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Chapter

Self-Assembled Copper 
Polypyridyl Supramolecular 
Metallopolymer Achieving 
Enhanced Anticancer Efficacy
Zushuang Xiong, Lanhai Lai and Tianfeng Chen

Abstract

Metallopolymers, a combination of organic polymers and metal center, contain 
metal atoms in repeating monomers can change its dynamic and thermodynamic 
properties through the directionality of coordination bonds and chemical tailoring 
of ligands. In the past decade, self-assembled functional supramolecular metallo-
polymers have aroused a surge of research interest, and have demonstrated applica-
tion potential in cancer therapy. In this chapter, we have summarized the progress 
in the rational design of biological application of different metallopolymers. 
Especially, a copper polypyridyl complex was found be able to self-assemble into a 
supramolecular metallopolymer driven by the intermolecular interactions, which 
could enhance the uptake in cancer cells through endocytosis, thus effectively 
inhibit tumor growth in vivo without damage to the major organs. This study may 
provide a good example to use self-assembled metallopolymer to achieve enhanced 
anticancer efficacy.

Keywords: progress in self-assemble, metallopolymer, anticancer,  
copper (II) complex

1. Introduction

Metallopolymers, a combination of organic polymers and metal center, contain 
metal atoms in repeating monomers can regulate its dynamic stability and thermo-
dynamic properties through the variation of coordination mode of central-metal 
ions and chemical tailoring of ligands [1]. With purpose to improve material 
properties, metallopolymers have attracted increasing interest for their potential 
to supply advanced functional materials for a wide range of applications [2]. 
Supramolecular polymer, originating from the integration of polymer and supra-
molecule, is becoming a rapidly developing research area in recent decades [3–7]. 
Supramolecular metallopolymers received increasing attention, partly motivated by 
their ready-to-form self-assembly [8–10] and diverse applications in electrochromic 
materials [11], luminescent [12–14], accelerated guest adsorption [15], interesting 
magnetic properties [16], and so on [9, 17]. Nitschke et al. synthesized a new type 
of metallopolymer, by exploring the gel self-assembly process and formation condi-
tions, and explored the electrochemical properties, photoluminescence properties 
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and thermochromism of the polymer [12]. Che and his co-workers synthesized 
cyclometalated AuIII complexes, which can be self-assembled to form supramolecu-
lar polymer, through the hydrogen bonding of the guanine-like amino group of the 
4-DPT ligand and the π-π stacking interaction of 2,6-diphenylpyridine. The selec-
tive growth inhibition of supramolecular polymers on tumor cells and its possible 
mechanism were also investigated (Figure 1) [17].

Weak noncovalent interactions, such as hydrogen bonding, hydrophobic-
hydrophobic, metal-metal and π-π interactions [18–24], have been identified 
as driving forces to stabilize the self-assembled structures of metallopolymers 
[8, 25, 26]. Studies also showed that most metallopolymers were under ther-
modynamically changing processes with change of temperature [8, 12, 25]. Ian 
Manners group synthesized various self-assembled metallopolymers, and studied 
its formation mechanism and its applications in nanolithography, biomedicine, 
magnetic or responsive materials (Figure 2) [24]. Till now, many supramolecular 
metallopolymers of gold, copper and platinum complexes, have been well docu-
mented [2, 10, 17, 24, 26–30], and the search for application potential has become 
new research focus.

While most of supramolecular metallopolymers are “high-molecular-weight” 
with relatively large ligands [31], the discovery of low molecular-weight metal-
lopolymers with tunable structures have fostered a new growth in recent years 
[3, 4, 32–35]. Rissanen et al. reported a terpyridine-Zn (II) compound that can 
self-assemble into metallopolymers with fibrous structured microscopic mor-
phology. Their studies show that this compound can realize the detection of 
nanomole pyrophosphate in aqueous solution and the detection of pyrophosphate 
in the competitive environment of cytoplasmic ions [33]. Study has showed a 
low-molecular-weight metallopolymer in nanofiber form demonstrating potent 
anticancer properties. [17, 36] Nano-formulation has been showed to be able to 
improve the stability and selectivity of metal complexes, and hence emerges as 
an appealing strategy to increase anticancer activity and reduce their toxic side 
effects [37–39]. For example, Wu et al. have synthesized photosensitive triblock 
copolymers, which can be self-assembled to form polymer nanosystems to improve 
their biocompatibility and prolong their blood circulation time to achieve the 
purpose of regional enrichment of tumor tissue. Under the excitation of red light, 
the nanosystem dissociates spontaneously, releases anticancer Ru complexes and 
triggers the generation of a large amount of singlet oxygen to inhibit tumor growth 
[37]. Therefore, the formation of nanostructures of metallopolymer could have a 

Figure 1. 
Schematic representation of polymer and chemical structure of [AuIII(C^N^C)(4-dpt)]-(CF3SO3) from  
Ref. [12, 17].
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promising improvement on the biological activities. Recently, studies have found 
that, metal complexes with 2-phenylimidazo [4,5-f]-[1,10]phenanthroline (pip) as 
ligand displayed potent anticancer activities (Figure 3) [17, 34, 40–43].

2. Synthesis and characterization

Possibly, the plane structure and NH group of the ligand could form π-π 
interactions and hydrogen bonds between adjacent molecules. Interestingly, in 
this study, we synthesized a simple Cu(II) complex, [CuCl(pip)2]Cl, capable of 
self- assembling into a metallopolymer driven by diverse intermolecular interaction, 

Figure 2. 
Metallopolymers of different metal centers [24].

Figure 3. 
(a) Structure and photo-induced dissociation of Ru complexes, (b) synthesis of nano-system and its inhibitory 
effect on tumor growth [37].



Self-Assembly of Nanostructures and Patchy Nanoparticles

4

which demonstrated potent in vivo anticancer efficacy. Addition of pip in ethanol 
to CuCl2 in water resulted in a clear green solution. The solution turned to be 
viscous after 2 h at room temperature. Upon cooling in a refrigerator, stable green 
viscous solution was formed (Figure 4a). When the viscous solution stood at room 
temperature for 25 days, green single crystals suitable for X-ray diffraction could 
be obtained in a capped vial. The crystal unit of [CuCl(pip)2]Cl is in a trigonal 
pyramidal coordination geometry (Figure 4b). Hirshfeld surface [45] clearly 
illustrates that rich supramolecular interactions of conjugated π-π interactions, 
C(N)▬H × × × Cl hydrogen bonds, and edge-to-face C▬H × × × π interactions are 
involved (Figure 4c and d) in the crystal packing. These results indicate that weak 
interactions including cooperative π-π and multiple unconventional C▬H⋯X 
hydrogen bonding interactions are strong enough to from the metallopolymer.

UV/Vis and FT-IR spectroscopy was employed to examine the intermolecular 
aggregation of [CuCl(pip)2]Cl during the assembly process. As shown in Figure 5a, 
UV/Vis spectra of the complex in CH3CH2OH/H2O (5:1) exhibits a red shift with 
peaks from 409 to 423 nm when the concentration increased. This is ascribed to the 
enhancement of molecular interactions due to the increase of the concentration. 
The FT-IR spectra of [CuCl(pip)2]Cl displayed significant difference in different 
solvents (Figure 5b). The red shifts in proton solvent could be attributed to the 
enhancement of C▬H × × × X hydrogen bond and π-π interaction.

Tyndall effect was observed in the solution of [CuCl(pip)2]Cl in proton solvent  
CH3CH2OH/H2O (Figure 6), indicating the formation of self-assembled species 
[46], while no Tyndall phenomenon observed in aprotic solvent DMF. Therefore, 
the presence of proton solvent could be a determining factor for the self-assembly, 
as proton solvent could provide H atom feasible for the aggregation driven by 
hydrogen bond. In contrast, Tyndall phenomenon could not be observed in the 
solution of 0.8 mM (Figure 6a), possibly due to the unfavorable intermolecular 
distances in a dilute solution. Moreover, the mean size of the metallopolymer was 
found at about 95 nm (Figure 6b), indicating the presence of nanoscale aggregates 
in this solution.

From the TEM images, we found that metallopolymer were highly monodis-
perse with the size of 83 nm in diameter. And AFM measurement confirmed the 
spherical nanoparticle morphology of the supramolecular metallopolymer in the 

Figure 4. 
[CuCl(pip)2]Cl: (a) formation of the viscous fluid upon cooling in ethanol/water (v/v = 5:1). (b) Crystal 
structure, (c) chemical structure, (d) illustration of Hirshfeld surface in the crystal packing: the mapping range 
is shown from red (short distance) through green to blue (long distance) [44].
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proton solvent (Figure 7a and b). The metallopolymer was further confirmed 
by XRD (Figure 7c). The results of MALDI-TOF-MS analysis also demonstrated 
the presence of monomeric species, and dimer and trimer aggregation peaks of 
[CuCl(pip)2]Cl (Figure 7d).

To further understand the phase transition, the effects of temperature, concen-
tration and solvent on the viscosity of [CuCl(pip)2]Cl were examined by Ubbelohde 
viscometer. Significant temperature-, solvent- and concentration-dependent 
changes in the viscosity were recorded (Figure 8b and c). The stacking mode of 
[CuCl(pip)2]Cl showing hydrogen bonds (C▬H…Cl = 3.681 Å; N▬H⋯Cl = 3.279 Å) 
and π-π interactions (3.524–3.777 Å) (Figure 8a). High viscosity was detected when 
incubating in CH3CH2OH/H2O (5:1), which decreased obviously when the tempera-
ture increased from 5 to 75°C. However, the viscosity showed no significant increase 
in aprotic solvent DMF (Figure 8d). Additionally, the decreased viscosity induced 
by rising temperature when the temperature decreased from 75 to 5°C (Figure 8e), 
which demonstrated the recovering ability of the metallopolymer. The viscosity of 

Figure 5. 
UV/Vis (a) and FT-IR (b) spectroscopy changes in the self-assembly process [44].

Figure 6. 
Nanostructure of metallopolymer. (a) Tyndall effect of [CuCl(pip)2]Cl under different solvent and 
concentration conditions. (b) Size distribution of [CuCl(pip)2]Cl (2.5 mM) in ethanol/water (5:1) [44].
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Figure 7. 
Characterization of metallopolymer. TEM (a) and AFM (b) images of metallopolymer. (c) Powder  
XRD pattern of [CuCl(pip)2]Cl (2.5 mM) in ethanol/water (5:1). (d) MALDI-TOF-MS analysis  
of the [CuCl(pip)2]Cl in ethanol/water (5:1). Insets specific peaks representing different aggregation 
patterns [44].

Figure 8. 
Dynamic change of metallopolymer with different treatment. (a) The stacking mode of [CuCl(pip)2]Cl 
showing hydrogen bonds (C▬H…Cl = 3.681 Å; N▬H⋯Cl = 3.279 Å) and π-π interactions (3.524–3.777 Å), 
and viscosity change of [CuCl(pip)2]Cl in different solvents and temperatures, (b) viscosity of [CuCl(pip)2]
Cl (0.8 mM) dissolved in different solvents with temperature range from 5 to 75°C, (c) the viscosity of 
[CuCl(pip)2]Cl was recorded on temperature variation with the concentration raised, (d) dynamic change 
with temperature varying in the cycle 5–75–5°C in ethanol/water (5:1), (e) concentration dependent at 25°C, 
and (f) dynamic change of metallopolymer with different concentration [44].
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[CuCl(pip)2]Cl increased dramatically upon increasing the concentration, which 
confirms the contribution of enhanced intermolecular interactions during the self-
assembly of the metallopolymer (Figure 8f).

3. Cell proliferation inhibition of metallopolymer

Further studies were also carried out to examine the effects of the matter 
forms (metallopolymer and monomeric complex) on the anticancer activity of 
[CuCl(pip)2]Cl, by in vitro and in vivo models as previously described [39, 47]. As 
shown in Figure 9a, the metallopolymer demonstrated much higher anticancer 
activities against the tested cancer cells than the monomeric complex. In order to 
understand the reasons accounting for the different activities induced by the matter 
forms, we compared their cellular uptake in HepG2 hepatocellular carcinoma cells. 
Consistently, the metallopolymer exhibited much higher cellular uptake than 
monomeric complex in different time points (Figure 9b). From Figure 9c, we 
found that significant concentration-dependent changes in the cellular uptake were 

Figure 9. 
Cancer cell growth inhibition of metallopolymer and monomeric [CuCl(pip)2]Cl. (a) The cytotoxic effects of 
monomeric [CuCl(pip)2]Cl, metallopolymer, (b) time-course cellular uptake of monomeric [CuCl(pip)2]Cl, 
metallopolymer in HepG2 cells (10 μM), and (c) cellular uptake of metallopolymer by confocal fluorescence 
images [44].
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recorded. It is likely that metallopolymer could assembly into nanoparticles, which 
enter cancer cells through endocytosis in a high efficiency, thus increasing the cel-
lular uptake and anticancer efficacy. Moreover, the results of confocal fluorescence 
images revealed that, the metallopolymer were internalized by cancer cells through 
endocytosis, and could be released into cytoplasm after 12–24 h (Figure 10).

4. In vivo tumor growth inhibition of metallopolymer

Furthermore, we assessed the in vivo therapeutic efficacy of the metallopoly-
mer in HepG2 xenografts nude mice. In this study, metallopolymer was dispersed 
in PBS and injected into the tumor-bearing nude mice intravenously. As shown 
in Figure 11, the metallopolymer significantly inhibited the tumor growth, as 
evidenced by the decrease in tumor volume and tumor weight in a time-dependent 
manner. Moreover, under the effective dose, the metallopolymer showed no damage 
to these major organs, including heart, liver, spleen, lung and kidney (Figure 12), 

Figure 10. 
Cellular localization of metallopolymer after incubation with HepG2 cells for different periods of time [44].
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demonstrating the cancer therapeutic potential and safety of this kind of self-
assembled functional metallopolymer.

5. Conclusions and prospects

In the past decade, self-assembled functional supramolecular metallopolymers 
have aroused a surge of research interest, and have demonstrated application 
potential in cancer therapy. In this chapter, we have summarized the progress in the 
rational design of biological application of different metallopolymers. Especially, 
a simple Cu(II) complex, [CuCl(pip)2]Cl, was found be able to self-assemble into 
surpramolecular metallopolymer driven by diverse intermolecular interactions, 
including π-π interactions and hydrogen bonds under a proton solvent condition. 
The functional metallopolymer could enter cancer cells through endocytosis, thus 

Figure 11. 
(a) Schematic demonstration for tumor growth inhibition by metallopolymer. (b and c) In vivo anticancer 
activity of the metallopolymer against HepG2 cells xenografts. Inset is TEM images of the metallopolymer in 
DMEM medium (24 h), and (d) body weight of HepG2 cells xenografts in nude mice (n = 5) [44].

Figure 12. 
H&E staining of major organs after treatments [44].
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effectively inhibit tumor growth in vivo without damage to the major organs. This 
study provides a simple strategy for rational design of Cu-based metallopolymer 
with novel anticancer potency. For further development of self-assembled nano-
structures with clinical application prospect and value in tumor diagnosis and 
treatment, here are some issues that should be considered. (1) Firstly, how to make 
the self-assembly of compounds more efficient? This may require structural opti-
mization of ligands, metal centers, bonding methods, or modification of polymers 
or biological macromolecules to adjust the overall hydrophilicity and lipophilicity 
of complex molecules. (2) Secondly, how to make the assembly more selective and 
targeted to the tumor? It is necessary to transform the structure or add targeted 
groups to make the assembly more specific to tumor tissue, cells and intracellular 
molecules, so as to distinguish normal cells. (3) In order to use as clinic treatment, 
more research is needed in the aspect of medicinal properties, such as toxicology, 
pharmacokinetic analysis, etc., so that researchers can have a better understanding 
of the medicinal properties of different types of assembled structures.
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