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Chapter

Drug Repurposing in Neurological 
Diseases: Opportunities and 
Challenges
Xiao-Yuan Mao

Abstract

Drug repurposing or repositioning refers to “studying of clinically approved 
drugs in one disease to see if they have therapeutic value and do not trigger side 
effects in other diseases.” Nowadays, it is a vital drug discovery approach to explore 
new therapeutic benefits of existing drugs or drug candidates in various human 
diseases including neurological disorders. This approach overcomes the shortage 
faced during traditional drug development in grounds of financial support and 
timeline. It is especially hopeful in some refractory diseases including neurological 
diseases. The feature that structure complexity of the nervous system and influence 
of blood–brain barrier permeability often becomes more difficult to develop new 
drugs in neuropathological conditions than diseases in other organs; therefore, 
drug repurposing is particularly of utmost importance. In this chapter, we discuss 
the role of drug repurposing in neurological diseases and make a summarization 
of repurposing candidates currently in clinical trials for neurological diseases 
and potential mechanisms as well as preliminary results. Subsequently we also 
outline drug repurposing approaches and limitations and challenges in the future 
investigations.

Keywords: drug repurposing, brain injury, neurological diseases, therapeutics

1. Introduction

Neurological disorders are devastating diseases which usually occur in the brain, 
spinal cord, cranial nerves, peripheral nerves, and so on. It has reported that there 
are more than 600 kinds of neuropathological conditions including epilepsy, brain 
tumor, Parkinson’s disease, Alzheimer’s disease, and stroke. Nowadays, it is esti-
mated that more than 1 billion people suffer from neurological disorders, seriously 
affecting people’s life quality [1]. These kinds of diseases are especially prevalent in 
developing countries at any stage of age [2, 3]. There are several factors contribut-
ing to etiology of neurological disorders such as aggravating tendency of aging 
population, irregular diet, and insufficient exercise [4].

Drug therapy is an important way for curing neurological diseases in the clinic. 
Nevertheless, serious neurological disorders such as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD) are usually incurable in late stages of diseases with current 
therapeutic intervention [5, 6]. In the meantime, drug treatment often becomes 
less effective and causes serious side effects due to individual differences. Taking 



Drug Repurposing

2

epilepsy as example, nearly 30% of epileptic patients are unable to obtain seizure 
control following treatment with marketed drugs [7, 8]. In addition, they have no 
significant effect on the improvement of cognitive dysfunction in patients with 
severe epilepsy [9]. Thus, it is essential for investigation of more effective and/or 
less toxic CNS targeted drugs.

Drug repurposing, also known as drug reprofiling or drug repositioning, 
includes the development of new uses and dosage forms for existing drugs or 
drug candidates. It is regarded as an economic and practical strategy [10]. Drug 
repurposing avoids the defects of new drug development. Compared to the drug 
repurposing, development of new drugs consumes much more time and huge 
investments. It is roughly reported that the cost from basic research for a new 
drug to clinical trials is 2.6 billion US dollars [11] and it often takes an average of 
13–15 years [12]. Although more and more drug candidates are developed, many 
cases have failed in recent years [13]. Most of new drugs are withdrawn from the 
market due to unsatisfactory efficacy or intolerable side effects [14, 15]. Therefore, 
reusing existing drugs, namely, drug repurposing, has attracted great attention, 
as this approach has the capacity of saving cost and expediting drug development 
process.

The purpose of this chapter is to discuss the role of drug repurposing in human 
diseases especially neurological diseases and summarize repurposing candidates 
currently in clinical trials for neurological diseases and potential mechanisms as 
well as preliminary results. Subsequently we also list drug repurposing approaches 
and limitations and challenges in the future investigations.

2. Repurposed drugs in neurological diseases

Prior to development of repurposed drugs for neurological diseases therapeu-
tics, it is emphasized how the drug reposition process is carried out. Generally, 
there are three stages in drug repurposing. First, diverse approaches including ser-
endipitous clinical observation, cellular drug activity assays, in silico drug screens, 
and data mining of clinical drug interaction are employed to obtain drug candidates 
[16]. The detailed illustrations in grounds of methodologies are summarized as 
mentioned above [17]. Second, preclinical investigations including in vivo rodent 
models and in vitro cell lines for these drugs are conducted in neurological diseases 
[18]. Finally, large-scale and multicenter clinical trials are implemented for evaluat-
ing efficacy and safety of repurposed drugs [19]. Up to date, there are plenty of 
drugs which are repurposed in neurological diseases through the above approaches. 
Then, in the following section, we also cite several repurposed drugs to elaborate 
how they function in neurological diseases. Table 1 summarizes various repurposed 
drugs in the treatment of neurological disorders.

2.1 Verapamil

Verapamil, a classical calcium channel blocker, is mainly used in the treatment 
of hypertension, angina pectoris, arrhythmia, and other diseases, especially for par-
oxysmal supraventricular tachycardia [20]. It has been found that administration of 
verapamil greatly improves seizure control in drug-resistant epileptic patients via 
inhibiting P-glycoprotein (Pgp). Pgp is responsible for the transport of antiepileptic 
drug (AED) into the blood vessels through the blood–brain barrier (BBB). And 
there is evidence supporting that overexpression of Pgp in the brain represents a 
major mechanism underlying drug resistance in epileptic patients [21]. Verapamil 
is found to suppress Pgp expression and subsequently facilitates the entry of this 
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Name of drug Original indication Novel indication Target Summarization of evidence

Verapamil Hypertension

Angina pectoris

Arrhythmia

Intractable epilepsy

Subarachnoid 

hemorrhage

Stroke

Resistant depression

P-glycoprotein I. Improving life quality in drug-resistant epileptic patients

II. Preventing behavior phenotype in a mouse model of focal ischemia

III. Showing no adverse effect in patients with stroke

Bumetanide Liver disease

Heart failure

Stubborn edema

Acute and chronic renal 

failure

Epilepsy

Autism

NKCC1 protein I. Improving anticonvulsant effect of phenobarbital in hypoxic rats

II. Decreasing neuronal discharge in vitro and in vivo

Minocycline Antibacterial Epilepsy

Spinal cord injury

Brain inflammation

Neurodegenerative 

diseases

Activated microglia

IL-6, TNF-α

TrkB/BDNF

PPAR-γ/NF-κB

LKB1/AMPK

I. Reducing seizure duration in rats

II. Inhibiting inflammatory cytokines and cell death in kainic acid-

induced epilepsy models

Fenfluramine Simple obesity

Diabetes

Hypertension

Epilepsy

Parkinson’s disease

5-HT receptors I. Alleviating epilepsy in patients with Dravet syndrome

II. Anticonvulsant effects on photosensitive or induced convulsions

Propranolol Hypertension

Supraventricular 

tachycardia

Prolonged Q-T interval

Thyrotoxicosis

Migraine

Traumatic brain injury

Parkinson’s disease

IL-6

β-adrenergic

I. Alleviating headache in patients with angina pectoris

II. Reducing mortality within 24 h of admission in patients with TBI

III. Preventing neuronal necrosis in a pig model of TBI

Sunitinib Gastrointestinal stromal 

tumor

Non-small-cell lung 

cancer

Renal cell carcinoma

Glioma

Pheochromocytoma

Alzheimer’s disease’

Acetylcholinesterase

CGNs, SH-SY5Y

I. Penetrating the blood–brain barrier in clinical studies

II. Alleviating glioma progression and glioma-induced neurodegeneration 

in vivo

III. Preventing neuronal death induced by neurotoxins in vivo
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Name of drug Original indication Novel indication Target Summarization of evidence

Angiotensin receptor 

blockers

Essential hypertension

Renal disease

Diabetes

Alzheimer’s disease

Episodic migraine

AT1 receptor

Angiotensin II

I. Reducing Aβ accumulation and aggregation in vivo

II. Alleviating AD in epidemiological studies and RCTs

Amantadine Antiviral Parkinson’s disease

Chronic traumatic brain 

injury

N-methyl-D-aspartate 

(NMDA)

Anticholinergic

I. Improving motor symptoms in a female PD patient

II. Activating the dopamine system in several preclinical data demonstrate

Table 1. 
List of repurposed drugs in neurological disease.
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drug into epileptogenic zones. As a marketed drug, verapamil treatment in patients 
with intractable epilepsy can doubtfully alleviate brain injury caused by repetitive 
seizures [22]. Actually, in clinical trials, verapamil has previously shown to exhibit 
great efficacy in intractable depression or mania via inhibiting the function of Pgp 
[23, 24]. Moreover, it is documented that verapamil has been approved to treat 
cerebral vasospasm secondary to subarachnoid hemorrhage due to its vasodilatory 
effects [25]. Intra-arterial (IA) treatment with verapamil, which was physiologically 
feasible, safe, and neuroprotective as a therapeutic adjunct in stroke, significantly 
reduces infarct volume and improved functional outcome [26], although there are 
still some mysteries about the mechanism.

2.2 Bumetanide

As a potent diuretic agent, bumetanide, which is mainly employed to cure liver 
disease, heart failure, and various kinds of stubborn edema in clinic [27], is a spe-
cific inhibitor of Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) [28]. Mechanically, 
NKCC1 significantly modulates the content of intracellular Cl−. Upregulation of 
NKCC1 leads to elevation of intracellular concentration of Cl−, which is associated 
with pathogenesis of neurological diseases. It has been unequivocally proven that 
many of the available drugs have anti-seizure potential via activating GABAA-
mediated hyperpolarization due to accumulation of neuronal Cl− [29]. Indeed, 
current investigations have confirmed that bumetanide exerts antiepileptic effect 
via switching the GABA-mediated inhibitory postsynaptic potential in neurons 
from depolarization to hyperpolarization, resulting in decreased neuronal dis-
charge [30, 31]. In addition, previous work reinforces that bumetanide can enhance 
the anticonvulsant effect of phenobarbital in hypoxic rats [32]. It suggests that 
the combination of phenobarbital and bumetanide may provide a promising 
therapeutic strategy for ceasing seizures in neonatal epilepsy and may increase the 
neuroprotective effect of hypothermia on asphyxiated newborns [33]. Persuasively, 
a current clinically pilot study further demonstrated that bumetanide, as a specific 
NKCC1 antagonist, considerably reduced seizure frequency in adult patients 
with temporal lobe epilepsy [34]. Additionally, as a consequence of a randomized 
controlled trial, bumetanide may also be effective for treatment of autism [35]. 
It should be considered that there are two obstacles for bumetanide treatment in 
neurological disorders [31, 36]. It has been shown that the highly potent diuretic 
effect of bumetanide can lead to hypokalemic alkalosis and the poor penetration 
into brain exists. This indicates that reuse of bumetanide in neurological diseases 
brings about opportunities and challenges in the future.

2.3 Minocycline

Minocycline is the second generation of semisynthetic broad-spectrum antibac-
terial tetracycline analogues. It has immunomodulatory, anti-inflammatory, and 
anti-apoptosis effects. Minocycline has neuroprotective effects in rodent models of 
ischemia, spinal cord injury, and infection [37]. It can efficiently penetrate the BBB 
and has a good effect on activated microglia, which indicates a possible role in the 
treatment of epilepsy. Minocycline may have synergistic effects with other com-
pounds in manipulating epilepsy. Minocycline has been found to remarkably obviate 
epileptic conditions and reduce seizure-induced brain impairment at early stage 
[38]. In addition, minocycline also inhibits pro-inflammatory cytokines through 
caspase-dependent and caspase-independent pathways, thus inhibiting cell death 
in kainic acid-induced status epilepticus [39]. An obvious improvement of seizure 
phenotype is also observed in a rat model of amygdala kindling [40]. Additionally, 
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increasing studies have reported the neuroprotective effects of minocycline in 
neurologic diseases, such as ischemic stroke, multiple sclerosis (MS), and trau-
matic brain injury (TBI) [41–43]. In in vivo animal model, minocycline promotes 
M2 microglia polarization via activation of tyrosine kinase receptor B (TrkB)/
brain-derived neurotrophic factors (BDNF) pathway and facilitates neurogenesis 
after intracerebral hemorrhage (ICH) [44]. In the process of acute cerebral infarct, 
minocycline also effectively inhibits oxidative stress via elevating the activity of 
superoxide dismutase (SOD) and activating the liver kinase B1 (LKB1)/adenosine 
5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway [45]. 
However, repurposing of minocycline in treating neurological diseases requires to be 
re-evaluated as there is a clinical study showing serious neurodegeneration TBI [46].

2.4 Fenfluramine

Fenfluramine, which has been successfully applied in obesity, diabetes, and 
hypertension [47], is a potent 5-hydroxytryptamine (5-HT) releaser activating 
multiple 5-HT receptor subtypes. Of note, elevation of extracellular 5-HT levels 
inhibits focal and generalized seizures, while depletion of 5-HT lowers the threshold 
of epileptic seizures [48]. Therefore, 5-HT agonist fenfluramine is assessed for treat-
ment of epilepsy. In a small-scale retrospective study, it has reported that adjuvant 
treatment with fenfluramine has evidently obtained seizure control in patients with 
Dravet syndrome. As the side effects is not serious, it does not lead to the termina-
tion of treatment [49]. This drug may have anticonvulsant effects on other severe 
epilepsy syndromes, especially those characterized by photosensitive or induced 
convulsions [50, 51]. Encouragingly, a recent investigation has unveiled that fenflu-
ramine significantly reduces convulsive seizure frequency compared with placebo 
and exhibits good tolerance [52]. It indicates that fenfluramine could be functioned 
as a potent novel therapeutic regime for patients with Dravet syndrome. It is note-
worthy that fenfluramine also alleviates L-DOPA-induced dyskinesia via stimulation 
of 5-HT1A receptor in PD [53].

2.5 Propranolol

Propranolol as a β-adrenoceptor antagonist (b-blocker) has been commonly 
used in hypertension, supraventricular tachycardia, prolonged Q-T interval, and 
thyrotoxicosis in clinic [54]. Since 1996, in patients who were being treated for 
angina pectoris, Rabkin et al. has disclosed the therapeutic effect of propranolol on 
migraine headache [55]. Meanwhile, further clinical studies have noted that admin-
istration of propranolol within 24 h of admission after TBI triggers lower mortality 
[56]. The evidence also arises from a recent study that propranolol blocks the upreg-
ulation of IL-6 and prevents neuronal cell necrosis in CA1 and CA3 hippocampus 
in a pig model of TBI [57]. Given that propranolol has neuroprotective potential in 
neuropathological conditions, it is likely to serve as a neuroprotective drug in epi-
lepsy. Additionally, both clinical and experimental studies have demonstrated the 
potential of propranolol to resist dyskinesia in PD, as modulation of β-adrenergic 
receptors (βAR), which is abundantly, expressed in striatum, is involved L-DOPA-
induced dyskinesia (LID) [58, 59].

2.6 Sunitinib

Sunitinib, which is an oral, small molecule receptor tyrosine kinase inhibitor 
approved by the US Food and Drug Administration, has been currently imple-
mented in the treatment of various cancers such as gastrointestinal stromal tumor 
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(GIST), non-small-cell lung cancer, and renal cell carcinoma [60]. Clinical evidence 
has revealed that oral administration of sunitinib penetrates the BBB and subse-
quently facilitates the entry into central nervous system [61]. Furthermore, on the 
basis of its potent antiangiogenic and antitumoral characteristics, it has discovered 
that sunitinib can alleviate glioma-induced neurodegeneration and glioma progres-
sion in vivo models [60]. Meanwhile, sunitinib has been found to exert therapeutic 
effects on learning and memory deficits in a mouse model of AD through inhibition 
of acetylcholinesterase (AChE) [62]. Additionally, sunitinib has also demonstrated 
to prevent neuronal death induced by neurotoxins via inhibiting NO overproduc-
tion in cerebellar granule neurons (CGNs) and SH-SY5Y cells following exposure 
with low potassium or 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal 
apoptosis [63]. It indicates that sunitinib may improve brain dysfunction via inhibi-
tion of oxidative stress.

2.7 Angiotensin receptor blockers

In in vitro studies, angiotensin receptor blockers (ARBs) are generally known 
to treat essential hypertension by influencing the level of angiotensin II (Ang II) 
via two distinct pathways, namely, through interrupting the AT1 receptor and 
augmentation of Ang II processing which plays a critical role in cognition regula-
tion [64]. For example, valsartan, which has previously been found to penetrate 
BBB and elicit antihypertensive responses in the brain, has been demonstrated to 
reduce Aβ accumulation and aggregation in vivo and in vitro [65]. Actually, similar 
situation exists in losartan and telmisartan, which are also classical ARBs [66, 67]. 
Overall, it indicates ARBs are potential candidates for treating AD. Significantly, 
several clinically epidemiological studies and RCTs certify the efficacy of ARBs in 
AD. A large-scale retrospective cohort study has revealed an obvious reduction of 
dementia in patients treated with ARBs compared with other cardiovascular agents 
[68]. Likewise, the further UK-based study also reports a similar trend, with a 
50% reduction in AD after ARBs treatment [69]. In brief, ARBs, the conventional 
cardiovascular medicine, have been confirmed to exert a vital effect in AD, and it is 
further deserved to identify the most suitable dosage in clinic.

2.8 Amantadine

Amantadine is a classic antiviral compound which has been found to moder-
ately ameliorate impaired motor behavior in Parkinson’s disease [70]. Intriguingly, 
in 1969, it was coincident that Schwab et al. found an improvement of motor 
symptoms in a female PD patient, who took 200 mg amantadine daily for antiviral 
prophylaxis [71]. Subsequently, three potential mechanisms have been proposed 
to explain the efficacy of amantadine in PD. Several preclinical data demonstrate 
an activation of the dopamine system’s both presynaptic and postsynaptic actions 
[72], and amantadine also inhibits the N-methyl-D-aspartate (NMDA) subtype of 
glutamate receptors [72, 73]. The mild anticholinergic effect is also involved [74]. 
Surprisingly, PD is well known to be frequently associated with depression, and 
antagonism of NMDA receptors is also a promising target for new antidepressants, 
although there is no definite evidence to certify its efficacy in depressive disorder.

3. Approaches to drug repurposing

There are three important stages in the field of drug repurposing: generation of 
candidate compounds, preclinical investigation, and clinical trial. Determination 
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of appropriate drugs for potential indications is crucial for production of candidate 
compounds. At present, two approaches are widely used for drug repurposing 
including experimental screening approaches and molecular docking by computer. 
In the following items, we make a detailed description of these two methods in drug 
repurposing process.

3.1 Experimental approaches

Experimental screening approaches are usually regarded as the first stage in 
the process of drug discovery and drug repurposing. Proteomic techniques such 
as affinity chromatography and mass spectrometry have been widely employed to 
identify drug candidates [75]. Nowadays, drug target analysis and drug repurposing 
are inseparable. Drug repurposing is distinct from drug discovery in terms of altera-
tion of drug target. Cellular thermo stability assay technique can predict the affinity 
of drug ligands by mapping the contact patterns of intracellular targets [76]. The 
molecular on and off targets have been disclosed for many clinically approved drugs 
via this method. Especially in the field of kinases, new targets of well-known drugs 
are obtained through affinity matrices [77, 78]. For example, imatinib, a tyrosine 
kinase inhibitor, has been successfully reused in the treatment of gastrointestinal 
stromal tumors [79].

In addition, chemical compounds with disease-related effects can be defined 
in the model through phenotype screening [80]. Phenotype screening has always 
been more successful than target screening in the facet of drug development 
[81, 82]. In the case of drug repurposing, if the compounds selected through 
phenotypical assays are approved clinical drugs or ongoing clinical trials, they 
are probable to reuse. Several drugs approved for tobacco dependence have been 
evaluated, and it has been found that topiramate changes nicotine- or ethanol-
induced behavior in zebrafish models [83]. However, there are some challenges 
that the efficacy of drug candidates in in vitro experiments require to be validated 
in human diseases [84].

3.2 Computational approaches

Molecular docking by a computer is also an important method for evaluating 
drug target binding kinetics and drug residence times of existing drugs or drug 
candidates [85]. Large amounts of computational drug repositioning methods 
choose transcriptomic data to identify potential new indications for drugs. 
Furthermore, these methods have applied techniques such as comparison of gene 
expression profiles between a disease model and drug-treated condition [86], 
network integration [87], prediction of drug-protein interactions [88], and utiliza-
tion of genotype–phenotype associations. Recently, a proteotranscriptomic-based 
computational drug repositioning method named Drug Repositioning Perturbation 
Score/Class (DRPS/C) for Alzheimer’s disease occurs on the basis of inverse 
associations between disease-induced or drug-induced gene and protein perturba-
tion patterns [89]. Briefly, these approaches can be applicable to discovery of drug 
targets or biomarkers.

It should be considered that for many neurological disorders, drugs require 
good penetration into BBB. Then, the therapeutic approaches of targeting brain 
have been classified as invasive and noninvasive categories [90, 91]. The invasive 
approaches contain the temporary increase of BBB permeability, and noninvasive 
approaches involve modification of drug molecule via physiological, chemical, 
or colloidal carrier system approach. Meanwhile, these methods are also related 
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to computational approaches. Influx clearance into the brain (Kin), which is the 
unidirectional influx constant from the blood to brain, can be used to calculate 
the transport of drugs in the brain. Similar computational approaches conclude 
the permeability surface area (PS), brain/plasma ratio (Kp), brain uptake index 
(BUI), and apparent permeability (Papp) [92–95]. Consequently, drug repurpos-
ing in neurological diseases covers various manners to participate in integrating 
the role of transporters and pathophysiological complexity of BBB to establish a 
suitable model for high-throughput screening.

4. Concluding remarks and perspectives

Drug repurposing is a vital strategy for developing new therapeutic values of 
existing drugs or drug candidates due to its ability to save time and reduce cost [96]. 
This type of innovative concept will undoubtedly expedite the drug development 
process. Meanwhile, some limitations need to be considered during drug repurpos-
ing process in neurological diseases. Owing to complex molecular and cellular 
signaling mechanisms in neuropathological states, drug repurposing may be dif-
ficult. Additionally, drugs not only respond to a single target but also affect multiple 
targets [97], causing a variety of adverse reactions. A comprehensive assessment of 
the advantages and disadvantages of these side effects can help us understand drug 
repositioning from a more all-round perspective [98, 99].

In order to overcome limitations faced during drug repurposing, we make 
proposals in the following descriptions. Firstly, it is foremost to establish a com-
prehensive data analysis platform to maximize data sharing. Information science 
services and artificial intelligence can help unlock and reanalyze the large amount 
of data accumulated by approved drugs or drug candidates to clinical trials. These 
data may be stored in a diversified way. Storage locations, formats, and types 
may vary, including different storage locations, formats, and types. The data 
obtained from clinical trials and biological databases are too large and complex 
that the traditional data processing methods cannot deal with it, which leads to 
the bottleneck in the research process [99]. Big data can significantly improve our 
understanding of the disease and make more accurate disease-related strategies. 
However, there is a big gap between generating biomedical data and data analysis 
[99, 100]. To ensure the efficiency of research, it takes time, energy, and exper-
tise to find technical solutions to integrate them. Secondly, it is encouraged to 
provide more financial support for clinical trials of drug repurposing, including 
technical support. The preclinical research of drug repurposing requires financial 
support to obtain the data in clinical trials. In this case, drugs that can be devel-
oped to treat rare diseases are more likely to apply in clinical neurological diseases 
therapeutics [101]. Finally, in order to facilitate drug repurposing process, we 
advocate it is indispensable to solve patent restrictions and take reasonable 
supervision. All applications of drug repurposing should be accompanied by a 
risk management plan. Drug’s safety can be supported by clinical trial data or 
post marketing data.

In conclusion, drug repurposing is a novel approach for expediting drug 
development process in neurological diseases. Repurposed drugs may provide an 
efficient avenue for improving a plethora of pathological conditions including 
neurological disorders. In the future, it is essential to exploit molecular mechanisms 
during drug repurposing processes due to the possibility that targets of repurposed 
drugs in neurological diseases are distinct from original targets in treating other 
diseases, in order to make these drugs more effective and safe.
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