
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

125,000 140M

TOP 1%154

5,000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/335288274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Chapter

Applications of Machine Learning 
in Drug Discovery I: Target 
Discovery and Small Molecule 
Drug Design
John W. Cassidy

Abstract

Drug discovery and development are long and arduous processes; recent figures 
point to 10 years and $2 billion USD to take a new chemical agent from discovery 
through to market. Moreover, though an approved blockbuster drug can be lucrative 
for the controlling pharmaceutical company, new therapeutic agents suffer from 
a 90% attrition during development, making the chances of success in the drug 
development process relatively low. Machine learning (ML) has re-emerged in the 
last several years as a powerful set of tools for unlocking value from large datasets. 
ML has shown great promise in improving efficiencies across numerous industries 
with high quality, vast, datasets. In an age of increasing access to highly curated 
rich sources of biological data, ML shows promise in reversing some of the negative 
trends shown in drug discovery and development. In this first part of our analysis 
of the application of ML to the drug discovery and development process, we discuss 
recent advances in the use of computational techniques in drug target discovery 
and lead molecule optimisation. We focus our analysis on oncology, though make 
reference to the wider field of human health and disease.

Keywords: cancer, machine learning, drug discovery, computational biology

1. Introduction

Cancer is, first and foremost, a disease of the genome. Specific changes in the 
DNA of an otherwise normal cell, caused by environmental mutagens or as a result 
of a defective DNA repair mechanisms, result in inherited base-pair changes in the 
genome of daughter cells [1]. Such mutations can be benign (i.e. ‘passenger muta-
tions’) or can directly contribute to malignant transformation of the cell (i.e. ‘driver 
mutations’) [2, 3]. Over the past few decades, advances in our understanding of these 
basic principles have led to unprecedented clarity in the genomic drivers of tumour 
development. Projects such as The Cancer Genome Atlas [4] and International 
Cancer Genome Consortium [5] have sequenced thousands of cancers and systemati-
cally classified common mutations into driver or passenger categories. Concurrently, 
advances in our understanding of the context of these mutations, for example 
through the advent of high throughput methylome sequencing [6] and the numer-
ous studies on the functional consequences of a mutation for cell signalling [1], have 
helped us design therapeutic strategies to halt tumour progression.
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Specifically, whereas some of the earliest cancer drugs were serendipitously 
discovered and functioned through the inhibition of cell division on an organism-
wide scale, increasingly, new molecular agents are designed to specifically inhibit 
the function of single molecular targets driving tumour growth [7]. The first of 
these molecularly targeted drugs for cancer were developed in the 1970s and 1980s. 
These ‘targeted therapies’ have many notable success stories, such as Gleevec (for 
BCR-ABL positive leukaemia), Herceptin (for Erbb2 amplified breast cancer) and 
Tamoxifen (for ER positive breast cancer) [1, 8–10]. As we enter the 2020s, the 
oncology pharmaceutical industry is now producing >60 new molecularly targeted 
cancer therapies per year.

Although each of these targeted therapies has the potential to generate billions 
of dollars in revenue for their parent pharmaceutical company, typically there is a 
90% attrition rate between Phase I clinical trials and market approval; additionally, 
each drug may cost $2.6 billion USD to go from target identification to approval 
[11, 12]. Interestingly, the difference between a so-called blockbuster drug (one 
generating >$1 billion a year in gross revenues) and a market failure, is arguably 
almost entirely based on patient cohort selection. An interesting case study comes 
from Olaparib, the first in a class of poly ADP ribose polymerase (PARP) inhibitors 
developed by KuDOS Therapeutics after initial work from the Stephen Jackson, 
amongst others, and ultimately taken through clinical trials by AstraZeneca. 
Olaparib activates a ‘synthetic lethality’ pathway in Brca1/2 mutant breast cancers 
by biasing DNA-damaged cells toward double strand breaks rather than mismatch 
repair pathways [13]. Brca1/2 mutations are common in triple negative breast cancer 
(TNBC) and the initial clinical trials sought to leverage the efficacy of Olaparib 
in Brca1/2 mutant TNBCs to show increased overall survival in all TNBCs. These 
initial trials failed, primarily because patient stratification was sub-optimal. The 
use of ML in improving patient stratification through the identification of complex 
biomarkers of clinical response will be discussed in depth in the latter part of this 
series: Applications of Machine Learning in Drug Discovery II: Biomarker Discovery, 
Patient Stratification and Pharmacoeconomics.

Like the above Olaparib example, and the preceding examples of success in 
targeted therapy more generally, the pre-emanant strategy in drug discovery is 
first to establish a causal relationship between a gene, mutation, or pathway and 
pathophysiological features of a disease [14]. Although other strategies, such as 
phenotypic screening [12], have witnessed a resurgence in popularity recently, this 
rational target discovery is still heavily relied upon in drug discovery programs the 
world over. Typically, once a target has been identified and its causal role in disease 
progression confirmed through, for example gene perturbation studies, a molecule 
is sought to perturb the targets function (or abnormal function) whilst having 
minimal effect on other proteins [15]. These molecules can be rationally designed 
if the three-dimensional structure of the target protein is known, we can screen 
a large library of small molecules with drug-like properties, or we can use a tech-
nique such as phage display to identify monoclonal antibody species with specific 
inhibitory function.

Complicating matters somewhat, perturbation of a molecular target can be 
inhibitory (i.e. antagonist), excitatory (i.e. agonist), excitatory of a secondary 
downstream pathway (i.e. biased agonist) or be inhibitory of the basal effects of 
target activity (i.e. inverse agonist). Moreover, small molecules may bind to protein 
clefts with known activity or function (e.g. an ATP-binding pocket) or secondary 
allosteric sites of unknown function in the protein or even its surroundings.

There are therefore at least three stages in early drug development which could 
be advanced by computational approaches such as ML: (1) target identification 
from literature data mining, (2) structure-based design of drugs intended to 
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perturb a target, and (3) optimisation of screening protocols for small molecule 
or biologic inhibitors. In this chapter, we will provide a basic primer to ML before 
discussing methods for, and examples of, the use of ML-based techniques in target 
identification and structure-based drug design.

2. Machine learning—a primer

Fundamentally, ML is the design and deployment of statistical models used to 
parse large datasets, learn from underlying patterns present in the data and apply 
those learnings to make predictions about future data [16]. This differs fundamen-
tally from many rule-based algorithms in that the predictive power of the model 
is improved when exposed to more data, rather than necessarily when any expert 
understanding is improved. The strength of ML is to solve problems for which large, 
well annotated, datasets exist but for where the underlying connection between 
variables in the dataset is unknown. For these reasons, the application of ML to the 
field of modern biology is extremely well suited.

A core objective of any ML model is to generalise from experience, i.e. to accu-
rately predict some aspect of an unseen dataset after training on a prior dataset. 
Before selecting a model to use in a particular situation, we must have methods for 
determining its performance. To assess our model, we must be cognisant of the 
required parameter tuning and the overall separation of signal from noise [16]. As 
we cannot sample all possible futures, and because training sets are, by definition, 
finite, we typically must express performance in terms of probabilistic bounds. 
Numerous probabilistic evaluation metrics are commonly used by the field for 
drawing comparisons between models, for example classification accuracy, kappa, 
area under the curve (AUC), logarithmic loss and confusion matrix the F1 score 
[14, 17, 18]. Additionally, the available of gold standard datasets are invaluable for 
testing new model performance.

In optimising for model performance, we must also be cognisant of overfitting 
to the data, which occurs when a model attempts to include and account for dataset 
noise in the hypothesis, which can significantly impact model generalisation. 
Formally, the complexity of a model’s hypothesis should match that of the function 
underlying the dataset. Underfitting occurs when the hypothesis is less complex 
that the underlying function, and overfitting occurs when the hypothesis is too 
complex.

In practice, there are a number of technical methods for dealing with overfitting. 
For example, we can hold back part of the training dataset to use as a validation 
dataset. This process can be automated and randomised for each new model build, 
so long as each model is trained on one subset of the data and tested on another, 
unseen, subset. We can also account for fit in our model design, for example by add-
ing ‘penalties’ to model performance for each new parameter is incorporated into 
the model. This process is known as regularisation and forces models to generalise 
without overfitting to the data, examples in practice include Ridge, LASSO and 
elastic nets [16, 19, 20].

Of course, there are many different models which we can train on a single 
dataset, we can avoid brute force sensitivity and specificity optimisation by 
understanding some of the philosophy underlying different model architectures. 
Broadly, we can define ML models as being either supervised or unsupervised, 
named for the datasets for which the methods work. In supervised learning, the 
model is a mathematical relationship between variables found in a dataset with 
known input and output variables (for example drug treatment and patient out-
come) [15, 21]. We then ask the model to predict future outputs for unseen inputs. 



Artificial Intelligence in Oncology Drug Discovery and Development

4

The most well-known example of supervised learning is a linear regression between 
two known variables; however, models can be significantly more complicated. 
Unsupervised learning, on the other hand, finds patterns hidden within input 
data and builds clusters based on intrinsic structures or relationships between 
data points. Of course, there is a great deal of nuance between supervised (with 
completely labelled training data) and unsupervised (without any labelled training 
data). Indeed, combining the two model types on the same dataset (semi-super-
vised learning) is increasingly employed in the field [21].

ML models themselves are numerous and varied; and our goal here is not to 
present a comprehensive library of models. However, because of their increasing 
popularity in the field, artificial neural networks (ANNs) deserve special mention. 
ANNs belong to their own subset of ML methods known as Deep Learning [22–24]. 
Deep Learning models are inspired by biological neural networks in that they are 
comprised of many connected nodes (‘neurons’), with each connection transmit-
ting ‘signal’ between nodes, like a synapse. Typically, this signal is a number, and 
each neuron performs some non-linear function of the sum of its inputs. As the 
network completes several attempts at ‘learning’ a task, the mathematical weight-
ing of each nodal connection is determined based on that node’s contribution to a 
successful outcome [24]. In this way, the ANN is thought to resemble the function 
of biological synapse restructuring during a learning task. Unlike a biological brain, 
neurons in the ANN are arranged in layers, with each layer performing a specific 
task or data transformation. ANNs and Deep Learning in general have been suc-
cessful in a variety of tasks, from computer vision and mobile advertising to cancer 
variant detection and patient outcome prediction [17, 23, 25].

3. ML for target identification

Aside from purely phenotypic screening approaches, the typical target discov-
ery process begins with target identification and prioritisation. As discussed, this 
requires identification of a target with a causal link with some aspect of a patho-
physiology and a plausible framework for believing that modulation of this target 
will result in modulation of the disease itself [14, 15]. Though proof of a successful 
therapeutic strategy will come first from in vivo drug response studies and ulti-
mately through showing efficacy in a randomised clinical trial, there is no doubt 
that target identification is a crucial step in this path.

The first full DNA genome to be sequenced was that of a bacteriophage, com-
pleted in 1977 [26]. This catalysed a multinational effort to sequence the human 
genome, which was completed by 2001 at a cost of >$1 billion [27]. Around this 
same time, commercial sequencers had begun to become available and what has 
become known as Next Generation Sequencing (NGS) began to be carried out in labs 
across the world. What has followed is the age of big biological data. As the price of 
sequencing continues to fall, we have seen projects such as The Cancer Genome Atlas 
[4] that publish thousands of genomes. Recently, this has been extended to national 
scale projects such as the UK’s 100,000 Genome Project [28] and the beginning of an 
age of incorporating genomics into the regular clinical workflow for cancer patients, 
pioneered by the likes of Memorial Sloan Kettering with their Integrated Mutation 
Profiling of Actionable Cancer Targets (IMPACT) study [29]. Alongside this surge 
in genomics, we have seen unprecedented development of other high-throughput 
technologies in cancer research, from RNA-sequencing to methylome sequencing 
and imaging-based proteomics [1].

Cumulatively, these efforts have transformed biology from a functional low-
throughput pursuit to one which is increasingly rich in data. The ability to mine 
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these datasets in target discovery efforts has been democratised through an increas-
ing willingness amongst researchers to share data. However, finding meaningful 
patterns in such multi-dimensional data requires statistical models of sufficient 
complexity to yield meaningful results. Such tasks are perfectly suited for ML-based 
techniques.

Perhaps the richest untapped resource in new therapeutic target discovery is the 
scientific literature itself, representing countless years of experimental data from 
groups around the world. However, these largely unstructured data present several 
challenges. Recent advances in the field of natural language processing (NLP) 
have gone some way to resolving these issues. For example, Kim and colleagues 
developed an NLP-based tool for disease-gene relationship building from unstruc-
tured Medline abstracts [30]. Biological events between genes and disease types 
are extracted and these associations are ranked based on the strength of evidence 
sentences using a Bayesian classifier. This tool, named DigSee, identified associa-
tions between 13,054 genes and 4494 disease types, which the authors claim is more 
than any manually curated database currently available. Although difficult to verify 
the associations, the authors further showed that these relationships were at least 
comparable to those inferred from such manually curated databases [30].

ML can also be useful in the prediction of unseen biology. For example, Costa 
and colleagues built a computational model to predict morbid genes (i.e. those 
where mutations could cause hereditary human disease) and druggable genes 
(i.e. those coding for proteins able to be modulated by small molecules to elicit a 
phenotypic effect) on a genome wide scale [31]. Such efforts have the potential to 
reduce laborious experimental procedures and identify early likelihood of a puta-
tive molecular target to be causally associated with disease. The authors trained a 
decision tree-based meta-classifier on databases of protein–protein, metabolic and 
transcriptional interactions, as well as tissue expression and subcellular localization 
for known morbid or druggable genes. Although the meta-classifier had question-
able results, correctly recovering just 65% of known morbid genes (precision 
66%) and 78% of known druggable genes (precision 75%), the authors were able 
to inspect the decision tree and uncover rules for morbidity and druggability [31]. 
Parameters such as membrane localisation (for druggability) and regulation by 
multiple transcription factors (for morbidity), suggesting that the model was cor-
rectly identifying biological traits.

A more common approach is to focus on a specific disease or therapeutic area. 
For example, Jeon and colleagues built a support vector machine (SVM) classifier 
that integrated a variety of genomic and systematic datasets to classify proteins 
based on their likelihood to bind a small molecule drug and prioritised targets 
specific for breast, pancreatic and ovarian cancer [32]. Like Costa et al., the clas-
sifier developed appears to have uncovered biological rational from a data-driven 
perspective; Key classification features were gene essentiality, mRNA expression, 
DNA copy number, mutation occurrence and protein-protein interaction network 
topology [31, 32]. The authors then designed therapeutic strategies and validated 
their targets using proliferation-based assays in cancer cell line models with either 
synthetic peptides or small molecule inhibitors. In total, the authors found 122 
putative tumour-type-agnostic targets, 69 of which overlapped with known cancer 
targets, together with 266 specific to breast, 462 to pancreatic and 355 to ovarian 
cancer [32].

Although many diseases are known to be monogenic, many more are associ-
ated with dysregulation of complicated multi-genomic signalling pathways [11]. 
Designing a therapeutic strategy in this case can be aided by taking a systems 
biology approach. Ament and colleagues followed such rational when they recon-
structed a transcription factor regulatory network associated with pre-symptomatic 
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Huntington’s disease [33]. This genome scale model carried information on the 
target genes of a total of 718 distinct transcription factors associated with mouse 
models of the disease. The authors selected a regression model with LASSO regu-
larisation to avoid overfit and discovered a total of 48 differentially expressed 
TF-target gene modules associated with age- and CAG repeat length-dependent 
gene expression changes in Htt CAG knock-in mouse striatum [20, 34]. Of these, 13 
were further validated in human samples and the authors experimentally validated 
one based on the transcription factor SMAD3.

Taking the concept of target identification in complicated disease states further, 
Mamoshina and colleagues took advantage of advances in the discovery of bio-
markers of in muscle tissues to find druggable targets underpinning the molecular 
basis of human ageing [35]. The authors constructed an SVM-based model with 
linear kernel and deep feature selection to identify gene expression signatures 
associated with ageing. The model’s performance was evaluated on gene expression 
samples from the Gene expression Genotype-Tissue Expression (GTEx) project 
and achieved an accuracy of 0.80 when predicting the binned age, highlighting the 
importance of external gold-standard datasets in model tuning [36]. Importantly, 
the model confirmed several established mechanisms of human skeletal muscle 
ageing, including neurotransmitter recycling, IGFR and PI3K-Akt-mTOR signal-
ling and dysregulation of cytosolic Ca2+ homeostasis, giving a biological basis for 
the model’s effectiveness [35]. Moreover, the model generated a set of targets with 
druggable properties, suggesting future therapeutic intervention may be possible.

4. ML for optimisation of high throughput screens

Once a target with causal relation to a disease phenotype of interest has been 
identified, the next step is typically to identify and optimise a suitable chemi-
cal entity to perturb the normal or pathogenic activity of said target. Until very 
recently, by far the most common approach to identify such candidate molecules 
was through a high throughput screen (HTS). Typically, a suitable reporter system 
would be designed, exposed to a pharmaceutical company’s vast compound librar-
ies and any reporter changes reported. For example, in the task of identifying 
antagonists for the β2 adrenoceptor, researchers may design a radioligand binding 
assay whereby a library of new chemical agents are assayed for their ability to 
interfere with radiolabelled fenoterol (an agonist) and radiolabelled alprenolol 
(an antagonist) binding. Characteristics of their binding (e.g. KD as a measure of 
affinity) correspond to changes in surface plasmon resonance (SPR) detected at the 
receptor [37], allowing researchers to select a variety of candidate molecules into 
the lead optimisation phase.

An alternative use of HTS techniques, which is becoming ever more important, 
is phenotypic screening. Here, researchers look for a specific phenotypic change 
induced by one of the thousands of screened chemicals against a process or cell type 
of interest. In the most simplistic sense, we could be screening for cell death in a 
heterogenous cell population [12], but more complicated indicators (such as fluo-
rescence activated by signalling pathways) are in use in drug discovery processes 
across the industry [38]. As our understanding of tumour biology grows, research-
ers are increasingly favouring drug screens which preserve some degree of tumour 
heterogeneity, thus complicated phenotypic screens are growing in importance in 
drug discovery [1].

Advanced imaging is a popular technique for identification of complex phe-
notypes and perturbations, and can be greatly enhanced by the use of advanced 
ML-based analytics. Broadly, we can think of imaging-based screens as composing 
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of two camps. In the first, typically called high-content or phenotypic screening, we 
focus on pre-defined phenotypes and the candidate drugs which modulate it. For 
example, identification of compounds which modulate the subcellular localisation 
of specific pre-defined intracellular signalling molecules with a role in disease [39].

Alternatively, we may stain multiple subcellular structures with multiplexed 
fluorescent dyes or antibodies and expose cells to genetic, pathogenic or chemical 
perturbing agents and categorise their response. Such investigatory screens are 
highly amenable to automated image acquisition and analysis through machine 
learning. In order to profile phenotypes of cells in an unbiased manner, computer 
vision can be used to extract multivariant feature vectors of cellular morphology 
(size, shape, texture) as well as staining intensity. After cellular segmentation, 
feature sets of cells or groups of cells can then be stratified to find relation-
ships between thousands of different perturbations which can give insights 
into mechanisms or action of drugs or help researchers piece together pathway 
information [40, 41].

In one study, Perlman and colleagues made multidimensional measurements of 
individual cell states for a variety of perturbations. The authors were able to build 
a multidimensional classifier to group small molecules with similar mechanism 
of action [42]. This technique has similarly been applied to correlate phenotypic 
response with chemical structure similarity by Young and colleagues [43]. In this 
study, researchers explored ‘factor analysis’ for large data reduction whilst retaining 
relevant biological information, then clustered their identified features into seven 
phenotypic categories containing compounds of similar mechanism of action and 
chemical structures. These techniques can be built upon to build annotated libraries 
of pharmacologically active small molecules and model their potential off-target 
affects in silico [44].

Moreover, the use of mechanisms of action association studies in high content 
imaging and HTS opens up drug repurposing and new target identification. For 
example, Breinig and colleagues used high-content screening and image analysis 
to measure effects of >1200 pharmacologically active compounds on complex 
phenotypes in isogenic cancer cell lines which had been genetically modified in 
key oncogenic signalling pathways [41]. The cell lines were exposed to a library of 
~200 known drugs and phenotypic response recorded by high content imaging. The 
resource was published as the Pharmacogenetic Phenome Compendium (PGPC), to 
enable researchers to explore drug mechanisms of action, detect potential off-target 
effects, and generate hypotheses on drug combinations. The resource was validated 
by confirming that tyrphostin (EGFR inhibitor) has off-target activity on the 
proteasome [41].

5. ML for structure-based drug design

As discussed previously, after suitable target identification, a new therapeutic 
program relies on the discovery and development of one, or several, lead molecules 
which can perturb the targets normal structure [14]. Though traditionally these 
lead compounds were invariably small molecules, modern biology and particularly 
modern oncology relies on novel drug modalities. To modulate the function of a 
receptor molecule such as the adrenoreceptor (a G-protein coupled receptor) we 
require a molecule which resembles the structure of the natural ligand (in this 
case noradrenalin), but with some small functional changes [45]. However, many 
appealing drug targets have no such ligand binding domain (for example PARP), 
may activate in the absence of ligand [e.g. the epidermal growth factor receptor 
(EGFR)], may have no known ligand (e.g. HER2) or may bind many natural ligands 
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(e.g. CXCR2) and thus any small molecule inhibitor could have cross-reactivity 
with other receptors [9, 13, 46–49]. These limitations have led to a multitude of 
drug targeting strategies, broadly described as ‘biologics’. In cancer these include, 
humanised monoclonal antibodies, chimeric receptors, bi-specific antibodies, 
oncolytic viruses, and even engineered T-Cells, to name but a few [9, 38, 50–52]. 
Notwithstanding these advances, there are still a multitude of small molecule drugs 
developed each year.

Structure-based drug design (SBDD) typically begins with resolution of the 
three-dimensional structure of the target protein [53]. Traditionally, this process 
was the exclusive domain of experimental structural biology, through labour 
intensive tools such as nuclear magnetic resonance (NMR), X-ray crystallography, 
and cryo-electron microscopy [54]. However, modern computational techniques 
have opened up the possibility of in silico protein structure modelling [22]. Amongst 
such techniques, homology modelling, which begins with the known structure 
of a protein with >40% homology to the target, is often seen as the most reliable. 
Validation of a homology modelled structure is typically carried out by considering 
stereochemical properties in, for example, a Ramachandran plot [22]. Next, poten-
tial binding sites are modelled by considering interaction energy across the length 
of the folded protein when exposed to charged functional groups. Stable conforma-
tions are predicted with, for example, Q-SiteFinder, an energy-based method for 
binding site prediction [55]. Amino acid residues associated with putative binding 
sites can then be annotated for function.

Extensive virtual and experimental high-throughput screens (HTS) are then 
carried out against the synthesised or computationally modelled target protein 
with large compound libraries of drug like structures [53]. Candidates, or ‘hits’, 
in SBDD have stable free energies on docking with binding clefts on the target 
protein [56]. Alternatively, de novo drug design may be employed if the binding 
pocket is of sufficient resolution [57]. Hits then have their structures optimised 
against a set of ideal pharmacodynamic, pharmacokinetic and toxicological crite-
ria. These processes are highly amenable to augmentation by ML based techniques.

For example, many studies have attempted to implement ANNs to ligand-based 
virtual screens, to varying levels of success. One such implementation of a multi-
task deep ANN was released by Ramsundar and colleagues as an open source tool 
known as DeepChem [58]. In general, multitask models outperform standard ANNs 
by synthesising information from many distinct sources. DeepChem itself powers 
ligand screening for commercial drug discovery with a simple python scripts to 
construct, fit, and evaluate sophisticated models [58]. The authors aimed to over-
come barriers associated with software accessibility amongst the drug discovery 
industry. Moreover, their validation results demonstrated that multitask ANNs were 
robust and showed substantial improvements over more traditional techniques such 
as random forests. To help in benchmarking, a large library of 700,000 compounds 
and their binding data was collated by Wu and colleagues, and integrated into 
DeepChem [59].

When combining multitask ANNs, Markov state models and one-shot learn-
ing to reduce the data requirement of making meaningful predictions in a new 
experimental setup, we can identify previously unknown mechanisms of ligand 
receptor interaction [60]. For example, Farimani and colleagues performed 
extensive molecular dynamic simulation and analysis to find selective allosteric 
binding sites for the μ-opioid receptor, an important G-protein coupled receptor 
(GPCR) in analgesia [61]. Discovering novel allosteric sites is particularly relevant 
in analgesia and GPCR biology as new therapeutic agents could allow receptor 
modulation or fine-tuning without competing for receptor occupancy of the 
natural ligand.
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ANNs can also be used to predict pharmacokinetic drug properties. In a compe-
tition sponsored by Merck, Sharp & Dohme, ANNs outperformed random forests 
and other ML methods in 13 of 15 assay-based classification tasks to predict absorp-
tion, distribution, metabolism and excretion (ADME) parameters of drug like 
molecules [62]. A multitask ANN also won the Tox21 dataset challenge of compu-
tational toxicity prediction of 12,000 compounds in 12 high-throughput toxicity 
assays. This ANN, developed by Mayer et al., and named DeepTox, normalises 
chemical structures computes chemical descriptors to train an ANN to predict the 
nuclear toxicity [63].

In addition to virtual screening and optimisation of lead compounds, we can 
use ML-based techniques to enhance de novo drug design by generating completely 
novel chemical entities. For example, Kadurin and colleagues combined varia-
tional autoencoders with generalised adversarial networks (GANs) to computer 
design highly selective and novel anticancer agents [64]. GANs are particularly 
interesting in de novo drug design; they function by training two ANNs (the 
generator and the discriminator) simultaneously with different and opposing 
objective functions. The GAN must compete in a zero-sum game to create a single 
best molecular structure [64]. A key preceding step is to use variational autoen-
coders to map chemical structures from known databases in latent space, the latent 
vector then transforms the molecular structure into a simplified molecular-input 
line-entry system (SMILES) string.

6. ML for drug repurposing

As discussed previously, the development of new drugs is a long and arduous 
process, often costing >$2 billion and taking 10 years. Even in phase III trials, drugs 
can fail because of some unforeseen side effect or off target affect. Interestingly, this 
very property opens up a shortcut for drug development. Over the last several years 
there has been substantial interest in repurposing existing drugs for new indica-
tions. This can be hypothesis driven, where we learn new features of a diseases 
pathology which make us confident that an existing inhibitor could be useful, or 
data driven, where researchers and companies use structure activity relationships 
to find serendipitous matches between known disease targets and already approved 
(or close to approval) drugs.

Various approaches underpinned by ML have been used to predict potential 
repurposing positions for drugs. For example, multiple studies have used natural 
language processing to make sense of text mined from electronic health records, 
clinical trial data and drug side-effect labels [15]. Correlation between drug 
molecules and clinicopathological symptoms, expression profiles or target pathway 
modulation can then be uncovered using a variety of ML techniques. In one study, 
for example, Zhao and So built drug-specific expression maps from transcriptomic 
changes collected from three cell lines exposed to a variety of compounds [65]. 
This method is powerful as the underlying mechanism of action of the drug need 
not be known. The authors could then apply a variety of ML models including deep 
neural networks, SVMs, elastic nets and gradient boosted machines to identify 
repositioning opportunities. However, the authors relied on cancer cell lines in this 
study, despite focussing on neurological conditions, we should be careful when 
extrapolating studies with inappropriate model systems [11].

Many academic and commercial groups have turned to a technique known as 
signature reversion (also known as connectivity mapping) in repurposing studies. 
Here, gene expression measurements by proteomics or transcriptomics are taken 
for various pathological phenotypes and built into, for example, graph networks 
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of genewise expression changes. The objective is then to identify drugs which 
revert the genewise expression networks toward baseline. Driven by the desire to 
increase the drug development process for all concerned, researchers have been 
forthcoming in submitting such maps to open large-scale perturbation databases, 
such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular 
Signatures (LINCS). Such databases have provided significant opportunities for 
computational pharmacogenomics and drug design [66].

It is worth noting that the majority of drug repurposing studies rely on an 
assumption that drugs with a similar chemical structure will behave in a similar 
fashion. This misconception has led to significant societal detriment in the past, for 
example in the thalidomide disaster. Thalidomide exists as two chiral forms (same 
chemical composition but having mirrored structures), one can be used to treat 
morning sickness; the other has teratogen effects.

7. Conclusion

ML is a powerful technique for identifying hidden patterns in complex datas-
ets. Although based on standard statistical methods, recent advances in available 
compute power have led to a resurgence of the field. Deep Learning, in particular, 
has seen a profound resurgence in popularity and has the potential to revolutionise 
multiple fields of human endeavour. As we increasingly move into an age of large 
medical datasets, from clinical studies to massive cell line -omics databases, there 
is clearly an opportunity for application of machine learning to biology. Amongst 
biological problems, there is a pressing need for increased efficiency of the drug 
discovery process, particularly in high mortality and morbidity problems like 
oncology. For these reasons, we have seen significant steps toward the application 
of ML to cancer drug discovery over the past several years. In this chapter, we have 
discussed some of these efforts, including the use of ML for target identification 
and in structure-based drug design. Additionally, we have provided a primer to 
ML in an effort to familiarise biologists to the field. In the second part of our work, 
addressed in the second part of our analysis (Applications of Machine Learning in 
Drug Discovery II: Biomarker Discovery and Patient Stratification), we extend the 
analysis of uses of ML in the drug discovery process to the clinical arena. First, we 
will discuss the use of ML in biomarker discovery, before moving to clinical trial 
optimisation and post market treatment effectiveness monitoring.

© 2020 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
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