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Abstract

The fundamentals of heat transfer and its applications, the classification of 
heat transfer technology and different heat transfer techniques, and the needs for 
augmentation and its benefits and the different combinations of two or more inserts 
and integral roughness elements for heat transfer augmentation purpose have been 
introduced and discussed in this chapter. It is shown that most of the compound 
techniques performed better than the individual inserts for heat transfer enhance-
ment. This chapter has also been dedicated to understanding the basic concepts of 
vortex generators for heat transfer enhancement in plate-fin heat exchangers. The 
performance of transverse, longitudinal, and wing-type vortex generators has been 
discussed as well.

Keywords: heat transfer, review, enhancement, heat exchanger, vortex generators, 
twisted tape, ribs, combine techniques

1. Introduction

The phenomenon of heat transfer has always been a topic of interest to research-
ers and manufacturers alike. The previous researchers have addressed heat transfer 
characteristics of wide varieties of fields like bio-heat transfer, semiconductors, 
various cooling techniques, and natural phenomenon like oceanic currents and 
other important and relevant areas.

This chapter aims to cover all the relevant research papers about heat transfer 
published till 2018; few are there containing numerical and analytical aspects of 
heat transfer, while others are highlighted for its applications in engineering.

2. Free stream and flows over a surface

The chapters have been classified into categories like compressible and high-
speed flows, externally influenced flows, flow related to films and interfaces, 
instable flow effects, flows with special fluid types, and flow related to reactions.
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2.1 Effect of external surface

The effect of turbulence on free stream during heat transfer enhancement 
caused by the destruction of the viscous sublayer in the gaseous cavitation of CO2-
saturated water was recognized. The influence of roughness and wall temperature 
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Figure 1. 
Different types of vortex generators used for enhancement of heat transfer. (a) Center-cleared twisted tape [4]. 
(b) Spring tape insert [9]. (c) Twisted tape [10]. (d) Swirl generator [12]. (e) Twisted tape with clearance at 
the center [13]. (f) Wavy tape with angular cuts [14]. (g) Full-length twisted tape [16].
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on the turbulent boundary layers was investigated [1, 2]. A model was developed 
to evaluate fluxes in urban boundary layers using the naphthalene sublimation 
technique [3].

2.2 Effect of geometry

Heat transfer enhancement is the process of improving the rate of heat deposi-
tion or removal on a surface. It is a subject of interest to the researchers as it results 
in savings in energy as well as cost. Heat transfer can be enhanced by using different 
types of swirl generators. Geometry plays a vital role in heat transfer enhancement. 
Transverse ribs with twisted tape and helical tape; axial rib with screw tape; and 
inclined limb in cylindrical dust have been studied for friction factor and Nusselt 
number [4–8]. Heat transfer augmentation techniques have been used to the study 
the effect of heat transfer and pressure drop due to insertion of twisted tape, 
inclined turbulator, corrugated tube with spring tape, diamond shape cylinder, 
wavy turbulator for short length and full length, center-trimmed twisted tape, flow 
around hexagonal cylinder, wavy channel, rhombus duct, square duct, and double 
pipe [9–20] as shown in Figure 1.

2.3 High-speed flow

A computational fluid dynamic (CFD) model has been developed to understand 
the hypersonic flow fields for reentry vehicles; facility was created for modeling 
the projectile flight heating upon reentry. Simulation model for heat transfer due 
to convection and heat penetration was proposed [21], and comparative study has 
been conducted using of the European Atmospheric Reentry Demonstrator.

3. Channel flows

3.1 Straight wall passage

Initially, thermal characteristics in straight wall passages have been considered 
to analyze the heat transfer phenomenon in channel flows. Using the finite elements 
method, Nusselt number and friction factor were calculated for laminar regime. An 
investigation on laminar-turbulent transition inside a heated horizontal tube was 
conducted [22]. An analytical study for joule heating in a parallel plate channel with 
thermally developed flow has been conducted [23]. A circular tube was examined 
using various different conditions for viscous flow [24]. A novel method was devel-
oped for evaluating the Nusselt number for hydrodynamic flow conditions [25]. 
Horizontal, inclined channels and vertical plane passages were examined for mixed 
convective heat transfer [26, 27]. A prediction was presented for Nusselt number for 
the in-tube cooling of supercritical carbon dioxide [28].

3.2 Microscale heat transfer

The study of fine scale heat transfer was done with various channel configura-
tions. 3D flow and heat transfer were examined in microchannels [29]. Theoretical 
analysis for heat transfer in laminar flow between two parallel plates separated by a 
very small space in micron range was conducted. The momentum and energy equa-
tions are solved for the hydraulic and fully developed thermal flow in the micro-
channel [30]. This method was also used to simulate rarefied gas flow and heat 
transfer in microchannels in a particular Knudsen number range [31]. Water was 
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used as the working fluid in microchannel of rectangular shaped heat sinks, and 
computational studies were carried out [32]; also, their thermal performance was 
optimized minus water [33]. Convective heat transfer of fully developed flow both 
thermally and hydrodynamically in a rectangular microchannel is investigated [34]. 
A simulation model of low-power microchannel thermal reactor was presented 
[35]. Fractal branching used for the cooling of electronic chips was investigated 
[36]. Slotted microchannels were studied analytically on the basis of conduction 
and convection [37]. The performance of thermal fluid in a small capillary was 
studied experimentally [38].

3.3 Irregular geometries

A variety of papers covering numerous geometries have been taken into consid-
eration in this section. Narrow-spaced fuel element configuration in multichannel 
was modeled numerically [39]. Rhombus and ellipse shape ducts were studied 
using Galerkin integral method [40, 41]. The heat transfer in a pin fin at the end of 
the wall was investigated [42]. The heat transfer in a milliscale thrust nozzle was 
studied numerically [43]. Viscous flow convections and heat transfer were studied 
in corrugated ducts [44]. For square ducts a combined study was undertaken to 
understand the thermal characteristics in different shapes [45]. Experimental study 
was done with regard to two-pass internal coolant passages in gas turbines [46]. 
An increase in heat transfer due to rolling and pitching action in swirling ducts was 
found experimentally [47]. Flow and heat transfer for metal honeycomb geometry 
was inspected [48]. The effect of viscous forced convection in branching ducts was 
studied [49].

4. Flow separation

A study showing the separation of energy in free shear zone was carried out, and 
the role of pressure in the flow separation was studied [50]. In vertical ducts and 
other cross sections, mixed convection was investigated numerically [51]. Three-
dimensional flow studies for understanding the effect of step height were also 
available. Large eddy simulation (LES) was undertaken for the turbulent flow over 
a backward-facing step [52]. A laminar airfoil was taken, and adiabatic and heating 
conditions were investigated at modest subsonic Mach numbers [53]. Correlations 
among the heat transfer coefficients of dull-edged flat plates and square channels 
were studied [54]. A finite volume method was used to investigate the 2D natural 
convection in a heated cylinder, and the significance of aspect ratio, Prandtl num-
ber, and boundary conditions on thermal characteristics were studied [55].

5. Experimental methods

Precise measurement results in good outcome in every research work. In heat 
transfer, measurement plays a pivotal role in the analysis of thermal system. Even 
after the numerical modeling of a heat flow system, it is not possible to define all 
the parameters with full accuracy leading to the failure of many thermal systems. 
This includes most of the engineering devices such as spacecraft, cryogenic engines, 
satellites, etc. Modeling of a turbulent flow and transition zone is very complicated, 
and hence it is difficult to predict very accurately. For the accuracy and relevancy 
of data, precise measurement is required which gives rise to the development of 
precise system with better accuracy.
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5.1 Heat transfer

Heat flux measurement is an important aspect for understanding the physics 
related to transport of heat; distinguish among conduction, convection, and radia-
tion mechanism; analyze energy balance; derive material properties; and under-
stand the flow regimes, etc. The physical and mathematical models are presented to 
investigate the evolution of surface waves for free-falling turbulent wavy films with 
varying Reynolds number [56]. Thermochromic liquid crystal (TLC) is one of the 
best techniques to visualize the transient heat flow over the surface. The change in 
color of TLC from red to green to blue helps understand the flow of heat flux over a 
surface in supersonic wind tunnel [57]. Luminescent coating is another option for 
measurement of heat flow over a surface. The method has been used to determine 
the heat flow in shorter duration of less than 10 ms hypersonic flow [58]. Heater 
foils can be used to measure the bulk temperature development in time-based heat 
flow measurement by using a simplified model in which temperature development 
has been characterized [59].

5.2 Temperature measurement

For the temperature measurement during rapid contact solidification at the 
surface of substrate, an interfacial temperature sensor of 1 μm diameter has been 
fabricated [60]. A telecentric objective has been used for the first time to phase 
out the dependence on the angles in color determination in fluid-based TLCs for 
precision measurement [61]. An acoustic thermal scan has been evaluated using 
numerical methodology to evaluate the spatial resolution [62].

5.3 Velocity measurement

A multiple hot-film sensor (MHFS) arrays were used to evaluate the skin friction 
along the surfaces of two-dimensional streamlined objects (circular cylinder) [63]. 
A high time resolution ultrasonic velocity profiler (UVP) system has been devel-
oped to determine 1D velocity profile on an ultrasonic beamline [64]. A numerical 
investigation [65] was conducted to determine the thermal response of hot wire for 
the measurement of sudden shift in the velocity in turbulent flow.

5.4 Miscellaneous

Bubble cluster pattern has been reported in the turbulent bubbly flow using rake 
of resistive flow and signal processing associated with it [66]. Air and liquid flows 
have been measured individually in two-phase air liquid flow [67]. Ultrasound 
Doppler velocimetry has been used to measure the thickness and velocity of the 
liquid film [68]. A novel pressure-sensitive paint (PSP) has been formulated and 
used for pressure measurement in cryogenic wind tunnel [69]. A high-sensitivity 
thermal conductivity detector has been developed from different materials which 
can be used in the diagnosis of fault in transformer, oil exploration, etc. [70].

6. Phase change

This part of the chapter deals with melting and freezing of materials. The 
section is divided into several subsections such as phase change materials (PCMs); 
formation of ice and its melting; melting and freezing of radial objects; melting and 



7

Applications of Heat Transfer Enhancement Techniques: A State-of-the-Art Review
DOI: http://dx.doi.org/10.5772/intechopen.92873

solidification of metals, nonmetals, and composites; crystallization; and globule, 
spray, and plunge cooling for better understanding.

6.1 Phase change materials

The inability to recover latent heat after super cooling of PCMs has been pointed 
out, and the method to recover latent heat has been discussed [71]. The melting 
mechanism of PCMs in magnetic field in low-gravity atmosphere has been dis-
cussed [72]. Other works include fabrication of carbon brushes which can be used 
to enhance the thermal conductivity in phase change materials, the role of ultra-
sonic vibration on melting characterization of PCMs, and detailed examination of 
solid liquid phase change heat flow enhancement.

6.2 Formation of ice and its melting

Researches on the formation of ice and its melting include the thermal behavior 
of ice under constant heat flow per unit area and melt removal, melting of ice 
using natural convection, ice making by cooling water-oil emulsion with stirring, 
and numerical simulation of melting of ice in water under the influence of natural 
convection and cooling effect produced by melting of ice [73–75].

6.3 Melting and freezing of radial objects

A lot of work has been presented on phase change in radial objects such as 
sphere, cylinders, and slabs. A mathematical model using numerical analysis 
has been developed to study the melting process of PCMs in sphere [76]. A novel 
packed bed of spheres has been developed using graphite/PCM composite for 
increasing the thermal conductivity which resulted in reduction in melting and 
freezing time significantly [77].

6.4 Melting and solidification of metals, non-metals, and composites

It has been observed that the supercooling properties of sodium acetate trihy-
drate can be improved by addition of nano-Cu [78]. A simulation model of melting 
and solidification of PCM in metallic porous foam has been investigated in the heat 
exchanger. The Hunt-Trivedi model has been used to simulate the solidification 
process of AISI 304 stainless steel [79].

6.5 Crystal growth

The crystal growth involves controlled growth of microstructure using opti-
cal heating, modeling of mass crystallization in magma chamber, effect of crystal 
growth on solute distribution, and simulation of crystal growth for binary melting 
process [80, 81].

6.6 Globules, spray, and plunge cooling

This subsection deals with the deposition of metal droplets on the premolten 
pool and wavy surfaces, numerical analysis using FEM to study fluid mechanics and 
heat transfer of solder droplet on flat surface, numerical analysis of microdroplet 
deposition over a novel micromanufacturing process, and utilization of impulse 
atomization technique to produce controlled size droplets [82–84].
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7. Numerical methods

Numerical methods are used to develop the mathematical models to solve 
complex numerical problems. The technique is used widely in research for modeling 
and optimization of the physical work which otherwise required rigorous work. The 
research work done in the field of heat transfer using numerical methods has been 
depicted in this section.

7.1 Heat conduction

A hybrid 3D model has been developed for the analysis of transient heat conduc-
tion in a functionally graded material (FGM) using generalized finite difference 
method [85], Cattaneo-Vernotte model (CV model) was used to develop numerical 
simulation of non-Fourier heat conduction for a fin attached to a microelectronic 
surface [86], Galerkin-vector theory and numerical method are used to develop a 
mathematical model to study heat conduction in nonhomogenous materials [87], 
and heat conduction model was developed using numerical methods to understand 
the flow of heat in the granular materials [88].

7.2 Inverse analysis

Systematic and local error has been identified using WKB method through 
numerical analysis [89], numerical inverse Laplace transform was used to solve 
nonlinear differential Equation [90], and numerical inverse method has been 
developed to extract heat flux in heat-sensitive coating region [91].

7.3 Fluid flow

The lattice Boltzmann method is used for simulation model of non-Newtonian 
fluid flow, two fluid method, and discrete particle method used for simulating the 
gas-solid flow of rough particles. A CFD model can be used effectively to study 
the hydrofluidization freezing, and a numerical simulation of fluid flow with 
thermal hydraulic mechanical coupling method on an uneven surface was devel-
oped [89].

7.4 Turbulent flow

Numerical methods can also be utilized to predict the turbulent flow. k-ϵ and 
LES model were used to study turbulent flow field around rows of tree and build-
ing, turbulence in flow field and temperature can be predicted, renormalization is 
used to determine the eddy diffusion in turbulence flow, intermittency model was 
developed for studying the laminar boundary transition at supersonic and hyper-
sonic condition, and LES is used to forecast the heat transfer coefficient and blade 
metal temperature [92].

8. Heat exchanger and thermosyphons

8.1 Applications

The sheer variety of heat transfer operations has been demonstrated by a num-
ber of researchers in their works dealing with thermoacoustic and thermoelectric 
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devices, rotating heat exchangers, commercial blood oxygenators, soil and deep 
bore heat exchangers, space craft radiators, and pressurized bubble columns.

8.2 Enhancement of heat transfer

The procedure to ease heat transfer has been stated by many researchers. The fin 
technology of extension is quite prevalent in the recent times. An investigation was 
carried out with fin tubes using liquid crystal display technology and plate finned 
tube exchanger by infrared thermal imaging, and performance measurement has 
been reported for a finned tube surface and annular fins. Fins having curly surfaces 
are examined for humid airflow. In addition to this film-wise condensation on plane 
low finned tubes, transient conduction in a fin, performance of extruded-serrated 
and extruded-finned tube bundles, and the features of a multi-pass heat exchanger 
have also been reported.

8.3 Microscale heat transfer

A number of applications now employ miniaturization of heat transfer devices: 
micro-heat pipe arrays, electronic cooling, microturbine, evaporation and boiling in 
microfin, microheat pipes, microscale temperature measurements, and modeling of 
microchannel flows [93].

8.4 Effect of fouling

An investigation has been done to study the effect of gas-side fouling in cross 
flow. Calcium carbonate fouling effect was studied with a microscale image; min-
eral fouling in extended tube heat exchangers was studied; the use of polyacrylic 
acid as anti-scaling and antifouling agent was studied [94–96].

8.5 Systems based on thermosyphon

Thermosyphons found applications in a variety of heat transfer complications 
such as space radiators and cooling of structures, solar water heaters, nuclear 
reactors and system based on geothermal energy, evaporators, preheaters, tiny heat 
pipes used to cool PC, laptops, and other electronic components [97–100].

9. Heat transfer: general applications

The relationship between the parameters of a fluidized bed and the heat transfer 
to a body engulf in it [101]. The SIMPLE algorithm [102] was used to simulate a 
blast furnace, and a relationship has been developed for the heat transfer coef-
ficients on extension walls and hydrowalls of the boilers [103]. A porous radiant 
recirculated burner (PRRB) concept is developed to reduce losses due to open-flame 
combustion [104]. Leong studied the effect of latent heat of fusion on thin plates 
and numerical analysis of temperature change in biscuits using Monte Carlo (MC) 
method [105].

Multiple papers investigated the thermohydraulics of the cooling flow in nuclear 
reactors. A model was developed to study heat flux for low flow rates [106]. Inter-
wrapper flow was studied, and its effects were analyzed numerically [107]. In the 
case of ceramic-coated turbine blades, the heat transfer coefficient does not signifi-
cantly affect metal temperatures when thermal radiation is in the picture.
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10. Insolation

10.1 Solar radiation

Various perspectives to evaluate solar data using modified modeling have been 
conducted by researchers. A new correlation between sunshine duration and radia-
tion on the surface of the earth has been derived by Suehrcke [108]. It was found 
that the correlation is very well established for average value. A correction factor 
was proposed by Muneer [109] for calibrating the shadow band pyranometer. A 
model was using upper air humidity to estimate global solar radiation [110].

10.2 Solar air heater

Numerical solutions were also developed for absorbers in a porous medium, 
Nusselt number and Reynolds-Rayleigh number correlations for natural convec-
tion in an open-ended rectangular channel and models for solar air heater with fins 
[111]. Collector efficiency was predicted in a simplified manner.

10.3 Solar water heaters

Novelties in the design of solar water heating application are presented in this 
subsection. Fourier transform technique has been used to estimate the heat transfer 
and efficiency of a flat solar plate collector [112]. Double-sided flat plate collector 
was used to experimentally investigate the reduction in heat losses in comparison to 
conventional solar collector [113]. An experimental investigation on ICS solar water 
heart with compound parabolic concentrating integral collector storage system was 
designed and tested [114]. A 2D concentrator was developed aiming to store solar 
energy [115].

11. Plasma heat transfer and MHD

11.1 Investigation and application

In this section, heat transfer in thermal plasma reactor for nanoparticle synthesis 
has been investigated through different models [116]. A 3D model of heat transfer 
in thermal plasma system has been developed to show 3D effect of carrier gas [117]; 
effects of nucleation temperature were investigated by radio frequency; 2D numeri-
cal simulation was developed to show flow and heat transfer in argon gas plasma, 
temperature gradient, velocity, and concentration to study the nitridation of MoSi2 
which was carried in thermal plasma reactor; and numerical simulation model was 
developed to show the effect of radial injection of gas (with and without swirl) on 
flow and temperature field [118]. Plasma induced between two electrodes with and 
without swirl has been investigated for heat transfer with fluid flow [119].

11.2 Magnetohydrodynamics (MHD)

A simple monoenergetic operator and the Bhatnagar-Gross-Krook model were 
presented to estimate heat transfer in a rare gas between parallel plates [120]. A 
mathematical model of 2D magnetohydrodynamic Prandtl fluid flow over a sheet is 
examined [121], 3D magnetohydrodynamic Cauchy problem has been investigated 
[122], 2D pseudo-steady compressible magnetohydrodynamic system is studied 
for expansion of gas in vacuum [123], bio-convection flow of nanofluid is studied 
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in magnetic field [124], and numerical analysis of MHD flow over vertical rotating 
cone is investigated. Also, the volume of fluid method is used to investigate the 
MHD of incompressible flow, and MHD fluid behavior is studied for flow and heat 
transfer [125].

12. Conclusion

In this review article, an effort has been made to study the recent development 
in the field of heat transfer enhancement. A lot of experimental and numerical 
research have been done to study the aspect of heat transfer in different fields such 
as channel flow, crystal growth, heat exchangers, thermosyphons, phase change 
materials, temperature and velocity measurement, solar energy, etc. The effect 
of geometry such as channel modification through inserts, roughness, etc. and 
external power such as magnetic field, electric field, ultrasound, etc. on the thermal 
performance and augmentation of heat transfer has been studied. In addition to 
this, the lattice Boltzmann method, WKB method, numerical inverse method, 
k-epsilon, Cattaneo-Vernotte model, Hunt-Trivedi model, and LES model have been 
studied for different heat transfer applications. Overall this review gives a full-scale 
summary of heat transfer applications.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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