
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

125,000 140M

TOP 1%154

5,000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/335288231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Chapter

Design of Intelligent and Open
Avionics System Onboard
Changqing Wu, Xiaodong Han and Yakun Wang

Abstract

The continuous development of space missions has put forward requirements
for high performance, high reliability, intelligence, effective integration, min-
iaturization, and quick turn around productization of the electronic system of
satellites. The complexity of satellites has continued to increase, and the focus of
satellite competition has shifted from the launch of success shifts to communica-
tion capacity, performance indicators, degree of flexibility, and continuous service
capabilities. So, the importance of onboard avionics system is becoming increas-
ingly prominent. In the future, the advanced avionics system integrates most of the
platform’s electronic equipment. The design level of the system largely determines
the performance of the satellite platform. This chapter focuses on the applica-
tion requirements of the new generation of intelligent avionics system for future
communication satellites and adopts an “open” architecture of “centralized manage-
ment, distributed measurement and drive, and software and hardware ‘modular’
design” to build a universal, standardized, and scalable intelligent avionics system.

Keywords: satellite, avionics system, intelligent, open architecture, modular design,
centralized management, reliability

1. Introduction

With the continuous advancement of electronics and computer technology, the
functions and performance of spacecraft avionics system have also continuously
improved, covering functions such as spacecraft remote measurement and remote
management, energy management, thermal management, health management,
payload information processing, and mission task management. Avionics system
plays a core role in the realization of information sharing and comprehensive
utilization, function integration, resource reorganization and optimization, and
information processing and transmission [1]. It is the foundation for spacecraft to
implement autonomous management and control and is also a bridge for communi-
cation management from a spacecraft to other spacecrafts and ground station [2].

The traditional spacecraft electronic system uses a layered centralized manage-
ment control mode similar to a pyramid. It not only needs a large amount of data
interaction between the management unit and the interface unit but also requires
the management unit to process a large amount of underlying data, which makes
the management unit overwhelmed. It severely limits the processing and support of
high-level tasks by electronic systems. Moreover, the management unit is at the top
of the “pyramid” of centralized management, which requires high reliability. Once

Satellite Systems - Design, Modeling, Simulation and Analysis

2

a failure occurs, the entire electronic system will fail. Thus, the centralized manage-
ment method is no longer suitable for the needs of spacecraft development.

The satellite intelligent avionics system is an information processing and trans-
mission system that uses computer network technology to interconnect satellite-
borne electronic equipment on the satellite to achieve internal information sharing
and comprehensive utilization, function integration, and resource reorganization
and optimization. Utilizing onboard computers to complete satellite data manage-
ment, control management, communication management, time management,
energy management, and job management functions through unified scheduling of
satellite missions. Its essence is the generation, identification, processing, analysis,
transmission, and distribution of information process. The integrated satellite
electronic system integrates the functions of the satellite platform electronic
equipment, and its design level directly determines the performance of the satellite
platform [3–5].

At present, satellite sub-systems mostly adopt independent design schemes,
which decentralize satellite attitude control, propulsion control, thermal control,
satellite-ground link communication, and power control functions. The onboard
computer is responsible for tasks such as remote control, telemetry, program-
controlled operation, thermal control, and time management. The attitude and
orbit control computer are responsible for attitude and orbit (including propulsion
control) control. Each sub-system such as power supply, thermal control, and
digital transmission is equipped with corresponding lower-level computers respon-
sible for telemetry acquisition and remote control of the respective sub-system.
However, the satellite system designed using this approach is usually resulting in
heavy weight, high power consumption, large volume (aka high size, weight, and
power (SWAP)), complex interface relationships, weak system reconfiguration
capabilities, and low functional density. In order to overcome the abovementioned
shortcomings and make the satellite avionics system better meet the SWAP and
flexible system configuration requirements of future missions, it is necessary to
improve its design technology, that is, from the current independent design of each
sub-system to the open and modular design of the entire satellite. Based on the prin-
ciple of unified application, deployment and operation of hardware resources, and
the full use of the various functions of the software, the information sharing of the
entire satellite, simple system configuration, and overall performance optimization
are realized.

This chapter focuses on the application requirements of the new generation of
intelligent avionics system for future communication satellites, and adopts an open
architecture of “centralized management, distributed measurement and drive, and
software and hardware modular design.” The universal, standardized, and scalable
intelligent avionics system is built based on the basic modular elements of open
hardware modules, open software components, and industry standardized internal
and external busses.

2. System structure

This section introduces the intelligent open system architecture, including
Sections 2.1, 2.2, 2.3, and 2.4. Section 2.1 introduces the overall architecture
design; the system adopts the distributed design mode and completes the intel-
ligent management of onboard tasks through the menu hardware architecture
and open interface protocol. Section 2.2 discusses the hardware architecture of
high-performance computing and introduces the onboard high-performance
computing and the corresponding storage capacity from the main functions,

3

Design of Intelligent and Open Avionics System Onboard
DOI: http://dx.doi.org/10.5772/intechopen.93141

processing, storage, and radiation resistance. Section 2.3 describes the dynamic
state reconfigurable task scheduling that improves the fault tolerance ability of the
satellite network in view of the typical scenarios of the satellite integrated elec-
tronic system in the operation process. Section 2.4 discusses the design of software
partition protection mechanism related to the next-generation avionics system
and analyzes the requirements, design, and functions of partition protection,
aiming to improve the robustness of the software system.

2.1 Overall architecture design

The architecture of the newly proposed next generation of intelligent com-
munication satellite avionics system is shown in Figure 1. The avionics system
architecture (ASA) is designed as a data bus (DB)-based real-time distributed
computer system. ASA consists of one Satellite Management Unit (SMU), one
Platform Integrated Services Unit (PFISU), one Payload Integrated Services Unit
(PLISU), and a set of DB and auxiliary software. The SMU is the core of the avion-
ics system. ASA controls the PFISU and PLISU by DB and connects with Telemetry
and Telecommand Unit (TTU) to receive commands and send the telemetry data.
PFISU and PLISU are the execution parts of the avionics system. PFISU and PLISU
are used to command driver, signal sample, power distribution, heater control,
pyrotechnic management, and interface management. To improve the reliability of
avionics system, the SMU, PFISU, and PLISU will have built in redundancies. This
avionics system supports the functions of satellite on-orbit dynamic registration,
spatial data interaction, and routing and can solve the problem of user-oriented and
task-oriented opening of satellite system.

2.2 High-performance computing hardware architecture

As the amount of data generated by satellite electronic equipment continues
to increase, a large amount of data processing requirements place higher require-
ments on satellite information processing capabilities. The avionics system is the

Figure 1.
Avionics system architecture diagram for satellite communication system.

Satellite Systems - Design, Modeling, Simulation and Analysis

4

information core of the whole satellite, especially for the requirements of intelligent
satellite systems. Research on the realization of high-performance computing of
avionics systems is an inevitable requirement [6–7]. In order to improve the com-
puting capacity of the avionics system, a high-performance onboard processor is
utilized. The following introduces onboard high-performance computer from four
aspects: main functions, processing, storage, and anti-irradiation.

i. Main functions:

• Uses redundant onboard computer supporting on-orbit reconstruction
and reconfiguration for highly reliable avionics system.

• Supports Consultative Committee for Space Data Systems (CCSDS)
telemetry and telecommand with optional radio-frequency channels. This
feature allows the proposed intelligent avionics system design to be open
interface using widely acceptable industry standards.

• Uses interface with external unit. Provide a brief description why is this
important function.

• Provides secondary power distribution and discrete instructions to exter-
nal units. Provide a brief description why is this important function.

ii. High-performance processors:

• 215 Dhrystone Million Instructions executed Per Second (DMIPS) and
floating-point arithmetic unit

• L1 instruction cache and L1 data cache with Error Correcting Code (ECC)
function

• Internal Random Access Memory (RAM), FLASH, and Electrically
Erasable Programmable Read-Only Memory (EEPROM), with ECC
function

• Contains basic software: BIOS and startup software

iii. High-performance memory:

• Volatile: 192 MB SDRM CPU, with error detection function

• Volatile: 64 MB SDRM IO, with ECC function

• Nonvolatile: 4GB FLASH, with ECC function

iv. Radiation resistance:

• Spaceborne components will not be locked due to space radiation.

• Dual-core processor lockstep technology is used for error detection.

• All memories have ECC function (RS code or EDAC).

5

Design of Intelligent and Open Avionics System Onboard
DOI: http://dx.doi.org/10.5772/intechopen.93141

Among them, the “lockstep” technology is a fault-tolerant computing technol-
ogy. This technology uses the same, redundant hardware components and processes
the same instructions at the same time. The core idea is to keep multiple central
processing units (CPUs) and memories executing the same instructions accurately
and synchronously by running synchronous comparisons in operation to improve
the fault-tolerant computing capability of the avionics system.

2.3 Dynamically reconfigurable task scheduling

The two typical scenarios usually encountered by satellite avionics systems during
operation are (a) a node fails or requires functional reorganization so that some tasks
on this node need to be migrated to other nodes through the network and (b) the
resource occupancy rate of a node is too high so that some tasks on this node will be
migrated to other relatively idle nodes for execution. The avionics system is designed
with networked real-time multitasking distributed system software, which can also
implement dynamic reconfiguration of functions and task scheduling. The embed-
ded system software running on each node in the network supports not only the local
real-time multitasking scheduling but also the network operation capability. The avi-
onics system supports function modification and function migration between nodes,
which realizes the transformation to software-defined satellite functions, reduces the
differences in hardware products, improves the fault tolerance of the intra-satellite
network, and also meets the growing needs of intra-satellite networking [8].

The avionics system networked real-time multitasking distributed system
software is shown in Figure 2 and has the following characteristics:

• Application tasks are directly oriented to users. In order to complete a top-level
function in a specific domain, the tasks are decomposed into functions of
appropriate granularity. The software functions that multiple tasks will use are
called domain public services. It is called public services in multiple fields, has
a clear interface definition, can complete certain functions relatively indepen-
dently, and adds service registration, management, control, and governance
to provide strong support for space application tasks. The user’s service

Figure 2.
Networked real-time multitasking distributed system software.

Satellite Systems - Design, Modeling, Simulation and Analysis

6

composition capability, that is, when the business needs of the day change and
the service call is adjusted, can support the user to quickly combine services
and form a new business process [9].

• The middleware layer serves as a transition layer between the above and the
next [10]. By combining the characteristics of the tasks of each layer, the
corresponding theme is designed, and the publish-subscribe technology is
used to provide the entire application layer with access to various resources in
the basic resource layer. The software layer implements operating system and
communication protocol level shielding through the packaging of thread tasks,
synchronization resources, memory access, IO operations, Ethernet, shared
memory, and fiber-optic communications, providing access to the hardware
device layer. By virtualizing the calculation, storage, and network resources
of the basic resources, the basic resources as a service are realized, and the
availability and scalability of the hardware resources are guaranteed. At the
same time, the software is dynamically deployed for the hardware of the basic
resources, including the automation of basic software and application software
installation settings, maintenance and upgrades, etc., and provides the system
with general basic services such as system reconstruction, software fault toler-
ance, data management, subscription release, etc.

2.4 Software partition protection mechanism design

i. Partition protection requirements

Avionics systems can implement multiple functions to share resources. The
functional entities (which can be software modules, hardware modules) that
share resources are called partitions. The partitions of the original avionics system
shared resources, but sharing would bring potential problems described below:

• Multi-partition shared memory and IO: if one partition accidentally or
maliciously rewrites the memory and IO of other partitions, it will cause
the rewritten partition to fail.

• Multi-partition shared processor time: if a partition maliciously takes up
processor time due to a failure, the related partition will crash.

• Multiple partitions share the same communication link: if a partition
occupies channels too much, it will affect the bandwidth and real-time
performance of other partitions.

Therefore, the design of system software architecture of the avionics system
should meet the reliable partition protection to avoid the above problems.

ii. Partition protection design

The partition protection design of onboard system software in avionics
systems includes the following three aspects:

• Space protection. For processors with Memory Management Unit (MMU)
support, such as X86 processors, it is stipulated that the partition itself
cannot directly access physical memory, and only virtual memory can be
accessed through the MMU memory mapping table configured for each

7

Design of Intelligent and Open Avionics System Onboard
DOI: http://dx.doi.org/10.5772/intechopen.93141

partition by system software. For processors without MMU support, tak-
ing the Scalable Processor Architecture (SPARC) processor as an example,
during partition initialization, the system software protects the SRAM by
setting the privileged register to achieve partition space isolation.

• Inter-partition communication. Inter-division communication is another
important content of partition space protection. Inappropriate inter-
partition communication mechanisms can cause mutual interaction
between partitions. ARINC-653 specification provides a communication
mechanism that does not affect each other. Inter-partition communica-
tion within a single processor includes a memory buffer mechanism and
a blackboard mechanism. The buffer mechanism mainly provides data
communication between partitions, and the blackboard mechanism
mainly provides sampling services between partitions. Taking the buffer
mechanism as an example, the protection mechanism for inter-partition
communication is the following: (1) The core system software allocates an
inter-partition communication buffer (size, permission, and connection
relationship between buffers) for each partition according to the blueprint
information. Only the own buffer can be accessed. (2) The core system
software manages the resources for communication between partitions in
the privileged state and copies the information in the source buffer to the
destination buffer according to the blueprint information.

• Partition time protection. Its strategies include the following: (1) The basic
unit of scheduling is partitioning, and partition scheduling has no priority.
The Main Time Frame (MTF) is used to statically define the scheduling
order of each partition and the proportion window size. MTF is one of the
blueprint contents. The core system software is configured according to
the MTF, and multiple partitions are scheduled in a cyclic manner. (2) The
resources (such as timers, stacks, and memory) and blueprints required
for partition scheduling are in a privileged state, and the user partition
cannot overwrite the partition scheduling resources.

iii. Advantages of partition protection

• Blueprint only registers the interfaces on the modules and then mounts
them on the app as a whole. The purpose of blueprint itself is to organize
the parallel coexistence of multiple modules and avoid registering modules
directly on the app. In fact, it is more convenient for development and code
maintenance, because ultimately all interfaces on views are still directly
mounted on the app, which corresponds to the entire application; there is
no obvious difference [11].

• Blueprint is not a pluggable application, because it is not a real application,
but a set of operations that can be registered in the application and can be
registered multiple times.

• At the same time, we cannot use multiple objects to manage and register,
because this will cause each object to have its own configuration, which is
not easy to manage.

• With blueprint, the application will be managed in the flask layer, share
the configuration, and change the application object on demand through

Satellite Systems - Design, Modeling, Simulation and Analysis

8

registration. The disadvantage of blueprint is that once an application is cre-
ated, it can only be unregistered by destroying the entire application object.

3. Menu system composition

Based on the menu design idea, the avionics system can realize the sharing
of hardware modules and resources, task migration, and system reconstruction,
enhance the tolerance and processing ability of the avionics system for faults,
significantly improve the development efficiency and productization degree of
the integrated electronic system, and make the integrated electronic system highly
reliable. The intelligent spacecraft provides the necessary technical support, mainly
including the contents that will be presented in the subsequent sections [12].

3.1 Satellite management unit

The Satellite Management Unit is an improved satellite research equipment. The
design fully draws on the advantages of the previous satellite platform and has been
optimized and expanded. The main completed functions are as follows:

i. Telecommand function: The SMU receives the telecommand instructions
from the TTU and completes the distribution of the instructions.

ii. Telemetry function: The SMU collects its own telemetry and receive the indi-
rect telemetry parameters collected by the bus terminal equipment through
the 1553B bus. The SMU complete the framing processing according to the
CCSDS standard and transmit it to the TTU through the serial port.

iii. Satellite autonomous management function: Using application software
running on the SMU, functions such as energy management, thermal
management, bus management, payload management, and pyrotechnics
management are realized.

iv. On-orbit maintenance function: For the temporary adjustment of control
parameters during the execution of on-orbit tasks, the SMU is able to modify
the control parameters of the software. It also supports onboard software
maintenance function of onboard software, which can realize the update and
recovery of software modules.

v. Important data saving function: The SMU can periodically save and maintain
important data of satellite sub-systems. When the internal configuration of
the relevant sub-system changes or the corresponding module restarts, the
SMU can send the important data stored internally to the corresponding
module. Besides, when the SMU is reset or switched off, the SMU can restore
the current working state through the important data.

vi. Fault Detection Isolation and Recovery (FDIR) function: The SMU provides
the operating platform for satellite FDIR [13]. When the SMU is healthy, the
SMU monitor key information such as the entire satellite’s energy and thermal
control. The SMU detects various failure conditions in real time and performs
troubleshooting through the direct remote command interface or through the
1553B bus. The FDIR of the control sub-system is completed by the attitude
control computer. Note that the most advanced 1553B bus can handle data rate

9

Design of Intelligent and Open Avionics System Onboard
DOI: http://dx.doi.org/10.5772/intechopen.93141

up to 10 Mbps. For data rate higher than 10 Mbps, industry trend is moving
toward SpaceWire data bus that can handle data rate up to 400 Mbps.

The SMU adopts the dual-machine cold backup working mode. In the case of the
autonomous switching enabled, when the on-duty machine fails, the failure-tolerant
module automatically completes the switch of SMU and power off the faulty
machine. In the case of the autonomous switching not enabled, when the on-duty
machine fails, the power failure and machine switch is conducted by ground station.

3.2 Integrated service unit

The Integrated Service Unit (ISU) adopts modular hardware design [14, 15].
Each functional module is connected to the “bus interface management module”
through an internal bus, which uses widely acceptable data bus such as 1553B bus.
The ISU is mainly composed of a bus interface management module, a matrix
instruction and matrix telemetry module, and an analog quantity acquisition and a
discrete instruction output module.

The menu module is mainly composed of a bus interface management module,
a matrix acquisition and command module, and an information acquisition and
command module [16]. The module menu is shown in Table 1 below.

The functions of each module are also modularized. The capability of each
module is shown in Table 2.

After the module design is completed, the number of modules is determined
according to the task requirements. Then, complete the assembly according to the
standard interface. The number of modules menu is shown in Table 3.

3.3 Data bus network

The data bus network is the information transmission hub of the avionics
system. Through the data bus network, distributed data acquisition, and instruction
output, centralized operation and control are implemented, thereby improving the
efficiency of system processing. The avionics system first-level bus is 1553B bus [17].
Note that for data rate higher than 10 Mbps, SpaceWire data bus is recommended.

Data exchange between SMU and ISU and other equipment realized through
1553B bus. The master–slave response mode of the 1553B bus is used to transmit
platform command data and telemetry acquisition data. In the data exchange
process of the first-level bus, the SMU always acts as the controller of the 1553B bus

Functions Module menu

Telemetry/telecommand Acquisition and Command-A module (AA)

Acquisition and Command -B module (AB)

Matrix acquisition and command module (AC)

Temperature acquisition High-voltage heater control module (HH)

Low-voltage heater control module (LH)

Heater and distribution module (HD)

Pyrotechnic management Pyrotechnic management module (CA)

Bus data transmission 1553B bus

Table 1.
Function module list.

Satellite Systems - Design, Modeling, Simulation and Analysis

10

and initiates the communication. ISU and other equipment, as the RT end, receive
instructions and send collected telemetry data to the SMU.

4. Failure detection isolation and recovery (FDIR) design

In order to achieve autonomous and healthy operation of the satellite, the intel-
ligent satellite system uses the FDIR software to monitor the status of the satellite in
real time and diagnose and predict its working status and performance trends [18].
When a failure occurs, the FDIR software can locate the failure in time and deter-
mine which components are not working normally or the performance is degraded.

4.1 FDIR design goals and principles

Design goals:

i. Satellites can survive if any failure occurs.

Demand Quantification AA AB AC CA

Pyrotechnics management 80 2

High current instruction 30 1

Low current instruction 100 1

Analog acquisition 220 2 2

Matrix acquisition 550 2

Total (take the maximum) 2 2 2 2

Table 3.
Menu-style design.

Module Module capabilities

AA Analog/temperature measurement acquisition channel

Small current discrete command output

High current command drive circuit

AB Analog/temperature measurement acquisition channel

Small current discrete instructions

Bi-level quantity acquisition

AC Matrix instructions

Switch status acquisition

HH High-pressure heater power distribution

Temperature measurement collection

LH Low-voltage heater power distribution

Temperature measurement

HD High-voltage instrumentation and power distribution

High-pressure heater power distribution

Temperature measurement

CA Pyrotechnic management

Table 2.
Modularized functions.

11

Design of Intelligent and Open Avionics System Onboard
DOI: http://dx.doi.org/10.5772/intechopen.93141

ii. When a failure occurs, try to extend the mission time of the satellite and
reduce the loss of mission interruption.

iii. The life of the satellite should be guaranteed: optimize fuel consumption and
minimize system configuration and component losses.

The above three principles apply to the launch phase, the transfer orbit phase,
and the on-orbit phase.

FDIR is an important component of the onboard software, which can perform
on-orbit processing of failures, thereby reducing the impact of failures. However,
not all on-orbit failures can be detected and processed. FDIR design should follow
the following principles:

i. FDIR processing follows the single failure principle, that is, only one failure
is processed at a time.

ii. Failures are divided into 0 to 4 levels according to their impact on satellites.

iii. The higher the failure level, the higher the processing priority. During a
failure processing, if a higher-level failure occurs, the higher-level failure is
processed first.

iv. The failures of the same level are processed in the order of occurrence.

v. All FDIR processing requires failure recovery instructions and failure
processing records.

4.2 Failure levels

According to the impact of the failure on the satellite operation, the failure is
categorized as follows:

i. System-level failure: failures that damage the functions and performance of
the satellite system.

ii. Sub-system-level failure: the functions of the sub-system cannot be or are
partially completed, or the main performance indicators and parameter val-
ues of the sub-system exceed the range required by the sub-system design.
But it does not affect the main functions and performance of the system.

iii. Equipment-level failure: equipment functions cannot complete the main
performance indicators, or parameter values exceed the range of equipment
design requirements. But it does not affect the main functions and perfor-
mance of the system.

iv. Module-level failure: a failure in which the module function cannot be
completed, or the main performance indicators and parameter values exceed
the range required by the component design. But it does not affect the main
function and performance of the equipment.

According to the possible impact on components, functions, and systems,
FDIR is designed for five failure levels from levels 0 to 4, according to the different
sub-systems that each failure belongs to, including measurement and control FDIR,

Satellite Systems - Design, Modeling, Simulation and Analysis

12

avionics FDIR, and power supply and distribution FDIR as illustrated in Figure 3.
The larger the number, the higher the fault level, and vice versa.

• Level 0 failure: a level 0 failure refers to a failure that occurs inside an equip-
ment and can be recovered autonomously by the hot backup method inside the
equipment without affecting other components of the system.

• Level 1 failure: a level 1 failure refers to the failure of a single equipment or
module of each sub-system. After a level 1 failure occurs, the system will per-
form autonomous failure isolation and recovery according to the FDIR policy.
If the failure isolation and recovery is successful, it has no impact on system
tasks. The detection, isolation, and recovery of failures are implemented by
application software.

• Level 2 failure: a level 2 failure refers to the functional level abnormality of the
satellite sub-system. Under such failures, the system performance cannot meet
the design requirements. For level 2 failures, the recovery strategies need to be
implemented and related components need to be enabled or restarted. Level 2
failures can cause system performance degradation or temporary interruption
of system tasks. Its failure detection, isolation, and recovery are performed by
application software.

• Level 3 failure: a level 3 failure refers to the failure of the CPU hardware, which
is detected by the hardware. After the failure occurs, it is switched to the
backup CPU according to the failure handling strategy.

• Level 4 failure: a level 4 failure refers to the failure of the satellite to maintain
the pointing to the ground in the on-orbit phase and requires sun capture
processing.

Figure 3.
Schematic diagram of satellites in orbit during their lifetime.

13

Design of Intelligent and Open Avionics System Onboard
DOI: http://dx.doi.org/10.5772/intechopen.93141

4.3 FDIR scheme

The software autonomously isolates the failure and rebuilds the system at the
appropriate time according to the following FDIR scheme:

• High-level failure detection such as level 4 failure has priority over low-level
failures such as level 3. When two or more failures are detected at the same
time, the recovery sequence of high-level failures is performed preferentially.
Once a high-level failure occurs, all detection of the same-level and low-level
failures are suspended before the recovery sequence is completed.

• Only one failure recovery sequence is performed on the satellite at the same
time, that is, all FDIR failure recovery is shielded during the execution of any
failure recovery strategy. The sufficiency and necessity of the failure recovery
sequence should be effectively verified by ground testing to minimize the
interpretation during the sequence execution.

• After the execution of the failure recovery sequence is completed, the failure
detection of the flight can be continued, but the failure recovery enable status
should be set to disable. At the same time, the detection of other similar and
low-level failures should be enabled. After confirming the working status
of the products on the ground, reset the backup status and enable the FDIR
recovery function.

• FDIR only detects the status of the on-duty module. When the FDIR enable flag
is “disabled,” the status of the module is not detected. When the FDIR enable flag
is “enabled,” the status of the on-duty module is detected. If the failure detec-
tion condition is met on the on-duty module and the FDIR recovery enable flag
is “disabled,” the health status of the module is set to unhealthy. If the failure
detection condition is met on the on-duty module and the FDIR recovery enable
flag is “enabled,” it is determined whether the status of the on-duty module is
the same as the backup module. If they are the same, do not perform the recov-
ery operation and set the on-duty module as unhealthy. If they are different,
perform the recovery operation and set the backup module to the on-duty status.

• For autonomous maintenance on the satellite, the “health status” of each
module can only be changed from “healthy” to “unhealthy.”

• For dual-machine hot standby equipment or modules, only the health status of
non-duty module is detected, and no recovery is performed.

• Use its own fault-tolerant RAM and lower computer to save important data in
time for state recovery after failure.

4.4 FDIR processing requirements for satellites in orbit

The FDIR requirements for each phase of the satellite are as follows:

i. Launch phase: allows failure detection and recovery of level 0 and level 1
failures.

ii. Transfer orbit phase: allows failure detection and recovery of level 0 to level
3 failures.

Satellite Systems - Design, Modeling, Simulation and Analysis

14

iii. On-orbit phase: allows failure detection and recovery of level 0 to level 4
failures.

4.5 FDIR processing

The processing flow of FDIR mainly includes four parts:

i. Judgment of processing conditions: First, determine the scope of failure
detection according to the requirements of the satellite in orbit and ground
control. Then, according to the validity of the telemetry data and the situa-
tion of the modules on duty, determine the FDIR project that can be used for
failure detection.

ii. Fault detection: Determine whether a failure occurs based on the recognition
characteristics.

iii. Comprehensive information processing: After a failure occurs, it is deter-
mined that whether the current situation of the satellite meets the recovery
conditions. At the same time, in the case of multiple failures, priority judg-
ment is required. Finally, determine the failures that can be recovered and
the order of recovery.

iv. Failure recovery: According to the engineering and testing experience,
perform corresponding recovery operations.

5. Impacts on next-generation avionics system

The intelligent avionics system adopts a system engineering method using
modular and open design to uniformly design the information processing, control
and management processes, hardware, and software, which is to realize the opti-
mization of information and resource sharing. Based on the onboard computer and
high-speed bus such as SpaceWire data bus, a set of information fusion systems
and mechanisms is established. The system is a menu-style, modular, and exten-
sible open service platform, which achieves a high degree of integration of various
onboard software and hardware resources and can meet the requirements for differ-
ent tasks.

The intelligent avionics system adopts the design concept of a modular menu
system architecture to meet the needs of real-time, reconfigurable, autonomous
planning, and intelligence of the system. With the SMU as the 1553B and SpaceWire
bus controller for data rate less than 10 Mbps/for data rate more than 10 Mbps,
respectively, and the ISU as the remote terminal, a distributed, master-slave, and
menu-based satellite networks are constructed.

Satellites are designed with a network layout, which can design different menu
network nodes on the bus network. After the payload capacity is strengthened, the
network node can increase the corresponding payload processing unit. The SMU
is used as the main processing computer to perform the main control of satellite
services to form a master-slave network structure. The high-performance onboard
processor enables the intelligent avionics systems with high-performance comput-
ing capabilities, which not only meets the data processing requirements but also
lays the foundation for satellite intelligence. The intelligent avionics system adopts
partition protection measures. Through the design of space protection, time protec-
tion, and partition communication, it provides reliable functional entities (such as

15

Design of Intelligent and Open Avionics System Onboard
DOI: http://dx.doi.org/10.5772/intechopen.93141

software modules or hardware modules) that share resources. Partition protection
avoids the impact of other partitions under abnormal conditions such as single par-
tition failure or malicious access. At the same time, the intelligent avionics system
is equipped with real-time multitask distributed system software, which can realize
the dynamic reconstruction of functions and tasks. For example, when a node fails
or needs a functional reorganization, some tasks on that node will be migrated to
other nodes. Or, the resource occupation rate of a node is too high, and some tasks
on this node will be migrated to other relatively idle nodes for execution. This
design can improve the failure tolerance of the intra-satellite network and achieve
efficient resource allocation and scheduling. All information is collected into the
SMU for comprehensive analysis and processing through the 1553B/SpaceWire
bus network. For example, in the process of autonomous energy management, it
is found that the battery discharge depth reaches 80%. If the control sub-system is
still in the mode of pointing to the ground, it will seriously affect the safety of the
satellite. At this time, the instructions should be sent in time to orient the satellite
to the sun to ensure the safety of the satellite. The SMU can be fully applied to the
satellite’s autonomous information fusion processing, ensuring that the satellite can
still guarantee normal communication services in the event of a major failure, and
energy security in emergency situations.

6. Conclusion

The intelligent avionics system design is the key technology for future advanced
satellites. The system design has adopted modular and open system architecture
approach using an efficient computing hardware system to maintain multiple
central processing units and memory executing instructions accurately and syn-
chronously with high cost-performance and cost-efficiency ratio. This approach
improves the failure tolerance of the next-generation avionics systems. The func-
tion modification capabilities and function migration between modules realize the
transition to software-defined satellite. Furthermore, this approach also reduces the
differences in hardware products and improves the failure tolerance of the satellite’s
internal network, which meets the ever-increasing networking requirements of the
satellite.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of
China (No. 61972398).

Satellite Systems - Design, Modeling, Simulation and Analysis

16

Author details

Changqing Wu, Xiaodong Han* and Yakun Wang
Institute of Telecommunication Satellite, China Academy of Space Technology,
Beijing, China

*Address all correspondence to: willingdong@163.com

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

17

Design of Intelligent and Open Avionics System Onboard
DOI: http://dx.doi.org/10.5772/intechopen.93141

[1] Sherwood R, Chien S, Tran D, et al.
The EO-1 autonomous sciencecraft. In:
Small Satellite Conference. Logan, UT:
AIAA/USU; 2007

[2] Rabideau G, Tran D, Chien S, et al.
Mission operations of earth observing-1
with onboard autonomy. In: IEEE
International Conference on Space
Mission Challenges for Information
Technology. Pasadena, CA: IEEE; 2006

[3] Sherwood R, Chien S, Tran D, et
al. Enhancing science and automating
operations using onboard autonomy.
In: International Conference on Space
Operations (SpaceOps 2006). Rome,
Italy: AIAA; 2006

[4] Sherwood R, Chien S, Tran D.
Autonomous science agents and sensor
webs: EO-1 and beyond. In: IEEE
Aerospace Conference (IAC 2006).
Big Sky, MT: IEEE; 2006

[5] Chien S, Sherwood R, Tran D,
et al. Using autonomy flight software
to improve science return on earth
observing one. Journal of Aerospace
Computing, Information, and
Communication. 2005;2(4):196-216

[6] Chien S, Sherwood R, Tran D, et al.
Lessons learned from autonomous
sciencecraft experiment. In:
Autonomous Agents and Multi-Agent
Systems Conference (AAMAS 2005).
Utrecht, Netherlands: AAMAS; 2005

[7] Rabideau G, Chien S, Sherwood R,
et al. Mission operations with autonomy:
A preliminary report for earth
observing-1. In: International Workshop
on Planning and Scheduling for Space
(IWPSS 2004). Darmstadt, Germany:
IWPSS; 2004

[8] Marie J. Spacebus 4000 avionics: Key
features and first flight return. In: 24th
AIAA International Communications
Satellite System Conference (ICSSC).
2006

[9] Heymans P, Boucher Q , Classen A.
A code tagging approach to software
product line development. An
application to satellite communication
libraries. International Journal on
Software Tools for Technology Transfer.
2012;14(5):553-566

[10] Boreli R, Ge Y, Iyer T, et al.
Intelligent middleware for high speed
maritime mesh networks with satellite
communications. In: 9th International
Conference on Intelligent Transport
Systems Telecommunications (ITST).
Harbin, China: IEEE; 2009

[11] Zhu H. Design of on-board
software architecture based on design
pattern. Computer Application.
2008;25(12):180-181

[12] Yu Z, Yang-Ming Z, Zheng-Liang H,
et al. Fault-tolerant design of memory
module for pica-satellite on-board
computer. Journal of Astronautics.
2008;29(6):2057-2061

[13] Guiotto A, Martelli A,
Paccagnini C. SMART-FDIR: Use
of artificial intelligence in the
implementation of a satellite FDIR. In:
DASIA 2003. Prague, Czech Republic:
DASIA; 2003

[14] Herpel HJ, Schuettauf A, Willich G.
Open modular computing platforms
in space — Learning from other
industrial domains. In: IEEE Aerospace
Conference. MT, USA: IEEE; 2016

[15] Mark H, Helene DM, Alexandre C.
Requirements baseline for integrated
modular avionics for space separation
kernel qualification. In: Dasia-Data
Systems in Aerospace. Barcelona, Spain:
DASIA; 2015

[16] Panpan Z, Tingyuan G, Jianjun G,
et al. Plug-and-play on-board computer
system design based on BM3803
processor. Journal of Aerospace
Engineering. 2013;22(06):92-96

References

Satellite Systems - Design, Modeling, Simulation and Analysis

18

[17] Kan W, Jingfei J, Mianjiang H,
et al. Intelligent fault-tolerant 1553B
bus system based on adaptive learning.
In: IEEE International Conference
on Communication Software and
Networks. Xi an, China: IEEE; 2011.
pp. 378-381

[18] SalarKaleji F, Dayyani A. A survey
on fault detection, isolation and
recovery (FDIR) module in satellite
onboard software. In: International
Conference on Recent Advances in
Space Technologies (RAST). Istanbul,
Turkey: IEEE; 2013

