

under the various conditions. To check participants’ perception of their opponents, a 
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debriefing procedure was utilized after the scanning session during which participants were 

asked to recount how they understood and experienced these conditions. None of the 

participants expressed doubt regarding the identity of the four opponents.  

The RPS experiment consisted of 5 fMRI runs, each lasting 440s per run (~40mins 

total). Each fMRI run consisted of 4 blocks, representing the four conditions of interest. The 

sequence of opponents was chosen from 8 predetermined player-sequences (chosen from the 

24 possible sequences) such that on each sequence the human and the computer opponents 

were presented in alternating order. The sequences the participants’ played, in each of the 5 

fMRI runs, were selected in a pseudorandom order.  

Each block was preceded by a 10s period during which the instructions were 

displayed, and followed by a 30s rest period. During each block the participant played 10 

trials against one of the four possible opponents. Response selections (i.e., rock, paper or 

scissors) were made using a button box with three active buttons that was placed in the 

participant’s left hand. See Figure 6.1 for a schematic representation of stimuli presentation 

and timing during each trial. All participants went through a practice session of 2 blocks 

outside the scanner. The experiment was presented using Presentation (Neurobehavioral 

Systems, CA), which also recorded the behavioral data (button pressed and reaction time).  
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Figure 6.1. Each trial began with a countdown 3, 2, 1, in 0.5s intervals, followed by ‘GO’ during 

which the participants make their moves. The ‘GO’ was present for 1s followed by a 0.5s blank 

screen. The results screen is then displayed for 4s indicating the moves drawn by both players and the 

outcome. Winning move is displayed with a yellow star. 

 

The Community Assessment of Psychic Experiences (CAPE) Questionnaire 

This self-report questionnaire is based on the Peters et al. Delusions Inventory-21 (PDI-21) 

(Peters et al., 1999) and consists of 42 items measuring the presence of positive psychotic 

experiences (20 items), negative psychotic experiences (14 items), and depressive 

experiences (8 items) that an individual may have experienced over the last 12 months 

(Stefanis et al., 2002). The occurrence of these symptoms is reported on a likert frequency 

scale from 1 (never) to 4 (nearly always), and the associated distress on a scale ranging from 

1 (not distressed) to 4 (very distressed). Cronbach’s α for this scale in this study is .89, which 

indicates high internal consistency. For current purposes, the 20-item CAPE positive scale is 

used as a measure of psychosis proneness. The internal consistency of this scale in this study 

is good (Cronbach’s α = .75), and falls within the range of values reported in other studies 

within the general population (Lin et al., 2011). In the current study, participants had a mean 

score of 25.28 (Range: 20-32; SD=±3.57).  
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The Autism Spectrum Quotient (AQ) Questionnaire 

This self-report questionnaire consists of 50 items that measure the presence of traits 

associated with the autistic spectrum within the general population(Baron-Cohen et al., 

2001). Each item is given a score of 0 or 1. Higher scores indicate the presence of greater 

autistic tendencies. The AQ’s internal consistency in this study is good (Cronbach’s α = .81), 

and is comparable to the values reported in other studies (Austin, 2005). In the current study, 

participants had a mean score of 15.49 (Range: 3-31; SD=±6.65). The association of the AQ 

with the CAPE positive scale was non-significant (r=.28, p=.19) (see Appendix 3, Figure 1).  

 

fMRI data acquisition and analysis 

Data were acquired in a single scanning session using a 3T Philips Achieva scanner. 176 

T2*-weighted standard echo planar imaging (EPI) volumes were obtained in each of the RPS 

task runs, using a 32 channel head coil. Parameters used to achieve whole brain coverage are 

as follows: TR=2.5s, TE=35ms, acquisition matrix = 80 x 80, flip angle =83°, isotropic 

voxels 3x3x3 mm3, 42 slices axial acquisition obtained consecutively in a bottom-up 

sequence. Using the same parameters, 71 EPI volumes were acquired for each block of the 

localizer task. A T1-weighted scan was then acquired as a single volume at higher spatial 

resolution as a 3D TFE image (matrix size 288x288, 175 slices, sagittally acquired and 

reconstructed to 1x1x1 mm3 isotropic voxels. TE =3.8ms. TR = 8.4 ms).  

Preprocessing and statistical analyses of the data were performed using the FMRIB 

software library (FSL version v.5.0.6; FMRIB, Oxford, www.fmrib.ox.ac.uk/fsl). For both 

experiments, initial preprocessing of the functional data consisted of slice timing correction, 

and motion correction (MCFLIRT). The blood oxygen level dependent (BOLD) signals were 

high-pass filtered using a Gaussian weighted filter to remove low-frequency drifts in the bold 

signal. Spatial smoothing of the BOLD signal was performed using a 5mm full-width-half-
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maximum kernel. The functional data were registered to their respective structural images 

and transformed to a standard template based on the Montreal Neurological Institute (MNI) 

reference brain, using a 6-DoF linear transformation (FLIRT). 

 

RPS task experiment analysis 

Playing against a computer or a human, with either agency or by following a script, provided 

the four baseline conditions. These four conditions comprised a 2x2 ANOVA experimental 

design with factor 1 being the human vs. computer opponent and factor 2 being the element 

of implied agency from the opponent (active vs. passive). Condition regressors were 

convolved with the canonical hemodynamic response function within a general linear model 

framework (GLM). A high-pass filter with a cut-off of 105s was used. Motion parameters 

were treated as regressors of no interest in order to account for unwanted motion effects. 

Session data were aggregated per participant using a second level fixed effects model. Third 

level modelling was used to aggregate the data across participants in a 2x2 repeated measures 

ANOVA with Active vs. Passive and Human vs. Computer as within subjects factors, 

employing a mixed effects analysis with cluster based thresholding at Z > 2.3, pcorr < 0.05. 

An overlap analysis between the thresholded data (Z > 2.3, pcorr < 0.05) for the Human > 

Computer and the Active > Passive contrasts was then conducted to identify shared 

activations across the two thresholded contrasts. The analysis was conducted with FSL’s 

easythresh function (Nichols et al., 2005).  

 

Regions of Interest (ROI) analysis 

ROI analysis focused on the rTPJ and the paracingulate cortex since only these two regions 

were active in both the Active > Passive as well as in the Human > Computer contrasts 

during the RPS task as revealed by the overlap analysis. Masks for these two regions were 
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generated from the ToM localizer task (Hartwright et al., 2012). For each of these ROIs, the 

mean percentage signal change in each of the four RPS experimental conditions was 

extracted from the aggregate data of each participant across the five runs (i.e., the 24 second-

level models) using FSL Featquery (www.fmrib.ox.ac.uk/fsl/feat5/featquery.html). 

 

Statistical analysis 

To evaluate the association of autism tendencies and psychosis proneness on the 

hemodynamic response of the region, we utilized Generalized Linear Models where the 

Active vs. Passive and Human vs. Computer were entered as fixed factors, and the 

participants’ standardized Z scores on the AQ, CAPEp and their interaction were entered as 

covariates. Interaction terms were probed by depicting simple regression lines using the 

method by Hayes and Matthes (Hayes & Matthes, 2009) whereby the effect of one predictor 

is examined at the mean, one standard deviation below the mean and one standard deviation 

above the mean of the other predictor. It is important to note, that these are arbitrary cut-off 

points and are used here in keeping with the tradition of unpacking interactions using this 

method. 

 

RESULTS 

The overlap analysis between the thresholded data (Z > 2.3, pcorr < 0.05) for the Human > 

Computer and the Active > Passive contrasts revealed shared activations in the paracingulate 

[-4, 50, 20] and the rTPJ [58, -52, 28]. Masks for these two regions were generated from a 

Theory of Mind (ToM) Localizer Task (Hartwright et al., 2012; Saxe & Kanwisher, 2003) 

(see Figure 6.2).  
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Figure 6.2. Masks for the overlapping regions between the Human > Computer and the Active > 

Passive contrasts are generated from the Theory of Mind Localizer Task. Coordinates of the mask for 

the paracingulate cortex (in green) are [-4, 50, 20] and for the rTPJ (in yellow) are [58, -52, 28]. 

 

To evaluate the impact of autism tendencies and psychosis proneness on the 

hemodynamic response of the paracingulate cortex and the rTPJ, we first investigated, using 

Generalized Linear Models, the hemodynamic response of the paracingulate as a function of 

the participants’ standardized Z scores on the AQ, CAPEp and their interaction. The omnibus 

test showed that the overall model was non-significant (χ  2 =9.92, df=6, p=.13). However, when 

the data for the rTPJ were subject to the same analysis, the overall model was significant (χ 

2=19.62, df=6, p=.003, R2=.19). The model’s parameter estimates indicated that activity 

within the rTPJ was negatively associated with AQ scores (β(se)=-.070(.028), df=1, χ2=6.54, 

p=.011), and positively with both the CAPEp scores (β(se)=.102(.027), df=1, χ2=13.74, 

p<.001) and the interaction term (β(se)=.077(.022), df=1, χ2=11.86, p=.001) (see Figure 6.3 

and Appendix 3, Table 1).  
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Figure 6.3. (A) 3-D representation of the interactive effect of autism tendencies and psychosis 

proneness on mean percent signal change of the rTPJ. (B) Visualizes the association between 

psychosis and rTPJ activity by plots of simple regression lines with low (-1 SD), average, and high 

(+1 SD) AQ scores as moderators, showing an increase in the positive effect of psychosis proneness 

on rTPJ activity with increasing autism tendencies. (C) Visualizes the association between autism 

tendencies and rTPJ by plots of simple regression lines with low (-1 SD), average, and high CAPEp 

(+1 SD), showing a decrease in the negative effect of autism tendencies on rTPJ activity with 

increasing psychosis proneness. Asterisk = p-value <.05. 

 

As can be seen from Figure 6.3A, rTPJ activity is greater in psychosis-prone 

individuals (i.e., those with high psychosis scores and low AQ scores) compared to autism-

prone individuals (i.e., those with low psychosis scores and high AQ scores). Intriguingly, 

however, the rTPJ activates to a similar degree in individuals presenting with high scores as 

well as in individuals presenting with low scores on both scales. Thus, in order to examine if 

rTPJ activity is modulated by the relative expression of psychosis vis-à-vis autism, the 

participants’ psychosis bias was calculated by subtracting their z-normalized AQ scores from 



	 116 

their z-normalized CAPEp scores. A regression analysis confirmed that the Psychosis-Bias 

scores positively predicted rTPJ activity (β(se)=.095(.022), df=1, χ2=19.49, p<.001). 

Next, we probed the interaction term using the method by Hayes and Matthes (2009) 

described above. We see that the relationship between psychosis proneness and rTPJ activity 

(Figure 6.3B) was significant when the AQ scores were at the mean (β=0.102, p=0.002) as 

well as when they were high (+1 SD) (β=0.177, p<.001), but not when they were low (-1 SD) 

(β=0.026, p=0.54). Conversely, the relationship between autism tendencies and rTPJ activity 

(Figure 6.3C) was significant when the CAPEp scores were low (-1 SD) (β=-0.146, p=0.003) 

as well as when they were at the mean (β=-0.076, p=.038), but not when they were high (+1 

SD) (β=0.006, p=0.89). This pattern suggests that activity within the rTPJ is diametrically 

modulated by autism tendencies and psychosis proneness.   

However, the precise role of the rTPJ has been the subject of competing hypotheses. 

Indeed, the rTPJ, in addition to its role in mentalizing, has been implicated in saliency, 

attention-reorienting and self-other distinction (Corbetta et al., 2008; Decety & Lamm, 2007). 

Consequently, it is not clear whether the rTPJ is a shared neural basis for all of these 

functions, or whether it consists of subregions supporting specific functions (Carter & 

Huettel, 2013; Corbetta et al., 2008; Decety & Lamm, 2007; Mars et al., 2012). In this regard, 

Mars and colleagues (Mars et al., 2012), using diffusion-weighted imaging tractrography-

based parcellation, have shown that the rTPJ (delineated to include all areas labeled as TPJ in 

previous studies) consists of at least 3 subregions with distinct pattern of functional 

connectivity. As can be seen from Figure 6.4A, these subregions consist of a dorsal subregion 

(rdTPJ), largely corresponding to the inferior parietal lobule, and a ventral subregion, which 

is further subdivided into a posterior (rvpTPJ) and an anterior (rvaTPJ) subregions. The 

rdTPJ is functionally connected with a network including the lateral anterior PFC and forms 

part of the Task Positive Network. The rvpTPJ and the rvaTPJ are respectively functionally 
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connected with the mentalizing and the attention-reorienting networks. The association of the 

rvpTPJ and the rvaTPJ with mentalizing and attention-reorienting is consistent with a meta-

analysis of 70 functional neuroimaging studies showing that, on average, attention-

reorienting activates anteriorly and ToM processing posteriorly (Decety & Lamm, 2007), as 

well as with more recent studies investigating the territorial integrity of the rTPJ (Bzdok et 

al., 2013; Schurz, Radua, Aichhorn, Richlan, & Perner, 2014). Note that the rvpTPJ, as 

defined in Mars et al. (2012), overlaps considerably with the region within which we 

conducted our analyses in Figure 6.3 above (see Figure 6.4B).  

 
Figure 6.4. (A) Mars et al.’s (Mars et al., 2012) parcellation of the right TPJ into dorsal (center of 

gravity [49, -46, 46]) (rdTPJ), ventral posterior [54, -55, 26] (rvpTPJ) and ventral anterior [59, -37, 

30] (rvaTPJ) subdivisions. Masks were obtained from www.rbmars.dds.nl/CBPatlases.htm10 (B) An 

overlay of the rTPJ (in yellow), defined by the ToM localizer task, over the rTPJ, as delineated by 

Mars et al., shows that our localized rTPJ [56, -64, 30] significantly matches the rvpTPJ, with 

minimal overlaps with the rdTPJ and the rvaTPJ. Regions are superimposed on a sagittal section, 

x=20.  

 

To shed light on this debate, we utilized the masks from Mars et al. to further examine 

the neural activity of the rdTPJ and rvaTPJ as a function of autism tendencies and psychosis 

																																																								
10 We thank Rogier Mars and Matthew Rushworth for use of masks. 
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proneness. The omnibus test for the rdTPJ was non-significant (χ  2 =9.80, df=6, p=.13), but 

significant for the rvaTPJ (χ  2 =17.03, df=6, p=.009, R2=.16). Parameter estimates indicated 

that rvaTPJ activity was negatively associated with CAPEp scores (β(se)=-.052(.018), df=1, 

χ2=8.20, p=.004) and positively with the interaction term (β(se)=.073(.015), df=1, χ2=24.53, 

p<.001). The association with the AQ scores was negative but non-significant (β(se)=-

.013(.020), df=1, χ2=.38, p=.54) (see Figure 6.5 and Appendix 3, Table 2).  

 

 
Figure 6.5. (A) 3-D representation of the interactive effect of autism tendencies, psychosis proneness 

on mean percent signal change of the rvaTPJ. (B) Visualizes the association between psychosis and 

rvaTPJ activity by plots of simple regression lines with low (-1 SD), average, and high (+1 SD) AQ 

scores as moderators, showing a diminishing of the negative effect of psychosis proneness on rvaTPJ 

activity with increasing autism tendencies. (C) Visualizes the association between autism and rvaTPJ 

by plots of simple regression lines with low (-1 SD), average, and high CAPEp (+1 SD), showing a 

diminishing of the negative effect of autism tendencies on rvaTPJ activity with increasing psychosis 

proneness. Asterisk = p-value <.05. 
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In contrast to the pattern of activation we observed in the rvpTPJ (Figure 6.3A), 

autism-prone individuals (i.e., those with high AQ scores and low psychosis scores) 

compared to psychosis-prone individuals (i.e., those with low AQ scores and high psychosis 

scores) tend to have higher rvaTPJ activity (Figure 6.5A). Intriguingly, here too, we see that 

the rvaTPJ activates to somewhat a similar degree (albeit to a lesser degree of symmetry) in 

individuals presenting with high scores as well as in individuals presenting with low scores 

on both scales. In contrast to the rvpTPJ, a regression analysis revealed that the Psychosis-

Bias scores were negatively associated with the activity of the rvaTPJ (β(se)=-.056(.018), 

df=1, χ2=9.26, p=.002).  

Furthermore, when probing the interaction between the AQ and CAPEp scores, the 

positive relationship between psychosis proneness and rvaTPJ (Figure 6.5B) was significant 

when the AQ scores were low (β=-0.124, p<0.001) as well as when the AQ scores were at the 

mean (β=-0.052, p=.048), but non-significant when they were high (+1 SD) (β=0.020, 

p=0.50). Conversely, there was a negative relationship between autism tendencies and rvaTPJ 

(Figure 6.5C) when the CAPEp scores were low (-1 SD) (β=-0.084, p=0.030), none at the 

mean (β=-0.012, p=.64), and trending towards a positive relationship when the CAPEp scores 

were high (+1 SD)(β=0.060, p=0.063), but which becomes significant (p<.05) in individuals 

scoring above a Z value of 1.056 (which roughly corresponds to a score of 29 on the CAPEp 

scale). This pattern of activity suggests that activity within the rvaTPJ is also diametrically 

modulated by autism tendencies and psychosis proneness, but in different, and largely 

opposite pattern when compared to the rvpTPJ (Figure 6.3). 

 

DISCUSSION 

The observed diametric influences of autism tendencies and psychosis proneness on the 

neural activity within the ventral posterior (mentalizing) and anterior (attention-reorienting) 
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rTPJ is consistent with the diametric model positing that autism and psychosis spectrum 

disorders are etiologically and phenotypically diametrical exerting opposing influences on 

activity and behavior (Abu-Akel & Bailey, 2000; Abu-Akel et al., 2015; Crespi & Badcock, 

2008; Crespi et al., 2010). Thus we propose that the diametric modulation of the rvpTPJ 

reflects the neural effort to balance the tendency of psychosis to lead to overmentalizing and 

autism to undermentalizing (Abu-Akel & Bailey, 2000; Ciaramidaro et al., 2014; Crespi & 

Badcock, 2008; Crespi et al., 2010). Indeed, mentalizing studies have largely observed 

overactive rTPJ in psychosis spectrum disorders (Bara, Ciaramidaro, Walter, & Adenzato, 

2011; Ciaramidaro et al., 2014; Walter et al., 2009; Wible, 2012) and contrastingly an 

underactive rTPJ in autism spectrum disorders (Bara et al., 2011; Ciaramidaro et al., 2014; 

Lombardo et al., 2011).  

This neural pattern was not observed in all studies. For example, studies show a 

positive association between AQ scores and rTPJ activity (Nummenmaa et al., 2012; von 

dem Hagen et al., 2011). However, the positive correlation found in the Nummenmaa et al. 

study was during an attentional/gaze perception task, and that of the von dem Hagen et al. 

study was in a region whose coordinates [52, -42, 12] fall within the rvaTPJ, both of which 

are consistent with our current finding showing that activity in the attentional rvaTPJ is 

positively associated with AQ scores. It is noteworthy that the AQ scores in the Nummenmaa 

et al. study also correlated positively with the supramarginal gyrus, which constitutes part of 

the rvaTPJ as defined in our study. With respect to psychosis proneness, both van der Meer et 

al. (2013) and Modinos et al. (2010) detected no differences between low versus high 

psychosis-prone groups in the rTPJ when performing mentalizing tasks. However, dividing 

the participants into low and high groups is not amenable to assessing the effect of individual 

differences on the degree of neural activation.  
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Similarly, the diametric activation of the rvaTPJ (Figure 6.5) appears to reflect the 

neural effort to balance the inability to filter unimportant and distracting information 

associated with psychosis and the tendency for increased focus of attention associated with 

autism. This interpretation is consistent with findings showing that deactivation in this region 

reflects the filtering of irrelevant and distracting information, and that such deactivation 

ceases once a target has been detected (Shulman, Astafiev, McAvoy, d'Avossa, & Corbetta, 

2007). Although attention re-orienting was not measured behaviorally in our study, we tested 

whether the autism-related up-regulation of the rvaTPJ might reflect increased focus of 

attention. A regression analysis showed that activity of the rvaTPJ was only positively 

associated with the attention-switching subscale of the AQ questionnaire, where higher 

scores reflect stronger focus of attention (β(se)=.069(.025), df=1, χ2=7.77, p=.005) 

(Appendix 3, Table 3). This finding is consistent with Nummenmaa et al. (2012) who also 

reported positive association between the attention-switching subscale and rTPJ activity 

while performing an attentional/gaze perception task. It is important to note, that the 

attention-switching subscale was not associated with rvpTPJ activity ((β(se)=.032(.035), 

df=1, χ2=0.85, p=.36). Taken together, we propose that higher psychosis-proneness leads to 

an increase in the availability of information due to reduced information filtering (reflected in 

deactivation in rvaTPJ) and consequently greater effort when trying to mentalize with this 

information (reflected in greater rvpTPJ activity). These consequences of psychosis-

proneness are countered by the relative expression of the autistic trait associated with 

attentional focus, which restricts the amount of information available for mentalizing in the 

rvpTPJ. This interpretation is consistent with the opposing domains hypothesis positing 

reciprocal interaction between regions involved in social cognition and regions involved in 

attentional processing (Jack et al., 2012; Kubit & Jack, 2013). 
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Based on the strong interactive effect between autism and psychosis expressions in 

the rTPJ, we suggest that such inter-individual variation within and across disorders can be 

accounted for in terms of the relative expression of one disorder vis-à-vis the other. However, 

given that our findings are based on the relative expression of autism and psychosis traits 

among neurotypical adults, a further critical step is to examine whether these findings 

generalize to their respective clinical entities. Nonetheless, the impact of these sub-threshold 

clinical traits on neural functioning in a manner similar to what has been observed in patients 

with these disorders suggests that neural abnormalities are not necessarily a consequence of 

the disorders, and raises the possibility that an important difference between patients and 

non-patients is in the relative expression of autism and psychosis traits. Our findings thus 

provide a framework that could reconcile discrepant results such that hypo- or hyper-

activation in either disorder may be due to failure to capture the diametric influence of the 

other disorder. Additionally, the effect of individual differences in autism and psychosis traits 

in neurotypicals on neural activity raise concerns regarding hitherto findings reported in 

studies comparing clinical and non-clinical groups. Might differences (or lack thereof) 

between clinical and healthy controls be confounded by the relative expression of autism and 

psychosis traits in ‘healthy’ controls? That is, it is reasonable to assume that the extent of the 

difference between the healthy and the clinical populations is a function of the extent of 

subclinical expressions in the healthy group.  

Our study is the first to show that the postulated diametric modulation of autism 

tendencies and psychosis proneness on behavior and performance are detectable at the neural 

level in a region that is a core component of social functioning. The association of the neural 

response in the socio-cognitive and attention-reorienting networks with the extended autism 

and psychosis spectra in the neurotypical population further suggests that the assessment of 

both spectra in the “control group” could have important consequences for establishing 
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baseline measures for the assessment of behavior and brain phenotypes in the clinical groups. 

Furthermore, the contrastive modulation of the ventral anterior versus the posterior rTPJ 

underscores the distinct functionality of these subdivisions (Corbetta et al., 2008; Mars et al., 

2012; Scholz, Triantafyllou, Whitfield-Gabrieli, Brown, & Saxe, 2009), and provides an 

insight for the debate surrounding the functional link between regions responsible for higher 

level social cognitive processing and regions associated with domain-general attentional 

processes. 
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CHAPTER 7 
 

GENERAL DISCUSSION 
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INTRODUCTION 

The association between autism and psychosis is an area of considerable interest and debate, 

particularly in light of emerging evidence questioning the long-standing consensus of autism 

and psychosis spectrum disorders as mutually exclusive conditions. One set of evidence 

suggests that autism and psychosis share many phenomenological similarities that can be 

traced to common neurodevelopmental origins or genetic predispositions. A second set of 

evidence suggests that autism and psychosis exert opposite effects on phenotypes that can be 

traced to diametric genetic and biological mechanisms. These models and the evidence 

supporting them present significant conceptual difficulties to the current perception of autism 

and psychosis as distinct categorical conditions, but studies that systematically examine their 

merit are lacking.  

To reconcile such conceptual difficulties, autism and psychosis are regarded in this 

thesis as dimensional conditions that follow a standard distribution curve with most 

individuals carrying some liability for autism and psychosis, and only a small fraction of the 

population has a liability that exceeds the clinical threshold. By adopting the view of autism 

and psychosis as dimensional conditions, the thesis presented a heuristic framework that 

allowed for the simultaneous assessment of the independent, overlapping and diametric 

models by (1) simultaneously quantifying autism and psychosis expressions within the same 

individual, and (2) by examining their concurrent effect on endophenotypes that are known to 

affect both individuals with autism and psychosis.  

To this end, the thesis has presented a series of studies exploring the interactive effect 

of autism tendencies and psychosis proneness on perspective-taking and saliency-based 

selection in healthy individuals, using a variety of techniques and methodologies. These 

abilities represent core features of social interaction and are severely disrupted in both autism 

and psychosis. In addition, the thesis sought to investigate whether this interactive effect is 
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recoverable at the neuronal level. Overall, the findings from the series of studies suggest that 

autism and psychosis have a significant interactive effect on neuronal and behavioral 

phenotypes. This interactive effect has important implications to our current understanding of 

the effect of autism and psychosis on outcome measures, the nature of their association and 

more generally the future of psychiatry.  

In the following pages, I first thematically summarize the main empirical findings of 

the thesis and their implications to understanding perspective-taking and saliency in both 

autism and psychosis. Second, I discuss the clinical relevance of the methodological 

approaches and findings. Third, I discuss limitations of research and future directions. 

Finally, I conclude with comments highlighting the importance of the simultaneous 

assessment of autism and psychosis to understanding their relative contribution to behavioral 

and neuronal phenotypes. However, I would like to note that since the empirical chapters 

were written as self-contained papers, I took the liberty to go beyond the empirical findings 

in the interest of underscoring the potential of the research approach undertaken in this thesis 

and the future research opportunities it offers.  

 

THE INTERACTIVE EFFECT OF AUTISM AND PSYCHOSIS 

The interactive effect of autism and psychosis on resolving conflicting information 

Autism and psychosis are conditions of social and cognitive dysfunctions. Perspective-taking 

abilities and the ability to attend towards (or away from) salient information are important for 

social communication and functioning. In interactive contexts, for example, communication 

is likely to breakdown if one fails to realize perspectival difference, or act on this information 

in timely manner. Similarly, social functioning difficulties can arise due to an inability to 

suppress or filter out distractors. While there is considerable evidence of impairments in both 
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autism and psychosis, the evidence is also rather inconsistent, perhaps because it is 

uncommon to assess both autism and psychosis in the same individual.  

Chapter 2 and 3 and Chapter 4 were aimed at assessing the interactive effect of autism 

and psychosis on two separate domains, i.e., perspective-taking and saliency-based selection. 

However, while separate, they share a fundamental aspect, which is one’s ability to resolve 

conflicting information en route to achieving a specific goal. As such, Chapters 2-4 present 

convergent evidence suggesting that the ability to resolving conflicting information in both 

the sociocognitive and attentional domains are sensitive to inter-individual differences in the 

expression of autism and psychosis traits. More important, these studies reveal consistent 

evidence suggesting that autism tendencies and psychosis proneness interactively improve 

one’s ability to resolving conflicting information within these domains. This is demonstrated 

by showing that the interaction is associated with a reduction in the probability of making 

perspective-taking errors (Chapter 2), increasing the efficiency of perspective-taking 

(Chapter 3), and in increasing the efficiency of detecting a target in the presence of salient 

distractors (Chapter 4).  

An analysis of this interaction suggests that the effect engendered by the expression 

of one condition (e.g., psychosis) on the outcome measure (e.g., saliency cost) is dampened 

by the relative expression of the other condition. If autism and psychosis have contrasting 

effects on an outcome measure, this leads one to postulate that the ability to resolve 

conflicting information might be due to the diametric modulation of autism and psychosis on 

complementary/interacting mechanisms. With respect to the perspective-taking task, the 

paradigm itself cannot distinguish between errors that are attributable to autism tendencies 

versus those attributable to psychosis proneness. However, one can imagine that the benefits 

borne out of the interaction between autism and psychosis might be associated with the 

reconciliation or a tradeoff between two contrasting mentalizing styles specific to autism and 
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psychosis—autism is associated with the inability to represent mental states, whereas 

psychosis is associated with tendencies to overattribute mental states (Abu-Akel & Bailey, 

2000; Crespi & Badcock, 2008; Fretland et al., 2015; Frith, 2004). Similarly, in the saliency 

tasks, one can imagine that the attenuation of interference from salient distractors is the result 

of a tradeoff between the tendencies for attentional focus in autism (Baron-Cohen et al., 

2001; Ronconi, Gori, Ruffino, Molteni, & Facoetti, 2013) and the tendency to overswitch in 

psychosis (Yogev et al., 2003; Yogev et al., 2004). In this context, attentional focus may 

enable greater distractor suppression (hence less interference) and overswitching may be 

associated with the irresistible tendency to attend to the salient distractor (hence greater 

interference). The findings presented in Chapter 6 provide some evidence in favor of this 

argument. There, I presented evidence suggesting that the attentional subdivision of the rTPJ 

is contrastively modulated by autism and psychosis tendencies, wherein activity decreases as 

a function of psychosis, and increases as function of autism and particularly attentional focus. 

These patterns of activations correspond to the information gating (or filtering) function that 

has been proposed for this region (Shulman et al., 2007), where deactivations correspond 

with the gate being open and activations with the gate being closed.  

 Coming full circle, one can thus see how the interactive effect of autism and 

psychosis on attentional subdivision of the rTPJ can affect the neuronal activity of the socio-

cognitive subdivision of the rTPJ. Namely, the responsivity of the sociocognitive rTPJ would 

depend on the degree to which the attentional subdivision of the rTPJ allows for already 

represented models to be updated (cf. (DiQuattro, Sawaki, & Geng, 2014; Geng & Vossel, 

2013)). This begs the question as to whether the social effects are indeed driven by attention 

effects. While not definitive, there is evidence that some theory of mind paradigms activate 

the ventral attentional system (i.e., the TPJ and the inferior frontal gyrus (IFG)) (Hartwright 

et al., 2012; van der Meer, Groenewold, Nolen, Pijnenborg, & Aleman, 2011; van der Meer 
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et al., 2013)—the same system that is involved in saliency-based selection (Corbetta et al., 

2008; DiQuattro & Geng, 2011; Geng & Mangun, 2011). For example, Hartwright et al. 

(2012) showed that the IFG was recruited in the service of false belief reasoning during the 

high inhibition condition in which participants needed to reason about beliefs that were false 

compared to reasoning about beliefs that were true (the low inhibition condition). Similarly, 

van der Meer et al. (2013) have shown, compared to low psychosis-prone individuals, greater 

activation in the IFG in high psychosis-prone individuals when performing a theory of mind 

task that required the inhibition of the self-perspective. However, causality cannot be inferred 

from these studies, and therefore future work is needed to determine the causal relationship 

between the attention and the mentalizing neural networks, and the way this relationship can 

be affected by the relative expression of autism vis-à-vis psychosis. 

Following from the above discussion, it is feasible thus to propose that these 

contrasting information processing styles represent two poles of irregularities across the 

autism and psychosis spectra and which appear to converge in a compensatory manner, 

particularly in individuals with balanced expression of autism and psychosis. However, the 

equifinality of performance in individuals with low versus high balanced expressions of 

autism and psychosis is not without cost. By systematically tracking the eye-movements of 

participants whilst performing a more sensitive version of the perspective-taking task 

(Chapter 3), the high balanced group performed at increased processing cost. The difference 

between low and high balanced individuals was also observed in the activation of the anterior 

rTPJ which was activated less in the high balanced individuals (see Chapter 6, Figure 6.5). 

These findings are important as they suggest that having high expressions of both autism and 

psychosis comes with certain liability. In addition, these findings give further credibility to 

the robustness of the measures used to quantify the expression of autism and psychosis, in 
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that scoring low or high on both questionnaires is not simply a response bias by participants 

who indiscriminately endorse (or not) questionnaire items.  

Collectively, these findings have important implications for research investigating 

socio-cognitive and attentional abilities within both the healthy and the clinical populations. 

As demonstrated in this thesis, a substantial source of the variance in perspective-taking and 

saliency-based selection can be traced to inter-individual variations in the expression of the 

autism and psychosis. While these of course are not the only variables that explain the effects 

observed here, they have important implications for research assessing these domains within 

the clinical populations in at least two respects. First, the true state of affairs in individuals 

with autism or psychosis might be masked by the relative expression of the unmeasured 

condition. Second, the differences between clinical and non-control groups on a particular 

outcome measure is likely to vary across studies, as the magnitude of the difference is likely 

to be susceptible to the relative expression of these conditions within both the healthy and 

clinical groups. The development of sensitive measures that can capture continuously the 

whole range of autism and psychosis symptom severity within the clinical and non-clinical 

groups are likely to lead to significant revisions of current findings pertaining to the effect of 

autism and psychosis spectrum disorders on domains that are impacted by both conditions.     

 

Implications for the relationship between autism and psychosis 

In the introduction, Figure 1.1 presented four models that propose putative relationships 

between autism and psychosis/schizophrenia spectrum disorders. The first is the subsume 

model, which posits that autism is subsumed in psychosis or vice versa. The second is the 

separate (or independent model), which posits that autism and psychosis are two mutually 

exclusive conditions. The third is the overlapping model, which suggests that both conditions 

feature overlapping phenotypes and exhibit shared areas of deficits. Finally, the fourth is the 
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diametric model, which posits that autism and psychosis are etiologically and phenotypically 

diametrical conditions that exert opposite effects on outcome and behavior. As pointed out in 

the introduction, the first model can be ruled out, as it principally predicts that individuals 

diagnosed with one condition would necessarily meet the diagnostic criteria of the other 

condition. Thus, which of the remaining three models is supported by data presented in this 

thesis? 

 By simultaneously assessing the relative expression of autism and psychosis, I was 

able to statistically test which of the separate, overlapping and diametric models best 

reflected the putative relationship between autism and psychosis (see Appendix 2). Using this 

approach, we uncovered that autism and psychosis have an interactive effect on performance 

in both the attentional and socio-cognitive domains and which also appear to be reflected at 

the brain level within specific subdivisions of the rTPJ. This significant interactive effect 

suggests that autism and psychosis expressions are unlikely to have independent effects on 

saliency or perspective-taking abilities, thus providing reasonable ground to rule out the 

independence of autism and psychosis, at least with respect to their effects on these domains. 

In addition, the unpacking of the interactive effect also suggested that the effects of autism 

and psychosis are not unidirectional or additive as would be predicted by the overlapping 

model—the effect engendered by one condition was moderated by the relative expression of 

the other, and some times even in the opposite direction. Therefore, our data do not support 

the overlapping model, and in fact suggest that the relationship between autism and psychosis 

is best described within the context of the diametric model (Crespi & Badcock, 2008).  

 However, the analyses of the data suggest that the diametric model as depicted by 

Crespi and Badcok (2008) (see Figure 1.1D) requires modifications in at least two respects in 

order to account for the full range of effects of autism and psychosis. First, the diametric 

model does not allow for the co-occurrence of autism and psychosis, as the expression of one 
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condition ought to be at the expense of the other. This means that comorbidity is counter to 

what would be predicted by the diametric model, and that any co-occurrence is likely to be a 

misdiagnosis of the schizophrenia premorbid condition as autism (Crespi & Crofts, 2012). 

While misdiagnosis is certainly a possibility (Van Schalkwyk, Peluso, Qayyum, McPartland, 

& Volkmar, 2015), this explanation is also likely driven by the inability of the diametric 

model to explain findings suggesting that the same genetic risk factor can confer risk for both 

autism and psychosis. For example, the risk for autism and/or schozphrenia may be 

associated with the same CNV loci such as 1q21.1 duplication and 16p13.1 duplication 

(Crespi & Crofts, 2012). In a clear departure from the diametric model, in this thesis I have 

simultaneously assessed both autism and psychosis within the same individual. The analyses 

clearly suggest that both conditions can be expressed at varying degrees, and importantly that 

these expressions can have measurable effects on outcome and behavior that are consistent 

with observations reported in the literature for each of these conditions alone. In this respect, 

it is important to highlight that the term comorbidity is not restricted to the categorical 

presence of two conditions, but also to the co-occurrence of conditions at various degrees of 

expression.  

Second, unlike the diametric model, a population can be divided along the autism and 

psychosis axes into at least four groups: Two biased groups and two balanced groups (see 

Figure 7.1). The biased groups represent the canonical diametric axis of autism and 

psychosis. However, as pointed above, at each point along this axis, autism and psychosis 

expressions coexist at varying degrees, with the extreme points representing the clinical 

conditions as depicted in the original diametric model (Figure 1.1D). The balanced axis is an 

added dimension that allows for varying magnitudes of equal expressions of both autism and 

psychosis. I argue that the balanced axis is an important and necessary refinement of the 

original diametric model, which only allows for a single point of balance along the autism-
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psychosis axis. In fact, according to the diametric model, normality corresponds to a single 

point of balanced mechanistic and mentalistic cognitions along its mechanistic-mentalistic 

continuum. Thus, the inclusion of a balanced axis that allows for varying magnitudes of equal 

autism (mechanistic) and psychosis (mentalistic) expressions is important as it allows us to 

explain the presence of factors that equally confer risk for both autism and psychosis. Taken 

together, the bias and the balance axes give rise to the idea that autism can be a protective 

factor against psychosis or its phenotypic correlates. Indeed, we have shown, for example, 

that saliency cost decreased with increasing expression of autism traits. This leads to the 

intriguing hypothesis that the resilience of individuals at high risk for psychosis can be 

predicted by the relative expression of autism and psychosis. It also advances the radical idea 

that individuals with comorbid conditions would present with better profiles than individuals 

with either frank autism or frank psychosis, at least in some domains.  

 
Figure 7.1. A schematic representation of the distribution of a population along the autism 

and psychosis axes. The balance axis represents low to high balanced expressions of autism 

and psychosis. The bias axis represents the relative and progressive dominance of autism or 

psychosis. The center is the population mean for the expression of autism and psychosis. 

 

It is important, however, to note that similar to the diametric model, my version of the 
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model would also predict low occurrence of autism-psychosis comorbidity. Specifically, 

based on the assumption of opponency between autism and psychosis, the co-occurrence 

should be significantly less than the 1% prevalence rate expected for either autism or 

psychosis within the general population. However, a recent review of studies assessing 

autism and psychosis comorbidity report that the mean rate of individuals with autism-

psychosis comorbidity is about 13% (Chisholm et al., 2015). However, the reported rates of 

comorbidity in the reviewed studies varied widely (from 0% to ~60%). Also, none of these 

studies were epidemiological and the figures were drawn from small sample sizes (N ranges 

from 16 to 217 patients). However, in the largest study to date (that was not included in the 

above review), comorbidity was assessed in 2123 8-year-olds with an autism diagnosis from 

multiple populations across the United States. The study revealed that while 10% had a 

comorbid psychiatric diagnosis, only about 0.4% met the diagnostic criteria for psychosis 

spectrum disorders. However, as psychosis spectrum disorders typically emerge during late 

adolescence, early adulthood, this incident rate is likely to be higher, but it would need to 

increase by at least 300% to be at par with the expected rate of 1% for autism or psychosis 

spectrum disorders within the general population. There is an obvious and an urgent need for 

substantial epidemiological studies to establish true prevalence of autism and psychosis 

comorbidity (Tsai, 2014). Data from these studies will be crucial in informing theories 

concerned with the nature of the relationship between these two pervasive conditions. 

 

Clinical implications 

The thesis investigated the association between autism and psychosis within healthy adults. 

However, based on the notion that (1) these conditions are not confined to the disorder and 

can be expressed to varying degrees within the clinical and non-clinical populations, and (2) 

that the effects observed reflect what has largely been found within the clinical entities, I 
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discuss, with due caution, some potential clinical implications. First and foremost, the 

apparent interactive nature of autism and psychosis calls for their simultaneous assessment 

within the individual. As such, this finding supports changes in the DSM-5, which no longer, 

at least in principle, considers autism and psychosis as mutually exclusive conditions. This is 

particularly important for tailoring individualized treatment plans. In this regard, 

individualized treatment plans can benefit from more studies that directly compare autism 

and psychosis particularly on shared phenotypes such as perspective-taking and saliency. I 

have shown, for example, that autism and psychosis dominant individuals appear diametric in 

their ability to suppress or filter out salient distractor. This finding might be used to develop 

reciprocal treatments, and provides important insights to realize the context in which 

condition-specific profiles can be beneficial for the individual. Accordingly, we would expect 

individuals with autism to perform well in tasks or contexts that require suppression of salient 

elements and, conversely, we would expect individuals with psychosis to perform well in 

contexts in which attending to salient elements bears benefits.  

Second, the concept of reciprocal treatments may also be applicable for 

pharmacological research and intervention. If autism and psychosis can be traced to opposite 

biological risk factors, one might suggest that a risk for one condition can in fact be a remedy 

for the other. The potential of this suggestion is supported by evidence showing that 

psychostimulants such as amphetamine and its derivatives—known to induce psychosis—can 

improve specific target symptoms in autism such as hyperactivity, impulsivity, disinhibition 

and inattention (Nickels et al., 2008). Conversely, in utero exposure to valproic acid has been 

associated with increased risk for autism (Roullet, Lai, & Foster, 2013).  Independently, it 

has been shown, albeit when given in conjunction with other medications, that valproic acid 

further reduces symptom severity in patients with schizophrenia (Citrome, 2002; Yoshimura, 

Shinkai, Ueda, & Nakamura, 2007). In addition, if autism and psychosis are predisposed by a 
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reciprocal biological mechanism, the development of medications with opposite 

pharmacokinetics can be a promising model for pharmacological treatment in autism and 

schizophrenia (Crespi & Go, 2015). For example, agonists of nicotinic acetylcholine 

receptors, which are important for sensory gating and attention, are a promising new 

treatment agents for schizophrenia (Freedman, 2014) and their antagonists for autism 

(Lippiello, 2006).   

Third and lastly, much of the murkiness pertaining to the association between autism 

and psychosis can be attributed to the disconnect between adult and child psychiatrists—

typically child psychiatrists are not trained in assessing psychosis and adult psychiatrist are 

not trained to assess autism. A crosstalk between these two disciplines is paramount to 

advancing treatments of patients with autism and psychosis.  

 

THE INTENTIONAL STANCE 

In a departure from the main theme of the present thesis, Chapter 5 addressed a fundamental 

drawback in research investigating the neural underpinnings of Dennett’s (1987) notion of an 

intentional stance, and more specifically the neural underpinning of mentalizing in interactive 

contexts. Previous studies of intentional stance have confounded whether the opponent is a 

human or computer and whether the opponent is a free intentional agent or a passive agent 

that merely follows predetermined set of instructions. An important finding of the current 

study is that while adopting an intentional stance activates the “mentalizing network”, it is 

not specific to mentalizing about humans. Specifically, believing that the opponent is an 

intentional agent (irrespective of the opponent being a human or a computer) activated 

canonical regions with the mentalizing network. These included the bilateral TPJ, the 

precuneus, the anterior paracingulate cortex and the right temporal pole. A subset of this 

network that included the right TPJ and the anterior paracingulate cortex was active when 
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playing human rather than a computer, which reflects spontaneous reasoning in the presence 

of a human agent.  

 In addition to the contribution of current study to research investigating the 

intentional stance in the context of human-computer interactions, the study demonstrated that 

the RPS task can be an attractive alternative to existing tasks that have been used to 

investigate the neural underpinning of mentalizing in clinical populations (Joyce, Averbeck, 

Frith, & Shergill, 2013). Studies of social cognition and its neural patterns in clinical settings 

have been challenged with tasks that are cognitively demanding and unengaging. The RPS 

task, on the other hand, can be an alternative to language- and cognitively-laden tasks such as 

the functional localizer task, because it is engaging, interactive, cognitively undemanding 

and, as demonstrated, results in a comprehensive activation of the mentalizing network. More 

specifically, the findings of this study should encourage the use of this task to investigate 

neural activation within the mentalizing network of individuals with autism and psychosis 

particularly in light of the evidence presented in Chapter 6, showing that autism and 

psychosis modulate the BOLD signal of the right TPJ generated during this task.  

 

LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

The findings and inferences presented in this thesis should be interpreted in the context of 

several limitations. First, the assessment of autism and psychosis relied on only two 

questionnaires, the AQ and the CAPE. While it would have been desirable to include 

additional questionnaires, these questionnaires are robust and have been standardized across 

many language and cultures confirming their validity. However, future studies should 

consider assessing the expression of these conditions using different questionnaires such as 

the Schizotypal Personality Questionnaire (SPQ) (Raine, 1991) and The Oxford-Liverpool 

Inventory of Feelings and Experiences (O-LIFE) (Mason & Claridge, 2006) for the 
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assessment of psychosis proneness, and the Social Responsiveness Scale-Adult (SRS-A) 

(Constantino & Todd, 2005) for the assessment of autism tendencies.   

Second, the tasks used in the study are limited in their ability to offer a mechanistic 

account of how autism and psychosis interact to achieve their effect. For example, the 

perspective-taking paradigm cannot distinguish between the types of errors produced by 

autism-dominant individuals and those produced by psychosis-dominant individuals. 

Therefore, there is a need to develop paradigms that can distinguish between errors that are 

due to under-mentalizing (as would be predicted for autism) versus errors of hyper-

mentalizing (as would be predicted for psychosis). Such methodological advances would be a 

critical next step to understanding how autism and psychosis interact to improve perspective-

taking and information processing.  

Third, the small sample size of the imaging study limited our ability to conduct a 

whole-brain analysis as a function of autism, psychosis and their interaction. Therefore, I 

opted for a region of interest-based approach, which suggested that the activity within the 

rTPJ during a mentalizing task is interactively modulated by autism and psychosis 

expressions. Larger studies are required to examine the extent to which this effect can be 

observed in the brain, particularly within interacting systems such as the ventral and dorsal 

attentional systems or the default mode network (DMN) and the positive task network (PTN). 

This research is important in that it can offer a neurobiological mechanism for the interactive 

effect of autism and psychosis on functional outcomes.  

Fourth, some may question the stability of the interaction between autism and 

psychosis, as symptoms in clinical psychosis are transient and in autism are not. While it is 

true that psychosis symptoms can be ameliorated, the rate of recovery for the majority of 

patients is rather low (Insel, 2010). In addition, improved symptoms in these patients are 

often not accompanied with improved functional outcomes or with the reversal/restoration of 
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causal mechanisms (Insel, 2010). Thus the biological mechanisms underlying the diametric 

effect are likely to be trait markers, which is consistent with the view of schizophrenia as a 

neurodevelopmental condition.  

Fifth, some may question the generalizability of the current findings as it is based on 

university samples. Pleasingly, however, the obtained scores for both the AQ and the CAPE 

scores were consistent with the distribution of scores reported for these questionnaires within 

the general population. One might even suspect that the observed effects in the current 

studies are likely to be larger once examined within the general population. Relatedly, the 

samples in the studies reported in this thesis largely consisted of female participants. While 

gender had no effect on our findings, in a sample with equal sex ratios, the observed effects 

are likely to be stronger due to the expected greater expression of autism traits of male 

participants in the population (Baron-Cohen et al., 2014).  

The findings in this thesis are expected to stimulate further research not to only for 

the purpose of replicating the current findings, but to also address some of the limitations 

raised in this section. It would be intriguing for future research to search for contexts where 

the interaction between autism and psychosis does not result in a benefit or that the effects 

are specific to one condition or the other. The experiments conducted in this thesis examined 

the interactive effect of autism and psychosis within the attentional and socio-cognitive 

domains. Will, for example, the same effect be observed within the affective domain? In this 

regard, both autism- (Magnuson & Constantino, 2011) and psychosis-specific (Siris, 2000) 

symptoms are associated with elevated levels of depression and difficulties with affect 

regulation, and so one might predict that their interaction would lead to increased levels of 

depression, rather than an improvement. Similarly, is this interactive effect generalizable, for 

example, to general intelligence and early stages of information processes, or is it only 

present at higher cognitive processes? These and similar questions are important to test the 
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veracity and specificity of the hypotheses generated by the findings presented in this thesis, 

namely the diametric effect of autism and psychosis on outcome measures.  

Equally important is to test the extent to which autism traits interact with other 

dimensions of schizotypy/psychosis. For reason outlined in this thesis, I only tested the 

interactive effect of autism traits and the expression of positive psychotic symptoms. In the 

case of the CAPE, it consists of three factors representing positive, negative and depressive 

symptoms. Examining the degree and manner in which the depressive and negative 

symptoms interact with the expression of autism traits is important to determining the 

uniqueness of the interactive effect between autism traits the expression of positive 

symptoms. However, these factors and particularly the negative symptoms tend to correlate 

highly with the expression of autism traits. Disentangling autism traits from negative 

symptoms is paramount to understanding the degree to which autism and psychosis spectrum 

disorders are related, which currently is unfortunately complicated by the underspecificity of 

available instruments for the assessment of autism traits and negative symptoms.  

In addition, a major challenge for research is the development of appropriate analytic 

tools that can capture the effect of co-occurring pathologies on an outcome measure. The 

mean and bias effect model presented in Chapter 2 and 4 offers a novel analytic approach for 

this problem, and thus it may be an important complement to standard analytic approaches. 

Importantly, I have shown that interactions in linear models naturally resolve into quadratic 

terms that assume either a sub-additive relationship between the two conditions (i.e., a bias 

effect) or an additive relationship between the two conditions (i.e., a mean effect). This 

suggests that the use of linear correlations may mask the complexity of the effect of 

independent variables on the dependent variable. It is important to note in this context that 

linear analytic approaches are only a first approximation of the effect of independent 

variables on the dependent variable, but not necessarily the best summary of the effects.  
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Moreover, while the bias and mean effect model is more complex and less parsimonious than 

the standard linear regression model, it is in fact its mathematical equivalent, but with the 

advantage of uncovering both linear and non-linear effects. Thus, the utilization of an 

analytic approach that combines both linear and nonlinear effects can have measurable 

benefits to understanding the effect of comorbid conditions on outcome and behaviour (or 

any two variables on an outcome), in that it can statistically support or refute putative 

assumptions about the relationship of comorbid conditions (or variables), and how this 

relationship affects the dependent variable. With regard to autism and psychosis, I have 

shown that their concurrent effect on perspective taking and saliency cost is generally 

captured by the quadratic term of the bias effect. The bias effect suggests that the effect of 

one condition is dependent on the relative, rather than the absolute expression of the 

condition, possibly reflecting the compensatory relationship of systems that are preferentially 

expressed in autism and psychosis. Importantly, the quadratic term of the bias effect also 

suggests that autism and psychosis have diametric effects on intentional and socio-cognitive 

phenotypes, which is most apparent by the identical performance of participants with high 

tendencies to both disorders to participants presenting with low tendencies to both disorders 

(see for example Figure 2.3 and Figure 4.8). 

 

CONCLUSION 

The thesis converges on many fields, including attention, social cognition, cognitive 

neuroscience and psychiatry, making it a project with broad impacts. The findings and the 

methodological approaches reported in this thesis can be used to develop specific and 

informed hypothesis about the relationship between autism and psychosis within the clinical 

and non-clinical populations. They also inform our understanding of inter-individual 

differences in core abilities important for social communication and functioning. More 
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significantly, the findings should encourage the assessment of both autism and psychosis 

traits in both the clinical as well as the control groups, which could have important 

consequences for establishing baseline measures. If confirmed, the impact of the current 

findings can be large enough to change the way the field examines autism and psychosis and 

their effect on behavioural and brain phenotypes.  
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APPENDIX	1	
	
Table	1.	Mean	(±	SD)	of	AQ	and	CAPEp	scores,	Proportions	of	Perspective-Taking	Errors	and	Reaction	
Times	of	correct	responses	in	the	experimental	and	control	conditions	for	the	ambiguous	and	
relational	trials.	

	
Participants	
(N=201)	

Perspective-Taking	
Error	(Proportions)	

Reaction	Times	of		
Correct	Responses§	

AQ	 16.33±6.30	 	 	

CAPEp	 27.37±4.84	 	 	

Ctrl_Ambig	 	 0.01±0.03	 2542	(225)	

Exp_Ambig	 	 0.05±0.08	 2568	(294)	

Ctrl_Relat	 	 0.21±0.16	 3005	(306)	

Exp_Relat†	 	 0.42±0.35	 2991	(421)	
*AQ=	Autism	Quotient;	CAPEp=	Positive	scale	of	the	Community	Assessment	of	Psychic	Experiences.	
Ctrl	=	Control;	Ambig=	Ambiguous;	Exp=	Experimental;	Relat=	Relational.	
§	A	comparison	between	the	RTs	of	the	ambiguous	and	relational	trials	is	not	possible	due	to	the	
inherent	difference	in	the	time	of	onset	of	the	critical	referent	in	the	ambiguous	and	relational	
instructions—time	of	referent	onset	in	the	ambiguous	trials	is	about	724ms	after	the	start	of	the	
instruction,	and	1047ms	in	the	relational	trials	(for	complete	details	see	Apperly	et	al.,	2010).		
†	Data	is	based	on	187	participants	due	to	14	participants	erring	(or	erring	and	timing	out)	on	all	
experimental	relational	trials.	Participants	timed	out	on	3.6%	of	all	possible	1608	trials.	
	
As	can	be	seen	from	Supplementary	Table	1,	there	were	no	differences	between	RT	times	of	the	
control	and	experimental	trials	in	both	the	ambiguous	(t(200)=-1.63;	p=.11)	and	relational	conditions	
(t(186)=.93;	p=.35).	This	pattern	is	consistent	with	that	observed	by	Apperly	et	al.	(2010).	Moreover,	
Pearson	correlations	reveal	that	the	participants’	correct	responses	on	the	experimental	trials	were	
unrelated	to	reaction	times	(ps>.50).		
	

	
Figure	1.	A	scatter	plot	depicting	the	association	between	the	Autism	Spectrum	Quotient	Scale	(AQ)	
scores	and	the	scores	on	the	Positive	scale	of	the	Community	Assessment	of	Psychic	Experiences	
(CAPE	positive	scale,	CAPEp).		
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Table	2.	Summary	of	Poisson	regression	coefficients	with	errors	on	the	experimental	relational	trials	
as	the	dependent	variable	and	gender	as	a	covariate	

AQ=	Autism	Quotient;	CAPEp=	Positive	scale	of	the	Community	Assessment	of	Psychic	Experiences.		
*	Omnibus	test	(χ  2 =15.89	df=4,	p=.003)	
	
	
Table	3.	Summary	of	Poisson	regression	coefficients	with	errors	on	the	experimental	ambiguous	
trials	as	the	dependent	variable		

AQ=	Autism	Quotient;	CAPEp=	Positive	scale	of	the	Community	Assessment	of	Psychic	Experiences.		
*	Omnibus	test	(χ  2 =5.108	df=3,	p=.164)	
	
	
Table	4.	Summary	of	Poisson	regression	coefficients	of	the	bias	model	with	errors	on	the	
experimental	relational	trials	as	the	dependent	variable	and	gender	as	a	covariate		

AQ=	Autism	Quotient;	CAPEp=	Positive	scale	of	the	Community	Assessment	of	Psychic	Experiences.		
*	Omnibus	test	(χ  2 =16.39,	df=6,	p=.012)	
	

Model*	
	

Coefficient	
β 	 (SE)	 Waldχ  2 	

	
df	
	

	
Exp(β )	

	
Sig.	
	

Constant	 -1.61	 .4348	 13.709	 1	 .200	 <.001	

AQ	 .054	 .0230	 5.483	 1	 1.055	 =.019	

CAPEp	 .044	 .0152	 8.293	 1	 1.045	 =.004	

Gender	 -.087	 .0537	 2.647	 1	 .916	 =.104	

AQxCAPEp	 -.002	 .0008	 4.969	 1	 .998	 =.026	

Model*	
	

Coefficient	
β 	 (SE)	 Waldχ  2 	

	
df	
	

	
Exp(β )	

	
Sig.	
	

Constant	 -1.494	 .9810	 2.321	 1	 .224	 =.128	

AQ	 .086	 .0537	 2.572	 1	 1.090	 =.109	

CAPEp	 .076	 .0368	 4.268	 1	 1.079	 =.039	

AQxCAPEp	 -.003	 .0020	 2.786	 1	 .997	 =.095	

Model*	
	

Coefficient	
β 	 (SE)	 Waldχ  2 	

	
df	
	

	
Exp(β )	

	
Sig.	
	

Constant	 -.391	 .1059	 13.636	 1	 .676	 <.000	

Bias	(AQz-CAPEpz)	 -.019	 .0240	 .619	 1	 .981	 =.431	

Bias2	 .020	 .0096	 4.375	 1	 1.020	 =.036	

Sum	(	AQz+CAPEpz)	 .034	 .0196	 2.943	 1	 1.034	 =.086	

Sum2	 -.010	 .0088	 1.207	 1	 .990	 =.272	

Bias	x	Sum	 -.005	 .0126	 .130	 1	 .995	 =.718	

Gender	 -.079	 .0556	 2.002	 1	 .924	 =.157	
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Figure	2:	3-D	representation	of	the	relationship	between	autism	tendencies	and	psychosis	
proneness	(represented	as	standardized	Z	scores)	and	the	probability	of	making	perspective-taking	
errors	on	the	ambiguous	trials.	The	negative	scores	represent	low	tendencies	and	the	positive	scores	
represent	high	tendencies.	(Omnibus	test	(χ  2 =4.14,	df=5,	p=.53)).	
	
Reference:	
Apperly,	I.	A.,	Carroll,	D.	J.,	Samson,	D.,	Humphreys,	G.	W.,	Qureshi,	A.,	&	Moffitt,	G.	(2010).	Why	are	

there	limits	on	theory	of	mind	use?	Evidence	from	adults'	ability	to	follow	instructions	from	
an	ignorant	speaker.	Q	J	Exp	Psychol	(Hove),	63(6),	1201-1217.	doi:	
10.1080/17470210903281582	



	 159 

APPENDIX	2	
	

Reconceptualizing	the	effect	of	co-occurring	autism	and	psychosis	traits	on	cognition	

and	behavior	in	terms	of	bias	and	mean	effects:	A	mathematical	rationale	

	
Diagnostic	and	non-diagnostic	features	of	autism	and	psychosis	can	co-occur	in	the	same	individual.	

The	concurrent	effect	of	Autism	(A)	and	Psychosis	(P)	on	cognition	and	behavior,	can	be	captured	in	

a	model	with	just	three	dependent	terms	(i.e.	linear	terms	plus	interaction)	as	follows:	

	

(1)	Y	=	i*A	+	j*P	+	k*A*P	+ε,	where	i,	j	and	k	are	best	fit	parameters	[Model	1]	

	

However,	the	relationship	between	these	conditions	can	alternatively	be	expressed	in	terms	of	Bias	

(i.e.,	the	relative	dominance	of	one	condition	vis-à-vis	the	other—or	a	sub-additive	effect)	and	mean	

effect	(i.e.,	an	additive	effect).		

	

If	the	Bias	(B)	and	Mean	effect	(M)	terms	are	defined	as:	

	

(2)	B	=	(A	-	P)/2	

(3)	M	=	(A	+	P)/2	

	

then	autism	(A)	and	Psychosis	(P)	can	be	expressed	as:	

	

(4)	A	=	M	+	B	(by	adding	equations	(2)	and	(3))	

(5)	P	=	M	–	B	(by	subtracting	equations	(2)	from	(3))	

	

By	substituting	A	and	P	in	Model	1	with	their	values	from	equations	(4)	and	(5),	the	initial	model	is	in	

effect	identical	to	the	following:			

	

(1)	Y	=	i*A	+	j*P	+	k*A*P	+ε,	where	i,	j	and	k	are	best	fit	parameters	[Model	1]	

	

(6)	y	=	i*(M+B)	+	j*(M-B)	+	k*(M+B)*(M-B)	à			

(i+j)*M	+	(i-j)*B	+	k*(M^2)	-	k*(B^2),		

or	m*M	+	n*B	+	o*M^2	+	p*B^2	+ε,	where	m,	n,	o	and	p	are	best	fit	parameters.			
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If	we	are	setting	up	such	a	model	from	scratch	we	would	naturally	want	to	include	the	interaction	

term	between	M	and	B,	resulting	in	a	model	with	5	dependent	variables	as	follows:		

	

(7)	Y	=	m*M	+	n*B	+	o*M^2	+	p*B^2	+	q*M*B	+ε	[Model	2]	

	

This	is	therefore	the	initial	preferred	model	for	M	and	B.	Note	that	the	implication	from	above	is	

that	the	interaction	term	between	A	and	P	(in	Model	1)	resolves	into	a	simple	multiple	of	(M^2-B^2).	

The	question	then	becomes	for	Model	1	above	whether	most	of	the	variance	in	the	A*P	interaction	

term	is	carried	by	the	M^2	or	the	B^2	portion	(or	whether	it	is	shared	equally).	If	the	answer	to	this	

question	is	that	the	B^2	(or	the	M^2)	term	alone	carries	a	disproportionate	amount	of	the	variance	

then	this	is	a	strong	reason	for	arguing	that	using	the	derived	Bias/Mean-effect	formalism	is	

inherently	more	useful	and	meaningful	than	using	the	base	A	and	P	scores	used	in	Model	1.	

Conversely,	if	the	result	is	that	the	variance	is	shared	equally	(between	M^2	and	B^2)	then	that	

would	seem	to	argue	that	there	is	no	advantage	in	the	conversion,	and	that	descriptions	in	terms	of	

A	and	P	are	adequate	(and	more	interpretable).	
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APPENDIX	3	
	

	
Figure	1.	A	scatter	plot	depicting	the	association	between	the	Autism	Spectrum	Quotient	Scale	(AQ)	
scores	and	the	scores	on	the	Positive	scale	of	the	Community	Assessment	of	Psychic	Experiences	
(CAPE	positive	scale,	CAPEp).	

	
	
	
Table	1.	Summary	of	coefficients	with	mean	percent	signal	change	of	the	rTPJ	(=rvpTPJ)	as	the	
dependent	variable.	

AP=	Active-Passive;	HC=	Human-Computer;	AQ=	Autism	Quotient;	CAPEp=	Positive	scale	of	the	
Community	Assessment	of	Psychic	Experiences.		
	
	
	
	
	
	
	
	

Model	
	

Coefficient	
β 	 (SE)	 Waldχ  2 	

	
df	
	

	
Exp(β )	

	
Sig.	
	

Constant	 .219	 .064	 11.81	 1	 1.25	 =.001	

AP	 .096	 .083	 1.34	 1	 1.10	 =.25	

HC	 -.091	 .088	 1.06	 1	 .91	 =.30	

APxHC	 .039	 .118	 .11	 1	 1.04	 =.74	

AQ	 -.070	 .028	 6.54	 1	 .93	 =.011	

CAPEp	 .102	 .027	 13.74	 1	 1.11	 <.001	

AQxCAPEp	 .077	 .022	 11.86	 1	 1.08	 =.001	
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Table	2.	Summary	of	coefficients	with	mean	percent	signal	change	of	the	rvaTPJ	as	the	dependent	
variable.	

AP=	Active-Passive;	HC=	Human-Computer;	AQ=	Autism	Quotient;	CAPEp=	Positive	scale	of	the	
Community	Assessment	of	Psychic	Experiences.		
	
	
	
Table	3.	Summary	of	coefficients	with	mean	percent	signal	change	of	the	rvaTPJ	as	the	dependent	
variable	with	the	attention-switching	subscale	of	the	AQ	as	a	covariate,	controlling	for	CAPEp	scores.	

*	Coefficients	are	estimates	of	a	Generalized	linear	model	(χ  2 =15.30,	df=5,	p=.009,	R2=.13),	where	
the	Active	vs.	Passive	(AP)	and	Human	vs.	Computer	(HC)	were	entered	as	fixed	factors,	and	the	
participants’	standardized	Z	scores	of	the	attention-switching	subscale	of	the	AQ	as	a	covariate.	
Higher	scores	on	the	attention-switching	subscale	reflect	poor	attention-switching	or	strong	focus	of	
attention.	
 

Model	
	

Coefficient	
β 	 (SE)	 Waldχ  2 	

	
df	
	

	
Exp(β )	

	
Sig.	
	

Constant	 .040	 .047	 .72	 1	 1.04	 =.40	
AP	 .041	 .068	 .37	 1	 1.04	 =.54	
HC	 -.035	 .063	 .31	 1	 .97	 =.58	

APxHC	 .034	 .094	 .13	 1	 1.035	 =.71	
AQ	 -.013	 .020	 .38	 1	 .99	 =.54	

CAPEp	 -.052	 .018	 8.20	 1	 .95	 =.004	
AQxCAPEp	 .073	 .015	 24.53	 1	 1.08	 <.001	

Model*	
	

Coefficient	
β 	 (SE)	 Waldχ  2 	

	
df	
	

	
Exp(β )	

	
Sig.	
	

Constant	 .059	 .04	 1.63	 1	 1.06	 =.20	
AP	 .041	 .067	 .38	 1	 1.04	 =.54	
HC	 -.035	 .064	 .29	 1	 .97	 =.59	

APxHC	 .034	 .094	 .13	 1	 1.04	 =.72	
Attention-Switching	 .069	 .025	 7.77	 1	 1.07	 =.005	


