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Abstract

Due to the fact that only a few significant components can capture the key information

of the signal, acquiring a sparse representation of the signal can be interpreted as finding

a sparsest solution to an underdetermined system of linear equations. Theoretical results

obtained from studying the sparsest solution to a system of linear equations provide the

foundation for many practical problems in signal and image processing, sample theory,

statistical and machine learning, and error correction.

The first contribution of this thesis is the development of sufficient conditions for the

uniqueness of solutions of the partial `0-minimization, where only a part of the solution

is sparse. In particular, `0-minimization is a special case of the partial `0-minimization.

To study and develop uniqueness conditions for the partial sparsest solution, some con-

cepts, such as `p-induced quasi-norm, maximal scaled spark and maximal scaled mutual

coherence, are introduced.

The main contribution of this thesis is the development of a framework for 1-bit com-

pressive sensing and the restricted range space property based support recovery theories.

The 1-bit compressive sensing is an extreme case of compressive sensing. We show that

such a 1-bit framework can be reformulated equivalently as an `0-minimization with linear

equality and inequality constraints. We establish a decoding method, so-called 1-bit ba-

sis pursuit, to possibly attack this 1-bit `0-minimization problem. The support recovery

theories via 1-bit basis pursuit have been developed through the restricted range space
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property of transposed sensing matrices.

In the last part of this thesis, we study the numerical performance of 1-bit basis

pursuit. We present simulation results to demonstrate that 1-bit basis pursuit achieves

support recovery, approximate sparse recovery and cardinality recovery with Gaussian

matrices and Bernoulli matrices. It is not necessary to require that the sensing matrix

be underdetermined due to the single-bit per measurement assumption. Furthermore,

we introduce the truncated 1-bit measurements method and the reweighted 1-bit `1-

minimization method to further enhance the numerical performance of 1-bit basis pursuit.
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Chapter 1

Introduction

In this information age, we are dealing with enormous flows of digital data everyday,

such as images, video and audio signals. In order to cope with this large amount of

data, we rely on compression to achieve a storage reduction, selectively sifting some

significant features from data and discarding the rest. Such a compression method is

called ’lossy compression’, which may irretrievably cause loss of some parts of the true

data so that the quality of the resulting data is poor. Instead of losing a large portion of the

complete data, to promote the quality of the compression, a suitable sparse representation

of the data can be useful to reduce the storage space. Such a sparse representation of

the data is achievable due to the fact that in many situations only a few significant

components can capture the key information required. This is the crucial idea behind

compressive sensing, also known as compressed sensing or compressive sampling (see,

[32, 35, 39, 45, 51, 59, 68]). Specifically, compressive sensing is a scheme by which the

significant features of the signal can be reconstructed from only a limited number of

linear measurements under the assumption that a signal has a sparse or compressible

representation on a suitable basis. The reconstruction can be achieved by some efficient

algorithms under certain conditions.

Plentiful works have been devoted to the study of compressive sensing over the past
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decades. Such a promising development of compressive sensing has a great impact on

many aspects of signal and image processing and stimulates a wide range of new ap-

plications. For instance, in biomedical image processing, (X-ray) computed tomography

and magnetic resonance imaging (MRI) use the compressive sensing methodologies to

significantly reduce scanning time and in the meantime preserve a high quality image

[88, 91, 92]. Another well-known example is the single-pixel camera, implementing the

compressive sensing methodologies on camera design, which is paid off when observations

are beyond the visual spectrum [56, 117]. The compressive sensing framework has also

inspired researches in sampling theory [37, 108, 109, 110], error correction [36, 79, 111],

radar signal processing [61, 63, 77], statistical and machine learning [4, 97, 128], to name

just a few. For more comprehensive introductions, applications and extensions of compres-

sive sensing, we refer to books and articles on the subject [28, 32, 39, 50, 51, 58, 59, 68].

Numerous papers and information can be found at the compressive sensing resources

webpage of the Rice University [124].

In this thesis, we focus on theoretical aspects of compressive sensing in the finite-

dimensional real-valued setting. In the following sections, we start with a short review

of important sparsity recovery models in compressive sensing and a brief introduction of

some popular and efficient reconstruction algorithms.

1.1 Mathematical models for compressive sensing

A sparsest representation of a signal from a limited number of linear measurements can

be achieved by solving the following problem:

min{‖x‖0 : Ax = b}, (1.1.1)
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where ‖x‖0, known as the `0-norm, denotes the number of nonzero components in x.

A ∈ Rm×n with m < n is called a sensing matrix and b ∈ Rm is the measurements vector.

The sensing matrix A is designed to map a signal from a higher dimension Rn to a

lower dimension Rm so that the dimension of the measurements vector is lower than that

of the signal to recover. Here, we refer to problem (1.1.1), finding a sparsest solution

of a system of linear equations, as the standard compressive sensing problem, which is

also called (standard) `0-minimization in the literature. Conventionally, we assume that

A is a full-row-rank matrix with m < n. Thus, the linear system Ax = b has infinitely

many solutions and `0-minimization seeks a solution with the fewest nonzero components,

namely, the sparsest solution. If the target signal is highly sparse, it can be recovered

as the unique solution to `0-minimization under certain conditions [33, 52, 69, 120, 130].

In general, it is difficult to solve `0-minimization. For instance, given the measurements,

even if we know a prior that the signal has k nonzero components, we still need to search

through all possible combinations of any k columns of a matrix A in order to find the

sparsest solution. Such an exhaustive intractable search indicates that `0-minimization is

NP-hard [99].

Unfortunately, in practice, a signal is usually not exactly k-sparse and it may contain

many insignificant small nonzero components below a small threshold; even if a signal

is exactly sparse, measurements may often be inaccurate and contain a small amount of

noise. This can be coped with by a more general problem by introducing a small deviation

or tolerance to the linear system Ax = b. Typically, we have the following model:

min{‖x‖0 : ‖Ax− b‖2 6 δ} (1.1.2)

for some δ > 0. The choices of the parameter δ are often clear from applications. Note

that problem (1.1.2) degenerates to `0-minimization when δ = 0 and it is also NP-hard
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[68, 99]. However, problem (1.1.2) seems more difficult to solve than (1.1.1) since the

uniqueness property of solutions is lost. Any tiny appropriate perturbations of an optimal

solution may yield an alternative optimal solution as long as it satisfies the constraint of

the problem (1.1.2). Thus, instead of the exact recovery, only an approximate recovery is

expected from (1.1.2). This means that a reconstructed signal is expected to be as close

to the target sparse signal as possible [33, 43, 53, 130].

Additionally, we can consider the unconstrained version of (1.1.2),

min λ‖x‖0 + ‖Ax− b‖2
2, (1.1.3)

which can be interpreted as the Lagrangian function of (1.1.2) with some λ > 0. But

(1.1.3) seems more pessimistic than (1.1.2) due to the parameter λ. There is no tractable

algorithm to solve the general `0-minimization, (1.1.2) or (1.1.3), directly. However, for

some specially designed matrices A and the generated measurements b = Ax∗ by a highly

sparse signal x∗, there is a variety of tractable and efficient algorithms to solve these

problems and recover x∗ from the measurements b. We now introduce some algorithms

used for the sparse recovery in the next section.

1.2 Sparse recovery algorithms

In the past decades, various algorithms have been developed to possibly solve `0-minimization,

(1.1.2) and (1.1.3) for some special matrices. We now give a brief overview of the algo-

rithms and refer readers to [68, 45] and references therein for further information on sparse

recovery algorithms.

1.2.1 Convex optimization algorithms

To attack either `0-minimization, (1.1.2) or (1.1.3), the main issue is the nonconvex ob-

jective function ‖x‖0. To convexify problems, we may replace ‖x‖0 by ‖x‖1, the convex
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envelope of ‖x‖0 near the origin. As a result, we obtain the `1-minimizations as follows

min{‖x‖1 : Ax = b}, (1.2.1)

min{‖x‖1 : ‖Ax− b‖2 6 δ} for some δ > 0, (1.2.2)

and

min λ‖x‖1 + ‖Ax− b‖2
2, (1.2.3)

where ‖x‖1 =
∑n

i=1 |xi| is the `1-norm and λ > 0 is a parameter.

Problem (1.2.1) is known as (standard) `1-minimization. (1.2.1) and (1.2.2) are named

as basis pursuit (BP) and basis pursuit denoising (BPDN), respectively [41]. Especially,

BP can be cast as a linear program, thus, efficient methods are available to solve it.

Remarkably, `1-norm objective can also promote the sparsity of solutions. We will give

an example to explain and visualize the mechanism behind the `1-norm.

Example 1.2.1: Given the measurement b ∈ R, let F ⊆ R2 be a feasible set of

the linear system Ax = b, e.g., F = {x ∈ R2 : Ax = b}, which is a line in R2. As

illustrated in Figure 1.1, expanding the `1-norm ball from the origin, it will intersect with

F at the point x∗ ∈ F , which is the sparsest solution with the least `1-norm. Squeezing

edges of the `1-norm ball towards the origin as shown in Figure 1.2, the same sparsest

solution x∗ ∈ F can be found in this case, which implies that the `p- (quasi-)norms with

0 < p < 1, also promote sparsity of the solution. The `p-norm of a vector x ∈ Rn is

defined as ‖x‖p := (
∑n

i=1 |xi|p)1/p.

We now stretch the edges of the `1-norm ball until it becomes a circle centered at the

origin, which is the `2-norm ball. The `2-norm of a vector x ∈ Rn is defined as ‖x‖2 :=
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Figure 1.1: Geometry of `1-minimization in two dimensions. x∗ is the sparsest solution of
Ax = b with the least `1-norm.

Figure 1.2: Geometry of `1-minimization and `p-minimization in two dimensions. x∗ is
the sparsest solution to `p-minimization: min{‖x‖p : Ax = b} where 0 < p < 1.
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(
∑n

i=1 |xi|2)1/2. As demonstrated in Figure 1.3, the `2-norm minimization problem, i.e.,

min{‖x‖2 : Ax = b}, has a unique solution x̂ with the least `2-norm. If we then keep

stretching edges of `2-norm ball until it becomes a `∞-norm square. Then the unique

solution x̃ to the `∞-minimization problem, i.e., min{‖x‖∞ : Ax = b} can be found,

where `∞-norm of a vector x ∈ Rn is defined as ‖x‖∞ := maxi∈{1,··· ,n} |xi|. It is clear to

see that both x̂ and x̃ are not sparse in this case, unless the line is parallel to x-y axims.

Therefore, `1-minimization and `p-minimization with 0 < p < 1 can be used for achieving

the sparsest solution of a system of linear equations.

Figure 1.3: Geometry of `2-minimization and `∞-minimization in two dimensions. Dense
solutions of Ax = b are found by `2-minimization and `∞-minimization.

Additionally, Figure 1.2 and Figure 1.3 indicate that the `p-norm with 0 < p < 1

can be used to approximate the `0-norm and is more efficient than the `p-norm with

p > 1. But the `p-norm with 0 < p < 1 is nonconvex and the corresponding minimization

problem min{‖x‖p : Ax = b} is NP-hard [70]. From Figure 1.3, we see that the sparsity

of the solution may not be achieved for other `p-norm problems with 1 < p 6 ∞. It is

worth emphasizing that `p-norm with p > 1 does not favor sparsest solutions in general.
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Between the `p-minimization with 0 < p < 1 and the `p-minimization with p > 1, `1-

minimization is a natural and well-suited approach to possibly attack `0-minimization.

More theories concerning the efficiency of `1-minimization for solving compressive sensing

problems will be introduced in the next chapter.

Problem (1.2.3) was firstly introduced to solve the BPDN problem in [41], where the

parameter λ is used to balance between the `2-norm residual ‖b− Ax‖2
2 and the `1-term

‖x‖1. As λ tends to 0, (1.2.3) is minimizing ‖b− Ax‖2
2 which means that the solution to

the linear system Ax = b, if it exists, will be found. As λ tends to ∞, (1.2.3) is focusing

on minimizing the `1-term ‖x‖1 regardless of the values of ‖b−Ax‖2
2. For an appropriate

choice of parameter λ > 0, the solution to (1.2.3) is the solution to (1.2.2), where the

parameter λ is a function of A, b and δ [68]. Furthermore, it is worth mentioning that

Fuchs [69] has proved that (1.2.3) can sufficiently recover a sparsest solution x∗ to the

linear system Ax = b for nonzero λ. Due to the nonzero parameter λ, the recovery is

defined in the sense that the unique solution to (1.2.3) which has at least the same sign

of x∗. In this thesis, we restrict our attention on the noiseless case of sparse recovery,

and more information about (1.2.2), (1.2.3) and their applications in statistics and signal

processing, such as the least absolute shrinkage and selection operator (LASSO) and

Dantzig selector, can be found in [118, 38, 68].

1.2.2 Greedy and thresholding-based algorithms

Besides convex approaches, there also exist various greedy methods that are easy to imple-

ment and relatively fast to solve large scaled sparse recovery problems. Greedy methods

can be roughly categorized into two groups. One is the greedy pursuit algorithms, such as

Matching Pursuit (MP) [94, 49], Orthogonal Matching Pursuit (OMP) [104, 93, 47, 121],

Gradient Pursuit (GP) [18], Conjugate Gradient Pursuit (CGP) [18], Stagewise Orthog-

onal Matching Pursuit (StOMP) [55], and Regularized Orthogonal Matching Pursuit
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(ROMP) [103, 102]. The other is the thresholding algorithms, such as Iterative Hard

Thresholding (IHT) [19, 20], Compressive Sampling Matching Pursuit (CoSaMP) [101],

and Subspace Pursuit (SP) [44]. Greedy pursuit algorithms build up an estimation of the

sparse solution by iteratively adding new nonzero components until a stopping condition

is met. Besides the estimation step in greedy pursuit algorithms, thresholding algorithms

have one more step, setting all but a certain number of elements of the argument to zero.

Performances of greedy algorithms can be guaranteed under certain conditions such as the

restricted isometry property (RIP) based conditions, which can also theoretically ensure

the performance of convex approaches. Moreover, compared to convex approaches, these

greedy methods are easily applied to the union of subspaces models [60, 89] such as the

structured sparse problems [9, 19, 57]. For instance, extensions of greedy pursuit algo-

rithms can be adapted to the tree models [83]. Unfortunately, there is no strong theory

to guarantee their performances. On the other hand, the thresholding algorithms are eas-

ily modified for the general union of subspaces models, such as the projected landweber

algorithm introduced in [16], which is an extension of the IHT algorithm for the union of

subspaces models [90, 19].

Here, we only consider the convex approaches for the sparse recovery and refer readers

to [68, 17] and references therein for more information on greedy pursuit and thresholding-

based algorithms.

1.3 Outline of the thesis and contributions

In this thesis, we focus our attention on the theoretical aspect of the noise-free sparse

recovery in compressive sensing. Particularly, we focus on addressing the question of

whether a linear system has a unique sparsest solution; and if the linear system is known

to have a sparsest solution, how to exactly and efficiently recover such a solution of the

underlying linear system from given measurements. We firstly introduce the uniqueness
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and recovery conditions developed for the standard compressive sensing problem, and

then extend these theoretical results to two other special applications, namely, the partial

sparsity-seeking problem and the 1-bit compressive sensing problem. Our contributions

are distributed in the following chapters.

First, Chapter 2 is a survey of current theoretical results of standard compressive sens-

ing, using different techniques to establish uniqueness conditions for `0-minimization and

recovery conditions via `1-minimization. In that chapter, some fundamental properties of

matrix A are introduced, such as spark [54, 52], mutual coherence [54, 52], Babel function

[120], exact recovery condition (ERC) [123, 122], null space property (NSP) [43, 130], re-

stricted isometry property (RIP) [33], and range space property (RSP) [132, 133]. Based

on these properties, uniqueness conditions for `0-minimization and recovery conditions

via `1-minimization can be stated. All recovery results derived from those conditions are

categorized into two groups, one ensuring to recover a specific sparsest vector through

a linear system (namely, nonuniform recovery) while the other ensuring to recover every

k-sparse vector x (i.e., ‖x‖0 6 k) through a single sensing matrix A (namely, uniform

recovery).

In practice, one may be interested in recovering a solution to a system of linear equa-

tions that only a part of it is sparse, known as the partial sparsity-seeking problem or

partial `0-minimization. The standard `0-minimization (1.1.1) is a special case of partial

`0-minimization [129]. Based on the well-founded uniqueness theories for `0-minimization,

sufficient conditions for the uniqueness of solutions of partial `0-minimization will be de-

veloped in Chapter 3. These uniqueness criteria are established through `p-induced quasi-

norm, the maximal scaled spark and the maximal scaled mutual coherence, which are the

generalization of improved uniqueness conditions for `0-minimization based on coherence

rank, submutual coherence and scaled mutual coherence introduced in [131].

As mentioned earlier, for the standard compressive sensing, to exactly recover the
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sparsest solution to a system of linear equations from linear measurements, the sensing

matrix needs to admit some properties, such as mutual coherence, NSP, RIP, RSP etc..

In Chapter 4, we consider an extreme case of the standard compressive sensing, i.e., 1-bit

compressive sensing, which takes the sign information of linear measurements. Surpris-

ingly, only signs of linear measurements might still provide adequate information for a

certain level of reconstruction. We show that such a 1-bit model can be formulated equiv-

alently as an `0-minimization problem with linear equality and inequality constraints,

which can be seen as a partial `0-minimization problem. Like the basis pursuit method

for standard compressive sensing, we develop a decoding method, 1-bit basis pursuit, for

possibly attacking this 1-bit `0-minimization problem, for which recovery theories can

be established by the RSP-based analysis through the restricted range space property

(RRSP) of the transposed sensing matrix. Furthermore, the RRSP conditions ensure a

certain level of nonuniform and uniform recoveries in this framework of 1-bit compressive

sensing.

In Chapter 5, we study the numerical performance of 1-bit basis pursuit and verify

some claims on recovery conditions developed in Chapter 4. In contrast to the standard

compressive sensing, we carry out our experiments on both underdetermined and overde-

termined Gaussian and Bernoulli matrices. Simulation results demonstrate that Gaussian

matrices and Bernoulli matrices provide support recovery, approximate sparse recovery

and cardinality recovery via 1-bit basis pursuit. Moreover, we introduce two approaches

to further improve the numerical performance of 1-bit basis pursuit. One is truncat-

ing the 1-bit measurements by setting some relatively small linear measurements to zero

components, and the other is using the reweighted 1-bit `1-minimization, the first-order

method for solving concave approximation problems of the `0-minimization arising from

1-bit compressive sensing.

Finally, we conclude with Chapter 6. We will discuss some open questions on the
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topics covered in this thesis and some possible extensions of compressive sensing for future

research.

1.4 Preliminaries and notation

In this section, we introduce some notations and terminologies, and recall some results in

linear algebra, linear programming and convex optimization, that will be used throughout

the thesis.

1.4.1 Sets and Vectors

We denote R as the field of real numbers and Rn as the n-dimensional Euclidean space.

Let Rn
+ be the set of nonnegative vectors in the Euclidean Space Rn, i.e., Rn

+ := {x ∈

Rn : x > 0} and Rn
− be the set of nonpositive vectors in the Euclidean Space Rn, i.e.,

Rn
− := {x ∈ Rn : x 6 0}. The empty set is denoted as ∅. For a set S, |S| denotes the

cardinality of S, the number of elements in the set S, while for a scalar α ∈ R, |α| means

the absolute value of α. Given a subset S ⊆ V of a set V , the complement of S in V is

denoted as SC = V \ S.

For a vector x, the transpose of x is denoted as xT . Any vector x in this thesis is a

column vector (unless otherwise stated) and thus xT denotes a row vector. Let xi be the

i-th component of the vector x ∈ Rn. The inner product of two vectors x ∈ Rn and y ∈ Rn

is defined by 〈x, y〉 = xTy =
∑n

i xiyi. If xTy = 0, we say that x and y are orthogonal.

Given a vector x ∈ Rn, the index sets of all the positive and negative components of x

are denoted as S+ and S−, respectively, that is, S+ := {i : xi > 0} and S− := {i : xi < 0}.

Then xS+ ∈ R|S+| and xS− ∈ R|S−| are the vectors obtained by deleting components

indexed by (S+)C and (S−)C , respectively. And the support set of the vector x is the

index set for all nonzero components of x, denoted as Supp(x) := {i : xi 6= 0} = S+

⋃
S−.

Let sign(x) be the sign vector of x ∈ Rn where sign(xi) = 1 if xi > 0, sign(xi) = −1 if
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xi < 0, and sign(xi) = 0 if xi = 0. Let eS denotes the vector (1, · · · , 1)T ∈ R|S|.

1.4.2 Matrix and Linear Algebra

For a matrix A, the transpose of A is denoted as AT . When A is a square matrix,

A is symmetric if AT = A. The identity matrix is denoted as I with a suitable size.

A diagonal matrix A ∈ Rn×n with entries a1, · · · , an along the diagonal is denoted as

A = diag(a1, · · · , an). Let aij be the element in row i and column j, and aj be the j-th

column of A or the j-th row of A, which will be clearly stated in the context. For a given

matrix A ∈ Rm×n, AS (or Am,S) denotes a submatrix of A by deleting columns indexed

by SC , and AS,n denotes a submatrix of A by deleting rows of A indexed by SC .

The range space (or column space) of AT ∈ Rn×m is denoted by

R(AT ) := {z ∈ Rn : ATy = z for some y ∈ Rm},

and the null space of A is denoted by

N (A) := {x ∈ Rn : Ax = 0}.

Then the relation between N (A) and R(A) is

n = dimension of N (A) + dimension of R(A).

In addition, the range space of AT is the orthogonal complement of the null space of A,

namely,

R(AT ) = N (A)⊥,

which can be written as xT z = 0 for all z ∈ R(AT ) and x ∈ N (A). The rank of

A ∈ Rm×n is defined as the maximal number of linearly independent rows, which is also
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equal to the maximal number of linearly independent columns, i.e., rank(A) = rank(AT ).

A has full rank if and only if rank(A) = min{m,n}. We say that A has column rank or

row rank to emphasize that the rank of A is defined with columns or rows. Furthermore,

if A is a square matrix with full rank, it is invertible and its inverse is A−1. A general

matrix inverse is the pseudo-inverse A†. If rank(A) = m < n, then A† = AT (AAT )−1

(i.e., AA† = I) as AAT is invertible; if rank(A) = n < m, then A† = (ATA)−1AT (i.e.,

A†A = I) as ATA is invertible. We denote the singular values of A ∈ Rm×n by σi(A) for

i ∈ {1, · · · ,min{m,n}}. If m = n, we denote the eigenvalues of A ∈ Rn×n by λi(A) for

i ∈ {1, · · · , n}. Furthermore, the eigenvalues of a matrix is located in a bounded set that

can be characterized by the Gersgorin discs [78].

Theorem 1.4.1 (Gersgorin discs theorem) :

Let A = [aij] ∈ Rn×n, and let Ri(A) =
∑n

j=1
j 6=i
|aij|, 1 6 i 6 n denote the sum of all the off

diagonal elements in the i-th row of A. Then all the eigenvalues of A are located in the

union of n discs

n⋃
i=1

{λ ∈ R : |λ− aii| 6 Ri(A)}. (1.4.1)

Taking two rows at a time, the geometrical region in (1.4.1) are not discs but sets known

as ovals of Cassini [78, 27], then we have the following generalization of Gersgorin discs

theorem.

Theorem 1.4.2 (Brauer theorem) :

Let A = [aij] ∈ Rn×n. All the eigenvalues of A are located in the union of n(n − 1)/2

ovals of Cassini

n⋃
i,j=1
i 6=j

{λ ∈ R : |λ− aii||λ− ajj| 6 Ri(A)Rj(A)}. (1.4.2)
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A square matrix A ∈ Rn×n is positive definite if and only if xTAx > 0 for all x ∈ Rn \{0}

(or all eigenvalues of A are positive), and positive semi-definite if and only if xTAx > 0

for all x ∈ Rn (or all eigenvalues of A are nonnegative). The strictly diagonal dominant

property provides a sufficient condition to verify the positive definite matrix [78].

Theorem 1.4.3 :

Let A ∈ Rn×n be symmetric and strictly diagonally dominant. If aii > 0 for all i =

1, · · · , n, then A is positive definite.

The matrix A ∈ Rn×n is diagonally dominant if

|aii| >
n∑

j=1
j 6=i

|aij| for all i = 1, · · · , n,

and it is strictly diagonally dominant if

|aii| >
n∑

j=1
j 6=i

|aij| for all i = 1, · · · , n.

1.4.3 Functions, Vector and Matrix Norms

A set C is called convex set if αx + (1− α)y ∈ C for all x, y ∈ C and for all α ∈ [−1, 1].

Let D be a convex set. The function f : D → R is convex if f(αx + (1 − α)y) 6

αf(x) + (1−α)f(y) for all x, y ∈ D and for all α ∈ [−1, 1]. A function f is called concave

if −f is convex, i.e., f(αx + (1 − α)y) > αf(x) + (1 − α)f(y). If the above inequalities

are strict, then f are called strictly convex or strictly concave function, respectively.

Particularly, linear functions are both convex and concave function.

Definition 1.4.4 : Let f : C 7→ R be a function over a subset C ⊆ Rn. If x∗ ∈ C and

there exists an open ball of radius ε > 0 at x∗, i.e., Bε(x
∗) := {x ∈ C : ‖x − x∗‖ < ε},

the point x∗ is called
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1. a local minimizer of f if

f(x∗) 6 f(x) for all x in some Bε(x
∗),

and a strict local minimizer of f if

f(x∗) < f(x) for all x in some Bε(x
∗);

2. a global minimizer of f over C if

f(x∗) 6 f(x) for all x ∈ C,

and a strict global minimizer of f over C if

f(x∗) < f(x) for all x ∈ C.

The (strictly) local maximizers and (strictly) global maximizers are defined by replacing

all 6 (or <) with > (or >) in Definition 1.4.4. In particular, due to the convexity of

the function f and the set C, all local minimizers of convex optimization are also global

minimizers, as shown in the following theorem [12].

Theorem 1.4.5 :

Let f : C 7→ R be a convex function over a convex subset C of Rn. Then a local minimizer

of f over C is also a global minimizer. If in addition f is strictly convex, there exists at

most one global minimizer of f over C.

We say a function ‖ · ‖ : Rn → R a vector norm if it has the following properties [12]:

1. ‖x‖ > 0 for all x ∈ Rn,
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2. ‖cx‖ = |c|‖x‖ for all c ∈ R and x ∈ Rn (this is so-called homogeneous),

3. ‖x‖ = 0 if and only if x = 0,

4. ‖x+ y‖ 6 ‖x‖+ ‖y‖ for all x, y ∈ Rn (this is so-called triangle inequality).

Let `p-norm, ‖ ·‖p : Rn → R, be defined by ‖x‖p = (
∑n

i |xi|p)1/p. For 1 6 p <∞, `p-norm

is convex, in particular, if p = 1, we have

`1-norm : ‖x‖1 =
n∑
i

|xi| = sign(x)Tx;

if p = 2,

`2-norm (Euclidean norm) : ‖x‖2 = (
n∑
i

|xi|2)1/2 =
√
xTx;

if p =∞,

`∞-norm : ‖x‖∞ = max
i∈{1,··· ,n}

|xi|.

‖·‖p with 0 < p < 1 is a quasi-norm, which violates the triangle inequality property. While

the `0-norm is the number of nonzero components of x, it is not a norm since it violates

the homogeneous property that ‖αx‖0 6= |α|‖x‖0 for any x ∈ Rn and α /∈ {0, 1,−1}. But

we still call ‖ · ‖0 the `0-norm. It is worth mentioning that

lim
p→0

n∑
i

|xi|p = ‖x‖0,

which indicates that ‖x‖0 can be approximated by ‖x‖pp with sufficiently small p ∈ (0, 1)

for any x ∈ Rn.

We say a function ‖ · ‖ : Rm×n → R a matrix norm, which has the following properties

[78]:
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1. ‖A‖ > 0 for all A ∈ Rm×n ,

2. ‖A‖ = 0 if and only if A = 0 ∈ Rm×n,

3. ‖cA‖ = |c|‖A‖ for all c ∈ R and A ∈ Rm×n (this is so-called homogeneous),

4. ‖A+B‖ 6 ‖A‖+ ‖B‖ for all A,B ∈ Rm×n (this is so-called triangle inequality),

5. ‖AB‖ 6 ‖A‖‖B‖ for all A,B ∈ Rn×n (this is so-called submultiplicative).

We now introduce the operator norm [78]. For a matrix A ∈ Rm×n, the matrix norm of

A is induced by the vector norm as follows

‖A‖p,q := max
x 6=0

‖Ax‖q
‖x‖p

= max
‖x‖p=1

‖Ax‖q.

For p = q, the induced operator norm ‖ · ‖p(q) is the submultiplicative matrix norm and

‖I‖p = 1. By the definition, we can find an upper bound for ‖Ax‖q,

‖Ax‖q 6 ‖A‖p,q‖x‖p.

In particular, some operator norms can be computed. For instance, the maximum column-

sum matrix norm is defined by

‖A‖1 = max
j∈{1,··· ,n}

m∑
i=1

|aij|,

the maximum row-sum matrix norm is

‖A‖∞ = max
i∈{1,··· ,n}

n∑
j=1

|aij|,
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and the spectral norm is

‖A‖2 = σmax(A) =
√
λmax(ATA),

where σmax(A) (λmax(ATA)) is the largest singular value (eigenvalue) of A (ATA).

1.4.4 Linear Programming

Given a matrix A ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn, we define the standard form

of linear programming as

(LP ) min cTx

s.t. Ax = b,

x > 0

(1.4.3)

and its dual problem as

(DP ) max bT z

s.t. AT z 6 c,

z ∈ Rm.

(1.4.4)

By introducing a slack variable s ∈ Rn, the dual problem (1.4.4) is written as

max bT z

s.t. AT z + s = c,

s > 0, z ∈ Rm.

(1.4.5)

The following theorem shows that the objective value of any primal problem is at least

as large as the objective value of its dual problem [13].

Theorem 1.4.6 (Weak duality theorem) :
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If x is a feasible solution to the primal problem (1.4.3) and z is a feasible solution to the

dual problem (1.4.4), then bT z 6 cTx.

The weak duality theorem gives a flavor about the relation between primal and dual

problems. The next corollary of the weak duality theorem shows a more deeper result.

Corollary 1.4.7 ([13]) :

Let x and z be feasible solutions to primal problem (1.4.3) and dual problem (1.4.4),

respectively, and suppose that bT z = cTx. Then x and z are optimal solutions to the

primal and dual problems, respectively.

This Corollary provides a sufficient condition for the optimality of primal and dual prob-

lems. The next theorem, which is the central result on linear programming, certifies that

it is also a necessary optimality condition for primal and dual problems [13].

Theorem 1.4.8 (Strong duality theorem) :

If both the primal problem and dual problem have optimal solutions, for a primal optimal

solution x and dual optimal solution z, we have bT z = cTx.

Another important relation between the primal problem (1.4.3) and its dual problem

(1.4.5) is given by the complementary slackness condition [13], as shown in the next

theorem.

Theorem 1.4.9 (Complementary slackness condition) :

Let x and (z, s) be feasible solutions to the primal and dual problems, respectively. Then

x and (z, s) are optimal solutions if and only if the complementary slackness conditions

holds, i.e., xT (c− AT z) = 0⇔ xT s = 0.

Moreover, if a solution pair (x, (z, s)) satisfies that xT s = 0 and x + s > 0, this solution

pair is called the strictly complementary solution pair.
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Theorem 1.4.10 (Strictly complementary slackness [114]) :

Let primal and dual problems both have feasible solutions. Then there exists a pair of

strictly complementary solution x > 0 and s > 0 with xT s = 0 and x+ s > 0.
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Chapter 2

Theory for Compressive Sensing

2.1 Introduction

In this chapter, we discuss two theoretical aspects of standard compressive sensing, unique-

ness of solutions of `0-minimization and sparse signal recoverability of `1-minimization.

When matrix A ∈ Rm×n with m < n is full rank, the underdetermined linear equation

system Ax = b has infinitely many solutions. `0-minimization can locate either a unique

sparsest solution or multiple sparsest solutions to the system Ax = b from a given mea-

surements vector b. Given the measurements b and a special designed matrix A, to achieve

the exact recovery via `1-minimization, it is usually necessary to require the strong equiv-

alence of `0- and `1-minimization [132], which implies the uniqueness of solutions to both

`0-minimization and `1-minimization. On the other hand, in the case of multiple sparsest

solutions, `1-minimization may find at most one sparsest solution of the system Ax = b

provided that `1-minimization admits a unique solution. This is referred to as the equiva-

lence of `0- and `1-minimizations [132]. So far, many uniqueness conditions and recovery

conditions have been developed for the uniqueness of solutions of `0-minimization and the

strong equivalence or equivalence of `0- and `1-minimization. In this chapter, we briefly

introduce ones in terms of spark, mutual coherence, Babel function, exact recovery con-
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dition (ERC), restricted isometry property (RIP), null space property (NSP), and range

space property (RSP). These conditions characterize certain properties of A such that

`0-minimization can be solved by a tractable linear program, i.e., `1-minimization. All

results obtained from the exact recovery can be categorized into two groups. One requires

recovering a specific sparsest vector from a linear system (namely, nonuniform recovery),

and the other requires recovering all K-sparse vectors (i.e., ‖x‖0 6 K) through a single

sensing matrix (namely, uniform recovery). The techniques and results established for the

uniqueness of solutions of `0-minimization and recovery conditions via `1-minimization in

this chapter will be extended to some special applications in compressive sensing, i.e.,

partial sparsity-seeking problem in Chapter 3 and 1-bit compressive sensing problem in

Chapter 4.

This chapter is organized as follows. In section 2.2, we introduce sufficient conditions

for the uniqueness of solutions of `0-minimization in terms of spark, mutual coherence

and Babel function. In section 2.3, we introduce exact recovery coefficient, restricted

isometry property, null space property and range space property-based analysis to ensure

the nonuniform recovery and uniform recovery via `1-minimization.

2.2 Uniqueness conditions for `0-minimization

Firstly, we introduce two fundamental properties of a matrix, spark and mutual coherence,

which are initially defined in [54, 52]. Based on these two properties, Donoho and Elad

developed sufficient conditions for `0-minimization to admit a unique sparsest solution.

In addition, mutual coherence provides a lower bound of spark [52], but such a lower

bound is not tight and can be improved in some cases, e.g., the sensing matrix is a

concatenation of orthonormal matrices [64, 73, 95]. Meanwhile, as mutual coherence

characterizes the extreme relation of pairs of columns from a matrix, to reflect more

correlations between a distinct column and a collection of a few columns, we introduce
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Babel function proposed by Tropp [120], an alternative method to obtain some uniqueness

conditions for `0-minimization.

2.2.1 Spark

We start with the spark of a matrix, which provides a sufficient condition for the unique-

ness of solutions of `0-minimization.

Definition 2.2.1 (Spark(A)) : For a given matrix A, the spark is the smallest number

of linearly dependent columns from matrix A.

By definition, spark is more difficult to evaluate as it requires to check all possible com-

binations of columns from a matrix. Also, note that the definition of spark resembles

that of rank, the largest number of linearly independent columns from a matrix. By

definition, the spark of any nonzero matrices should be greater than 1; for full rank ma-

trices, such as rank(A)=m, the Spark(A) can rise up to m+ 1 with probability 1 if every

entry of matrix A is from a random identical and independent distribution [68]. Addi-

tionally, we can get a tight upper bound for Spark(A) via the null space of matrix A, i.e.,

N (A) = {h ∈ Rn|Ah = 0}. That is, Spark(A) 6 ‖h‖0 for any vector h ∈ N (A) \ {0}.

Thus, the Spark(A) can be evaluated as

Spark(A) = min{‖h‖0 : Ah = 0, h 6= 0}.

This gives the following sufficient condition for the uniqueness of solutions of `0-minimization.

Theorem 2.2.2 (Uniqueness via Spark(A), Corollary 4 in [52]) :

For a given linear system Ax = b, if there exists a solution x satisfying

‖x‖0 <
1

2
Spark(A), (2.2.1)

then x is necessarily the sparest solution to `0-minimization.
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Proof. Assume the contrary that there exists another sparsest solution x̃ 6= x, such

that ‖x̃‖0 6 ‖x‖0. Since both x and x̃ are solutions of Ax = b, we have A(x − x̃) =

0, i.e., x− x̃ ∈ N (A)\{0}. As the null space of A provides an upper bound for Spark(A),

we have ‖x− x̃‖0 > Spark(A). By triangle inequality of `0-norm,

‖x‖0 + ‖x̃‖0 > ‖x− x̃‖0 > Spark(A). (2.2.2)

If ‖x‖0 < 1
2
Spark(A), ‖x̃‖0 must be greater than 1

2
Spark(A) to satisfy inequality

(2.2.2). This is a contradiction to the assumption ‖x̃‖0 6 ‖x‖0 <
1
2
Spark(A). Hence, x is

necessarily the sparsest solution of `0-minimization. �

This following corollary can be achieved directly from the proof of Theorem 2.2.2.

Corollary 2.2.3 (Theorem 3 in [52]) :

If linear system Ax = b has two distinct solutions, say x and x̂, the sum of the number of

nonzeros of x and x̂ must be no less than Spark(A).

2.2.2 Mutual Coherence

The sufficient condition for the sparest solution in Theorem 2.2.2 is intractable as the

complexity of finding Spark(A) is at least the same as solving `0-minimization. We need

an easier way to check whether the solution is unique. Now we introduce the mutual

coherence which can provide a tractable uniqueness condition.

Definition 2.2.4 (mutual coherence) : For a given matrix A ∈ Rm×n, the mutual

coherence denoted as µ(A) is the largest absolute value of inner products between any

different normalized columns of A, i.e.,

µ(A) = max
16i 6=j6n

|〈ai, aj〉|
‖ai‖2 · ‖aj‖2

,
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where ai and aj (i 6= j ∈ {1, · · · , n}) are the i-th column and the j-th column of matrix

A, respectively.

The definition of mutual coherence states the dependency between any different columns

of A. Thus, we can interpret mutual coherence as follows

µ(A) = max
16i 6=j6n

| cos θij|,

where θij is the angle between column vectors ai and aj. If µ(A) is small, we say matrix

A is incoherent. Compared to Spark(A), mutual coherence is easier to calculate and more

direct to capture the relations between columns of matrix A. For instance, for unitary

matrices, whose columns are pairwise orthogonal, its mutual coherence is zero. For the

union of two orthonormal bases Φ and Ψ, i.e. A = [Φ,Ψ] ∈ Rm×2m, 1√
m
6 µ(A) 6 1 [54].

The lower bound is obtained from a well-known property in quantum physics [76][127],

mutually unbiased bases (MUB), where two orthonormal bases Φ = [φ1, · · · , φm] and

Ψ = [ψ1, · · · , ψm] satisfy |〈φi, ψj〉| = 1√
m
, i = 1 · · ·m and j = 1 · · ·m. For a general

matrix A ∈ Rm×n with m < n, Theorem 2.3 in [116] shows that µ(A) >
√

n−m
m(n−1)

, and

the equality is achieved by optimal Grassmnnian frames with n 6 m(m+1)
2

.

By definitions of mutual coherence and spark, as both characterize matrix A in the

context of dependency, the relationship between Spark(A) and µ(A) can be revealed by

the following lemma.

Lemma 2.2.5 ([28, 52]) : For a given matrix A ∈ Rm×n, one has Spark(A) > 1 + 1
µ(A)

.

Proof. Denote Â as the normalized matrix A, where each column of matrix Â is a unit

`2-norm vector. Note that normalization will not change spark and mutual coherence.

Let G be the Gram matrix of Â, where

Gii = 1, i = 1, · · · , n, Gij =
〈ai, aj〉

‖ai‖2 · ‖aj‖2

, i 6= j, 1 6 i, j 6 n,
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and ai, aj are the i-th and j-th columns of matrix A. Thus,

|Gij| =
|〈ai, aj〉|
‖ai‖2 · ‖aj‖2

6 µ(A), ∀ 1 6 i 6= j 6 n.

Now we assume that Spark(A) = k and {a1, · · · , ak} are the smallest linearly dependent

columns from matrix A. Let Gk×k be the submatrix of G generated by {a1 · · · , ak}. Gk×k

is not a positive definite matrix, so Gk×k is not a strictly diagonal dominant matrix. Thus,

there exists a column ai such that

|Gii| = 1 6
k∑

j=1
j 6=i

|Gij|.

As |Gij| 6 µ(A), we have

(k − 1)µ(A) > 1,

which implies that k > 1 + 1
µ(A)

. �

In fact, the lower bound of Spark(A) given in Lemma 2.2.5 is quite conservative. We

will give an example to show the difference between the mutual coherence uniqueness

condition and the spark uniqueness condition.

Example 2.2.6 :

Let A ∈ Rm×m+1 be a concatenation of the identity matrix Im×m and a vector e =

[1, · · · , 1]> ∈ Rm, i.e.,

A = [Im×m; e]m×m+1.

Then, we have µ(A) = 1√
m

. Obviously, A is full rank with rank(A) = m. As the spark

is the smallest number of linearly dependent columns, in this case, we have Spark(A) =
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m+ 1. Thus,

1

2
(1 +

1

µ(A)
) =

1

2
(1 +

√
m) whereas

1

2
Spark(A) =

1

2
(m+ 1).

When m = 25, the mutual coherence condition fails to verify any sparse solution with

the sparsity between 1
2
(1 +

√
m) = 3 and 1

2
(m + 1) = 13. However, this lower bound of

Spark(A) can be improved when matrix A is the concatenation of orthonormal matrices

[64, 73, 95, 52] or by using new concepts, like sub-mutual coherence, (sub-)coherence rank

established in [131].

From Theorem 2.2.2 and Lemma 2.2.5, we have the uniqueness and recovery condition

for the strong equivalence of `0- and `1-minimization via mutual coherence.

Theorem 2.2.7 (Uniqueness and recovery via mutual coherence [52]) :

For a given linear system Ax = b, if there exists a solution x such that

‖x‖0 <
1

2
(1 +

1

µ(A)
), (2.2.3)

then x is both the unique sparsest solution of `0-minimization and the unique solution of

`1-minimization.

Theorem 2.2.7 states that the mutual coherence condition (2.2.3) can verify the unique

sparsest solution to `0-minimization as well as provide a sufficient condition for the strong

equivalence of `0- and `1-minimization.

2.2.3 Babel function

Mutual coherence reflects extreme relationships between columns from a matrix. If there is

a normalized inner product of columns which is very large, the mutual coherence condition

is too restrictive to verify the uniqueness of a sparsest solution. Instead of considering
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such an extreme correlation between individual columns, Babel function measures the

relation between a collection of columns and a fixed distinct column.

Definition 2.2.8 (Babel Function) : For a given matrix A ∈ Rm×n with normalized

columns, Babel function is defined as

µ1(K) = max
|Λ|=K

max
j /∈Λ

∑
i∈Λ

|〈aj, ai〉|,

where ai and aj are the i-th and j-th columns of A, and Λ is an index set with Λ ⊆

{1, · · · , n}.

By the definition, Babel function is a maximum absolute sum of any |Λ| = K inner

products between ai and aj, and it is a nondecreasing function of K. Conventionally, we

assume µ1(0) = 0 and notice that when K = 1, µ1(1) = µ(A).

Proposition 2.2.9 ([120]) : For a given matrix A ∈ Rm×n with normalized columns,

(1) if A is an orthonormal basis, then µ1(K) = 0 for any integer K > 1;

(2) µ1(K) 6 Kµ(A) for any integer K > 1;

(3) if there is an index set Λ with |Λ| = K, for a submatrix AΛ from A, the squared

singular value of AΛ satisfies 1− µ1(K − 1) 6 σ2 6 1 + µ1(K − 1).

Proof. (1) It is straightforward from the definition of Babel function since inner products

between any distinct columns from a orthonormal matrix are zero;

(2) For an index set Λ ⊆ {1, · · · , n}, as |〈aj, ai〉| 6 µ(A) for any i 6= j ∈ {1, · · · , n},

µ1(K) = max
|Λ|=K

max
j /∈Λ

∑
i∈Λ

|〈aj, ai〉|

6 max
|Λ|=K

∑
i∈Λ

µ(A) = Kµ(A).

(3) Consider the Gram matrix GΛ = ATΛAΛ, which is a positive semidefinite matrix. By

Gersgorin Disc theorem, every eigenvalue λ of GΛ lies in a Gersgorin disc centered at Gii,
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namely,

|λ−Gii| 6
∑
j 6=i

|Gij|, ∀i ∈ Λ. (2.2.4)

Since Gii = 1 and

∑
j 6=i

|Gij| =
∑
j 6=i

j∈Λ/{i}

|〈ai, aj〉|

6 max
i

∑
j∈Λ′:=Λ/{i}

|〈ai, aj〉|

6 max
|Λ′|=K−1

max
i

∑
j∈Λ′

|〈ai, aj〉|

6 µ1(K − 1),

by the inequality (2.2.4), we get 1− µ1(K − 1) 6 σ2 6 1 + µ1(K − 1). �

As discussed in section 2.2.2, the minimal mutual coherence can be achieved by Grass-

mannian frames with n 6 m(m+1)
2

. Also, we can get a lower bound of Babel function by

Grassannian frames [113]: if K2 < n− 1, then

µ1(K) > K

√
n−m
m(n− 1)

.

This equality holds if and only if A is an equiangular unit norm tight frame [113], such

as the orthonormal matrix. In addition, Babel function can be used to construct a lower

bound on the spark, as shown in the next theorem.

Theorem 2.2.10 ([120]) :

For any normalized matrix A ∈ Rm×n, Babel function gives a lower bound for Spark(A),

Spark(A) > min{K|µ1(K − 1) > 1}.
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Proof. Assume that Spark(A) = p and let Gram matrix of a submatrix AΛ beGΛ = A>ΛAΛ,

where Λ ⊆ {1, · · · , n} is an index set with |Λ| = p. Since matrix A is normalized, we have

Gii = 1 and Gij =
〈ai, aj〉
‖ai‖2‖aj‖2

, i 6= j ∈ Λ.

As AΛ has linearly dependent columns, there is an i ∈ Λ such that the corresponding

eigenvalue λi of GΛ is zero. By Gersgorin Disc theorem, we have

|λi −Gii| = 1 6
∑
j 6=i

|〈ai, aj〉|
‖ai‖2‖aj‖2

6 max
i

∑
j∈Λ/{i}

|〈ai, aj〉|
‖ai‖2‖aj‖2

6 max
|Λ/{i}|=p−1

max
i

∑
j∈Λ/{i}

|〈ai, aj〉|
‖ai‖2‖aj‖2

= µ1(p− 1),

which implies that

p ∈ {K| µ1(K − 1) > 1}.

Thus, as µ1(K − 1) is a nondecreasing function of K, p should at least be the minimum

number of K such that µ1(K − 1) > 1. Hence, we have Spark(A) > min{K| µ1(K − 1) >

1}. �

Combining Theorem 2.2.10 and Theorem 2.2.2, we obtain another uniqueness condition

for `0-minimization in terms of Babel function.

Theorem 2.2.11 (Uniqueness by Babel function) :

For a given linear system Ax = b, if there exists a solution x satisfying

‖x‖0 <
1

2
min{K| µ1(K − 1) > 1}, (2.2.5)

then x is the sparsest solution to `0-minimization.
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2.3 Recovery conditions for `1-minimization

We have seen that if a system of linear equations has a unique sparsest solution, conditions

in Theorems 2.2.2, 2.2.7 and 2.2.11 can verify such a solution. To exactly recover the

sparsest solution of a system of linear equations, more conditions on the sensing matrix

are established to ensure the strong equivalence of `0- and `1-minimization. Results from

such a recovery will be discussed by nonuniform recovery, recovering a specific sparsest

vector from the measurements, and uniform recovery, recovering all K-sparse vectors (i.e.,

{x ∈ Rn : ‖x‖0 6 K}) through a single sensing matrix.

2.3.1 Exact Recovery Coefficient

We begin with the Exact Recovery Coefficient (ERC) recovery condition, which gives an

idea that what property of the sensing matrix can ensure the exact recovery.

Definition 2.3.1 (ERC) : Given a normalized matrix A ∈ Rm×n, let Λ be an index

set of a full column-rank submatrix from A, then define Exact Recovery Coefficient,

ERC(Λ;A) as

ERC(Λ;A) := 1−max
j /∈Λ
‖A†Λaj‖1,

where A†Λ is the pseudoinverse of AΛ. That is, A†Λ = (ATΛAΛ)−1ATΛ.

We omit the matrix symbol from the notation of ERC. Note that ERC(Λ) is developed

from Babel function, measuring the difference between any full column-rank submatrix

AΛ and a column aj that is not participated in AΛ from matrix A. Tropp gave a brief

discussion about the necessity of ERC in [123] and proved that ERC(Λ) provides an

sufficient condition for the nonuniform recovery.
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Theorem 2.3.2 (Theorem 3.3 in [123]) :

For a given linear system Ax = b, where matrix A is normalized, let Λ be the support

set of x∗ such that b = AΛx
∗
Λ and x∗ be the sparsest solution to `0-minimization. If

ERC(Λ) > 0, then `1-minimization can recover the sparsest solution x∗.

Proof. Assume the contrary that there exists a solution x̂ 6= x∗ to `1-minimization such

that b = Âx̂Supp(x̂) and ‖x̂‖1 6 ‖x∗‖1, where Â is a full column-rank submatrix of A.

By assumption, as x∗ is the sparsest solution, AΛ has full column-rank. Thus, we have

‖x̂‖1 6 ‖x∗‖1 = ‖A†ΛÂx̂Supp(x̂)‖1 6 maxΛ ‖A†ΛÂx̂Supp(x̂)‖1 and maxΛ ‖A†ΛÂx̂Supp(x̂)‖1 means

maximizing ‖A†ΛÂx̂Supp(x̂)‖1 over any index set Λ ⊆ {1, · · · , n} with |Λ| = Supp(x∗), where

the corresponding submatrix AΛ is full column rank.

Let ai’s be row vectors from A†Λ and âj’s be column vectors from Â, then we get

max
Λ
‖A†ΛÂx̂Supp(x̂)‖1 = max

Λ

∑
i∈Λ

∣∣∣∣∣∑
j

aiâjx̂j

∣∣∣∣∣
6 max

Λ

∑
i∈Λ

∑
j

|aiâjx̂j|

6 max
Λ

∑
i∈Λ

∑
j

|aiâj| |x̂j| (2.3.1)

= max
Λ

∑
j

∑
i∈Λ

|aiâj| |x̂j| .

As b = Âx̂ is a different representation from b = AΛx
∗, there exists at least one column âj

belonging to Â but not in AΛ satisfying ERC(Λ) > 0. For such a column âj, as ERC(Λ) >

0, 1−‖A†Λâj‖1 > 1−maxj /∈Λ ‖A†Λâj‖1 > 0, which is equivalent to maxj /∈Λ

∑
i∈Λ |ai, âj| < 1.

Relaxing the last inequality in equation (2.3.1), we have

max
Λ
‖A†ΛÂx̂‖1 6 max

Λ

∑
j

(
∑
i∈Λ

|aiâj|)|x̂j|

< max
Λ

∑
j

|x̂j| = ‖x̂‖1.
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This contradicts the assumption that ‖x̂‖1 6 ‖x∗‖1 < ‖x̂‖1. Hence, `1-minimization can

recover the sparsest solution under the ERC condition. �

Note that the sparsity level of the sparsest solution is implicitly shown in the ERC

condition, which is the cardinality of the support set Λ. Compared to the mutual co-

herence condition (2.2.3), ERC condition is more difficult to check, unless we know the

support set Λ. Even if the sparsity level |Λ| is known, it is still costly to test all the

possible
(
n
|Λ|

)
combinations of columns of matrix A. But we can use Babel function and

mutual coherence to verify the ERC condition, i.e., ERC(Λ) > 0.

Proposition 2.3.3 (Proposition 3.7 in [122]) :

Suppose that Λ is an index set of a full column-rank submatrix AΛ from a normalized

matrix A ∈ Rm×n with |Λ| 6 K, a lower bound of Exact Recovery Coefficient is

ERC(Λ) >
1− µ1(K − 1)− µ1(K)

1− µ1(K − 1)
. (2.3.2)

If µ1(K − 1) + µ1(K) < 1 holds, then we have ERC(Λ) > 0.

Proof. As ERC(Λ) = 1 − maxj /∈Λ ‖A†Λaj‖1, we need to relax maxj /∈Λ ‖A†Λaj‖1 to find a

lower bound of ERC(Λ).

Substituting A†Λ = (ATΛAΛ)−1ATΛ into the definition of ERC(Λ), as ATΛAΛ is invertible, we

have

max
j /∈Λ
‖A†Λaj‖1 = max

j /∈Λ
‖(ATΛAΛ)−1ATΛaj‖1

6 ‖(ATΛAΛ)−1‖1,1 max
j /∈Λ
‖ATΛaj‖1. (2.3.3)

Now, we relax the first term on the right hand side of inequality (2.3.3).

By Proposition 2.2.9 (3), the squared singular value of a submatrix AΛ is the eigenvalue
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of a Gram matrix G = ATΛAΛ, then we have,

1− µ1(K − 1) 6 λ(G) 6 1 + µ1(K − 1).

Since G is invertible, we get λ(G−1) = 1
λ(G)

. Thus,

1

1 + µ1(K − 1)
6 λ(G−1) 6

1

1− µ1(K − 1)
.

By definition of operator norm,

‖(ATΛAΛ)−1‖1,1 = max
‖x‖1=1

‖(ATΛAΛ)−1x‖1 = max
‖x‖1=1

‖λ(G−1)x‖1

6
1

1− µ1(K − 1)
‖x‖1 =

1

1− µ1(K − 1)
.

Then, relax the second term maxj /∈Λ ‖ATΛaj‖1 of inequality (2.3.3) and we have

max
j /∈Λ
‖ATΛaj‖1 6 max

|Λ|=K
max
j /∈Λ
‖ATΛaj‖1

= max
|Λ|=K

max
j /∈Λ

∑
i∈Λ

|〈ai, aj〉|
def
= µ1(K).

Hence,

max
j /∈Λ
‖A†Λaj‖1 6

1

1− µ1(K − 1)
µ1(K),

and the inequality (2.3.2) holds. To achieve ERC(Λ) > 0, the lower bound should be

greater than 0. Hence, we have µ1(K − 1) + µ1(K) < 1 holds to guarantee it. �

By Proposition 2.2.9 (2), the mutual coherence also can build a lower bound of ERC.

Proposition 2.3.4 (Theorem 4.7 in [58]) :

Suppose that Λ is an index set of a full column-rank submatrix AΛ, which is from a

normalized matrix A ∈ Rm×n with |Λ| 6 K. Then, a lower bound of Exact Recovery
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Coefficient is

ERC(Λ) >
1− 2Kµ(A) + µ(A)

1− (K − 1)µ(A)
. (2.3.4)

If K < 1
2
(1 + 1

µ(A)
) holds, then we have ERC(Λ) > 0.

Proof. We follow the proof similar to that of Proposition 2.3.3. From the definition of

ERC(Λ), we have

max
j /∈Λ
‖A†Λaj‖1 = max

j /∈Λ
‖(ATΛAΛ)−1ATΛaj‖1

6 ‖(ATΛAΛ)−1‖1,1 max
j /∈Λ
‖ATΛaj‖1. (2.3.5)

This inequality holds by the definition of operator norms. Now, we consider the first term

on the right hand side of inequality (2.3.5), ‖(ATΛAΛ)−1‖1,1. As AΛ is a full column-rank

submarix, the Gram matrix G = ATΛAΛ is nonsingular. By Gersgorin Disc theorem, every

eigenvalue λ of G lies in a Gersgorin disc that is

|λ− 1| 6
∑
j 6=i

|Gij| 6 (K − 1)µ(A) ∀i ∈ Λ,

which equals to

1− (K − 1)µ(A) 6 λ(G) 6 1 + (K − 1)µ.

Thus, the eigenvalue of G−1 satisfies

1

1 + (K − 1)µ
6 λ(G−1) 6

1

1− (K − 1)µ(A)
.
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Hence,

‖(ATΛAΛ)−1‖1,1 = max
‖x‖1=1

‖(ATΛAΛ)−1x‖1 = max
‖x‖1=1

‖λ(G−1)x‖1

6
1

1− (K − 1)µ(A)
‖x‖1 =

1

1− (K − 1)µ(A)
.

Next, since maxj /∈Λ ‖ATΛaj‖1 can be bounded as

max
j /∈Λ
‖ATΛaj‖1 = max

j /∈Λ

∑
i∈Λ

|〈ai, aj〉| 6 Kµ(A),

we have

max
j /∈Λ
‖A†Λaj‖1 6

Kµ(A)

1− (K − 1)µ(A)
.

Then,

ERC(Λ) = 1−max
j /∈Λ
‖A†Λaj‖1 >

1− 2Kµ(A) + µ(A)

1− (K − 1)µ(A)
,

and hence, ERC(Λ)> 0 can be provided by K < 1
2
(1 + 1

µ(A)
). �

Due to the mutual coherence sufficient condition in Theorem 2.2.7, this proposition ex-

plains why ERC(Λ) > 0 is also a sufficient condition for the exact recovery via `1-

minimization. We have shown that mutual coherence condition (2.2.3) and ERC condition

can guarantee the nonuniform recovery. To recover all K-sparse vectors through a single

matrix A, we will further introduce some restrictive conditions on matrix A. Candès and

Tao [32, 33, 36], and Donoho [51] have shown that under a certain Restricted Isometry

Property (RIP) condition, some recovery methods including `1-minimization can ensure

the uniform recovery.

37



2.3.2 Restricted Isometry Property

Let
∑

K be the set of all K-sparse vectors, i.e.

∑
K := {x ∈ Rn|‖x‖0 6 K}.

Definition 2.3.5 (Restricted Isometry Property) :

For any given matrix A, if there exists a smallest isometry constant number δK ∈ (0, 1),

such that

(1− δK)‖x‖2
2 6 ‖Ax‖2

2 6 (1 + δK)‖x‖2
2 (2.3.6)

holds for all x ∈
∑

K, then we say that matrix A satisfies the Restricted Isometry Property

(RIP) of order K.

This property shows that submatrices consisted of any K columns of A have similar

behaviors with small isometry constant δ. Note that, for any t < K, if matrix A satisfies

the RIP of order K with δK , A must satisfy the RIP of order t with δt where δt < δK .

Additionally, if matrix A has arbitrary bounds, such as

a‖x‖2
2 6 ‖Ax‖2

2 6 b‖x‖2
2,

where 0 < a 6 b < ∞, we can scale A to satisfy (2.3.6). The uniqueness of a K-sparse

solution can be obtained from the RIP, as indicated in the following result.

Theorem 2.3.6 (Uniqueness via RIP [33]) :

Suppose that matrix A satisfies the RIP of order 2K with δ2K < 1, then `0-minimization

has a unique K-sparse solution if such a solution exists.

38



Proof. Assume the contrary that there exist two distinct solutions of `0-minimization x

and y, such that x ∈ ΣK and y ∈ ΣK . Then we have h = x−y ∈ N (A)\{0} and h ∈ Σ2K .

By the RIP assumption, we have

(1− δ2K)‖h‖2
2 6 ‖Ah‖2

2 6 (1 + δ2K)‖h‖2
2.

This yields a contradiction since Ah = 0 whereas 1− δ2K > 0. Therefore, `0-minimization

has a unique K-sparse solution. �

Moreover, for a certain restricted isometry constant δK , RIP can also provide a sufficient

condition for the uniform recovery via `1-minimization.

Theorem 2.3.7 (Theorem 1.2 in [33]) :

Suppose that matrix A satisfies the RIP of order 2K with δ2K <
√

2−1, then the solution

x∗ of `1-minimization satisfies

‖x∗ − x‖2 6 C
‖x− xK‖1√

K
, (2.3.7)

where C = 21−(1−
√

2)δ2K
1−(1+

√
2)δ2K

, x is the unique sparsest solution to `0-minimization and xK is

a sub-vector of the largest K components of absolute value of x. Particularly, if x is

K-sparse, the `1-recovery is exact.

Theorem 2.3.7 gives a nice result for the uniform recovery via `1-minimization under

certain RIP condition. It is worth stressing that the δ2K condition, i.e., δ2K <
√

2 − 1,

has been improved by several researches in [29, 30, 31, 15, 48]. Also, the uniform recovery

via other greedy algorithms, such as orthogonal matching pursuit (OMP) [47, 120] and

iterative hard thresholding (IHT) [19, 17], can be ensured by certain RIP conditions.

Now, problems are what matrices satisfy the RIP condition and how to evaluate the RIP

constant δK such that δK obeys the condition in Theorem 2.3.7 or other improved δK
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conditions in [29, 30, 31, 65, 66, 68, 96]. In fact, computing the constant δK for a given

matrix and any number K is NP-hard [119, 6]. Fortunately, there do exist some families

of random matrices that admit a certain RIP condition with high probability, for instance,

Fourier matrix [37], Gaussian matrix [37, 10], Bernoulli matrix [10], randomly restricted

Hadmard matrix [112] and Toeplitz matrix [5]. It is worth mentioning that Gaussian

matrix and Bernoulli matrix are often used in experiments to show performances of any

recovery algorithms in compressive sensing. We will also test the performance of 1-bit

basis pursuit, which is a basis pursuit method for 1-bit compressive sensing problem, by

using Gaussian and Bernoulli matrices in Chapter 5.

The RIP property is one of the widely used analyzing tools in compressed sensing.

However, the RIP property has its limitations. For example, the linear system is de-

termined by (WA,Wb), where (WA,Wb) and (A, b) have the same solution structure

since W is an invertible weight matrix. But the restricted isometry constants of WA

and A may be massively different. Zhang gave an example for this in [130], showing that

`1-minimization can recover the sparsest solution of Ax = b whereas it cannot recover

the sparsest solution of WAx = Wb, as the restricted isometry constant δ(WA) of WA

violates the requirement δ(WA) <
√

2− 1. Due to the limitation of RIP, non-RIP analy-

sis brings a new perspective for the recovery of compressive sensing via `1-minimization.

Among those analysis, null space property (NSP) and range space property (RSP) are

the popular tools, which will be introduced in the following sections.

2.3.3 Null Space Property

In this section, the recoverability of `1-minimization will be considered by another property

of matrix A, the Null Space Property (NSP). Firstly, we give a general definition of the

Null Space Property on mixed norm spaces [43]. Recall that we denote the null space of

a matrix A by N (A) := {x ∈ Rn|Ax = 0}. For a given norm ‖ · ‖X , the best K-term
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approximation error is [43]

σK(x)X := min
x̂∈ΣK

‖x− x̂‖X .

Definition 2.3.8 (Null Space Property (NSP)) :

For a matrix A ∈ Rm×n, if there exists a constant C > 0 such that

‖η‖X 6 CK−s‖ηΛc‖Y for all η ∈ N (A), (2.3.8)

where ‖ ·‖X denotes the `p-norm and ‖ ·‖Y denotes the `q-norm, 1 6 q 6 p 6 2, s = 1
q
− 1

p
,

holding for all Λ ⊆ {1, · · · , n} with |Λ| 6 K and Λc is the complement set of Λ in

⊆ {1, · · · , n}, then we say that the matrix A satisfies the Null Space Property in (X, Y )

of order K.

Remark 2.3.9 :

1. The NSP condition (2.3.8) can be reformulated as

‖η‖X 6 CK−sσK(η)Y .

As ‖ηΛc‖Y = ‖η−ηΛ‖ > σK(η)Y for any Λ in ⊆ {1, · · · , n} with |Λ| 6 K, any vector

η ∈ N (A) can be bounded by its best K-term approximation error. If the vector η is

a vector in
∑

K and there exists an index set Λ with |Λ| = K, ‖ηΛc‖Y = σK(η)Y = 0

for any `q-norm, which implies η ≡ 0.

2. Let 4 : Rm −→ Rn be any recovery methods such that

z = arg 4(Ax) and z ∈ Rn.

4 is called a decoder in the literature as it is expected to extract x by decoding from
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b = Ax. For different choices of p and q, the corresponding stability condition [43]

is

‖x−4(Ax)‖X 6 C0K
−sσK(η)Y for any x ∈ Rn,

where C0 > 0 is a constant.

Throughout this dissertation, we only consider the recoverability of `1-minimization and

the case when X = `2 and Y = `1. Thus, the definition of NSP yields to that there exists

a constant C > 0 such that

‖η‖2 6 CK−1/2‖ηΛc‖1 (2.3.9)

holds for all η ∈ N (A) and Λ ⊆ {1, · · · , n} with |Λ| 6 K.

Lemma 2.3.10 : For any h ∈ ΣK, we have the following inequalities between different

norms,

‖h‖1√
K
6 ‖h‖2 6

√
K‖h‖∞.

The first inequality can be obtained by applying Cauchy-Schwarz inequality as ‖h‖1 =

|〈sign(h), h〉|. The second inequality is more straightforward.

By the Lemma 2.3.10, the definition of NSP (2.3.9) can be refined into the same norm,

namely,

‖η‖1 6 C‖ηΛc‖1. (2.3.10)

For all other cases of mixed norm spaces and recovery methods, we refer readers to the

paper by Cohen, Dahmen and DeVore [43]. To reveal the recovery condition via NSP,
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we start with characterizing the uniqueness condition for `1-minimization, and then build

uniform recovery conditions via `1-minimization.

Theorem 2.3.11 (Uniqueness condition for `1-minimization via NSP [130]) :

For a given linear system Ax = b and any integer K > 1, x∗ = arg min{‖x‖1| Ax = Ax∗}

holds for all x∗ ∈ Rn such that ‖x∗‖0 6 K if and only if matrix A satisfies the NSP of

order K for some constant 0 < C < 1 with all η ∈ N (A) \ {0}.

Proof. Let y 6= x∗ be a solution of `1-minimization. Let η = y − x∗ ∈ N \ {0} and Λ be

the support set of x∗ with |Λ| = K. Denote Λc as the complement set of Λ in {1, · · · , n},

then we have the following relation

‖y‖1 = ‖η + x∗‖1 = ‖ηΛ + x∗Λ‖1 + ‖ηΛc‖1. (2.3.11)

Due to the triangle inequality, we have

‖ηΛ + x∗Λ‖1 > ‖x∗Λ‖1 − ‖ηΛ‖1,

thus, equation (2.3.11) becomes

‖y‖1 = ‖η + x∗‖1 > ‖x∗Λ‖1 − ‖ηΛ‖1 + ‖ηΛc‖1.

Hence, x∗ is the unique solution of `1-minimization (namely, ‖y‖1 > ‖x∗‖1) if and only if

‖ηΛc‖1−‖ηΛ‖1 > 0 holds. Matrix A satisfies the NSP of order K, for the index set Λ and

vector η defined above, by definition (2.3.10), then we have

‖η‖1 6 C‖ηΛc‖1 for some constant C > 0,
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which implies

‖ηΛ‖1 6 ‖η‖1 6 C‖ηΛc‖1 < ‖ηΛc‖1.

Hence, matrix A satisfying the NSP of order K, by definition (2.3.10) for any 0 < C < 1,

x∗ is the unique solution to `1-minimization. �

Remark 2.3.12 : It is worth mentioning that there is an alternative to define the null

space property [68], which says that if ‖ηΛ‖1 < ‖ηΛc‖1 for all η ∈ N (A)\{0} holds for any

sets Λ ⊆ {1, · · · , n} with |Λ| 6 K, matrix A satisfies the NSP of order K. Based on this

definition, it is more straightforward to see that NSP can fully characterize the uniqueness

of `1-minimization.

The following theorem will show the NSP of order K is also a sufficient condition for

finding a unique K-sparse solution of `0-minimization.

Theorem 2.3.13 (Uniqueness via NSP [130]) :

For a given linear system Ax = b and any integer K > 1, if matrix A satisfies the NSP

of order K, then `0-minimization has a unique K-sparse solution if such a solution exists.

Proof. Let x, y ∈ Rn be two distinct solutions of Ax = b and Λ be the support set of

x with |Λ| = K. Let η = y − x ∈ N (A) \ {0}. By Theorem 2.3.11, A satisfies the

NSP of order K, then x is the unique minimizer of `1-minimization with ‖x‖1 < ‖y‖1

and then by the proof of the same theorem ‖ηΛ‖1 < ‖ηΛc‖1. By the Lemma 2.3.10, if√
‖x‖0‖ηΛ‖2 < ‖ηΛc‖1 holds, we have

‖ηΛ‖1 6
√
‖x‖0‖ηΛ‖2 < ‖ηΛc‖1,

which implies
√
‖x‖0 <

‖ηΛc‖1
‖ηΛ‖2

or
√
‖x‖0 6 C ‖ηΛc‖1

‖ηΛ‖2
for some constant 0 < C < 1.

Necessarily, we have
√
‖y‖0 >

‖ηΛc‖1
‖ηΛ‖2

. Otherwise, if ‖y‖0 6 ‖x‖0, y is also a K-sparse
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vector, and then it should be a minimizer of `1-minimization, which contradicts with the

uniqueness of solutions of `1-minimization. Hence, ‖y‖0 > ‖x‖0, so x is a unique K-sparse

solution of `0-minimization. �

Combining Theorem 2.3.11 and Theorem 2.3.13, it indicates that NSP of order K ensures

the uniform recovery via `1-minimization provided that `0-minimization has a unique

sparsest solution. Furthermore, Gribonval and Nielson [73, 74] have shown a more precise

statement on the NSP condition for the uniform recovery via `p-minimization with 0 6

p 6 1.

2.3.4 Range Space Property

So far, all the recovery conditions stated in this chapter concern about the strong equiva-

lence of `0- and `1-minimization, which cannot completely demonstrate the capability of

`1-minimization in terms of finding a sparsest solution of a linear system. To determinis-

tically characterize the solvability of `1-minimization, Zhao [132] introduced range space

property (RSP) of matrix AT to guarantee the equivalence of `0- and `1-minimization

and further elaborated the uniform recovery from the perspective of RSP. From a math-

ematical point of view, due to N (A)⊥ = R(AT ), as the NSP-based recovery theory can

demonstrate the recoverability of `1-minimization, it is natural to consider the range space

of AT to construct a recovery theory.

Definition 2.3.14 (Range Space Property of AT at x) : For a given matrix A ∈

Rm×n, let x ∈ Rn be a given vector. If there exists a vector η ∈ R(AT ) obeying that


ηi = 1 for all xi > 0,

ηi = −1 for all xi < 0,

|ηi| < 1 for all xi = 0,

(2.3.12)

then we say that matrix AT satisfies the range space property (RSP) at x.
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By this definition, RSP of AT at x indicates that there exists a vector η ∈ R(AT ) such

that it reflects sign values of nonzero components of x. It is easy to verify the existence

of such a vector η by solving the following linear program [132],

min %

s.t. ATS+
ω = eS+ ,

ATS−ω = eS− ,

|ATS0
ω| 6 %eS0 ,

where S0 := {i : xi = 0}. The optimal value %∗ of the linear program above is strictly

less than 1 if and only if there exists a vector η ∈ R(A) satisfying (2.3.12) [132].

As `1-minimization is a linear program, necessary and sufficient conditions for the

uniqueness of `1-minimization can be derived from the strong duality theorem [132].

Theorem 2.3.15 (Uniqueness condition for `1-minimization via RSP [107, 132])

:

For a given matrix A ∈ Rm×n, x is the unique least `1-norm solution to the linear system

Ax = b if and only if (i) the matrix H =

 AS+ AS−

−eS+ eS−

 has full column rank, and (ii)

the RSP of AT (2.3.12) holds at x.

Theorem 2.3.15 states that full-rank property (FRP) (condition (i)) and RSP of AT can

accurately capture the uniqueness of `1-minimization. In experiments, without the re-

quirement of uniqueness of sparsest solutions of a linear system, `1-minimization can still

solve `0-minimization in the sense that it finds a sparsest solution, which goes beyond the

scope of ERC, RIP and NSP-based recovery theories. The RSP-based analysis provides

a new perspective to explain such an extraordinary performance of `1-minimization.

Theorem 2.3.16 (Equivalence condition via RSP [132]) :

Let x ∈ Rn be a sparsest solution to the system Ax = b. Then x is the unique `1-norm
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solution to this system if and only if the range space property of AT defined by (2.3.12)

holds at x.

It is worth mentioning that the ’if’ part of Theorem 2.3.16 is derived by Fuchs in [69].

To our knowledge, the RSP-based condition in Theorem 2.3.16 is the first equivalence

condition directly derived from the strong duality theorem and strictly complementary

theorem in linear programming [114] for finding a sparsest solution of `0-minimization.

Moreover, the RSP-based analysis can be adapted to different linear systems, for instance,

a system of linear equations with nonnegative variables [133] and a linear system with

mixed inequality and equality constraints [137]. Particularly, for the linear system with

mixed inequality and equality constraints in [137], it has multiple sparsest solutions.

Thus, it is hard to derive the null space property or the restricted isometry property

based conditions for such a linear system. However, it is still possible to construct RSP-

based recovery theories for finding a sparsest solution. In Chapter 4, we will give more

details about how the RSP-based analysis can be used to develop recovery conditions for

a certain level of nonuniform and uniform recoveries for 1-bit compressive sensing. We

now introduce the RSP-based uniform recovery condition defined in [132].

Definition 2.3.17 (RSP of order K) For a given matrix A ∈ Rm×n with m < n, the

matrix AT is said to satisfy the range space property of order K if for any disjoint subsets

S1, S2 of {1, · · · , n} with |S1|+ |S2| 6 K, the range space R(AT ) contains a vector η such

that ηi = 1 for all i ∈ S1, ηi = −1 for all i ∈ S2 and |ηi| < 1 for all other components.

The next theorem states that the uniform recovery via `1-minimization can be completely

characterized by the RSP of order K.

Theorem 2.3.18 (Uniform recovery via RSP of order K [132]) :

Let A ∈ Rm×n be a given matrix with m < n, if AT has the RSP of order K, then any
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x ∈ Rn with ‖x‖0 6 K is both the unique least `1-norm solution and the unique sparsest

solution to the system Ax = b = Ax.

Compared to the nonuniform recovery condition given in Theorem 2.3.16, the uniform

recovery ensures the uniqueness of any K-sparse solution since the RSP of order K is

independent of any individual solution. Even though the RSP of order K is a strong

condition, fortunately, it is possible to find some matrices satisfying the RSP of certain

order. Zhao has proven in Lemma 4.4 [132] that any sufficient conditions to guarantee the

uniform recovery via `1-minimization must imply the RSP of certain order. Hence, any

matrices has RIP, NSP or mutual coherence properties, then their transposed matrices

must have the RSP property.
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Chapter 3

Uniqueness Conditions for Partial

`0-minimization

3.1 Introduction

In compressive sensing, one might be interested in recovering a solution to an underde-

termined linear system, for which only a part of the solution is sparse [1, 7, 80, 125]. In

other words, it may be known in advance that the solution to an underdetermined linear

system consists of two parts, where one is sparse and the other is possibly dense. To

locate such a partially sparse solution, in this chapter1, we consider the following model

for the partially sparse representation of the measurements b ∈ Rm :

min

‖x‖0 : M

 x

y

 = b, y ∈ C

 , (3.1.1)

where M = [A1, A2] ∈ Rm×(n1+n2) with m < n1 is a concatenation of A1 ∈ Rm×n1 and

A2 ∈ Rm×n2 , and C is a convex set in Rn2 which can be interpreted as certain constraints

on the variable y ∈ Rn2 . Throughout the chapter, we assume that A1 has full-row-rank.

1Part of the work in this chapter was carried out with Yun-Bin Zhao [137].
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The solution to the system

M

 x

y

 = b, y ∈ C, (3.1.2)

includes two parts: x ∈ Rn1 and y ∈ Rn2 . The `0-minimization problem (3.1.1) is to seek a

solution z = (x, y) to the system (3.1.2) such that the x-part is the sparsest one, but there

is no requirement on the sparsity of the y-part of the solution. Such a sparsest solution

x can be called the sparsest x-part solution to the system (3.1.2). The `0-minimization

problem (3.1.1) can be called a partial `0-minimization problem, or partial sparsity-seeking

problem. Clearly, when A2 = 0 and matrix A1 ∈ Rm×n1 has a full row rank, the problem

(3.1.1) is reduced to the standard `0-minimization

min{‖x‖0 : A1x = b}. (3.1.3)

Thus, the problem (3.1.1) is NP-hard (see Natarajan [99]) since the standard `0-minimization

(3.1.3) is a special case of it.

To convexify the problem (3.1.1), we may replace ‖x‖0 by ‖x‖1, and then the partially

sparsest x-part solution to the system (3.1.2) may be found by the following convex

optimization

min

‖x‖1 : M

 x

y

 = b, y ∈ C

 , (3.1.4)

which is referred as the partially sparse recovery model [7, 8]. Many practical problems

can be formulated as a partially sparse recovery problem, such as the image reconstruction

in [125, 2] and the sparse Hessian recovery in [7]. Analogues to NSP and RIP conditions

for uniform recovery in compressive sensing, partial null space property (partial NSP) and

partial restricted isometry property (partial RIP) [7, 8] are developed for partial x-part
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uniform recovery, namely, recovering any solution (x, y) with ‖x‖0 6 K by a single sensing

matrix.

Moreover, a nonconvex approach is also proposed for the partially sparse reconstruction

by replacing the `0-norm objective with the `p quasi-norm with 0 < p 6 1 in (3.1.1),

which is named as partially `p-norm minimization [14] given as

min

‖x‖pp : M

 x

y

 = b, y ∈ C

 . (3.1.5)

Analogues of the partial RIP condition, partially p-RIC (restricted isometry constant)

condition is developed to recover any partially sparse solution (x, y) with ‖x‖0 6 K via the

partially `p-norm minimization [14]. Note that partial NSP, partial RIP and partially p-

RIC conditions are based on the assumption that matrix A2 is full column rank. However,

for a more general case that A2 is not full column rank, it remains a question that under

partial RIP and partial NSP conditions whether the unique solution of partially sparse

recovery with the least `1-norm x-part is also necessarily the sparsest x-part solution of

partial `0-minimization; and whether other conditions can be established for the partial

x-part uniform recovery via partially sparse recovery or partially `p-norm minimization.

In the next chapter, we will further study a special model of partial `0-minimization,

namely, 1-bit `0-minimization, and develop criteria for a certain level of recovery of 1-bit

`0-minimization via its associated `1-norm minimization problem.

So far, the uniqueness of the sparsest x-part solution has not been well developed

for partial `0-minimization. The main contribution of this chapter is to study such the

uniqueness and to establish some criteria under which the partial `0-minimization has

a unique sparsest x-part solution. These results will be established through some new

concepts such as the lp-induced quasi-norm, the (maximal) scaled spark, coherence, and

coherence rank associated with a pair of matrices (A1 ∈ Rm×n1 , A2 ∈ Rm×n2). These
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concepts can be seen as a generalization of concepts of coherence rank, submutual co-

herence and scaled mutual coherence in [131]. It is worth stressing that the uniqueness

criteria based on the scaled spark and coherence can be reduced to the spark and mutual

coherence uniqueness conditions for the standard `0-minimization.

This chapter is organized as follows. In Section 3.2, we develop sufficient conditions

for the uniqueness of x-part solution to partial `0-minimization in terms of lp-induced

quasi-norm and such concepts as maximal scaled spark, and minimal or maximal scaled

mutual coherence. A further improvement of these conditions is provided in Section 3.3.

3.2 Uniqueness criteria for the partial `0-minimization

The uniqueness of the sparsest x-part solution to the system (3.1.2) can be developed

through different concepts and properties of matrices. One of such important concepts is

spark together with its variants, which provides a connection between the null space of a

matrix and the sparsest solution to linear equations. In this section, we borrow the method

used for developing uniqueness conditions for the standard `0-minimization in Chapter

2 to establish similar uniqueness claims to the system (3.1.2), while the extra variable

y in the system M

 x

y

 = b increases the complexity of the partial `0-minimization

(3.1.1). Our first sufficient uniqueness condition for the sparsest x-part solution to (3.1.1)

can be developed by using the so-called lp-induced quasi-norm, as shown in the following

subsection.

3.2.1 An lp-induced quasi-norm-based uniqueness condition

For any 0 < p < ∞ and a vector x ∈ Rn, let ‖x‖p = (
∑n

i=1 |xi|p)
1/p

. When p ∈ (0, 1),

‖x‖p is called the lp quasi-norm of x. We now introduce the lp-induced quasi-norm of a

matrix.

Definition 3.2.1 (`p-induced quasi-norm) : For any given matrix A ∈ Rm×n, when
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0 < p < 1, the lp-induced quasi-norm of A, denoted by ψp(A), is defined by

ψp(A) = sup
z∈Rn\{0}

‖Az‖pp
‖z‖pp

= sup
‖z‖pp61

z∈Rn\{0}

‖Az‖pp = sup
‖z‖pp=1

‖Az‖pp = ‖A‖pp. (3.2.1)

Clearly, for a fixed p ∈ (0, 1), ψp(A) satisfies the following properties: ψp(A) > 0,

ψp(A) > 0 for any A 6= 0, and ψp(A + B) 6 ψp(A) + ψp(B) for any matrices A,B with

same dimensions. It is worth mentioning that the triangle inequality above follows from

the property: ‖x + y‖pp 6 ‖x‖pp + ‖y‖pp (see, e.g., [67]). We see that for any α > 0,

ψp(αA) 6= αψp(A) in general, but ψp(A) is referred as a quasi-norm of A. Note that, for

every entry zi, as p tends to zero, |zi|p approaches to 1 for zi 6= 0 and 0 for zi = 0. Thus

for any given z ∈ Rn, we have

lim
p→0+

‖z‖pp = lim
p→0+

n∑
i=1

|zi|p = ‖z‖0, (3.2.2)

which indicates that the ‘`0-norm’ ‖z‖0 can be approximated by ‖z‖pp with sufficiently

small p ∈ (0, 1). Note that for a given matrix A, ψp(A) is continuous with respect to

p ∈ (0, 1). Thus there might exist a positive number η such that η = limp→0+ ψp(A). We

assume that the following property holds for the matrix M = [A1, A2] when p tends to 0.

Assumption 3.2.2 Assume that matrices A1, A2 satisfy the following properties: (i)

AT2A2 is a nonsingular matrix, and (ii) there exists a positive constant, denoted by ψ0(A†2A1),

such that

ψ0(A†2A1) = lim
p→0+

ψp(A
†
2A1),

where A†2 = (AT2A2)−1AT2 is the pseudo-inverse of A2.

53



Under Assumption 3.2.2 and by (3.2.1) and (3.2.2), we immediately have the following

inequality:

‖(A†2A1)z‖0 = lim
p→0+

‖(A†2A1)z‖pp 6 lim
p→0+

ψp(A
†
2A1)‖z‖pp = ψ0(A†2A1)‖z‖0 (3.2.3)

for any z ∈ Rn \ {0}. We now state a uniqueness condition for problem (3.1.1) under

Assumption 3.2.2.

Theorem 3.2.3 :

Consider the system (3.1.2) with A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. Let Assumption

3.2.2 be satisfied. Then if there exists a solution (x, y) to the system (3.1.2) satisfying

that

‖x‖0 <
1

2

Spark(M)

(1 + ψ0(A†2A1))
, (3.2.4)

x must be the unique sparsest x-part solution to the system (3.1.2).

Proof. Assume the contrary that there is another solution (x(1), y(1)) to the system (3.1.2)

such that x(1) is the sparsest x-part and x(1) 6= x and ‖x(1)‖0 6 ‖x‖0 <
1
2

Spark(M)

(1+ψ0(A†2A1))
. Since

both (x, y) and (x(1), y(1)) are solutions to the linear system M

 x

y

 = b, we have

A1(x− x(1)) + A2(y − y(1)) = 0. (3.2.5)

Since AT2A2 is nonsingular, y − y(1) can be uniquely determined by x− x(1), i.e.,

y(1) − y = A†2A1(x− x(1)), (3.2.6)

where A†2 is the pseudo-inverse of A2 given by A†2 = (AT2A2)−1AT2 . From (3.2.5), we know
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that

 x− x(1)

y − y(1)

 is in the null space of the matrix M = [A1, A2]. This implies that the

Spark(M) is a lower bound for

∥∥∥∥∥∥∥
 x− x(1)

y − y(1)


∥∥∥∥∥∥∥

0

, i.e.,

‖x− x(1)‖0 + ‖y − y(1)‖0 =

∥∥∥∥∥∥∥
 x− x(1)

y − y(1)


∥∥∥∥∥∥∥

0

> Spark(M). (3.2.7)

Substituting (3.2.6) into (3.2.7) leads to

‖x− x(1)‖0 + ‖A†2A1(x− x(1))‖0 > Spark(M). (3.2.8)

Under Assumption 3.2.2 and by the inequality (3.2.3), one has

‖A†2A1(x(1) − x)‖0 6 ψ0(A†2A1) · ‖x− x(1)‖0.

Merging (3.2.8) and the inequality above leads to

(1 + ψ0(A†2A1))‖x− x(1)‖0 > Spark(M).

Therefore,

2‖x‖0 > ‖x(1)‖0 + ‖x‖0 > ‖x− x(1)‖0 >
Spark(M)

1 + ψ0(A†2A1)
.

Thus ‖x‖0 > 1
2

Spark(M)

(1+ψ0(A†2A1))
, contradicting with (3.2.4). Therefore x must be the unique

sparsest x-part solution to system (3.1.2). �

Remark 3.2.4 : The spark condition for partial `0-minimization in Theorem 3.2.3 is

stronger than the spark condition for `0-minimization (2.2.1).
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Considering the linear system M
(
x
y

)
= b, the spark condition of the whole system is

‖
(
x

y

)
‖0 <

1

2
Spark(M),

which is equivalent to

‖x‖0 + ‖y‖0 <
1

2
Spark(M).

Based on Assumption 3.2.2, as ψ0(A†2A1) + 1 > 1, we have

‖x‖0 <
1

2

Spark(M)

(1 + ψ0(A†2A1))
<

1

2
Spark(M).

Therefore, the sparsity of the sparsest x-part solution to the linear system M
(
x
y

)
= b is

bounded by the spark condition for `0-minimization.

The above result provides a new uniqueness criteria for the partial `0-minimization

by using lp-induced quasi-norm. However, the above analysis relies on the nonsingularity

of AT2A2 which might not be satisfied in more general situations. Thus we develop more

general uniqueness criteria for the partial `0-minimization from other perspectives.

3.2.2 Uniqueness based on scaled spark and scaled mutual co-

herence

In this section, we discuss the case that the null space of AT2 is nonzero, namely, N (AT2 ) 6=

{0}. We develop uniqueness conditions for problem (3.1.1) by using the so-called scaled

spark and scaled mutual coherence.

Lemma 3.2.5 ([28]) : For any matrix M and any scaling matrix W , one has

Spark(WM) > 1 +
1

µ(WM)
.
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Recall that N (A) denotes the null space of matrix A. Our first uniqueness criterion

based on the scaled spark is given as follows.

Theorem 3.2.6 :

Consider the system (3.1.2) where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. If there exists

a solution (x, y) to the system (3.1.2) satisfying

‖x‖0 <
1

2
Spark(BTA1), (3.2.9)

where B is a basis of N (AT2 ), then x is the unique sparsest x-part solution to the system

(3.1.2).

Proof. Assume the contrary that (x(1), y(1)) 6= (x, y) is a solution to the system (3.1.2)

satisfying that x(1) 6= x and ‖x(1)‖0 6 ‖x‖0 < 1
2
Spark(BTA1), where B is a basis of

N (AT2 ). Note that

 x− x(1)

y − y(1)

 is in the null space of M = [A1, A2], so

A1(x− x(1)) = −A2(y − y(1)). (3.2.10)

Note that the range space of A2 is orthogonal to the null space of AT2 , namely, R(A2) =

N (AT2 )⊥. Let B be an arbitrary basis of N (AT2 ). Since the right-hand side of (3.2.10) is

in R(A2), multiplying both sides of the equation (3.2.10) by BT , we get

BTA1(x− x(1)) = 0,

which implies that

‖x− x(1)‖0 > Spark(BTA1). (3.2.11)
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Therefore,

2‖x‖0 > ‖x(1)‖0 + ‖x‖0 > Spark(BTA1).

i.e., ‖x‖0 > 1
2
Spark(BTA1), leading to a contradiction. Therefore, the system (3.1.2) has

a unique sparsest x-part solution. �

Let F be a set of all bases of N (AT2 ), namely,

F = {B ∈ Rm×q : B is a basis of N (AT2 )},

where q is the dimension of N (AT2 ). As assumed before N (AT2 ) 6= {0}, the set F is

nonempty.

From the definition of the spark, we know that Spark(BTA1) is bounded. Hence, there

exists the supremum of Spark(BTA1) over the set F , defined as follows.

Definition 3.2.7 : For any matrix A1 ∈ Rm×n1 with m < n1, let

Spark∗A2
(A1) = sup

B∈F
Spark(BTA1). (3.2.12)

Spark∗A2
(A1) is called the maximal scaled spark of A1 over F (the set of bases of N (AT2 )).

The inequality (3.2.11) in the proof of Theorem 3.2.6 holds for all bases B of N (AT2 ).

Therefore, the spark condition (3.2.9) can be further enhanced by using Spark∗A2
(A1).

Theorem 3.2.8 :

Consider the system (3.1.2) where A1 ∈ Rm×n1 and A2 ∈ Rm×n2 and m < n1. If there

exists a solution (x, y) to the system (3.1.2) satisfying

‖x‖0 <
1

2
Spark∗A2

(A1), (3.2.13)

58



where Spark∗A2
(A1) is given by (3.2.12), then x is the unique sparsest x-part solution to

the system (3.1.2).

From Lemma 3.2.5, the scaled mutual coherence may provide a lower bound for the

scaled spark. An immediate consequence of Theorem 3.2.6 is the corollary below.

Corollary 3.2.9 :

Consider the system (3.1.2) where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. If there exists

a solution (x, y) to the system (3.1.2) satisfying

‖x‖0 <
1

2

(
1 +

1

µ(BTA1)

)
, (3.2.14)

where B is a basis of N (AT2 ), then x is the unique sparsest x-part solution to the system

(3.1.2).

Note that Corollary 3.2.9 holds for any basis B of N (AT2 ). So it makes sense to further

enhance the bound (3.2.14) by introducing the following definition.

Definition 3.2.10 : For any matrix A1 ∈ Rm×n1 (m < n1) and A2 ∈ Rm×n2 , let

µ∗A2
(A1) = inf

B∈F
µ(BTA1), µ∗∗A2

(A1) = sup
B∈F

µ(BTA1). (3.2.15)

µ∗A2
(A1) is called the minimal scaled coherence of A1 over F, and µ∗∗A2

(A1) is called the

maximal scaled coherence of A1 over F.

Based on Lemma 3.2.5 and the above definition, we have the following result.

Lemma 3.2.11 : For any basis B of N (AT2 ), we have

1 +
1

µ(BTA1)
6 1 +

1

µ∗A2
(A1)

6 Spark∗A2
(A1), (3.2.16)
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Proof. The first inequality holds by the definition of µ∗A2
(A1). From Lemma 3.2.5, we have

1 +
1

µ(BTA1)
6 Spark(BTA1) for every basis B of N (AT2 ).

By (3.2.12), we see that Spark(BTA1) 6 Spark∗A2
(A1), thus

1 +
1

µ(BTA1)
6 Spark∗A2

(A1) for all B ∈ F. �

Since the right-hand side of the above inequality is fixed, which is an upper bound for the

left-hand side for any B ∈ F, we conclude that

Spark∗A2
(A1) > sup

B∈F

{
1 +

1

µ(BTA1)

}
= 1 +

1

infB∈F{µ(BTA1)}
= 1 +

1

µ∗A2
(A1)

.

By Theorem 3.2.8 and Lemma 3.2.11, we have the next enhanced uniqueness claim of

(3.2.14).

Theorem 3.2.12 :

Consider the system (3.1.2) with A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. If there exists

a solution (x, y)T satisfying

‖x‖0 <
1

2

(
1 +

1

µ∗A2
(A1)

)
, (3.2.17)

where µ∗A2
(A1) is the minimal scaled coherence of A1 over F, then x is the unique sparsest

x-part solution to the system (3.1.2).

Remark 3.2.13 : The uniqueness criteria established in this section can be seen as cer-

tain generalization of that of sparsest solutions to systems of linear equations. For in-

stance, when A2 = 0, the null space of AT2 is the whole space Rm. Hence, by letting
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B = I, the corresponding scaled mutual coherence and scaled spark become

µ(BTA1) = µ(A1) and Spark(BTA1) = Spark(A1).

Then results in this section are reduced to the existing ones in [28, 45, 52]. It is worth

noting that the spark type uniqueness conditions are derived from the property of null

spaces. It is worth mentioning that the null space based analysis is not the unique way

to derive uniqueness criteria for sparsest solutions. Some other approaches such as the

so-called range space property (see, e.g., [131, 132, 133]) and orthogonal projection from

Rn1+n2 to N (AT2 ) [8] can be also used to develop uniqueness criteria.

3.3 Further Improvement of some uniqueness condi-

tions

Since spark conditions are difficult to verify, mutual coherence conditions play an impor-

tant role in the uniqueness theory for the partial `0-minimization problem (3.1.1). As

shown in Lemma 3.2.11, 1 + 1
µ∗A2

(A1)
is a good lower bound for Spark∗A2

(A1) which is an

improved version of the bound (3.2.14). In this section, we aim to further enhance the

uniqueness claim (3.2.17) by further improving the lower bound of Spark∗A2
(A1) under

some situations. Following the discussions in [131], we introduce the so-called scaled

coherence rank, scaled sub-coherence and scaled sub-coherence rank to achieve certain

improvement on uniqueness conditions developed in Section 3.2.
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3.3.1 Maximal scaled (sub) coherence and rank

Let us first recall several concepts which were introduced by Zhao [131]. For a given

matrix A ∈ Rm×n with columns ai, i = 1, ..., n, consider the index set

Si(A) :=

{
j : j 6= i,

|aTi aj|
‖ai‖2 · ‖aj‖2

= µ(A)

}
, i = 1, ..., n.

Let αi(A) be the cardinality of Si(A), and α(A) be the largest one among αi(A)’s, i.e.,

α(A) = max
16i6n

αi(A) = max
16i6n

|Si(A)|.

α(A) is called the coherence rank of A.

Let i0 be an index such that α(A) = αi0(A) = |Si0(A)|. Define

β(A) = max
16i6n, i6=i0

αi(A) = max
16i6n, i6=i0

|Si(A)|,

which is called the sub-coherence rank of A.

Also we define by

µ(2)(A) = max
i 6=j

{
|aTi aj|

‖ai‖2 · ‖aj‖2

:
|aTi aj|

‖ai‖2 · ‖aj‖2

< µ(A)

}
,

the second largest absolute value of the inner product between two normalized columns

of A. µ(2)(A) is called the sub-mutual coherence of A.

Consider the sub-mutual coherence µ(2)(BTA1) with a scaling matrix B ∈ F. We

introduce the following new concepts.

Definition 3.3.1 : Let A1 ∈ Rm×n1 (m < n1) and A2 ∈ Rm×n2 be two matrices, and F

is the nonempty set of bases of N (AT2 ).

(i) The maximal scaled sub-mutual coherence of A1 on F, denoted by µ
∗∗(2)
A2

(A1), is
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defined as

µ
∗∗(2)
A2

(A1) = sup
B∈F

µ(2)(BTA1). (3.3.1)

(ii) The maximal scaled coherence rank of A1 on F, denoted by α∗A2
(A1), is defined as

α∗A2
(A1) = sup

B∈F
{α(BTA1)}. (3.3.2)

(iii) The maximal scaled sub-coherence rank of A1 on F, denoted by β∗A2
(A1), is defined

as

β∗A2
(A1) = sup

B∈F
{β(BTA1)}. (3.3.3)

It is easy to see the following relationship between α(BTA1), β(BTA1), α∗A2
(A1) and

β∗A2
(A1) : for every basis B of N (AT2 ), we have

1 6 β(BTA1) 6 α(BTA1) 6 α∗A2
(A1) and 1 6 β(BTA1) 6 β∗A2

(A1) 6 α∗A2
(A1). (3.3.4)

3.3.2 Improved lower bounds of Spark∗A2
(A1)

Following the method used to improve the lower bound of Spark(A) in [131], we can find

an enhanced lower bound of Spark∗A2
(A1) via the concepts introduced in Section 3.3.1

based on the following two lemmas.

Lemma 3.3.2 (Brauer theorem [27]) : For any matrix A ∈ Rn×n with n > 2, if λ is

an eigenvalue of A, there is a pair (i, j) of positive integers with i 6= j (1 6 i, j 6 n) such

that

|λ− aii| · |λ− ajj| 6 ∆i∆j,

where ∆i :=
∑n

j=1,j 6=i |aij| for 1 6 i 6 n.

Merging Theorem 2.5 and Proposition 2.6 in [131] yields the following result.
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Lemma 3.3.3 ([131]) : Let A ∈ Rm×n, and let α(A) and β(A) be the coherence rank

and subcoherence rank of A, respectively. Suppose that one of the following conditions

holds: (i) α(A) < 1
µ(A)

; (ii) α(A) 6 1
µ(A)

and β(A) < α(A). Then µ(2)(A) > 0 and

Spark(A) > 1 +
2[1− α(A)β(A)µ(A)2]

µ(2)(A){µ(A)(α(A) + β(A)) +
√
µ(A)2(α(A)− β(A))2 + 4}

> 1 +
1

µ(A)
,

where µ(A) = µ(A)− µ(2)(A) and µ(2)(A) is the subcoherence of A.

Based on Lemma 3.3.3, we can construct an enhanced lower bound of Spark∗A2
(A1)

under some conditions, in terms of the scaled coherence rank and scaled sub-coherence

rank.

Theorem 3.3.4 :

Consider the system (3.1.2) where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. Suppose

that one of the following conditions holds: (i) α(BTA1) < 1
µ(BTA1)

for all B ∈ F ; (ii)

α(BTA1) 6 1
µ(BTA1)

and β(BTA1) < α(BTA1) for all B ∈ F. Then for any B ∈ F , we

have that µ(2)(BTA1) > 0 and

Spark∗A2
(A1) > sup

B∈F

{
1 +

2[1− α(BTA1)β(BTA1)µ(BTA1)2]

µ(2)(BTA1){µ(BTA1)(α(BTA1) + β(BTA1)) +
√

∆}

}
> 1 +

1

µ∗A2
(A1)

,

where µ(BTA1) = µ(BTA1)−µ(2)(BTA1) and ∆ = [µ(BTA1)]2(α(BTA1)−β(BTA1))2 +4.

Proof. Under conditions (i) and (ii), by Lemma 3.3.3, for any B ∈ F we have that
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µ(2)(BTA1) > 0 and

Spark(BTA1) > ϕ(BTA1)

=: 1 +
2[1− α(BTA1)β(BTA1)µ(BTA1)2]

µ(2)(BTA1){µ(BTA1)(α(BTA1) + β(BTA1)) +
√

∆}
,(3.3.5)

where µ(BTA1) = µ(BTA1)−µ(2)(BTA1) and ∆ = [µ(BTA1)]2(α(BTA1)−β(BTA1))2 +4.

The above inequality holds for any basis B ∈ F. By the definition of Spark∗A2
(A1), we

have

Spark∗A2
(A1) > Spark(BTA1) for any B ∈ F.

Thus it follows from (3.3.5) that

Spark∗A2
(A1) > ϕ(BTA1) for all B ∈ F. (3.3.6)

Inequality (3.3.6) implies that the value of ϕ(BTA1) is bounded by the constant Spark∗A2
(A1).

Hence, the supremum of ϕ(BTA1) over F should be bounded by Spark∗A2
(A1), namely,

Spark∗A2
(A1) > sup

B∈F
ϕ(BTA1).

By Lemma 3.3.3 again, under conditions (i) and (ii), we see that ϕ(BTA1) > 1 + 1
µ(BTA1)

.

Therefore, the superimum of ϕ(BTA1) should be greater than the value of 1 + 1
µ(BTA1)

for

any basis B ∈ F , i.e.,

sup
B∈F

ϕ(BTA1) > 1 +
1

µ(BTA1)
for any B ∈ F .
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This in turn implies that

sup
B∈F
{ϕ(BTA1)} > sup

B∈F

{
1 +

1

µ(BTA1)

}
= 1 +

1

µ∗A2
(A1)

,

where the last equality follows from the definition of µ∗A2
(A1). Therefore, under conditions

(i) and (ii), we conclude that

Spark∗A2
(A1) > sup

B∈F
{ϕ(BTA1)} > 1 +

1

µ∗A2
(A1)

,

as claimed. �

Conditions (i) and (ii) in Theorem 3.3.4 rely on B ∈ F. A similar condition without

relying on B can be also established as shown by the next result.

Theorem 3.3.5 :

Consider the system (3.1.2) with A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. Let µ∗∗A2
(A1),

and µ
∗∗(2)
A2

(A1), α∗A2
(A1), β∗A2

(A1) be four constants defined by (3.2.15), (3.3.1)-(3.3.3),

respectively. Suppose that one of the following conditions holds: (i) α∗A2
(A1) < 1

µ∗∗A2
(A1)

;

(ii) α∗A2
(A1) 6 1

µ∗∗A2
(A1)

and β∗A2
(A1) < α∗A2

(A1).

Then µ
∗∗(2)
A2

(A1) > 0 and

Spark∗A2
(A1) > ϕ∗ = 1 +

√
ρ− (α∗A2

(A1) + β∗A2
(A1))µ∗

2µ
∗∗(2)
A2

(A1)
,

where µ∗ = µ∗∗A2
(A1)− µ∗∗(2)

A2
(A1) and ρ =

(
α∗A2

(A1)− β∗A2
(A1)

)2
(µ∗)2 + 4.

Proof. Note that α(BTA1) ∈ {1, ..., n1 − 1} for any B ∈ F. By the definition of α∗A2
(A1)

which is the maximum value of α(BTA1) over F, this maximum is attainable, that is,

there exists a B̂ ∈ F such that

α∗A2
(A1) = α(B̂TA1).
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For such a basis B̂ ∈ F , without loss of generality, we assume that all columns of B̂TA1

are normalized in the sense that the l2-norm of every column of B̂TA1 is 1. Note also that

the spark, mutual coherence, sub-coherence, coherence rank, and sub-coherence rank are

invariant under normalization.

Let p = Spark(B̂TA1) and {c1, · · · , cp} be the set of p columns from B̂TA1 that are

linearly dependent. Denote Cp the submatrix consisting of these p columns. Then the

Gram matrix of Cp, Gpp = CT
p Cp ∈ Rp×p, is singular. Since all diagonal entries of Gpp

are 1’s, and the absolute values of off-diagonal entries are less than or equal to µ(B̂TA1),

under either condition (i) or (ii) of the theorem, we have

α∗A2
(A1) 6

1

µ∗∗A2
(A1)

6
1

µ(BTA1)
for any B ∈ F.

In particular, we have

α∗A2
(A1) 6

1

µ(B̂TA1)
6 Spark(B̂TA1)− 1 = p− 1. (3.3.7)

Since Gpp is a p × p matrix, in each row of Gpp, there are at most α∗A2
(A1) = α(B̂TA1)

entries whose absolute values are equal to µ(B̂TA1), and the absolute values of the re-

maining (p−1−α∗A2
(A1)) entries are less than or equal to µ(2)(B̂TA1). By the singularity

of Gpp, we know that λ = 0 is an eigenvalue of Gpp. By Lemma 3.3.2, there exist two

rows of Gpp, say, the ith row and the jth row (i 6= j), satisfying that

|0−Gii| · |0−Gjj| 6 ∆i ·∆j =

p∑
t=1,t6=i

|cTi ct| ·
p∑

t=1,t 6=j

|cTj ct|. (3.3.8)

By the definitions of coherence rank and sub-coherence rank, if there are α∗A2
(A1)(=

α(B̂TA1)) entries whose absolute values are µ(B̂TA1) in the ith row, then for the jth

row, there are at most β(B̂TA1) entries whose absolute values are µ(B̂TA1). And the
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absolute values of the remaining entries in either row are less than or equal to µ(2)(B̂TA1).

Therefore, from (3.3.8), we have that

1 6 [α∗A2
(A1)µ(B̂TA1) + (p− 1− α∗A2

(A1))µ(2)(B̂TA1)] · (3.3.9)

[β(B̂TA1)µ(B̂TA1) + (p− 1− β(B̂TA1))µ(2)(B̂TA1)].

Let p∗ = Spark∗A2
(A1). Since Spark∗A2

(A1) is the supremum of Spark(BTA1) over F, we

have p 6 p∗. Thus it follows from (3.3.9) that

1 6 [α∗A2
(A1)µ(B̂TA1) + (p∗ − 1− α∗A2

(A1))µ(2)(B̂TA1)] · (3.3.10)

[β(B̂TA1)µ(B̂TA1) + (p∗ − 1− β(B̂TA1))µ(2)(B̂TA1)].

By the definition of β∗A2
(A1), we have β(B̂TA1) 6 β∗A2

(A1). This, together with µ(B̂TA) >

µ(2)(B̂TA1), implies that

β(B̂TA1)µ(B̂TA1) + (p∗ − 1− β(B̂TA1))µ(2)(B̂TA1)

6 β∗A2
(A1)µ(B̂TA1) + (p∗ − 1− β∗A2

(A1))µ(2)(B̂TA1).

Combining (3.3.10) with the inequality above yields

1 6 [α∗A2
(A1)µ(B̂TA1) + (p∗ − 1− α∗A2

(A1))µ(2)(B̂TA1)] ·

[β∗A2
(A1)µ(B̂TA1) + (p∗ − 1− β∗A2

(A1))µ(2)(B̂TA1)]. (3.3.11)

Note that

β∗A2
(A1) 6 α∗A2

(A1) 6 p− 1 6 p∗ − 1, µ(B̂TA1) 6 µ∗∗A2
(A1), µ(2)(B̂TA1) 6 µ

∗∗(2)
A2

(A1).
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So from (3.3.11), we obtain

1 6 [α∗A2
(A1)µ∗∗A2

(A1) + (p∗ − 1− α∗A2
(A1))µ

∗∗(2)
A2

(A1)] ·

[β∗A2
(A1)µ∗∗A2

(A1) + (p∗ − 1− β∗A2
(A1))µ

∗∗(2)
A2

(A1)].

Denote by µ∗ := µ∗∗A2
(A1)− µ∗∗(2)

A2
(A1). The above inequality can be written as

[
(p∗ − 1)µ

∗∗(2)
A2

(A1)
]2

+ (p∗ − 1)(α∗A2
(A1) + β∗A2

(A1))µ∗µ
∗∗(2)
A2

(A1) (3.3.12)

+α∗A2
(A1)β∗A2

(A1)(µ∗)2 > 1.

By the definition of µ
∗∗(2)
A2

(A1), we know that µ
∗∗(2)
A2

(A1) > 0. We now prove that

µ
∗∗(2)
A2

(A1) > 0. In fact, if µ
∗∗(2)
A2

(A1) = 0, then the quadratic inequality (3.3.12) becomes

α∗A2
(A1)β∗A2

(A1)
(
µ∗∗A2

(A1)
)2
> 1,

which contradicts to either condition (i) or condition (ii) of the theorem. Thus µ
∗∗(2)
A2

(A1)

must be positive. Consider the following quadratic equation in variable t :

h(t) := t2 + t(α∗A2
(A1) + β∗A2

(A1))µ∗ + α∗A2
(A1)β∗A2

(A1)(µ∗)2 − 1 = 0

which has only one positive root under conditions (i) and (ii). This positive root is given

by

t∗ =
−(α∗A2

(A1) + β∗A2
(A1))µ∗ +

√
ρ

2
,

where ρ = (α∗A2
(A1) − β∗A2

(A1))2(µ∗)2 + 4. Let γ = (p∗ − 1)µ
∗∗(2)
A2

(A1). The inequality
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(3.3.12) shows that h(γ) > 0. Thus γ > t∗, that is,

(p∗ − 1)µ
∗∗(2)
A2

(A1) >
−(α∗A2

(A1) + β∗A2
(A1))µ∗ +

√
ρ

2
.

Therefore,

Spark∗A2
(A1) = p∗ > 1 +

√
ρ− (α∗A2

(A1) + β∗A2
(A1))µ∗

2µ
∗∗(2)
A2

(A1)
,

as desired. �

By Theorem 3.2.8 and Theorem 3.3.5, we immediately have the next uniqueness con-

dition.

Corollary 3.3.6 :

Consider the system (3.1.2) where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , and m < n1. Under the

same condition of Theorem 3.3.5, if there exists a solution (x, y) to the system (3.1.2)

satisfying that

‖x‖0 <
1

2
ϕ∗ =:

1

2

(
1 +

√
ρ− (α∗A2

(A1) + β∗A2
(A1))µ∗

2µ
∗∗(2)
A2

(A1)

)
,

then x is the unique sparsest x-part solution to the system (3.1.2).

The above corollary may also provide a tighter lower bound of Spark∗A2
(A1) than

Theorems 3.2.12 under some conditions, as indicated by the following proposition.

Proposition 3.3.7 : Let ϕ∗ be a lower bound of Spark∗A2
(A1) given in Theorem 3.3.5.

Assume that α∗A2
(A1) = 1 and α∗A2

(A1) < 1
µ∗∗A2

(A1)
. If µ

∗∗(2)
A2

(A1) < µ∗A2
(A1)(1− µ∗) where

µ∗ = µ∗∗A2
(A1)− µ∗∗(2)

A2
(A1), we have ϕ∗ > 1 + 1

µ∗A2
(A1)

.

Proof. Under condition α∗A2
(A1) < 1

µ∗∗A2
(A1)

, by Theorem 3.3.5 we get the following lower
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bond of Spark∗A2
(A1) :

ϕ∗ = 1 +

√
ρ− (α∗A2

(A1) + β∗A2
(A1))µ∗

2µ
∗∗(2)
A2

(A1)
. (3.3.13)

By (3.3.4), we see that α∗A2
(A1) = 1 implies that β∗A2

(A1) = 1. Thus (3.3.13) is reduced

to ϕ∗ − 1 = 1−µ∗

µ
∗∗(2)
A2

(A1)
. Note that

1− µ∗

µ
∗∗(2)
A2

(A1)
=

1

µ∗A2
(A1)

+

(
1− µ∗

µ
∗∗(2)
A2

(A1)
− 1

µ∗A2
(A1)

)

=
1

µ∗A2
(A1)

+
µ∗A2

(A1)(1− µ∗)− µ∗∗(2)
A2

(A1)

µ
∗∗(2)
A2

(A1)µ∗A2
(A1)

.

Thus if µ
∗∗(2)
A2

(A1) < µ∗A2
(A1)(1− µ∗), we must have ϕ∗ > 1 + 1

µ∗A2
(A1)

. �

The discussion in this section demonstrates that the concepts, such as maximal scaled

coherence rank and sub-coherence rank, and minimal/maximal scaled mutual coherence,

are useful in the development of uniqueness criteria for partial `0-minimization. Now, to

further study the partial `0-minimization, the main issue is how to efficiently reconstruct

the partially sparest x-part solution to the linear system (3.1.2). As introduced in section

3.1, partial NSP and partial RIP [7, 8] conditions are sufficient for the partial x-part uni-

form recovery via partially sparse recovery if the matrix A2 is full column rank. However,

few work has been done on whether the unique solution of partially sparse recovery with

the least `1-norm x-part is also necessarily the unique sparsest x-part solution of partial

`0-minimization without the assumption on matrix A2, and whether other conditions can

be developed to ensure the partial x-part uniform recovery via partially sparse recovery

in a more general situation. In the next chapter, we will study a special model of partial

`0-minimization, namely, 1-bit `0-minimization, and use the range space property (RSP)
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based analysis to develop criteria for a certain level of recovery for such a problem. Hence,

the RSP-based analysis can be possibly applied to establish the partial x-part recovery

for partial `0-minimization.
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Chapter 4

RRSP-Based Theory for 1-Bit

Compressive Sensing

4.1 Introduction

As demonstrated in Chapter 2, to achieve a sparse representation of a signal from a re-

duced number of nonadaptive measurements, sensing matrix should admit certain proper-

ties (see, e.g., [52, 120, 36, 35, 34, 51, 43, 130, 132, 68, 133]). In some situations, however,

only a limited information of measurements can be acquired, and thus achieving a certain

level of sparse recovery in these situations faces some mathematical challenges.

In this chapter 1, we study an extreme case of compressive sensing, to recover a sparse

signal within certain factors when every measurement is quantized into a single bit, i.e.,

the sign information of the measurement. This is called 1-bit compressive sensing (see,

e.g., [22, 24, 75, 85, 87, 86, 105, 21]). In practice, 1-bit compressive sensing is widely

used in many applications, such as the imaging system [25, 26] and the matrix completion

[46]. Moreover, the 1-bit techniques can be applied to the nonlinear monotonic distorted

measurements to recover the signal with high accuracy [23]. Surprisingly, only signs of

1Part of the work in this chapter was carried out with Yun-Bin Zhao [137].
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measurements may contain enough information for a certain level of sparse reconstruction.

Empirical evidences in [22, 24] showed that a sparse signal up to a certain factor can be

reconstructed from signs of measurements via some 1-bit compressive sensing models.

Unfortunately, in contrast to the standard compressive sensing, the theoretical analysis

for the performances of 1-bit compressive sensing and 1-bit compressive sensing recovery

algorithms is far from complete. As the amplitude information of sparse signals in 1-bit

measurement is lost, all the analysis techniques for standard compressive sensing cannot

apply to 1-bit compressive sensing directly. Hence, how to characterize behaviors of 1-bit

compressive sensing and its recovery algorithms is a key issue to be addressed. In this

chapter, we focus on theoretical analysis for the noiseless 1-bit compressive sensing and

work towards establishing a certain nonuniform and uniform recovery theory for 1-bit

compressive sensing from a new perspective of range space properties. In compressive

sensing scenario, it has been shown in [132, 133] that the K-sparse signals can be exactly

recovered by the standard basis pursuit (i.e., `1-minimization) if and only if the trans-

posed sensing matrix admits the so-called range space property (RSP) of order K. This

property arises naturally from the optimality conditions of linear programs. It captures

an intrinsic feature of linear basis-pursuit-type decoding methods. The RSP-based anal-

ysis makes it possible to develop an analogous recovery guarantee for 1-bit compressive

sensing algorithms. To build the RSP-based recovery theories, we start with proposing

a general 1-bit compressive sensing model which can cope with the situations where the

measurements might include zero components. We show that such a 1-bit model can be

formulated equivalently as an `0-minimization problem with linear equality and inequality

constraints. To possibly attack this `0-minimization problem, it is naturally to consider

the so-called 1-bit basis pursuit (as a decoding method). Like the standard compressive

sensing, the uniqueness of solutions to a decoding method plays a fundamental role in

sparse signal reconstruction. We then develop the uniqueness condition for the solution
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of the 1-bit basis pursuit via the linear programming theory. This development will nat-

urally leads to the important concept of restricted range space property (RRSP) which

eventually gives rise to the desired conditions for a certain level of nonuniform and uniform

recovery for 1-bit compressive sensing.

This chapter is organized as follows. In section 4.2, we introduce and summarize some

existing frameworks of 1-bit compressive sensing. In section 4.3, we provide a general 1-bit

compressive sensing model and its equivalent reformulation via noiseless measurements. In

section 4.4, we establish uniqueness conditions for the solution of 1-bit basis pursuit. The

concept of restricted range space property (RRSP) is introduced in section 4.5, and is used

to develop criteria for nonuniform and uniform support recoveries for 1-bit compressive

sensing.

4.2 Existing frameworks of 1-bit compressive sensing

Due to the sign-process, the amplitude of the signal is lost. It is impossible to exactly

recover the sparse signal. Thus, to achieve a certain level of sparse recovery for 1-bit

compressive sensing, the following questions should be addressed:

1. What properties should the sensing matrix (Φ) admit for 1-bit compressive sensing?

2. How efficient are reconstruction algorithms? In other words, how can a reconstruc-

tion algorithm ensure a certain level of sparse recovery?

In this section, we introduce some existing frameworks of 1-bit compressive sensing, which

have partially answered the above questions. Let x∗ ∈ Rn be a sparse signal, 1-bit

measurements vector y is acquired by taking signs of measurements from a linear system

Φx∗ = b, e.g., y = sign(Φx∗), where Φ ∈ Rm×n is a sensing matrix. We start with the

first 1-bit compressive sensing framework proposed in [24], which can be stated as the
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following `0-minimization problem:

min{‖x‖0 : sign(Φx) = y}, (4.2.1)

where y = sign(Φx∗) ∈ Rm is the vector of sign measurements in the binary space

{−1, 1}m. The sign function is applied element-wise, where yi = sign[(Φx∗)i] = 1 if

(Φx∗)i > 0 and yi = sign[(Φx∗)i] = −1 if (Φx∗)i < 0 for any i ∈ {1, · · · ,m} [24].

Note that if x∗ is a solution to the problem (4.2.1), then αx∗ remains a solution to

this problem for any scalar α > 0 [24]. Also, the 1-bit measurements y are robust to

any sparsest solution Px∗ for some weight P = diag(p) satisfying ‖Px∗‖0 = ‖x∗‖0 (i.e.,

Supp(Px∗) = Supp(x∗) and sign(Px∗) = sign(x∗), where p is defined as |pi| > 0 for

i ∈ Supp(x∗) and pi = 0 for i /∈ Supp(x∗). More generally, the 1-bit measurements y

are robust to any small change of sparsest solutions x∗ + ∆x, where the perturbation ∆x

satisfies ‖x∗ + ∆x‖0 = ‖x∗‖0 and sign(Φ(x∗ + ∆x)) = sign(Φx∗). Thus, problem (4.2.1)

has infinitely many sparsest solutions. If any sparsest solution of (4.2.1) is of the form αx∗

for some α > 0, the sign information of measurements might be enough to reconstruct the

signal x∗ within a positive scalar factor [24]. Due to the minimization-based objective,

problem (4.2.1) may find the trivial solution (zero solution). To exclude such a solution,

an artificial constraint ‖x‖2 = 1 is enforced to (4.2.1) in [24] so that all solutions are

restricted on the unit `2-sphere. Since sign(Φx) = y is a discrete constraint, a linear

inequality relaxation of sign(Φx) is introduced in [24], i.e., Y Φx > 0, where Y = diag(y)

is a diagonal matrix with zero elements and y along the diagonal. Thus, a relaxation of

(4.2.1) is written as

min{‖x‖0 : Y Φx > 0, ‖x‖2 = 1}. (4.2.2)
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Let Sn,K be a set of all K-sparse signals restricted on the unit `2-sphere, i.e., Sn,K = {x ∈

Rn : ‖x‖0 6 K, ‖x‖2 = 1}. And for given 1-bit measurements y, P̂ is a polyhedral set

of all vectors satisfying Y Φx > 0, namely, P̂ = {x ∈ Rn : Y Φx > 0}. Hence, any sparse

solution of (4.2.2) is in the set Sn,K
⋂
P̂ .

Due to the computational intractability caused by the `0-norm, an `1-norm recovery

model of (4.2.2) is then introduced in [24]

min{‖x‖1 : Y Φx > 0, ‖x‖2 = 1}. (4.2.3)

As the unit `2-sphere constraint is nonconvex, how to theoretically analyze the recover-

ability of nonconvex problem (4.2.3) remains a challenge.

Then, a convex 1-bit recovery model is proposed in [105], namely,

min{‖x‖1 : Y Φx > 0, ‖Φx‖1 = p for any p > 0},

which can be written as

minx,u eTu

s.t. −u 6 x 6 u,

Y Φx > 0,

1
p
yTΦx > 1,

u > 0,

(4.2.4)

where Y = diag(y) is the diagonal matrix and e = (1, · · · , 1)T is a unit vector in Rn.

An alternative linear program is introduced in [85], i.e.,

min{‖x‖1 : Y Φx > 0, $Tx = 1}, (4.2.5)

77



where $ is the centroid of the hyperplanes defined by row vectors of Φ, i.e., $ =
∑m

i φi

[85].

Instead of the unit `2-sphere constraint in (4.2.3), 1-bit recovery models (4.2.4) and

(4.2.5) use linear constraints to avoid the trivial solution.

Furthermore, for a more general case that the measurements Φx has noises, an opti-

mization problem is introduced in [106]

max{〈y,Φx〉 : ‖x‖2 6 1, ‖x‖1 6
√
K}. (4.2.6)

The problem (4.2.6) is derived from (4.2.3) but requires the sparsity level in the constraint.

Note that the feasible set of (4.2.6) is convex, denoted as Ln,k, i.e.,

Ln,K = {x ∈ Rn : ‖x‖2 6 1, ‖x‖1 6
√
K}.

Thus, any K-sparse signal can be efficiently estimated via the convex problem (4.2.6)

[106], where Ln,K is almost exactly the convex hull of Sn,K as shown in [105].

Remark 4.2.1 : The noisy measurements y for 1-bit compressive sensing are usually de-

fined as the 1-bit measurements with some random sign-flips caused by the noise-corruptions

in measurements, namely, y = sign(Φx + v), where the noise v ∈ Rn is drawn from the

standard Gaussian distribution. The convex program (4.2.6) pursues the maximal consis-

tency between the observed noisy 1-bit measurements y and signs of measurements Φx.

Instead of maximizing the consistency, some 1-bit recovery algorithms aim to minimize

the inconsistency (against sign flips) via one-sided `2-norm or one-sided `1-norm penalty

minimization problems [22, 24, 80, 82, 87, 98, 115]. More 1-bit recovery algorithms will

be reviewed and explored in the next chapter.
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If the recovery model (4.2.6) returns a K-sparse solution or an approximately K-

sparse solution, one may ask what properties that the sensing matrix should admit to

ensure such a recovery. It has been proved in [80] that when the mapping T from Rn to

{−1, 1}m, i.e., T (x) = sign(Φx), admits the binary ε-stable embedding (BεSE) property

[80, 85], an estimate of a sparse signal in the set Sn,K can be found by any reconstruction

algorithm. Fortunately, some random matrices can provide the BεSE property for T ,

for instance, if every element of the sensing matrix Φ follows the standard Gaussian

distribution, then the mapping T has the BεSE property, which is proved by Lemma

2 and Lemma 4 in [80]. Note that the BεSE property for 1-bit compressive sensing is

analogous to the restricted isometry property (RIP) for standard compressive sensing.

Furthermore, if every element of the sensing matrix Φ follows sub-gaussian distributions,

such as Bernoulli distribution, it is also possible to recover an approximate sparse solution

via (4.2.6) as shown in [3]. However, the recovery conditions in terms of the property of

Φ and the 1-bit measurements y are still under development. As discussed in Chapter

2, for the standard compressive sensing, it is well known that when the sensing matrix

has some properties such as the mutual coherence [52, 28], null space property (NSP)

[43, 130], restricted isometry property (RIP) [36] and the transposed sensing matrix has

the range space property (RSP) [132, 133], the sparse signal can be exactly recovered

by basis pursuit methods (i.e., `1-minimization) and other decoding algorithms. This

motivates us to further investigate whether such recovery criteria can be established for

1-bit compressive sensing.

Also, notice that existing 1-bit models do not distinguish between zero and positive

measurements of Φx∗ in the sense that sign[(Φx∗)i] = 1 if (Φx∗)i = 0 and sign[(Φx∗)i] = 1

if (Φx∗)i > 0, while zero and positive measurements usually stand for different information

in practice. Thus, in the next section, we define the 1-bit measurements in a way that

zero and positive components of Φx∗ are treated differently, for instance, sign[(Φx∗)i] = 0
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if (Φx∗)i = 0 and sign[(Φx∗)i] = 1 if (Φx∗)i > 0. Furthermore, we propose a general

1-bit compressive sensing model which can cope with the situations where the 1-bit mea-

surements might include zero components and then develop certain restricted range space

property on the transposed matrix of Φ to ensure a certain level of sparse recovery for

1-bit compressive sensing.

4.3 Reformulation of 1-bit compressive sensing

In existing 1-bit compressive sensing models, the measurement vector y is often confined

to the binary space {−1, 1}m, where the sign value of any positive or zero component

(Φx)i is assigned as yi = 1, and any negative component (Φx)i as yi = −1. This means

that the positive components and zero components of Φx are represented by the same

1-bit measurements. From the mathematical point of view, all positive, negative and

zero components of Φx should be more clearly differentiated by 1-bit measurements. This

motivates us to consider the measurements y ∈ {−1, 1, 0}m instead of y ∈ {−1, 1}m. More

specifically, for each i = 1, ...,m, the 1-bit measurements take the values


yi = sign[(Φx)i] = 1 for (Φx)i > 0,

yi = sign[(Φx)i] = 0 for (Φx)i = 0,

yi = sign[(Φx)i] = −1 for (Φx)i < 0.

(4.3.1)

As introduced in the last section, when the measurement vector y ∈ {−1, 1, 0}m is given

as (4.3.1), the sign constraint in (4.2.1) is no longer equivalent to the condition Y Φx > 0

for which yi = 0 does not necessarily correspond to the case (Φx)i = 0. Thus existing

optimization models based on the formulation Y Φx > 0 is no longer suitable for the 1-bit

compressive sensing with measurements y ∈ {−1, 1, 0}m. We now propose a more general

1-bit compressive sensing model and its equivalent reformulation, which are different from

existing ones in that our model and reformulation can cope with the situations where some
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components of the measurement vector vanish, and in the mean time the trivial solutions

are naturally avoided in our model without imposing any extra constraints to the problem.

For given 1-bit measurements y ∈ {−1, 1, 0}m, let J+, J− and J0 denote, throughout

the chapter, the indices of positive, negative and zero components of y, respectively, i.e.,

J+ = {i : yi = 1}, J− = {i : yi = −1}, J0 = {i : yi = 0}, (4.3.2)

by which the system (4.3.1) can be written as

sign(ΦJ+,nx) = eJ+ , sign(ΦJ−,nx) = −eJ− , ΦJ0,nx = 0, (4.3.3)

where ΦJ+,n, ΦJ−,n and ΦJ0,n denote the submatrices of Φ ∈ Rm×n with row indices in

J+, J− and J0, respectively. Thus we consider the 1-bit compressive sensing model with

measurements y ∈ {−1, 1, 0}m which can be stated as

min ‖x‖0

s.t. sign(ΦJ+,nx) = eJ+ , sign(ΦJ−,nx) = −eJ− , ΦJ0,nx = 0. (4.3.4)

Let ε > 0 be a fixed positive number throughout the chapter (ε can be fixed as any

positive number, for instance, ε = 1). Consider the following system in u ∈ Rn

ΦJ+,nu > εeJ+ , ΦJ−,nu 6 −εeJ− , ΦJ0,nu = 0. (4.3.5)

Clearly, if x satisfies (4.3.3), then there exists a positive scalar α > 0 such that u = αx

satisfies the system (4.3.5); Conversely, if u satisfies the system (4.3.5), then x = u

satisfies the system (4.3.3). Thus the 1-bit model (4.3.4) can be reformulated as the
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`0-minimization problem with linear constraints

min ‖x‖0

s.t. ΦJ+,nx > εeJ+ ,

ΦJ−,nx 6 −εeJ− ,

ΦJ0,nx = 0.

(4.3.6)

From the relation of (4.3.3) and (4.3.5), we immediately have the following observation.

Proposition 4.3.1 : If x∗ is a solution to the 1-bit model (4.3.4), then there exists a

positive scalar α > 0 such that αx∗ is a solution to the `0-problem (4.3.6); Conversely, if

x∗ is a solution to the `0-problem (4.3.6), then x∗ must be a solution to the 1-bit model

(4.3.4).

Remark 4.3.2 :

(i) In contrast to the underdetermined linear system in standard compressive sensing,

there is no restriction on the dimensions of the sensing matrix in 1-bit compressive

sensing. The underdetermined requirement provides that the linear system Φx = b

has infinitely many solutions since the null space of Φ is nonempty. Otherwise, if

the matrix Φ is square or overdetermined, the linear system Φx = b has at most one

solution. However, it is not necessary to require the matrix Φ to be underdetermined

in 1-bit compressive sensing. By Proposition 4.3.1, if x∗ is a solution to either the

system (4.3.3) or the system (4.3.5), any positive scalar of x∗ is also a solution to

each system independent of the dimensions of matrix Φ. Therefore, the 1-bit model

(4.3.4) and `0-minimization problem (4.3.6) have infinitely many sparsest solutions

independent of dimensions of matrix Φ.

(ii) Due to the sign-process and inequality constraints, there exist perturbation-type of

solutions to both systems (4.3.3) and (4.3.5). For instance, if x∗ is a sparsest solu-
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tion to the system (4.3.5), satisfying (Φx∗)i > 0 ∀i ∈ J+, (Φx∗)i < 0 ∀i ∈ J− and

(Φx∗)i = 0 ∀i ∈ J0. It is easy to find another sparsest solution x = x∗ + λ∆x such

that Supp(x) = Supp(x∗), satisfying

ΦJ+,n(x∗ + λ∆x) > 0,

ΦJ−,n(x∗ + λ∆x) < 0,

ΦJ0,n∆x = 0,

for some sufficient small λ 6= 0. Similarly, for the system (4.3.3), it is possible to find

another sparsest solution x = x∗ + λ∆x such that Supp(x) = Supp(x∗), satisfying

sign(ΦJ+,nx) = sign(ΦJ+,nx
∗), sign(ΦJ−,nx) = sign(ΦJ−,nx

∗), and ΦJ0,n∆x = 0, for

some sufficient small λ 6= 0. It is worths mentioning that Supp(x) = Supp(x∗)

implies that there exists a factor p such that x = Px∗, satisfying |pi| > 0 for i ∈

Supp(x∗) and pi = 0 for i /∈ Supp(x∗), where P = diag(p).

As problems (4.3.4) and (4.3.6) have multiple sparsest solutions, we focus on the support

recovery for 1-bit compressive sensing throughout this thesis, where the support recovery

is defined as finding a solution x to any reconstruction algorithm satisfying Supp(x) =

Supp(x∗).

As a result, to study the 1-bit model (4.3.4), it is sufficient to investigate the `0-minimization

problem (4.3.6). Indeed, the equivalence of (4.3.3) and (4.3.5) makes it possible to use

the methodology for the standard compressive sensing to study the 1-bit model (4.3.6).

Motivated by (4.3.6), we may consider the `1-minimization

min ‖x‖1

s.t. ΦJ+,nx > εeJ+ ,

ΦJ−,nx 6 −εeJ− ,

ΦJ0,nx = 0,

(4.3.7)
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which can be seen as a natural decoding method for the 1-bit `0-minimization (4.3.6). In

this thesis, the problem (4.3.7) is referred to as 1-bit basis pursuit. It is worth stress-

ing that unlike existing 1-bit models, our reformulation of 1-bit compressive sensing only

admits linear constraints and it automatically excludes the trivial solution without im-

posing any extra constraint. More importantly, later analysis indicates that our model

and reformulation make it possible to develop a recovery theory for sparse signals from

the new perspective of the range space property (RSP) of ΦT .

For the convenience of analysis, we define the index sets A(·), Ã+(·) and Ã−(·) which

will be used frequently in this chapter. Let x∗ be a signal satisfying the constraints of

(4.3.7). At x∗, let A(x∗) be the index set of active constraints among the inequality

constraints of (4.3.7), i.e.,

A(x∗) = {i : (Φx∗)i = ε} ∪ {i : (Φx∗)i = −ε}, (4.3.8)

and let

Ã+(x∗) = J+ \ A(x∗), Ã−(x∗) = J− \ A(x∗). (4.3.9)

Clearly, Ã+(x∗) is the index set of inactive constraints in the first group of inequalities of

(4.3.7) (i.e., ΦJ+,nx
∗ > εeJ+), and Ã−(x∗) is the index set of inactive constraints in the

second group of inequalities of (4.3.7) (i.e., ΦJ−,nx
∗ 6 −εeJ−). Thus we see that

(Φx∗)i = ε for i ∈ A(x∗) ∩ J+, (Φx∗)i > ε for i ∈ Ã+(x∗),

(Φx∗)i = −ε for i ∈ A(x∗) ∩ J−, (Φx∗)i < −ε for i ∈ Ã−(x∗).

We also need the symbols π(·) and %(·) defined as follows. Let p = |J+| and denote

the elements in J+ by ik ∈ {1, ...,m}, k = 1, ..., p, i.e., J+ = {i1, i2, ..., ip}. Without loss of

generality, we let the elements be sorted in ascending order i1 < i2 < · · · < ip. Then we
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define the bijective mapping π : J+ → {1, ..., p} as

π(ik) = k for all k = 1, ..., p. (4.3.10)

Similarly, let J− = {j1, j2, ..., jq} where q = |J−| and j1 < j2 < · · · < jq. We define the

bijective mapping % : J− → {1, ..., q} as

%(jk) = k for all k = 1, ..., q. (4.3.11)

To develop some conditions for a certain level of sparse recovery from 1-bit measure-

ments, we first characterize the uniqueness of solutions to the 1-bit basis pursuit in the

next section.

4.4 Uniqueness characterization for 1-bit basis pur-

suits

The uniqueness of the solution to a decoding method plays a fundamental role in its guar-

anteed performance in sparse recovery. As indicated in [69, 68, 132, 133], the uniqueness

conditions often lead to certain criteria for nonuniform and uniform recovery of sparse

vectors. In this section, we establish a necessary and sufficient condition for the unique-

ness of solutions of the 1-bit basis pursuit through the strict complementarity theory of

linear programs, which was used in [132] for the first time to develop the RSP-based re-

covery criteria for the standard compressive sensing. First, let us develop some necessary

conditions.

85



4.4.1 Necessary condition (I): Range space property

By introducing variables α ∈ R|J+|
+ and β ∈ R|J−|+ , the problem (4.3.7) becomes

min ‖x‖1,

s.t. ΦJ+,nx− α = εeJ+ ,

ΦJ−,nx+ β = −εeJ− , (4.4.1)

ΦJ0,nx = 0,

α > 0, β > 0.

Note that for any solution (x∗, α∗, β∗) of (4.4.1), we have α∗ = ΦJ+,nx
∗ − εeJ+ and β∗ =

−εeJ− − ΦJ−,nx
∗. Using (4.3.8), (4.3.9), (4.3.10) and (4.3.11), we immediately have the

following observation.

Lemma 4.4.1 : (i) For any solution (x∗, α∗, β∗) to the problem (4.4.1), we have



α∗π(i) = 0 for i ∈ A(x∗) ∩ J+,

α∗π(i) = (Φx∗)i − ε > 0 for i ∈ Ã+(x∗),

β∗%(i) = 0 for i ∈ A(x∗) ∩ J−,

β∗%(i) = −ε− (Φx∗)i > 0 for i ∈ Ã−(x∗).

(4.4.2)

(ii) x∗ is the unique solution to the 1-bit basis pursuit (4.3.7) if and only if (x∗, α∗, β∗) is

the unique solution to the problem (4.4.1), where (α∗, β∗) is given by (4.4.2).

Proof. (i) Let (x∗, α∗, β∗) be a solution to the problem (4.4.1), satisfying the linear system

ΦJ+,nx− α = εeJ+ ,

ΦJ−,nx+ β = −εeJ− ,

ΦJ0,nx = 0,
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then we have α∗ = ΦJ+,nx
∗ − εeJ+ and β∗ = −εeJ− − ΦJ−,nx

∗.

Let π be the bijective mapping π : J+ → {1, · · · , p} and % be the bijective mapping

% : J− → {1, · · · , q} defined as (4.3.10) and (4.3.11)

At the point x∗, one has

(Φx∗)ik = ε and (Φx∗)jk = −ε,

for any active constraints ik ∈ A(x∗) ∩ J+ and jk ∈ A(x∗) ∩ J− of (4.3.7).

This indicates that

α∗k = α∗π(ik) = (Φx∗)ik − ε = 0

and

β∗k = β∗%(jk) = −ε− (Φx∗)jk = 0.

Also, one has

(Φx∗)ik > ε and (Φx∗)jk < −ε,

for any inactive constraints ik ∈ Ã+(x∗) and jk ∈ Ã−(x∗) of (4.3.7).

This indicates that

α∗k = α∗π(ik) = (Φx∗)ik − ε > 0

and

β∗k = β∗%(jk) = −ε− (Φx∗)jk > 0.

Hence, for any solution (x∗, α∗, β∗) to the problem (4.4.1), (α∗, β∗) is given as (4.4.2).

(ii) First, we prove that if x∗ is the unique solution to problem (4.3.7), then (x∗, α∗, β∗)

is the unique solution to the problem (4.4.1), where (α∗, β∗) is given by (4.4.2).

Let (x, α, β) be any feasible solution to (4.4.1), by (i) and constraints of (4.4.1), then
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we have

απ(i) = 0, if (Φx)i − ε = 0 for i ∈ A(x) ∩ J+,

απ(i) > 0, if (Φx)i − ε > 0 for i ∈ Ã+(x),

β%(i) = 0, if − ε− (Φx)i = 0 for i ∈ A(x) ∩ J−,

β%(i) > 0, if − ε− (Φx)i > 0 for i ∈ Ã−(x).

This implies that x is a feasible solution to (4.3.7). Since x∗ is the unique solution to the

1-bit basis pursuit, we have ‖x∗‖1 < ‖x‖1. Based on the unique solution x∗, we construct

α∗ ∈ R|J+| and β∗ ∈ R|J−| by (4.4.2), then (x∗, α∗, β∗) is a feasible solution to (4.4.1).

Together with ‖x∗‖1 < ‖x‖1, (x∗, α∗, β∗) is the unique solution to (4.4.1).

Now, we prove that if (x∗, α∗, β∗) is the unique solution to (4.4.1), where (α∗, β∗) is

given by (4.4.2), then x∗ is the unique solution to (4.3.7). Let x be any feasible solution

to (4.3.7). Then we construct a feasible solution (x, α, β) to the problem (4.4.1), where

απ(i) = 0 for i ∈ A(x) ∩ J+,

απ(i) = (Φx)i − ε > 0 for i ∈ Ã+(x),

β%(i) = 0 for i ∈ A(x) ∩ J−,

β%(i) = −ε− (Φx)i > 0 for i ∈ Ã−(x).

Note that α and β defined above are nonnegative variables. This together with the

uniqueness of (x∗, α∗, β∗) implies that ‖x∗‖1 < ‖x‖1. As α∗ > 0 and β∗ > 0, the first two

equality constraints of (4.4.1) can be reformulated as

ΦJ+,nx
∗ > εeJ+ ,

ΦJ−,nx
∗ 6 −εeJ− ,
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combining with the constraint ΦJ0,nx
∗ = 0, and thus x∗ is a feasible solution to (4.3.7)

with ‖x∗‖1 < ‖x‖1 for any feasible solution x. Hence, x∗ is the unique solution to (4.3.7).�

By introducing a nonnegative variable t ∈ Rn such that |xi| 6 ti for i = 1, · · · , n, the

problem (4.4.1) becomes

min eT t,

s.t. x 6 t,

−x 6 t,

ΦJ+,nx− α = εeJ+ ,

ΦJ−,nx+ β = −εeJ− ,

ΦJ0,nx = 0,

(t, α, β) > 0.

(4.4.3)

Note that for any solution (x∗, t∗, α∗, β∗) of (4.4.3), we have t∗ = |x∗|, α∗ = ΦJ+,nx
∗ −

εeJ+ and β∗ = −εeJ− − ΦJ−,nx
∗ defined as (4.4.2). We immediately have the following

observation.

Lemma 4.4.2 : (x∗, α∗, β∗) is the unique solution to (4.4.1) if and only if (x∗, t∗, α∗, β∗) =

(x∗, |x∗|, α∗, β∗) is the unique solution to (4.4.3) where (α∗, β∗) is given by (4.4.2).

Proof. Firstly, we prove that if (x∗, α∗, β∗) is the unique solution to (4.4.1), then

(x∗, t∗, α∗, β∗) = (x∗, |x∗|, α∗, β∗)

is the unique solution to (4.4.3) where (α∗, β∗) is given by (4.4.2). Let (x, t, α, β) be any

feasible solution to (4.4.3), thus, |x| 6 t, α = ΦJ+,nx − εeJ+ and β = −εeJ− − ΦJ−,nx.

It follows from the constraint of (4.4.3) that (x, α, β) is a feasible solution to (4.4.1).

Since (x∗, α∗, β∗) is the unique solution to (4.4.1), we have ‖x∗‖1 < ‖x‖1 6 eT t. Based
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on (x∗, α∗, β∗), we construct a feasible solution (x∗, t∗, α∗, β∗) to (4.4.3) where t∗ is a

nonnegative variable such that t∗ = |x∗|. This together with the fact that eT t∗ = ‖x∗‖1 <

‖x‖1 6 eT t for any solution (x, t, α, β) implies that (x∗, t∗ = |x∗|, α∗, β∗) is the unique

solution to (4.4.3).

Now, we prove that if (x∗, t∗ = |x∗|, α∗, β∗) is the unique solution to (4.4.3), then

(x∗, α∗, β∗) is the unique solution to (4.4.1). Let (x, α, β) be any solution to (4.4.1). We

construct a feasible solution (x, t, α, β) to (4.4.3) where t is a nonnegative variable such

that t = |x|. This together with the uniqueness of (x∗, t∗, α∗, β∗) implies that eT t∗ =

‖x∗‖1 < eT t = ‖x‖1. Also, (x∗, α∗, β∗) satisfies the linear system of (4.4.1), namely,

ΦJ+,nx
∗ − α∗ = εeJ+ ,

ΦJ−,nx
∗ + β∗ = −εeJ− ,

ΦJ0,nx
∗ = 0,

α∗ > 0, β∗ > 0,

thus, (x∗, α∗, β∗) is a feasible solution to (4.4.1) with ‖x∗‖1 < ‖x‖1 for any solution

(x, α, β). Hence, (x∗, α∗, β∗) is the unique solution to (4.4.1). �
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Furthermore, introducing slack variables u > 0, v > 0, the problem (4.4.3) can be

further written as the linear program

min eT t

s.t. x+ u = t,

−x+ v = t,

ΦJ+,nx− α = εeJ+ , (4.4.4)

ΦJ−,nx+ β = −εeJ− ,

ΦJ0,nx = 0,

(t, u, v, α, β) > 0.

Note that for any solution (x∗, t∗, u∗, v∗, α∗, β∗) of the problem (4.4.4), we must have

t∗ = |x∗|, u∗ = |x∗| − x∗ and v∗ = |x∗|+ x∗, and (α∗, β∗) is given by (4.4.2). By the same

reason as Lemma 4.4.1, we have the following statement.

Lemma 4.4.3 : (x∗, t∗, α∗, β∗) = (x∗, |x∗|, α∗, β∗) is the unique solution to (4.4.3) if and

only if (x∗, t∗, u∗, v∗, α∗, β∗) is the unique solution to (4.4.4) where (α∗, β∗) is given by

(4.4.2) and u∗ = |x∗| − x∗, v∗ = |x∗|+ x∗.

From Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.4.3, we can claim that the following

lemma holds.

Lemma 4.4.4 x∗ is the unique solution to the 1-bit basis pursuit (4.3.7) if and only if

(x, t, u, v, α, β) = (x∗, |x∗|, |x∗| − x∗, |x∗| + x∗, α∗, β∗) is the unique solution to the linear

program (4.4.4), where (α∗, β∗) is given by (4.4.2) and u∗ = |x∗| − x∗, v∗ = |x∗|+ x∗.

In matrix form, the problem (4.4.4) can be stated as
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min eT t

s.t.



I −I I 0 0 0

−I −I 0 I 0 0

ΦJ+,n 0 0 0 −I 0

ΦJ−,n 0 0 0 0 I

ΦJ0,n 0 0 0 0 0





x

t

u

v

α

β


=



0

0

εeJ+

−εeJ−

0


,

x ∈ Rn, (t, u, v, α, β) > 0,

through which it is very easy to verify that the dual problem of (4.4.4) is given as

(DLP) max εeTJ+
h3 − εeTJ−h4

s.t. h1 − h2 + (ΦJ+,n)Th3 + (ΦJ−,n)Th4 + (ΦJ0,n)Th5 = 0,

− h1 − h2 6 e, (4.4.5)

h1 6 0, (4.4.6)

h2 6 0, (4.4.7)

− h3 6 0, (4.4.8)

h4 6 0. (4.4.9)

The (DLP) is always feasible in the sense that there exists a point, for instance, (h1, ..., h5) =

(0, ..., 0), satisfies all constraints. Furthermore, let s(1), ..., s(5) be the nonnegative slack

variables associated with the constraints (4.4.5) through (4.4.9), respectively. Then the

92



(DLP) can be also written as

max εeTJ+
h3 − εeTJ−h4

s.t. h1 − h2 + (ΦJ+,n)Th3 + (ΦJ−,n)Th4 + (ΦJ0,n)Th5 = 0, (4.4.10)

s(1) − h1 − h2 = e, (4.4.11)

s(2) + h1 = 0, (4.4.12)

s(3) + h2 = 0, (4.4.13)

s(4) − h3 = 0, (4.4.14)

s(5) + h4 = 0, (4.4.15)

s(1), ..., s(5) > 0.

We now prove that when x∗ is the unique solution to the problem (4.3.7), the range space

of ΦT , denoted by R(ΦT ), must satisfy certain properties.

Theorem 4.4.5 : If x∗ is the unique solution to the problem (4.3.7), then there exist

vectors h1, h2 ∈ Rn and w ∈ Rm satisfying



h2 − h1 = ΦTw ∈ R(ΦT ),

(h1)i = −1, (h2)i = 0 for x∗i > 0,

(h1)i = 0, (h2)i = −1 for x∗i < 0,

(h1)i, (h2)i < 0, (h1 + h2)i > −1 for x∗i = 0,

wi > 0 for i ∈ A(x∗) ∩ J+,

wi < 0 for i ∈ A(x∗) ∩ J−,

wi = 0 for i ∈ Ã+(x∗) ∪ Ã−(x∗).

(4.4.16)
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Proof. Assume that x∗ is the unique solution to the problem (4.3.7). By Lemma 4.4.4,

(x, t, u, v, α, β) = (x∗, |x∗|, |x∗| − x∗, |x∗|+ x∗, α∗, β∗) (4.4.17)

is the unique solution to the problem (4.4.4), where (α∗, β∗) is given by (4.4.2). Since

(4.4.4) has a finite solution and (DLP) is always feasible, by the strict complementarity

theory of linear programs, there exists a solution (h1, ..., h5) of (DLP) such that the associ-

ated slack vectors s(1), ..., s(5) determined by (4.4.11)–(4.4.15) and the vectors (t, u, v, α, β)

given by (4.4.17) are strictly complementary, i.e., these vectors satisfy the following con-

ditions:

tT s(1) = uT s(2) = vT s(3) = αT s(4) = βT s(5) = 0 (4.4.18)

and

t+ s(1) > 0, u+ s(2) > 0, v + s(3) > 0, α + s(4) > 0, β + s(5) > 0. (4.4.19)

For the above-mentioned solution (h1, ..., h5) of (DLP), let w ∈ Rm be the vector defined

by wJ+ = h3, wJ− = h4 and wJ0 = h5. Then it follows from (4.4.10) that

h2 − h1 = (ΦJ+,n)Th3 + (ΦJ−,n)Th4 + (ΦJ0,n)Th5 = ΦTw. (4.4.20)

From (4.4.17), we see that the solution of (4.4.4) satisfies the following properties:

ti = x∗i > 0, ui = 0, vi = 2x∗i > 0 for x∗i > 0,

ti = |x∗i | > 0, ui = 2|x∗i | > 0, vi = 0 for x∗i < 0,

ti = 0, ui = 0, vi = 0 for x∗i = 0.
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Thus from (4.4.18) and (4.4.19), it follows that

s
(1)
i = 0, s

(2)
i > 0, s

(3)
i = 0 for x∗i > 0,

s
(1)
i = 0, s

(2)
i = 0, s

(3)
i > 0 for x∗i < 0,

s
(1)
i > 0, s

(2)
i > 0, s

(3)
i > 0 for x∗i = 0.

From (4.4.11), (4.4.12) and (4.4.13), the above relations imply that

(h1 + h2)i = −1, (h1)i < 0, (h2)i = 0 for x∗i > 0,

(h1 + h2)i = −1, (h1)i = 0, (h2)i < 0 for x∗i < 0,

(h1 + h2)i > −1, (h1)i < 0, (h2)i < 0 for x∗i = 0.

From (4.4.14) and (4.4.15), we see that s(4) = h3 > 0 and s(5) = −h4 > 0. Let π(·) and

%(·) be defined as (4.3.10) and (4.3.11), respectively. It follows from (4.4.2), (4.4.18) and

(4.4.19) that

(h3)π(i) = s
(4)
π(i) > 0 for i ∈ A(x∗) ∩ J+, (h3)π(i) = s

(4)
π(i) = 0 for i ∈ Ã+(x∗),

(−h4)%(i) = s
(5)
%(i) > 0 for i ∈ A(x∗) ∩ J−, (−h4)%(i) = s

(5)
%(i) = 0 for i ∈ Ã−(x∗).

By the definition of w (i.e., wJ+ = h3, wJ− = h4 and wJ0 = h5), the above conditions

imply that

wi = (h3)π(i) > 0 for i ∈ A(x∗) ∩ J+, wi = (h3)π(i) = 0 for i ∈ Ã+(x∗),

wi = (h4)%(i) < 0 for i ∈ A(x∗) ∩ J−, wi = (h4)%(i) = 0 for i ∈ Ã−(x∗).

95



Thus, the vector (h1, h2, w) satisfies (4.4.20) and the following properties:

(h1)i = −1, (h2)i = 0 for x∗i > 0,

(h1)i = 0, (h2)i = −1 for x∗i < 0,

(h1)i, (h2)i < 0, (h1 + h2)i > −1 for x∗i = 0,

wi > 0 for i ∈ A(x∗) ∩ J+,

wi = 0 for i ∈ Ã+(x∗),

wi < 0 for i ∈ A(x∗) ∩ J−,

wi = 0 for i ∈ Ã−(x∗).

Therefore, the condition (4.4.16) is a necessary condition for x∗ to be the unique solution

of the problem (4.3.7). �

We now present an equivalent statement for (4.4.16), based on which we will introduce

the concept of restricted range space property (RRSP).

Lemma 4.4.6 : Let x∗ ∈ Rn be a given vector satisfying the constraints of (4.3.7). There

exist vectors h1, h2 and w satisfying (4.4.16) if and only if there exists a vector η ∈ R(ΦT )

satisfying the following two conditions:

(i) ηi = 1 for x∗i > 0, ηi = −1 for x∗i < 0, and |ηi| < 1 for x∗i = 0;

(ii) η = ΦTw for some w ∈ F(x∗) which is a set defined as

F(x∗) = {w ∈ Rm : wi > 0 for i ∈ A(x∗) ∩ J+, wi < 0 for i ∈ A(x∗) ∩ J−,

wi = 0 for i ∈ Ã+(x∗) ∪ Ã−(x∗)}. (4.4.21)

Proof. Assume that (h1, h2, w) satisfies (4.4.16). Setting η = h2 − h1, from (4.4.16), it is

easy to see that η ∈ R(ΦT ), ηi = 1 for x∗i > 0, and ηi = −1 for x∗i < 0. Note that for
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x∗i = 0, we have

(h2 − h1)i > (h2 + h1)i > −1, (h2 − h1)i < −(h2 + h1)i < 1,

which implies that |ηi| = |(h2 − h1)i| < 1 for x∗i = 0. Therefore the condition (i) holds.

Also, the condition (ii) follows from (4.4.16) immediately.

Conversely, for a given x∗, we assume that the conditions (i) and (ii) hold, i.e., there

exist vectors w ∈ F(x∗) and η ∈ Rn satisfying that η = ΦTw, ηi = 1 for x∗i > 0, ηi = −1

for x∗i < 0, and |ηi| < 1 for x∗i = 0. We now construct vectors h1, h2 so that (h1, h2, w)

satisfies (4.4.16). First, set (h1)i = −ηi = −1 and (h2)i = 0 for x∗i > 0, and set (h1)i = 0

and (h2)i = ηi = −1 for x∗i < 0. For those components corresponding to x∗i = 0, since

|ηi| < 1, we have only two cases:

Case 1: −1 < ηi < 0. In this case, ηi−1
2

< ηi < 0. Let µ be a fixed number in the

interval (ηi−1
2
, ηi).

Case 2: 0 6 ηi < 1. In this case, ηi−1
2

< 0. Let µ be a fixed number in the interval

(ηi−1
2
, 0).

For each of the above cases, we set (h2)i = µ and (h1)i = µ − ηi. Then we see that

(h1)i < 0, (h2)i < 0, (h2 + h1)i = 2µ − ηi > −1 and (h2 − h1)i = ηi. Clearly, the

constructed vector (h1, h2) satisfies that η = h2 − h1. This construction, together with

η = ΦTw where w ∈ F(x∗), implies that the vectors h1, h2 and w satisfy (4.4.16). �

For the standard basis pursuit min{‖z‖1 : Az = b} where the linear system is under-

determined, Zhao [132] has shown that if x is the unique solution to the standard basis

pursuit then there exists a vector η satisfying the following conditions: (i) η = ATw for

some w ∈ Rm; (ii) ηi = 1 for xi > 0, ηi = −1 for xi < 0, and |ηi| < 1 for xi = 0. For this

situation, there is no restriction on w ∈ Rn, even when this result has been generalized
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to the nonnegative sparse signals satisfying Ax = b and x > 0 (see [133]). However, from

the above analysis, the 1-bit basis pursuit (4.3.7) with mixed (equality and inequality)

constraints is more complicated than the standard basis pursuit. The necessary unique-

ness condition for the solution x∗ of the 1-bit basis pursuit has a restricted choice of w,

which is confined to the set (4.4.21). Motivated by the above analysis, we introduce the

following concept.

Definition 4.4.7 (RRSP of ΦT at x∗) : Given the partition (J+, J−, J0) of the set

{1, ...,m} as (4.3.2) and a point x∗ ∈ Rn satisfying the constraints of (4.3.7), we say

that ΦT satisfies the restricted range space property (RRSP) at x∗ if there exist vectors

η ∈ R(ΦT ) and w ∈ F(x∗), defined by (4.4.21), such that η = ΦTw and


ηi = 1 for x∗i > 0,

ηi = −1 for x∗i < 0,

|ηi| < 1 for x∗i = 0.

4.4.2 Necessary condition (II): Full column rank

The RRSP at x∗ is a necessary condition for x∗ to be unique solution of (4.3.7), but

it is not sufficient to ensure the uniqueness of x∗. (This has been pointed out in [132]

for the standard basis pursuit.) We need to develop another necessary condition (called

the full-column-rank property) which, combined with the RRSP at x∗, turns out to be

sufficient for the uniqueness of x∗, as shown in the next subsection. We now develop such

a necessary condition. Still, we assume that x∗ is the unique solution to the 1-bit basis

pursuit (4.3.7). Denote the index sets of positive and negative components of x∗ by

S+ = {i : x∗i > 0}, and S− = {i : x∗i < 0}.
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First, the following lemma is obvious.

Lemma 4.4.8 : Consider the matrix

G(x∗) =



ΦA(x∗)
⋂
J+,S+ ΦA(x∗)

⋂
J+,S− 0 0

ΦA(x∗)
⋂
J−,S+ ΦA(x∗)

⋂
J−,S− 0 0

ΦJ0,S+ ΦJ0,S− 0 0

ΦÃ+(x∗),S+
ΦÃ+(x∗),S−

−I(1) 0

ΦÃ−(x∗),S+
ΦÃ−(x∗),S−

0 I(2)


(4.4.22)

where I(1) and I(2) are |Ã+(x∗)| × |Ã+(x∗)| and |Ã−(x∗)| × |Ã−(x∗)| identity matrices,

respectively. Then G(x∗) has a full-column rank if and only if the matrix

H(x∗) =


ΦA(x∗)

⋂
J+,S+ ΦA(x∗)

⋂
J+,S−

ΦA(x∗)
⋂
J−,S+ ΦA(x∗)

⋂
J−,S−

ΦJ0,S+ ΦJ0,S−

 (4.4.23)

has a full-column rank.

We now prove that H(x∗) having a full-column rank is a desired necessary condition

for x∗ to be unique.

Theorem 4.4.9 : If x∗ is the unique solution to the problem (4.3.7), then the matrix

H(x∗), defined by (4.4.23), has a full-column rank.

Proof. Assume the contrary that H(x∗) has linearly dependent columns. By Lemma 4.4.8,

the matrix G(x∗) defined by (4.4.22) also has linearly dependent columns. Thus there

exists a nonzero vector d = (d1, d2, d3, d4) 6= 0 such that

G(x∗)d = 0.
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By the structure of G(x∗), it is easy to see that (d1, d2) 6= 0, since otherwise d must

be zero. Since x∗ is the unique solution to the problem (4.3.7), there exist nonnegative

variables α∗ and β∗, determined by (4.4.2), such that (x∗, α∗, β∗) is the unique solution to

the problem (4.4.1) with the least objective value ‖x∗‖1. The vector (x∗, α∗, β∗) satisfies

that

ΦJ+,nx
∗ − α∗ = εeJ+ , ΦJ−,nx

∗ + β∗ = −εeJ− , ΦJ0,nx
∗ = 0. (4.4.24)

From (4.4.2), we have

α∗π(i) = 0 for i ∈ A(x∗) ∩ J+, β
∗
%(i) = 0 for i ∈ A(x∗) ∩ J−. (4.4.25)

From (4.3.8) and (4.3.9), we see that

J+ = Ã+(x∗) ∪ (A(x∗) ∩ J+), J− = Ã−(x∗) ∪ (A(x∗) ∩ J−). (4.4.26)

Thus, by (4.4.25) and (4.4.26), eliminating the zero components of x∗, α∗ and β∗ from

the system (4.4.24) leads to

ΦA(x∗)∩J+,S+x
∗
S+

+ ΦA(x∗)∩J+,S−x
∗
S−

= εeA(x∗)∩J+ ,

ΦA(x∗)∩J−,S+x
∗
S+

+ ΦA(x∗)∩J−,S−x
∗
S−

= −εeA(x∗)∩J− ,

ΦJ0,S+x
∗
S+

+ ΦJ0,S−x
∗
S−

= 0,

ΦÃ+(x∗),S+
x∗S+

+ ΦÃ+(x∗),S−
x∗S− − α

∗
π(Ã+(x∗))

= εeÃ+(x∗),

ΦÃ−(x∗),S+
x∗S+

+ ΦÃ−(x∗),S−
x∗S− + β∗

%(Ã−(x∗))
= −εeÃ−(x∗),

(4.4.27)

where α∗
π(Ã+(x∗))

denotes the subvector of α∗ obtained by deleting the components α∗π(i)

with i ∈ J+\Ã+(x∗), and β∗
%(Ã−(x∗))

is the subvector of β∗ formed by deleting the compo-

nents β∗%(i) with i ∈ J−\Ã−(x∗). Thus the vector Z∗ = (z∗1 , z
∗
2 , z
∗
3 , z
∗
4) with z∗1 = x∗S+

> 0,

z∗2 = x∗S− < 0, z∗3 = α∗
π(Ã+(x∗))

> 0 and z∗4 = β∗
%(Ã−(x∗))

> 0 is a solution to the following
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system:

G(x∗)



z1

z2

z3

z4


=



εeA(x∗)∩J+

−εeA(x∗)∩J−

0

εeÃ+(x∗)

−εeÃ−(x∗)


. (4.4.28)

Based on the vectors Z∗ and d, we now construct another solution to the problem (4.4.1).

In fact, note that z∗1 > 0, z∗2 < 0, z∗3 > 0, z∗4 > 0. There exists a small number δ > 0 such

that for any λ 6= 0 with absolute value |λ| ∈ (0, δ), the vector Z∗ + λd satisfies

z̃1 = z∗1 + λd1 > 0, z̃2 = z∗2 + λd2 < 0,

z̃3 = z∗3 + λd3 > 0, z̃4 = z∗4 + λd4 > 0.

In particular, let λ∗ 6= 0 satisfy |λ∗| ∈ (0, δ) and the following condition:

λ∗(eTS+
d1 − eTS−d2) 6 0. (4.4.29)

Denote by Z̃ = (z̃1, z̃2, z̃3, z̃4) = Z∗ + λ∗d. Since G(x∗)d = 0, the vector Z̃ is also a

solution to the system (4.4.28). Obviously, Z̃ 6= Z∗ as λ∗ 6= 0 and d 6= 0. Let (x̃, α̃, β̃) ∈

Rn ×R|J+|
+ ×R|J−|+ be defined as

x̃S+ = z̃1, x̃S− = z̃2, α̃π(Ã+(x∗)) = z̃3, β̃%(Ã−(x∗)) = z̃4

and let all remaining components of x̃, α̃ and β̃ be zeros. Then (x̃, α̃, β̃) satisfies all

constraints of the problem (4.4.1). By the construction, we see that x̃ 6= x∗ since λ∗ 6= 0

101



and (d1, d2) 6= 0. Moreover, we have

‖x̃‖1 = eTS+
(x∗S+

+ λd1)− eTS−(x∗S− + λd2),

= eTS+
x∗S+
− eTS−x

∗
S− + λeTS+

d1 − λeTS−d2,

= ‖x∗‖1 + λ(eTS+
d1 − eTS−d2),

6 ‖x∗‖1,

where the inequality follows from (4.4.29). As ‖x∗‖1 is the least objective value of the

problem (4.3.7), the above relation implies that x̃ is also a solution to this problem,

contradicting to the uniqueness of x∗. Hence, the matrix H(x∗) must have a full-column

rank. �

Combining the aforementioned two necessary conditions yields the next theorem.

Theorem 4.4.10 : If x∗ is the unique solution to the problem (4.3.7), then

(i) H(x∗) =


ΦA(x∗)∩J+,S+ ΦA(x∗)∩J+,S−

ΦA(x∗)∩J−,S+ ΦA(x∗)∩J−,S−

ΦJ0,S+ ΦJ0,S−

 has a full-column rank, and

(ii) the RRSP of ΦT holds at x∗.

4.4.3 Sufficient conditions

In this section, we show that the converse of Theorem 4.4.10 is also valid, i.e., the RRSP

of ΦT at x∗ combined with the full-column-rank property of H(x∗) specified in Theorem

4.4.10 is also a sufficient condition for the uniqueness of x∗. We start with a property of

(DLP).
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Lemma 4.4.11 : Let x∗ be a feasible solution to the problem (4.3.7). If the vector

(h1, h2, w) ∈ Rn ×Rn ×Rm satisfies that



(h1)i = −1, (h2)i = 0 for x∗i > 0,

(h1)i = 0, (h2)i = −1 for x∗i < 0,

(h1)i < 0, (h2)i < 0, (h1 + h2)i > −1 for x∗i = 0,

h2 − h1 = ΦTw,

wJ+ > 0,

wJ− 6 0,

wi = 0 for i ∈ Ã+(x∗) ∪ Ã−(x∗),

(4.4.30)

then the vector (h1, h2, h3, h4, h5), with h3 = wJ+ , h4 = wJ− and h5 = wJ0 , is an optimal

solution to the problem (DLP). Moreover, x∗ must be an optimal solution to the problem

(4.3.7).

Proof. Let (h1, ..., h5) be the vector satisfying the condition (4.4.30). It is evident that

(h1, ..., h5) satisfies the constraints of (DLP). We now further prove that (h1, ..., h5) is a

solution of (DLP). Since ΦTw = h2 − h1, we have

(ΦTw)Tx∗ = (h2 − h1)Tx∗ = ‖x∗‖1,

where the second equality follows from the choices of h1 and h2. Thus,

‖x∗‖1 = wTΦx∗ = wTJ+
ΦJ+,nx

∗ + wTJ−ΦJ−,nx
∗ + wTJ0

ΦJ0,nx
∗

= hT3 ΦJ+,nx
∗ + hT4 ΦJ−,nx

∗ + hT5 ΦJ0,nx
∗.
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Since ΦJ0,nx
∗ = 0, we have

h3
TΦJ+,nx

∗ + h4
TΦJ−,nx

∗ = ‖x∗‖1. (4.4.31)

Note that

(Φx∗)i = ε for i ∈ A(x∗) ∩ J+, (Φx∗)i = −ε for i ∈ A(x∗) ∩ J−. (4.4.32)

We also note that h3 = wJ+ , h4 = wJ− , and wi = 0 for i ∈ Ã+(x∗)∪ Ã−(x∗). This implies

that

(h3)π(i) = wi = 0 for i ∈ Ã+(x∗), (h4)%(i) = wi = 0 for i ∈ Ã−(x∗). (4.4.33)

By (4.4.26), (4.4.32) and (4.4.33), the equality (4.4.31) is reduced to

∑
i∈A(x∗)∩J+

(h3)π(i)(Φx
∗)i +

∑
i∈A(x∗)∩J−

(h4)%(i)(Φx
∗)i =

∑
i∈A(x∗)∩J+

ε(h3)π(i) −
∑

i∈A(x∗)∩J−

ε(h4)%(i)

= ‖x∗‖1, (4.4.34)

which, together with (4.4.33) again, implies that

εeTJ+
h3 − εeTJ−h4 = ‖x∗‖1.

Thus the objective value of (DLP) at (h1, ..., h5) coincides with that of its primal problem

(4.3.7) at x∗. By strong duality of linear programs, (h1, ..., h5) must be an optimal solution

to the problem (DLP), and x∗ must be an optimal solution to the problem (4.3.7) as well.�

We now prove the desired sufficient condition for the uniqueness of solutions to the

1-bit basis pursuit.
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Theorem 4.4.12 : Let x∗ be a feasible solution to the problem (4.3.7). Assume that

the following conditions hold: (i) The RRSP of ΦT holds at x∗; (ii) The matrix H(x∗),

defined by (4.4.23), has a full-column rank. Then x∗ is the unique solution to the problem

(4.3.7).

Proof. By the assumption of the theorem, the RRSP of ΦT holds at x∗. Then by Lemma

4.4.6, there exists a vector (h1, h2, w) ∈ Rn × Rn × Rm satisfying (4.4.16), which implies

that the condition (4.4.30) holds. As x∗ is a feasible solution to the problem (4.3.7), by

Lemma 4.4.11, (h1, h2, h3, h4, h5) with h3 = wJ+ , h4 = wJ− and h5 = wJ0 is an optimal

solution to the problem (DLP). At this solution, let the slack vectors s(1), ..., s(5) be given

as (4.4.11)–(4.4.15). Also, from Lemma 4.4.11, x∗ is an optimal solution to the problem

(4.3.7). Based on x∗, we can construct an optimal solution

(x, t, u, v, α, β) = (x∗, |x∗|, |x∗| − x∗, |x∗|+ x∗, α∗, β∗),

where (α∗, β∗) is given by (4.4.2), to the problem (4.4.4). We now further show that x∗ is

the unique solution to the problem (4.3.7).

Since the vector (x∗, α∗, β∗) satisfies (4.4.24), as shown in the proof of Theorem 4.4.9,

the system (4.4.24) can be written as (4.4.27), i.e.,

G(x∗)



x∗S+

x∗S−

α∗
π(Ã+(x∗))

β∗
%(Ã−(x∗))


=



εeA(x∗)∩J+

−εeA(x∗)∩J−

0

εeÃ+(x∗)

−εeÃ−(x∗)


(4.4.35)

where the coefficient matrix G(x∗) is given by (4.4.22). Let (x̃, t̃, ũ, ṽ, α̃, β̃) be an arbitrary

solution to the problem (4.4.4). Then, we have t̃ = |x̃|, ũ = |x̃|−x̃ and ṽ = |x̃|+x̃. By com-
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plementary slackness property of linear programs, the nonnegative vectors (t̃, ũ, ṽ, α̃, β̃)

and (s(1), ..., s(5)) are complementary, i.e.,

t̃T s(1) = ũT s(2) = ṽT s(3) = α̃T s(4) = β̃T s(5) = 0. (4.4.36)

As (h1, h2, w) satisfies (4.4.16), the vector (h1, h2) satisfies that (h1)i = −1 < 0 for all

x∗i > 0, (h2)i = −1 < 0 for all x∗i < 0 and that (h1 +h2)i > −1, (h1)i < 0 and (h2)i < 0 for

all x∗i = 0. By the choice of (h1, h2) and (s(1), ..., s(5)), we see that the following components

of slack variables are positive:

s
(1)
i = 1 + (h1 + h2)i > 0 for x∗i = 0,

s
(4)
π(i) = (h3)π(i) = wi > 0 for i ∈ A(x∗) ∩ J+,

s
(5)
%(i) = −(h4)%(i) = −wi > 0 for i ∈ A(x∗) ∩ J−.

The positiveness of these components, together with (4.4.36), implies that


t̃i = 0 for x∗i = 0,

α̃π(i) = 0 for i ∈ A(x∗) ∩ J+,

β̃%(i) = 0 for i ∈ A(x∗) ∩ J−.

(4.4.37)

Still, we denote by S+ = {i : x∗i > 0} and S− = {i : x∗i < 0}. Since t̃ = |x̃|, the first

relation in (4.4.37) implies that x̃i = 0 for all i /∈ S+ ∪ S−. Note that

ΦJ+,nx̃− α̃ = εeJ+ , ΦJ−,nx̃+ β̃ = −εeJ− , ΦJ0,nx̃ = 0.
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Since x̃i = 0 for all i /∈ S+ ∪ S−, the above system is reduced to


ΦJ+,S+x̃S+ + ΦJ+,S−x̃S− − α̃ = εeJ+ ,

ΦJ−,S+x̃S+ + ΦJ−,S−x̃S− + β̃ = −εeJ− ,

ΦJ0,S+x̃S+ + ΦJ0,S−x̃S− = 0.

By (4.4.26) and (4.4.37), splitting up the first two equalities of the above system into two,

respectively, the above system is equivalent to

ΦA(x∗)∩J+,S+x̃S+ + ΦA(x∗)∩J+,S−x̃S− = εeA(x∗)∩J+ ,

ΦÃ+(x∗),S+
x̃S+ + ΦÃ+(x∗),S−

x̃S− − α̃π(Ã+(x∗)) = εeÃ+(x∗),

ΦA(x∗)∩J−,S+x̃S+ + ΦA(x∗)∩J−,S−x̃S− = −εeA(x∗)∩J− ,

ΦÃ−(x∗),S+
x̃S+ + ΦÃ−(x∗),S−

x̃S− + β̃%(Ã−(x∗)) = −εeÃ−(x∗),

ΦJ0,S+x̃S+ + ΦJ0,S−x̃S− = 0,

which can be written as

G(x∗)



x̃S+

x̃S−

α̃π(Ã+(x∗))

β̃%(Ã−(x∗))


=



εeA(x∗)∩J+

−εeA(x∗)∩J−

0

εeÃ+(x∗)

−εeÃ−(x∗)


, (4.4.38)

where G(x∗) is given by (4.4.22). By the assumption of the theorem, the

H(x∗) =


ΦA(x∗)∩J+,S+ ΦA(x∗)∩J+,S−

ΦA(x∗)∩J−,S+ ΦA(x∗)∩J−,S−

ΦJ0,S+ ΦJ0,S−
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has a full-column rank. By Lemma 4.4.8, the matrix G(x∗) has a full-column rank. Thus

it follows from (4.4.35) and (4.4.38) that x̃S+ = x∗S+
and x̃S− = x∗S− which, together with

the fact x̃i = 0 for all i /∈ S+ ∪ S−, implies that x̃ = x∗. By assumption, (x̃, t̃, ũ, ṽ, α̃, β̃) is

an arbitrary solution to (4.4.4). Thus (x, t, u, v, α, β) = (x∗, |x∗|, |x∗|−x∗, |x∗|+x∗, α∗, β∗)

is the unique solution to the problem (4.4.4), and hence (by Lemma 4.4.4) x∗ is the unique

solution of the problem (4.3.7). �

4.4.4 A necessary and sufficient condition

Based on the results developed in sections 4.2–4.3, we summarize the necessary and suf-

ficient conditions for the uniqueness of the solution to the problem (4.3.7) as follows.

Theorem 4.4.13 (Necessary and sufficient condition) x∗ is the unique solution to

the 1-bit basis pursuit (4.3.7) if and only if the RRSP of ΦT holds at x∗ and the matrix

H(x∗), defined as (4.4.23), has a full-column rank.

The uniqueness of solutions to a decoding method like (4.3.7) is an important property

needed in signal reconstruction. Theorem 4.4.13, together with the new concept of the

RRSP of order K that will be introduced in the next section, makes it possible to develop

a recovery theory for sparse signals from 1-bit measurements (see section 4.5.2 for details).

Remark 4.4.14 :

(i) The importance of the restricted range space property (RRSP) goes beyond charac-

terizing the uniqueness of solutions of 1-bit basis pursuit. The RRSP-based analysis

provides an insight into a certain level of sparse recovery from a linear system with

inequality constraints or with mixed equality and inequality constraints, in which

case the null space property has lost the ability to identify a sparsest solution to the

linear system.
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(ii) 1-bit basis pursuit is a special case of partial sparse recovery. Specifically, introducing

variables α ∈ R|J+|
+ and β ∈ R|J−|+ to the problem (4.3.7), one has the problem (4.4.1),

i.e.,

min ‖x‖1,

s.t. ΦJ+,nx− α = εeJ+ ,

ΦJ−,nx+ β = −εeJ− ,

ΦJ0,nx = 0,

α > 0, β > 0.

in matrix form, which can be stated as

min ‖x‖1,

s.t. Φx+


−I 0

0 I

0 0


 α

β

 =


εeJ+

−εeJ−

0

 , (4.4.39)

α > 0, β > 0.

Let z =

 α

β

 ∈ R|J+|+|J−|
+ , B =


−I 0

0 I

0 0

 and b =


εeJ+

−εeJ−

0

, then the problem

(4.4.39) becomes

min ‖x‖1,

s.t. Φx+Bz = b,

z > 0,
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where the null space of BT is nonzero (This satisfies the assumption for the par-

tial `0-minimization). Hence, the RRSP and Full column rank based analysis of

uniqueness conditions for solutions of 1-bit basis pursuit can be modified to establish

uniqueness conditions for solutions of partial sparse recovery.

4.5 Nonuniform and uniform support recovery via 1-

bit basis pursuit

4.5.1 Nonuniform support recovery

The main purpose of this section is to develop the nonuniform support recovery condi-

tions for 1-bit compressive sensing. Let us begin with a certain full-rank property of the

submatrix of Φ associated with a (sparsest) solution of the `0-problem (4.3.6).

Lemma 4.5.1 : Let x∗ be a sparsest solution of `0-problem (4.3.6) and let S+ = {i :

x∗i > 0} and S− = {i : x∗i < 0}. Then the matrix

H̃(x∗) =



ΦA(x∗)∩J+,S+ ΦA(x∗)∩J+,S−

ΦA(x∗)∩J−,S+ ΦA(x∗)∩J−,S−

ΦJ0,S+ ΦJ0,S−

ΦÃ+(x∗),S+
ΦÃ+(x∗),S−

ΦÃ−(x∗),S+
ΦÃ−(x∗),S−


has a full-column rank. Moreover, if any sparsest solution of (4.3.6) is of the form Px∗,

for some factor p satisfying |pi| > 0 for i ∈ Supp(x∗) and pi = 0 for i /∈ Supp(x∗), where
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P = diag(p) ∈ Rn×n, then the matrix

H ′ =


ΦA(x∗)∩J+,Supp(x∗)

ΦA(x∗)∩J−,Supp(x∗)

ΦJ0,Supp(x∗)


has a full-column rank, which implies that H(x∗) defined by (4.4.23) has a full-column

rank.

Proof. By assumption, x∗ is a sparsest solution to the following system

ΦJ+,nx
∗ > εeJ+ , ΦJ−,nx

∗ 6 −εeJ− , ΦJ0,nx
∗ = 0. (4.5.1)

Without loss of generality, we assume that A(x∗) 6= ∅ which implies that either A(x∗) ∩

J+ 6= ∅ or A(x∗)∩J− 6= ∅. This can be always guaranteed by taking a scalar multiplication

operation of the vector x∗, if necessary. Including α∗ and β∗, given by (4.4.2), into the

system (4.5.1) leads to

ΦJ+,nx
∗ − α∗ = εeJ+ , ΦJ−,nx

∗ + β∗ = −εeJ− , ΦJ0,nx
∗ = 0. (4.5.2)

By eliminating the zero components of x∗, the system (4.5.2) is equivalent to

ΦJ+,S+x
∗
S+

+ ΦJ+,S−x
∗
S−
− α∗ = εeJ+ ,

ΦJ−,S+x
∗
S+

+ ΦJ−,S−x
∗
S−

+ β∗ = −εeJ− ,

ΦJ0,S+xS+ + ΦJ0,S−x
∗
S−

= 0.

(4.5.3)

Since x∗ is a sparsest solution of (4.3.6), it is not very difficult to see that the coefficient
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matrix

Ĥ =


ΦJ+,S+ ΦJ+,S−

ΦJ−,S+ ΦJ−,S−

ΦJ0,S+ ΦJ0,S−


has a full-column rank, since otherwise at least one column of Ĥ can be represented by its

other columns, and hence the system (4.5.3), which is equivalent to (4.5.1), has a solution

sparser than x∗. By (4.4.26), performing row permutations on Ĥ if necessary, we obtain

the following matrix

H̃(x∗) =



ΦA(x∗)∩J+,S+ ΦA(x∗)∩J+,S−

ΦA(x∗)∩J−,S+ ΦA(x∗)∩J−,S−

ΦJ0,S+ ΦJ0,S−

ΦÃ+(x∗),S+
ΦÃ+(x∗),S−

ΦÃ−(x∗),S+
ΦÃ−(x∗),S−


.

Since row permutations will not change the column rank of Ĥ, H̃(x∗) has a full-column

rank.

Moreover, if there exists a factor p satisfying |pi| > 0 for i ∈ Supp(x∗) and pi = 0 for

i /∈ Supp(x∗) such that Px∗ is another sparsest solution to (4.3.6), where P = diag(p), we

can further prove that H ′ given as


ΦA(x∗)∩J+,S

ΦA(x∗)∩J−,S

ΦJ0,S


has a full-column rank, where S = Supp(x∗) = S+ ∪ S−.

We prove this by contradiction. Assume that the columns of H ′ are linearly dependent.

Then, there exists a nonzero vector u ∈ R|S| satisfying H ′u = 0. Since u 6= 0 and H̃(x∗)
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has a full-column rank, we have that the matrix

H̃ ′ =



ΦA(x∗)∩J+,S

ΦA(x∗)∩J−,S

ΦJ0,S

ΦÃ+(x∗),S

ΦÃ−(x∗),S


has a full-column rank and  ΦÃ+(x∗),S

ΦÃ−(x∗),S

u 6= 0.

Let x̂ be the vector with components

x̂S = x∗S + λu, x̂i = 0 for all i /∈ S,

where λ 6= 0 is chosen such that |x̂i| > 0 for i ∈ S (this can be always guaranteed for

some sufficient small |λ| since |x∗i | > 0 for i ∈ S). According to the active constraints and

inactive constraints given by (4.4.2) and (4.4.26), and removing zero components of x∗,

the system (4.5.3) is equivalent to

ΦA(x∗)∩J+,Sx
∗
S = εeA(x∗)∩J+ ,

ΦA(x∗)∩J−,Sx
∗
S = −εeA(x∗)∩J− ,

ΦJ0,Sx
∗
S = 0,

ΦÃ+(x∗),Sx
∗
S > εeÃ+(x∗),

ΦÃ−(x∗),Sx
∗
S < −εeÃ−(x∗).

From the above system and the construction of x̂, we see that for any sufficient small
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|λ| 6= 0, the vector x̂S satisfies the system

H ′x̂S =


εeA(x∗)∩J+

−εeA(x∗)∩J−

0

 ,
ΦÃ+(x∗),Sx̂S > εeÃ+(x∗),

ΦÃ−(x∗),Sx̂S < −εeÃ−(x∗).

Then, it is not difficult to see that the vector x̂S together with certain nonnegative vector

â ∈ R|π(Ã+(x∗))| and β̂ ∈ R|%(Ã−(x∗))|, satisfies the system (4.4.27). This implies that x̂ is

feasible to (4.3.6). By the construction of x̂, we see that ‖x̂‖0 = ‖x∗‖0 and x̂ 6= x∗ (since

λ 6= 0 and u 6= 0). Thus x̂ is also a sparsest solution to the problem (4.3.6). By our

assumption, there exists a weight P = diag(p) such that x̂ = Px∗, where the factor p

satisfies |pi| > 0 for i ∈ S and pi = 0 for i /∈ S.

Let PS = diag(pS) 6= I ∈ R|S|×|S| (due to x̂ 6= x∗). Thus, one has

x̂S = x∗S + λu = PSx
∗
S

which implies that u = 1
λ
(PS−I)x∗S. Note that asA(x∗) 6= ∅, one has eitherA(x∗)∩J+ 6= ∅

or A(x∗) ∩ J− 6= ∅. As PS 6= I, one has

0 = H ′u =
1

λ
H ′(PS − I)x∗S

=
1

λ


ΦA(x∗)∩J+,S(PS − I)x∗S

ΦA(x∗)∩J−,S(PS − I)x∗S

ΦJ0,S(PS − I)x∗S

 6= 0,

which leads to a contradiction. Since column permutations on H ′ does not change the
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linear independency between columns of H ′, H(x∗) defined by (4.4.23) has a full-column

rank. �

From Lemma 4.5.1, we immediately have the following result, providing a connection

between 1-bit compressive sensing and 1-bit basis pursuit.

Theorem 4.5.2 :

(i) Suppose that x∗ is a sparsest solution to the `0-problem (4.3.6) and any solution of

this problem is of the form Px∗, for some factors p satisfying |pi| > 0 for i ∈ Supp(x∗)

and pi = 0 for i /∈ Supp(x∗), where P = diag(p). Then x∗ is the unique solution of 1-bit

basis pursuit (4.3.7) if and only if the RRSP of ΦT holds at x∗.

(ii) Suppose that x∗ is a sparsest solution to the 1-bit model (4.3.4) and any solution of

this problem is of the form Px∗, for some factor p satisfying |pi| > 0 for i ∈ Supp(x∗) and

pi = 0 for i /∈ Supp(x∗), where P = diag(p). Then the support set of x∗ coincides with the

support set of the unique solution of 1-bit basis pursuit (4.3.7) if and only if there exists

a factor p∗ satisfying |p∗i | > 0 for i ∈ Supp(x∗) and p∗i = 0 for i /∈ Supp(x∗), such that

P ∗x∗, where P ∗ = diag(p∗), is feasible to 1-bit basis pursuit (4.3.7), and the RRSP of ΦT

holds at P ∗x∗ and H(P ∗x∗) has a full-column rank.

Proof. (i) By Theorem 4.4.13, if x∗ is the unique solution to the problem (4.3.7), the

RRSP of ΦT holds at x∗. Conversely, if x∗ is a sparsest solution to the problem (4.3.6)

and all its solution can be represented as Px∗, for some factor p satisfying |pi| > 0 for

i ∈ Supp(x∗) and pi = 0 for i /∈ Supp(x∗), then by Lemma 4.5.1, the matrix H(x∗) has a

full-column rank. Thus by Theorem 4.4.13, the RRSP of ΦT at x∗ implies that x∗ is the

unique solution to the problem (4.3.7).

(ii) If the support set of x∗ coincides with the support set of the unique solution x

of (4.3.7), x can be written as x = P ∗x∗ for a certain weight satisfying |p∗i | > 0 for

i ∈ Supp(x∗) and p∗i = 0 for i /∈ Supp(x∗), where P ∗ = diag(p∗). By Theorem 4.4.13,
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the RRSP of ΦT holds at P ∗x∗ and H(P ∗x∗) has a full-column rank. Conversely, if there

exists a factor p∗ satisfying |p∗i | > 0 for i ∈ Supp(x∗) and p∗i = 0 for i /∈ Supp(x∗), where

P ∗ = diag(p∗) such that P ∗x∗ is feasible to (4.3.7), and RRSP of ΦT holds at P ∗x∗ and

H(P ∗x∗) has a full-column rank. By Theorem 4.4.13, P ∗x∗ is the unique solution of 1-bit

basis pursuit (4.3.7). By the definition of P ∗, we have Supp(P ∗x∗) = Supp(x∗). �

The above results provide some insight into the nonuniform recovery of the support

set of a signal, i.e., the support recovery of an individual sparse vector via 1-bit basis

pursuit. This result indicates that the key to the support recovery of a sparse vector x is

the RRSP of ΦT at x. It is worths stressing that the support recovery given in Theorem

4.5.2 (ii) includes recovering solutions with certain perturbations and solutions within a

positive scalar. However, this property is defined at x which is not known in advance.

Thus we need to further strengthen this concept in order to develop certain support

recovery conditions. Note that in 1-bit models, the amplitude of signal is not available.

To develop support recovery conditions, the reconstruction of a sparse representation is

achieved largely within a certain factor, and in the mean time the matrix Φ ∈ Rm×n

should admit certain restrictive properties independent of individual vectors. In what

follows, we develop the concept of RRSP of order K with respect to 1-bit measurements

and a stronger one called RRSP of order K.

For a given 1-bit measurements y ∈ {−1, 0, 1}m, let S(y) be the support set of signals

consistent with y, namely,

S(y) = {Supp(x) : y = sign(Φx)}.

Definition 4.5.3 (RRSP of order K with respect to y) : Let y be the given 1-bit

measurements and (J+, J−, J0) be given as (4.3.2). The matrix ΦT is said to satisfy the

restricted range space property (RRSP) of order K with respect to y if for any disjoint
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subsets S+ and S− of {1, · · · , n} satisfying |S+|+ |S−| 6 K, where S = S+ ∪ S− ∈ S(y),

and for a pair of subsets (T1, T2) with T1 ⊆ J+, T2 ⊆ J−, and |T1|+ |T2| 6 |J+|+ |J−|− 1,

there exists a vector η ∈ R(ΦT ) satisfying the following properties:

(i) ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, |ηi| < 1 otherwise;

(ii) η = ΦTw for some w ∈ F(T1, T2), defined as

F(T1, T2) = {w ∈ Rm : wJ+\T1 > 0, wJ−\T2 < 0, wT1∪T2 = 0}. (4.5.4)

When the matrix ΦT has the RRSP of order K with respect to 1-bit measurements y,

its column vectors satisfy some properties, as shown by the next lemma.

Lemma 4.5.4 : Let ΦT satisfy the RRSP of order K with respect to y. Then any

K columns of Φ are linearly independent. Also, any K columns of the matrix Q =
ΦJ+\T1,n

ΦJ−\T2,n

ΦJ0,n

 are linearly independent for a pair of subsets (T1, T2) with T1 ⊆ J+ and

T2 ⊆ J− satisfying |T1|+ |T2| 6 |J+|+ |J−| − 1.

Proof. If the matrix ΦT has the RRSP of order K with respect to y, from the Definition

4.5.3, we see that for any disjoint subsets S+ and S− of {1, · · · , n} with |S+|+ |S−| 6 K,

there exists a vector η satisfying that η = ΦTw, where w ∈ F(T1, T2) is defined by (4.5.4),

and that ηi = 1 for all i ∈ S+, ηi = −1 for all i ∈ S−, and |ηi| < 1 otherwise. This implies

that the matrix ΦT has the standard RSP of order K introduced in [132] (see Definition

4.1 therein). It follows directly from Theorem 4.2 in [132] that any K columns of the

matrix Φ are linearly independent.

Let T1 ⊆ J+ and T2 ⊆ J− be any given sets satisfying |T1|+ |T2| 6 |J+|+ |J−| − 1. By

Definition 4.5.3, for any disjoint subsets S+ and S− of {1, · · · , n} with |S+| + |S−| 6 K,

117



there exists a vector η such that η = ΦTw for some w ∈ F(T1, T2), and the vector η

satisfies that ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, and |ηi| < 1 otherwise. Note that

wT1 = 0 and wT2 = 0.

The vector η can be written as

η = ΦTw =

[
(ΦJ+,n)T , (ΦJ−,n)T , (ΦJ0,n)T

]
wJ+

wJ−

wJ0



=

[
(ΦJ+\T1,n)T , (ΦJ−\T2,n)T , (ΦJ0,n)T

]
wJ+\T1

wJ−\T2

wJ0



= QT


wJ+\T1

wJ−\T2

wJ0

 , (4.5.5)

where wJ+\T1 and wJ−\T2 are the subvectors of wJ+ and wJ− , obtained by deleting those

components indexed by T1 and T2, respectively.

Therefore, QT =
[
(ΦJ+\T1,n)T , (ΦJ−\T2,n)T , (ΦJ0,n)T

]
has the standard RSP of order K. By

Theorem 4.2 in [132] again, we conclude that any K columns of the matrix Q are linearly

independent. �

We now prove the main result concerning the nonuniform support recovery for a fixed

1-bit measurements, which claims that the support set of a sparse signal can be exactly

reconstructed by 1-bit basis pursuit (4.3.7) if matrix ΦT has the RRSP of order K with

respect to the 1-bit measurements.

Theorem 4.5.5 : Given the 1-bit measurements y ∈ {−1, 1, 0}m, suppose that ΦT has

the RRSP of order K with respect to y. Then, 1-bit basis pursuit (4.3.7) admits a solution
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x̃ satisfying Supp(x̃) ⊆ Supp(x∗) for any K-sparse signal x∗ (i.e., ‖x∗‖0 6 K) consistent

with the measurements y in the sense that y = sign(Φx∗). Furthermore, if x∗ is a sparsest

signal consistent with y, then Supp(x̃) = Supp(x∗).

Proof. Let x∗ be any given K-sparse vector consistent with the 1-bit measurements y,

i.e., sign(Φx∗) = y. Let (J+, J−, J0) be given as (4.3.2) and let S+ = {i : x∗i > 0}

and S− = {i : x∗i < 0}, where S = S+ ∪ S− ∈ S(y). The above consistency implies

that (Φx∗)i > 0 for all i ∈ J+, (Φx
∗)i < 0 for all i ∈ J− and (Φx∗)i = 0 for all i ∈ J0.

This implies that there exists a scalar α > 0 such that α(Φx∗)i > ε for all i ∈ J+ and

α(Φx∗)i 6 −ε for all i ∈ J−. Thus αx∗ satisfies the constraints of 1-bit basis pursuit

(4.3.7), i.e.,

ΦJ+,n(αx∗) > εeJ+ , (4.5.6)

ΦJ−,n(αx∗) 6 −εeJ− , (4.5.7)

ΦJ0,n(αx∗) = 0. (4.5.8)

Hence, αx∗ is a feasible solution to (4.3.7). Note that for any scalar α > 0, ‖αx∗‖0 =

‖x∗‖0 6 K and sign(αx∗) = sign(x∗). Thus x∗ and αx∗ share the same index sets S+ and

S−. From (4.5.6) and (4.5.7), we see that

α >
ε

(Φx∗)i
for i ∈ J+, α >

ε

−(Φx∗)i
for i ∈ J−.

Let α∗ > 0 be the smallest α satisfying the above inequalities, i.e.

α∗ = max

{
max
i∈J+

ε

(Φx∗)i
, max

i∈J−

ε

−(Φx∗)i

}
= max

i∈J+∪J−

ε

|(Φx∗)i|
.
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Define the index sets

T ′0 =

{
i ∈ J+ ∪ J− :

ε

|(Φx∗)i|
= α∗

}
,

T ′1 =

{
i ∈ J+ :

ε

(Φx∗)i
< α∗

}
, T ′2 =

{
i ∈ J− :

ε

−(Φx∗)i
< α∗

}
. (4.5.9)

Clearly, T ′0 represents the active constraints in (4.5.6) and (4.5.7) at the point α∗x∗, and

T ′1 ⊆ J+ and T ′2 ⊆ J− represent the inactive constraints at α∗x∗. Clearly, T ′1 ∪ T ′2 =

(J+ ∪ J−)\T ′0. By the definition of α∗, we see that T ′0 6= ∅ and hence

|T ′1|+ |T ′2| 6 |J+|+ |J−| − 1.

We now prove that the unique solution x̃ of the problem (4.3.7) satisfying Supp(x̃) ⊆

Supp(x∗). To prove the uniqueness of x̃, by Theorem 4.4.13, it is sufficient to prove that

ΦT has the RRSP at x̃ and the matrix H(x̃) has a full-column rank.

Let S = Supp(x∗). If N




ΦJ+\T ′1,S

ΦJ−\T ′2,S

ΦJ0,S


 6= {0}, let d be a nonzero vector in

N




ΦJ+\T ′1,S

ΦJ−\T ′2,S

ΦJ0,S


 and consider the vector x(λ) such that xS(λ) = α∗x∗S + λd and

x(λ)i = 0 for i /∈ S. By Lemma 4.5.4, as Φm,S has a full-column rank, one has

 ΦT ′1,S

ΦT ′2,S

 d 6= 0.

For such a construction of x(λ), we have Supp(x(λ)) ⊆ Supp(x∗) for any λ ∈ R. It is easy

to see that x(λ) is feasible to the problem (4.3.7) provided by some sufficient small λ so
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that α∗x∗ and x(λ) have the same active and inactive constraints, namely,

ΦJ+\T ′1,SxS(λ) = εeJ+\T ′1 ,

ΦJ−\T ′2,SxS(λ) = −εeJ−\T ′2 ,

ΦJ0,SxS(λ) = 0,

ΦT ′1,S
xS(λ) > εeT ′1 ,

ΦT ′2,S
xS(λ) < −εeT ′2 .

Now, for such a nonzero vector d, vary |λ| continuously from zero to a positive number

|λ1| 6= 0 such that at least one inactive constraint in T ′1 ∪ T ′2 becomes active at x(λ1)

and x(λ1) is still feasible to the problem (4.3.7). Thus, the active constraints at x(λ1) is

augmented.

Let x̂ = x(λ1), T ′′1 = {i ∈ J+ : (Φx̂)i > ε}, T ′′2 = {i ∈ J− : (Φx̂)i < −ε}, and T ′′0 be the

index set of active constraints at x̂ satisfying T ′0 ⊆ T ′′0 . Now, replacing the role of α∗x∗ by

x̂, ifN




ΦJ+\T ′′1 ,S

ΦJ−\T ′′2 ,S

ΦJ0,S


 6= {0}, let d be a nonzero vector inN




ΦJ+\T ′′1 ,S

ΦJ−\T ′′2 ,S

ΦJ0,S


 and con-

sider the vector x′(λ) such that x′S(λ) = x̂S+λd and x′(λ)i = 0 for i /∈ S. Thus, x′(λ) is fea-

sible to the problem (4.3.7), and x̂ and x′(λ) have the same active and inactive constraints

for some sufficient small λ. Then, continuing to update active and inactive constraints,

we repeat the above process until find a point x̃ at which N




ΦJ+\T1,S

ΦJ−\T2,S

ΦJ0,S


 = {0},

where T1 = {i ∈ J+ : (Φx̃)i > ε} and T2 = {i ∈ J− : (Φx̃)i < −ε}. Note that
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N




ΦJ+\T1,S

ΦJ−\T2,S

ΦJ0,S


 = {0} implies that the matrix


ΦJ+\T1,S

ΦJ−\T2,S

ΦJ0,S

 (4.5.10)

has a full-column rank.

Due to such a construction of x̃, x̃ is still feasible to (4.3.7) and A(x̃) 6= ∅. Notice

that T1 and T2 are inactive constraints at point x̃, namely, T1 = Ã+(x̃) and T2 = Ã−(x̃).

Thus, J+\T1 = A(x̃)∩J+ and J−\T2 = A(x̃)∩J−. Note that as A(x̃) 6= ∅, one has either

A(x̃) ∩ J+ 6= ∅ or A(x̃) ∩ J− 6= ∅. Hence, (4.5.10) is equivalent to


ΦA(x̃)∩J+,S

ΦA(x̃)∩J−,S

ΦJ0,S

 , (4.5.11)

which has a full-column rank.

Now, we prove that x̃ is the unique solution of (4.3.7). Let S ′ = Supp(x̃). For T1 and

T2 defined above, as x̃ is consistent with 1-bit measurements y and satisfies Supp(x̃) ⊆

Supp(x∗), i.e., S ′ ⊆ S, we have S ′ ∈ S(y) and


ΦA(x̃)∩J+,S′

ΦA(x̃)∩J−,S′

ΦJ0,S′

 has a full-column rank

since the matrix (4.5.11) has a full-column rank.

Let S ′+ = {i : x̃i > 0} and S ′− = {i : x̃i < 0}, then |S ′+| + |S ′−| 6 K. By the

assumption, ΦT has the RRSP of order K with respect to y. Thus there exists a vector

η ∈ R(ΦT ) and w ∈ F(T1, T2) satisfying that η = ΦTw and ηi = 1 for i ∈ S ′+, ηi = −1
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for all i ∈ S ′−, and |ηi| < 1 otherwise, where the set F(T1, T2) is defined as (4.5.4). As

T1 = Ã+(x̃) and T2 = Ã−(x̃), the conditions wT1 = 0 and wT2 = 0 in the set F(T1, T2)

coincide with the condition

wi = 0 for i ∈ Ã+(x̃) ∪ Ã−(x̃).

As a result, the set F(T1, T2) coincides with F(x̃) defined by (4.4.21). Thus the RRSP

of ΦT holds at the point x̃ (see Definition 4.4.7). Hence, x̃ is the unique solution of the

problem (4.3.7).

Furthermore, if x∗ is a sparsest signal consistent with y, as Supp(x̃) ⊆ Supp(x∗), we

immediately have Supp(x̃) = Supp(x∗). �

Theorem 4.5.6 : Given the 1-bit measurements y ∈ {−1, 1, 0}m, let x∗ be an un-

known K-sparse signal, if the 1-bit basis pursuit (4.3.7) has a unique solution x̃ satisfying

Supp(x̃) = Supp(x∗), then ΦT has the RRSP of order K with respect to y.

Proof. For a given 1-bit measurements y and a K-sparse unknown signal x∗, suppose

that the problem (4.3.7) has a unique solution x̃ satisfying Supp(x̃) = Supp(x∗) and

sign(Φx̃) = y. Let S̃+ = {i : x̃i > 0} and S̃− = {i : x̃i < 0}. Thus, we have

|S̃+|+ |S̃−| = |Supp(x∗)| 6 K for any disjoint subsets S̃+ and S̃− with S̃+ ∪ S̃− ∈ S(y).

By Theorem 4.4.13, the uniqueness of x̃ indicates that the RRSP of ΦT at x̃ holds. Let

T1 = Ã+(x̃) and T2 = Ã−(x̃), thus, J+\T1 = A(x̃) ∩ J+ and J−\T2 = A(x̃) ∩ J−. Due

to the optimality of solution x̃, there exists at least one active constraint at x̃, namely,

A(x̃) 6= ∅. Thus, T1∪T2 6= J+∪J−. The RRSP of ΦT at x̃ implies that properties (i) and

(ii) in Definition 4.5.3 are held with S+ = S̃+ and S− = S̃− satisfying |S̃+| + |S̃−| 6 K,

and T1, T2 defined above. Hence, ΦT has the RRSP of order K with respect to y is a

necessary condition for the uniqueness of solutions of (4.3.7). �
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4.5.2 Uniform support recovery

Theorem 4.5.5 and Theorem 4.5.6 provide conditions for the nonuniform support recovery

that any K-sparse vectors are consistent with the given 1-bit measurements y. Clearly,

for a given vector y ∈ {−1, 1, 0}m, not every K-sparse vector is always consistent with y.

To develop a condition for the uniform support recovery of all K-sparse signals, we need

to further strengthen the Definition 4.5.3 and introduce the following concepts.

Let Yk be a subspace of all the possible values of 1-bit measurements y for any K-

sparse vectors, i.e., Yk = {y : y = sign(Φx), ‖x‖0 6 K}. For a given 1-bit measurements

y ∈ Yk, let J+(y), J−(y) and J0(y) be index sets of components of y with values 1,−1 and

0, respectively.

Definition 4.5.7 (S-RRSP of order K) : The matrix ΦT is said to satisfy the suffi-

cient restricted range space property (S-RRSP) of order K if any disjoint subsets S+ and

S− of {1, · · · , n} satisfying |S+|+ |S−| 6 K, and for any y ∈ Yk, S = S+∪S− ∈ S(y) and

there exist subsets T1 ⊆ J+(y) and T2 ⊆ J−(y) satisfying |T1|+ |T2| 6 |J+(y)|+ |J−(y)|−1,

and for any pair of (T1, T2), there exists a vector η ∈ R(ΦT ) satisfying the following prop-

erties:

(i) ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, |ηi| < 1 otherwise;

(ii) η = ΦTw for some w ∈ F(T1, T2), defined as

F(T1, T2) = {w ∈ Rm : wJ+\T1 > 0, wJ−\T2 < 0, wT1∪T2 = 0}.

The above concept is stronger than Definition 4.5.3. Clearly, if the matrix has the

S-RRSP of order K, it must have the RRSP of order K with respect to any given vector

y ∈ Yk. This gives a sufficient condition for the uniform support recovery shown as follows.
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Theorem 4.5.8 : Let Φ ∈ Rm×n be a given matrix and suppose that ΦT has the S-

RRSP of order K, for any K-sparse signal x∗, then 1-bit basis pursuit (4.3.7) has a

unique solution x̃ satisfying Supp(x̃) ⊆ Supp(x∗) with (J+, J−, J0) being determined by

the acquired 1-bit measurements y = sign(Φx∗) ∈ Yk, i.e., J+ = {i : sign[(Φx∗)i] = 1},

J− = {i : sign[(Φx∗)i] = −1}, J0 = {i : sign[(Φx∗)i] = 0}. Furthermore, if x∗ is a sparsest

signal satisfying the sign constraints in (4.3.3), then Supp(x̃) = Supp(x∗).

Proof. : Let x∗ be an arbitrary K-sparse signal, and let the 1-bit measurements y =

sign(Φx∗) be taken, which determines a partition (J+, J−, J0) of {1, ...,m} as (4.3.2). Since

ΦT has the S-RRSP of order K (Definition 4.5.7), this implies that ΦT has the RRSP of

order K with respect to this particular vector y. By Theorem 4.5.5, the problem (4.3.7)

has a unique solution x̃ satisfying Supp(x̃) ⊆ Supp(x∗). Furthermore, as sign(Φx∗) =

sign(Φx̃), if x∗ is a sparsest signal satisfying the sign constraints in (4.3.3), we immediately

have Supp(x̃) = Supp(x∗). �

Definition 4.5.9 (N-RRSP of order K) : The matrix ΦT is said to satisfy the nec-

essary restricted range space property (N-RRSP) of order K if for any y ∈ Yk and any

disjoint subsets S+ and S− of {1, · · · , n} satisfying |S+|+ |S−| 6 K, where S = S+ ∪ S−,

and there exist y ∈ Yk and a pair of subsets (T1, T2) such that S ∈ S(y), T1 ⊆ J+(y)

and T2 ⊆ J−(y) satisfying |T1| + |T2| 6 |J+(y)| + |J−(y)| − 1, and there exists a vector

η ∈ R(ΦT ) satisfying the following properties:

(i) ηi = 1 for i ∈ S+, ηi = −1 for i ∈ S−, |ηi| < 1 otherwise;

(ii) η = ΦTw for some w ∈ F(T1, T2), defined as

F(T1, T2) = {w ∈ Rm : wJ+\T1 > 0, wJ−\T2 < 0, wT1∪T2 = 0}.
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Theorem 4.5.10 : Let Φ ∈ Rm×n be a given matrix. For any K-sparse signal x∗ (i.e.,

‖x∗‖0 6 k), 1-bit basis pursuit (4.3.7) has a unique solution x̃ satisfying Supp(x̃) =

Supp(x∗) with J+ = {i : sign[(Φx∗)i] = 1}, J− = {i : sign[(Φx∗)i] = −1}, J0 = {i :

sign[(Φx∗)i] = 0}, then ΦT has the N-RRSP of order K.

Proof. : Let x∗ be an arbitrary K-sparse signal with S = Supp(x∗). Let y = sign(Φx∗)

be the acquired measurements. Assume that x̃ is the unique solution of (4.3.7) satisfying

Supp(x̃) = S. Then, we have y ∈ Yk, S ∈ S(y) and |Supp(x̃)| = |S| 6 K. By Theorem

4.4.13, the uniqueness of x̃ implies that the matrix Q =


ΦA(x̃)∩J+,S

ΦA(x̃)∩J−,S

ΦJ0,S

 has a full-column

rank and there exists a vector η ∈ R(ΦT ) satisfying

(a) ηi = 1 for i ∈ S+(x̃), ηi = −1 for i ∈ S−(x̃), and |ηi| < 1 for i /∈ S;

(b) η = ΦTw for some w ∈ F(x̃) defined as

F(x̃) = {w ∈ Rm : wi > 0 for i ∈ A(x̃) ∩ J+(y), wi < 0 for i ∈ A(x̃) ∩ J−(y),

wi = 0 for i ∈ Ã+(x̃) ∪ Ã−(x̃)},

where S+(x̃) = {i : x̃i > 0} and S−(x̃) = {i : x̃i < 0}.

Note that (S+(x̃), S−(x̃)) is a partition of S ∈ S(y) satisfying S+(x̃)∪S−(x̃) = S. Let

T1 = Ã+(x̃) ⊆ J+(y) and T2 = Ã−(x̃) ⊆ J−(y). Due to the optimality of solution x̃, we

have A(x̃) 6= ∅. Thus, one has |T1| + |T2| 6 |J+(y)| + |J−(y)| − 1, A(x̃) ∩ J+ = J+\T1,

A(x̃)∩ J− = J−\T2. Hence, the above properties (a) and (b) coincide with the properties

(i) and (ii) in Definition 4.5.9. Considering all K-sparse signal x∗ and its corresponding

unique solution x̃ of (4.3.7), for any possible y ∈ YK and disjoint subsets S+(x̃), S−(x̃) of

{1, · · · , n} with S = S+(x̃) ∪ S−(x̃) satisfying |S| 6 K, there exist a 1-bit measurements
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y ∈ Yk and a pair of (T1, T2) defined above such that S ∈ S(y). Hence, ΦT has the

N-RRSP of order K. �

Due to the sign-process, 1-bit measurements is robust to signals with certain pertur-

bations. Thus, it is impossible to exactly recover sparse signals. To achieve a certain

level of sparse recovery, one of the contributions of this chapter is a new reformulation

for the 1-bit compressive sensing model, based on which we develop a decoding method,

1-bit basis pursuit, for 1-bit compressive sensing. And we then establish the restricted

range space property (RRSP) to provide a connection between the sensing matrix and the

support recovery of sparse signals from 1-bit measurements. In particular, we have shown

that the transposed sensing matrix satisfying RRSP is necessary and sufficient for recov-

ering the support set of an individual sparse signal via 1-bit basis pursuit; furthermore,

the support set of any K-sparse signals can be exactly recovered via 1-bit basis pursuit if

the transposed sensing matrix satisfies the S-RRSP of order K.
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Chapter 5

Empirical Verification: 1-Bit Basis

Pursuit

5.1 Introduction

Having studied the theoretical aspect of 1-bit `0-minimization and 1-bit basis pursuit, and

established the RRSP-based conditions for the nonuniform and uniform support recovery

for 1-bit compressive sensing, we now study the numerical performance of 1-bit basis

pursuit. In our experiments, in contrast to the standard basis pursuit (`1-minimization)

for compressive sensing, we investigate the performance of 1-bit basis pursuit from the

following perspectives:

1. the constant ε = 1 is fixed in the linear system (4.3.5) for 1-bit basis pursuit, namely,

ΦJ+,nx > eJ+ ,

ΦJ−,nx 6 −eJ− ,

ΦJ0,nx = 0,

(5.1.1)

for given index sets J+, J−, J0 ⊆ {1, · · · ,m}, where J+ = {i : yi = 1}, J− =

{i : yi = −1}, and J0 = {i : yi = 0};
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2. the matrix Φ is overdetermined rather than underdetermined in the linear system

(5.1.1);

3. we aim to find the support set of a sparse signal x∗ satisfying the linear system 5.1.1

or a sparser solution within the support set of the sparse signal x∗;

4. we aim to find a sparsest solution to the linear system (5.1.1).

We carry out experiments on Gaussian matrices and Bernoulli matrices to empirically

reveal certain features of 1-bit basis pursuit and 1-bit compressive sensing. To further

enhance the sparsity and improve the performance of 1-bit basis pursuit, we propose two

approaches: truncating the 1-bit measurements and adding weights to the `1-norm objec-

tive of 1-bit basis pursuit, namely, the reweighted 1-bit `1-minimization, where weights

are defined by some merit functions demonstrated in [40, 135, 66, 42, 84, 134].

This chapter is organized as follows. We begin with introducing some existing 1-

bit recovery models in section 5.2. Then, we carry out numerical simulations to show

the solvability of 1-bit basis pursuit and to reveal certain features of 1-bit compressive

sensing in section 5.3. To further improve the performance of 1-bit basis pursuit, we carry

out experiments on the truncated 1-bit measurements method and the reweighted 1-bit

`1-minimization method in section 5.4.

5.2 Existing 1-bit recovery models

Due to the sign constraint (4.3.3), the 1-bit measurements are robust to solutions within

a certain factor or solutions with certain perturbations. This implies that it is generally

impossible to exactly recover a sparse signal via the problem (4.3.4). Thus, in general,

the majority 1-bit recovery models focus on the following two types of recovery:

1. support recovery: recovering the support set of a sparse signal x∗, namely, Supp(x∗) =

Supp(x), where x is a solution to any recovery algorithms;
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2. approximate sparse recovery: recovering an approximately sparse solution x which

is close to a sparse signal x∗ up to a constant ε > 0, namely,

∥∥∥∥ x∗

‖x∗‖2

− x

‖x‖2

∥∥∥∥
2

< ε, (5.2.1)

which is referred to as the normalized `2-norm residual in this chapter.

Remark 5.2.1 : Note that both support recovery and approximate sparse recovery include

the positive proportional recovery that algorithms recover the signal x∗ within a positive

scalar. In fact, if a solution x to an algorithm has the same support set as the signal x∗

and satisfies the condition (5.2.1) for a sufficiently small ε tending to 0, we say that the

algorithm successfully recovers a solution positive proportional to the signal x∗.

So far, a few algorithms are developed for the support recovery. Among those algorithms,

Gupta et al. [75] demonstrated the first measurement bonds for the support recovery

via passive algorithms and adaptive algorithms, respectively. And Gopi et al. [71] pro-

posed two combinatorial algorithms based on so-called union free families of sets [62]

and expanders [11, 81] to achieve the uniform support recovery. They further showed

that an approximately sparse vector can be obtained by firstly recovering the support

set via the expanders algorithms, and then solving a linear program subject to this sup-

port set with an adequate number of measurements. Some greedy algorithms, such as

matching sign pursuit (MSP) introduced by Boufounos and Baraniuk in [24] and binary

iterative hard thresholding (BIHT) introduced by Jacques et al. in [80], are proposed to

estimate the largest k-nonzero components of a sparse signal. In particular, the BIHT

algorithm performs better than MSP as it minimizes the inconsistency via the one-sided

`1-norm minimization problem, as shown in Figure 2 and Figure 3 in [80]. But there is

no theory for guarantee performances of both algorithms. For the approximate sparse

recovery, Boufounos and Baraniuk introduced the first algorithm, namely, the renormal-

130



ized fixed point iteration (RFPI), to tackle the 1-bit compressive sensing. Based on the

BIHT and RFPI algorithms, other methods such as adaptive outlier pursuit (AOP) and

noise-adaptive renormalized fixed point iteration (NARFPI) are designed for the noisy

1-bit compressive sensing without theoretical guarantees. And Laska et al. [87], and Plan

and Vershynin [105, 106] provided provable recovery methods for the approximate sparse

recovery. In particular, Ai et al. [3] have proved that the proposed convex approach in

[106] allows an approximately sparse reconstruction from 1-bit measurements obtained by

the sub-gaussian matrices, such as the Bernoulli matrix.

However, when we investigate the performance of 1-bit basis pursuit, we notice that,

besides the support recovery and the approximate sparse recovery defined above, solutions

of 1-bit basis pursuit may have the following two settings:

1. 1-bit basis pursuit found a sparsest solution x within the support set of a sparse

signal x∗, namely, Supp(x) ⊂ Supp(x∗);

2. 1-bit basis pursuit found a sparsest solution x to the linear system (5.1.1) satisfying

‖x‖0 6 ‖x∗‖0, which includes the case that the nonzero locations of x and x∗ are

different.

We give the following two examples to demonstrate that 1-bit basis pursuit is possible to

obtain a sparse solution to the linear system (5.1.1) either within the support set of the

sparse signal or having a different support pattern from the sparse signal.

Example 5.2.2 :
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For a given matrix Φ ∈ R3×6 and the signal x∗ ∈ R6 with

Φ =


−1.3455 −2.3419 −0.2322 0.3843 1.6182 −0.0759

0.0007 1.2481 0.2870 −0.3798 −0.8472 −0.1325

0.0535 2.8092 −0.4646 −0.1018 −0.5759 1.4393

 , x∗ =



0

1.6359

0.5590

0

0

0


,

where every entry in Φ and the nonzero entries of x∗ are drawn from the standard normal

distribution. Compute the 1-bit measurements y = sign(Φx∗) = [ −1, 1, 1 ]T . According

to 1-bit measurements y, index sets J+, J− and J0 are J+ = {2, 3}, J− = {1} and J0 = ∅.

For the given matrix Φ, the linear system (5.1.1) is written as

 0.0007 1.2481 0.2870 −0.3798 −0.8472 −0.1325

0.0535 2.8092 −0.4646 −0.1018 −0.5759 1.4393

x >
 1

1

 ,
[
−1.3455 −2.3419 −0.2322 0.3843 1.6182 −0.0759

]
x 6 −1.

Hence, 1-bit basis pursuit obtains a sparser solution x = [ 0, 0.8012, 0, 0, 0, 0 ]

within the support set of signal x∗ and the normalized `2-norm residual is
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2

=

0.3278.

Example 5.2.3 :
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For a given matrix Φ ∈ R3×6 and the signal x∗ ∈ R6 with

Φ =


−1.6118 1.0205 −0.0708 −2.1924 −0.9485 0.8577

−0.0245 0.8617 −2.4863 −2.3193 0.4115 −0.6912

−1.9488 0.0012 0.5812 0.0799 0.6770 0.4494

 , x∗ =



0

0

0

0

1.0078

−2.1237


,

where every entry in Φ and the nonzero entries of x∗ are drawn from the standard normal

distribution. Compute the 1-bit measurements y = sign(Φx∗) = [ −1, 1,−1 ]T . Accord-

ing to the 1-bit measurements y, index sets J+, J− and J0 are J+ = {2}, J− = {1, 3} and

J0 = ∅. For the given matrix Φ, the linear system (5.1.1) is written as

[
−0.0245 0.8617 −2.4863 −2.3193 0.4115 −0.6912

]
x > 1, −1.6118 1.0205 −0.0708 −2.1924 −0.9485 0.8577

−1.9488 0.0012 0.5812 0.0799 0.6770 0.4494

x 6
 −1

−1

 .

For this example, 1-bit basis pursuit obtains a solution x = [ 0.6384, 0, −0.4085, 0, 0, 0 ],

which has a different support pattern from the signal x∗ and the normalized `2-norm resid-

ual is
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2

= 1.4142.

Therefore, in this chapter, we present the performance of 1-bit basis pursuit in three

ways:

(i) support recovery: finding a solution x within the support set of a sparse signal x∗,

e.g., Supp(x) ⊆ Supp(x∗), including exactly recovering the support set of the sparse

signal x∗, namely, Supp(x) = Supp(x∗) ;
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(ii) approximate sparse recovery: finding an approximately sparse solution x close to

the sparse signal x∗, which is examined by the cosine stopping condition

cos(θ(x∗, x)) > τ,

where τ is a cosine-stopping threshold and cos(θ(x∗, x)) is the angle between x∗ and

x;

(iii) cardinality recovery: finding a sparsest solution to the linear system (5.1.1), which

shows the ability of 1-bit basis pursuit to solve the `0-problem of 1-bit compressive

sensing, namely,

min ‖x‖0

s.t. ΦJ+,nx > eJ+ ,

ΦJ−,nx 6 −eJ− ,

ΦJ0,nx = 0,

(5.2.2)

where index sets J+, J−, J0 ⊆ {1, · · · ,m} are given by the 1-bit measurements.

5.3 Performances of 1-bit basis pursuit

In our implementation, all examples are solved by the CVX, a Matlab software for convex

programs [72]. And experiments are set up as follows. Firstly, we generate the sensing

matrix Φ ∈ Rm×n, where each entry of the matrix follows either i.i.d standard normal

distribution, φij v N (0, 1), or i.i.d symmetric Bernoulli ±1 (the distribution will be

specified in every experiment). We then compute a length-n sparse vector x∗ with k-

nonzero entries drawn from the standard normal distribution. Lastly, we calculate the

1-bit measurements y through the sign function of measurements, namely, yi = 1 if

sign[(Φx∗)i] > 0, yi = −1 if sign[(Φx∗)i] < 0, and yi = 0 if sign[(Φx∗)i] = 0.
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In standard compressive sensing, for every pair of (Φ, x∗), we set the measurements

b as b = Φx∗, where Φ ∈ Rm×n with m < n is a full row rank matrix. As discussed in

chapter 2, if x∗ is sufficiently sparse, for example, ‖x∗‖0 <
1
2
Spark(Φ), x∗ is the unique

sparsest solution to the linear system Φx∗ = b. Theoretically, under the mutual coherence

condition, `1-minimization can exactly recover the sparsest signal x∗. Moreover, under

the RIP, NSP and RSP-based conditions, the sparsest signal x∗ can be exactly recov-

ered by some algorithms, such as greedy algorithms [104, 93, 47, 121, 55, 19, 20, 101]

and reweighted `1-minimization [134, 135, 40, 66, 42, 84, 126]. On the other hand, to

numerically measure the performance of a recovery algorithm as mentioned in chapter 2,

some families of random matrices admit a certain RIP condition with high probability.

Thus, performances of recovery algorithms are usually tested by Gaussian matrices and

Bernoulli matrices in experiments. And, if x is the solution to a recovery algorithm, one

may use either `2-norm of residual ‖x − x∗‖2, `∞-norm of the difference ‖x − x∗‖∞, or

relative error (RE) ‖x
∗−x‖2
‖x∗‖2 as a stopping condition. For instance, if the solution x satisfies

the stopping condition

RE =
‖x∗ − x‖2

‖x∗‖2

< ξ,

where ξ ∈ (0, 1) is often chosen as a sufficient small number, such as 10−6, we say that

both values and support set of x∗ are exactly recovered by the algorithm.

In 1-bit compressive sensing, since the amplitude of any signal is lost, in experiment,

we expect 1-bit basis pursuit to find either the support set of a sparse signal x∗ or a vector

approximately sparse to x∗ or another k-sparse vector x such that ‖x‖0 6 ‖x∗‖0. One may

ask that what sensing matrices and stopping conditions can ensure such a performance of

1-bit basis pursuit. Plan and Vershynin [105] proved that the approximate sparse recovery

can be achieved via the linear program (4.2.4) when the sensing matrix Φ has independent

standard normal entries. As 1-bit basis pursuit can be reformulated as a linear program,

it can be shown that solution sets of 1-bit basis pursuit and linear program (4.2.4) are
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equal under certain conditions on the matrix Φ. Thus, it motivates us to use Gaussian

matrices to test the approximate sparse recovery for 1-bit basis pursuit. Since Gopi et

al. constructed a Bernoulli-type of sensing matrix using the union free family of sets [62]

and expander graphs [81, 11] for the support recovery in [71], it encourages us to test the

support recovery for 1-bit basis pursuit via Bernoulli matrices. We will explain more why

choose Bernoulli matrix for 1-bit compressive sensing in later sections.

For the approximate sparse recovery, most recovery algorithms in 1-bit compressive

sensing use the normalized `2-norm residual defined by (5.2.1) as a criterion to verify any

approximately sparse reconstruction. As normalized `2-norm residual only demonstrates

the differences between components of signal x∗ and approximately sparse reconstruction

x, in order to capture a geometry-relationship between x∗ and x, we introduce another

stopping criterion based on the cosine value of the angle between x∗ and x to directly

visualize the geometric distance.

Let θ(t, z) be the angle between two distinct vectors t and z in Rn evaluated as follows

θ(t, z) = arccos(
〈t, z〉

‖t‖2 · ‖z‖2

).

Note that the angle reveals a natural distance between any two vectors with different

magnitudes and the cosine value of it maps the distance to a real value in [−1, 1]. Thus.

in our experiments, we use the cosine value of an angle as an alternative criterion. And we

say that 1-bit basis pursuit successfully recovers an approximately sparse vector x close

to the sparse signal x∗ if the solution x satisfies the cosine-stopping condition

cos(θ(x∗, x)) > τ, (5.3.1)

where the cosine-stopping threshold τ is a large number close to 1, such as 0.99 or 0.995.

For instance, when τ = 0.99, the angle between x∗ and x is less than 8 degree, which
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indicates that x is geometrically close to x∗.

5.3.1 Regime shifting: From underdetermined matrix to overde-

termined matrix

Following the framework of standard compressive sensing that aims to recover the sparse

signal from limited number of measurements, our first experiment is to show the perfor-

mance of 1-bit basis pursuit when the matrix Φ ∈ Rm×n with m < n has the full row

rank. In this experiment, each entry of the matrix Φ ∈ Rm×n is randomly drawn from the

standard normal distribution with fixed m = 200 and n = 1000, and the sparsity level k

of vector x∗ varies from k = 1 to k = 200 (k = m). Each reconstruction is repeated for 50

trials with generated random matrices Φ at each sparsity level. And the cosine-stopping

threshold τ is set as 0.99. The results of this experiment are shown in Figure 5.1.

Let x be the solution of 1-bit basis pursuit algorithm. Figure 5.1 demonstrates the

performance of 1-bit basis pursuit with underdetermined Gaussian matrices. We display

the performance of 1-bit basis pursuit in three ways: (i) approximate sparse recovery:

Figure 5.1(a) and 5.1(b) show the trends of two stopping criteria, i.e., the normalized

`2-norm residual and the cosine value of the angle, and Figure 5.1(d) shows the success

rate of approximate sparse recovery based on the cosine-stopping criterion; (ii) support

recovery: the success rate of finding a solution x satisfying Supp(x) ⊆ Supp(x∗) is shown

in Figure 5.1(c); (iii) cardinality recovery: the ability of 1-bit basis pursuit to solve the

problem (5.2.2) is plotted in Figure 5.1(e) . Figure 5.1(a) shows that 1-bit basis pursuit

obtains large normalized `2-norm residuals even at high sparsity level k ∈ [1, 25]. Thus,

the normalized `2-norm residual criterion is not enough for identifying an approximate

sparse solution. On the other hand, it is easy to numerically visualize the distance between

x∗ and x by the cosine-stopping criterion as shown in Figure 5.1(b). Based on the cosine-

stopping condition, it also shows in Figure 5.1(d) that 1-bit basis pursuit cannot achieve
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Figure 5.1: Performance of 1-bit basis pursuit with underdetermined Gaussian matrices at

varied sparsity levels. (a) Normalized `2-norm residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value

of the angle between x and x∗, (c) Success rate of support recovery at each sparsity level,
(d) Success rate of approximate sparse recovery at each sparsity level, and (e) Success
rate of finding a sparsest solution to the linear system (5.1.1) at each sparsity level.

the approximate sparse recovery. In addition, Figure 5.1(c) demonstrates that the support

recovery is hard to be achieved via 1-bit basis pursuit in this experiment. As the sparsity

level increases, 1-bit basis pursuit is more likely to find a sparse solution x to the linear

system (5.1.1), where x has different support patterns from the signal x∗ with ‖x‖0 6

‖x∗‖0. Conventionally, the cardinality recovery for 1-bit basis pursuit can always be

achieved provided by any matrix Φ ∈ Rm×n when the sparsity level k is large.

To observe more clearly, we zoom in Figure 5.1 in the sense that we show performances

of 1-bit basis pursuit for a random matrix Φ ∈ R200×1000 with independent standard

normal entries when k = 1 and k = 2.

We see from Figure 5.2 and Figure 5.3 that 1-bit basis pursuit can detect locations
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Figure 5.2: Performance of 1-bit basis pursuit via a Gaussian matrix Φ ∈ R200×1000 at the

fixed sparsity level k = 1. (a) Normalized `2-norm residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine

value of the angle between x∗ and x, (c) Sparse vector x∗ and its normalized value (d),
and (e) Reconstruction of 1-bit basis pursuit and its normalized value (f).

of nonzero components of sparse signal x∗. Unfortunately, the solution x of 1-bit basis

pursuit has some coefficients that are relatively small but cannot be counted as zeros.

More specifically, due to such a perturbation in the solution, when k = 1, the normalized

`2-norm residual is nearly 0.2 and the cosine value of θ(x∗, x) is around 0.98, while, when

k = 2, the normalized `2-norm residual is more than 0.35 and the cosine value of θ(x∗, x)

is around 0.94, respectively. This gives a hint why 1-bit basis pursuit may not achieve

support recovery and approximate sparse recovery in the experiment demonstrated in
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Figure 5.3: Performance of 1-bit basis pursuit via a Gaussian matrix Φ ∈ R200×1000 at the

fixed sparsity level k = 2. (a) Normalized `2-norm residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine

value of the angle between x∗ and x, (c) Sparse vector x∗ and its normalized value (d),
and (e) Reconstruction of 1-bit basis pursuit and its normalized value (f).

Figure 5.1.

The main issue that limits the performance of 1-bit basis pursuit is perturbations in

the solution. Because of the sign-mapping from a continuous space to a discrete space, it

causes perturbations in solutions to the linear system (5.1.1). In principle, `1-norm favors

sparse solutions, but 1-bit basis pursuit may pick a solution with a few small nonzero

components but having the least `1-norm.

If we dig deeper, one of sources causes perturbation-type of solutions of 1-bit basis
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pursuit is the limited number of 1-bit measurements. When the matrix Φ ∈ Rm×n with

m < n is full row rank, the null space of Φ is nonempty and contributes to the per-

turbations in the solution. To avoid such a situation, one approach is to refine the null

space of Φ such that it only contains zero element. This can be achieved when the matrix

Φ ∈ Rm×n has a full column rank, which implies that Φ may be a square or overdeter-

mined matrix. In general, having more number of 1-bit measurements forces the feasible

region of 1-bit basis pursuit narrowing towards the location of the sparse signal.

We perform the next experiment to reveal the relationship between the number of

measurements and capability of 1-bit basis pursuit. In this experiment, the sparsity level

k of vector x∗ is fixed at k = 5, and the sensing matrix Φ ∈ Rm×n is randomly drawn

from the standard normal distribution with n = 400 and varied number of measurements

from m = 50 to m = 2000 (m = 5n). At each measurements level, the reconstruction is

repeated for 50 trials with generated random matrix Φ and the cosine-stopping threshold

τ is set as 0.99. The results are shown in Figure 5.4

Figure 5.4 demonstrates that the performance of 1-bit basis pursuit on the approxi-

mate sparse recovery has improved by having more number of 1-bit measurements. This

indicates that the matrix Φ changing from underdetermined matrix to overdetermined

matrix promotes the approximate sparse recovery provided by Gaussian matrices. Specif-

ically, as the sparsity level is fixed at k = 5, in the underdetermined case like m/n = 1
4
,

1-bit basis pursuit cannot obtain any approximately sparse solutions to the linear system

(5.1.1). When the number of measurements increases to the overdetermined case like

m/n = 2.5 (m = 1000), 1-bit basis pursuit starts stably returning approximately sparse

reconstructions satisfying the cosine-stopping condition, as shown in Figure 5.4(d).

But one may argue that having a large number of measurements goes beyond the

goal of compressive sensing, to recover a sparse signal from limited measurements. Note

that the regime of compressive sensing concerns about two factors: the number of mea-
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Figure 5.4: Performance of 1-bit basis pursuit with Gaussian matrices and varied measure-

ments at the fixed sparsity level k = 5. (a) Normalized `2-norm residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
,

(b) Cosine value of the angle between x∗ and x, (c) Success rate of support recovery at
each measurements level, (d) Success rate of approximate sparse recovery at each mea-
surements level, and (e) Success rate of finding a sparsest solution to the linear system
(5.1.1) at each measurements level.

surements and the number of bit precision. The focus of compressive sensing is on the

least number of measurements but infinite bit precision, in other words, having the least

number of measurements but keeping the number of bit precision as accurate as possible.

Thus, since the focus of 1-bit compressive sensing is on the least number of bit precision,

namely, only one bit per measurement, ideally, the number of 1-bit measurements should

not be bounded. Hence, the regime of 1-bit compressive sensing including the case that
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the matrix Φ ∈ Rm×n is overdetermined is not against the regime of compressive sensing.

On the other hand, in practice, when the cost of having precise measurements is more

than the cost of increasing the number of measurements, it is practical and reasonable

to study the 1-bit compressive sensing models from a large number of coarsely quantized

measurements [24].

5.3.2 Bernoulli sensing matrices for 1-bit compressive sensing

Based on the above empirical results, another source may cause the perturbation-type

of solutions of 1-bit basis pursuit is the random Gaussian matrix. When the 1-bit mea-

surements y are coarsely quantized from measurements Φx∗, as it only stores the sign

information of the product between the sparse signal x∗ and the Gaussian matrix Φ, lim-

ited information of the sparse signal x∗ can be expressed from 1-bit measurements. To

transmit more information of the sparse signal x∗ to the 1-bit measurements and to reduce

the influence of each entry of Φ on the 1-bit measurements, it encourages us to construct

a Bernoulli-type of sensing matrix by keeping the sign of every entry of the Gaussian

matrix for improving the performance of 1-bit basis pursuit. In addition, Gopi et al. [71]

also proved that Bernoulli-type of sensing matrix can be used for the uniform support

recovery via some combinatorial algorithms. Thus, we conduct the next experiment to

show the performance of 1-bit basis pursuit with Bernoulli matrices.

In this experiment, we compare success rates of support recovery, approximate sparse

recovery and cardinality recovery via 1-bit basis pursuit with both Gaussian and Bernoulli

matrices, respectively. Based on the result shown in Figure 5.4(d), we set the dimension of

Φ as m = 1000 and n = 400. Let each entry of Φ follows the standard normal distribution

and the symmetric Bernoulli distribution {−1, 1}, respectively, and let the sparsity level

k of x∗ vary from k = 1 to k = 50. At each sparsity level, the reconstruction is repeated

for 50 trials with generated random matrices Φ, and the cosine-stopping threshold τ is
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set as 0.99. The results are depicted in Figure 5.5.
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Figure 5.5: Comparison of performances of 1-bit basis pursuit with overdetermined Gaus-
sian matrices and Bernoulli matrices at varied sparsity levels. (a) Normalized `2-norm

residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate

of support recovery at each sparsity level, (d) Success rate of approximate sparse recovery
at each sparsity level, and (e) Success rate of finding a sparsest solution to the linear
system (5.1.1) at each sparsity level.

Figure 5.5 demonstrates that 1-bit basis pursuit with Bernoulli matrices achieves sup-

port recovery, approximate sparse recovery and cardinality recovery when k ∈ [1, 10],

while 1-bit basis pursuit with Gaussian matrices only has approximate sparse recovery.

As shown in Figure 5.5(d), Gaussian matrices provide a more stable and better perfor-

mance of 1-bit basis pursuit on the approximate sparse recovery than Bernoulli matrices

when k ∈ [2, 5], while the performance of Bernoulli matrices can exceed that of Gaussian

matrices on the approximate sparse recovery when k ∈ [6, 8]. Remarkably, as shown in
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Figure 5.5(c) and 5.5(e), Bernoulli matrices outperform Gaussian matrices on both sup-

port recovery and cardinality recovery at each sparsity level. From Figure 5.5(c) and

5.5(d), we note that, in this experiment, 1-bit basis pursuit with Bernoulli matrices can

recover the sparse signal within a positive scalar when k = 1 and may find a sparser

solution within the support set of the sparse signal when k = 2.

To observe more clearly, we zoom in Figure 5.5 in the sensing that we show the solvability

of 1-bit basis pursuit for a random Bernoulli matrix Φ ∈ R1000×400 with independent sym-

metric Bernoulli ±1 entries when k = 1 and k = 2, respectively, as illustrated in Figure

5.6 and Figure 5.6.

As demonstrated in Figure 5.6, 1-bit basis pursuit can successfully find a sparse re-

construction that is positive proportional to the sparse signal. Such a result is due to the

linear independency of columns from an overdetermined Bernoulli matrix Φ. Specifically,

when k = 1, the 1-bit measurements is actually obtained from the column of Φ associated

with the nonzero coefficient of the sparse signal. Since all columns from Φ are linearly

independent, 1-bit basis pursuit can accurately detect the support set of the sparse signal

and recover the sparse signal within a positive scalar factor.

Results shown in Figure 5.7 reveal an interesting phenomenon that 1-bit basis pursuit

can find a sparser reconstruction x within the support set of the sparse signal x∗ such

that Supp(x) ⊆ Supp(x∗) and sign(Φx) = sign(Φx∗) when k = 2. This phenomenon has

also been discussed in [3, 105] through the following example. Suppose that all entries

of Φ are independent ±1 valued symmetric random variables. Then, for the vectors

x∗ = (1, 1
2
, 0, · · · , 0)T and x̂ = (1, 0, 0, · · · , 0)T , one can easily have sign(Φx∗) = sign(Φx̂).

Even if it is hard to distinguish signals x∗ and x̂ from 1-bit measurements, it is still

possible to achieve the support recovery via 1-bit basis pursuit.

Therefore, as the 1-bit measurements from the Bernoulli matrix contains more infor-

mation of the sparse signal, 1-bit basis pursuit is more likely to achieve support recovery
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Figure 5.6: Performance of 1-bit basis pursuit via a Bernoulli matrix Φ ∈ R1000×400 at the

fixed sparsity level k = 1. (a) Normalized `2-norm residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine

value of the angle between x∗ and x, (c) Sparse vector x∗ and its normalized value (d),
and (e) Reconstruction of 1-bit basic pursuit and its normalized value (f).

and cardinality recovery when the sparsity level k is small.

5.4 Enhancing the performance of 1-bit basis pursuit

In standard compressive sensing, it is well known that the Gaussian matrix is one of

’good’ matrices, which satisfies certain RIP properties with a high probability, a variety of

algorithms can find a sparse solution via Gaussian matrices in experiments. However, from
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Figure 5.7: Performance of 1-bit basis pursuit via a Bernoulli matrix Φ ∈ R1000×400 at the

fixed sparsity level k = 2. (a) Normalized `2-norm residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine

value of the angle between x∗ and x, (c) Sparse vector x∗ and its normalized value (d),
and (e) Reconstruction of 1-bit basic pursuit and its normalized value (f).

all the results shown above, 1-bit basis pursuit with Gaussian matrices performs poorly for

support recovery and approximate sparse recovery even if the matrix is overdetermined.

Such the results motivate us to consider how to enhance the behavior of 1-bit basis pursuit

with both Gaussian matrices and Bernoulli matrices. Here, we introduce two approaches

to improve the performance of 1-bit basis pursuit: the truncated 1-bit measurements

method and the reweighted 1-bit `1-minimization method inspired by the reweighted `1-

minimization for the standard compressive sensing [40, 42, 100, 66, 135, 134, 136].
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5.4.1 Truncated 1-bit measurements

In general, it is hard to have zero components in the 1-bit measurements generated from

Gaussian and Bernoulli matrices in experiments. Thus, some information of measurements

may not be accurately transmitted to the corresponding 1-bit measurements without zero

components. We will use the following examples to illustrate the necessity of having zero

components in the 1-bit measurements in experiments.

Example 5.4.1 :

For a given matrix Φ ∈ R5×10 and the signal x∗ ∈ R10 with Φ =



1.4434 1.7641 −0.7808 0.9520 2.2803 0.1464 0.1896 −1.5235 0.5265 −0.0665

−0.9239 0.4175 1.7765 0.2216 0.2388 0.4551 0.7829 −0.0186 1.8219 −0.3533

−1.3759 −0.6684 1.6528 −0.6419 −1.0060 0.8174 1.4438 −0.0821 −0.2555 0.1124

0.7818 −0.9291 1.3999 1.9165 −1.1382 0.0747 −0.0374 −1.2145 0.4200 −0.8387

−0.2621 0.4465 −0.3989 −0.6691 −0.0936 0.2502 −0.4323 −1.7792 0.5645 −0.1667


,

and x∗ = [ −0.9028, 0, 0, 0, 0, 0, 0, 0.1129, 0, 0 ], where every entry in the

matrix Φ and nonzero entries of x∗ are drawn from the standard normal distribution,

compute the measurements b and 1-bit measurements y, i.e.,

b = Φx∗ =



−1.4751

0.8319

1.2329

−0.8429

0.0357


, y = sign(Φx∗) =



−1

1

1

−1

1


.
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Compared with the measurements b, some information cannot be observed from 1-bit

measurements. For instance, 1-bit measurements for both 0.0357 and 1.2329 are 1, while

0.0357 has the least absolute value among all measurements and 1.2329 is the largest pos-

itive component in measurements. This indicates that 1-bit measurements y ∈ {−1, 1}m

ignores the diversity among measurements and unifies all positive and negative measure-

ments into 1 and −1, respectively. To accurately transport messages of measurements,

the 1-bit representations of 0.0375 and 1.2329 should be different. Hence, we artificially

include zero components in 1-bit measurements to represent some relatively small mea-

surements in experiments, for instance, the 1-bit measurement of 0.0375 in this example

can be considered as 0. And we name such an approach as the truncated sign-mapping,

defined as follows.

Definition 5.4.2 : For a matrix Φ ∈ Rm×n and a signal x ∈ Rn, the truncated sign-

mapping s̃ign : Rm 7→ {−1, 0, 1}m is defined as

s̃ign[(Φx)i] = 1 if (Φx)i > gt for any i ∈ {1, · · · ,m},

s̃ign[(Φx)i] = 0 if |(Φx)i| 6 gt for any i ∈ {1, · · · ,m},

s̃ign[(Φx)i] = −1 if (Φx)i < −gt for any i ∈ {1, · · · ,m},

(5.4.1)

where the vector g ∈ Rm consists of absolute values of all elements in Φx in an ascending

order and gt denotes the t-th component of g.

Remark 5.4.3 : gt is a threshold dividing all the measurements into three groups: abso-

lute positive measurements, absolute negative measurements and relatively small measure-

ments close to zero, such that the truncated 1-bit measurements ỹ = s̃ign(Φx) defined by

(5.4.1) has zero components defined from the relatively small measurements. To evaluate

the threshold gt, in our experiments, we set the index t as the number of relatively small

measurements, namely, t = h×m, where m is the number of measurements and h is the
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assumed percentage of relatively small measurements in total. Furthermore, the Definition

5.4.2 can be applied to any matrices with a suitable threshold.

Continuing to Example 5.4.1, we compute the truncated 1-bit measurements and compare

solutions of 1-bit basis pursuit from the 1-bit measurement and from the truncated 1-bit

measurements.

Example 5.4.4 :

For the Gaussian matrix Φ and the signal x∗ given in Example 5.4.1, let the percentage

of relatively small measurements h be 0.2, then compute the vector g, in an ascending

order of absolute values of Φz, which is

g = [ 0.0357, 0.8319, 0.8429, 1.2329, 1.4751 ]T .

As t = h ×m = 1, the threshold g1 is 0.0357. Thus, by Definition 5.4.2, the truncated

1-bit measurements becomes ỹ = s̃ign(Φz) = [ −1, 1, 1,−1, 0 ]T . According to the 1-bit

measurements y, index sets J+, J− and J0 are J+ = {2, 3, 5}, J− = {1, 4} and J0 = ∅. For

the given matrix Φ, the linear system (5.1.1) is written as


−0.9239 0.4175 1.7765 0.2216 0.2388 0.4551 0.7829 −0.0186 1.8219 −0.3533

−1.3759 −0.6684 1.6528 −0.6419 −1.0060 0.8174 1.4438 −0.0821 −0.2555 0.1124

−0.2621 0.4465 −0.3989 −0.6691 −0.0936 0.2502 −0.4323 −1.7792 0.5645 −0.1667


x > [ 1, 1, 1 ]T , 1.4434 1.7641 −0.7808 0.9520 2.2803 0.1464 0.1896 −1.5235 0.5265 −0.0665

0.7818 −0.9291 1.3999 1.9165 −1.1382 0.0747 −0.0374 −1.2145 0.4200 −0.8387


x 6 [ −1,−1 ]T .
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Hence, 1-bit basis pursuit obtains a solution

x = [ −0.7422, 0, 0, −0.4118, 0, 0, 0, −0.2280, 0.2203, 0 ].

According to the truncated 1-bit measurements ỹ, index sets J+, J− and J0 are J+ = {2, 3},

J− = {1, 4} and J0 = {5}.

For the given matrix Φ, the linear system (5.1.1) is written as

 −0.9239 0.4175 1.7765 0.2216 0.2388 0.4551 0.7829 −0.0186 1.8219 −0.3533

−1.3759 −0.6684 1.6528 −0.6419 −1.0060 0.8174 1.4438 −0.0821 −0.2555 0.1124


x̂ > [ 1, 1, 1 ]T , 1.4434 1.7641 −0.7808 0.9520 2.2803 0.1464 0.1896 −1.5235 0.5265 −0.0665

0.7818 −0.9291 1.3999 1.9165 −1.1382 0.0747 −0.0374 −1.2145 0.4200 −0.8387


x̂ 6 [ −1,−1 ]T ,[
−0.2621 0.4465 −0.3989 −0.6691 −0.0936 0.2502 −0.4323 −1.7792 0.5645 −0.1667

]
x̂ = 0.

Hence, 1-bit basis pursuit obtains a solution

x̂ = [ −1.0417, 0, 0, 0, 0, 0, 0, 0.1605, 0.0223, 0 ],

which is sparser than the solution x solved from the 1-bit measurements y. And the

normalized `2-norm residual is reduced from
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2

= 0.6609 to
∥∥∥ x∗

‖x∗‖2 −
x̂
‖x̂‖2

∥∥∥
2

=

0.0355.

Hence, we carry out the next experiment to compare performances of 1-bit basis

pursuit from the 1-bit measurements and from the truncated 1-bit measurements with

Bernoulli and Gaussian matrices, respectively. Firstly, we perform the experiment on the

Gaussian matrix. In this experiment, we choose the dimension of Gaussian matrices as
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m = 1000 and n = 400 since 1-bit basis pursuit stably returns a reconstruction x ∈ R400

with 1000 1-bit measurements in Figure 5.4(d). In each trial, we draw a Gaussian matrix

Φ ∈ R1000×400 with independent standard normal entries and set the sparsity level k of

signal x∗ to be varied from k = 1 to k = 50. The reconstruction at each sparsity level

is repeated for 50 trials with the cosine-stopping threshold τ = 0.99, and the assumed

percentage of relatively small measurements is h = 5%.
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Figure 5.8: Performance of 1-bit basis pursuit from the truncated 1-bit measurements
with overdetermined Gaussian matrices at varied sparsity levels. (a) Normalized `2-norm

residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate

of support recovery at each sparsity level, (d) Success rate of approximate recovery at
each sparsity level, and (e) Success rate of finding a sparsest solution to the linear system
(5.1.1) at each sparsity level.

The results of this experiment are plotted in Figure 5.8. Specifically, in Figure 5.8(d),

we see that the performance of 1-bit basis pursuit on the approximate sparse reconstruc-
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tion has significantly been improved by the truncated 1-bit measurements. When k = 5,

the success rate of 1-bit basis pursuit from 1-bit measurements has dropped to around

20%, while an approximately sparse vector to the sparse signal can be 100% recovered

from the truncated 1-bit measurements. Unfortunately, for Gaussian matrices, it still

seems impossible to have support recovery and cardinality recovery by the truncated

1-bit measurements method. Next, we perform the same experiment on the Bernoulli
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Figure 5.9: Performance of 1-bit basis pursuit from the truncated 1-bit measurements
with overdetermined Bernoulli matrices at varied sparsity levels. (a) Normalized `2−norm

residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate

of support recovery at each sparsity level, (d) Success rate of approximate recovery at
each sparsity level, and (e) Success rate of finding a sparsest solution to the linear system
(5.1.1) at each sparsity level.

matrix. In each trial, we draw a Bernoulli matrix Φ ∈ R1000×400 with independent sym-

metric Bernoulli ±1 entries and set the sparsity level k of signal x∗ varied from k = 2

to k = 50 (1-bit basis pursuit successfully recovers the sparse signal within a positive
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scalar by Bernoulli matrix when k = 1, hence, truncating the 1-bit measurements is not

necessary in this case). The reconstruction at each sparsity level is repeated for 50 trials

with the cosine-stopping threshold τ = 0.99, and the assumed percentage of relatively

small measurements is h = 5%. Surprisingly, the results of this experiment shown in

Figure 5.9(c) and 5.9(e) demonstrate that truncating 1-bit measurements generated from

Bernoulli matrix does not promote support recovery and cardinality recovery, while the

approximate sparse recovery has been significantly improved, as shown in Figure 5.9(d).

Based on results illustrated in Figure 5.8 and Figure 5.9, truncating 1-bit measure-

ments is not enough to promote sparsity for 1-bit basis pursuit with Gaussian and

Bernoulli matrices respectively. To further reduce perturbations and obtain sparser so-

lutions, we next introduce reweighted 1-bit `1-minimization, analogous to reweighted `1-

minimization for standard compressive sensing.

5.4.2 Reweighted 1-bit `1-minimization

In standard compressive sensing, to enhance the sparsity, an alternative to find a spars-

est solution to the linear system is reweighted `1-minimization, namely, the first order

method for solving concave approximation problems of `0-minimization [135]. Numerous

experiments have demonstrated that reweighted `1-minimization outperforms the stan-

dard `1-minimization in many situations [134, 135, 40, 66, 42, 84, 126]. Unlike the convex

approximation to ‖x‖0, some concave functions can approximate ‖x‖0 to any level of ac-

curacy, such as ‖x‖pp for 0 < p < 1 [66, 42, 84] and n −
∑n

i log(|xi|+ε)
log(ε)

for some sufficiently

small constants ε > 0 [40, 135, 126]. The idea of reweighted `1-minimization is to pro-

mote the sparsity iteratively by penalizing heavily on small components and keeping large

components of the current iterate. Specifically, reweighted `1-minimization attempts to

find a local minimum for the following problem at each iteration [135]:

xk+1 = arg min{‖diag(∇Fε(|xk|))x‖1 : Ax = b}, (5.4.2)
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where Fε(x) is a separable merit function defined as Fε(x) =
∑n

i φi(|xi|+ε) for any kernel

functions φi and the weight vector ωk = ∇Fε(|xk|) ∈ Rn
++ is defined on the current iterate

xk.

The problem (5.4.2) is a general framework of the separable reweighted `1-minimization.

Zhao and Li [135] proved that various reweighted `1-minimization algorithms can be con-

structed by merit functions satisfying Assumption 2.1 in [135] and the convergence of the

iterative scheme (5.4.2) can be guaranteed under a certain range space condition on AT .

In particular, the iterative reweighted `1-minimization proposed by Candès, Wakin and

Boyd [40] is a special case of (5.4.2) with the weight vector defined as

ωki =
1

|xki |+ ε
, i = 1, · · · , n, for a small ε > 0, (5.4.3)

where the weight vector is the gradient of the merit function Fε(x) =
∑n

i log(|xi|+ ε). In

this chapter, we refer the weight vector ωk defined in (5.4.3) as CWB weight. Needell [100]

further analyzed and proved that, under a certain restricted isometry property condition,

the error bound for the noisy reconstruction via the reweighted `1-minimization with the

CWB weight is tighter than that given by Candès [33] via the `1-minimization from noisy

measurements.

Also, the `p-norm based reweighted `1-minimization studied by Foucart and Lai [66]

is a special case of (5.4.2) with the following weight vector, e.g.,

ωki =
1

(|xki |+ ε)1−p , i = 1, · · · , n, for any 0 < p < 1, (5.4.4)

where the weight vector is the gradient of the merit function Fε(x) = 1
p

∑n
i (|xi|+ ε)p. In

this chapter, we refer the weight vector ωk defined in (5.4.4) as Wlp weight. Chen and

Zhou proved that any sequence generated by such a reweighted `1-minimization converges

to a stationary point of an `p-norm minimization problem that is an approximation of the
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`0-minimization [42]. Besides separable reweighted `1-minimization, Wipf and Nagarajan

proposed the nonseparable iterative reweighted algorithms [126]. It worths mentioning

that, instead of iteratively defining the weight vector, Zhao and Koc̆vara [134] and Zhao

and Luo [136] developed a new class of weighted `1-minimization algorithms, where the

weight vector is computed from a dual space via a certain convex optimization.

In 1-bit compressive sensing, the main obstacle to enhance the sparsity of solutions of 1-

bit basis pursuit is perturbations in solutions. Motivated by reweighted `1-minimization,

to reduce the perturbations and then further enhance the sparsity, one approach is to

construct weights via concave merit functions to force small and nonzero perturbations

tending to zero. In this chapter, we only consider the separable concave merit functions.

Based on the framework of reweighted `1-minimization (5.4.2), we introduce the so-called

reweighted 1-bit `1-minimization to find a local minimum of a concave approximation

problem that resembles the `0-problem of 1-bit compressive sensing (5.2.2) at each itera-

tion for a given 1-bit measurements y, namely,

xk+1 = arg min{‖diag(∇Fε(|xk|))x‖1 : ΦJ+,nx > eJ+ ,ΦJ−,nx 6 −eJ− ,ΦJ0,nx = 0},

(5.4.5)

where Fε(x) is a separable merit function and the weight vector ωk = ∇Fε(|xk|) ∈ Rn
++

is defined on the current iterate xk.

The reweighted 1-bit `1-minimization algorithm is formally described as follows.

Algorithm 1. (Reweighted 1-bit `1-minimization)

• Task: For a given 1-bit measurements y, find x that approximately solves

reweighted 1-bit `1-minimization: min
{
‖diag(ω)x‖1 : ΦJ+,nx > eJ+ , ΦJ−,nx 6

−eJ− , ΦJ0,nx = 0
}
, where J+,J− and J0 are index sets defined as J+ = {i : yi =

1}, J− = {i : yi = −1} and J0 = {i : yi = 0}.
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• Step 1: Let ω0 = (1, · · · , 1)T ∈ Rn and x0 = arg min
{
‖diag(ω0)x‖1 : ΦJ+,nx >

eJ+ , ΦJ−,nx 6 −eJ− , ΦJ0,nx = 0
}

be initial points.

• Step 2: At the current iterate xk with the fixed ε > 0, compute

xk+1 = arg min
{
‖diag(ωk)x‖1 : ΦJ+,nx > eJ+ , ΦJ−,nx 6 −eJ− , ΦJ0,nx = 0

}
,

where Fε(x) is a separable concave merit function and ωk = ∇Fε(|xk|).

• Step 3: Update the weight vector ωk+1 by xk+1, e.g., ωk+1 = ∇Fε(|xk+1|), and

repeat Step 2.

Note that the initialization step in Algorithm 1 implies that the initial point x0 is

actually the solution of 1-bit basis pursuit. Using the current iterate x0 to construct the

first weight vector ω1 by giving large weight to small nonzero coefficients (small nonzero

coefficients are the perturbations in x0), this tends to eliminate perturbations and helps

identify the true nonzero coefficient locations. Following this argument, compared with

1-bit basis pursuit, Algorithm 1 may achieve a better estimation of nonzero locations of

the sparse signal. In this section, to show the improvement provided by the reweighted

`1-minimization method, we compare performances of 1-bit basis pursuit and reweighted

1-bit `1-minimization methods with the following weight vectors, e.g.,

• Candès-Wakin-Boyd (CWB) reweighted 1-bit `1-minimization method [40]

xk+1 = arg min
{
ωk

T |x| : ΦJ+,nx > eJ+ , ΦJ−,nx 6 −eJ+ , ΦJ0,nx = 0
}
,

where ωki = 1
|xki |+ε

for i = 1, · · · , n;
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Figure 5.10: Performance of CWB reweighted 1-bit `1-minimization with overdeter-
mined Gaussian matrices at varied sparsity levels. (a) Normalized `2-norm residual∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate of support

recovery at each sparsity level, (d) Success rate of approximate recovery at each sparsity
level, and (e) Success rate of finding a sparsest solution to the linear system (5.1.1) at
each sparsity level.

• Wlp reweighted 1-bit `1-minimization method [66]

xk+1 = arg min
{
ωk

T |x| : ΦJ+,nx > eJ+ , ΦJ−,nx 6 −eJ+ , ΦJ0,nx = 0
}
,

where ωki = 1
(|xki |+ε)1−p for i = 1, · · · , n and 0 < p < 1;

• NW2 reweighted 1-bit `1-minimization method [135]

xk+1 = arg min
{
ωk

T |x| : ΦJ+,nx > eJ+ , ΦJ−,nx 6 −eJ+ , ΦJ0,nx = 0
}
,
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where ωki =
q+(|xki |+ε)1−q

(|xki |+ε)1−p[|xki |+ε+(|xki |+ε)q ]1−p for i = 1, · · · , n and 0 < p, q < 1.

Remark 5.4.5 : The NW2 reweighted `1-minimization proposed in [135] performs well

in finding a sparsest solution to the linear system (5.1.1), which is quite comparable to the

Wlp reweighted `1-minimization in certain situations. Hence, we also consider the NW2

reweighted 1-bit `1-minimization in this section (For more examples of weight vectors, see

[135, 134] and other reweighted `1-minimization methods in the literature).

Additionally, for all the experiments in this section, we set the cosine-stopping threshold

τ = 0.995 and ε = 10−3 in all weight vectors. We perform a total of 5 reweighting iterations

for every reweighted 1-bit `1-minimization method. Firstly, we test the CWB reweighted

1-bit `1-minimization method on both Gaussian and Bernoulli matrices. To show the

improvement, we compare performances of CWB reweighted 1-bit `1-minimization and

1-bit basis pursuit. In this experiment, the dimension of matrix Φ is set as m = 1000 and

n = 400 in each trial, and each entry of Φ is randomly drawn from either the standard

normal distribution or the symmetric Bernoulli distribution {−1, 1}, and the sparsity level

k of x∗ varies from k = 1 to k = 40. At each sparsity level, the reconstruction is run by

5 CWB reweighting iterations and repeated for 50 trials with generated random matrices

Φ. The results are shown in Figure 5.10 and Figure 5.11 respectively.

As demonstrated in Figure 5.10 and Figure 5.11, success rates of approximate sparse

recovery on both Gaussian matrix and Bernoulli matrix have been significantly improved

by CWB reweighted 1-bit `1-minimization method at each iteration. Note that most of

the improvement comes from the first and second reweighting iterations. In particular,

in Figure 5.11(c) and 5.11(e), the sparsity level of the sparse reconstruction given by

Bernoulli matrices has been enhanced at each iteration. Note that, in Figure 5.10, success

rate of support recovery is 4% when k = 1, and success rates of cardinality recovery are

4% when k = 1 and 2% when k = 6, 9. But such a random result is not convincible to
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Figure 5.11: Performance of CWB reweighted 1-bit `1-minimization with overdeter-
mined Bernoulli matrices at varied sparsity levels. (a) Normalized `2-norm residual∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate of support

recovery at each sparsity level, (d) Success rate of approximate recovery at each sparsity
level, and (e) Success rate of finding a sparsest solution to the linear system (5.1.1) at
each sparsity level.

claim that the CWB weight can improve the performance of 1-bit basis pursuit on support

and cardinality recovery provided by Gaussian matrices.

Using Wlp and NW2 reweighted 1-bit `1-minimization methods, we perform the same

experiment as for CWB reweighted 1-bit `1-minimization method detailed above. Due

to the fixed ε in all experiments, performances of Wlp and NW2 reweighted 1-bit `1-

minimization methods are based on parameters p and q. In numerical experiments, we

notice that Wlp and NW2 reweighted 1-bit `1-minimization methods perform well when

p is small and q is large. And also notice that performances of Wlp and NW2 reweighted
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Figure 5.12: Performance of Wlp reweighted 1-bit `1-minimization with overdeter-
mined Gaussian matrices at varied sparsity levels. (a) Normalized `2-norm residual∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate of support

recovery at each sparsity level, (d) Success rate of approximate recovery at each sparsity
level, and (e) Success rate of finding a sparsest solution to the linear system (5.1.1) at
each sparsity level.

1-bit `1-minimization methods resemble the performance of CWB reweighted 1-bit `1-

minimization method for small p and large q. In our experiments, we choose p = 0.01

and q = 1− p = 0.99 for Wlp and NW2 reweighted 1-bit `1-minimization methods.

Figure 5.12 and Figure 5.13 depict performances of Wlp reweighted 1-bit `1-minimization

with p = 0.01 from Gaussian and Bernoulli matrices. And Figure 5.14 and Figure 5.15

depict performances of NW2 reweighted 1-bit `1-minimization with p = 0.01 and q = 0.99

from Gaussian and Bernoulli matrices. Specifically, the Wlp weight and the NW2 weight

show the ability to enhance the sparsity on support recovery and cardinality recovery,
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Figure 5.13: Performance of Wlp reweighted 1-bit `1-minimization with overdeter-
mined Bernoulli matrices at varied sparsity levels. (a) Normalized `2-norm residual∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate of support

recovery at each sparsity level, (d) Success rate of approximate recovery at each sparsity
level, and (e) Success rate of finding a sparsest solution to the linear system (5.1.1) at
each sparsity level.

and to boost the approximate sparse recovery at each iteration provided by Bernoulli

matrices in Figure 5.13 and Figure 5.15. In experiments, results shown in Figure 5.12(c)

and 5.12(e), and Figure 5.14(c) and 5.14(e) demonstrate that Wlp and NW2 reweighted

`1-minimization methods can also detect some random successes of support recovery and

cardinality recovery at extremely high sparsity level. To further investigate such a phe-

nomenon, more theoretical analysis and experiments can be studied.

To sum up, in this chapter, we have revealed the ability of 1-bit basis pursuit in three

ways: support recovery, approximate sparse recovery and cardinality recovery. Also, we
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Figure 5.14: Performance of NW2 reweighted 1-bit `1-minimization with overdeter-
mined Gaussian matrices at varied sparsity levels. (a) Normalized `2-norm residual∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate of support

recovery at each sparsity level, (d) Success rate of approximate recovery at each sparsity
level, and (e) Success rate of finding a sparsest solution to the linear system (5.1.1) at
each sparsity level.

have numerically demonstrated that Gaussian matrix and Bernoulli matrix can be used

for 1-bit compressive sensing. Especially, the Bernoulli type of sensing matrix performs

well on support recovery and cardinality recovery while Gaussian matrix works well on

approximate sparse recovery. Additionally, we have numerically demonstrated that the

regime of 1-bit compressive sensing can include the overdetermined linear system. Last

but not least, we have introduced truncated 1-bit measurements method and reweighted

1-bit `1-minimization methods to improve the performance of 1-bit basis pursuit. Par-

ticularly, we have illustrated that the sparsity level of the solution of 1-bit basis pursuit
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Figure 5.15: Performance of NW2 reweighted 1-bit `1-minimization with overdeter-
mined Bernoulli matrices at varied sparsity levels. (a) Normalized `2-norm residual∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) Cosine value of the angle between x∗ and x, (c) Success rate of support

recovery at each sparsity level, (d) Success rate of approximate recovery at each sparsity
level, and (e) Success rate of finding a sparsest solution to the linear system (5.1.1) at
each sparsity level.

can be enhanced by reweighted 1-bit `1-minimization, analogous to the reweighted `1-

minimization for standard compressive sensing.
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Chapter 6

Conclusions and Future Work

Sparse recovery lies at the heart of compressive sensing, acquiring a sparse representation

of a signal from a limited number of measurements or noisy measurements. In particu-

lar, various recovery algorithms are developed to recover the exact or approximate sparse

signal under certain conditions. Based on the theoretical analysis for the standard com-

pressive sensing and basis pursuit methods (e.g., `1-minimization), we study two special

applications in compressive sensing: the partial `0-minimization problem and the 1-bit

compressive sensing problem.

Partial sparsity-seeking. In chapter 3, we have developed sufficient conditions for

the uniqueness of solutions of partial `0-minimization, where the `0-minimization is a

special case of partial `0-minimization. Based on the well-founded uniqueness properties

for `0-minimization, we have shown that the sufficient conditions can be developed through

the `p-induced quasi-norm, the maximal scaled spark and the maximal scaled mutual

coherence. We notice that the study of a certain sparse recovery for the partial `0-

minimization is still incomplete. This leads to a number of future works. First, a certain

level of uniform recovery via partial recovery models introduced in chapter 3 are ensured

under the so-called partial RIP, partial NSP and partially p-RIC conditions. It would

be interesting to study and derive the uniqueness conditions for solutions of these partial
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recovery models and the corresponding recovery conditions from a new perspective, such

as the range space property. And some experiments could be carried out to analyze the

performance of these partial recovery models. Second, it is worth discussing whether it

is possible to derive recovery conditions for a certain level of sparse recovery for partial

`0-minimization without the full-column rank assumption on matrix A2.

1-bit compressive sensing. The main contribution of this thesis is the development

of a framework for 1-bit compressive sensing and the support recovery conditions based

on the restricted range space property (RRSP). In this framework, 1-bit compressive

sensing can be interpreted as solving an `0-minimization problem that are subject to a

sign constraint. Specifically, we have shown that such a 1-bit framework can be formulated

equivalently as an `0-minimization problem with linear equality and inequality constraints.

And a decoding method, so-called 1-bit basis pursuit, is developed for possibly attacking

this 1-bit `0-minimization problem. The recovery theories for 1-bit basis pursuit are

established through the restricted range space property (RRSP) of transposed sensing

matrices. Also, the RRSP-based conditions ensure the nonuniform and uniform support

recoveries for 1-bit compressive sensing. It is worth stressing that the 1-bit `0-minimization

and the RRSP-based theories have broadened the horizon of the investigation of 1-bit

compressive sensing. This stimulates a few works to study in the future. First, showing

the existence of RRSP matrices, we plan to prove that some random matrices may have

certain RRSP properties with a high probability. Second, we plan to construct and study

other reformulations of 1-bit compressive sensing. Moreover, we will develop a framework

for the noisy 1-bit compressive sensing and extend the RRSP-based analysis to achieve a

certain level of sparse recovery for the noisy 1-bit compressive sensing.

Our numerical experiments in chapter 5 have shown that 1-bit basis pursuit obtains

support recovery from Bernoulli matrices and approximate sparse recovery from Gaussian

matrices. Now, the main problem with the current simulations is that most experiments
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Figure 6.1: Comparison of performances of 1-bit basis pursuit with underdetermined
matrices Φ ∈ R200×1000 at varied sparsity level, where every entry of Φ follows the standard
normal distribution and the symmetric Bernoulli distribution {−1, 1}, respectively. (a)

normalized `2-norm residual
∥∥∥ x∗

‖x∗‖2 −
x
‖x‖2

∥∥∥
2
, (b) cosine value of the angle between x∗

and x, (c) success rate of support recovery at each sparsity level, (d) success rate of
approximate sparse recovery at each sparsity level, and (e) success rate of finding a sparsest
solution to the linear system (5.1.1) at each sparsity level.

performed in this thesis are concerned with overdetermined matrices rather than underde-

termined matrices due to the single-bit measurements. We notice that 1-bit basis pursuit

can achieve both support recovery and approximate sparse recovery with underdetermined

Bernoulli matrices when the signal is extremely sparse, while 1-bit basis pursuit can barely

achieve any type of recoveries with underdetermined Gaussian matrices in this case, as

shown in Figure 6.1. It motives us to study the measurement bounds for 1-bit compres-

sive sensing with respect to Gaussian matrices and Bernoulli matrices on support recovery

and approximate sparse recovery separately in the future. In addition, we have considered
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two approaches to improve the performance of 1-bit basis pursuit: the truncated 1-bit

measurements method and the reweighted 1-bit `1-minimization method. The former is

designed to cope with the inaccurate 1-bit representations in experiments and the latter

is designed to enhance the sparsity level of solutions. Based on our numerical results,

remarkably, reweighted 1-bit `1-minimization methods have significantly promoted suc-

cess rates of support recovery and approximate sparse recovery with Bernoulli matrices.

To theoretically analyze such results, we need to further study and characterize the con-

vergence of reweighted 1-bit `1-minimization problems. Also, it would be interesting to

develop other reweighted 1-bit `1-minimization problems (for instance, the weight vector

is computed from a dual space via a certain convex optimization [134]), or some greedy

recovery algorithms to achieve either support recovery or approximate sparse recovery

from 1-bit compressive measurements.
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